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ABSTRACT

- 'S N L I
., Geometry of \
the Relativistic Structure of Space-time

~ Jean - Marie C(Claudius

H

The motivation to structure space~-time is examined

through the nature of relativity. Differential geometry is
then used to give a modern'(fairly recent) treatment on the

manifold structure of space-time in the absence of gravity.

s
» The axioms of physics which underline this development are

»

shown to endow a geometry to space-time. The formulation of
physical laws is obtained by assigning mathematical objects of
the manifold to physical entities. Gravity is then included as

a necessity to determine the metric. Einstein's _field equation

is then introduced first by motivating its form and then by

'showing that in weak " gravitational fields it leads to
Newtonian gravitation. Finally, a brief expository account of
the evidence for the possible exis;ence of black holes is
given and attempts which have been made to explain thc
singularities of the theoretical formulas in terms of the

theory of black holes are presented: this leads to a

mathematical formulation based on tﬁe above structure.

Important theorems are stated; both ends are areas of current

-~
research.
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INTRODUCTION

. B

¥

Since Einstein presented his General Theory  of

Rek¥ativity, there has been a considerable amount-: of research

/eﬁ the field of differential geometry and the structure of

)

space—?&me, leéding to a wide array of different areas of
studies, from pure mathemaiics to physics (see
(Torretti, 1983) for example). The intent of this thesis is to
analyse the physical structure .0of space-time from a
mathematical point of view, i.e. by using tools developed in
differential geometry; the goal is not to present new results
in this latter field nor to study space-time physics. Starting
wigh the underlying principles of relativity, space—time will

be endowed with a manifold structure: though all the concepts

P

involved are known, the presentation given in this work is not

'often met .
In the first chapter, a brief presentation of my point of

view on the problem of obtaining temporal and spatial

. measurements is given. In chapter Ii, the notions of manifold,

tensors, derivative operators, metric, linear connection and
integral are presented together with some theorems judged
important. In chapter III, the geometry of the manifold is

characterized by the invariance of some part .of the Poincaré

-

§

A
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group and the_é“vsérucéure of the. manifoldgis given through
Lorentz charts. Sinée these charts capture the essence of the
principles underlying —reiativify, a basis determined by
Lorentz charts will be used to specify tensorsﬁ allowing us to
ekprgés physical laws by tensor relations (some example are

>

given) . Theh, non flat metrics are introduced to acc¢ount for
gravity, leading to a geodesic law of motion which depends on
the gravitational field strengths. Einstein ‘field equation is

presented together with one particular solution: the weak

field solution. In the last section of chapter III, evidence

,for the possibie existence of black' holes is given and

Asingularities - (breakdowns) are defined theoretically;

mathematical definitions are given in order to state Hawking
and Penrose's theorems: these determine sufficient conditions

for singularities to oc¢cur.

»

t

] -ﬂ.\
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 CHAPTER I | .

Preliminaries

4

The ﬁhysic?l laws that we include in our comprehensiye
system dre alw;ys tested by.opservatipns reélized by our
conscious mind through éx%erienceu and experimegts. Ahy
observation requires thap-events be ordered in a ‘series, by a
correspondence with . tle naturai numbérs, using .the criterion
of ear;ier and later, Ebr a law to hold, it islnecess;ry that
the qrder‘of evehgs be constant; as for the time elapsgd
between two given events, it yéries from place to place, from
one person to another. Even clocks are-not reliable. As we
implied, the heasure of time is caused by the _sensation of
~ some variation in the surroundings, and ‘as the observed object
transforms (this could be one's own brain) the impression of
.time is felt. For examg&e, a clocé measures the time elapsed
while the wheels of the mechanism t;rn, and since it is a law
that for a constant torque the wheels wili turn at a constant
nate,:the Zaifrver will feel an 'objectiveﬁvmeasure of time

} . .
due to the constancy of the applied torque. But this also.

. N i -
requires the constancy of the matter fields, which is not the
-.case; therefore time can never be trusted. In fact, since time

brings every object to its end, one could say that time is a
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mortal disease transmitted through movement and using space as

«

¢ a medium.f

<

Every different infinitely small portion of space moves

-

differently and is under the influence, through adjacent,

portionsT*, of different movements (or matter fields) so that

b

the measure of time is different .for every and in every

different/gsﬁy, in every portion%of this universe, as small

L

portion as 'one’ wishes to imagine. For example, consider a

pendulum on the the surface of the earth; as the earth voyages

in space, two beats will never occur at the same place or

should we say two beats will never occur in the same 'bath of

waves', and so they will never have the same duration. Thus no

A )
~law (ex. conservation of energy) can be included in a

. "'
comprehensive system if there does not exist a mathematical

4

way of transforming time and length measures from different
positions in space. This is precisely one of Qifj goals
achieved by Einstein's theory (%Fough only locally). In this

way we will be able to express the laws of nq}ure

9
independently of the system of coordinates. We thus foresee

1 in this chapter motion is 'motus' i.e. any kind of quantitative or
qualitative change.
tt H.Poincaré defines a continuum as the set of bodies which can be ¢
joined by adjacent elements of this set without leaving the set.
. (Poincaré,1958) . N C

o f\?




the close relation between space and time.

a

To this date there are four known forces: those of strong

and weak nuclei bonds, electromagnetism and gravity.! The

first . two have a very small raqgus of action while the last
two both admit anll and large radii of interaction. Some

extreme examples are: the ratio of Fhe radius of the electron

to its gravitational field is of the order of 1020 to 1040; as

for electromagnetic fields, they play an important role in the

formation of a galaxy since their strength‘and directions are
—— -

.

directl{ re}qted to the velocities of electrons travelling
through neighbouring galactic clouds. This suggests that space
is bermeated by force fields (the last.two being of special
interest 'to us) which transfer energy to the encounte?ed
matter: these interchanges occur since the fields '‘transport
mass', and so are they called matter fields; the well known
result, due to Einstein, that radiation conveys inertia from .
the pmittingﬁto the receiving bod& (m = g{cz) is just an
example of such exchanges (Einseiﬁ, Lorentz, ...,1924). Since
these directly cause perturbations to the affected space

portions, each event of a series of events will be perturbed

and so will the time duration of the series. One consequence

.of this fact is that matter fields determine the rate of

. L% :
clocks in a one to one correspondence with space. Such a map

-~

t mechanical forces are only effects of these four.

N
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h%sponly been found locally (i.e. only in theivicinity of a

-~
51ngle source -through the a831gnment of a metric) because of

-

the dlfflculty to determlne the effects of the numerous fields

o’

(h-body problem)
Thus on one: hand humans subjectively eel time by

P ' R 2
observing movements in their environment, o 1n their brain, ,

and on the other hand these moYements are adjusted by tde eveg i
changing, matteg‘fields. Thi's establishes many-parallels
between the large scale‘structure of space-time and our mental
dﬁguctufe: For example; the human brain coordinates ite

reasoning by using a fouradimehsional gontinuum (space & time)

necessary tc define causality. In this continuum, the 'measures

-~
i

of “length and time are purely dependent on the frame of
referencei this makes us as well as space qgﬁrtime ‘"at the
mercy' df the cosmos and its matter fields.?! Hence we can
state in ; single sentence: all time is psychologic‘(the logic
of the psyche) time, there are-as many measures of time (and
1engtﬁ) as there are p081tlone in sdpace, each p051t10n being

permeated by a different flow. We shall_ call thls/the

'space-time principie'. The theory of Relativitf can be seen

t* the Russians are well advanced in the study of the/influence -of
cosmos on life: they have, for example, closely related animal
behaviour to solar activity and to the sun's revolution around the

centre of the galaxy (for example see (L.Golovanov, 1981) or
{G.Touchinski, 1966)) . X ) ’

4.
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,és a, sGCCessful attempt to relate the different measures taken

“at different positidbns, and thus, as an attempt to overcome

\the fact that 5111 tlme is psychologic as stated in the
- space-tﬂ\e’bprinciple; more particularly, Einstein's field

equation can be seen as a mathematical indge between the:

- l » R

fields emitted by matter and the 'geometry of the Universe (a

geometry. based on light (Borel,1960)). To achieve this goaly,

.and hence to structure space-time, we introduce, in 'the next

' chapter, some useful mathematical tools.

. . N
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. CHAPTER II

" Some Differential \Geometry

-]

]

The following’ ‘def{nitions and theorems are standard
differential geometric notions; some possible references are:
(Hawking & E1l1is,1973), (Spivak,1965 and 1970), (Torretti,

1983) and (Wald,1984); as for topology one can refer to

Q(Faircnild & Tulcea,- 1971) ., . y

We could ‘define an n-dimensional manifold M%o be a
tbpological space for which every 'point’has a_‘.r‘ieiclghbourhood
homeox‘m‘:rphic to 1;,“ (R will stand for the real numbers), but

this definition, while describing the structure of a manifold,
- - N *
is not as explicit as the precise formulatioen: .

-

. . N

-

’ f~4

Definitiop 2.1: an n-dimensional manifold M is a set M

-

together with 3 Ck-, atlas {0,/ ¢a} , i1.e. a co?ec-tion of

" charts (o, ’¢a) where 0, are subset of M and ¢, are one to

,one corre\spondences _from 0. Qq open sets ¢a(0u) in R®, such

. 1 ,
that ‘ ’

‘a) \7’pe?1-3'0(JL such that peo_, i.e. {0 } cover M

| . _

-
= A

b) if 0, M0y # @ then V' '
¢Bo¢a—1: by (0 N Og) = ¢g(0, N 05)

" .
4 4
) ]




‘ is a CX map from an open subset of R™ to an open -

subset of RP. - \ ’

.\\ T~ )
The C*- atlas (U ,V,)},is said to be compatible with the

——

ck- atlas {0, ¢, if their intersection is also a Ck-

atlas. The atlas made of all compatible atlases is called the

complete atlas.of a given manifold. If the open sets covering

M are unions of open sets bélonging to the complete atlés, we

—

get the topology of M, making each map ¢, into a,
—_— '

homeomorphism. We likewise recover the first, more intuitive,
vy L .

definition of a manifold.

Let 12R" denote the ;egion of R® for ' which x!<0; the

boundary of M is . ! ' : T oL

.

oM = { peM| ¢, (p) € houndary of 112R" }

We could have defined a manifold with boundary by replacing R"
by 12R". Note that M is an (n-1)-dim C¥ manifold and

~

Definition 2.2: a topological space M is said to be connected

if for ahy non-empty open subsets A,B of M such that AUB =

\
M then

ANB=#G.

-

Definition 233 a) a funvctior'x f on a c* manifold is a map frém

3

LS {

/
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M toR. If fo(ba-l:, on any corresponding 0, is a Cf map

(r<k) from . R® - R then f is said to be a CY¥ function. .

p) a Ck curve A(t) is a CX map from R (or an

k]

interval of R) into M; te R is called the parameter.

A

~

\ =

- : ,._a_
Definition 2.4: a vector v (at)k I t

R
tangent to the C curve

°
‘ lﬁ(;:) at:,\th'e point é- X(£o) on M is the linear map
\ _ *
<%f)‘xlt‘ - i_%;g -:; { fide+m)) - f [i(t)l b
. . | “"\.
'(.Qf.) | - tn %l

from the set of functionsfat"l(to) to the number 0l
t o "

1

-.  Note that 1. v can also be defined

¥
o

@

-
+

s Q&M T
dt  t=t, ,.

o . 2. For all functions f,g and a,b € R

\ - | ' viaf+ bg) = av(f) + bv(g)

RN

0 and v(fg) = f(P) Vi@ + g(p) vif)

3. 1f f is constant. (say f('p) = ¢, YpeM) then

evif) = vich = v ‘ ,

S o = f®) V) + v fp)

- L
. )

“ = v({f) = 0..

) : ! . " \ = 2C‘;(f)

A

-
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As defined 4in 2.4 the collection {v} at some point p does
} .

not form a vector space. Nevertheless, we .can define a tahgentj
vector in a more abstract way as the derivative of an

+

e

-

equivalence class of curves through p; two. curves being"’

equivalent if they have the same derivatives in one, and hence

Ny

all, coordinate systems at p.

[V

More precisely, A is said to be equivalent to A if

v

.

1 i
d(x -A) | d(x -A") |
a , =3 S —————
dt t=t dt t=t
\, ,
for some coordinate system .(xl, ...,x™) about p. This

‘equivalence relation yields a qlassification of the curves at,
p. The first derivative of an eqﬁivalence class .can be seen as v
a tangent.vector of ‘nvat p: let V, denote the collect’ion of
all tangent vectors at p. Except for the first part ci_f the

proof of Theorem 2.5, we will always think of V, as a

collection of representatives of classes.

Theorem 2.5: let (%!, ...,x®) be the 1local coordinates in a

neighbourhood of p. Then Vp is an n-dim vector space spanned

by (9/9x') |p- reeer (0/70%™) ‘p , the coordinate derivatives.
\ . , . ‘




p

proof: first we show that'Vb forms a vector space., Let lj(f)
run through all the curves of an'equivalencg class A. Then
for each k Qhe'mapping ¢j(t) = Kj(kt) is a curve and for a'/

fixed k we obtain all the mappings of an equivalence class Q.

Furthermore, for any coordinate systém (xl,...,x") we have: .
i 1 |
ax-ed d(x -13)
dt dt - i

L]

Let ll?(t) & qu(tywae curves in A and mlj(t) & ¢25(t) in o.

Then ' v . .
‘ v
) Ly
d(x A | - d(x . ) l
dt t=t dt t-t(’

and similarly for ¢lj(t) & th(t). It follohs that
N PR « .ty 37
v [x (7\.1 + (Pl)] lt-to = E—[x (12 +' (pz)] It-to

Hence as AJ & @3 vary in there respectiv
™

the sum AJ + @3 runs through a class we denote by A + Q. We :

classes A and ¢,

define the corresponding tangent vectors t¢ be the sum of the

tangent vectors corresponding to _A and @. With this addition

and multiplicatiqn on classes we get the desired structure of

a vector space.

V

From here onwards we consider, as said above,

”
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representatives of classes, and thus we see Vb as a collection

of maps from the space of funptions into the real numbers: it

’

will be uhderstood‘that'vp only forms a vector space when’ seen
& as a collection of derivative of classes. o L N

Now to show that this space %é n-dimensional:
’ I

n N '
d 2f
Gy | = Y = el . 2f]
ot » t =1 dt t=t o Meg
1
- i ax  of
i
{=p dt Ix At
Thus eve vector at p can be expressed as the linear

gt 3

combination of the coordinate derivatives.

j Conversely, consider the 'linear combination

B

i .
3 i 1
' }E a (-a—ﬁ | », a €R

and let A(t) be such that xI (A (t)) = xi(p) + tal. Then the
©r

tangent vector to this curve at p is SR ' 7
. I '
I} /
///
n /
i 9 Y
> Y a = |, o ;
iwl Ix /
- %
7
/

We "must show that the (B/ax})lp are independent: gyﬁpose

/
/ » "



. n
T (a/gulp = -

get

. /o
a contradiction. Hence Vo /is an n-dim vector space, under

usual vector addition and/"scala[r multiplication.
‘ /

///
Vp is called th/e" tangent vector‘spacé toM at p and

<a/ax1>\|p, e v, (0/0%T) Ip the coordinate basis. This basis

\ /

clearly depends on the “chart (o0, , ¢ ) : supposg that we

-
l

create’ av new basis by using the chart (U, , V,) , then the
old basis could be expressed in terms of the new basis by

(using the chain rule)

) b )
a(\vcxﬂ‘ ¢;1) ’ )
¢a(p) a(\Va o ¢;1) 3

ve R '



2

~/

where %'} is the j-th component of the map Y, © ¢a‘1 . This is

Y
’

%nown as the vector transformation law.

" Definition 2.6: a tangent (vector) field,.on a manifold M, is

the assignment of a tangent vector ve Vp at each point
« ’

PEM. o

Definition 2.7: Vp* . the dual vector space to V, , is the

collection of linear maps ®: V,— R at p; each @ is called

a one-form. ; ' ) ,
— //

7

If {e;} form a basis for Vj tggn,the elements {ed}e vV

w
-

for which eJ(e;) = §); form a basis for Vp’f (83, = 1 if i=j

and O otherwise?. This corresponde.né:e between vjevp* and

vy € Vo, T makes V,* isomorphic to V, . The vectors of V, are

*

often called contravariant vectors and the one-forms- of V
/ .

called covariant vectors. ‘ s
‘Each function f on M defines a dual vector df by the

following rule: for any Ve Vp let df(v) = Xif , where 'Xi -is

the number to which v is mapped by a dual basis vector el

(i.e. X! = eiiv)); df is called the differential of f. If

. 7
N



(x,...,x") are llocay coor@inﬁtes, then the differentials
i

(ax!,...,dx") at p constitutethe basis dual to the vector

pbasis (9/0x',..., 9/0x™) at p, since
- * \ , ’

“

. £ 3 1 $
. o @) = dex = 5
ox
[~ | ‘
Thus df = Z -afi- dx , in terms of the coordinate basis.
, . T
ox

b

: a tensor of ‘type (r,s) at ’p“”c?\(er Vp is a

!

i L ] - ) | e
" multilinear map )

i

* * l
T ¢ VX XX VARV X.X Uy = R

A ‘i . T . T
‘& o ‘times s times |
i o J 14

» Lo

Thus a'tensor'of type (0,1) is a one-form, and a tensor -

-

of .type (1,0) is an element of Vp** and hence of V, . An

' - arbitrary %ensor T is expressed in terms of any basis {e,} and
) A

®

{eP} for Vp* and Vo (respectively) as

a
1...b 1

‘ a,...a 1 8

, T = Y® g7 e ® -Be ®e B - 0¢
Lo . b

al"...bs 8

\

16



- ®e } is a basls for the space of all tensors .

where (e @®
a

of tYFl*e (r,s) at p denoted by 3(r,s) and where T @ - -y

1

are the components of the tensor ,T with respect to the basis

{e,} and {eP}. Relations in the tensor space S(r,s) are

-

usually expﬁ;essed in terms of the tensor components; thus if

T, T' € S(r,s) and e R then’ ' \ e !
e ' //
///
/ a"...aI ‘ a,...8, - ,31"'ar h :
(T + T') = (OT) , -+ T )
: / _ b,...bg. L Bye..bg b,...bg
J/’ . ‘ A
® al-o-ar+rl Y alo . oar ] 'ar+loo 'ar+]'." . a
(T®T') | . =T T
// bl' oob8+sl bla .“Qbs b!*l: * .bS"’S'

Another important operation on tensors is contraction:

i

.

Definition 2.9: contraction with respect to the i~-th ‘(dual

p

vector) and j-th (vector) position is a map “C: S(x,s) =

S(r-1,s-1) such that

a,...0...a,

n .
C(T)",Z T ey ...0...D
o=1

s

where O is *at thé i-th and j-th pos:ition in a, ,..., 3,

and: b, ,..., b, respectively. It is a convention not to

{
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write the summation term. Fo¥ example T ab Tac -’Ea T ab Tae ™

b
T'P; . .

L
[

As in the case, 9of vectors, writing a tensor using

\h P :
components depends on the ch Se .of basgs {e®} and {e,] and
—_ N N N

thus on the differeént. charts: As Be had a rule for

‘transforming vectors, the following gives the components of a

&

J N N .
. tensor in the new basis {e*'} and. {e,.} with respect to the -

old basis

where ‘E:"a ,and Eb.b are 'nXn non_-“sg.ngqlarg matrices such
th°{a.t ed' = Ea'g e? and e, = ]yi:b.’b‘eb‘ ( Eb.b Eb'a - 53,),

a

. The symmetric part of a {0,s)-tensor (similarly -

" of a (r,0)-tensor) is defined to be

-

tem

1
T o= " e— T
(blnoobs) . 8 ~§ blccvbs .

\

J

~ and the antisymmetric part

B 1 ¥
T = - Y sign(m) - Ty

[bl..’.pS]’ sl . 1+ bg.
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where ~® represents all possible permutations of 1,.. l‘,s.

Definition 2.,10: a totally antisymmetric tensor field T of
type (0,8) is a tensor for which

L

and is called a d1fferential s-form. (As \vLuor field,

. tensor field is obtained by assigning a tensor at‘ ‘every point

of a manifold).

Defipnition 2.11: a metric g, on a ma“nifoid M, is a symm_etric,

non-degenerate tensor field of type (0,2).
* .

The components of g with respect tofa basis {e;‘} are

gab = g(ea ’ 'eb) 'j

t N ‘ 0
% ’ . ’ |

If the coordinate basis {9/0x®} is used then

g = g,, dx* ® dx°.

1

. Note that 1. Since g is symmetric then g, = (gab + 9pa) /2
= Yab = pa

N\

2. 'The 'magnitude' of ve V, at p is given by

IQ(V*,‘V') 11,2 .



3. The ‘cos angle' between u & ve Vp is

{

g (u,v)

"where g(u,u):g(v,v) #0 .

Ig (u,u) g (v.v) 17
, .

and where u and v are orthogonal if g(u,v) = O -,

-

1@

4, Sincé (0,2) -tensors can be represented by nXxn

matrices,
L Y
N o
— o 1‘
1 1
,‘ a gi?". ;glb * ¢ ;gln : T
e, d% ...
\ © . L -+ .
1 w ., b
g~ . 2%n """ Jab ol Lax
- ‘u . . .
o Iy 1
¢ s . “ e . e o
“ L’2 ni \pn‘

Associated with g,4 there exists ‘a unique (2,0)—'t‘:en‘soz'i '

-

1

g®P which is defined by the relation

In the matrix representation (gfb) = (gab);l"" ancf 80

these two tensors arg usedas ~ isomorphisms between

contravariant ‘and covariant elements of 3(r,s) (this follows

v

>,
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‘ L

o

f::-om‘ the non-degeneracy condition). We often say that the

metric raises and lowers indices since ~va=gabvb and v?@ =

g"b Vp ;  for tensors we (would have for examplé .Ta_bcde = dpf

4

gChgei'Tafhdi : this association is unfique.

. ?
Definition 2,12: the signature of g at p is ‘the number of

positive eigenvalues minus the number of negative eigenvalues

i
of the matrix representing @ at a given p. A metric of

' signature (n-2) for all p is called a Lorentz metric. 'T

“w
Lorentz metrics are used in relativity: they divide

non-zero vectors at p into threée classes; timelike, spacelike

and null vectors whether g(v,v) is negative, positive or zero
3

respective'ly. Null vectors form a cone at each p, separating

‘“timelike and spacelike vectors. (Events on the cone cannot be

3 . “
reached by a material \‘\garticle but can be reached by a light
) |
. S ' :
signal.. Events within the cone can be reached by-material

.particles) .

» " \ L. *
We will “study three differential operators on manifolds:

W

the ext®ior derivative, the Lie derivativeé and the covariant

derivative. Only the ldtter will require an additional

L]
structure on the manifold, the affine-connection.

Before we 'int,ro?uce 4these derivative operatoxs the

concepts of imbedding, immersion and tensor maps must be
. v

L



defined:

]
<

Definition 2.13: let M' be a manifold of dimension n*-2 n. If

the map 4)59‘1—”1’ and its inverse are CX maps (k20), i.e. if

3

Vpe M there exists an open neighbourhood 0 such that o~

¥

¢(5).-—)M is one to one and Ck, then ¢(M™M) is said to be an

n-dim immersed submanifold in M' and ¢ is called an immersion.

If in addition ¢ is onto then ¢(M) is said to be an imbedded

k]

submanifoid of M'. An imbedded submanifold of dimension (n-1)

‘is called a hypersurface. If n=n' the imbedding is referred

to as adiffeomorphism from M to M'.
The structure of an imbedded submanifold is naturally

obtained through ¢ from the manifold itself. This can be seen

r

as such: for any function f:M' = R. define (b*f on M to be

the function which. sends peM to the value of f:at o(p),

~

0*f(p) = f(6(p)).

+
9]
Y

The tangent vector to the curve ¢(A(t)) at ~<t>(p) can be

1) A’\ - ,

denoted & (-a-)
. *

, making ¢ a linear map from V, of ™M
*

to V¢(p) of M'. Thus for any ve Vv

» and any function f SN

. ' 4
v'nl = ovinl,,,



. +
.
B
. . -«
. , -
. - 1 A
‘ -
U <

In this way the vector mapping ¢, from M to M Hefines a

linear one-form mapping’ 4)* from V*Np) of M to vv*p of M by
. - . . ‘

»

reduir:j.ng that contractions of one-forms be preserved under

the map.

- L]
.4

The maps §, and ¢f are extended to maps of contravariant

tensors (M - M') and of covariant tensors - (M'—)?‘l‘)'

R

respectively, i.e.

3

0, . Te S(z,0) ls’ » ¢reS ol

* e " ‘ -
0 .T.ES(O,S)lmp) - ¢'reSo, |, .

‘ o

-

, ) ,
. ' 1 .
] ¢ . , ' ‘ . “

Definition 2.14: the exterior derivative d is a map from
\\g‘f:r,m fields to ({g+l)-form fields. If F is -a g-form field

" .

then o

dF = dF dx A...A dox
.. 8y...a, )

-

where A is the skew-symmetrized tensor product ® , i.e.

Theorem 2.15: the (q+l)-form field dF is independent of the

L

-




o~

. v ! ! ‘-‘ ‘ N . 24

choiecé of coordinates.: &5,
’ } N N N A » \ »
., 'r + - o }" .
. . o . » $ . / . i)
] b . . .
“propf: lét {x*} and {x® )} Pe two sets of coordinates. Then
‘ . : ' B . ' ’ e :
e -~ ' ' - i L ¢ “‘
) . - s R [] ’ ]
\' - . a:‘l ' aq _ * ) ) - L 4
F=F e dw AveoA dx ) ’
L . L u
a;'..agt ‘ ;
. e ) . : ’ a, a, 1/
- where Fa‘ vooa e -h—— —. .. ‘.ﬂ__,." ; .
"' \' - ‘1 LI} q ﬂ [ I . ?1 . aq &1. --aq
) ! . et i ox
L5 ' - . ‘- - 4 - .
) . N T . ) ' ‘ ’
Let Xi = -h——‘\' r i —f 1, . l.,qt ’ ' o
a,' . R — IR
¥ i . .
w - ox 5 ) T R
- » ' L * ! -
+ " ( v
\Ju T g ' -l 4 "'
- ~ b , - b v al ’ ' aq :
= dF = d (XyX, F ) A dx AL L.eA dx .
q 'a TS oa N
. R ! q . -
a - ' A ' 4y r .
1
azx . -b' al “ aq ,
: = n - Xz----Xq a ' dx A, dx A...A dx
\al b' K < 1. » oaq » . . \
ox’ x ¢ . . )
a . ', - )
) 2 q , b' al - ‘aq
+.0.0+ XX _1’—1-5-——, F oo dx A dx AL, A dxC
. aq b! al. . .a.q : . .
. » , O% O - -
, . * ¢ al aq
+ X, X  dF . A dx A...A dx
' 1 q a...a, .
4 . ) - v
' ¢ ) ) , Y .
but since the terms involving ?* are symmetric in a' & b', and
. b' ’ a' . . <, ’ .
since dx A dx is skew-symmetric we get -
a " :.ﬂ LY
¥ - : N /
- v * ’. ".
. .
¥ ‘ . 9
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/

— hd . ' a1| aﬂq'

dF = dF_. X, dx A X, dx
a;,..a qQ

. 1 q A

R al 1 aq »

= dF = dF: " d« A...A dx . .
. aln oaq N N

Note that 1. Since d(fg) = gdf + fdg,
d(FAG) = dFAG + (-1)Y FA LG

. S
V g-form fields F,G.

df = (9f/ox') ax

.= d(df)- —Lf-—dxz\dx = 0
/ axax

'=» d{df) is also zero.

. | -/

‘A manifold M is said to be orientable if there exist '

.an atlas {0 ,, ¢, } such that the Jacobian’ 1ox*/ox'3| . is 7

~sti‘tive' in every 'non-—em;)ty 0, N o'5 ;: here {x"} and {x'J} are \

’ l
-

the coordinates in o0 and‘ot3 respeotively.

\, o

D_e.ﬁni_t_;.gn__z_._l_ﬁ let M be a compact orientable n-manlfold i

with boundary oM and let {f } be a’ partltlon of unity for a

finite oriented atlas {0, , ¢,}. Then -for any n—form field .F -

. ‘ |

on M, the integral of F over M is given by

¢
4
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1 ‘rj 1 n ’1
j F = Yy 2: j f; Flu.n dx -+ dx .
b ) N G a)
where Fy g are the components of F with respect to
(%, ..., %x®) in’o_ .
The second type of differentiation which does not .require °
an additional structure on the manifold is the Lie derivative.

A one-parameter group of diffeomorphisms ¢t is a

collection of CKX maps (k21)' from RXM -—3M such that for

any te€R ¢ :M—-3M is a diffeomorphism and Vs,teR

Prig = ¢to ¢s = ¢s° ¢, . For any vector field v we can

generate ¢t as follows* by the fundémental theorem of ordinary
differential equations the curve A(t) satiéfying dx'/dt =
vige(£¥, ..., xP (L)) is - the unique maximal cutrve passing
through pe€eM™M such that A(0) = p and @uch tl.xat the tangent

This curve is called the integr‘al curve of
v. We define ¢t (p) to"be the point at distance t from p on the
integral curve o0f v. This one-parameter group of

diffeomorphisms maps any tensor T at p into ¢*tT at ¢t(p) .

Definition 2.17: the Lie derivative L, T of a tensor Te 3(r,s)

at p with respect to a tensor field v is defined to be:

&



P

P4

' lim 1 '
v - t—)O -é- {T-q‘*tvr} *

a -

’
. “v
4

it follows immediateix from this definition and from the

i

properties of ¢*t that

1. L : S8(x,8) = 3(r,s) , linearly. >
2.'1£f s,T € 8(r,s) then
L(S®T) = (LS)®T + S® (LT)
3. For aitny function f, L,f = v(f). ] : ““\

g .
Theorem 2.18: ‘if uw and v are vector fields then. i .

i 3 Qui \ 3 avi
(I.”u) = ¥ , T u 3
» 0% ox
’ ‘»‘ '&;‘;‘
written as L,u = [v,u] ( = =[u,v] ).

A

proof: let the coordinate systerr{ ’(xl,..\.,x“) be such

that »! = (3/0x})! , i.e. such that t is chosen as x!. Then

n

¢_. is Just xloaxl+t with *=%, ..., x unchanged. Thus for

Te S(r,s) ' N
. o
Gy T) (x1, 0% = T(x 4 e,xE, L%

M

making L,T = 9T/dx' ; = L,u' = du'/9x! ' for any vector

’ s

field 'w.

- . . -
r . ] .\ . i . , '




W

. _ 3 i gy . 4
| \ thus [w,¥] & v -a“—j - u iv_j . . N
‘ ' - . dx ox :
‘ y o ‘ ,.’
ot ‘ ‘ ) ' . ' = oul/ox! G )
‘ ) = Lv{; = [v,u] since both sides are defined '\
3
independently from the choice of cooxydinates. . -

.y t

Note that because ¢*(df) * d(¢*f),, d(L,F) = L, (dF)

' . #

' ~for any g-form field F. Also since 'L,(f) = v(f), we have
Lv(wiui)'-= v(wiui)-w for any form field w;
i 14 1
but . L, (wu') = Lw + w L, W

1

+. w, [v,u]!

[“lvli n

which determines L, completely.

1

« Definition 2.19: the covariant. derivative .Va , on a manifold

‘M, is a map from C* tensor fields of type (r,s) to C* tedsbr“

fields of type (r,s+1)ﬁ which gatisfies:
~a) linearity,

% b) product rule (or Leibnitz rule), ~-

~

.
- 1 . N
. -
: 1
. \
hy

-



’
‘c) commutativity with contraction,

s
LY . '
e d) tangent vectors are directional derivatives,

i.e. for all functions f and Vve Vo vify = vaVf.
. P

S )
— e) the torsion”“free condition Vabe = vaaf‘

-
Lemma 2.20: let Va and V’A be two derivative operators’ and let’
Wu be a dual vectér fieid. Then there exists a (1,2)-tensor ' J
field, say DS, , such that '
T , - Vow, - Vowy, = DSp w .
N - .
. ] ¢
' -proof: for any scalar field (a functionh f we have -
—, . h
V, (Fwy) = Vo (fwy) = (V frw, + £ (V) = (Y, flwy - £V, w)
C
- ' -— ~
. = f(V a¥b Vawb) 7
Let w,' be another dual vector field which is equal to w,
at p. Then we can find C*™ functions f(o;) vanishing at p.and C*®
dual vector fields w,(® such that _ _
'ﬁ ; ' . ! -

- i n
‘ ’ " - - (o) o
Wiy W Z f(a)wb : )

. =1 N
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&

’ ] - ' 1 '. . (ﬂ) ‘ (ﬂ)
P Vg Gy - W) - Vg ey - vy = 2[ Vatfarbd = Valf Wy )]
" a

O ) (@) 7

|
=

since each f(a) vanishes at p. o : ] -

]

, ] .
= Vawb' - Vawb' = V'awb" Vawb

= V'awb - Vawb only depends on the value of w, at p‘.
= V’a - Va defines a magI fror;l one-forms at p to (0,?)- \
'i:ensors~ at p. By Drefiniti‘on 2,19 a) this ma;': is linear
m=> V'a - V. is a (1,2)-tensor;at; p, say D%y . .
. . \

a

Note that if we let wy = V,f = V/\.f we find
2K v = NC 'd

= Dy = D°%a. by the torsion free condition.

4

Theorem_.2.21: 1let V’a and Va be two covariant derivatives and

' let‘ t2 be a vector field. Then there exists a (1,.2)—tensor

RN

field, say DS ., such that

%

V,tP = Vb + Db, t©



pmgﬁ‘: let w, be a form field, then

(V' = V) (wpt®) = (V' = V)wItP + w (V- V)tP
= (D% u) 2 + wy (V, = V)P by Lemma 2.20
but by Definition 2.19 d) ‘(V'a - V) (wtP) =0 |
= (DS wItP + w (V- V)P =0
4 | _ = w, (V' ] VtP '+ DRt =0 Y w,
= V. tP = V tP + DR, t© .
r e
This is a very important result since \it c'haraqterizes
the difference between two covariant derivatives by D%, , i.e.
by n2(n+1)/2 independenf. components. Lemma 2.20 together with
Theorem 2.21 can b;e generalized to any tensor Te€ 3(r,s). The
\applicat.ion of our interest is V’a = a/axﬂ ; then D€, is
. ‘\denot’ed I'°,p and is called the Christoffel symbol (or the
afgine connection) . Thus we -have 'f Vatb = a'tb/axa + P tC .
(For simplicity of notation we sometimes write this particular

Vatb as tP,, and similarly 9tP/9x® is denoted by d,tP or

just tP 5 ).

’ Definition 2.22: given a curve A(t), its tangent v? and a

covariant derivative Va , we say that the vector u? is




i

\Parallélly‘transported if v"Va'ub = 0 1is satisfied as u®

moves along the curve.

\\\

® -
By using the result of Theorem 2.21 applied ﬁo 9/9x® we get

. ‘ k-4
veV uP = v3(duP/ax?) + va TP, uc =

4

or in terms of the coordinate basis and the parameter t,

duP/dt + va I'P,. uc =0, »

X

Definition 2.23: given V:;, a geodesic is a curve whose
¢ , .

: o ‘
tangent vector v2is paralielly transported along itselft,

i.e. v“V’avb"- 0 .

"Thus ‘the geodesic equation is

4

a
, @ b c ‘
\ d*x a dx dx ’
or just > rbc St ot 0 (.2.1) ,

To understand the physical significance of ‘(~2.1') it is

'
3



!
!
I

- covariant derivative V. satisfying V., 9 = 0. .

. Hence 0 = Vagbc

. it
necessary to show that there exists a unique solution. By
demanding that. for any two vectors v? and u? the inner

product g;b\raub be .,constant when parallelly transported
along any curve, it will be possible to show the uniqueness of
I, (or 'chab)‘. This will be ‘suffi.cient since Differential
Equations garanties a unique solution ::o (2.1) when given'a
particular I'S,y . as a bonus we will get a characterization of

I®ap (or DSp) in terms of the metric g and the derivative

operator - 8/9x* (or V')

Theorem 2.24: let g be a metric. Then there exists a unique

proof: since we want the inner product of any two vectors to

remain .unchanged when parallelly transSported, we must have
- - \

t2V, (gpovPu®) = 0 ,

L]

as t® moves along the curve and where v and u are two

parallelly transported vectors. This is true if Lnd only 'if,

‘ b 'c -
tﬂv u Vagbc 0

¢=> Vagbc = 0,
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= V'agbc - Ddabgdc - Ddacgbd‘

’
= Dcab + Dba.c = Vagbc *

By substitution of indices we also get

Ll

’

Depa * Dape = ngac (interchanging a & b)

and  Dpey + Dycp ™ V' Gap | (Cob,a-c,baa) .

By adding the first:two equations, subtracting the third, and

then by using the symmetry property of DS, we find

_ ’ , _ o
2 Deap = Va9, V'p9ac _ V' 9ab

= D = ng~(V';gbd + v,bgad - v,dgab) / 2.

Therefore a given derivative. operator V'a and a given DS,
1, ‘ ,
(through g) produce a unique Va satisfying V&gbc = 0, . .

\

\
L 4

*

Hence g, determineg both the covariant derivative Va and

the Christoffel symbol which is now given by

*

. 1 ) . A
. p _lad{xagcd;agbd_agbc}

' - be - 29 b e d
‘ ox dx - Ox

’

.

Consider the following:

~

let w, be a dual vector and f a

&

scalar field, then o : N



VAZVb(fw) = V (chbf + fV we) K

-wVbe+Vwaf+V_bec+fVé»wac

%, and 'by subtractlng the equation obta:.ned by interchanging a &

b we get K ' ] .

\ . . o K .t . . '
o ' CAVV, = VRV (Fwg) = SV V) - VVw .

o - a ! :

- - Usi'ng thé same rr{eth'od'as in _Lemma‘2.20, it follows that

h o

(V Vs - YV, w vis a (1 3)-tensor depending only on the value °

-
of w, at p, and t.hug Va’Vb =Y.V, dt_afines a linear 'map from -

(0,1) “tensors atv'p to (0,'3)-'ten80rs at p. Hence we have shown:

L}
> -
a3\ 4
N ]

Lemma 2.25: let w, be a form field. Then there exists a tensor
5 rd

. , . A 8
Do of type (1,3), say R, 9 , such that ‘ / oo
| . _ 1 ' | /-

‘ ' (’V\avb - vaa)wc = Rabcd Wd . //

LI - o

- ’ .

. Rapcd is called the Reimann curvature tensor. \
< ) \ '
i "' Theorem 2.26: let t2 be a vector field. Then .
. m( . , d
) % ’ - [ - -
e 4 (V,V, - V,V)te® = - Ryt

5

Cy |
Rreof: tpe' proof is similar to “that of Theorem 2.21:




N
E ,\‘0 = (v‘avb - vbva) (t%w,)
A3 >~(
' = V (tV w, + w VY, e - VeV v, + w VitS)
k) OANER A ATEEERUA AR A AT
= t%y Rypod + wg(V,V, = V,V )te
. | .. |
Hence (V,V, - V.Vt = - g, &t .. . |

|
’

The same result can be obtained for ény tensor field by using

A )

induction.

Corollary 2.27r 1) Rgpc? = = Ryacf

2) R[abC]d = O N

3) for Va’ and gab 'sati‘sfying vagb‘C = 0O,

Rabcd =‘- - Rabdc. N

" 4) the. Bianchi-identity is satisfied:

“ ViaRoe)d® = 0 (or ‘K¥p(cgie] = 0).

‘nr_Q.Q.f. 1) holds. trivially from i.emx_na 2.25
\ ,

N

2) since by Theorem 2.21 Vmwb - awb/ax‘ + I“d,bv(d , we
” have i )

Ve
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]
= 1/ (Vavbwc -V V w, + VbV Va N

n

\% wac]

(a

- VaJvcwb + vcvawb - chbwa)
= Mg 19,90,We * 0,9, (Mhewy) - 3,9,We - 8,8, (Tacuy)
+739 wy *+ 99, (Meawg) = 9,0 wy, = 9,9, (Mgpwy)

+ 90w, + 9.0, (TMpwg) - 3.9, w, = 8.9, (Mywy) ] _

of d, and of <, - y

1

= (0 by symmetry

= 0=2 V[avl::wc] = V[avbwc] - V[bvawc]

= de ’ -\R[abc]dwd = 0.

\.

3) by generalization gf Theorem 2.26 to tensors,
0= (Vavb_ = va;) gf:d = l.iabce Jeq t Rabde Jee
‘ ~’ = Rabcd + Rabdc *
e (
8 (V,V, - _V’bV;;>Vcwd =Ry oV g + Ropaf Vg

!/
.

= WV Rpod® + Rped® VoWe -

If we antisymmetrize in a,b & c these quantities, then the

left hand sides become equal and we get

. -6- )
R[abc]e Vewd + R[abdf VC]wf = weV[aRb\C]de +"R[bcde Va]We -

|



‘where d is not antisymmetrized. By 2), the first term vanishes

v\ : , L .
while ‘the second terms oneach side cancel out, "leaving

- -

ViaRbeja® = 0. - ‘ : | Y

Taking the trace of the Reimann tensor over its 2nd kgnd

41 jindices yields the Ricci tensor, Rae ¢

, Rac. = Ral::tcd ’

-~ ]

- and the trate of the Ricci tensor

R = R,®

is called the scalar curvature.

- Because of the symmetries of R,p.q - there are

n2(n2-1)/12 independent compbnents left. n'(n+1)/2 of them can

be found through the Ricci tensor; if n>3, the remaining

components can be found by using the Weyl tensor, Cgu.q4 ¢
-

Cabcd = Rabed + 2(JacRd)b = Ib(cRdjal)/ (n-2)'

. - ZRg&[ng]b / {n-1) (n-2) .

I

i M -
{ A

(1f n=1, Ryp.q = O, if n=2 the only independent component of

R, .q i8R, and if n=3, n?(n?-1)/12 = n(n+1)/2 ).

v

abc

Aol Definition 2.28: the

metrics g.and g' are said to be conformal

~




¢ '

/.

if there exists a non-zero C! function & such that g'-= Q%g.

v !

* Note. that the cone structure on Vp is preserved under
; conformal changes of metrics. Also, since g'3P = Q253 and
LS ] - . ) -

g;b - Q’zg'ab , we have’

X

\ ' " -1. “ " sa | d
. A = T3, + Q8% Q.+ 0 cQy - Ipcg?° Q4 -
: R h - ’
i Henceé . ' -
R'abcd = szRaabcd + sta‘[c.ﬂb]\a] H

L , - \
and with some calculations C'3.4 = C3,.3 , i.e. the Weyl

tensor is conformally invariant. _ ‘

/

Defipnition 2,29: an isometr} is a diffeomorphism ¢:M;-)T1

for which ¢,¢ .is equal to g, VpeM. - ]
. = : ‘ - P

fn such a case, the map O, ~Vp—> VO(p) preserves scalar

p'ro’ducts since |

g v) = 4y gDy ubyv) 'wp) = g0, “’{’*\") |4><p) .

Definition -2.30: a vector field X .is calle&’ a Killing
vector field if the one-parameter group of diffeomorphisms ¢t

éenerated by X forms a group of iscmetries.
\

Theorem 2.31: the vector field X is aKilling field if and

[}
. . N
-
.
' f
i
.

¥
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o . .
" R ) , -

only if it satisfies the Killing equation

- ‘ ) x(a;b) =‘0 (i-e. 'V% xa + Va xb -~ 0) .

proof: (=) for any funqtion“_f' © , e i)
T vl = uviN)-- v uh) |
. u'pavan(‘\;bvbf) - v&va(ubvbf) ' B

= (uaV,vP - vaV ub). V §

. = (u,v]P = u,’Vavb - v*’Vaub -
= g‘aavb - v‘aaub : by Theorem 2.21
: - b
(L, u)
therefore I.,‘gab ="x° Yapse + X°;a 9eb + xC b gac
= . xgab = xb a ¥ x since 9abjc ™ Q' | -

]

But since X is a Killiﬁg field,

»

0¥1”59-¢ =Lg

(=) suppose that "% .,

field X.




t _ ~

¢ q' - q' + J' a(¢ q)' (refer to discussion on
*tT P P *s© P maximal curves)

¥ 0
t

: , d
= g'p + I ng*sq)ﬁlp\ ds

0 .
t
d .
: 0 | \ .
; .
d’ ,
" =2 Avm— . -
j o q) |p’ o ds
0
£
.
- [<:. q)(p)l ] as
0 -S
= gl
= % is Killing vector field.. . '

\To finish this chapter we state Stokes' Theorem and prove

~Gauss' Theorem.

1]
-

The gene‘ralize&wgﬁokés' Theorem : if F is an (n-1)-form field

’

on M, then W

a1

<
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'

The proof can be found in (Spivak,1965).

h

\ : - LT
" Let {e®} be a qfsis'fqr one-forms. Then we define the

n—form

. L =n! g ela...ne?,
where g = Jldet gl . The components of { are

- ab...q =n!g3d [aazb‘"&d] .

2

Thus
gab-..d o (1) (n=8)/2 ) g §la15b2...5dln

v

where s is. the signature of g and (n-s)/2 ié the number,of.

negative eigenvalues. Hence .

cab. ..d c,ef. o= (=1) (n—fl) /2 ny S[aies,la‘f"'sd]h]
and

‘ ¥
ab...d ’ - SN
g e = 0 =Cup . .ase Y

i ..

.Define the volume of an n~dimensional submanifold U to

i

1 o - :

“with regﬁect to the metric g. If f is a function on M then
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the integral of f over U'is

’ L - 1 1 n
1 Ifd'o - ;-'-j‘fc = J.,fgdx e dx .,
T u ) L N

- . -\/\
wherg~du is a volume measure on M, not the exterior

derivative. Note that by Theorem 2.15, the definition of this
integral is independent of the choice of coordinates.

Al

Let X be a vector field on M. The contraction of X with
§ is /ﬁ
(X 8yp...a=XCap..a -
an (n-1)-form field. 'I‘%e integral of this form field over an -

‘(n-1)~dimensional orientable submanifold such as the boundary

dM is given by

J. X" do 1 J. |
a (n-1) ! X & -

oM oM

where [ defines the measure-valued norm do, By Stokes'’
f .

Theorem we thus have /



-

"dF = Fp | e:a d"dAd?‘aA"'-Adxc & (@F)y,, ca ™ (-1)9 Fla...c:d)

-

for any g-form F, we get

-

dxf) = (-1 (xf Ceta...a) se)

= (-1)n-1 53[a"'atclaue] Cfs:..t x* o

-1}~ (n~- ...t
= (-1)(» 1{ (n-s) /2 (l/n!) & u ca

- et ' of
o ca...o:ie 88[8"'8 tsuf] X ;u

- f
- (1/n)_—t-'a...dex :f

therefore

N

a . b -
x dda = - X ;b dv
- ou ‘u

for any vector field X ; this is Gauss' Theorem.
A “ L )

L d
~

+v.de cfzs‘, .

xf

su
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'CHAPTER III

As it was pointed out in' chapter I, our mental
representation of physical objects is underlined bif some kind
of"four dimensional continuity. Furthermore, ever sincé we
were young, we learnt that the spacio'—temporal images obtained
in the brain depend very much on our own point of wview
(Piaget,1966) . For example there can be an infinite number of
pictures of the same room for a given t?ime; qsimilariy one
could draw numerous different maps for an atlas from the same
terres?rial globe. It was not?ﬂ, before Minkowski that such
.i.ntuitive concepts were given an-exact representation. Indeed,
it does not require much idealization to c'onceive the
space-tilme continuum as a four—-dimensional differentiable
rr;anifold since the latter can be covered by open éets which
are map_lped to R4 by homeomorphisms and which have the
important propertﬁy of sending intersections of open sets to
homeo;t\orphic parts of R4, This conception 1is in acco'rdance
with our mental structure if we allow that physical locations
and durations ) be: idealized to points and instants
res‘pecti'vely. On the manifold, such points‘ are called” events

or worldpoints as Minkowski named them.

Many different charts can be used to\construct a 'rigid

g2
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grid' necessary to obtain measurements such asNdistahces and
@urations. The choice of a coordinate system iscritical
because relati;ity demands that the laws governing nature be
indgpendent of the transformations applied on a chosen chart.

We define an inertial frame of reference to be a Cartesian

coordinate system that meets the two folldwing conditions:

N 4

I. Three free particles emitted non-collinearly from a
point of an open set of a 4-dimensional manifold describe
straigh£ lines in this set.

II. A light ray transmitted in vacuo from a point of an

open set describes a straight line in this set.
And to define an inertial time frame of reference:

ITI. A free particle moving in- an inertial frame (I & II)

has constant speed.
IV. A2 light ray transmitted in'vacuo from a source at

rest in an inertial frame has constant speed.

-

The last two conditions settle the definition of time and

of simultaneity. Since they are not the only ones possible,

they are sometimes named after their establisher, Einstein

'é&me and Einstein simultaneity (for more details on these

§

definitions see (Einstein,1950) for example). -

46
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Let (0 , %) be a chart for a 4-dim manifold M. For |
peo_, x(p) = ( x"(p),x'(p),*®(p),%*(p) ) € R* , where x0 =
time t. If o0- is an inertial frame |(I II) and if the

2

real-valued function x° assigns an Einstein time (III & IV) to
/every peEM , ther; x is said to be a

orentz chart. lLorentz

/ :
charts are linear bijections of M onto R4, \ ) ) ,

Let x and y be two Lorentz chart (omitting to write

1 1

their respective .domains). The bijections =x:y~~ and y-x~
g

s§om R* into 3!,4 are called Lorentz coordinate transfirmatiég%
~/ ) . l\
they act-like permutations of R*. It is 'Pot hard to see that

all such transformations form a group, \call_ed the Poincaré
! \

4

group. The elements of this group arejck\-fined by the system :

'
i

\

\

of equations \

. |

\

where Pij is the ij-th component of the| Jacobian matrix

'(ayi/axj), and k! € R. Let ‘P denote this Jacobian. P is
‘ N l .

non-singular since every element ,‘.9-1 has for inverse

.9-1&"1. If ki --/0/ Vi, then 91 = Pij 3 defines the

'homogeneou‘s Lorentz group L(4).
In this context therelativity principle has tﬂe prec;ise
formulation: 1 |
. the states (%f' physic‘al systems described by the

]

laws of natuTa are not affected by the application

—t

1
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" of elements of the Poincaré group, i.e. it does. not

make any difference if these states are referred to

the one or the other Lorentz chart.

s

By using. this principle together with tﬁe light
principle, we can obtain the faﬁiliar‘Lorentz transformation
(as said in chapter 1I). This transfcrma;ﬁon descr%bes thé
three-parameter class of velocity changes in the ;oincaré

group: let x and y be two Lorentz charts and let ovnwve with

%

speed v in %‘parallelly to x! (it could have been x?or x%,

then the transformation is:

0 1 ' ' 1 0"
0 x - vx /c? - 1 %X = VX
Yy = _ . , Y =
1 - vi/c? . Y & e ’
' . b
2 2 ! ] 3 3
y .= % & Y= %
~ ‘ ‘
. . The Jacobian of this transformation is: o . .
[ B -Bvw?. 0 - 0
. -Bv B 0 0 '
ox -] 0 0 1 0
| 0 ] 0 1




‘4

will

where ‘B; (1 - v¥/ch)

n

)

' The Poincaré group is a l1l0-parameter Lie\group:'three

veiopity parameters, three parameters for space rotations and-

’ N + X s '
four parameters for space and time translations. Since the

:Poinéaré group is generated by 1.(4) plus the group of

translations, it will be sufficient to characterize L(4); we

non-singular matrices.

Consider tﬁe‘magxix’

4

‘with components Q4 -

P

i

Q;j 9193 =

<

» . N

>

o

*

1

%.

use the natural Jacobian

-

representation of 4x4

0 ‘ 0-

0 0

1 0

0‘ 1
~

. By using the Lorentz transformation we have,

—c2(y9? + yhH? + (2 + (y*)?

= a0 - w2 /i - ey

*

.'f‘), A

LY

Y

4 ! w2 /(1 - v2/e?) +

2

vh? 4+ )2

P

4>

I3



. = [-e2(x%2 = v2(xh2 / 2] / (1 - v3/ch)

50

F L2 - xO2] /(1 - )+ (B2 + ()2

AV .
= [®2 - A +eh?2a = v¥ehHl/ a - v¥/ed
“ + (xh2+ (us)'2

~

A v : k.= Qij xixd (for veloéity transformations) .

4
¢
~

Furthermore, since y! = Pi"j x)  defines an isometry of

hypér‘planes when P re;’are,sentfs a space rotation, we have

‘ Qap yoyb = Qup "?"B e op=1,2,3.
~@?r rotational transformations). = »
. v \\ ' N -
Hence the quadratic form Q4 xix’/ is invariant under
@ .
" L(4). 'This invariance will' provide the: desired

characterization of L(4) -in this way: for any P € L(4)

o .
o *=? = 0 yly! = g, PL K P N

< . . le = P_ik Qij le ‘ - ae

» ie. o o= paor

Thereforé L(4) can be characterized as the subgroup of

GL(4,R) represented by all 4X4 non-singular matrices P

>

4

v



’ which satisfy Q= PTQ P . Since the metric will have the

form Q”dxidxj (in Minkowski's space-time), this

~

v

characterization endows to the manifold a geometry that is

completely depefmined by L(4)-invariance.

The Lie group L(4) can now be'decompbsed;

det Q = {det PT) (det Q) (det P)
=  (det P2=1 )
= det P = 1

Also, Qyp = Pl Q4 Pl
= -c2 = -c2(p%)?% + I (p%)?
= (P%)2 — 3, (p% /)% =1 for o = 1,2,3

= (%2 21"

(RS

Hence there“aqe four topologically disconnected parts in

L(4): _ . , .

i) (PeL() | getP =1 & PO 21}

i4) {PeL(4) | det P =-1 & POy 21} ’

L

iii) {PeL(4) | detP =1 & Pl <1}

- iv) {PeL(4) | detP ==-1 & P11}

The set i) constitutes a Lie subgroup of L{4) denoted by
'Ly + It acts on L(4) by (L,P) »LP for LefLy and Pe L(4).

. -
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.
v

" The sets ii), iii) & iv) are, under this left action by L,

‘orbits? of time reversals (Poo 5';) and reflections of

52

hyperplanes about the origin (det P = -1). The union of i) and

ii) is called the orthochronous homogeneous Lorentz group. L,

[y

is called the proper orthochronous homogeneous Lorentz group:;
proper means that the cartesian systems of x andy are both

right-handed or both left-handed, and orthochronous means that

the time coordinates of both charts increase together, ice.

ox? /-ay° > 0. L, together with space-time translations
(inhomogeneous) is denoted by L. | |

The geometry of the manifold wil} thus be characterized
by L-invariance. This can be seen b’ simply defining the
Minkowski interval between two. eirents. p,qer:t in this way:

e )

let x be a Lorentz chart and let A, be the set of all

Lorentz charts related to x by a transformation of the group

L.. (Since all such transformations are C™, A, gives to the sget

.

of all events the structure of a C* 4-dim manifold in the

sense of Def'inition 2.1). If xe A, then we define

Ipe@) = Mgy (x' @) - *x (@) (xlp) - %@

o

t if a group G acts on a set S, the orbit of s€ S is the set T
v .
{gs | g€ G}

[Y -
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where N, is Qy with'time dimensions such that c=1.

I(p,q) 1is cléﬁfly independent of tﬁe chbiée of elements
of A, and is thus invariant under the action of L on M. By
this action the geometry of M, endowed by Liinvariance;is
identica} to the geometry 6f R4 endowed by the action of L as
a group of coordinate transformations. Space-time, or in this
context Minkowski space-time; is seen as the collection of ali
« .

events structured into a C*® 4-=dim manifold by A, together with

o

a .geometry endowed by L-invariance. The physical significance
of this definition is grounded on thg physicalﬁhggptheses
behind the definition of Lorentz chartsY If these hypétheses
turn out to be true only locally or apﬁroximatively, as is the
[

case in the general context of relativity, the importance of
the matters discussed hitherto will not be diminished; they
| WilL‘only become the limit of a theory in which gravity is
taken into account, just .as in Calculus a tangent line
approximates the curve near the point common to both; the
straighter the curve the better the approhimation. ‘This
analogy will in fact be quite helpful.

Up to this point we have studied and characterized the
§tructure of ﬁhe set of possible events and shown that the
maqifold struc¢ture responded accurately to the de ds of the

principle established in chapter I. We will now use this set

up to construct a mathematical frame in order to express

\

-



rglaﬁibns.between pﬁysical quantities: This will further show
the necessity to employ C* 4-dim marf{{folds.

‘All physics‘gxperiments yield re numbers and thus éll
relation between physical gquantities must eventually be
redﬁcible éi reals. Moreovér, one should include in a theory

.

all matter fields-which can be experimentally detected., For

thqse‘rgasons,.maps from vectors (and dual vectors) to reals

are required to express the laws of nature. Tensors, whilé

being thi only relations defined by the manifold str&éture,

encompass a general class of such multilineaf,maps (analytie
.

maps can be Taylor e*panded); thus tensors will be used-to

. ‘

-express equations between the fields that are emitted and
redeivéd by the matter content of space-time.

By Definition 2.8} tensors can be expressed in any
preferred basis, and thus they depend on the‘different choices
of charts. (We also gave the tensor transformation 1law in
ferms of any basis). It thus becomes natural to construct a
basis by using Lorentz charts so that our tensors agree with
the Minkowski space-time. Recall the definitién of a tangent
vector (Definition 2.4);. there was no preferred choice of
curve A(t). Let x be a Lorentz chart defined at p€M; the

i-th parametric line of x through p, A, is a map from R into

M defined by
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t— Al(t) 1= {gedomx | x'(q) =t, teR

, ‘ o & for j#i xI(q) = xI(p))

I

i

and thus each coordinate function x' determines a curve A'.

Hence by Definition 2.4 the tangent vector to Al at.p is the

linear map ' ’ _ /

h-0

lim % { sodtesn) - 53t )

-

" ’ 1 4} L ' n_
- }lﬁ"o. = { Fo5 % (P)reeo® (P)-+ hy.uou® (P)]
-1 ! i n - .
=fro [% (P).....% (P),....% (P)] }.
- i ‘ *
[CHE I, -

Therefore by Theorem 2.5 the set of vectors

<a/ax1,...,a/ax")lp spans V., with the difference that this

p

time the coordinate derivatives are determined by the‘Lorentz
chart x. If X = (9/0x%,...,9/0x™), where the 0/9x' 's are
vector fields, we can now refer to the components éf a tensor
relative to X as its components relative to the chart x.

An important example of a tensor is the metric defined in
2.11. This (0,2)-tensor is completely determined on domx'by
the n(x;+11)/2 C™ functions g(9/9x', 8/0x3), known as the
components' of g relative to the chart x. Since g is symmetric,

one can view these components as the lower (or -upper) triangle



°

of the nxn matrix which represents @ (n + n=1 + n-2 + ... + 1
= 10 comﬁonents for n=4). Thus v;e say that the set of all
events is A pair (M,g).where M is a 4-dim C® manifold (with
structure and geometry as before) and where 'g can be specified
by the values of the ten vector fields 9/9dx}, whose integral
cur\;es are the parametric lines of i:rrxe' chart xe A .

The metric is only an examiole of tensor specification by
a basis determined by Lorentz ‘ charts. In general an
(r,é)—tensor field can be uniquely associated wiNmapping
from the set of basis {a/axii ﬂ'lto the set of functions ‘to the

power nf*3; these maps assign to each {9/9x!} the list of

tensor components relative to {a/‘axi;. In the case where the

tensor is g. and the manifold is 4-dimensional we have:

{9/9x'} = (9/9%x% 9/9x!, 9/0x%, 9/9%%), r+s=2, and thus the
mapping is from (9/9x%, 9/0x!, 9/9x2, 9/9x3) into (functions)!®, a
.4 X4 matrix of functions of thich only ten components are

independent. This matrix is just (g44) in - -

ds? = 94 dx! dx? p

where ds is the 4ine elemexlt expresgsed in terms of the
coordinate differentials assbciated with the chart x.

This being said, another point must be ciiscussed before
expressing physicagl laws by tensor relations. These physical

- laws must determine the variations of the matter fields from
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worldpoints to worldpoinﬂé. Since tensors are multilinear maps

which have for domain products of vector %ields, the problem
reduces to compafing vectors at different points on the
manifold. Definition 2.4 corresponds to the directional

derivative of a vector since (af/at)lx is the derivative of

f in the direction of A with respect to the parameter t. Our
interest is thus to compare the diréction of distant vectors,
i.e. their relative parallelism.' Wher; e mani:fiold is
pafallelizablé, i.e. when there exists a family of n vector
fieids v, ..., v" such that their values at each pe™ form a

basis for|the tangent space Vp , then the vectors at different -

points can be partitioned into equivalent classes of parallel
vectors. (A tri%fal example 1is Euclidean 3-space. On that
manifold,| a vector v at p is parallel to a vector u at q if

the transllation map ¢ sending p to g is such that u = ¢,(v).

Similarly if ™M 1is developable, like a cylinder or a cone,

then 'vlp is parallel to ulq if ¢*p(v) is parallel to
|

¢*q(u), where ¢ is an isometry of a region of M into a plane.

The above cases refer to so called absolute parallelism.
When M is‘not parallelizable, it is possible to talk of
refative par;llélism, relative to the path (curve) joining the
points p and q. For example let M be a sphere and A a curve
on M from p to q; Let a plane touch M at p. Since this plane

is tangent, a vector v at p corresponds to a directed segment

v
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v' on the pléne. Now allow the sphere to roll on the plane,
without slipping, in such a way that the point of contact is
always a poinp in the range of A. When the point of contact is
g, the vector_ u at g correponds to a di;ected segment u' on
the ;lane. v ;s said to be parallel to B alohg A if and only
if v' is parallel to u'. This concept of path-dependert
parallelism can be extended to a wide VS;Eety of ﬁanifo;ds
,through the notion of linear connection, and more specifically
the affine connection Iy, (2.2) obtained by Theorem 2.24 in
*terms of the metric (I’ is sometimes called the Levi-Civita
connection). Many different connections could be used but this
one seems to Be the preferred one. We do not intend to develop
the general concept of parailelism for it would take several
.secti&ns. The main idea is that the choice of a iinear

& connection on the manifold determines a linear isomorphism -

¢ﬁm from V, to Vg with A joining p and q on M. Isomorphisms
-

betweén tensor spaces are then induced by this map. ¢ﬁw is
said to parallel transpbrt Vp to Vq along A.

Nevertheless the notions developed in chap&#er II about
the Levi-Civitd connection are sufficient to examine parallel
trénsport of a vector through an infinitesimal distance. This
will be enough to fulfill the task of observing variations of

\ tensor fields at neighbouring points. Consider the following

set up (Einstein,1974). Let v2 be the coordinates of a vector
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at .p€M with respect to the chart x. Let g be infinitely

close to p and let v?2 + 8§v?® denote the coordinates of v@

displaced to g along the infinitely small distance dx®. v?2 is

then said to be parallelly displaced from p to q. If the
coordinates of v?2 at q with respect to the' chart x are v@ +
dv? then we expect the difference between v2 + dv2® and v@
+ dve t':o .be giﬁven by vthe 'slope' of v? multiplied by ther

distance dx®. In other words we expect thaﬁg,

dvb - §vb = Vavb dx? ,

in terms of the general concept of derivative Va . By Theorem

-~

2.21 there exists a tensor l"bac such that

-dvP - SvP = (@vP/ex® + TP V) ax®
S = (@vP/ox?) ax® + TP, v& ax?
= dvP + P, vC dx?
= | Svb = -.T®,, v ax®-
= vb 4+ §vb =yb_ l:bac vC dx® )

A

Since the same result can be obtained for a dual vector
through Lemma 2.20, and since l'bac is 'completely detérmined by
the metric and its part.ial derivatives, this calc;ulation
describes explicitly the: variation of a tensor field upon

‘displacement dx® between neighbouring points of the manifold.

v



Note that.if the components of the metric are constants,‘as in
the case of Euclidean 3-space or the case of Minkowski
space-time, then all the components rbac are zero énd thus
dvP = 0, meaning that v® stays parallel to itself when
transported on thesé manifolds along infinitesimal distances.
In these cases the'geodesic curve (2.1) is just d2x2/dt? = 0,
a straight line (i.e constant speed as in the case of Lorentz
o -

fransformgtion).

It is now possible to ta#e’a look at some space-time
physics on MiAiowski's manifold. Although the theory of
manifolds and the‘éheory of tensp?s were developed in the last
century, ig was Einstein's theory of General Relativity that
en;ouraged mathematical research in these fields and so, the

scheme developed in this section was created recently. Indeed,

Minkowski- referred to objects of space-time as space-time

.. »
vectors composed by four real numbers together with a rule for,

transforming these numbers whenever an element of L, was

applied. For us, a vector field is ihe assignment of a
four-vector at each point of the manifold; this vector field
- varies smoothly kc“) from one point to'anothgr. This can be
doné by replacing the féur real numbers of a space-time vector
by four C* functions. §ere is hew: let (9/9x%°, 9/9x!, 9/3x2,
9/8743) be the basis "‘w‘hich makes Minkowski space-time

parallelizable. Then any vector v element of a vector field v
2 i . \

o .
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can be, at a given pe ™, expressed as the 1in%5i combination
4 , ’ . )

i(a/axi)lp , vie R, Thus any vector can be described as the

‘ \
set (v9, v!, v2, v3), relative to the chart x, together with a’

xule for calculating its new components whenever an element of
' 1

Lo is applied./In this way v can be seen as a 4-vector.

\

Consider/the motion of a particle ® in an inertial frame

represented by a curve A(t), parametrized by time t. Let

IS

(3/0t), be tHe tanggnt at any point A(t) = p, teR and p an

element of“qinkowski spaée-tim@ (M,M), where N = ni*dxidxi

A is spacelike, timelike or null if for all‘t in domA, (d/0t),

A

is spacelﬂLe, timelike or null respectlvely Since it is
assumed thgt nothing travels faster than llght, A will always

/
be timeli7e (tachion universes not being of concern here). 'In

N

~

Newtonian mechanics, the velocity of T at time t is a vector
2 1‘ ’ ‘)'

u®*= (d/dt), with components relative to-a Cartesian chart x
u*= dx%/dt , a=1,2,3.

The achievement of special relativity is to explain the

meaning of. time t. It states that the timelike curve A should

3

1 f the cartesian chart x is an injective mapping from o, to R” such

. that [x%(p)| is the cartesian distance from .p to the planes OXpXy .
I

X O..B,'y -1,2,3. o,xl,xz,xs € o0, and O0X],0Xy OX3 are mutually
o perpendicular : ’




4

a

. be parametrized by the proper time T defined by

4 - “ ‘

T = j (=g, TTH"? ar

where t' is an arbitrary parametrization of A apd T! is the

tangent to A under this parametrization. The 4-velocity of =
.ow 5 .

‘ is given by.. ' ”

ut = axt/ar , i =0,1,2,3.

o a

. where x is a Lorentz chart. Because of time dilatien (a

L)
'

consequence of Lorentz transformation) we have:

, ~dt' = Bdr ,

. ) wheref. B= (1 - (ul2)~Y¥2 | |u| being the speed of T in dom %..
1 . . .
2 " ¢
Hence ©
ax’ dt ‘ ax dt |
»® ' .
W = — = = B, W e —— = fy*, o=1,23.
- dt gr dt gg ' ‘

{

The 4-acceleration of = relative'éo’x has tbus for
& B a

components - . ) o, ~—

al = dui/d;l;

If 1 is unaffected by external forces, then it has for '

equation of motion

—ed
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v i 3
. S —a-i- u = 0,
- ox
™ which is m's geodesic in an inertial frame of reference.

»

Let my, be the rest mass of the' particle. The 4-momentum

[} ’ ,\\
is then v ) N

. +

' . ‘ N4
f

1

-Note thay p° - mo\io = Bmy = m (the true mass depending on the

) P sbeed of the particle), but since our time Wnits a're\such that
Te=1, p° is really mc?: the énergy of ® as a function of the

- L4

- speed. Thus the principleé of energy and momentum conservation

-

are both includéd in the absolute prinhciple of 4-momentum

*-conservation.\‘llhe rate of change of the dynamigal state of the

particle is called the 4-force; its components are given by

a -
? -
o

I R " * .
e . _ _K! = dptsar -,

<

LY

D where K0 is the rate of change of ;t's energy and K% éa=l,2,3)
is the ’rate of change of 7N's momentum d(mu%®)/dt . Since (ve
- cémstructed a structure in sucﬁ a way Ithat the laws of nature
-4 be unaffécted by coordinate transformations a(\d since K0 = 0

& K® =.my(du®/dt) when domx is €n inertial frame, K! is in

]

13 effect a frame independént representation of the force on a

particle, determined by the Newtonian force when restrictedto

the particle's own inertial frame.

;f@ ; | | o

-

*
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2. Gravity i
= :

[}

How can gravity be measured ? How fast does gravity
travel ? Since the 'micro-meghanical' explanation of gravity
as not been s(e?tled i/et, we can only measure the effect of
gravity, i.e. the accelération of bodies ~in gravitational
fields. As for the second queétion, the same iack of quantum
understanding makes it only possible to expect that the action
attributed to gravity dges not propagate faster than ligh;,
although some recent theories conject t-fhat the phase velocity
.of 'gravitational waves is greatef than the transversai speed
of light. §§tural philosophers of Newton's epoch and Newton
himself (not to say that Neg£on was not a natural philosopher)
thought that attraction could act on matter only if some kind
a

of garticle dragged the attracted body in its flow by
colliding with it, the same way a swimmer is 'attracted' down
flow by the colliding molecules of water., For Newton tﬁe flow
of ether was the micro-mechanical explanation to gfavity, but
he never could,‘ at such an ea;ly tirﬁe, detect ether, tﬁough he
tried many times with pendula (Dobbs,1975). Later, when
Michelson and Morley unsuccessfully tried to detect ether, the
w“holje idea was dropped. Many discov’eriese were, before this

century, related to ether; even Maxwell sum@arized his

electrodynamic philosophy as a determination of aethereal

.
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>

motion set by electric currents and magnets. In 1864 he said
N

before the Royal Society:

"It abpears therefore that certain phenomena in
electricity and magnetism lead to the same
con;:lusion as those in' optics, namely that there is
an a;ethereal medium pervading all bodies, and
modifi'e‘d only in degree by their presence; that the
parts of thii medium are capable’of being set in

motion by electric currents and magnets;..." i

! 8
Lorentz, who was one of the first to examine the

\J
s

posxsibility that the interferometer null result was due to
the shrinking of the arm in the direction of motion, also

ba~sed much of his research on this aethereal medium. Many

1

v -

others were motivated by'this medium.

and with regard to gravity, Newton explains in a tract
written in 1679 entitled De aere et aethere W that gravity
is t;pe pressure of a descending aethereal shower; in the past
mechanical philosophies required that:. motions be caused by
impact phenomena, as we previously said.

*
In any case, our concern here is not to try .to explain

4

1t (Torretti,1983)

»

11t De aere et aethere is available in Newt n, Unpublished papers,
pp. 214-28. See (Dobbs,1975).

!
i
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t

'mi¢rogravity' Dbut only\\to understand the effects of

'macrogravity' measured in metres per second squared. In fact,
the equivalence principle can be viewed as the assertion that

this measure of gravity is exact, i.e. that the effects of a

!

gravitational field of, strength Y are the same as the effects
of a uniform acceleration -Y. Or in other words: let X, be a
system accelerated in the direction of the y-axis and let Y be

" the constant magnitude of its acceleration. Let X, be a system

in a uniform (homogeneous) gravitational field which imparts

N

an .acceleration of -Y to all objects. Then all the laws of

physics are the same in X, and ¥, . In the light of what has !

-

been said in the begining of this paragraph, the equivalence
principle does not seem to be relevant; but its importance is

revealed in Einstein's theory of general relativity.

In the last section we have only considered the structure

of space-time relative to changes'of coordinate systems moving

with constant speeds, i.e. which were not under the influence

of -gravity. Thus, as we did before, we should try to construct

inertial frames of reference. We could be tempted to attribute '

. -

to free fall thg name of inertial frame and then-do th
following: 'let F be a free falling body in a gravitational

field, on whose path lies a point p. Let op be a space-time

$

. . ) . . /
region around p in which gravity is homogeneous. A Lorentz

chart % in then construced on 0p , as usﬁally, by means of

1

4



clocks and rods at restin F. Then, some would say: By the

.

equivalence principle, the laws of nature should take the same

form in terms of this local Lorentz chart as they would when
expressed in terms of a Lorentz éhart in absence of gravity.
This point of view is questionable: gravity-free regions
are on-existant, as far as we can tell; similarly free
falfgzé laboratories are also quite rare and somewhat fancy.

But even if we wanted to imagine such regions of space-time,

A
s

. r .
we ~would face another difficulty: the homogeneity of the

gravitational field in 0p can only be achieved if op is

infinitely small, in fact so small that there may not even
exist such a region. Therefore we may havg some Jjustified
doubts as to whether the domains of the local Lorentz charts
could cover all of space-time. And even if we agreed on some
margin of accuracy within which the field‘ would be
homogeneous, and in this way cover all of space-time, the laws
of ﬁature, as referred to local charts would only encompass
some very small portion of the universe. The collection of
such portions, in each of which special relativity is
approximatively true, could only be viewed as being a picture
of the cosmos in,the light of truly universal theory, which
would unite the many nearby homogeneous fields into a single
continuous highly inhomoéeneous gravitational field.

Einstein's \General Theory of Relativity is a successful

N
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aﬁtempt (even accepted by those\who were sceptical at first)
to this universal theory, and as we will see, it does not use.
free falling frames Bf reference.

.Firét we observe some conséquences of the eguivalence
‘principle. Consider a rotating disk of radius r aqd of angular
vélocity‘m, with a Elock at 'the centre and a clock at r. The
time t measured at the centre is related to t@e time t' at r

by

£ t'

1 - vz/c2 w/l - mer/CZ v

‘

A
By the equivalence of the inertial ana gravitational mass

L

and by Newtonian gravitational theory we have

- grad ¢ = o T

where ¢ is the gravitational potential. Note that ¢ need not
¢
homogeneous ‘for this application of the equivalence principle

since the magnitude of the acceleration on the disk depends

on r, contrarily to the constant acceleration of Zl in tha

original statement of the equivalence principle. This equation

’

represents the equality of'gravitational acceleration and of

acceleration due to centrifugal forces. Thus

Y

’ 8¢/3r\ - o?r



= ¢= - (0r?®)/2 , for ¢ =0at r

]
=]

= . t=t'(l+ 20/c%)"12
b 4

Hence, a8 we said in the space-time principle of chapter I,
gravitation determines proper time. .

For a massive star of radius r, .

[ 3

¢= -GM/ r , for ¢ = 0 at large distances

= t“(surfacg) = t(large distance) (1*- GM/rc?)

where G is Newton's gravitational constant. From this result

we can obtain the gravitational red shift

. « V' = V(1 - GM/rc?).

Futhermore, if Cy is the speed of light at a point where

the gravitational potential is ¢ then

cp = C(1 + ¢/ch)

From these results, a question naturaliy arises: how can
gravity be included in the geomegrical context of the theory

" of relativity ? Unlike electromaénetic forces, gravity cannot
be 'transformed away;. It is imposgible to construct an
iffertial frame in whiéh the abserver is at rest. This is

Al

probably due to the fact that gravity is always positive, the

A
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more mass is piled up, the stonger the gravitational field.
For exqmple,ithe worldpath of a particle on eargh could not
practically be gbserved in a frame exehpt from the effects of
~gravity. In some way, this leads to a concept whiqh is imposed

on us by these facts together with the results of the previous
\ .

paragraph; we leave it to the discoverer to formulate this

concept:
"The metrically real is given only throhgh the
combinafgon of the space—time\coo;dinates and the
mathematical guantities which ‘ describe the

gravitational field.” 1

Let M be a surface in Euclidean space, diffeomorphic to

r%. at any given point pe™ all the tangent vectors form a
- *

plane, the tangent plane Vp . If M is some portion of a cone
or of a cylinder, then there exists an isomorphism which maps
M onto a neighbourhood éf p in Vp . All such surfaces are
gaid to be flat. In geﬁeral it is not possible to 'fit' M in
a regign of the plane without having to 'stretch and shrink'
some parts. The Gaussian curvature measures, in that jargon,
the quantity of stretching and shrinking required to fit M

into a plane; one can easily see that according to this

intuitive defiqition, the curvature of a flat surface is

1+ Einstein, A. (1934), "Mein Weltbild",. (Querido Verlag, Amsterdam).
See (Torretti,1983). . :

* .
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everywhere zero, and is*'constant on a sphere. If g is the
metric on a two-dimension;,l manifold and.at.l,x2 are the
coordinate functions of a chart x, ‘and if E = q(a/axl,a/axl),
F = g(d/0x!, a/ax2>, G = g(d/0x% 9/9x%), then the line element

on M is given by

ds? = E (dx)2 + 2F ax'dax? + G (ax!)?

and the surface element on M is dS = (EF - G2) 12 gxlax?. 1f

H= (EF - G2 then the Gaussian curvature K satisfies

y p

1 2 1 1 2
xy = —2JF dE/ox - E 9G/dx"| , 9 |2E dF/dx - F dE/dx - E OE/dx
Ix! , 2EH P 2EH

XN . . )
This formula, found by Gauss, is independent of the position
’of the surface in space.
We .now extend this formula to higher dimensions. Let M
be an n-dim manifold with metric g. 'Any point p€ ™ has a
géighbourhood 0, diffeomorphic to R®, such that Vg€ o0 there
is a unique geodesic curve A between p and q lying entirely in
'{ 0. Moreover there exits a parametrization of 2.’ for which

"A(0) = p and A(l) = g. Let f be a diffeomorphism that sends

0 into a neighbourhood of the zero vector in Vp and which is

-

such that f(q) is equal to the tangent vector of A at p. If u

and v are two lineérly independent vectors in Vp spanning‘ a
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two-dimensional subspace of ;.rp ' vp(u,v), then the intersection
of f(0) and Vp(u,v) is the image of a two-dimensio;xal
submanifold of 0 denoted by M (u,v). mIf g is either positive ,~
or negative definite then M(u,v) is, with the metric induced
by g, isometric to a s'mooth surface in Euclidean space and, hasl

therefore Gaussian curvature Ky,y at p. Ky, v is called the

. _ . _.sectional curvature—of M-at—p+—Ifi—forall pointsof M, “u,’v

is constant then M is a .Reimann manifold of constant

curvature. When that constant is zero, M and its metric g are

A

said to be flht.
In 1861 Reimann found a (0,4) -tensor field, R, which
determines and is determined by K, , . Though Reimann did not

introduce his tensor field in the above manner, they- are

related by

-

.- = ry2
™~ Ku’v = a R(U,V,U,V) Ip

#

where 1/a 1is the area of the parallelogram spanned by u and

v.! The Reimann tensor possesses the symmetries proven in
-

Corollary 2.27; bit_ is given by

-~

1
9n1 Rlisk = On ( Theg,y - Ilyg,x + Ty Thyg + TPy Thg )

4

1 fér proof see Spivak, M. (1970), A conprehensive introduction.
to differential geometry, Vol .II, (Publish or Perish Inc., Bostop),
pp- 196 f.




Therefore the components of Rpigx are determined by the

metric g. We see that if the components of g are constants

then the Rpi4) are all zero and the manifold is flat, as in

the case of Minkowéki space-time.
Einstéin decided to build his theory on the fact that
space-time is generally curved by gravity, whicl'; .cﬁrvature is
-————determined 'by the metric. In this way did he achieve the
metrically real. Héreafter space-time is a connected 4-dim
Reimann manifold with Lorentz metric.? The only requirement is
tﬁat g be approximated on small neighbourhoods by the local
flat metric 7M. For“ this reason g must have, as T, Lorentz
'signature. We also require that the local M has the same value

‘/> as g At the origin of the local Lorentz chart. - RN

Let A be the worldline of a particle T, parametfized by

proper time T. The variation principle

.

SJdt = 0

‘implying that A's length, J. dt, is constant under variations of
A, must be obeyed if ® is to travel on é_,geodesic. This

invariance is called the geodesic law of motion, a natural

- extension of the equivalence principle to arbitfary

%
t connected implies that M is path-connected, i.e. any two points can
be joined by a curve. '

* R ¢
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gravitational fields. The line element occurring in this law
is
; 2 Load "
Jd‘l: 944 dx™ dx
for a Lorentz chart x. In domx, A must satisfy
! , 1 ) j X
d®x - A 1 dx A dx -A
-——_—-5—— = —:Frjk-l - . a
d’t A 1 dt /’
. : d ’ :/

v
'

When‘g is equal to M the righ't'-har;d side is ze;:o, but since a

; coordinate transformation cannot reduce- g ton ,in a..
inhomogéneous. gravitational flow, space-time i&[noﬁ flat.
Therefore we cannot directli interpret physical results gi;en
by coordinate systems that chart the world into the flat RY.
Thé metrically real also debends on gravitatiqnal fields
determined by the 'gravitational fiela \st;engths"ldjk

tilemselves derived from. the 'potentials' gyy - Thus, where '

before we required that the iaws of nature be expressed
independently of coordinate transformations (special
covariance), we now require that these laws be expressed 6nly
in fterms of covariant derivatives (general covariance) because
they sole;y depend on the 'potentials'. Remember that tHis
" view was forced on us by the impc;ssibility to construct
inertial frémes with respect to gravity and thus the inability

to decide 'a priori' the structure of spacé-time through the

-



significance of.coordinate systems.

: fn this context the new relations between vectors and
tensors are obtained simply by changing all nij for g4 and all
ai fori Vi in the old relations. For example: if = is ‘a local

Lorentz chart, the 4-acceleration is now . P -

H
“ . ‘

al = I Vj ut

j . ’i ; k -~
= u | -3 + I ky O ) :
a axl >
' . j N

Ju dx b 4 g s

= =5 = Ir kg U u
x4t

’ . , K 3
d“x I"i dx d
dr2 Kot ar ™
« ]

This exémple' is instructive because it shows that a particle-
describes a geodesic if and only if its 4-acceleration is
always zero. _ ( '

Amazingly, the deriwative is now determined by gravity,

and thus it depends on the distribution of matter.
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Hitherto we have constructed a geometrical frame for
measurements to be obtained, as close to reality as possible.

The next few pages will be used to study the energetic content

r

a..b .
of these frames. Let ¥, c.d denote the matter fields of

v

space-time; here (i) denotes the number of fields included in
the theory. Analysing the contents of space-time will brf?b us
'closer to the determination of the geometrical structure Singe
all the elemepts of the theory w%l be determined by the
physically observable. |

In the last sectioq, we have'réached the conélusion that -
to incorporate éravity in our mbdel, the manifold must differ
from R* and the metric mus£ not be flat. If we refer to ghe
space-time priﬁciple of chapter I, which stated that there are
as many measures of time.(;nd length)'as-there are positions
in space, we see that in speéial relativity it led to Lorentz
length con£raction " and time<iilation, and in general
relativity it led to the determination of the metrically real
by the gravitational forces and thus by the distribution of
matter. The mathematical formulation of this'relation is given
in this section? it is called the Einstein field eqﬁ??ion.

The following two postulates, being local, are commof to

’

special and general relativity; they describe the nature of



entirely in 0.

_ _the equations -obeyed by the mattef fields.

.

1]

' - »
BA) Local causality.

-

2 . '

. . . a.b
-t , The eqf%t_ions governing ‘l’m dc d must be such that if p

and q are elements of -any neighbourhood 0, then it g4 s possible
to send a s'ignai from p to q (or q to p) i{ and only irfe p and

" ! N

q- can be joined by-a timelike.or a' null c! curve.which lies

¥
-

> , -
W ' , . q

S'is postulate enables pé to’ measure, by observation, the
metri¢ up to a conformad factor. Let u and v be respectively

| I

timelikg and spacelike vectors:of Vs » PEO. Then the equation
\

1

o f ‘e : '
/ v . N -
g(uc av" u ., 0v) = a2;4 g(V, v) + 20 g(~u,v) + g(u, u)
. - LN '
“\/' \ . '
-~ . P} = O l 7

24 »

_has two real roots since g(u,u) <0 and iv,v) > 0. They

°

are

)

—2 g(u,v) s/;;q'(u,v,)z'—'4 g (u,u) g(v,v)

SN TR PYR 2 g(v,v) *

IQ l w ’ \ >
If {x!) are the coordinate functions' of a’(Loréntz)

+

chart a't p €0 then all the pomts g€ 0 which can’ be reached

’
w

‘from p by signéls trjgvellin‘g on non—.spacelike c! curves are

those points with coo inates satisfying

5



\'r'\ } 8
y

N2+ (xhH2+ HZ (B2 g o

Thus, since the boundary 6f these points is the null done Np
N ' ¢

at p, ©one can determine by observation the set of points:

which can communicate with p and in gpis way find Ny in Vo
When N, is known, @, and 0, may be calculated from the fact ¥

i ¢ ‘ ) '
that - w + v lies on the cone. But

‘o0, = g(un) /giv,v)

and thus the ratio of a space%ike and a’timelike wvector can be
) - ! uk
foind by observing the null cone. Let w,zetvp ; since the
®
\
magnitude of a null vector can be compared with the magnitude

of u and v, and since-

g(w,ﬁg =

{ g(WaW) + Q(Z:Z) -@g(w""zaw*’z) Y / 2, '>

g(w,z)/g(u,u) can be determinedl Therefore the metric c{n be

é

measured up to a conformal factor, by observing consequences

of local causality. In p}actice, the conformal factor can be

.

e$I€ﬁlated by usiné a large number of similar systems (like
electronic states of atoms) .~This can be done by isdlating the
systems from.extérnal fields so that the motions follow
.geodesicg and, assuﬁing bhat.th;se motions are equally‘qqued

-in space—tiﬁelgpr similar systems, the aré—length between:

\\
i



v

e

given events can be measured. This measure, which only depends

on the metric, must be the same for each pair of successive
events in similar systems; from this fact, the 'conformal

factor may be qetékmined at any point of space-time.

B) Local conservation of energy and momentum. s

\

4

: a..b ,
The equations governing VY, c..d must be such that there

exists a (2,0) symmetric tensor T2P, called the energy-

momentum tensor, which only depends on the the metric, the
\ .

~ fields, and their covariant derivatives. Futhermore it must

satisfy the following:

| ab

i a...
i) T is i%fntically'zero on 0 if all qﬁi’ c..d

vanish on the open neighbourhood 0.

ii) The covariant divergence of T ab vanishes

[

B \ . i.e. Tab-b= O

r

The principle that all fields have-energy is represented
by i). Note that "only if' is omitted becaude T 3P can vanish
when two equal and oppqgite pon-zero figlds cancel out.‘

To show that ii) represehts the principle of 1local
conservation 6f energy and momentum, consider the following:

if the metric is flat, it will admit ten Killing vﬁctorsp
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namely the ten isometries of the Poincaré group. If the metric

is not flat, then it will not . in general admit Killing
. R )

vectors; however, since g, and I'*,. are nearly zero on small

nq}ighbourhoods, K(a';b) will be zero to first approximation.

e

Thus, whether }he metric is flat or not, we can do as follows:

N

N

a . ab ab
V. p V. T2° K, + T2° V K, \
/

let p2 = Tab Ky . Then

= 'V, p? =12

aKb .

But T2P is symmetric and by Theorem 2.31 K, = 0, thus we '’

have \

ab ' _ mba >
T 'YaKb =T VbKa . )

a =
= V;-p 0 .

Hence if U is a compact orientable region with boundary ou ,

H
'

. Gauss' Theorem implies that z
e :
b b ‘
p do, = Vb~ p dv = 0 !
u u |

|
|

Since p° can be interpreted as the flow of enengy'and p* (o=
. [ N

- . ! ,
1,2,3) as the flow of linear momentum through 4 , we may

conclude from this result thét the total flux of

energy-momentum over closed surface is zero. Therefore, even
y .

\ \
l"\» . j



on’ small neighbourhoods, one has conservation of energy,

momentum and angular momentum. Provided that the energy
density of matter be non-negative ( T3 yaybP >0, where v@
is the observer's 4-velocity), this result can be interpreted
as Galileo's principle that all bodies fall at equal speeds.
In Einsteinian terms, radiation must gravitate, a consequence
of the equivalence principle. (In 1912, Einstein published a

paper in which he shows that if the inertial mass of a body

-

increases with the energy it contains, then its gravitational
mass must also increase; otherwise a given baay-could fall at
o 1] -

different accelerations depending on the energy it contains.

This wculd make it possible to build a perpetual machine
(Einstein, 1924)). t

To motivate Einstein's field equation, we now derive a

characterization of the Reimann curvature. Let Ks(t) denote

a smooth one-parameter family of s geodesics parametrized by

t. The map (s,t) - Xs(t) is smooth, one to one, and has a

smooth inverse; let M (s,t) denote the two-dimensional

‘submanifold spanned by the curves Xs(t). If we take s and t to

v

be the coordinates of M(s,t) then T2 = (3/9t)2 is tangent

M

to Ks(t) and X% = (d/ds)2 represents the displacement from

thé 'actual geodesic to an infinitely close geodesic of the

family:; X® is called the deviation vector. Thus

“*



agmb _ b a _ yb a
T? V,T 0 and . T° VX x° V.1
The . vector v?@ = 'I'b Vbxa represents the rate of change of

the displacement to a nearby geodesic and may be interpreted
as the relative velocity of an infinitely close geodesic. In

the same way

| A2 = b V,ve = pb V(1% V. X3

may be interpreted as the relative acceleration of an

infinitely close geodesic. Hence we have

’ b
22 = T~ V (T€ V. x%)

= b ¢ a
T Vb(x /cT )
= TP V x¢ (VT2 + TPxcVV T3
b c b c
N

and by Theorem 2.26
- b c a byc a _ mbyc d
‘ = X°V,1° (V1% + 1°x° V VT T”X® Rpeg® T
T b\ . Cmbmd
. o] - :
X7 Vo(T® V. T%) = Ryq® X*TOT

t

i

= A® = -R_AXx°TPrd

-
P

This result is called the geodesic deviation equétion-; it
shows thati the relat;ive 'acc.eleration,is zero if and only if
‘ space-time is flat. We also get, a{‘a bonu.s, a cha:.:acterization
of the curvature.

In Newtonian theory, the tidal acceleration of two nearby

particles is given by -(x-V)V¢ , where ¢ is the

*
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gravitational potential, x is the separation vector of the
particles, and V is the Laplacian operator. We can interpret

the above characterization as follows: if ls(t) are the

geodesics of nearby particles, v? their 4-vélocity and x2

their deviation vector, then the tidal acceleration of two
nearby particles is - Rbc'da x¢ vPvd | This suggests that in

the Newtonian limit

: b,d a
Rdea vV —_— aca ¢

£ 4

On the other hand, Poisson's equation being V2¢ = 4nGp , we

&guld like to think that in the limit

€

Il -~

(Rpog® VPvd . —B  anGp

Again,” in this Newtonian 1limit, we should expect - that

Tabvavt’—)p, which is the case. Therefore we could be tempted -

'}
to write

-
© Ryeq? vevd = 4nG Tcdvcvd, .

N
but the last arrow is not an equal sign, and the previous one

is ohly one way. Nevertheless this development suggests the \

field equation

t

w

Rab = 471G Tab .

2

-

Indeed, Einstein first postulated this equation but realized -
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that on the right-hand side V2 T, = 0, while on the left we

‘have by Corollary 2.27 4)

~ ) )
oPe g9 g% ( V, Rpeg® - V@Rape® + Yy Repg® ) = O
= g% 9% ( V Ryeq® = Vo BRpg + VyRg) = 0
- = g% (V, Rf2 -V RT+V RE) = 0
= VPRca-VcR+VbRcb = 0
) e = 2ViR, - ViRg, = 0
or Va (Rab - 1/2 Rgab) ’ 0
and hence V®R, = 0 if and only if" - V®R =0 i.e. R =0
-and therefore V®R,, = 0 if and only if T = T?, is
constant throughout the universe, which is impossible.
However, while this calculation forces us to reject the
proposed field equation, it suggests that
R, - !/, R - 8ne T, .1
ab 2 R9ap . ab
This equation, known as: Einstein field e'q{.iation, not only
restores the initial conflict between the Bianchi identity and
N L .
: the local conservation of energy and momentum, but also
I restores the correspondéhce which motivated a certain equality.

v My,
between the Ricci tensor and the energy-momentum tensor.
8

¢ ' ‘ ‘ 1.

<
+ 8rG/c? is known as Einstein's constant (= 2.073x10 48 seczcm"lq-l)

J -




By taking the trace of the field equation we find

,

t

and thus
Rgp =. BMG (T, = /5 Tgpp)

L

To show that the field equation reduces to Poisson's

2

equatjon in the Newtonian 1limit, we consider the weak field

approgimation g, = M + h,, , where the h,y are%so small

that |[products between thgmselves are neglected (Rindler,
1977)V This linear approximation will also point towards the
Schwajrzschild exact solution to the field équation; althgugh
this |solution can be found without using the field equation,

this [latter method requires, after many calculations, that the

Newtonian potential be 'fecognized' from the particular form

of an equation. This will not be necessary here. One should

not He misled by the relative ease with which we shall solveg
the fiield equation for weak fields because in general it is

not ppssible to specify T,, and then find g, ; in most cases

expressed in terms of g, , and one must solve for the

and the matter distribution simultaneously. Our task

e even more simplifiéd by the fact that only the
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part is ‘known even though the metric has not been found yet.

In this context, the affine confection is given: by

Iﬁbc

1

1 ad
/3 M*¢ @pheq + dhpy = dghy.) + order of h?

. 1 .
/9 (9 h8: + agh‘b - d,hy) . -
Thus, the Ricci tensor is

1

Ry = M Ry g + order of h?

-

. K '
-1/, 1P 99, h,, + 3,9,h - 39ch°% - 3,9:h%)

>
]

yhere h = T\ab-l}ab . Let 0 = 2P aaab and 4det

Xgp = hpp - l/2 Nphi it is not hard to see that

. .
2Ry, = Ohy, - 0,0 X% - 9,0, X%

By the coordinate transformation (

a ‘a

a
x = x + £ (%) ,

we intend to get rid of the terms containing X. By the

<
‘transformation -law for tensors we have

S P s | |
. |aE ) B
Jab = Jed| a b ] .
Ix % L o .

u $
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and omitting the tilde we get R, = l/iOhhb ; thus,

-1 - 1 -1 =1 !
= Ryp = /MR = /30 (b = T/ My h) /29 Xap,
and Einstein's equation tak%s,the form ‘ L ’ N

0X,p, = 161G T,
or  Oh, = 160G (T,, - Y/, 1, T

4

If the gravitational sources have negligible speed and

negligible stress then T‘Q—Ié\tte diagonal matrix (p,0,0,0)
. s - v

= Tap = /2Ny T = Pp/2 for a=b, (=0, for a#b).

= Oh,, = 16nGp , a=0,1,2,3.

But since.the sources move slowly, the field will also changé

slowly, dnd thus Oh, = -V?h, . The field equation becodé%



- f\V? (/5 hgg) = 4nGp , |
which is Poisson's ‘equation with l/zlyn = 0.
. Furthermore Jab = N + hap implies that - .

goo = 1 + 2¢

.

. , and Gow = 1 -.20 , a=1,2,3

otherwise g,, =_ 0.

Rl ' - *

This means that for ¢ = -GM/r ,

" 26M - . 26M
as® = (1 - =) at? - (1 + =) (d’ + @y’ + d2h)
-~ ’ { ." ..
Note' that ' since this metric is for weak ¢, (1 + 2¢) =~
(1'- 2¢)°! , and thus we see that this.latter metric is in

accordance with the Schwarzschild solution (in sphericdi’
coordinates): ‘

~

2GM _ 26M - L
ds? =, (1- 22 ot - (1 - = dr? - r2(d6%+sin’@ ag?)
rc rc? o ' »

)
©

%There exist a few other solutioné to Finstein's field
B .

~equation such as De Sitter space~time, Robertson-Walker

spaces, Reissner-Nordstrém solutions, the Kerr mefric, Gédel's
universe and othexs; these are all exact solutions. Since

Schwarzschi\l<.§s solution was used to .calculate the perhilion
/

14 "

. . N
.
‘“ B
. ,

-



"advance of Mercury and the bending of a light ray around the

sun, it is the best known; the others remain theoretical.

A last fact of interest should be pointed out: suppose

P o)

that, due to the absence of matter, T,, = 0. Then

RS

1 =
Rab "' / 2 9ap R 0

’

! But this does not imply that Rabcd’= 0; in fact when T, = 0,

Rabcd = cabcd

-~

the Weyl tensor. There are still n?(h2-1)/12 - n(n+l)/2 = 10

components which describe the gravitational field in free
space (even if ¢=0). These ten equations tan be characterized,

by using the fact that the Weyl tensor is conformally .

invariant.

I

To recapitulate we could say: space-time. is/ a

1

¢ .
4-dimensional C* manifold with a non-flat Lorentz metric which

is Minkowskian on small neighbourhoods; the curvature of this
ol . , ,

metric is related to the distribution of matter in space-time

through Einstein's field equation, but is not- identically' zero

A . , e
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/

in absence of matter: the matter fields, represented in this

-~

equétion by the

1)

!
/

)energy-momentumtensor,'fsatisfy'local

causality and local c¢onservation of energy and momentum.

f
e
°
.
N
.
’
- .
- -
.
+
t
)
P /
: ‘ '
N L]
N
+
- & L]
o
W
. '
i
R i
»
o
.
i
\ P - N
o N
-
-~

’

&)
5
;
¢
.
e ¢ i
e
‘
-
B
N
,
A
.
R .
N '
- o '
- &
Y
i
N -
lb
f
‘ e
i ’
B
N -
.
s
3
s .
[ i e
. -
. .
, , s ) i
;! i ’
, .
. Yo
.
1 - ’
g ' ;
! § ' f
B n ‘-
I's N -
!
- . R .
5 Jd <
ey i ' ’
. . .
I4 1 ‘\
*




3

[ . * |

:\3 _In 1799 Laplat¢e published a paper in which he proves that

-

. . - ;&' "
the attractive force of ailﬁﬁinous body, of the same density

-

of the earth and whose diamgter,i5\250 times that of our sun,

\ - : :
would be so large that none of its ligh&:. would reach us.
. / ‘ '
Consequently, the largest bodies of the universeé could remain

invisible to us. Today, such bodies are -called.-black holes.

.

Since these heavenly objects are Két visible to the eye, their

N ¢ »
presence - was not conjecturéd until this century with the

LI

event of X-ray ﬁelescopes and spectral analysis. One of the
first black holes to be 'observed', named Cygnus X-1, was
detected as-a result of the following fact: when gases

approach a -certain critiéTl radius.(th%ught,to be rg =
A
. . . . L
2GM/c?, the Schwarzschild radius), the magnetic field of the
black hole being stronger, some paﬁticles are accelerated

towards the centre; the.falling matter emits radiation that

-

can Qé,detected by X-ray telescopes. In the case of Cygnus:

X-1l, two facts were determinant as to the believe of the
presence of a biECk hole: first, the source of X-rays Cygnus
X-1 is part of a binary system of period 5 or 6 days which

insures the jncrease of mass due to falling'matter (a process

-

" called accretion), process that determines most certainly the

X-ray \radiation. Secondly, unlike radiation emitted from
[ 4

N,



v

.\\.
pulsars such ala Cen X-3 ard Her X-1,—the radiation emitted
frox:rx Cygnus )&-1 ha;s a rapid fluctuation vivith no_determined’
period. Its ‘mass, ‘ﬁhich ;vé‘s known to be approximatively of 10 -

—
to 20 solar masses, has recently been foundv to be of at least |

N - ['r" [ 9%

9.5 solar masses (B.Paczynski, 1974). This number is in

\agreemeht with the predictions made by the theory of stellar . !

N w

e§volut ion. '

Black holes can also evolve from massive stars‘ like
qguasars and galactic centres.t In £ ct, in the - 'seventies,
evidence was found te support the hyghesis that there is a
dead quasar in the centre of our galaxy (i.e. a ‘quasar'that"
has evolv‘.'ézd\to a black hole). The activity of such galactic
nuclei is also és'soéiated to Taccrétion’'. In’ 1978 two

R . |
independent. researches, ' (W.L.W.'Sargent et al., 1978) and
(P.J. Young et al., 1978), havé;come to the conclusion that
there is a supermassive black hole (5%x109 solar masses) in

- the centre of the galaxy M87. The main idea of these two
. ‘papers is that an unexpected spike of luminosity has been
-detec‘ted within the core radius’ of M87, the surroundi‘ng‘% being

of much lower intensity. As for your galaxy, J.Weber has built

what should be called, the first gravitational telescope (J. ‘

"Weber, 1969 & 1970). It was used to detect a strong
t the evolution of stars will not be discussed here but can be founa in . ,
. r¥——most- text books considering the togic of bléck holes. For example'see
. (Ginzburg, 1.976) . . .

v
) . . 5
. . . ; '
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gravitational force of the order of 0% ergs:-s~! (and more)

\ - .
&
coming from the centre of our galaxy (the Reimann curvature
tensor was used to find the directivity pattern). As the
*
energy corresponding to our suh at rest is Mc? =~ 10 34 ergs,
) \ - .

. ©
the centre of the galaxy would lose about 104 solar masses per

year under the only effect of gravitational radiation. This is

1
£y

in contradiction with the fact that the core of the Milk§ Way

has a mass of about 101!! solar masses, which means that it

would take 107 years (approximatively) for the nucleus to lose

the totality of its mass:; this is impossible since the age of

LN

the Milky’Way is known to be greater than 10Y¥ years. If

[l

Weber's result is true, the most possible explanation would be

that of a black hole swallowing mass to live (accrétion).

Black holes are certainly the most studied singularities,

i > . '
but they are not the only ones. In fact the zero-th second of

7
the expansion of Universe is calledthe initial singularity.

This expansion is seen as a gravitational collapse but with
¢ -~
time reversed (we do not mean that time is reversible). The

isotropic background microwave radiatibn of 2.7 Kelvin and the

fact that most galaxies are red shifted? are two examples

]

which are thought to support the hypothesis of the initial,

\

expansion.

/

+ for example Virgo travels away from us aé\meoo km/8 and Hydra at
61000 km/s. ' ’
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‘ " It would be reasonable to define a space-time

singularity as a point of the manifold where the metric is
- , -t >

~

undefined or is not suitably differentiable . For example at

¢ =~ l,/2 in (1 - 2¢)°! at the Schwarzschild radius Iy i

another example arises in the Kerr solution (R.P. Kerr, 1963).

N

The Kerr metric has the form (in Boyer-Lindquist coordinates

n

\,

(trrrer(P)): . . \ -
2 dr? . 2, .2, .2 ’“2 2mr" 9 . 2 2
ds?® = p2(-X~_-+de2) + (r*+a’)sin?@ dg? - at? + —,—(a’sin’8dg - at)
I, ' ) \ -

A where p? =12 + a% cos?0 and A =1r?- 2mr + a’. m and a are
constaﬁts: m represents the mass and ma the angular momentum;
when a=0 we recover Ehe Schwarzschild solution. At r=0 the
singularity is not a point~ but a ring as can bé seen by

transforming to Kerr-Schild coordinates (x,y,z,t'): \

|

|
|

x + iy = (r + ia)sin® ei.[ (do + aA"ldr)’ '

z=rcosh , ot o= J.{dt + (r’+a?) Aldr} - r .

‘\w
' Then ] - -
. il
y ds? = dx? + dy? + dz? + dt'?’
L '__7
A . ‘ . ‘ 2
3 "Jr(xdx + ydy) - a(xdy -
r* + a?2? (\12 + a’ r




R}
The ring x* + y> = a? , z=0 is a curvature singularity

Rrabed b

since Rypcqg vanishes there. -

. \

It is of interest to note that while the thwérzschild
metric yields static black holes, the Kerr (-Newman).solution
yields rotating (charged) black holes.

The problem with our definition of singularity is that
one ‘could simply cut out such péints and say that space-time
is constituted of the remaining points of the manifold; this
would seem appropriate since the equations :; physics break
down at these points and no’measurements.can possfbly be
taken. Thus, we ensure that no singular or'regular points be
omitted by requiring tﬁéf M, q) cannét'be extended. The
search for singularities now becomes a question about
spacé—time incompletenéss, in some sense.

Let M be an n-manifold and A I 9 M a curve with

domain I in R. A is said to be extensible if there exists a
curve A':I' -5 M su.ch that I'#I, I'DI and A is the
restriction of A' to I. A is incomplete if it is inextensible
and I is a fin}te interval. Let I be the linear connection Qf
M. I' is said to be incomplete (and (M,I') to be geodesically
incomplete) if there exists an incomplete geodesic in ?1; If ¢
is a positive definite metric, we can define the distance
function d(p,q):MXM — R as the greatest lowg; bound of

the length of curves joining p and q. With this function, M

95
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»

'is a metric space in the topological sense. M is then\said to
ﬁ;ﬂhetriéally incomplete if'and only if it is geodesically
incomplete. " (An alférnativé'\formulation is: (T1,§) is
‘metrically incomplete if every Cauchy sequence in 1 converges
to a ﬁgint in M_with respect.to the distance function d).

Contrarily to &?e‘positive definite metric used above, a
Lorehtz‘metric does not define a topological space. Thus we
are left with geodesical incompleteness: timelike, spacelike
and null. Timelike geodesic incémpleteness can be interpreted
as the existence of freely moving observers (or particles)

whose histories only start a finite time ago, or end in a

finite time.' The same interpretation holds for null geodesic

incompleteness with the difference that the particle has zero.

rest-mass (such as a photon). Because nothing travels on

e

-—spacelike—geodesics;—spacelike—geodesic iubuuwletéuebb Is ot
clear. It is now possible to §tate that a singullarity-free
space-time 1is a space-time in which timelike and null
geodesics are complete, i.e. defined on the entifre fiéld of
real numbers.

In the late sixtieé and early seventies Hawking and

Penrose proved a series of theorems asserting that a

relativistic space-time “is always geodesically incomplete

t such as particles created by ghe initial expansion of the Universe or
swallowed by a black hole.



A

-
’

provided that somewgeneral conditions be fulfilledvaeforZ.

: /
stating tAe’se theorems wé’must_introduce some concepts "about .

. A -
the causal structure of space=time. 7’

M, Vp is

Let (M.,q) ‘be a space-time. For each p

isomorphic/to Minkowski space~time. The light con¢ at p can bz

seen as the light ¢one passing tﬁrough the origin of Vp , and

v

thus as a subset- of Vp . A timelike or null veéctor element of
\ .

. the future half of the cone at p isg called fiture directed. A,

C! curve A is said to be a future directed/timelike cug;e‘if

the tangept at each p iR the range of A
' hy

timelike vector. If these tangents are

/s a'future directed
ither future directed
timelike or null vectors then A is called a future directed
c;usal curve. The chronological futur

of peM is defined as

the set of all points .on M which can be reached by material

particles starting at p. That is

»

I (p) = { geM | there fxists A(t) future directed

-

“timelike %ith A(0) = p and A(l) = gq°}.

And for any subset S'of M we define

" .
CTs = s T T
/ |

~—~

The causal futuYe of p is defined by replacing timelike

curves with causal /curves, i.e. we add curves of non-material

& 19
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L]

n

part{cles; it is denoted by J+(p). All these definitions alsa

apply to the pastlhalf.of the cone, yielding the set§ I™(p)

) oK
and J” (p). ]

If for all pe ™M and every neighbourhood 9 of p there
exists a neighbourhoodfu of p contained in 0 such that no

7

causal curve intersects U more than once, then the space-time

(M,g) is said to be stroagly causal. It is generally thought

that‘fhere does not e;}st space-times with closed causal
curves.T If a space-time is not strongly causal at some point
p, then there will exist ¢ausal curv;; arbitrarily close to
intersecting themselves near p, and thus, by small changes of
g, closed curves coQ}d be produced.

*A subset S of M is said to be achronal if there does not

exist p,q€ S such that qe I+(p); this ensures that It(s) NS =

g, the empty set.

. o
Let S be a closed achronal set. The futurQ\domain of

dependence of S is defined by .

Dt(s) = { peM | every past inextensible causal curve

Y

passing through p intersects S }.

The past domaip of dependence D™ (S) is defined by replacing

'past' with ‘'future'. The domain of dependence’ is

1t A(t) is closed if there exists t and t', t#t', such that
Alt) = A(t'). ' :

.

98



then

D(S) = DY(S) U D™(S).

If. light is the fastest messenger, then any signal sent

1
to pe DT (S) must have been 'registered' in S. Hence if initial
conditions are given on S, then'the events at pe p*(S) ‘should

be predictable. -Similarly the knowledge of conditions on S

¢

'

shouid enable us to 'determine all conditions on the set of

events D(S).

-

A Cauchy surface is a closed achronal set S for which
D(S) = M. In a space-time possessing g, Cauchy surface, the

entire past and future an be predicted from the conditions

o N @

given at the interval of time in which the surface is defined.

Tt is believed that all relativistic space—&imes have a Cauchy_

surface. ‘

A space-time (M,g) is generic if it meets the following
condition: for all timelike and null geodésﬁcs A ;n M there
exists a point peM at .which theltangent \' t<.> A at p
Y : .

satisfies

g d
V[aRb]cd[er]vcv‘ # 0.

This ensures that every timelike or null geodesic includes one
event at which the gravitational curvature is('effective’.

| ~ .

(M,qg) .is said to satisfy the weak or the strong

. : s of
convergence condition if Rabvavb,z 0 %ar every null or

s

- ‘/ | | ‘ | ’ |

-~



timéi’ike vector v respecti'ye_ly. The(ge conditions can be seen ,

! -

£ ' : .
as the assertion that matter attracts matter and radlw.on

since, by Einstein's equation, e - /
. \ | | o ‘
Rabvavb 20 = Tabvf’vb P 1/2 T v""vér .

]
. , 2

If for example .~ , , ‘ ‘ ‘ (\

T : . |
ab 0 0 p O o _

i |
where p is the energy density and p, is the pressure (&=
1,2, 33, then the strong convergepnce cond:j.tion is just

¥

" p.+pa20 and p+X,py 20

A trapped surface in (M,g) is a compact Spacelike two-
dimensional, C* surface which has the following property:
incominz and outgoing future directed null geodesics that meet -

S orthogonally converge locally in S. This may be regarded as

r

the formal statement that a black hole is black, i.e. a
spacial region which absorbs nea;ﬁy radiation and pulls back

radiation originating from the inside. In this way all spheres

"
o .
| - '

[}

1




.inside a black hole are trapped surfaces. It has been showh

that if the initial conditions of a stellar gravitational
B , . ' . // ‘ s
- collapse are those of a spherical collaese; then trapped ~o

-

surfaces .will form. \ /
;

’ s . . /
We can now state the main singularity theorems:?! in these

/

theorems all (M,g) are reiativiétig space-times. satisfying

.4 , : '
Eintein field equatiop together with’ the other properties

. /
b . . /
stated in the last sentence of sectiog'3.

/
I. Penrose,'1965: M,q) contains incomplefe null

geodesics if:

1) it satisfies the weak convergence .condition,
i

ii) there is a non-compact Gauchy surface in M,

i

iii) there is a closed trapped surface in M.

’

II. Hawking, 1967: (M,g) contains incomplete timelike

/!
/

,/‘/ ‘ .
/
[}

i) it satisfies the strong convergence conditidn,

‘geodesics if: /

ii) there/?xists a compact spacelike 3-surface H
< ’ ~ —
- . without edge,

the uni% normal vectors to-‘H are everywhere

-
e
[N
S

converging (or everywﬁere diverging) on H. .

1t the proofs can be found in (Hawking & Ellis, 1973) or (R.M. Whid,
1984).
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ITI. Hawking, 1967: (™M,q) contains incompleté f

o
-,

> | non—spacelike geodesics if:  .‘ .
i) ﬁt satisf;eé the strong convéféence condition,
ii) the strong caﬁsélity condition holds,

:il ) there ’is some peEM such that all future 'dirécted
(or past directed) timelike'geodesics thrgughvé\
are focused (i.e. expanded and conﬁfacted) by the
curvature and start reconverging in a compact

- I

region in the future (or in the past). : K

IV. Hawking & Penfose, 1970: M,q) Eontéins incomplete
non- spacelikezéeodesics if:
i) it satisfies thé strong convergence: condition, 4

ii) it is generic, -
iii) it does not have closed timelike curves,
iv) there exists‘ét least one of the following:

X é) a compaét achronal set withput'edge,

b; a closed trapped surface, .» \

' ¢) a worldpoint p such that "all future

directed (or past directed) null geodeéics 1 -

-

through p are focused by curvature and

‘ A ) start reconverging in the future (or in

—

h ]
the past).

- . Pt

- In these theorems, the energy conditions_ will hold
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‘ Ve
provided, as we said, .that the energy density of matter 'be‘
. - " 1] s X
' positive for all observers, a fairly reasonable condition.

Since conditjon iii) of Theorem I is also realistic,' the ‘only

way that this theorem could fail to provide singularities
would be if therge does not exist a Cauchy surface; thds is the
weaknéss of Penrose's Theorem. Thus it seems. that Theorem I

state'{\that a collapsing star will end "up eithexr in a

singularity or in creéating a Cauchy horizon (i.e. the future -

botundary  of p+,(S) for some closed set S). However, this

5 [

conclusion does not satisfy ourﬂ'quest' for singularities; we

need a"tfhéorem ‘that does not assume the existence of a Cauchy
surface. Theorems III and IV have the most general conditions,

as they apply to a number of physical situations. Nevertheless

fl

,it can be that closed timelike cu»e's occur (the past 1is
reached again via the future) instead of a singularity.

- Theorem 1II lass&:ts that this violation of the causality

-

conditions does not prevent singuiarities from gbcurring
_provided the;t the universe. be spatially clos;ed (ii) and
contracting or expanding (iii).

The success to proye the exis'tence of {space—time

singularities by using the notion of geodesic incémpleteness
] B : P - .
is‘mi surprising when we try to imagine a closed geodesically
coxﬁpl te univerge, idea t_hét was rejected from the-early ‘days
3

(] \ i ‘l ’
of General Relativity. As R.Torretti phrases nicely and

4 “~
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- 1t ™R. Torretti, 1983)
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o

el

V v - a’ ’ 2
.‘ - . '"After all, barring metaphysical insight or
' . . divine revelation f'd;\hot see how we could ever L *
‘ , \
. leard that spacetime is geodesically complete - and .

all the more reputabie sources”ofsupernatural
. B information decidedly point .to the‘-dﬁgjsite

» conclusion..Indeed the venerable vision ®f man.as a

. A .
1 L

microcosm, and hence of the universe as Man Writ

# . - « :

Large, can only be upheld withinlthe framework of

General Relativity if spacetime contains incomplete o
i " timelike geodesics along which, so to speak, time
Yo . runs out." 1 N
/ LY » 5

)

a

" . . . 0
. .



10¢

wRTHOUGHT

- Py

4
~

;/ﬂ ‘The importance of the. axioms, principles and postulates
. ‘ N 4
of a theory ig now: transparent to us since these have been

>

shown to direct the mathematicalk formulation of the structural

approach to spacéftime and hence to the understandﬁng of
- N i

Universe. Thus, natura}pﬁilosophy {experimental /and
scientific) plays a detérmining role in the paths taken by

'exact! sciences. The relevancy of this role will increase as

we search for a micro-mechanical explanation to gravity since”
such an understanding will inevitably coiatgtute a step .

towards binding the known forces ‘of nature into a unified

[N -

field theory which will encompass the micro-universe of matter -

and the macro-universes. '
- . ' .
To_génglude, here a}e'a few queé(ions’which I belieyg to
be of some importance'tb achieve thi; pndérstanding: do
‘\objects really fall at fhehsaﬁe spéed or is§ it that the
gravitatiénal fiéld of the earth is too weak to make a
signifiéant différence ? How fast does the effect of gravity - 4

_travei»? Is it really the exact same, speed as light ? 1Is

there an aethereal medidm for light ? If there is, how can

[ . . . \
we relate it with gravity ? Does a%tigravity exist 2 The

density .of a proton is of the order of one billion metric tons
(10 15 g.) per cubic centimetre; what is the density of a

. - £
3 . ‘ B
a
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R quark ? Is matter more and more dense as we approach the
\ ’ :
micro-world ? ° Why (not how) does matter attract matter ?

e—

\ -~

’.
When singularities occur through the formatien of ck holes,

. -

is" matter so dense and so fast revolving\o tself. that

eventually a supershmall hyperdense (> 1060 g/cm?) Yobject! is

*
A
.

.obtainéd ? Is matter made of the organized aég;omqratibn of
\ | .

'point' singularities forming'an inpeﬂetrable field of energy

.
(to our 'senses) ?

.~ v
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