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“.. . C"ABSTRACT-’

Global States of Distributed Systems : =,
Classification and Applications ’

Krishnarao Venkatesh, Ph.D, ‘
, C VO
) _ ) .
Global information is essential in the operation and application of
distributed computer systems. In a distributed system no single process in

the system can instantaneously capture the complete system state due to

the variable message delay and the -autonomous hature of the processes.

. Global states of dlfferent types can be recorded depending on the degree

of syni:hnonization enforced between the communicating processes while
recording the process and channel states. A - formalism® for classifying
dlfferent types of globa.l states of a dlstnbuted system is proposed and
studied in this theens.', It is ba.sed on the charactenstlcs of S-T cuts in
the event graph model of distributed computations. Depending on the

existence of forward‘and backward conlmur_xication erdges in these cuts, four

main types of global states are identiﬁed: Statistical global state, Stable

\bal state, Consistent global state a.nd Synchronxzed global state. Their -

. propertles and a.ppllcatlons are studied. New message efficient algonthms-

are proposed for , detection of Consistent, Stable and Statistical global

states.

A

°
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r R 4 : .
Two applications of distributed systems, na?mely: 'Discrete Event

-

# Simulation and Backward error recovéry, which need global ' states have .

been examined in detail. Th¥ pro\blem of npdating the simulation clock in
, : o
processes modeled by the strongly connected components of a proc
LA R
graph is viewed as an application of the Global Minimum detectipﬂ

property of ‘Sta.ble' gldBal s\tates. “‘ Three otbjectives for efficiently updating
the clocks are identified. A new optimal solution is proposed for one o.f'
the objectives.‘ +The optimizati‘on problem*—/i:;;r another objective is shown
to be NP—Complété. Coqsequently, a new computationally eﬂicien£
heuristic solution is proposed. @ The mgssage coﬁplexity. and time

complexity of these heuristic solutions are shown to be asymptotically

better than a known existing algorithm.
: , .

-

Avoidaﬁce of Domino eﬁ'e;:t during Backward error recovery is viewed )
in the framework of Consistent global state detection: The requirements
for avoidance of domine® effects * are formalized and a new coordinated
checkpoin,tiﬂg and rollback recovery scheme which eliminates the domino
effect has been suggestede. In this scheme, ‘ simultaneous rollback and

<

~ recovery can be initiated by a process without it having to wait for the

[

completion of rollback and recov;ery initiated - by. other processes.

The theme of the thesis has ‘been to evolve a classification scheme

for global states of distributed systems, and examine certain signiﬁcimt

BN

applications of these global states.
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Chapter 1 ‘ \ ’ \

»Intljoduction

Practical distributed computer systems (DCS) have evolved due to the
recent advances in semiconductor and communication technologi;’es.' Wide
availability of experimentat distributed systems has stimulated interest in

their applications. In a DCS numerous independent and asynchronously

operating process-memory pairs are interconnected by / means of “high

4 .
bandwidth communication channels. Each process-memory pair has a local
‘ i

clock and there is no globé.l clock controlling the 1 whole system.

: &
Interprocessor comnfunication is achieved by passing messages ,and not via

~

amount of time. In a typical DCS, this message propagation time is -

. I * ’
usually very much greater than the individual processor cycle time. As a

consequence of this propagation delay there exists a delay &t between the

time at which a fact~is° known in one processor and the time at which

the complete network becomes aware of this fact. This peculi;.rity of—

.

distributed systems has significant influence. on the nature of the system

wide - information that can be practically gathered, as due to this delay

‘instantaneous system wide pictures cannot be captured.

1

A wide spectrum of applications exist.for distributed systems as they
make a large number of processor cycles available by using a numbef'\ of

powerful processing elements, and also allow geographical distribution® of
v

shared memories. " The propagation of messages takes a finite but variable

]
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these cooperatively functioning intelligent resources to the locations where

k]

they are 'mostly needed. Discrete Ev&® Simulation which has a high

proportion of concurrent activities i8 an ideal candidate for exploitingnthe
processing power of a DCS and hence has evolved as one of its important
; .
‘ 3
applicatior}s, The possibility of geographical distribution ‘of processors and

the potential of higher system availability make distribufed systems ideal

.
.

for control of critical and often life threatening applications like chemical

process control, Aircraft control etc. r

*

The peculiar properties of distributed systems and their practical

oy [N

utilization have - posed a number of interesting basic problems and have

¢ 3

spurred active resear&h on' fundamental topics in this area. This work

focusses on the basic issue of global states and considers practical

ramifications in the areas of Discrete Event Simulation and, Rollback and

Recovery of distributed systems.

1.1 Focus pf' the thesis 5

3

Distributed systems in general have no single master site for gl})bal

- 4

N
control.  However, efficient solutions for a number of problems in

n

distributed’ computing - require gathering of information from the whole

system. The lack of a common clock, the variable propagation delay of

the c\ommunica,ption subnetwork and the asynchronous nature of the

processes make it impossible for any single observer to capture the .

[}

instantaneous state of the whole system. Typically a global state is

-
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and the required interrelationship between these captuyged s\ta\tes of

processes is application dependent and results in the existence of different

s
—

types of global states. In this context certain important, issues have'to be’

»

,addressed. Lo
N

(a) If all global states are not the same then how could-they-be
classified?

.

(b)" Are there efficient algorithms for determining these global states?

These 'issues have not been addressed satisfactorily till now. Recent
interest .in them has been triggered by the seminal work on formalization
of the concept of global states done by Chandy and Lamport [11].

However, the problems have not been dealt in their entirety.

Application specific aspects of global states and the relevant issues of
management of global informat{on are of particular significance in |
important applica.'tions Jlike Discrete Event Simulation and Fault tolerant
distributed systems. In Discrete Event Simulation (DES) the simulation

P :
model is divided int; intera.ctifxg _submodels' which are assigned to
individual processes. Each process has its own logical clock.. The .basic
. activity pursued by the process is simulation of events.’ Frequent!y the

simulation models contain strongly connected sets of processes. In this

context the main issues to be addressed are:



.context the important issues to be addresse\ are: '

-~

/",
2 . *
< 4

(c) How should the logical clocks of the: processes be updatéd such . o
. . /, v
that the correctness of the simulation is preserved?

(d) Are there optimal ways of doixfg this? o

The issue of updating logical clocks during dfs_cré;‘.e event simulation
of models with Strongly connected components, in the graph theoretic
sense, has been addressed by Bryant [8]. However, the treatment is ad

-

hoc and the algorithm is inefficient.” These jinteresting questions " are

t

methodically analysed here and solutions are proposed.

Design of fault tolerant distribugéd syétems must address the issue of
failures caused | by ‘ui{an;;icipated faults lifce design ﬂa.ws' which occur fairly
frequently. In case of failures, the dynamics of the process under control
_i;.nd the extent of. computation ,already completed often ‘ require °‘t'he-
computation to be refsumed with minimal loss. Usually errors of this
nature are ‘ha.pdled by rblling l;ack the system to a known non-faulty state 4
and - commencing re—égcecution from this state. This requires saving the
state of the | system at different pointé during the computation. In this
() When and how should the sy‘stem‘state be sav;zd?

(f) How should the rollback be pe;formed efficiently?

These  issues on Rollback recovery have been 'extensively researched in

the past decade. One of the main research ﬁﬁdings is that unless .

sufficient care is taken during the state saving opei'ation, a phenomena

called “domino rollback”™ could occur when an attempt is made to rollback

~
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the system to a state-in which all effects of érrors are overcome and from
& - . ‘

where meaningful computati?)n 'can‘ proceed.  Domiro rollback typically
undoes a lot of correct coml;utations‘ and sometimes might rolllé»ack the
system to ,tlie beginning. = Numerous -solutions have been proposed for
domino effect free‘ rollback.  Some 6f them restrict the. allowable

interprocess communication patterns, while some others .¢reate useless

checkpoints or unnecessarily save all interprocess messages..
L}

X
In this thesis the above mentioned three seemingly independent

problem clauses have been unified based on their requirement for global
information. - The solutiq‘h to the problem of updating ,clo‘cks in discrete

event simulation, requires~the assessment ‘of the largest increment possible

“

in the whole éystem, with the constraint that simulation of none’ of the

- .

events in the system . is missed. This requires capturing the set of all
events currently in the system either in processes or in transit, in order to
defermine ,the event with the earliest simulation time. The global state

recording and compilation ph£ses can be effectively combined to evolve

« efficient schemes for clock update.

Interrelated checkpoints will have to be established in the intera.ct:mg

processes in order to avoid domino effect during rollback and confine the

rollback to the affected processes. This, once again, requires establishment ~

"

.of global information. in the process of checkpointing the original

computation, p.hd retrieval of this information during rollback.
I?' + .
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Thus' the main ideas in the thesis are about efficiently capturing the

3
-
v

required global information and effective utilization of this globai

information in the various applications of interest.

1.2 Contributions
~ , ., . Y N

/

This thesis answers the questions raised in .the previous section. In

-

Tt

-~

this work major effort was ‘concentrated‘ on: ; . ' ¥
(a) Evolution of a .cl‘a.ssiﬁcation scheme for global states.
S .
(b) . Efficient hamﬁing of application . specific requirements for .

-

management of global information in two important applications

namely Discrete Event Simulation and Backward Errgr Recovefy.

The key contributions of this thesis are brtléﬂy outlined below.

'Abplicat;ions making .use of global information were analyzed to
determine the nature of the glpbal information used. Based on this

analysis a classification scheme has been evolved. Four different types of

© <

global information or - states have been identified namely: Statistical global

" states, Stable global states, Consistent global states and Synchronized

global states. Significant. properties of these global states were examined

13

after formulating generic problems for each category.

Efficient algc;rithms which minimize number of . control messages were
developed for . detecting thes; 'g1;>ba.l states. These , algorithms were -
desiéned to be applicable without the FIFO restriction on the ché.nqelsﬁ
en;ploye(i by previqus algorithms, which signiﬁcaﬁtl{‘ decreases ‘ the ,‘

L3
v
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_ complexity. of the communic'atiox? subsystem . and improves' the throughput. .

The message complexity of our algorithm is O(n) whfle that of comparable

existing algorithms is O(L), where n is 'tghe' number of processes and L is

€
o

. . * -~ 3 R ¢ .
the number of channels. - :
) . .

o

The issue of updating local clocks in a strongly connected ‘subset of

proc‘esses,v Jhile performing discrete event simulation is viewed as an

W

extension of the generic. problem corresponding to X Stable global states., . A

&

simple solution to this problem exists based on tha observation -that

certain: crucial inforination (in this' case the simulation time of events )
0 ' N ! ~ \‘ *
can be preserved at the sender’s site instead of discardingethis information. -

. at the ‘sender’s site and trying to recreate the same information at the
receiver’s site later on, The problem of determining the earliest event in

‘the strongly: connected component with minimal_ message Swerhead is .shown

to be NP- complete. Hence heuristic* solutions. have been presented' for

this problein. fl‘hé message . complexity of these heuristic - solutions is .O(n)

while. that -of ‘éxisting algorithms is O(ns).

. The problem of rollback recovery is‘viewed as an extension of the

géneric problem corresponding to Consistent ‘global states. " A pheckpqintiﬁg
. - ' ‘ K *

and rollback tecovery. scheme to achieve domino free rollback has been
suggested. This’ s,ghemeb“minimizes ‘rollback ‘and restricts the roliha,ck to
only the affected processes fby tracking depeﬁdencies :b'etwbgn processes

dynamically. ' Domino effect is avoided by coordinated checkbointing. The

scheme has béén desigiied to support concurrent rollbacks. Rollbacks occur

|
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without' requiring the "system’ to. be frozen during rollback. This scheme

achieves ‘minindal rallback;~ does’, not restrict ‘communication patterns,

'_sxippo,rts- . nondeterministic computation, A&lso saves ' just the messages

required’ for playback ' during re-executions and thus shows a r“signiﬁcanti

. ~
improvement over existing schemes.

»

-

. ' .
1.3 Organizat"ion

- “. " q '
The thesis is organized as follows. The basic distributed computer

systém' model used, and the models employed for representing distributed

° st

computations are pfeéented in Chapter 2. A global state classification

schefhe é.long" with generic problems and their relevant properties are

’

' pr nted in Chapter 3. Efficient algorithms for detecting global states

and their performance characteristics are discussed in Chapter 4, The

problém of clock update in discrete event simulation of ‘strongly‘ ¢onnected )

o

models is the topic of Chapter 5. Heuristic solutions and their

.:%f

performance are presented in this chapter. 'I:he problem of - roliback

. ;eccivery is the subject of Chapter 6. The reasons for domino effect in

A

rollbdck is formalized. /Y depehdency based checkpointing .scheme and &
rollbdck recovery. a.lgorit.lim are presented. Also. the applicability of this

algorithm to concurrent rollbacks is demonstrated in this chapter.
. * ‘_ '.

'Conclusigns of the thesis and certain suggestions for future work are

presen‘ted' in Chapter 7. Finally some examples helpful in the illustration

of the concepts in the text and. proofs of some theorems on global states

o

constitute the two appendigés of the thesis.

o
3
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“Mo&els of Distributed Computations

4
]

Models fa.cxhtate ana,lysxs anti verification of systems by providing
tools for p‘recuse definition of specific properties and cha.ractenstxcs of these
:systems. In this, chapter two formal models of dxstrlbuted computgtlons_
namely: ‘thq Space ’i‘imé Model and the POMSET model used in this
thesfs_ are presented. The gr‘aphica.l nature of the Space Time Model and

the mathematical richness of the POMSET model complement each other

to make presentation and formalization of ideas simple.

2.1 Distributed System modei

| A distributed system consists of a finite number of interconnected

communicating seciuential processes. The following initial assumptions are

"~ made regarding their operational: characteristics.

Aséumptions about Channels
(CA1) Intérprocess cornmunication is through point. to point dirgct:ed
‘ commqni;:ation channels.
(CA2) Channels are reliable and ensure FIFO delivery, .
(CA3) The delay incurred in sending a message through a thannel is
finite and variable but ksntwe (causality). |

(CA4) Unbounded numbers of message buffers exist in each channel,

L
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Assumptions about Processes: . .o . —
(PA1l) Processes communicate via messages” through explicit send and
receive events.
- 8

(PA2) An event e of process P is denoted by 2 quintuple (P8 ",M,C).

Such an évent is atomic and changes the state of process P
from s to s’ upon’ receiving or sending message M on channel

C, depending on whether C is an input or an output channel

)

respectively. In case the M and C in e are empty, e represents

13

an internal event of process P. Every .event is completely
executed in a single process. o
(PA3) No globa.l‘ clock is present.

(P'A4) - No assa‘mption is made on the order in which the process accepts

Linguistic support

. messages -from different channels. However, within each channel .

3

messages are delivered in a FIFO manner,

»

v
s

The I;rogramming language ‘supporting distributed programming is
assumed to support nonblocked send and receive functions. In addition a
message test primitive useful for determining the presence of messages on

A N . &

‘channels is also assumed to be present. = Blocked receives can be realized

by combining the message test primitive with the Receive primitive.

N
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2.2 Model of ‘the distrit_mted computation

Both the Space fime model (STM) [1], and the I;OMSET [36] model
arFé u;ed to represent distributed computt}tions in .thi's thesis. The
gra?hically oriented STM mocﬂlel is use&_ to express the ideas and concepts
sin';ply, while thé\fiathematically -rich. POMSET model is used to formalize
these goncepts. Both models ‘expreslst com;)utations as .relations between “
partially p’rdered\ e;rents. A. brief review of the‘ asp'ecgts .of the modeh':

"relevant to this 'work‘ fqllows.
'2.2.1 Space Time Model ' - ' 84

,The -’system is viewed as a collection o'f processes. Each 'prc;c‘ess
cons‘ists of a sequence of events. Each event gets expcut;d in a single
process. The events ‘are labelle‘d' by the actions they perform. This
labelling depeﬁds on the application and an event could repr.esqnt*execution“
of a function or the e;cecution of a single iﬁstruction. .Send'ing and
receiving of message; are aésumeci to be events in the prl:cesses ;nd /

interaction between processes is assumed to be only through messages. A

relation < is defined such that :

'(a) If a and b are events in the same process then a < b implies

MR Y

. ) that a precedes b.
(b) If a is a send event and b is the corresponding receive event then .
z a < b due, to causality.

"(c) N'a <-bandb <cthena<c- transitivity.



(d) Two distinct events a,b are concurrent if neither a < b nor

b < a.

-

In short, the model assumes that

(i) All events in a process are totally ordered.

(i) Interprocess temporal orderings are governed by the necessity

of the send events to precede the corresponding receive

events. -

This can be yie;wed in terms of a two dimensional space time
diagram (event graph) as shown in fig.2.1. The space is represented in
the vertical direction (processes P;, P,) and the time in the horizontal *
direction. The circles (nodes) represent events, ‘and all events -that occur
in a process are iil the same '_lhorizonta.l line representing that particular
procesy. For tv% events ;’:md b in a process Pi-’ node corresponding to

event a occurs before {w.r:t time) event b iff a < b. Transmission of °

messages are represented by edges linking send events with the

correéponding receive events. By iﬁtroducing two special nodes (S and T)
and <.:onnecting them to 'the horizontal process linesl as showr; in fig.2.1,
the vevent graph is transformed into a two terminal S-T event graph. An
S-T cutwof the graph is forméd .by a set of edges whose removal
| ' disconnects node T from S.‘ The cut partitions the event graph into two
distinct parts. The part th_at includet the S-node is knox'vn as the
S-partition and the '.paft that includes the T-node is known - as the

T-partition. = The terms S-T' graph and event graph are used

&>
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M, : Forward edge w.r.t Cut XX',Cut YY',Cut'22'.

. M; : Backward edge w.r.t Cut YY', ﬂ
Cut XX': Instantaneous cut at t= t, T L
Cut YY': Stable cut -
L Cut 22': Consistent cut \ S,
' Cut WW':.Synchronized cut ‘
u ]
" -
) Figure 2.1: Event graph - . :
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14 °
interchangeably to refer to an S-T event graph. For this model the

following are dgfmed.

Definitions: ' ‘ , ¢

¢

e Each edge along a horizontal (process) line in the event graph is a

~
Process edge.

o A cross edge between events on two different horizontal lines is a

. Channel edge. ‘ o

A channel edge intersecting a cut is a forward edge if it emanates
from an event lnode in the S-partition of the cut and terminates
in the T-;;a.rtition,‘?else it is a backward edge.

) 'A cut .is an Instantancous c‘ut if it is a vertical cut obtained at a

particular time instant, say t; in the event graph.

o A cutis a Consistent ;-ut if it does not contain backward edges

and intersects precisely one edge on each process line. ‘

o A cutisa Stablcl cut if it intersects precisely one edge on each

process line. . -

A Stable cut is a Synchronized cut if it does not contain any

channel edges.

In fig.2.1, Cut XX’ is an Instantaneous cut .obtained at time t;.
Cut YY’ is a Stable cut and is not a Consiﬁtenl:.eq cut as it includes a

batkward channel edge (ese;). "Cut 2Z° is a Consistent 'g:ut. Notice that

-an Instantaneous cut is always Consistent, because of causality in message

communication. Cut WW~ in fig.2.1 is a Synchronized cut.

L]
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2.2.2 POMSET model )

Concurrency can be expressed bs( making use of the part.ially ordelled
x%ultxset model pr?posed by Pratt [36]. It is formally defined as follows
« A part:al order (V,X) is an irreflexive transxtlve binary relation on° a
vertex set V, where V is the set of events.
; A labelled partial order (lpo) is a qua.drupl“e (V,X,%,4) where (V,X)
is the p\a,rtial order, ) the set of actions and u: 35 — V lai)els the
' ~vertices of V with the symbols from the alphabet Y.
-"e A pomset [V, ,<,u| is defined as the isomorphism class of the

lpo( 2 5u).  Two lpos (V,3.,%,n) and (V'}:,-<’,u’)' are said to

. be 1sbmorph1c provided there exists a bu;ctlon nV — V’ such that

VueV, ulu) =:u"(r(u)) and 7(u) X° 7(v) only when u X v,

Note here that the importance is given to preserving the temporal
* .
. ordering of the actions, and the identities of the vertices are

A

themselves unimportant.

A set of Pomsets characterize a process. This set will represent all

possible behaviors of the process. An algebra of operations have been

defined by Pratt for Pomsets. Complete treatment of this can be found

in [36], only some of the operations on Pomsets relevant to our itudy are

”

defined below: RN

Concurrence: The concurrence of two 'pqmset.a p:[V,Y ;<] and

p:[V',3,%"u’] is the pomset ‘lVUV',EU}:’,-jUj',pUp’]., There is

rd
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no interference between the two and hence no violation of transitivity.

Concatenation: The concatenation p;p° of the two pomsets p and p” is

the same as concurrence except that the partial order will
« be (RUX’UVxV’). All events of p precede events of p’.

i '2_13_3_[15: A pomset p is the prefix of another pomset q provided p isl
realized from q:by deleting events from it such that if an event is
deleted then all its successors are ‘a.lso deleted. Henceforth, in' this’
thesis this type of prefix will be referred to as a Conpistent prefix.

Temporal operator: A temporal operator 'p is defined which translates a

first order predicate ¢ to a predicate ¥ such that ¢(u) is true
provided Jv for which ¢(v) is true and u < v. i.e. there exists at
least one successor v of u for whichithe predicate ¢ holds. This is

représented as p¢. Additionally, another temporal operator v is*

defined which is similar to p but in this -case the predicate ¢ holds

for all future events. p+ implies that ¢ holds good if strict future is

'

considered, i.e. t(u) is true provided 3v such that ¢(v) is true and

Q

., .
u < v. p indicates temporal reversal.

Network of Processes’

5 . " 2
The individual processes can be interconnected to realize a system of

communicating processes. The behavior of the }mnposite process is
expressible as a pomset and the restriction of this behavior to the
individual processes must result in valid pomsets for each. of the

constituent processes. In the applicétion space of interest, a network of

,.
s
R, -
b
S
I

-
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communicating sequential, processes is assumed in which the events are all

)
atomic and hence the behavior of each constituent process can be

individually exprsssed as a totally ordered multiset (tomset). However, the

behavior of the composite system will in general involve concurrent events
. \ .
-

in the constituent processes and hence would have to be gxpressed as

-

\

pomsets. In this context the following can be defined.

Colocation: If events are tagged with a location id, such as a port of a

process or & process of a network, then all events with the same -tags

are said to be colocated.

"Some new operators which are needed for our study are introduced.

-

Stable prefix: A Stable prefix p of a pomset q is one in wiﬁch some

elements of q have been deleted such that if an element is deleted

. ! N .
from q then all its colocated successors are also deleted from it.

<

Synchronized prefix: A Synchronized prefix p of a pomset q is a.
, »

Consistent prefix in which the elements of q have been deléted such
.

that if a send or receive event e is deleted from q then the
)

matching receive or send event m(e) is also deleted from it.

Instantaneous prefix: If a global clock were available the Instantaneous

prefix p at t; of a ;;omset q is derivgd from q by deleting only
those events in q which were executed after t;. This can be
: 4
formally expressed as follows, where ¢, (u) is defined to be true if
1

-

event u is executed after t;: ' N =3

o

. i g < 1
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Ppa=( = QA (b %) A (;7¢c1)-
The first term .on the right hand side. states that p is a /c;nsistent
pfeﬁx, the second term s;atés that for no event u included in p tl;e
l‘)redilzate holds good and the third term states that for all events of

s

q not in p the predicate‘holds good. .
-~ & .

2.2.3 Relationship between the two models

The STM and, i’OMSET 'models are essentially equivz;l;nt (have'

similar express;bility) in the restricted case of a network of communicating

sequential processes. A cut in the STM modei is characterized by t';he

computation that has elapsed from the })eginning of .the computation -un,til

~ the cut. We refer to this as characterization computation of the cut.

The state of a cut is the state of the processes and the channels, acquired

after execution of the characterization compultation of the cut. These

°

characterization computations can be expressed in terms of’ pomsetsﬂ. In

L

" this context the following can. be trivially inferred:
(1) Characterization computation of a Stable cut is a Staiale prefix.
(2) Characterization computation of a Synchronized cut is a
Synchronizec} prefix
(3) Characterization computation of a Consistent cut is a Consistent
prefix
and (4) Chiara.cter‘ization computation of an Instantaneous cut is an

: ( Instantaneous preﬁx‘
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and the rollback recovery scheme.

fig.2.2. ) ‘ j
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Th@e relationships are invoked in the discussions on globa.l states Y

- v '

These correspondences are illustrated in L
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A Pomset representing this computation .. S i
‘eII(eZI"el2)(322"313)(314"923)824 . : . o
VV' represents an Instantaneous Cut corresponding pref‘ix - .
\ - . ’ .
z e11(ezliesz) I . :
_ WW' : Stable Cut, Corresponding Stable prefix T
. = ey1(ezrllerz)ezzezs : L
XX' Consistent Cut, Corresponding Consistent: pref‘ix LA
’ J z en(eulle‘z)(en%m) L S
Yy . Synchronized Cut, Corresponding Synchronized pregix
’ ‘ = 911(ezr"912)(322"e13)923 oo ~
- \ * - , . . ) .
‘ Figyre 2.2: Correspondence between STM and POMSET models - ’ X
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L. A Chapter 3
s Global State - -
o : =T . . )

Conceptually, the state .acquired by the distributed system after

execution of each event of a distributed computation can be interpreted as,

v r—— *

’ an instantaneous global state provid;ad the events of the computation are

3

totalfy ordered. - In .this case the distributed computation itself can’ be

expreased . as a‘ sequence of ' ‘events. It ,will\vthén constitute a Totally
, . , .

' " Ordered Multiset or TOMSET. o

[ ’ - . [
7

\c‘ ' f -
. ) . "An instantaneous global ﬁ's%ate \S' of a distributed system is composed
- - . . . P - ‘

<. ., of the local states of all its constituent processes and the states of all
channels. The initial global state Soa'speciﬁes‘ that all- the constituent
’ - processes (P;) are in. their initial states ns: and all the channels are empty.

The global state is altered by the occurrence of events in the constituent

processes. A read event e (P s;, s:l, ‘M, Cp) can occur .in the global

.y state S if the state of Pl i§ sik and M is at the head of the buffer of

_input channel ‘C; of P;’ After the occurrence of this ‘event the global

state of the system will change to S which is different from S and is -

»

‘'obtained by changing the state of P;.to 8:1 and excluding M from the
” state of C, Similarly, a write event can be ‘envisaged. Let a state

. ¢ " " transition function “next” specify the change of the global state upon the

., occurrence of an event. For ‘the above example, §° = next(S,ej). A’

- sequence of events Seq: (epey---,) s said to be a .computation of the

'y _ /

¢ ¢
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system:. if the resulting global state:
, . ™

LY

Siy1 = next(S;,¢;) for all i in ‘the range 0<i<r ‘ -
The .sequence Seq represents a 'sqrial schedule of' a2 possible execution on
the system obtained by viewing the ‘event graph as a ‘precedence graph
{ 0 :

(fig.3.1). " - o '

A [ngmber of apﬁlications and control prob?ems | in distributed systems
require the gathering | of global system informa.tion for taking décisions or
epgaﬁir}‘g in further -computation. Howe\;er, as insf.a.nta.néops global -state
ca.nno't}‘be realisticdlly. obtained, a suital;le‘ global state must be” piecg.d
-together using recording;' of local states of processes and ncha.nnels,.
depenfdmg on the applxcgtlon requxrements In order to obtain such global

mforma.tzon, typxcally one or more of the processes are designated as

coordinators. The coordmators acquire global mformatlon and compile it

-

“for decision making. A, two-phase processing results. In the first 'pha.se,

called the probe phase, the distributed processes are coordinated to perform

(

a local state reéording.r Because of the distributed characteristics of the

system, such recbrdings' are not performed simultaneously. In the second

¥ phase, called the compilation phase, the coordinator gathers al] local

recordings ,and composes them to form a global state,
h §

The semantics of  the ‘global state is ﬁ)plication dependent.

Well-known applications »which have attempted to make use of the global

" state concept are listed in-Table 3.1. Based on the problem requirements

L3

and the tightness of goordination in local state recording, the global state

nai\




PRSP S e O RTAERITUR OF LRI
fe e D SR LA e St o

.

¢ . - ,’::',i
X . .
-
. M, Forward edge w.r.t Cut XX!,Cut YY',Cut ZZ',
Mg : Backward-edge w.r.t Cut YY'. .
Cut XX': Instantaneocus cut at t= t,
Cut ‘YY': Stable cut .
Cut 22': Consistent cut "
Cut WW': Synchronized cut .
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Group Application o Global Information
' ’ o » requi?ed ;,
(a) | 1. Task Scheduling [45] , CPU load, 1/0 load
" |, 2. Load Balancing [53] Mean Response times,
3. Query Allocation [9] Mean queue lengths etec.
: Y, ‘Performance monitoring " '
5. Network Status Maintenance [12]
(b) |' 1. Termination detection of ‘ 'Stéte of the individué;
N distributed computation [16] processes and knowledge
- o~. | 2. Deadlock detection [17] " of the type / content of
. 31 Distributeé gérbage messages in transit.
’. collection [31] ' ) ‘
_ ' 4. Discarding Obsolete )
' informatfan in DDB [ 40]
. 5. Updating Simulation - ) o
- Clocks in DES [49]
(e) 1. Rollback BError Recovery [25} Same information as in (b)
2. Dynamic Resource Allocaaipn bqp'requires tighter
3. Distributed debugging [ 20,47] ° coordination than (b)
" (d) 1. Synchronous Checkpointing and - ' State of individual
Rollback Error Recovery { 38| ' érocesses recorded with
2. Checkpointing distributed "all processes mutually
databases [ 18 42) °* ‘synchrgplzed;
1
o Table.3.1.: Well known distributed system control problems
4
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can be classified into four ‘main groups: (a) Statistical global state,

"

(b) Stable global state, (c) Consistent global state and (d) Synchronized

global sgate. _ ' | " T

3.1' Statisti;:;i Global State ‘ g

!

In this class of applications, the processes are probed in order to

capture process status information such as CPU load and I/O load. Here

the processes are often the distributed kernel of the operating system.
Decisions "such as allocation of tasks and queri‘es are based on statistical

information like the job queue length, estimated available CPU processing,

: A -\ : . - .
P time, message deia}g etc. ' The required statistical information can be
- captured by a probe phase which performs’ the recording' of -all proc( *

states within a close proximity in time corresponding to the chosen cut.

The information on the process edges of t;he cut -are.recorded while that

L on channel edges are ignor;ad as it is assumed tl}at'the messages in »&Mﬁuit..
will not signiﬁcantl'y affect tixe statistical values being recorded. Such a

. Statistical global stz;te is exemplified in ﬁg.3.g by the state :of cut XX’

Only process edges intersected by the cut are of _significance here even

S' though some cross édgee might also be intersected. Such a cut which

contains only process edges is known as a process cut.
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Statistical Global State : State of cut XX'
= (State of P, after e,, -

‘State .of P, ar'fter e, > ‘

-

[}

Stable Global State : State of cut &\' .
= (State of P, after 'e,, State of-P, after e,,
: Channel,, = NULL, Channel,, = Mg »

»

'

Figure 3.2: Statistical and Stable Global States
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3.2 Stable Global State . ' '

¥

This class of applications center around stable properties [11]. ?o

)

reveal the implic'it requirements of stable propertie\a, the i“gjlowing formalism

is introduced. 4
5, 7

Definition:
. e A process is in a Stable (Local) State if it will not execute any

¥

further Send-event wunless it receives some specific message

4

(successfui . receive-event).
"o A distributed system is in a Stable global”state if:
(St1): all constituent processes are in stable state (local), .
and (St2): ﬁone of the messages in transit on some chanr:;al will le_a;.d

any process to a non-stable state.

The above definition has an important implication.

Lemma 3.1: A distributed system will continue to-be in a Stable global

state once it has entered one. N /'\
V

Proof: Immediate from the definitian, as each ‘process‘ continues ‘to be in
S ‘ ,

" a stable state and .eventually all channels are flushed.

Q.E.D.

The above notion of; Stable. global state is useful in problems such as

b

termination detection, deadlock ‘detection and garbage collection. It can

actually be strengthened as explained in §3.2.2, to solve similar problems

« [
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such as the removal of obsolete information in replicated databases [{40],

and update of simulation clocks in distributed discrete event simulation.

Definition - - .

’ A Stable cut recording is the recording of local proces.;, state and
channel state corresponding to information conveyed in a stable cut of
the S-T graph. The exact attributes contained in these state
recordings are appli'cat;ion de.pendent. A Stable t.:ut recording ‘is

+

exemplified in fig.3.2 by the state of cut YY’.
f * -
Theorem 3.1
If a distributed system (DS) is in a Stable global state then a

Stable cut récording will reveal it.

y

Proof: Suppose at time t,, DS is in a Stable global state (i.e., the

instantaneous cut at time %, corresponds to a Stable glc‘>bal state) and a
Stable cut recording commences at time t > t,- From lemma 3.1, we
'know i}hat the stable cut recording ';vill include process states-which Imust
be (loc:‘:.liy) stable (Stl1). Therefore, this Stable cut recording fails o

reveal the global stable state property only if some message contained in »}

channel state recording will lead some process to a future non-stable state.

But the same message must have been sent before t, and should also
appear in the instantaneous cut at time t, The latter condition forces
DS to be in a globally non-stable condition at time t,, which is a

contradiction. Thus a stable cut after t, should reveal the global stability.

&
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Q.E.D.

Besides the ability to reveal the existence of global stability, a Stable
cut recording should not erroneously reveal one.when it is not there. To

prove this reet;lt, we first establish the following lemma.

Lemma 3.2: After pﬁrticipating in a Stable cut recording which satisfies .

both (Stl) and (St2), a process will not send q.ﬁy more

messages on a cHannel.

Proof: This 'follows from the fact th;.t a process in stable state can enter
a non-stable one (e_xo' as to send messages) only if it has received a .
message to enable it to make the state transition. Condition (St2) ensures
that no process will ever receive such a message.

Q.E.D.

Theorem 3.2. ’ = ’

If the Stable cut recording completed at time t; contains process
states and channel states that satisfy (Stl) and (St2) respectively, then the

system DS is globally stable (instantaneously) at time t;.

Proof: If the instantaneous global state at time t; is not globally stable

" and violates either (St1) or (St2), it could only be caused by a message

sent by some -process after the Stable cut recording. But this violates

lemm~ 3.2. o %

Q.E.D.



-8.2.1 Applications of Stable global state:

B

It is rather obvious to see how Stable cuts can be applied to solve

. :
the termination detection, garbage collection, and deadlock detection

problems. In particular, in the case of termination detection the process

states are precisely the “active” and the “sleep” states of the process,

while the' channel state will correspond to the numbgr of messages in

transit on the channels. If in a Stable state recording all processes are in

the sleep‘ state and there ar;e no messages in transit, then the t;rmination

condition is satisfied. In the case of garbage coIlectién the process states

. will be the “currexitly referenced objects” in the processes, and the channel
states would be the “transfer of reference” messages in tranmsit. So an

object can be detected to be%ess, if in a St'able global state recording

none of the processes have a reference to this object, and there are no

messages with a reference to this ject in transit. In the case of

deadlock detection the process state is the \\“?unning” and the “blocked”

o

states of the processes, and the channel stat!es are the “Resource .grant”

messages in transit. So if in a recorded state a cyclic dépendency of

blocked processes is detected with no grant messages coming into any of

/ L these blocked processes then a deadlock can be inferred. In summary, the
system is globaliy stable iff the processes are locally stable and the
channels are either empty or do not contain the information needed to

change ‘the state of any process.
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3.2.2 Extension of Stable Global State to determine Global

Minimum
a4

In a number of applications, detection - of global minimum among

»~

. time-varying distributed objects is involved. We will present an abstract
)

formulation of the problem and demonstrate how a stable cut recording

can be used to solve this problem. ' \‘“\

Consider the distributed ‘system (DS) which maintains a set of
d&stributed objects each with a uniqug label (for example time-stamp). A
procesé consumes an object with the smallest label (ri) and consequently
may reproduce one or more objects. with lab;els 1, = r; to be sent to
other processes or added to its ~own list of objects. At some point in
time, a coordinator process conducts a probe phase to decide the minimum
label of all objects in the distributed system. This abstract problem is
appiica.blé to discrete event simulation [49] where, the objects t;,re events
yet to be simulated, and the global minimum correslponds to the maximum
clock advgncement allowed in the Bimulation system. Simil;r adaptation of

this abstract 'problern can be derived to solve the problem of 'discarding

the obsolete information in a replicated distributed database [40].

The stable cut recording .can be extended as explained below to solve
the global minimum detection problem. Let us assume that the global
minimum is decided (compiled) by examining all objects either present in

4 , ,

a local nrocess (recorded in the process state) or present in a channel

(recorded in the channel state).

. ~




. h S . | Q‘_‘,SZ Y T
Theorem 3.3
The global minimum g obtained: . by - rei:ording\ a: stal;.le cut
| satisfies the relationship: ‘g, < g L B
where g = Global minimum associated with the instantaneous
cut at the' time t, when st;ble cu} recording
comz'nences.
& = Global m,mlmum assocxated with_the instantaneous
cut at the tlme ty when stable cut recordmg
' completes.”
Proof:
- Ca§e(1): Suppose gp < & ‘ |- \ .
If g is c'agseq*by"@n object that exists at time t, th.en g =

g ‘this resulting in a contradiction. .On the other hand, if gp is caused

by an object produced in the time. - interval (t,t;), then Iits,

label must be > g,. (“caﬁsality”* of label ).. Thus g, = By

Case(2): Suppose g > & ' ) )
o
This again is a contradiction® as an object used in the

determination of gp either is used also to determine g or is already

consyfned and its label is strictly not greater than those yet to be

P

consumed\ Thus gp < g

a

'Q.ED.
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In summary, a stable cut can be used to detect stable global

properties as well as the “global minimum property in distributed systems.

3.3 Consistent G.lobal State

Following the notation introduced eéxlie'r, we could characterize a

_ recorded global state (S*) * corresponding’ to some cut as Consistent

~ according to the reachability of that state from the initial state (S;).

. _,;” ) . C}
_ Definition: . / .

A recorded global state S* is Consistent if there exists a

s'eﬂquence of -events §eq = (e{,e5,.-¢;) 80 that ‘ .

S* = next (next...next(next (Sgs(egregs-€)-0)-

Al

Before exploring the useful properties of a Consistent, global state, we

J/
R\

A
\

first establish its relationship with a Consistent cut.

Th&rem 34

-

The recorded global state S* corresponding to a Consistent cut
must constitute- a Consistent global state. ) >
Proof:

Part 1: The state associated with a cut which contains a backward edge’

13

is not a Consistent global state.

+ o \ -
+ Consider the ~event graph exemplified in fig.3.3 which represents a.

L4 . .
computation that has occurred during execution. Let XX’ be a cut of

the graph which contains a backward channel edge (p,ey) w.rt. XX

)
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™~ Assume that ‘the state of XX’ recorded is a Consistent global state.

£y

The backward channel edge (e €q) signifies that' e, is a predeceuor v

. C
k]

\ event « of ed . More specxﬁcally, e is a senc\ eyent and ey is a receive

event. If the recorded state associated with the cut is a. Consistent global
> must exist a _sequence of events in the processes of the Worm
< Seq: (el,ez, ek) leadxng the system into the recorded state (deﬁmtlon)

But since e, € Seq, whxch 1mphes that e; ¢ Seq, else causality is

. v
«r

violated. This is a ‘contrddiction.
» ' Part 2: The state associated with a cut containing only forward edges

(from S to T partitions) must be a Consistent global state.

Since the S-pa;ition contains an acy:clic subgraph of events, we could v
_trivially traverse these events in-a list schedule and such a schedule forms
a feasible computation leading the system to the recorded’ state.

QE.D.

Corollary 3.1: The state of the system (processes and'channels) reached
- af:,ter executing the set. of events which constitute: a
,‘ . éonsistent_.preﬁx of some valid computatiod is equivalent to
_ "a consistent globsl state associated witl;’ the corresponding
. consistent cut.
Proof: This follovs directly f;om t;xe ‘definition of a consistent global state’
and observmg that after the execution of ~the preﬁx, the channels will

contain . messages which have Beex{ generated by send events @the preﬁx

3

‘o

3
P
v



but whose matgging receive events are not in th—e;preﬁx. This corresponds
to forward cross edges intersecting ‘thewgonsistent cut. The states attained

- .
- by the processes is equivalent to those recorded for the corresponding

_ 4 B s » .
consistent cut. n .
" Q.E.D.
[ 3
3.3.1 Properties of the recorded Comsistent global state <

-

As explained in 1] the, recorded global state S* may not have

actually occurred - instantaneously in the course of computation. 'Hdwever,
«

if the consistent global state detection algorithm started with the system
in .state S, and terminated (i.e., all processes have recorded their states
.and the states of all incident channels) with the system in state S, then

we' want to prove that the recorded global state 5% is reachable from So»

D

and S, is reachable from S*. - BN

; Theorem 8.5 *

. . o 3.
There. éysts a sequénce of computations (7,,7,) such that:

S 4

m x Ty - L
- SO - > - — S#- BN

Proof: Without loss of generality, assume the .sequence of .events that
lead the system from instantaneous global s .)ate S, to final instantaneous

global state Sy be {ee,.. e) This sequence 'represents a serialized
, .

schedule of events so that e; preceding g in the list implies that the.

N

occurrence of e; is nof later than that of e;-

&
e
PN maﬁ
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.

We wish to show that (e,e,,...e;) could be mapped (1-1 and onto) '

b

into (el',...eg’,eé_,_l,.;.el;). So that S,

(efy..ce’ e’ _,..e”
\l g) » s* (g-hl-‘ n) Sy, and

that (e],...e;) and (eg' Tl’""e‘;) are valid schedules of events in the sense

that causality constraint is satisfied.

x‘“

(a) Existence of (efs..ep):

1

From theorem 3.4, a recorded Consistent global state s* contains

»

process states associated” with a cut containing only forward edges. /The

resulting S partition of the event graph is acyclic and contains a ‘subset

E, of (el,...en).‘ We could generate (el',...eé) by traversing exactly those
events in E, so that e precedes ej’\ in the list only if € can reach ej' in
the event graph or they are mutually unreachable.. This corresponds to

generating a one-processor list schedule of the events in E,. This list,

(efr-eg), clearly leads the s;'stem to S*.

(b) Existence of (e, ;.mme;):

The events in the T-partition of the resulting event graph are acyclic

because of the ~causality constraint. .So similar to (a), a wvalid

.one-processor 'list schedule of these events can be deduced léi\ding the

system from s* to Sg-

Q.E.D.
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qunderlying "the reachability property - elaborated in\éorem 3.5 are

. " oo
two other important properties wuseful in applications. @ They are

Récoverability and Global-invariant preservability. .

\
\,
\

3.3.1.1 Recoverability ) ’
“ f‘".
Definition: | ' . ‘
: o o .
e A distributed system is functional if for every execution of the

’ -~

system startix/lg from the same initial state, the same sequence of
v events and computation occurs in each of the processes.
. In a (errof free functional) distributed system if during

{E:execution after rollback of all processes and channels’ to states

1

. corrgsponding to the cut representing a recorded global state, the

- same sequence of events reoccur in each process as they had

’

occurred before rollback, then the recorded global state is defined

as a recoverable state. r
£ - ¢
|

i
-From the above definitions, it can be observed that a recoverable
. 7

global state is useful in rollback recovery of a fault-tolerant distributed

system [25], a.ssuming' the system to be functional. -

»
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Lemms 3.8 ~ A Consistent global state §* is recoverable in a functional

system.
Proof: The result is ‘trivial'ly inferred from theorem 3.5. Since
] . ‘ 3
So '7141{8* N Ss, the events in 15, are exactly preserved when the

system rolls back to S‘, under 'functional behavior of the system.
»

O \ | o QED.

Theorem 3.6

T

P - A Stable global state is not necesstirily a recoverable state.

.

Proof: Consider the two-process example in fig.3.4. The cut XX’ yields

~

a Stable global state. Let the sjmtem be rolled back to this state i.e.

. 1 S . .

P, rolls back to s; and P, rolls back to s,. During re-execution P, will
) . ‘ .

re-execute e, and e, sending out messages M, and M, again. However,

P, will only re-execute e, and thus will reccive M, (erroneously) while the

-correct matching receive event for eg is not executed in Py. ~

. ‘ . : . ‘ Q‘&?,D.
3.3.1.2 Global Invariant I;re;ervability

The distributed system perforrgs a computation represented by an

event graph. The actual timing of these events is no;’ crucial 'but the
precedence relationship (causality) among matching send and rec::ive events
must be obeyed. We have idterpreted this prdcedence graph by “a serial -
uniprocessor sched;xle of these events so that there are many uniprocessor

\
schedules for a given precedence graph.
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Definition

A global invariant of a distributed system is a prpperty satisfied by
the processes as long as the computation (sequence of egenta) that actually

occurs corresponds to a wvalid uniprocessor schedule representing the giver

precedence graph of events.

Lemma 3.4: A Consistent global state ﬁ* preserves a global invariant,

ie., thé<“g\\lobal invariant holds also in a Consistent global

L4
sta&e‘.” o

¢

Proof: Since a Consistent global state $* is reachable from Sy via C,;

which is a valid uniprocessor schedule (Tht;orem 3.3), s* preserves a global

invariant. : . . -

Q.E.D.

3 ‘ ' Theorem 3.7

A Stable global state ‘does not necessarily preserve a global
invariant.

Proof: Consider the following two-process system with a global invariant

*

Vi + V, = n (a constant). The state diagram of the two processes are

shown in fig.3.5a and the S-T graph in fig.3.5b. In the stable cut

marked YY’, the recorded stable state yields for the global invariant

/\3 ‘ V, + V, + X in transit

{V,(initial) "+ V,(initial)} + 20X, .




Receive X

832 V|

. Pz S4. VZ .= VZ' + X
PR . null
Global Invriant: . ’ ,
V, + V, + Value of X in message in transit if any = n (a constant).
Figure 3.5amState diagram - )
B |
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= violation of global invariant.

Q.E.D.

Global invariants are useful in system diagnosis and fault-tolerant

computing. The above theorems reveal the use of consistent global state

-

1

in. such applications.

3.4 Synchronized Global State

-Applications such as domino-free rollback and recovery [38] and
checkf),ointing in distributed databases [18] require a tight aynchronizati‘}m

of local recording of process states to make the latter m;eaningful for the

applications. In this context the notion of Synchronized global state is

¢ introduced. o , {
Definition™The recorded states of two process;zs, P, and P, are
mutually syn;:hron ed if ‘ ﬁ .
v ' (Cs1): All messages sent by P, to P, prior to the state recording
- of P, have been received by P, b:fore ?2 records its state,
gnd vice versa.
. (Cs2): The recorded state of P, does not depend on any message

sent by ,P, after P; has recorded its state, and vice versa.

A set of recorded states of two or more .processes form a

synchronized global state if they are pair wise mutually synchronized to.

- one another.
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]

Theorem 8.8

The recorded global state corresponding to a synchronized cut
must constitu;.e a Synchr?nized global state\
Proof: The satisfaction of (CS1) by any arbitrary process pair P; and PJ-
implies that there is no forward channel edge cx:ossing the part of the cut
bétween P; and P,  Similarly 'tha.t of (CS2) implies the absence of

backward channel 'edges. Thus the theorem.
. . ' e

. w Q.E.D.

Lemma 3.5:  The recorded global state corresponding to a consistent cut

does not necessarily form a Synchronized global state.

Proof: This follows from the fact that a consistent cut may contain
forward channel edges and thus the recorded global state may violate
N :

(Cs1).

Q.E.D.

T

3.4.1 Applications of Synchronized global state

Synchronized global states have been used. to evolve schemes for
domino-free rollback recovery of. .\distributed gystems [38]. In order to
elimgnate the possibility of domino| rollback, ihe prwﬁs‘ses are synchronized
at some specific predetermined p(/)iﬁts in their ; complita:\t\i\on to perform state
recording. An important side-effect of this scheme is that interprocess

messages are not saved in the global state because of the cause-effect

synchronization. However, the performance of the application may suffer
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because of the freezing required to achieve synchronization as will be

" explored later.

-

Synchronized global state ideally matches the requirements of
checkpointing' in distributed databases. nThe checkpoints of a distribu.ted
database must satisfy the following consistency requirements:

(a) - If, thé effect of a transaction is included in the checkpoint
recorded in one site, then the effect of this trans;ct\ion (if any)
must be included in the states recorded in all other sites.

(b) | If a traqsa.ction T; depends on another transaction T; then if
the ;affect of transaction T, is included in a recorded checkpoint

. then_ the effect of T, should also be included. ”

“

. It is obvious that the above conditions are reducible to (CS1) and

(CSZ) ' ,“ )

3.5 Relationship between the Global states ’

To summarize the results presented in this - section the following

*

corollary is stated.

]
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Theorem 38.9: A recorded globa.l‘ state satisfies the following relation:
Synchronized global state = Consistent global étate, T
Consistent global state = Stable global state, and

Stable global state = Statistical global state.

k]
-

But the relation is not commutative.
" Proof: It follows from Theorems 3.1,3.2,3.4,3.6,3.7 and 3.8

o

) Q.E.D.

We are not aware of m; work which classifies the useful

global - states of a distributed system. Various -problems requiring global
information have been solved independently by researchers and their
so'lutions have been tailored to. specfﬁc problems. Seminal work in
formalizing Consistent global state (as we define it) has been done'by
Chandy and Lamport [llj even though the notions of consistency and

stability are not explicitly distinguished by them. '

’

3.6 Summary

Efficient solutions to a number of problemé in distributed systems

require gathering state information of the . whole system. ‘Based on the
requirements’ of such applications we have identified four types of global

j states, namely, Statistical global state, Stable global state, Consistent global
~ | 'sfga.te and Synchronized giobal state. These states have.been related to

b , A
¥ four distinct types of cuts in the event graph model of the distributed
X ‘

E;\ _ computation.
,}. . - * '
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Classification - of global states has enabled us to focus on generic

problems in each category and examine the capabilities of their solutions.
Statistical global sta.tgs_ and Synchronized global states require only states
of processes to be gathered whé;ea's Stable global states and Consistent
global states additionally rekquire the knowledge' of messages in transit.
. Essential difference between Stable global state and Consistent global state
is in the degree of coordination required between the distributed processes
in order to account for the messages in trans?t. In recording a Statistical
global state the information about messages in transit is not essential.
Howev;er, for a Synchronize;c.i global state né messages must be in transit
during the state recording phase. Interesting properties of Stable global
states like stable property and global minimum detection have been
~derived. This provides a common basis for solving problems like
termination detection, deadlock detection, garbage collection, and updating
>
simulation clocks fn discrete event simulation. Consistent global states
possess properties like 'rea.chability, recoverability and global invariant
preservability. Solutions to problems such as rollback recovery make use
of Consistent global states. The Statistical global state is used in
applications such as task scheduling and load balancing. The Synchronized
global state has been used in rollback error recovery, and checkpointing of
distributed databases. We have also shown that Synchronized global states
=> Consistent global st.ates. = Stable global states =>' Statistical global

states (but not vice versa).
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We have assumed the existence of an initjator lpx'oce-sfs“éé~ which start .

‘the global . state recording, and compiler processes which compoSe the.

global picture. There are other models in which - explicit initiator or

g compiler  processes may not exist- [6,12,31,32].- -However, ' the
" characterization of globg\l states. is “equally applicable to these models also. .
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Chapter 4

Algorithms for detecting 'gldbal states

4

Cha,nllj and Lamport [11] have s:ggested‘ a aim'pl‘e~algorithm (CLA)
for det'ectin:g‘ the Consistent global state cp;'reét!y. Their, algorithm is
however inefficient ,since it requiresﬂ a test essage to " be trt_msmittec} on
every channel o‘f‘the system. In addition they require the co.mmunication
subsystem used for message trmsmissioq to be lossless and FIFO.
Spgzialetti and Kearris later integrated the Ci,A algorithm with a state
"compilation algorithm [43].  Their compilatic;n pha.sé efﬁci?ntly dissex-nin'atee

the information obtained in-the probe phase.

£y

a

In this' chapter we will first consider a practical model of the

communication subsystem which supports Non-FIFO .channels. The
. ) S .

_problem of detecting a Consistent global state. when such channels are
used will be discussed. A new algorithm for detecting a Cansistent global
state is vtbén suggested. The algorithm is later simplified to detect Stable

global states and Statistical global states.

-

4.1 Varlations of the Working Env@rqnmexit and tl_le‘l\y

x S 7
Recently Chin and Hwang [14] reported designs of packet switched »

multi-stage interconnection structures wHich possess mul'tiple paths between
, L

sources and destinations. and yield significant reduction in buffer-wait

delays. However, unordered &elivery of messages might occur "in“ this case -

L Y
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}

Cd automatic resequencing of the received messages in order to satisfy the

IFO’ property, when the application does not require FIFO ordering, may

[n]

offset the performance gain. In <general, non-FIFO channels allow simpléf
R

and more, efficient implementation of the communication subsystem [41,44).

In a related study Kumar [26] reported an increase in messagrdelay by

€

about a factor of three due to resequencing in communication networks.

Moreover non-FIFO delivery characteristic could be encountered even in -a

FIFO channel in the‘case of loss of a message which induces a subsequent
retransmission of jixst the erroneous message. There are important
applications of DCS such as dist}-ibuted discrete event éimulation, a.nd‘
process control involving periodic sensor sampling which do not require the .
communication chanﬁelg to be FIFO [549]. So non-FIFO communication

‘ “I
is a grea.lJ;ic enviranment for DCS. ) ‘ -

- Local area,,networks’ and " close proximity networks are sometimes

J
-~

called “thick-wire” networks because of their hig'}-l bandwidth, low

propagation time ‘and extremely low' error rates. Slatzer [41), Linton[30],
. . - ,

Nelson [33] and Popek [34) strongly argue. that it is impossible to achieve -
, .

totally reliable communication between endpoints of thick-wire networks

? .

even on a perfect communication medium without significant support at

, \ : J aqe 3
/this argument they propose to utilize high

the endpoints. In view of
’

perfoi'ma.nce communication subsystems wyi::h do not guarantee -100%
- . 4

-

delivery and add appropriate recovery mechanism only' at the endpbints.
%

This is added mostly in the appljgation layer which can take intelligent
. \
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-

decisions in order to achieve the desired performance. The Locus OS [34],
CMU’s RPC [33], Uniform datagram service [30], User datagram

protocol [35] have all been designed baged . on these arguments and have

3

b . :
shown significant performance improvements. Along the same vein AT&T,

has ‘proposed a new packet switching protocol called Fast packet switching

which is a “lean best ‘effort” protocol and it expects error recovery
procedures at the end-points (51]. All these imply that software layers on

top of the communication layer should be capable of handling lossy

~

channels.

Distributed interconnection architectures such as Intel’s Cosmic Cube,
. % I3

and ISDN communication architectures have separate channels for

“out-of-band” signalling. Some standard LAN interconniections,* namely’

Token bus, Token ring and Ethernets, are all gupporting( ‘prioritized
' . . .
delivery of messages which lead to non-FIFO message delivery. There is

much recent interest .in developing algorithms which exploit the strengths
of the broadcast medium. Dechter and Kleinrock (15|, Levitan (28] have
proposed a number of such algorithms and: this is being given Mer

impetus by currént work in group communication and broadcasting [13,19).

In our opinion important: control algorithms like the global state

t

detection algorithn; should inipose few support requirements on the lower
layers &nd must be able to work using the t&pe of communication support

) . '
utilized by the application. Such algorithms should also utilize the

facilities offered by the communication subsystem to advantage.

AR RIS
£,

A e
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The CLA algorithm works only in an environment where the channels
are neither non-FIFO nor lossy. It also cannot advantageously utilize
either the “out-of-band™ signalling or the multicast facilities offered by

interconnection networks. A new algorithm (VLR) which functions

correctly even in the above environment is presented.

4.2 Conceptual basis for the new Consistent global state

detection algorithm

" The VLR algorithm is presented through an 'e;cz;mple. A brief review
of teﬁe CLAV algorithm on the same example is given in Appendix A.
Considef the graph of fig.4.1 where the nodes‘ represent rail stations with
traffic on the tracks only in the indic:;ted direction.i At any given time

some wagons will be present in each of the stations and some more will

be in transit. Each station is actively engaged in loading wagons and
sending them on the: output track (if it so dedres), or unloading wagons

received on its input tracks. Lbading and sending, as well as receiving

H

-and unloading, are treatéd as atomic operations. -

If the channels are required to be FIFO in the exﬁmpcle overtaking of

[

wagons must be prohibited. The.variations in the environment (which are
\ . '
not applicable for the CLA) namely allowing the channels to Dbe

*

Non-FIFO, lossy, support out-of-band signalling and multicasting can be

interpreted in the context of this example "as overtaking of wagons,

derailment of ‘wagons, existence of telephone circuits connecting stations,
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. ~ Figure U.1: A distributed system '
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and existence of satellite connections linking the stations respec‘tively.

Suppose station “A< wishes to know the distribution of wagons

(glpba.l state) in the systen‘{. How should “A” proceed? For convenience,

-~

assume all wagons are black. Here, the state of a track (channel) is

defined as the number of black wagons in transit and the state of a

" station (process) is the number of ‘black wagons in the stations. Also

assume that special ' “Red” wagons are available and these are used for

control purposes. The redwagons correspond to marker messages that are

] -
reffered later in the discussion.

A
The central idea of our algorithm (VLR) is based on the following

observation. Consistent globa.l. state detection requires coordination of state -

) 7 i .
recording so that if an “effect” is accounted in the global state then the

corresponding “cause” should also be included. In other words, a cut of

the event graph should not contain backward edges: In order to
determine the number of application messages (forward edges crossing the
cut) in transit we assign the responsibility of counting the application
messages sent out to the sender, and the responsibility of counting the

4 - -
application messages received to the receiver, unlike in the case of the

v
CLA algorithm where counting is done only at the receiver. The

algorithm is explained with the same example of fig.4.1. - We will interpret

a channel state as the number of messages in transit. ) .

X
%~
-

I
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In each station observers are permanently assTgned to the input and
output tracks. In the initial state the wagons are all in the stations, the
t;‘acks are all empty and the counters of the observers are set to zero.
The outpuf (input) counters are incremented every time a black wagon is
sent out (received) on the corresponding output (input) track. Assume
that station “A* will initiate the global state recording. FEach initiator
assigns an unique ordinal number to the suc'cessiv,e global state recordinés
it initiates. For this purpose it maintains a n;onotonic counter called

MKNO. MKNO is initialized to zero when the application is commenced

-

- and is incremented every time a new global state recording is started by

this initiator. Initiators also maintain a vector (TRANSIT) which contains
the number of black wagons in transit on each of the tracks as recorded
in its most recent global state recording. TRANSIT like -MKNO is

initialized to a zero value when the application is commenced. , The

essence of the VLR algorithm can be described as follows:

Step 1: Station “A” records the number of black wagons currently in

the station and .also the values of all .of its observers (input and

__ output). These observer counters are then reset. Station “A”

immediately _informs each of the stations “B” and “C” about the new
recording either t;y sending a “red wagon” or by “telephone”. All
“black wagons” leaving station “A” subsequently will carry a “red
flag” labelled with the tuple (A,MKNO). This “red flag” is a

redundancy crucial to take care of non-FIFO and lossy environments.
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Step 2: Upon receiving the tuple (A,MKNO) station “B® (or “C") (on a
) ‘red wagon or a hlack wagon) will compare the received MKNO with
thatr of the last recording initiated by station “A™ and if the former
value is greater, then this station will execute precisely the same
operations as outlined in step 1, except that “red wagons” will

neither be sent to station “A” (the initiator) nor to the sender from

whom this station has received the tuple.

Ste;; 3:- After a station has recorded its state it will forward this
information (state, observer values) tagged with the appropriate
MKNO to the initiator station “A”. Station “A” will consolidate the
received state recordings and create the global picture. The number
of wagons on each track (stafe of the channel) is determined by

. evaluating {Previously recorded TRANSIT of track + new value of

observer at Sender - new value of observer at Receiver}. This value

L)

is used to update the TRANSIT vector.
The global stae recording algorithm terminates when the application

terminates.

4.2.1 Discussion of (tﬁe VLR algorithm

From the above description we can deduce that the VLR algorithm
records a Consistent global state i.e. one in which, if an “effect” is .
included then the corresponding “cause” is also included, even with

non-FIFO and lossy channels. This has been accomplished by the
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'
addition of the “red flag” (marker field). If thé cox‘nmunicati;)n subsystem
“assures” reliable’ end-point  connections (FIFO/ non-FIFO) . then a
significant reduction in the number of marker messages can be :obtained.
A minimum spaﬁniné tree with the initiator as the root can be

" determined and marker messages sent only on the edges of the tree.

Further reduction of marker trdffic can be obtained in communication
systems which support broadcasting or multicasting. The n processes can

be split into k groups with a control process designated for each group.

This could correspond to a situation wherein n processes are assigned over

¥

k processors. Assuming equal distributions we have [n/k| processes per

group. We further assume that every control process can communicate

8 -

with all other control processes through a single multicast channel and
Marker messages are propagated indepéndently in each grdup. No process
other than the control process’ will propagate intergroup marker messages.

J

Using this arrangement an initiator in one of the groups sends markers in
its group. This marker on reaching the (':ontrol process of the group will
be multicast to all other control processes who in turn will propagate the
marker in their own groups. Thus the multicasting features can be

effectively’ used in order to reduce the overheads by sending fewer number
6 ,

of messages.

In order to' support multiple initiators in the system, VLR associates
a separate set of Input/Output counters with each initiator. Marker

messages and marker fields will contain a corresponding vector of tuples,
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.one tuple for each initiator so we could envisage the VLR as a re-entrant

program with separate data base support for each initiator. Thus the
state recordings initiated concurrently by different initiators do not interfere

with each other in any way.

Suppose global state recordings are triggered by external conditions.
Then, possibly concurrent recordings may be initiated by the same
initiator. This situation might occur in applications w~h‘ere a trace of the
systgm state is generated for debugging, error recovery or offline analysis.
To . accommodate rather than inhibit such situations, the NVLR algorithm
should be extended. Suppose an initiator P; has triggered two global
state‘ recordings MKNO, and MKNO, concurrently (i.e. one started before
the termination of the other), then some process P, in the system might
receive the later recording message (i.e. one with ordinal no. = MKNO,)
ahead of the first due to the non-FIFO nature of the communication
charinels. Then the process P, will record its state whose information is
used for (P,MKNO,) and (P;,MKNO,). The receipt of (P;,MKNO,) later
on will simply be skipped as if it was already received. In fact, in
general the recorded state will be used as the response for.both MKNO,

m MKNO, to the initiator. The VLR algorithm with this modification

will henceforth be referred to as the Consistent VLR algorithm.
A ]
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3

4.2.2 Global State Kernel: An Unde;'lying Issue

The relationship between an application/ system/( process, the global
state detection process(es) and the communication layer may not be
apparent at first sigh‘t. We adopt the following scheme for presentation,

-

(as well as for our implementation in a DCS testbed). For every process

a global state kernel (GSK) is attached as a layer between the application

and\| the communication subsystem as shown in fig.4.2a. The GSK
contains the input and output counters. Approprfate marker messages 3Ia.
generatt;d by the GSK layer after recording the state of the process. All
application messa.ge:s being sent out are intercepted by the GSK layer.
The GSK layer is responsible for incrementing the api.propriate output

counters and appending the MKNO vector to the application message

"before forwarding it to the communication subsystem. On receiving

a.pplicatipn‘ meésages from the communication subsystem, the GSK extracts
the MKNO vector, incremgnts the appropriate inpu§ counter, performs
required state recording :and marker generation functions before forwarding
a message to the application layer. However, on récgiving a marker
message only the required state recording qnd. marker generation functions

are performed.

\
Al

Compilation of the global state is done at the GSK kernel of the
initiator process. The tasks of local state recording and global state

compilation are given in fig.4.2b in the form of pseudo codes.

-
el
5

\

. \
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Legend:

.

GSK: Global State Kernel.
AM : Application Message . ‘
CM : Marker Message ’

| MAM: Application Mé~ssage ‘wi'th Marker vector f

-
’

 Figure 4.2a: Global State Kernel .
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Nomenclature for the VLR algorithm

Applicable to all processes .

I,y ¢ Counter on input channel,; belonging to the k*" initiator

O4ik ¢ Counter on output channelj; belonging to the k*" initiator

MKNO,: Ordinal number of the latest state recording initiated by an
Initiator with Initiator Id.numbér = i, ‘

Every State recording is tagged with the tuple d,Jj,F,L> where,
d: Initiators's 1d., j : State recording of process P;
F,L : First & Last initiations with which this recording is associated.

@

. Applicable to Initiator processes )
For every new initiation a frame with the following format is opened

W | PFC | CFC PRSTAT TRANSIT -

‘INN : Ordinal number of initiation

PFC : Status of Previous frame; Initially set to CFCINN-!

CFC : Status of Current frame; Initially set to O.

PRSTAT;: Status of process P;; Initially set to Null. .
TRANSIT, y: Number of messages in transit on channel, y; Initially set to 0.

Significant values for PFC and CFC fields ,
AI}RECRX : Indicates that for this frame, recorded states from all
processes have been “received, and TRANSIT contains
(No.MsgsSent-No.MsgsRx) for each channel, relative. to the previous

frame. . )
COMPLETE : Indicates that for this frame, ~recorded states from all
_processes have been received, and TRANSIT contains exact number of

- —

messages in transit on the channels,

INITIAL STATE
NEVLE In all processes P, */
' For all 1,),k set I,y := 0; Oy, := O; MKNO, := O; ‘
- Figure 4.2b : Pseudo Code for ‘State detection and Compilation (contd.)

\ 1]
i ! . .
o N L N -

Y

” a3 -
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State Recording code for P,
{ ’
If process P, is Initiating Global state detection then
{ /* Let d = Initiator Id.number of P, */
MKNO, := MKNOy + 1; Open and Initialize frame MKNO,;
Save and Reset I, .y, 0;;4 for all P,, P, € (Neiggbours of P,); o
Save State of P;; Tag saved values with Idg.<d, ?bmod,uxnod ;
Send Marker messages with marker field set to' MKNO vector on all output
channels of P;; ] ) '
If Marker or Application Message is réceived by 'P1 then
/% Let the message have come from P, */ » .
{ Extract marker field RMKNOQ from me‘sssage;
TEST := false;
For m = 1 to Number of Initiators do
{ If MKNO, ¢ RMKNQ, then .
{ save and Reset Iy, Oy for all P, P, € (Neighbours of P,);
TEST := true; Save State of P;; . ' - ) . '
Tag saved values with Id: <m,i,MKNO,,RMKNO,>
MKNO,, := RMKNO,;
Send saved value to Initiator with Id‘.‘number =m }}
If TEST then | | o
{ Send Piar'ker messages with marker field set NO vector.on all output
‘ channels of P, except to the Initiator ﬂ; 11} )

State Compilation code in Initiator with Initiator Id.number = d
/* Invoked on'rec‘ipt'of a state recording message. Let the tag of the
received message be <d, j,F,L> */ - © | !
. If PRSTAT§ # NULL then Exit; /* Duplicate %/
For all Qutput channels of Py do TRANSITH, := TRANSIT, + Reéeiyed 6j,d;
For all Input channels of P, do TRANSIT;; := TRANSIT{; - Received I,;4;
For k = F to L do { PRSTAT) := Received State of P,; Update CFC* ; }
For all frames k with PFC* = COMPLETE and CFC* = ALLRECRX do
{ set CFc*, PFC**' to COMPLETE; ‘

p  For all channels,; do TRANSIT{; := TRANSITY; + TRANSIT}] ,}

‘¢

’ Figure 4.2b : Pseudo Code for State detection and Compilation
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4.3 Correctness of the algorithms

We will prove the correctness of the Consxstent VLR algonthm
7

Incidentally, we show in Appendlx K that the CLA algomthm records 2 -
Consistent global state In the followmg, a message is said“to be in .

B transit if it had been sent out before t}p sedder recorded its state but

L4

was ?\yet received by the time the receiver recorded its state ' \
N .

Correctness of the Cbnsistent VLR algorithm v -7
. “ |

In the case of ’VLR, the communication medium is extended to ke
" non-FIFO. This is ‘modelled as a communication system which possossesh
nondeterniinistfc délivery ordering . properties. An ;vent éraph for a
dlstnbuted .computation that has. occurred in this environment\is: shown in
- .

o fig4 3. Noh-FIFO behavior is characterized by forwa,rd edges that

. s ‘ ! 4
cross-over other edges. Lostr messages and out-of-band signalling (priority

i - &
messages) can be treated as special cases 6f non-FIFO' delivery. A lost .
O Y .
message is one which is overtaken by all later messages. A priority
N . message overta.kes prevxous) messa;es .gent by a process to the same ' -
- L /
_» . receiver. +The Consistent VLR algonthm has been designed for this
- communication medel. The correctness proofs for the Consistent VLR
SPEE ; o p R ' '
. algorithm are given below. ! S - _ '
. : . . \ \ /\}/) \ -—'
i @ K - ’ ': ‘ !
€ . ° *
> 1 . ,
@ - ° el .\ .t
by ; ’ \
* / ’ " " : ! -
‘ ¢ ' - ! \
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Theorem 4.1
The Consistent VLR algorithm ‘always derives a. global state o

associated with a cut without b?,ckwax;d edges‘. ' \
Proof: First we ‘infer, from? thel ?fogram ;code (fig.4.2b) and pgrevious
description, that -.state recordigng initi'aged by distinct" processes do not ‘.
interfere with one another. ‘This is_ apparent once we fgalize the
Consistent VLR ‘code employs distinct ’,datag;.sie (::o:nter's and marker flags) ‘
for d;;tinct initiators. ‘So we can pf:ceed in c;ur proof as-if we only have

a single initiator to consider.
r * 0

t

i

Case (i): There is only one active recording invoked by the initiator.

~
. . . -
1

. 1 . ‘ <
Assume the contrary, and (e,ey) an edge from process P, to process

P, be a backward edge recorded in the cut. So the recorded state by

Consistent”VLR ’ncludes some local state s, for P, and sé for P, such

that s; precedes e, and s, succeeds e;. Since e_ is a-post-récording event,

3 Y

the 'message sent by e, carries a marker-flag corresponding to this initiator

so that when it is received at e; by Py, if P21 ‘has not already recorded
L]
its state, P, will be forced to do so before accepting the actual message.
. ) P ‘
T\hgs ‘ed must be a post-recording. event in P, (i.e. s, precedes eq) which

-
a

h ]

Case (ii): More thamyone active recording invoked by the same initiator:



Each invocation is identified by (P;r) where " P is the initiating

process and r the ordmal number of the m!ocatxon Sﬁ\ce th& program
code a.nd database are shared when the same P, is mvolved we 1eed to
examine this case. In particular, ?onsider a process P receivifig (P;,r)

while the last marker message conthining P, received by P, is (P;,u) and

u < r-1. So the recotdings at P, for invocations u+1,..r-1 and r, are all
now collapsed to the same state (of Pk' and its channels), according to “the

program code. We .need to prove that this recorded state satisfies the

. ‘ ¢

theorem. . -
. v

We  leave ' the proof for the  correct interpretation (compilation) ,of
channel state to lemma 4.1, as our task here is to prove the resulting
state recording does not correspond to a cut containing a backward edge .

(e.,eq)- This is concluded by observing:

o

(1) Based on the arguments of case (i) it can be concluded that cut for

inwscation r does not have any backward edges. EN
(2) {The pre—recordlng events for (P,u+1)} C {that for (P;,u+2)} ..
C {that for (P‘,r)} . |
(3) If collapsing the recording for invocation u+1,..r to the same state
induced by invoca.‘tion r leads to a cut for invocation u-l:i
(u+1 < ut+i < 1) Ocontaining a ba.ckvg'ard edge, then the same edge

will be contained in the cut for invocation r -(as illustrated in the

fig.4.4) which is a contradiction.

. ) QED.
" s“



b

[ Y

.
-\ TR
Al

Py = ' — time .
. s . ' C
. . ' ' a ' T [ ’ ' 1 ’

- State recording for initiations u+) to, r. of P,

¢/ * . ‘v
. 1!:: L
)
- Figure 4.4: Collapsed state recording <P,,u+1> to <Py,r>
\ . . . Coe - -
, ) ' ' . .. . b . - I ‘.‘ '2.‘
f . ‘ f'l‘ .t' N 13
R , ]
¥ ‘. . . : _ s
. i - ‘°‘ N
’ C t ' .¥




F:‘r" M
e - -
S e
- .

Lemma "4.1: The l?;{l’sta.te information can be successfully compiled at

an initiator so that the chq.nnel state for an invocation 0

. would indicate the number of messages supposedly in

[N

transit, i.e., sent by a sender before its recording but not -

yet received by the receiver before the latter records its

state.

Proof: The number of messages in transit on a channel from P; to,Pj
corresponds . to the number of forward edges in the cut (associated wi{h
the recorded state) . whose send nodes are in P; and receive nodes are in
Pj- , ts

We notice from the pfogram code for each initiator and each channel,

.TRANSIT; is- maintained to yteld the number of messages in transit on

cha.nnelij for the qth recording. This is to be verified. Accordingly,
TRANSIT?j is. updated successively for increasing yalues of q as
. -1
TRANSIT; = TRANSIT. + O - I
ij ij ij .,
TRANSIT;, = 0
where
O.. =  recorded nuﬁber of messages sent out by P; between ~
the (q-l)th and the qth recordiné.‘

= recorded number of messages reqeived4 by Pj' between

. .the (q-l)th and the qth recording. . ~ "
. o ,



Notice that if P; or P; has a collapsed recorded state, for (P_,q) to

t

(P,,u) where u > g, recorded when (P,,u) was received ahead of (P,q)

k k
then Oij or Iij is set to zero for k = q+1 to u. Solving the recurrence,
3 1
. y
TRANSIT® = S0 - S/
j = 204- X
) ‘ . k=0 k=0

= number of messagés yet in transitton the channel.
[ J

Q.E.D.
-’ -
4.4 Extensions of the Consistent VLR algorithm

4.4.1 Algorithm for, detecting & Stable global state (Stable VLR)

The Consistent VLR algBrithm‘caI} be simplified in order to detect a
Stable glébal state asguminé the channels are reliable. The marker ﬂlag
field (Rgd flag) is eliminated from the messages. In addition marker
m;ssages (red wagor‘lls)‘. are sent only on the edges in a preselected

minimum spanning tree of the process graph. When these modiﬁcaqioné

are incorporated the Consistent VLR algorithm will be called 4

Stable VLR algorithm.

A noticeable differente in the texecqtions of xConsiste.nt VLR and
Stable VLR is that some entries in the transit vector might become
negative. If an entry Trzinsit?j is -X then X "messages‘ were senf to Pj
after P; has recorded‘ its state for the qth time and were received by Pj
before its state was recorded for the qthl time. So there are X backward

edges intersecting the cut. As before a positive value for Transit entry

S, . Co e

"

r

\

]



shows the niumber of messages in transit on the corresponding” channel.

<

Y

In a non-FIFO communication environment the simple Stable State

—

VLR algorithm could fail to record the Stable state correctly. As
illustrated in fig.4.5, a post recording message received ahead of some

pre-recording- message will result in a wrong count of the number of

'messages’ in transit on the channels. In order to avoid such an effect the

~pre—recor’ding inessagps’ have to be distinguished from the post recording

r

messages. ‘Separate counts will have to be maintained for ‘the pre and

, " Q

post recording messages. . In case'an initiator is allowed to concurrently
; <
initiate a number of iterations, then the post recording mesaages ,will have

to be differentiated based on their iteration number, and _counted

-

separately.. In general an infinite get of counters might ‘be required.
. ) ~ ’

7]
1

-When the overhead due to large set of counters is quite high, it does not

seem to be advantageous to use the Stable State detection algorithm, as

the Consistent State algorithm might then be relafively simpler. : 5

A Ca :
-

’ However, it should be noted that Stable State VLR has its own
areas of applications. Problems like termination detection need to know

only whether there are lflessages in transit and not exactly how many are

"in transit. WA‘\so initiators in this case will not initiate multiple redordings

cosncurren.tlyl In . such situatiods “the Stable State algorithm - with

'S

mﬁ;djﬁcation to detect post recording messages would suffice. s
‘ N -

N

h

R



prvary
v

L
Lt

C’T ] "Fj‘-
FRAN

ETTOr o
S S L ]
o L R

o

3 . N .
- : . -
e
4
¢ &
" . \ A - “%
i
" ;
. o .
' -
AL -, N
5 \
]
i
. .
.-
v R
N L3

. 9 Py
A
. a2 ’ »v
] P
hd t=0 .
. v

» . . :

State recorded = €84,85,C,,20,Cp, 20>

P, also records that a post rééording message has been received.

. Y . . .
0 : o, -

Pegure 4.5: Stable state detection in a Non-FIFO. environment’ Cow

) " e ; -

&
B v
K
t . N
. f
. o
‘
B Ay v ) M
2 » ' ‘ . » ¥
. N * ' )
, :
' [N - K
s s
. N , 1 ] . ) A}
' B v L s
N '
i 3] - . K
v M N b
. A .
. . ) ¢ \‘,\-t\_ - ,"‘l'
. . '
. ' - . - Yoot et Vot L,
s > v o o H
. N KN PN i s



PR ~-..._,(/’; 72
.

An interesting appiic;i;ion of Stable States is in Distributed discréte
. event simulation. For this. application the Stable state VLR should be

~

modified in order to detect the global minimum. The basis and details of

©

this modification are given in Chapter 5.

°

4.4.2 Algorithm for detecting a Statistical - global state

(Statistical VLR) ., '

In a‘ Statistical global state wé are i;ltere;sted in information available
at the processes like ciueue length, spax(' CPU cycles etc. | Hence the state
of t}le processes are only of interesthand there is no ‘need to keep track of
thg messages in transit. In view of this the Stable VLR can be modified
by discarding the input and output observers to realize an algorithm for

(2

, detecting the Statistical global state. . ‘ \é
s i/

o

4.5 Algorithm for Détecting Synchronized Global State’

It is difficult to obtain a safe (deadlock free) and correct algorithm
to detect . a Synchronized global state without placing some additional

restrictions on the interaction between state recording and the subsequent

continuation of a process.. The example in fig.4.6 illustrates the reasoning

involved. ' i %

¥ v
~ ~

From the example, it is observable that if the interprocess- .’
\

Pl

K communication is totally unconstrained then it is impossible to obtain a

Synchronized cut ‘bounded by the local states marked by A;, B and C;

; . \ | Specifically, some forward or backward channel edges must be included,‘-




. ' . 4 CL
- ’ ~ - . -
. . N e 8 . - ) o
R 1 ' ' N '
. ‘
, L B . ) - ! B
v - .
- 1
[ . [}
. - N .
. . - M '
Al 1 ' .
- L3 . . ,
> . A
- . K
’ - . .
N > ) »
Ay .Bf" ' . . o . ‘
Al
) 4
o )
A -
T ‘\ G\ '
* 3 ) )
R . . . . R ’Es ' ‘ . ] v
»- \ ’ :
L » T - . —> time .
) . . \ - ’ ' . i . . i .
b 3 ' : . .
C o . . .
B ' M . + N *
" v ' - . '
o Figure 4.6: A distributed computation with no. Synchronized cut : SO .
50 o ‘¢ . . e ) RN ‘
«" . N > ‘ . * . M . - L ‘ ¥
; , o . ' | . . . / . '*V
S i , . ) B . . ¢ . .
) * ’ i 4 ' ) .
, n& ) ' - .
. . : ' C T . ] . . . . Lt . ’ .
. b R . . ! i ,
v, o . ' v C . e
. * £ T . L. ' ‘' . ' .
. ' ./' ' . i . ' ”‘ ’ ’ N . ' ‘s '_'”‘ .
« ‘-‘, 7 . " ~‘ . . i t g N o : . L Y ) . ."_‘
. Sy S .. S . o .o LN NN
ST R ' e, L “ P v ‘ v s \
g' . : R \ , IS ) . i RN , o i R . - 1‘ '.. L AT, . .
x‘ '- . ! ; AR ! ' N v ! ¢ ' Yoo t » ! : N N t Al ., ‘ki v
. R B . "o o ' ° : - "




A

74

until eventually no further interprocess communications is pending or will

arise. ‘We do not propose any new algorithm for detecting Synchronized

global states. Instead, a brief review of some existing techniqueé follows.

The structured Conversation scheme [22,38] enforces very strict control

LAEEY

h . L] .
on interprocess’ communication. Interprocess communication is segmented

into what is known as “conversations”. All partners who participate in a

conversation are known in advance and must all concur to start the:

»
conversation. = A process cannot be a member of two different

conversations at the same time. All partners of a conversation leave it
together. No process can join a conversation that is already in progress.
A simple algorithm for obtaining a Synchronized global state in this model

is to freeze the processes before they enter a new conversation, but allow

4

‘conversations. currently in progress to complete before freezing the.

participating processes. A process which is not part of any conversation
can be frozen at any time. In due course all processes will freeze and
the state of the processes can'be saved in order to capture a synchronized

global state. After state recording, the processes can be synchronously

»

. Tesumed.

-
\

The transactioh model of dxstnbuted processmg provides- the necessary
- 9
framework in which the whole distributed system can be brought to an

“idle state in order to captiire ‘the Synchromzed global , state. A probe

-

phase could inform all the processes that a Synchronized state needs.to 'be

" captured. When a process réceives this directive it stops accepting new

-

Y

At
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. * " {ransactions (sixbtl}ansa.ctions), but completes all its ongoing transactions.
/ When a subtra.ma.}:tion is not accepted, automatically the transaction gets

aborted. I this manner the system‘will come to an idle state as soon as
each process completes its current transactions. At this poiat the
Synchronized state can be captured. However, Fischer [18] has suggested
a x}on-intrusive scheme for capturing a Synchronized global state (he calls
it a Consistent global state) in the transactio;x model. In his schen.1?»\
inst—ead of freezing the processc;s h\g allows them to ‘process ne;iv
transa/cti-ons by creating temporary copies of the database. These

temporary copies are integrated to the master only after a synchronized

global state is recorded. Son [42] has adapted this scheme for

> checkpoix‘ltinga distributed databases. ‘The details are beyond the scope of
this thesis. 4 °
4.6"4:forménce of the global state detection algorithms : ’

Message complexity ‘and Recording delay are the important
performance xpetrics “of global st:a."t:e detection algorithms. .On analysis of
t};e VLR -algorithms it has been found\ that for the case of designz;.ted
.ini,tia.tors and coméilefs,‘ the ‘Statistical VLR,.~ thé .Stable VLR and t}'le‘
Cpnsistent VLR hav;a ‘similar -;>erf01;mance characteristics. ~Hence in the
following only the performance xcha.racteristic.sb of . Ehe Cpnsistent‘ VLﬁ
) . algorithm is presented under different communication environments. 4 Also,' A

the perfcrmance of the Consistent VLR algorithm is contrasted with that

of the CLA algorithm.

~
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.4.6.1 Message Complexity of the. Probe phase of- Conéistent

e VLR -

(a) Reliable channels point to point communications

As outlined before, the marker messages will be sent only on edgés

belonging to a spanning tree rooted at the initjator. FEach application
message carries a marker (flag). Thus for each initiation, ‘the number of

marker messages in a system with n processes and L edges will be’ equal

-

to (n-1) in Consistent VLR as compared to L in CLA. So

Consistent VLR has an improvemeént factor of O(n) if L = 0(112).
-~ J -~ \
(b) Reliable channels with multicast support '

. . .
Assume that the n p}ocesseg are split into k groups and multicast

support is available for intergroup communication as described beforg. In
this general case with one multicast marker message the control processes

of all the groups will receive the required marker information.

'Subsequently, ([n/k] -1) unicast ' marker messages will have to be

propagated within each of the k groups in order to reach all the

prpces;es. So the overhead will be (([n/k] -1)*k) unicast. marker messages
along with éne multicast message. Depending on the .;'/k ratio the
overhead will vary ‘fr(;m 1 (for n groups: broadcast) to n-1’ (for one group:
poiglt-to—poirit). A similar trade-off ca.nnof be achieved ir'x the. tase of CI.;A

because it requires markers to flow through every channel in a FIFO,

* manner and does not make use of the broadcast/multicast facilities.

/ ° . »

‘)‘ : ! . ’ ’ ' . L v
S A : ' . . . '/
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(c) Lossy Channels ° ‘ o ‘ ‘

3
L

Marker . messages might get lost in lossy chanqels.-' ‘T this co iext

the ' initiator after injtiating a global s;;ate; fecpfrdiﬁg could initialize a

atimer. It hw‘o'uld e;cpect to rgceivé the local state re;?rdi%;gs from:_all the C
processes before the timer times out. If it does mnot receive -recordings

; fron; ;ome lpr;)cesses, it coixl& subsequently interrogate thexq in orde; to -. .-
get the requiréd information. For such a solution the mar—ke:rsl nejé still
Q‘be sent only on the é:lges of the Minimum §panning tree.  Hence it
inherifs the same O(n) message comﬁlelxity. However, each Ioc'ess can
~ introduce redund ney by" ’sending marker, messages on all of its outgoing

’ _ \ . " '

< channels instead o\f just on the Minimﬁm Spanning tree. This fedundagcy o~

| could help in r‘edpcing the number of individual interrogations stated

\ “ .
above. An ypperboﬁ\nd gin the number of marker- messages in such a case =

-

is L i.e. one marker\ ;nessage on each channel.
* | \\ ) ; | ‘v. ! - .
4.6.12' Message comx{lexity of the Compilation phase of Consistent ,

' VLR ‘ . o,
- , \ ' ,

)

b * ? ~ This is the phase \in _which proce;ses send t1%e recorded local state
i - back tothe initiator. ‘If' we m’tﬁ(é;'the same assumption of channels befng
bidirectional | m.a.ﬁ,e 'by .Spe'zialet‘ti -[43] t'h'en/ ag in ‘their z;.lgoritixm the
. . ¢ '
reqorded states can be sent back ‘using the edges of thé spa.;ming tree. In .
this case, the A-performa.nce for the Conikpmila-.tion phase of global states by‘
' \j

. NINIT initiators will be O(NINIT * n?) which is the same as that quoted
. g . . ', S
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. . 3
in [43] for the efficient version of CL\. T
4.6.3 Recording delay of Consistent VLR - #

‘ \ -
In, the ,Sr"ionsistent VLR -algorithm- a protess on,’ receiving the first
. d . , ¢

g

marker message of a new iteration will record its state and that of all its .

input and output observers. As this constitutes all the information needed ;
.. . . N
from each process in order to compose the Corfsistent global, state, the

¢

N

complete lc;cal recording occurs right away without any waiting. However,

-

in the CLA algorithm the local recording in each process, which

[y

commences on receiving the first marker of a new iteration, is completed
, g . *

only after receiving marker messages of the same iteration on,all its other
4 . .
input channels. Thus the CLA algorithm 'incurs additi04 bookkeeping
. . »
overheads in contrast with the VLR in environments where an initiator

starts multiple -iterations of global state recording concurrently.

4.7 Summary

The general 'a.nd widely applicable model in which processes are
designat;d for initiating ‘and compili;ﬁ global state 'recordings has beén
used here’ for developing algot@thms. for g}obﬁl state detection. In this
envirqnmqn;.. a message efficient algorithm for capturing the Co_nsist'ent‘
1glqba.l state (Consif:tent \}LR) .has bee;x developed. A significant aspect of
_this elgorithm is ite ability to retaix; pertinent ' information at the sender’s
site of a. co@unication channel instead _of discarding it and recreating the

*

same at the receiver’s site. This allows significant reduction in mumber of

2
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control messages propagated in each iteration of thé— algorithm.

Additionally, the local réf.'brdings in each process occurs immediately upon
. . .

' receiviig the first marker of a par‘ticulai- ij;era.ti,on.,j This rec_luces the book

~ 4 : .
keeping ‘overheads when initiators ar& allowed to start multiple iterations of
: . -

-global —staté recordings concurreritly. Recently, Lai ‘[27] has reported a
similar ‘algorithm with similar characteristics for Consistent global state
detection. However, this has been reported’ in the context of recognizing

stable properties.

* ‘The Consistent VLR is methodically éimpliﬁed in order to derive.

a.lgc?rithms for satisfying the lesser requiréments imbosed by Stable global
state detection and Statistical global state detection. Inﬂthel general model
adop’\ce;i her;e there is no significant performance advantagé for either the
St.able VLR or the -Statistical VLR over the Consistent VLR. However,

models tailored to specific problems exist in which Stable and Statistical

global state detection performs much better than Consistent global sta_té

detection., Some of the problems that fit into this ‘category are:

Distributed garbage collection [31], Detection of termination distributively

[32], Load balancing in distributed systems [53].

No safe algorithm exists for detecting a Synchronized global state in .

?

the general model of a distgibutéd gystem. Howevet, if either the

Conversation model or the Tranéaction model is adopted then simple

3

algorithms for Synchronized global state detection can be evolved.

?
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Discre?f_: Event Simulation '
b

f

" . L
Updating the simulation’ clock is one of the main problems of

~

t

distributed discrete event simu}atior{. The clock updating requires the

detekition of the event with the earliest simulation time among events

L] .

dist;ibuted in tile system. Thén the ‘c'locl.xs \6f all ‘the processes are
updated t.o this time. As outlined in §3.2 Ehej Global Minimum detqectio.n
.property of Stable global states is "useful in this context. ‘However, ‘in
order to minimizg the ’overhea.c.l involved in uplda.ting the clocks, an
integrated | approach for detection and compilation of global states will be

devised. /{ A brief review of the problem of perférming discrete event
/

o

'simulation in a distributed system is first ‘presented to-reveal the basic

underlying assumptions and issues that arise. ‘The latter is then
formulated as‘three optimization problems to be formally tackled.

5.1 Simulation Environment ,

SN

A distributed computing system consis{:ing of loosely coupled

procéésors which interact through message passing constitute the ‘distributed

event simulator. We can model the- simula.tor by a graph whose nodes

représent the pmcesses‘ and whose edges represent the channels through

L]

which message communication can be.accomplished. In. general, a process

graph may contain a number of strongly connected components.

- L]




L DB g, Mt - R A AR S AN S N
Ve TR ey T T

¥

- «

81-

In discrete event simulation each process }is cht\:&racterized bs‘r a set of

°

functions it carries out. The Kbasic activity pursued bya a procesé is
simulation of events. Events are represented by a tuple (Id. of func/'tion,

invbcﬂtion-tixﬁe). The _tuple specifies ‘the function of the process that

t

should be executed in order to simulate the event and the time at .which

the event has to be simulated in the l;rocess. The assumptions of the

Qmodel are as stated below: ‘

‘.
1N

(SA.1): Each process maintains a local “simulation” clock% At a particular

L4

time, it invokes (i.e.  simulates) those events which are on its event list

and whose invocation time matches with the local time. We assume the

-

exact time needed to simulate an évent is irrelevant, and consider an

invocation of an event as an atomic action. v

(SA.2): In completing the invocation of an eveﬁ_t' (and removing it from
‘the ‘local event list), new events of the form (event;, invoke-time,) may be
cfea.ted. Such events may be simulated in the same process or in an
a.djaéént process, dependin.g on the simulation .aﬁpligation..' In the former

| ‘.cas;, the event is appended to the local event list. In the latter case, it
is sent to the fa.rget process via a message. |

)

(SA.3):° We assume that ‘the system is causal: the invocation time of a

. created event must be later than that of the event that creates it.

(SA.4): The channels among processes are point-to-point and directed.

The delay for transmitting a message through a channel is unknown and -

unbounded.

YT
HRCIEL Co
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The illustration ‘in fig.5.1 shows a simulator that qonsis:ts of six

distributed proce;sesu whose local clocks are synclironized to be 20. During

_ simulation, new  events may. be. appended to the loca} event lists” or '

4 O !

transmitted to a ne'gghb(’)r process.

-

¥ w

5.2 Clock Update Problem “

-
Al

.The simulator functions correctly if and only if each process (P,

never advances its local time (L;) beyohd the invocation time of any event

in its event list or that of any event yet to be received on aixy of its
. - ' 1}

input channels from its neighboring- processes.

’

The problem being addressed is two-fold:

s

(a) How ‘can the above requirement - on clock update be met in the

distributed environment? !

(b) In what ‘ways can the effectiveness and efficiency of such a solution: be

evaluated; are there’optimal solutions? \

~

Asynchronous (Time. Incrementation {10]) and Synchronous (Time

" Acceleration (8]) algorithms have been developed in order to update the

~N

local simulation clocks. In strongly .connected components ‘of a process -

graph the magnitude of time increments that can be- obtained in each

iteration of the Time Incrementation algorithm is limited by the presence

‘.of feedback lobps.  Hence,, Bryant proposed the Time Acceleration

algorithm. As the focus here is on advancement of clocks in' strongly

connected compo;;nts of process graghs we will be concerned only with’

.

»
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the Time Acceleration algorithm. ' /‘

/ :

In tﬁe logically synchronous - approach / for clock.‘ upda‘te proposed by
rBr'yant, a global “state” detection phase’ is ,exe(g}xted | ﬁrs-t.; The global .
' gtéte in trhis problem corresponds to ,{etermining the ea.rli?st ir;vocation
time *of any event in any event list, /or in, transit on "some channel. To
ensure correctness, a process can participate in this global state detection

only after it has completed the 17 ocation of all events in its event list

whose invocation - time ¢oincides with the local time.. After this global -

-

state detec'tipn, a consensus carl be reached so that all processes will be
notified to update their local time “to a common value, thus the notion of
logical synchronism. The direct correspondence be?.ween the generalized
problem of Globa'l minithum detection‘ and this problem is evident.
However, ‘the solu.tion proposed by Bryant actually gonstructs a Consistent,
global state by' flushing all the channels. In addition its Compilation
phase is ver& message inefficient and appe‘a.rs to be ad hoc. Here the
formal requiremenf of the problem is addressed which is then formulated
as optimization problems that can be syétematically solved, using a: variety
of"algorithm iechniqt;es to suit different’ optimization objectives.  The
(
complexities /of these optimization probleffs are analyzed and it will be
proved that ‘one of them has a simple optimal solution- whileithe ot};er' is

Iy

NP-Co7K]ete for which an efficient heuristic .is proposed.

A RIS <far sl ol b U i 4 i
LI R R Al
S A
h . ',




SRR S, TR e

-

- : 85
o ®
5.3 Formulation of the clock update problem

- : \
A distinction between Bryant’s approach and ours exists which makes
. . " /

the optimization problem different. Bryant assumes that f01: obtaining the
channel states ‘while‘ constructing the global picture, e;rery channel must be
tra\fersefi with a t.est message in orfler to account for the events-in-transit
on that channel. We simplify th),Q requirement by observing that each
process is fully aware of the set of events it ha.s created and sent on an

N

output cha.nnel to a neighboring process since, the last itefation '(of the

_‘ clock update). So if a process P; maintains ‘a MINTIMii for its output

13

channel fo process P, which reflects the earliest next event invocation time
. R . .7
of the events sent on that channel since the last update, a global state

can be pieced together by simply visiting all processes, rather than

flushing all channels.

Addltxonal Assumptxons
(SA. 5) Each Process maintains a variable MINTIM for each of  its output

channels. This variable is set to the earliest invocation: time of the events

"sent on that channel after the p‘fevio.us clock update (iteration).

(SA.6): ‘A process is ready to- participate in the ith iteration of the global

| "clock@date only if: - L

‘(i) it has completed the events on its event list whose invocation
time coincides with the current time, and
(i) all the events created by neighbor processes and sent to this

process at the (i-l)tll iteration have been received.a
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' The latter condition is imposed so thatyMINTIM;; is confined to the

-«

most recent set of events created and sent on " éach channel. In the

N Stable global state that gets recorded', the ‘states of the processes °
correspond to the earliest event currently in.the respective event lists and
14 * L
the channel states are abstracted by the MINTIM variables maintained for

s
- »

each of the ch’a.n_nels. . ’ . a~

5.4 A Conceptual Solution :
-.: Pid k .

" Imagine one of the processes, sdy P,, is chosen as the coordinator for

@

time advancement. A set of inspectors, which we call red tokens and

green tokex;s, are sent out from P;. The red tokens yreprgsen% test

r

messages and the green tokens represent . marker t‘nqgs;.ges. The exact \
signiﬁcar;ce of these messages is discuséed later qn: \‘ . ‘T\he tokens can
traverse any edgei in a group (counted as one unit cost ’corrésponding to a
.corr‘xposite 'test-rheés.age), or in a succession of group(s) (repeated traversal
of the same edge by test-rﬁessa.ges). Af feasible solution of the global state

detection problem is obtained when
) (CS1): each node (process) has been visited by & red token,

(CS2): all red tokens have returned to P,, and -

(CS3): every edge has been traversed by either a red token or a

green token. oy
. ;‘; b e

. ) S .
¢ Notice that. green tokens do not have to return to P;. The condition

t

CSl1 is require<} to pick up the local information in each process, and CS2

ensures that all local information has returned to the coordinator. The

\
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condition CS3 enst;res that the untraversed‘ channels are flushed.before the
’ - v \ - S
next itération of clock update proceeds (SA.6(ii)).

-

The above' solutidn comrasts with Brym(solution which . requires - ..
that N

(BS1): every edge be tra.v\ekdqby a red token, and

(BS2): all red tokens return to ihehcogrdinator. - »

The traversal of an edge by a group ‘of red tokens is i'nterpreted as
the transmission of a test: message to 6 invoke the receiver process to
& _— ' .
participate in the clock update operation. The traversal of an edge by a

- green token serves to flush the channel and also separate ‘event messages

generated in successive iterations. ,

The coordinator Xtarts the ith clock update iteration after completing

the required simulatiof of the (‘i-l)th iteration and having received all*

b )

required markér messages corfesponding to the (i-1 iteration. It

determines the .earliest invocation time among the events in_dts efﬂ% list,

and communicates, this time in the form of test messages. - A process will
) .
loN the test message for the ith iteration until' it is ready to perform the

4

assessment for clock upMdate (SA.6). During assessment the process

L

determines the earliest/ invocation time ¢,  from the set of events

currently im* its event] list, all those events which it has _sent to its

neighbors in *the simulation iteration just concluded, and the clock value in

0
\ ’ , R L N
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neighborin'g process(es) and it sends marker messages to its. other

. ' ¢
neigyﬁors. Notice that a process does not forward a test message until it

¢

has completed its current simulation iteration.

After all the test tnessages of the 1h iteration return ,to the

coordinator, the coordinator ‘determines .the earliest invocation time trnin
[ // .

among the clock values contained in the test messages. This value t; - is

then propagated to all processes for updating their local clocks (by sending
Set’ messages). vl \
, /’ ) 5

!
5.6 Optiimization problems ' e .

L4

- The above formulation yields a feasible solutién, but we could - select
- better solutions by asserting ceftain objective functions that intuitively

optimize certain performance aspects. ‘The following are three candidate

8

objective functions:
(Obj1): Minimize the total cost of the. solution where cost is the number

of edge traversals (with repetitions if necessary) by red and
. green tokens singly or in groups. =~

(Obj2): Mi'nin}ize the total cost of the solution where cost is the number
/ ¢

N " of edge traversals (with repetitions) by red tokens singly or in

@

groups. . - F .

(Obj3): Minimize- the longest walk by any red token from the coordinator

‘ to itself.

v

x
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»

Based on the interpretation of the red and greén tokens the objective
. \\ e = . E )
functions Objl, Obj2 and Obj3 can  be /visualized as follows. Objl-

s j
optimizes the total number of test and marker messages and thus
-

.

optimizes the message overhead. Obj2 optimizes the total number of test

L} >
messages assuming the marker messages are inexpensive. Obsetve that all

test messages of a particular iteration will have to be propagated before
the quanta of update can be determined for that iteration. However, the
. markers need to arrive at their destinations only before the. assessment for

the subsequent update iteration. So the test messages can be accorded a
N ~
higher priority. In this context’” Obj2 is meaningful as the marker

messages can be ignored in the optimization criteria. Obj3 optimizes the
Q

longest path delay. In a system where the edges in the logical-model are

realized physically by non-multiplexed channels, the longest sequence of
¥
processes which a test message has to traverse in a sequential fashion will

determine the rate at which updates can be performed. Hence, Obj3 by

optimizing the longest path would lead to a solution that w'ill)allow the
Y

A

update to be performed .fast.

-~

To illustrate these different objectives and solutions, ~consider the

exaﬁmple process graph depicted in fig.5.2a where prdcess 1 is assumed to

be the coordinator. The optimal solution that minimizes the test message "

overhead -that is Obj2 is shown in ~ﬁg.5.2b. , Similarly, those for Objl and

Obj3 are shown in fig.5.2c and fig.5.2d respectively. Notice that we can

¥
abstractly Tepresent the flow of test messages (red tokens) from the

[

IS




° L]
ol
. 6 "
° . ’ [ .
» - . A * A
— [
. 7 /
- "‘K.~ v » ' .
* Figure 5.2a: Process graph 2 ' «
v * ’ ' ' . . ‘

- . . . )
\ ¥ . ” $ .
n N \ >
) o
!
« . . ” v
-~ M » v // .
» i' L]
r ° .
.-
* b
e _ -
-
L. . .
& 3
) ’ ¢ « ‘ .
2 ~
.q . .
A‘ ?
Bl u N - .
. . )
. , £
- "( -
z Coa f . ! te . ’ ~
o . Yooa
R . J = & * :s ~ '.'\" »
M . r
\ e . v .
- , . - - ,__/'/‘ -
. ' » o . PR . )
Fig.5.2b: Test Message Fig.5.2c: Test + Marker, Fig.5.2d: Hlinimizex . .
. s . N K . . , ) i
R " only. s s : .Messages. - ) Longest Walk -
'," - . s 4 N [} .
3 . N , .“
: L e . Coon « - :
> . R ! . oy M s 4
. - . . ° 2 . ‘ i} - .
- 4 . t
, ’~ ‘ . - - - * - o
< [} & v
f ¢ , “ - 3 o . R
.'F B N ' R P "‘ - £ \ "4‘
- . ' N LY P P 3
' . . o ! o bl ~ f!r}:




m’?ﬁ‘-‘ o
.

. UK . f
. . o - S " + ) . ) v
B I .
. . . ,
LK) s v A . B >
. PR v . . R
o, . ; ' .
. ) < B
» ; : o . . —_
- . o .
o« . » ‘ﬂ'
£
" . [ - «
»

§oo;dixator through ’all processes .and back to the coordinator by a

s

- suitable regula.r expres_sién. For %xample, in fig.5.2d, the solution (af “+ -

ec)dg corresponds to the parallel traversal of af and ¢c followed . by dg.

. , :Indeed wé- can vfew “+” as the fork (parallel traversal) of» two
B S test‘-"message sequences and “( )" as the join or merge of iwo or more
Wb
« L — ¥ 4 .
, - test-message .s_equences, into one. Concaténation of edges represents

~ . N o :
) .

sequential traversal of these edées, as depicted in fig.5.2e.

'~ 5.8 An Optimal Algorithm for Obj3
‘Algoritlim st-Update - | ) .
) ' L ASRERN
‘begin |, - L e “
- ' “"{ Obtain a breadth-first-search tree rooted away from the
' coordinator;
. . '_ Send test messages to all nodes according’ to tiis tree; } I
v R e Obtain a breadth—ﬁrst—sea.rch tree rooted toward the coordmator,

- —_— « |

~< Return test message to the coordmator according to this tree;}
: T . o '

end. ' L L=
€ . ’
. ‘ , .

For the exa.mple in fig.5.2a;, we will obtaxn from Fast—Update the twg

trees shown in fig 5. 3 whxch wheri’ merged will yield the solution in"

-

~

S ﬁg.5.2d.~

+
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Algorithm Fisf-Update yields an optimal solution for Obj3.
. Proof: The first breadth-first search tree i'ields the shortest pa.th.froni the

coordinator to each process while the second yields the shortest path in
the reverse. The two shortest paths together allow the coordinator to
pick up the information from the processes in the fastest way possible.

PS

Thus the combined solution minimizes the path through ‘each process and

1

" so Obj3.

Q.ED. ‘o

-

.Notice that the -combining' of the two trees may lead to merging of
test-messages and further ‘economy “of the total number of test-messages. g
- . For -the example of fig.5.2, only 6 test-messages (a,f,e,c,d,g) are needed,
* rather than eight ‘ (in gen;ral 2;&(n-1), where n = num‘;)er of processes).
Howevef, this latter asl:;ect is unrelated to Obj3 and w\illv be left to later

consideration of Objl and Obj2.

5.7 Complexity of Obji.

The complexity of the 6p€imiza.tion problem which minimizes the total
% ' aumber of edge traverfsals_ by test and marker messages (Objnl) can be

1'-’evvealed by proving the NP—Compl;atenesg of the folloﬁying formulation: —

&




. Input: A set.Q of subsets {Q;.--Q,} of a finite set § = {X,,..X} and

Rt ik et i L IR AT
i3 NSRS I *

05

hY

TC t Teat-_,Messége Cow;er

.
|

Input: A process graph of n nodes one of which is the coordinator, and

a positive integer k. -

&

4

Output: Yes, iff' there exists a routing of test messages from the

coordinator which ‘cm'rers all nodes and returns to th

- coordinator such that-the total number of repé'éted traversal N
Y ’
of the edges by test messages is k.’ \

)

E'xplanation: “We observe that to ?inimiz,e the ‘total number of. test

and marker messages is the same as to minimize the total. number of

?

repeated traversal of edges by test messages, as those edges not traversed

\

by a test message have to he flushed by a marker message to prepare

them for the next iteration, as explained previously.

We prove TC is NP-Complete by reducing the set cover. problem [21)

-

to TC. The set cover problem is stated as follows:

SC: Set Cover

“ . 'Y
/

©a ppsitive integer k < n.

Output: Yes, iff Q contains a subset Q° so that U 'Qi = § and
Q.€Q’

1 1

Q] = k.
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To 'derive the' proof, the following polynomial-time transformation

procedure is developed to transform a given instance of SC into an

~

instance of TC. ' - \

Problem Transformation:
"l. For each Q; € Q construct a rooted subtree of the form shown in

f \\ .
fig.5.4a. The root is laBglled Q;, and has a single successor'D;, In
‘\X; -

.

turn D; has a set of succe%som,° one for each of the elements in Q;,
|

which form the leaves of the subtree and are labelled accordingly. In

addition, an extra successor ldbelled T, is added for Dj;.

]
2. Add a root R whose successors are precisely Q= {Q,,...Q,}.

.

3. Form a process graph G by adding the following edges: 0

.

() For each leaf node labelled with X;, if X; € Q;, edge (X; Q)

-

is created.

" (b) For each T;, edge (T;R) is created.

For the example, the resulting process graph is shown in fig.5.4b.

+

'Theorem 5.2 - '

A given instance of the set cover (SC) problem of size k has an
affirx;lative out;;ut iff ' the corresponding instance of TC obtained above,.
possesses an affirmative solution with k repeated edge trafvérsals.

Proof:

(—): Given a solution of TC .with k repeated edge traversals by test

messages. _ ' .



o

.
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Let Q= {X;,X;} Q= (Xp,%5) Qp= {X;,X5)

LR
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Let the number of (Q;,D;) edges repeatedly traversed by some test

messages be k’ < k. Without loss of generality, assume these repeated

edges aré precisélj' (Ql,pl), (QquDp)e.  (Qp-Dy-). We claim Q’ =
{Q-Qy-} form a ‘se;t cover of S. To prove this claim, we . use
contradiction. Suppose the claim is not true so that there éxists t € §
and hnone of the leaves jn' Q7 is labelled with t. Further, without loss of
generality, let Y = {Qk’+1""Ql;'+r} and V Q, € Y let t € Q;. Now the
leaf nodes labelled with t in Y can only pass the return test messages to
son;e Q; in Y. There are r such leaf nodes and :_j;xch Q;. Either (a)
by the pigeon };ole principle, some Q; € Y is visited twice and
consequently (Qi,D;) 'visited twice, or (b) the traversal of the t-leaves form
a cycie without repeating gi’s. In case ia), it c;ntradigta the assumption
(then Q; € Q’). In.case (b), the t-leaves cannot return a test message
to R which r,c;utes through the cycle once and “8tops. Thus Q° must
form a set cover of size k.’ < k; a set cover of size k thus exists.

(4—):- The reverse is straighfi forv;/'ar;l. Given a set cover, say
Q = {Ql,...Qk}. R sends test messages to all Q; € Q, which route
them to all leaves except the Ti’s.- These leaves then return test messages
to nodes in Q’ which then forward them through the correapondirlg‘ T;’s
ba.cl‘c to R. Tile number of repeate\d edge traversal that could occur only
at (Q;,D;)’s by test. messages is precisely k.

4 :
QED.

S S
P S
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Corollary 5.1: TC is NP-Complete.

“ ¢ —
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5.8 Heuristic Solution ' ) \ ‘
A . o
f p k Having identified the NP-Ct;mi)leteness of the optimization problem,

~an efficient '\l‘h‘euriitic solution is 'justiﬁable to achiete the objective of

minimizing the' nu;xxber of iages -used in each update iteration. The
: , ‘ . g
heuristic proposed hgre consists of a two phase process. In phase-I, the
algorithm creates a forwa.rci‘ breadth-first spanning tree rooted from the

. ‘ ' coordinator. This tree is ?sed to broadcast test messages which will reach

all nodes in’ the grap’h G. Subsequently in phase-II, reverse paths from

-

~“the leaves are "derived greedily from a reverse breadth-first spanning tree
rooted to the coordinator. Greediness iff maintained so that the return
path, of g- leaf identified in phase-I, invokes the minimal marginal cost

measured terms of the additional edges which have to be repeated. It

»

will be proved that an edge will be traversed at most twice by test

messages in an’ iteration of clock update. 4
Definition: ’ "

— [}

’

For each node v in a tree, d(v) = distanece of v from the root of

the tree. . .

o
£,
%




1 .
5.8.1 Algorithm MINMES: - ) '
Phase I: |

Step 1: Obtain a forward breadth-first spanning tree ﬁFTf of G
-
' rooted from the coordinator R. Partition the set of leaves

+ as:
= \ '
T: Subset of leaves which are directly adjacent to R, and
o, , )
T N: the remaining subset of leaves.

Label each,kedge in G which 'is found in BFT; by the set

" ) of leaves reachable from the root R via that edge lin BFT;.

For the process graph of fig.5.5a this labeﬁing scheme is

. .

exemplified 'in fig.5.5b. We assume that each edge in G
has' two buckets to hold’ labels,'a.nd in this step all labels

- assigned to an édge are placed in the first bucket.

Phase II:
Step 2: Obtain a reverse breadth ﬁrst spanning tree BFT, of G

rooted to the coordinator R as exemplified in fig.5.5c.

Step 3: For each t € T (leaves in BFT; directly adjacent to R),

*

remove (t,R) from BFT, and/ label , (t,R) in G by t’
(placing t° in the first bucket of (t,R)), as shown in
fig.5.5d. A forest may result for BFT,. )

Step 4: Choose and remove an x € N ( leaves which must return

test. messages to R). Find among its direct successors

Succ(x) the successor y whose d(y) is minimum. Label the

.

wors
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Edges are labelled with
leaf Id. which are reachable
from the root via that edge.
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Legendi
A = { 799910’11}
B=1{09,10,11}
h Leaf Noﬁes: . ( §
. ‘ T = {11} -
‘ N = (7,9,10} .
5b: End of Phase-I .
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edges on the path fromn x through y to the coordinator R
in the original B\FTr by x’. The corfespondixlg' edges in G
ar; also labelled by-x": If either a second | bucket exhﬁ, orQ
x is found in the first bucket of th;° edge in G, then x-°
and all y° found in .the first bucket are moved from the
first—bucket and p'la.z‘:ed‘ in i;hg llsecond bucket; else | x' is
placed in thg first bucket. Remove these e&ge_s \fron; ‘the

h current BFT, and’ repeat step 4 untli N = 0.  The

iterations are exemplified inf fig.5.5¢ and the final labels of
the chosen edges on which test messages are routed are

shown in ﬁgr.5.5f. Table.5.1 tabulates the labels placed in
. ' | ) .
the buckets of each of the edges in G. ¢ ’
. )

Step. 5: The Proéramming of a process. node for forwarding test
messages. follows the rule:

L4 a

At a nodé u, a test message i,s' sent on an output

L | edg°e ' corresponding to a bucke}t labelled {a,b;..;} provided.
. the' test messages ’ from itas inpult ‘edges correspoiding to
buckets that include labels {a,b,..} have been reciived,
. except that when a: test message labelled with u,' is received - . .
'(.i.e. u G-'I; U N), the node tr_ansforms.the label to u’.
before determi;ling if a test message i;; to be sent out. 3
During an it;rt;.t;ic;n of clock update, corresponciing to e;alch .

non empty ‘bucket a test message will be sent out only K

. ;
K , . ] ° - ’
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Step 42 N= {7,9,10}
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A= .{7,9’")’”};‘3 = {7'v9110v11}; = {9’10”1}’{7',9'};

D = (9,10,113,(7',9',10'}
ey

. Figure 5.5f: End of Phase 1I
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ot‘(\tﬁe labelling | scheme
Edges Bucket 1 Bucket 2
1,2 (1,9,10,11} -
2,7 (1) -
7,2 (1) -
2,3 {17',9,10,11} -

. 3,4 {7',9,10,11) -
4,5 (9,10,11} {1',9'}
5,64 | {9,10,11} (1',9',10')
6,8 {9,10]} -
8,9 {9} -
8,10 {10} ° -
-9,4 {9'} -
10,5 (10} -

6,1 {7,9',10',11)} -
1,1 (7',9',10',11'} 4

2
Table 5.1: Labels on edges.
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> -~ once. For al\ edges in G. containing empty bﬁckets, a

. marker message is generated from ‘the emanating process to

"l
“

flush the edge when the emanating’ process receives its first
test message of thi§ iteration. " Marker messages are never

1

forwarded. - - ., S

Theorem 5.3 " . ¥

Two buckets ate s\ufficient to hold all the labels that may be

a.ssigneal’ to an edge in MiNMES so that a label pair {x,x’} is never
p!aced in the same bucket. ‘ ) ..
Proof: This is obvious from the cons;;ructior} as x° is place:d in the
sec'ond 'bucket iff x is, placed in the first or a second bucket already
exists.. ~Since':.hé second bucke'; is created only duriy e tensideration 'of

the reverse paths' x cannot exist in the second bucket and’' so x’ can

. definitely be put into the second bucket.

Q.E.D.

The implication of the above theorem is that an edge may have to

- transmit two test’ messages in the worst case. Algorithm MINMES is

i

obviously an attractive heuristic as it minimizes the longest closed walk

¢

(therefore’ delay) from the coordinator R to the leaves and ‘back To R, and -

at the same time it attempts to minimize repeated test " message

.0

transmission.




Te T X, P TN MR T F T IR
Bl TR ad BTG

108
The complexity of heuristic MINMES is O(nn), where n = number of

processes, which corresponds to the iterative labelling applied in step 4.

Observe that MINMES is equally applicable as a heuristic for the
modified subproblem for meeting Obj2 where the wupdate iteration is
supposed to involve only test messages. The heuristic possesses identical

characteristic when applied to optimize this gbjective. v

The MINMES algorithm for clo‘c"k. update can be easily extended to
;upﬁort non-FIFO chanr;e.ls [48]. R’ela.xa,tion of the FIFO channel
constr.alint‘ implies -that the control and event messages sent on the same
cixannel.could overtake one another on the channel. Hence the receip)‘t of
a .control message (test or marker) will not indicate the flushing .of the
channel with ‘respect to the previous iteration. So in order to ensure a
process knows “?hat it has c&npleted 1;he~ ith sim'ulation iteration and) can
b ' '

respond to the (i+1) test message for clock update, a test or marker

message ‘which may have reached a procéss ahead of an - earlier event
messages should carry wgth. it the. correspondiné event list sent orn that
channel éénerated in the (i:l)ui iteration. T.}iis redundancy is required to
',Iallow for non-FIFO channel behavior. Alt‘hough the marker and test
'messages are longe'r. as they contain the event lists, t;he pe‘rfom'mnce wilj
not be altered: appreciably since i;l most communication subsystems the
network throughput depends on the n\fmber‘ of messages and not their

\

lengths.  Therefore performance charuterfsiici of this extended version s
' )

similar to that of MINMES.
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5.9 Performance 'Comparil;on » of Bryant’s Heuristic with
MINMES -

(a) Upper Bound of Message Overhead

A}

Consider a process graph with O(n) nodes using Bryant’s heuristic for
clock u‘pda'te. Each process has b(n) input edges and forwards .a test
‘ . .
message upon receiving one from an input edge. Each test message sent

out may percolate through O(n) edges to reach the coordinator. So the

~

. total number of probe messages is O(n*n*n) = O(ns). The flushing of

edges ta.kw\ﬁan additional O(L) messagee;, where 'L‘ = number of edges, so’

that an upper bound of the message overhead in Bryant’s case is.,
O(L+n3). This upper bound is tight and ig required by the process
graph shown in 'fig.5.b6. ‘ In that case, the graéh has a completely "
connected subgraph K . l;rocesh A receivés n? probe messages originating
from” the various nodes. ' Retlirning these messages to process 1, the

+  coordinator, requires’ n edge traversals each, leading to the corpplexity
o(n®). - _ . o J

\) "I;he algorithm MINMES })y coordinating tll1e forwarding‘_ of test

messages will require (2n-2-k) edge traversals by test messages, where k is

L4
the number of edges which Bre shared by a forward and a return path.

Since, each shared path will carry at most two test messages even in the
worst case, the test message count is O(n). If the marker messages are

¢ included, * " the upper bound . of - . meesagé

overhead becomes O(L-+k) 5*.0(L+n).~
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| . (b) Lower Bound of Message Overhead
S ' .
:I‘he lower bound in both heuristics are identical, and is equal °

to O(L). Anh example case is a cycle of n processes.

N ,

(c) Speed-up of MINMES -~ .

If we try to measure the speed of an update iteration by the longest
path delair ;f " message propé.ga.tion from the coordi'nator to any node and
back ‘to itself where path delay\'is the number of edge traversals by ;a. test
message, we can immediately deduce that Bryant’s algorithm has a, worst
case delay of Q(nz) corresponding to the case of a test message routing
‘through the n? edges in the K subgra.i)h of fig.5.6 and then througfl A
to B and back to the coordinator. MINMES“ on the other hand has a

worst case delay of O(n) as evidenced by the traversal of BFT; and BFT,

so that the height of either tree is at most O(n).

5.10 Simulation Concurrent with Clock update

In the explanation of the schemes given above, it has been assumed
that the simulation is frozen while the clock update is in progress.
However, instead of freezing the simulation completely while the clock

i
update is in progress, a logically asynchronous clock .update -algorithm (eg.

Time Incrementation [10]) can be executed in the background to improve

~ concurrency. The coordinator can choose the opportune time for starting

"

the next clock update iteration as follows. In the it'h update iteration in
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addition to determining the earliest invocation time, (t;,) the second
earliest  invocation  time (t) can also be  estimated. If
t, > t;, + Threshold, then the test messages corresponding to the
(i-i-l)tll iteration can be transmitted 94;5 soon as the coordinator becomes

14
ready to perform the (i+1)th iteration. Otherwise, as the distributed

update algorithm is . more efficient for time increments < Threshold, the

coordinator should delay the commencement of the (i+1)th iteration until
the distributed update algorithm has advanced the clock beyond t,.
Notice that t, is only an estimate and the coordinator should not directly
set thg clocks to t, because an event with invocation time t < t, may

have been generated during the i"h simulation iteration. Such a hybrid

heuristic reduces the overhead as it chooses the best strategyg to be

followed. The algorithm should be tuned for optimal performance by
yproperly choosing the valﬁe of Threshgld for the part}cular target
L_ application. It .ghould be observed that, as the determination of t, occurs
> along with the determination of t_; at each node and is carried in an

additional field of the same test message, there is no appreciable

performance penalty incurred by this scheme.

5.11 Summary

.

Efficien( . schemes for updating the simulation clocks in' the processes
. modeled * by strongly connected components of a process graph which
implemer.ts discrete event simulation have been presented. Logically

asynchronous solutions to this problem are inefficient and hence logically
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synchronous solutions have been developed. In these schemes, in order to
perform a clock update, the global state of the distributed _processés is
compiled by a chosen coordinator, and the earliest invocation time of any
event which is either in the event list of any process or in transit onv
‘some channel is determined. Unlike existing solutions, we keep track of
the évents that each process has created and transmitted to its

neighboring processes, and compile the Global state simply by visiting all

processes rather than flushing all edges.

This problem of detecting and’ compiling the global state is -
formulated as a directed graph traversal problem. A team of red and
green tokens, starting frqm the ’coordinator node, travelling independently
or in groups is required to traverse the graph such that (i) every node is
visite;i ‘t;y~ at least one rfed t'bken, (i) every edge is traversed by either &
red or a green token, and (iii) all red tokens return to the coordinator.
Solutions to this traversal problem have been developed so as to satisfy
three different objectives of f)ra.ctical importance, namely, (1) Minimize the
number of edges traversed by red and green tokens; (2) Minim{z: the
number of edges traversed by red tokens; (3) Minimize the' lengthl of the

G

longest walk from the coordinator to itself. An optimal solution has been

4

presented for the \third objective. = Optimal solutions for Ba.tisf}"ingéT
objective 1 should coordinate and minimize ‘the propagation of red and
green tokens. We have shown that this is an NP-Complete problem.

Consequently 'an efficient heuristic ' which can be used to  achieve good

-~
.

4
\
b
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solutions for both ’obj;ctivqs 1 and 2 have been s;xggested. " The heuristic
involves :}one time 'a.nal'ysis of the process graph and its complexity is
O(n?), where n = number of processes. The solutions  for
objectives: 1 and 2, based on this heuristics have upperbounds on message
overheads of O(L) and#: O(n)/ respectively, where L= number of edges.

This compares very favorably with the existing solution whose upperbound

is O(n%).

The modifications required for wupdating the clock in systems

employing non-FIFO communication channels has also been suggested. -

The logically syncilronous schemes assume that the simulation is frozen
when the‘ update increment is bei'ng assessed. However, in order to
improve § concurrency a hybrid scheme which combines a logically
synchronous update algorithm "with a logically asynchronous algorithm has

been suggestecf;&" The performance of this algorithm must be tuned to

appropriately initiate update using the logically synchronous ﬂscheme only .
5

when its estimate of the possible increment is greater than a threshold

which is application dependent.

Pd




Chapter 6

°

Backward Error Recovery

‘Distfibuted Computer Systems are b;acoming increasingly popular and
are being employed for critical’ ap;;lications demanding high reliability such
a8~ aircraft control, inddstrial process control and bankiné systems.
Inherently DCSs are more complex t‘ha.n centralized systems. ’The added
. complexity could ipcrease the potential for system faﬁlts. But, By
introducing redundancy they do ‘.oﬁ'er greater opportunity to realize fau]t
tolerant systems and consequently in providing better system availabi!idty.‘
A high plro'portion of failures in computer systems have been found to be-
due to residual design’ ’fa.ults (hardware '& software). They are the hardest
to deal with as they are mostly unanticipated f39]. ‘Uspally these errors :
are handled by discardir}g the current system state, restoring the system to |
a prior state accepted to be correct and starting re-executioﬁ nfrom there
(Backward Error Recovery [2]). - This requires the state of the system to
be saved at different points (recovery points) during ‘the ’ct;;nputation.
The procedure of saving.the complete system state at a recovery point is’
known as checkpointing, [2]. Upon detection of a failure, appropriate
diagnosis and réconﬁguration will be carried out. Subsequently, the system

will be rolled back to one of the recovery points which has not been

contaminated by the fault.

"
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In distributed systems, an error occurring in one process might

*

propagate to other processes. Hence a process can no longer be viewed in’

isolation. The rq]lbp.ck of a process might force the rollback of some

other pfocesses. If checkpointing of the different processes are unrelated to

f

each other, then 1rollba.ck of a process might result in an avalanche )

rollback of the entire system known as domino. effect. . In a DCS a set of

component process states which together 'form a consistent state called a
Recovery line can be identified and the overall system can' be rolled back
to this' recovery line. Two strategit;.s, ,“preplanned‘” ‘and “unplanned”
recovery, have been used in the literature to establish recovery lines [54].
In‘ the preplanned case the checkpoints are synchronized at t'he time of
state recording so that some objective recovery lines are formed [38]. In
the unplained strateg}; the system tries to deduce a recovery “line when a
rollback is imminent, thu; requiring‘ -additional work and delay during

rollback. Various schemes have been proposed for both strategies with

some of them restricting ‘the interprocess communication patterns

M -

[7,23,38,54).

AN
Here we analyze the requirements for avoiding domino effects and
then propose an efficient domino free rollback technique. The checkpom{s

established by the interacting asynchronous processes are coordinate

s K
dynamically and process - interdependencies are tracked so as to ensure

scheme neither requires the processe;' to be deterministic nor imposes

e
A

minimal dista.nce_ rollback, whenever rollback is necessary. Moreover this.« _
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restnctlons on interprocess communication. Though the aspects of Error
e detection, Error containment and Errer diagnosis [2] are very important for

" a fault tolerant -gystem, they are orthogona,l to the subject o( this study

and are not dealt with here, We assume that the state of every

component process in the system can be, rolled back as no limits on.the

-

error latency are assumed. , ) L “

6.1 Fault tolerant system model

‘Every application process is appendedc with a control process. The
control process has the responslblhty of provxdmg the che‘ckpomtmg and

rollback functlons for 1ts assocnated ‘application process The term . process

Q

henceforth refers . to the combina.tlon of an application process with- a

<

control process.

“ Application events  of interest for this study are the Send, Receive
,and intraprocess events. E}chl message transmitted by.a Send event u
will be received by an explicit matching Receive event m(u). Similarly for

every Receive event u, there is a matching Send event m(u).

The system events of interest are Create_self__irfdseec'l_'check;‘)oi'nt
(Csic), Create_&espor;se_checki)oint(C'rc),3 Rollback, Send_'roollba.ck_i;nessage “
and Receive_rollback__message. In addition to this Fault events can occur
in any of the processes. It is assumed shat every fault will be diagnosed
reliably within a finite period - of time. In order te rec(;ver\the system‘

: - from the erroneous state, the process in which the error is detected will -

¢
-
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Bg forced to" execute a_rollback event which will reti'ieve a known good .

state (one closest to the fault) by relpading the process state saved by an '

appropriate checlipoint event. All application events executed in between ‘
’ . N ‘ N . Q - .
L this checkpoint event and the rollback event are suspect, and all effects of

Bl

‘these events in ‘the system must be undone. The distributed computation

will be represented by the STM and the Pomset models. .
¢ P

4

- " An instance of the computation o‘f the system can be described by

the Pomset “[V,z,j,;r].’ Events in each process-are-assumed to be totally

ordefed, whereas events\ across processes are' partially ordered. The

L

symbols have' their usual significance. L
4 . . , L o S ‘ 5 7
. .. 6.2 Concepts of Rollback and Recovery
1 ) ¢ : - ' 8!

Consider the. execution history of a process which is part of a
distributed computation (say Pg in fig.6.1). . Assume that ‘at time 4; an
. error was detected in DP3 and is diagnosed to have occurred because of the

faulty event “F”. The following terms can be defined:

-,

> _ . ‘ .
. .Definition: Error dependent set (EDS) - . ..
This set EDS(F): contains the earliest event (if “any) in every process
| 1 . which may depen;l on the contaminated data produced as a ‘result of the

cerroneous event F. During recovery for achi.eving minimal rollback the
/ cheqlgpointé _just preceding ‘the events in EDS(F) must be chosen for each

of the dependent proc'eskes. In other words,
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EDS(F) = {m(u)/ (1(z) = Send) A (Fxwn N
. v colocated with m(u) at. ({(v < m(u))w//\ (F < V)
N4
Definition:  Backward dependent seig (BDS)
Assume that checkpoints X;, and in) have been chosan for rollback
in proceéses P; and Pj respectively, where Xry is the .yth checkpoint in P;.
The BDS(X;,, X;,) is defin;d as the set of all those Send events {n P,
which precede X‘Jb and whose - corresponding messages are accepted by
Receive events .in P; which succeed X;. In other words, let Z;, and Zjb ‘
- be the recordin“g events of checkpoints X, 8.;1d ij respectively: “Then
BDS(X;, X;p) = {u/ (u(u) = Send) A (u is_déolocat;d with Z) A .
(m(u) is colocated with Z;,) A (u <y} A |
(2Z;, £ m(u)) .
Definition: Retransmission d;pendent set (RDS)
Assume X;, and X;, in P; and P; as before. The RDS(X;,, X;) is
defined as the set of all receive events in I;j preceding ij which acc;pt ' °

' messages sent by send events in P, executed after X, In other words,

let Z;, and Zjb be correapond'ing recording events as before. Then
RDS(X,,, X;n) = {u/ (u(u) = Receive} A (u is colocated with zjb) A
(m(u) is colocated with Zh) A (u < Zp) A

(2, = m()
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The .events in-EDS(F) and all their successors in each of the
pfbcesses can be thought of as defining a Fallout region for the fault F as

illustrated in fig.6.2a. During recovery the Recovery line which just

. envelo the Fallout region corresponding to the diagnosed fault must be

S

in order to ensure mwimal rollback. Normally the Send events in
(X0 Jb) of a pair of checkpoints belonging to the chosen Recovery

ill have to be re-executed in order to resend the messages and

r

satisfy the receive requirements during re-execution following rollback. The
cross edges r}presenting these messages, in the event graph .of the
computation, will intersect every cut containing the pair of checkpoints X;,

and ”‘ij. - .These cross edges will be Forward edges with respect to these
.

cuts as jllustrated in fig.6.2b. The Receive events in RDS(X. X ) of a

ia’

pair of checkpoints belonging to the chosen Recovery line, will have to b¢
|
1 : - ~

re-executed in order to consume -the new messages that are generated

because of the re-execution of the correspondiné Send events by the Sender

3

process. The cross edges representing these messages, in the event graph

of the computation, 'will intersect every cut containing the pair of

checkpoints X;, and X;,. These cross edges will be Backward edges with -
respect to these cuts as illustrated in fig.6.2c.

‘

- |
|
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6.2.1 Domino rollback in distributed systems

Asynéhronously establishing checkpoints in the processes of the system
and then requiring the system to rollback only to recovery lines whose
corresponding cuts do mnot intersect any cross edges (Backward or

Forward), may lead to domino rollback. This is illustrated by considering

the example of fig.6.1. At t; let an errorl be detected in Pg. Let the

' d\agnosis indicate event-F as the cause. So P4 should be rolled back .to
Ic

' checkpoint Xg5. As EDS(F) contains {E,;E,}, P, and P, have to be-

" rolled back to Xy, and X,, respectively in order to overcome the effects

of errors. However, {X12,X22,X33} does not form a legitimate recovery line

because BDS(X,9,X33) contains Es; and RDS(X,,X33) contains E; and

both are non empty. Observe that if either RDS or BDS is non empty

it implies that there are cross edges intersecting the corresponding recovery
line. This will induce further rollback in the processes until the legitimate
recovery line {X;{,X,,X;5,} is reached. In other words, checkpoints (state

recording) are established in processes ,a.synghronousiy and later an effort is

made to determine a Synchronized cut ‘(Synchronized prefix) using the

checkpoints, to which the systelm can be rolled back. As explained in
§4.5 such a ;ynchronized cut is not guaranteed to be constructdble for all
distributed computations. Morefwer for d a certain sequence of computation,
the recovery lines might be 'few_ and far apart leading to extehsive rollbai:l;

during recovery and sometimes even unbounded rollback (domino-effect).

>

k}
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A simple solution is to adopf the Conversation scheme [§4.5,38] which -

is a planned strategy for checkpointing. In this scheme the interprocess

‘communication patterns are restricted to enable Synchronized cuts to be

[

constructed during the execution by ayhchronizing the processes. Such a

scheme is quite inefficient due - to the periodic synchronization thaf has to

be established. Therefore it is _necessary to examine strategies for

eliminating RDS and 'BDS in asynchronous checkpointing .schemes.

Domino rollback might also occur when \'processes are allowed to
suspect the messages it receives from others [23]. On encountering an

error, protesses. might end up blaming each other as the cause of the
\

error and might thus trigger a chain of rollbacks. Normally it is assumed -

e

that the received messages, are always correct. Howevgr this will require
that each process be capable of diagnosing all its errors. Additionally
although it migﬁt be 5ble to diagnose errors of other processes easily it is
prevénted from doing‘ . In the interez;t of faster recovery at ,leut
limited handling of these suspicious messages must be supported by the

rollback scheme. The following can be asserted using the formalism given

\

above. ' & Y
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Theoren; 6.1
) For any fault F, minimal Domino-free. rollback - is guaranteed if
from the Recovery ~1ine composed of the checkpoints immediately preceding
the events m EDS(F), the Backward and Retransmission dependencies -are
eliminated |

Proof

Part (a): Domino Free

”,

This will be proved by contradiction. If possible assume thaﬁ domino '
effect occurs even if backward and retransrﬁission dependencies are
“eliminated from the recovéry line composed of the checkpoints immediately
precedin:g events in EDS(F). Let P; and P, be two processes and let F
be: a f"ault. Let the corresponding Recovery line be composed of
checkpoints {X;1 X5} ‘immediately preceding EDS(F) If rollback to this
is to produce a domino effect, then the message depeﬁdencies of either of
the two processes is not satisfied (fig.6.3) in rolling back to X, a.ﬂd Xo15
ie.  either RDS(X;;,Xy;) or RDS(X,5;,X;;) or BDS(X;,X,,) or

BDS(X,;,X;;) # 0. This is an obvious contradiction.

.

Part (b): Minimal rollback

The recovery line chosen is composed of the checkpoints immediately
preceding EDS(F). This obviously is the recovery line which will just
encompass the fallout - region. Hence no other recovery line which

. /
guarantees correctness and yet decreases the rollback in the processes
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QE.D.,

Based on the above theorem the following can be defined.

- Definition: Valid Recovery Line (RL)

fz set of checkpoints (XlaX%.’..)ii,Xjr...) constitute a Valid recovery
line Ri., with respect to a fault F in a process Pdv provided:
| (a) Vi : Z;, which records X, prece&es E; V E; E‘EDS(F).

(b) Y : I X;, € RL then X;, & RL 1§ any m # r |

(c) ViJ : RDS(X;,.X;) = 0 |

W

(d) Vij : BDS(XyX;) = 0 7

This implies that none of the events belonging to a Valid recovery

&

" line should depend on one another.

6.2.2 - Strategies for eiirhination of Backward &en‘dencies

Backward dependencies - occur because of undoing Receive events

auring rollback without undoing the corresponding Send events. In the

following strategies to eliminate these backward dependencies are presented:

Strdtegy A: All received messages are saved during execution. During
re-execution following rollback the messages needed for satisfying the
»

receive events corresponding to the BDS are selectively -retrieved from the

repository.

&
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Strateéy B: Only those messages required to satisfy the BDS
requirements are saved during execution. In the STM ‘of fig.6.1 consider a
“ line joining checkpoints 3?‘22 and X3, of two procésses P, md, Py
.. Tespectively. The send events corresponding to these messages which are
to be saved occur before the line’ Xy9X3, and the receive events occur
after the line. This reveals that the messages to be saved are those
which intersect the X,yXj, line. In general, only those ;néssages whose
corresponding edges in the event graph are Forward edges w.r.t the
Recovery line need be saved in order to satisfy the Backward dependenciea'i

during re-execution.

6.2.3 Strategies for elimination of Retransmission dependencies.

Retransmission dependencies occur because of undoing Send events

during rollback.without undoing the corresponding’ Receive events.

3

Strategy C: Observe that the Send events corresponding to the Receive
events of RDS, precede the events in EDS(F). Therefore these messages

8

are not erroneous. If the computation is assumed to be repeatable
(functional system), these Send events will definjtely be re,-exetl:uted as they
precede events in EDS(F) and the mességés generated by these events
during re-execution will be the same as the ones sent earlier. Hepce; the
new masaée can be regarded as redundant .and’ ignored. Thus this

scheme will not require the rgceiver to 'be rolled back in order to satisfy

the RDS requirements.

1




Y e N ‘-.»_f’,- %‘WS‘??'F“}»""
. b B

- ) ' (8, 129
Strategy D: Coordindte *setting up of checkpoints of processes so that
recc;very lines do not contain RDS. .In other words the checkpoil{ts of the
processes are recor&éd/j such that there are no Ba.ckwa/l:ci edges w.r.t the

recovery line defined by these checkpoints.

gt

In a general diét:r};i)uted system 1\1\, is impractical to assume exact
repeatability of events [52], on account of\the nondeterminism inherent in
the system, variable me:;sage delays, nondeterministic behavior of certain
high level language statements like the lect statement in' ADA, and

. \ . i
presence of real time ever\ts. Therefore the- schemé proposed in this thesis
will use Strategy D in order to eliminate the Retransmission df:pendencies.
The proposed scheme minimizes storage overhead by adopting Stratggy B
in order to eliminate the Backward dependencies. The coordination

required in establishing checkpoints for eliminating RDS is carried out

without freezing the computations.

6.3 : Dependency based Checkpointing and Recovery

_Recovery lines constructed using strategies B and D for eliminating
BDS and RDS respectively, def'u}e Qonsistent cuts in the event graph of
the computation. The resulting Consiste’nt global st.a.te is used for the
purposes of rollback. / The \(ecoverability propert)f of Consistent global
states ensures the correctmjss of such a rollback recovery scheme.
However, we observe that all processes may not get corrupted by a faulty

.process. Therefore in the interest of minimal rollback, rollback must be

Y
i
-




restricted only to those processes which haye ;eéeived messages either
directly or indirectly from the faulty process, sent after the occurrence of
u the fault. In order to dynamically keep track of such interacting set of
processes and precisely define the fallout regions the interdepencies between
the processes will have to be identified. -This identification scheme will

henceforth be referred to ‘as “dependency tracking”.

The rollback recovery scheme presented here is based on dependency
tracking and the Consistentt global state detection techniques [29,11]. This,
also minimizes unnecessary rollback. An application proéess may initiate
local checkpoints, by executing Csic eventss” based on its local requiréments.
Subsequent to a local checkpointing, messages sent from this process to
others may induce setting up of checkpoints in other processes, by making
them execute Crc events, on receiving these messages. In terms of the
global st';ate detection scheme, every process which creates a self induced
checkpoint is an initiator. Marker messages are eliminated in this case
since depeﬁdency tfacking is required. The requiréd control information
for de?endency tracking, and inducing coordinated ch\eckpoints is
“ piggybacked on the application messages themselves. Additionally, a gloBal
state compilatiQn phase is not necessary since the checkpoint information is
assumed to i:e stored and ‘utilized Jlocally in each of the processes.
Therefore coordinated gheckpointjng does not require any special control

messages. However duriné rollback the processes will forward a special

control message called the “rollback message”. During recovery the
.<~ £ .-

\
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.affected processes will be rolled back and the contatiinated messages will
be discarded. This rollback recovery is achieved without freesing the

3 1}

ongoing application computation.

6.3.1 Checkpointing algorithm
N

A process P; creates checkpoints based on its local requirements by
v . o .
executing Csic events. FEach such checkpointing or " state recording is

. l ’ \ . » t
associated with a unique identification tag. X;q denotes the g b self

induced checkpoint of process P;. The structure of a checkpoint‘ is shown

in fig64a. A n dimens%onal checkpoint vector denoted as CCP is
associated with every proces; Pj, It contains the ordinal _npmber of the
latest self induced checkpoint created by each of the n processes P; in the
_ system, "as percgived "by Pj.‘ ihe CCP vector ?s apl;ended to' every
application message sent out by that process. A process Pj ‘upo receiving
an  application message strips the checkpoint vector ﬁ:om the recéived
message (call it RCP), compares RCP with the its CCP and updates’ the
CCP appropriately.  The operationé perfé:rmed. by the ;'eceiver p;ocas

e

based on the comparison of the two vectors is given in the form of

e

2

' pseudo code in fig.6.4b and illustrated as follows.

Let process Pj receive an application message 'M with vector RCP.
In the RCP let r be the value corresponding‘ to process P,. If r is
greater than the co}responding value in the local CCP, then ‘Pj creates a

\mﬁ’onse checkpoint X , where XJh_ represents that this checkpoint is that

-

H

X




. . , 182 -
. . ] .
. ’ | | B i .. X
Organization of, Checkpoint :information R Yo ]
| Type | RMN DMN ~ XRL- XcP PS . MS
o Type: Self i.‘nducc;d'or‘e Response Checkpoint. - ‘
\\ ‘ RMN Value of the Receive message counter “he'l, the checkpoint was
T created, S
\_\ 'DMN‘: Receive ‘Message counter value of the earliest message thit should k
. ™ . . be disdarded on rolling back to.this ‘checkpoint.
“'\' XRL: Recovery line <Pid,No> to ihich this checkpoint belongs,/where Pid:
‘\} “is the Process Id of the gwner, angd No: is the ordinal nymber of the
. ““:\,. Self‘ “induced checkpoin in the ogner corresponding to this Recovery
' line %“-:, = -
X XCP: Ref'lects t;he Checkpai c fi the process whgn this checkpoint
‘ . > was»greated "’z\:
., PS¢ The state of the process* when this checkpoint is'created.
) ) N MS': Set of messages on the inp&t channels of the process which intersect
¢ ' . N « .the Recovery line correspondmg to this checkpoint
g R \' )'ﬁ\ .
N n . . | .,{k -
~ . j\‘\ Figure 6.4a: Structure of a &heckpoint
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Create Se{g_1nducéd;checkpoint‘1ﬁjigg::ss Py

(1) Create new checkpoint of P,:
Type := ‘Self induced; R Y .
RMN := Recéive Message counter (RecMsg); DMN := RMN « 1,
XRL":= ¢i,CCP(i)>; XCP := CCP; |
Record process state in PS.(State prior to this event); MS := @;

(2) Update CCP(1) ' \

-

Functions to be carried out by any process P, on receiving, a message M, . ’
(1) Update RecMsg; Temp := CCP . ' .
. (2) Strip the checkpoint vector RCP from M, -
. (3) Examine corresponding entries\of . RCP and  CCP

and repeat steps 3a and 3b fbr i = 1 to N ’ ‘ .

~ (a) If RCP(1) > CCP(i) then T S |
Temp(i) := RCP(1i); )
Create new checkpeint.of P;: Type, RMN‘DMﬁ XRL, XCP, PS, MS of
s checkpoint to  Response, RecMsg, 'RecMsg, <i,CCP(1i)>, CCP
Process state, and @ respectively o

L

<

(b) 1If RCP(i) < CCP(i) then “- .
For all checprLnts?of Py owned by " P, which have No XRL > RSP(i)'°
° vppend <RecMsg,M, > to yS of the checkpoint. .
If cheekpoint i, RCP(i)) does not exist then .

o f,e. ' Create Checkpoint by ~ copying Type,, DMN, PS and MS-of
- Checkpoint ¢i,k>, where k is the.smallest 1nte§erh>“5FP(i); o,
RMN : = RecMsg; XRL := <i RCP(i))‘ .
Delete M, .from MS of ;his checkpoint; . "

(4) CCP := Temp; "

Figure 6.Ub: Receive Procedure :
- .
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of Pj and has been created in response to the rth gself induced checkpoint
of P,. The 'proc;ass state (PS) field of the ch&:kpoint\cont;ins the current

) \

value of the process variables. The Message state (MS) field “of the
checkl;oint is set to a null \;alge. The Receive Message Number (RMN)
is set to ' the current value of the Receive Message counter and the
Discard Message Number .(DMN) field is set to (RMN + 1) This °
gheckpoint is now regarded as being owned by P, and forms a p'art of
"the recovery line (k;r). However, if r i.s smaller thu; the corye/aponding
value in CCP then P; inserts this message (M) to the MS ﬁglds ot:. all
previous checkpoints )dy of Pj satisfying the relation y > r. In addition,
if Pj ‘does not have the checkpoint Xir then such a checkpoint is created.
- This .is done by ,copying’ the information of checkpoint Xir, of Pj (where

r’ is the

3

smallest integer greater than r for which a checkpoint of P;
owﬁgd by P, exists) e;ccluding message M. Exclusion of m‘essage M is
necessary ;n order to ensure that it does not appear twice during the
. Te-execution. In this case as before the RMN of J("kr will be the current
Receive Message counter value, however tile DMN will be the DMN val;xe
'[ Xjf So ihough the checl;point }(Jkr is. created later, the in;ormatiop
contained will reflect the state of the process just prior to ‘the
establishment of X']i‘y. Thiz} is necessary in order to strictly maintain.- the
é;,us;lity relationship. Such a checkpoint i; known as a copy checkpoint.

When y equals r, nothing needs je*be done since the checkpoint is

already established.
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méssage intersecting such recov‘ery lines are identified. vi:‘.ach recovery line
RLy,"is specified by the quadruple (y,z,W,,B,,). This implies that the
recovery line RLy, has been initiated by the z';h checkpoint of proce’ss Py.
Wy, is the ordered set of checkpoints in the ppocesses (P,..P)) which
ys 18 the set of messages which. cross this
recovery line. This sét' of checkpoints and igessages are distributively

saved throughout the system. Each process saves only the messages which

corresponds to its input channels. The recovery line is confined only to

‘the group of processes subsequently interacting with the initiator of the

recovery line either directly "‘ or indirectly, and related che‘ck'points are
established only ':aged on n;ess;xge flow. The h\umber of recovery lin'es set
up depends on the frequency of checkpointing in a process and the
subsequent mutual inferactions. Salient features of 'this 'éheck;\minting

scheme are shown in fig.6.5. However, the derivation of checkpoints and

relevant recovery lines are explained via an example in Appendix B.

7

6.3.2 Recovery of Processes

Fl

Upon ' detection of an error a process performs error diagnosis and.
»n

- identifies a recovery line say Rqu to which the system must be rolled

back in order to undo all computations performed after the system has

entered the faulty state. The pseudo code for this rollback procedure is
.

" given in fig.6.6. The process is rolled back to the chosen recovery line by

loading its process state variables with the values saved. in the PS field of

Th_us a “cut” or recovery line is dynamically established. and the \
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Functions to be carried out during rollback recovery Co

Case.{a): A process P, either might detect an error, diagnose it and select a

(1)

(2).

(3)
(4)
(5)

(6)

(7)

Case

- (1)

reco&ery line ¢r,y> to which it should rbllbackﬂ to overcome the
error, ot the process‘might receive a recovery message <r,y> on a
channel not anticipating this rollback message (say input
channel-qgi).

Retrieve and| load process state of Eheckpoint X:z corﬁesponding to the
Recovery line\(r,2z>, where z is the smallest integer > y, for ' which a
checkpoint in P, belonging to a recovery line qwned‘by P. exists.

Discard all checkpoints of P, with RMN > DMN of X!,.

Insert messages belonging to MS of Xlz at the head of. the respective
input channel buffers.

From MS of all retaﬁned checkpoints of P, discard messages -which have

_ordinal numbers > DMN of X!, .

Discard all application messages from all input channel buffers which

_ directly or indirectly depend oﬁﬁthe checkpoiﬁk Xe, of’P,.

If P, is the initiator. of the rollback then set all input channels (if

P; is not the initiator then set all input chénnels except channel;)

to the Cautious state and append R<r,y> to the ARM 1list of these

channels.- -

ofd R ‘ ' *
Sefid Rollback message R<r,y> on every outgoing channel.

(b): Process P, rgceives the rollback message ®<r,y> on a channel which
is in the Cautious state and is anticipating this rollback message.

Delete this entry from the ARM list of the channel. If due to this the
ARM 1list of the channel becomes empty, then set the channel to the

&

.Normal mode.
c

Figure 6.6: Rollback Procedure (contd.)
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Receipt of application messages . o

Application message M, on channely; is received by.a low level control
procedure which identifies and discards erroneous messages
(1) If ‘channelg

A

is in Normal Mode then Append M, to the channel. buffer of

» :
(2) 1f channe1q4.is-&ﬁ’3autious mode, then discard message M, if ttu RCP

depends on any of the rollback{i,messages in the ARM list of this
channel,

channel

Figure 6.6: Rollback Procedure
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the cor\tesponding checkpoint and inserting the messages saved in the MS

field of this checkpoint to the head of the appropriate input channels. All
checkpoints with RMN > DMN of Rqu are discarded and t;rom all
retained checkpoints messages whose RMN > DMN of Rqu are deleted.
Then it sends out rollback messages R(k,q) oxf all )its output channels. "
When another process Pj receives this rollback message fo;' the first time,
it rolls back to its checkpoint XJkr (\;vhere r is the 'sma.l}est number > q
for lwhich the cﬁeckpoint owned by P’ exists) by setting the process
variables to the values 'saved in the PS field of the 'checkpoint, and
inserting the messages saved in the MS field of this . checkpoint to the
heads of the appropriate input channels. Subsequently, this process sends
the rollback message R(k,q) on all its output channels. The messages
which depend on the rolled back states of P, should be dis::arc/led as they
z:re dependent on some faulty computation. In order to a,ccomplis.h this,
when a rollback message R(k,q) is received for the first time by a process
it will put all its other input channels into a cautious ‘state in a.ntichipation
of the same rollback message R(k,q) to be received on them. A li;st
called the ARM (Anticipated Rollback Message) list is maintained for each
input’ channel of every process. The entry (k,q) will be inserted into the
appropriate ARM lists. A channel which is in the cautious state and has
(k,q) as an e‘lement“’!h its ARM list, will discard evgf; message in the

channel whose RCP value y for Py is > q. Eventually when the rollback

message R(k,q) is received on a channel the corresponding entry (k,q) will
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be deleted from its ARM list. A channel is returned from the cautious
state to the normal state when its ARM list becomes empty. Thus the
erroneous messages are revokedy by the sender in cooperation with the

receiver process. The overhead involved during rollback is O(L) control

messages where L is the number of channels in the system.

Consider the event graph shown in fig.6.5. Let process P; detect an
error a.nd‘ decid? to rollback to the recovery line RLg; i.e. the zeroth
checkpoint of P;. Then P; and P, will be rolled back to the
corresponding checkpoints. All the channels will be empty except for the
channel,; which will be loaded with message M,. Rolling back of

processes P,, P, and Pg are not synchronized and hence their

computations are not frozen during rollback. !

Consequently, the effect of a rollback is to restore the system
(affected processes) to a previously known good state. As the main aim

of rolling back the system is to overcome all effects’ ﬁxe diagnosed fault

- on the system the action of the rollback event can be interpreted as

N , -
substituting a Nop: No operation event, for the segment of the pomset

representing ; the computation between the chosem checkpoint and the
rollback -event. Using this interpretation the strategy used in creating
'copy checkpoints can be justified. Suppose qu was a copy checkpoint
created using info;xr;ation from X:‘y. The intention of rollback is to anull
the effect of all events in the sg;s'tem that are dependent on X:q.

Consequently, the effect of the message M which created the checkpoint
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X;‘q in P; must be anulled as the send event of message M is dependent

X .
on Xky (either directly or indirectly) which in turn is dependent on X:q.
Therefore Pi will' have to be rolled back to the state it had just prior to
the establishment of X . Hence, the informa:tion for Xiq is copied from

ky
X;y where y is the smallest integer > q for which a checkpoint of P;

©
2

belonging to a recovery line owned by Py exists.

Theorem 6.2
The dependency based coordinated checkpointing and rollback

recovery schéme is domino effect free. *

Proof -

~}

~Let F be the fau‘lt‘ diagnosed to be in process Pi.) Let its self
induced checkpoint which just precedes fault F be Xy. Let RLy
‘designate the recovery line corresponding to Xik which is constrt'lrc—.ted by
the Checkpointing ’algorithm. Now to prove that:
(1) RL;, is indeed a Valid recovery line.
* (2) Rollback is Domino-free.

Part 1: The proof is based on contradiction. If possible let RL; not be

a Valid recovery line, i.e. one of the four properties of Valid 'recovery

lines (§6.2.1) is not satisfied. ’ dj‘w -

(i) Violation of Property a: No effect of Fault- F can precede it. Hence
obviously no effect can persist in P; as the chosen recovery line RL;

precedes this fault.l However, if possible let an effect in process Pj due to

[}

\
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fault F not ‘be overcome by rolling the system back to RL. Then‘ f’j .
should have been influenced either directly or indirectly by Pi. after fault
F had occurred. Such \a.n influence can only be through the r;aceipt ‘of a
faulty message. Let M, be such a message (fig.6.7a). Since it has been
assumed that an effect of the fault F was not overcome b;r rolling imck
Pj to X':k, definitely the rece;ve e\;ent 'o?hM' must precede the checkpoint
X':k Hence meé?age M, wil be represented by a Backward ‘edge (T
partition to S partition) in the corresponding eveni; graph. This 'is) a
contradiction since the checkpointing scheme does not allow recovéry lines
to be intersected by Backward edges.

(ii) Violation’ of Property b: If possible let there:be two checkpoints of Pj
in RLy. I i#j these chgéi(points must be respor?se ch;ckpoi;lts.
Therefore these two response checkpoints mu;t have been created either
due to the receipt of one message, or due to the receipt of two different
m;assages: From the code of the checkpointing algorithm .it can be
observed that a response checkpoint X';' is created and associated with
some recovery line RLy., only if this checkpoiht had not been created
before.  Hence it .can be immgdiately inferred that two response
checkpoints of a process cannot be associated with the same recovery line.
Similarly neither ‘can two self induced checkpoints be associated with the
same recovery line, since the ordinal number assigned to the checkpoint

will be incremented immediately  after establishing a self induced

_ checkpoint.

\
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ili) Violation of Property c: Let X, and X% Be two checkpoints in RL;.
ik ik

J possible let RDS(X, X)) be non null. ' This implies that there is at

least one meséage M,, transmitted from Pj and accepted by Pg, whose

Receive event in Pg precedes Xigk and whose' Send event in Pj succeeds
X':k (fig.6.7b). M, will therefore be representec% bs a Backward edge w.r.t.
" RL; in’ the corresp;mding event graph. Once again this leads to a
contradiction since the algor.ithm does not allow Backward edges. to
intersect recovery lines.

(iv) Violation of Property d: Let xek and Xigk be two checkpoints in RL;,.
If possible let BDS(XJ;k,Xigk) be non null. This implies that there is at
least a message" M, sent before Xigk which is received after X’ik and has
not been saved in RL;, (fig.6.7c). From the algorithm it can be observed
that since M"w‘a.s sent befor eckpoint Xigk, the entry corresponding to
P; in f:he checkpoint vector of M, will contain a value y. which is < k.
This message M, is received by i’;/g.fter XJ;k has been established.
Therefore M, will be l’associated with recovery lines R}Jiu where y <u < k,

assuming without loss of generality that XJik is currently the latest

response checkpoint in Pj. ie. M, will be saved in RL;, and this leads

“te a contradiction.

Part 2: Any fault (F) between two self induced checkpoints with ordinal
numbers k and (k+1) in a process P, will be overcome by the algorithm
by rolling back P; to the kth checkpoint and the other processes to the
corresponding response checkpoints if any. Avalanche of rollbacks (domino

|
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effect) can occur while overcoming the effect of the fault F if ;)ne of the
brocesses say PJ- will have to be rolled back to a checkpoi‘ntﬂ){";_y ;vhich ’
) precedes. lek, as this in ‘turn could lead ' to ;-ollbatks— .of 'some other
processes, eventually leading to an avalanche of rollbacks. This would
only happen if on rolling back P; to lek it was found that either a.n
effect of fault F was not overcome or BDS or RDS waé not null. This
'has shown to be impossible (Part 1). Thus the rollback is domino free.
Inéidenball}, it is observed that the “unnecessary rollback”, which is the

portion of the computation in each process between the first effect of the

fault in the process and the checkpoint to which the rollback occurred, in

" the worst case, is the computation in the region bounded on one side by

the recovery line (i,k) and on the other by (i,k+1) as shown in fig.6.7d.

Q.ED.’

6.3.3 Multiple Simultaneous rollback v
[y

Avizienis et.al [3] observe that, in large distributed systems, the
probability of multiple errors occurring simultaneously in different processes
is significant. Then it is quite possible that recovery and rollback can be
initiated by a process while some other processes 'm‘a’y’ "have also initiated

rollback.

Consider the example shown in fig.6.8. Let P, detect an error at

time t; and decide to rollback to RL,;. Before this recovery action has
Y
been completed in the system, some other process P_ decides to rollback

2
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to RL,,. Examiping fig.6.8, we can state that processes Pl_agd Pj should

1 .
be effectively rolled back to X , and X‘:we respectively as- the correct O
recovery. Only ’ message M, should be inserted tg the head of channel;,
as rhessage M, will be regenerated by PJ- during re-execution from X'm-.
’lahié informal. discussion can be ’generalized to account for multiple —_
simultaneous rollback in which the -single recovery action will be a special
: case. " |
' v

Let a system P of processes (P;P,,..P ) be currently under rollback
and recovery induced by a subset of these processes which have chosen a
set s: (RL,,,RL p,--) “of recovery lines. We define a hypothetical Effective
Recovery Line: . . _ o .
Definition: Effeitive Recovery / Jine (ERL):

- ' T . ¢ ¢

This is defined " the niaximal common préfix of the set
. Z: {pva,pwb,.:.p;x;} of prefixé répresenting the sysfem S of recovery' lines

- - N 4
RL,y,--RL, '} to which concurrent rollback is in progress. That is,

¥
’ I
PEr1L fr:p‘ya; (PERL Sx Pyprees - PERL S p'm)\'. :

{RL

va’

s
'

and Fp’ at. [p’| > Ipgpyl and (P° Zr PyyP’ ZePypreP’ Zr Pam):

,
) Alternatively, the’ ERI: _for the set “S, ois specifiec;i‘ by a pair
(EX® EM’) wheré: o, I
(a.) EX" is thefset of checkpoints (EXS,E)is',...EXS) guch tha(.t EX.S‘ -

'is the earhest checkpoint of process P in the set ff gheckpoxnts .

XJ XJ wh ) of P correspondmg to the chosen set- of recovery

BN ' . ne va’
S . . ) g : 4
L ' . . - lines 8.




'events e € PERL- . Since €, € Pgpye it must be.common to the prefixes

| 4T

48 - o i
- (b) 'EM" is that subset of messages of (UJ M‘) which interséct the
. . S

Effective Recovery' Line Of S ie a message sent from Pq to P,

L]

»yiﬁ be ‘in EMS if it was sent by Pq before EXCSl and received
] ‘ ) .
by P, after EXr.‘yAn example of Multiple _Simultaneous

s Rollback is given in Appendix B.

With respect to ERL the following assertion can be made. _
. . N "? \
Lemma 6.1: The ERL as defined above is a Valid recovery line.

s

Proof: Let ERL of the system S of chosen recovery lines

{RLva,Rwa,...RP’m}' be represented bj'r the preﬁ)i ;%RL.’ The proof is

based on contradiction. If possible let PRI i;ot be a Consistent prefix.

This implies that there is a event €; .€ pgpy, one of ‘'whose predecessors [

)

{Pyas - Pwhr+Pym} coOrresponding to the recovery lines of S, W_hile e; must

not be present in at least one of the prefixes, say I;rk € Z. As e GA Prk

and ¢ € p,, f:hgs implies that p, itself is not a .Consistent prefix. Thps
v - » . / ( ”
giving raise to a c.ntradiction; o . . ¥

N N R ) Q.E-D-

6.4 ' Discussion on the Rollback algoxfithm . o

4

The Rolll:;ack . algorithm has been 'presented in : fig.6.6. * In the

-

following discussions ‘we pestablish the correctness of- the algorithm. This

4

- algorithm does .not require freezing the execution of any- process, “and A

. ¢
'
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multiple processes may simultaneously initiate rollback recovery.

Every correct rollback’ scheme must effectively replace the rolled back

v -

segments of the computation in all affected’ processes by Nop'’s i.e. no

«

effect of these computation segments must persist after the rollback.
¢ ) N . N

Distributed systems consists of two parts namely processes and channels.

Therefore for correct réllback, the events in the rolled back segment must

neither affect the state of the processes nor affect the channels. In order
[4

to precisely state the behavior of the system during rollback the following

. “.notations are introduced.

Definition: Primary Rollback Region (PRR)

B If the rollba/.ck event rolls back the process to a self e-iliduced
\~ o

checkpoint (either because of directives from the error diagnosis module, or
' | }

- . becaus? of receipt of a rollback message specifying this cheékpoint) then

the computation segment between the chosen self induc‘ed checkpoint and |

the rollback event is known as the Primary Rollback Region. PRRij

dehot& the Primar;' Rollback Region of Process P, associated with its jth

self induce? Véie_cipoint (ﬁg.6.§a). Boundaries c?f this region are )

dynamically defined, as the énd 'of theo region ,is Qeﬁned' by the Rollback “

(:.vent, “and the Sbeginn'ing of the reg';on is defined by the corresponding

t Checkpoint event. C . . '
“ p P |
. . R
. ‘} o

. ' v
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Definition: Descendent’ Set of 'a Self induced Checkpoint (DSSX;;)
This is the set of all events in the system which are either direct or
" indirect descendents (i.e. successors) of the' checkpoint recording event X;J..

Equivalently, there exists paths from X;i to each of the candidate events

in the graphical representation.of the computation (fig.6.9b).

Definition: Exclusive Descendent -Set of PRR;; (EDSRR;)

This is the set of those events in DSSXij which are  not events

‘ k .
executed 'during the re-execution commencing from Xij’ k=1..n or any

descendent .of these events (fig.6.9c).

‘Definition: Rollback Region (RBR)
The segments of the computation in each process be,.tween {;he
checkpoints of a rollback line and the corresponding rollback event in the

process, - jointly define a Rollback Region for that Recovery line. It should

be noted that all events in the Rollback Region of a Recovery line RLij

belong to EDSRRiJ-, and is denoted as RBRij. Also the projection of °

RBRij on process P; will be PRRij. The projection of RBRij on a process

P, will he denoted as RBR.

»

Definition: Faulty message

L)

Every message generated inside a rollback region (RBR), is defined to

be a faulty message, and the others are defined to be nonfaulty. o

/
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Deﬁnitiom Effectively Forwarded message

J

A 1ges /ge M is Effectively Forwa.rded to a process P. in the system'

.of processés P provxded M does not get revoked in the rollbacks mduced

by S. Such messages are also called Valid messages.

Definition: Prerollback Messages-
Prerollback messages are tho‘§‘e/messages which’' are generated by a

process before its first rollback triggered by S dccurs.

Definition: Pending Messages |
" Pending messages are those Prerollback messages which have not been

~

accepted before the receiver' commences its rollback due to S.

Definition: Newly Generated Messages

Newly generated messages are those messages which are generated

during re-execution following the first rollback, of the sending process, due .

to S. ' ’ *

8.4.1 Cori-ectqess of the Rollback algorithm

gy - . . . :
In a ‘'system subjected to concurrent rollback to the set

S {RL,,,RL,,..RL of recovery lines, a functionally correct Rollback

am}

Recovery algofithm should undo all of the effects ,of every event in the -

[y

corresponding rollback regions, on the system. Undoing an intraprocess
event requires annulling the event’s effect on the state of the process, 8o

that the process assumes the state it had before the event was executed.

\\f

.
T
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Undoing a Send event requires revocation of the message it had sent, and

-

_also annulling the consequent effect on the receiver process. The sender

procéss must assume the state it had before the Send event was executed.

Undoing a Receive event implies that the message received by this event

is returned to the channel' from - which it was received, and the process
g assumes the state it had before the Receive event was executed. In this
.context a correctly functioning Rollback Recovery algorithm must perform
the following tasks:
(a) ‘ Undo all local effects on the process state produced by events
belonging to any RBR of S, that were executed by this process.
and
(b) i]ndo all effects on the Channel states produced by

events € any RBR of S by: '

(1) Loading messages whose Receive events. € RBR of S but whose -

corresponding Send events € any RBR of S 'to the head of the
resl;ective channels.

(2) Discarding ;,ll those messages whose Send events € RBR of S
“from‘ the set of Pending and Nf:yvly Generated messages.
(3) Preserving the sequence of the mesgages in the channels so that
during rt;-execgtion the messages will be received in the order in

which they were generated.

P
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The correctness proof of the proposed Rollback recovery algorithm is
présented as a series of Lemmas and Corollaries based on. the following

additional assumptions and observations.

-

Additional Assumption:
(BA1): Individual events are atomic. The receipt‘ of a rollback message
and subsequent execution of the induced rollback event (if at all) is

performed atomically. ' -

’ . . . a
(J Observations: ik -

(Obs1): "RBR and EDSRR of a self induced checkpoint are deﬁne'd/ only on
. execution of the corresponding Rollback event. A process executes
the Rollback eveJI;t and rolls'back to a recovery line either on receipt
/ of a directive from the Erfog diagnosis module~, or on receipt of the
first rollback message specifying this recovery line.
(61)82): During rollback of a system fo a recovery line RL, ,
¢ Exactly one rollback message R(k,x) traverses each channel of the
system. |
e A process Pj sends this rollback message R(k,x) on all its output
channels, when ii'. initiates roll'(;ack to X’lkx

} .

o Eventually all processes will receive this rollback message R(k,x) on:

all of their input channels.

fObs3): Process P; on receiving the rollback message R(k,x) for the first

time will perform the following:
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P; rolls back itself to Xix and introduces messages associated
with Xikx to the head of its respective input channels provided X:‘x
exists. Puts all channels except the one on ' which Ii(k,x) was
received, to the Cautious state and enters R(k,x) into their ARM
lists. - Sends rollback message R(k,x) on all its output channels. It
then resumes execution of the applirca.tion. A channel in the
Cautious state will discard all those messages which depend on any
of the ‘recovery lifles entered in the ARM | list of that channel. A
chanrlel will delete an entfy from its ARM list on receiving the °
corresponding rollback messag;:. The channel will be switched back

* to the normal state when its ARM list becomes empty.

Lemma 6.2: All local effects on the process state produced by
events € any RBR of S, that were executed by this

process are undone, ' i

‘/_ Proof: Based on assumption BAl, it can be inferred that the rollback
regions in each process due to concurrent rollback are temporally mutually
exclusive.  Therefore an event (say E,) can belong to only one rollback

r

region at any time.

N
Consider one @ch event E; € RBR;,. Let E;, not be undone
~  properly duri&ollback‘: ie. its effect still persists. But this is
impossible since the retrieved system state is the state that was saved at

the beginning of this IRBR on stable storage and hence -will not reﬂef:t the
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influence of E 1° .

From the above it can be inferred that the effect of every event in a
recovery region will be undone. Additionally from observations Obsl and
Obs2 it is known that every process will eventually receive all rollback
messages corresponding . to S and Will undo all evénts in the corresponding
rollback regions if it exists. Thus proving the assertion. |

Q.E.D.

Lemma 6.3: No message generated -in a‘ ) rollback region will be
Effectively Forwarded. )

Proof: Assumt;. the system is being subjected to concurrept rollback to

the set S: {RL,,,RL,;,..RL} of recovery lines. Let lS| be a. Consider

a message M, generated in a rollback region RBRy,. It could either have

been generated in PRR,, or in some RBRka, where "j # k. Assume that

M, was gen‘era.ted by Pj in 'RBR'LX, and let it be effectively forwarded to

]u
process P;, where RL, € S. Before M, is received, let P; have received

p rollback nll’essage'? belonging to S, and let it receive the remaining (a-f)
rollback messages subsequently. Let A; and Ai.p represent these two sets
of rollback messages. Recall that R(k,x) '.represents the Rollback message
;:orresponding to RL,,.. As R(kx) c?uld belong either to A/i, or Ai.p
3(ﬁg.6.10) the following two ca.ées have ?o be considered.

Case 1 R(kx) € A:,: This implies that R(k,x) is received before Ml is

received. Based on observation‘\Obs3, if M, is effectively forwarded then

pa
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Send(M,) in P; < Every Checkpoint in P; corresponding to the rollback
messages in ARMj;. Then either L
(i) Rk,x) is in ARMj;, in which case the above c;xndition requires
Send(Ml) < X"h, i.e. M; could not have been generated ‘ in
EDSRRL. This leads to a contradiction. | \
(ii) R(k,x)-is not in ARM; when M, is received. This %plies that
R(kx) has beervl'.received, on Channel; before M; is received. But
this is impossible because the channel is FIFO and M, is sent@before

R(k,x) on the channel. Thus leading to a congradiction.

. Case 2 R(kx) € Ai_pz ,This implies .that R{k,x) is received by P; after it
receives M;. If M, should be effectivé!y forwh;rded, th;an the cprrespon,ding
Send event should never b}a undone "by Pj. Clearly then Send‘(Ml)' < XJ ,
this results. in a contradiction as M, ha§ been assumed to ‘be generated /in

j :
EDSRR, . ,

Similar arguments hold good even when Send(M,) € PRRY

Q.E.D.
N

} Lemma 6.4: No nonfaulty message gets discarded by thm’gollback

algorithm.
Proof: I possible let M;, a nonfaulty message sent by P; to Pj, be
discarded by the rollback algorithm. - Since M, is discarded either

Case 1: It was received on Channelji when 'ARMji was expecting at least -

ohe rollback meddage R(k,x) such - that XJkx < Send(M,;). This implies




Therefore Send(M,) < XJ which unphes that Send(lvzl) € Bky As
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that M; ,was generated in a rollback region possibly in RBka and hence

is faulty. Thus resulting”in a contradiction.
Case' 2 The Receive event Whlch a.ccepted M, was undone due to receipt
of a rollback message say Rk ,x) and X']h < Send(M;). (Note if-
Send(M, ) < XJ , the message M, is reinserted on the channel and hencEX.-
is not discarded). This once agaln requires M,; to have begn E;;xrrated in
R‘BRL( thus giving ralsiﬁ a contra.dmtxon. N
Sir-nil.ar arguments hold good when l\fl is .genera,tedn by PRR,,.

| 4 ‘ ~ QED.

Lemma 6.5: Every Prerollback message whose Receive event € RBR but

) 4

v?hose Send events ¢ any RBR of. S, will be Effectively
A Forwarded during re-executign following rollback.

Proof:” aonsider a message M, whose . Receive event .in Pi. € ‘RBRky of i,
S, and whbse, Send event in P; 65 any RBR of . S. This implies that the -

Receive event & prefix Bky of the cox(nputati‘on, representing the Recovery

line RLk*. ) Since M, is a Prerollback’ mess'a:ge and Send ¢ any RBR of

S, the Send event < Every checkpomt in’ Pj obrresponding' to S.

' Send € Bky but Receive ¢ Bky’ the’ Message M, wxll intersect Rka and

g E
from the algonthm it 1s seen that M w111 be. remserted ‘to the }\ead of '

the channel when the receiver rolls back to KLy 5 B S "

«° :
- .

. o T . : A
.é‘ . ) ¢ )
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Assume that t(f/l; reinserted Prerollback ‘message M, is mnot Eﬁ'ectively'

- F@warded during re-execution. This i'rnf)lies that the message was\‘\jrevoked

a

A Send;r process révokes a niessage oy if the
Send event € a RBR of 5. Thus giving raise to a contradiction.
X - o . <. f’ . &« .

L - R . QED.

. : ' ) K
! L ' A . -
) Ao .

Lemma '6.6: ‘No Pré%ck I message which ‘has ‘already been received
c/ .

'a;nLd whose Receive event ‘¢ any {RBR of S, will be

s . reaccepted durmg re-execution followmg rollback

Igroof If possible let a Prerollback message M, be Effectlvely Forwarded

durmg re-executxon follomng rollba,ck to a recovery hne Rka € S

3 +

\eg®

should be Eﬁ'ectively ",Forwa.rdec}\" duri‘ng re-execution tflen . its

v ’

Send event € Computatlon prefix Bky ,ﬂq;\resentlng this recovery hne, and
» ‘

its Receive event E Bky'

“been getnerated %%
N, T 4

. ,. had “‘}"\/ . ’ . ‘ \d ﬁ’ .
orxgmal computatlon: the above requirement on the Send and Receive

BR. ' As M, has already been 'receivkd" during the
. ‘ . - ,

events - mplxwﬁhat “"the: Receive event € RBR. Thus raising a
: contra.dlctlon. = ‘ S .
N - e N 0 . . L
A B - . N . \
‘ /. ‘ '\. N * . Q.E.D
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This is because by Lemma 6.3, M, cannot have
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Corollary 6.1: Only those Pending & Newly generated messages whose

t

L

Send events: € any RBR of S, will be discarded.

Proof: Two possibilities exist and have to be considered:
' N

Case .+ If possible let a Pending or Newly generated m(;saage M, whose

Ly k :
Send event ¢ any RBR of S, be disc:rded. By definition .a message

]

whose Send event ¢ any RBR, is a nonfaulty message. By lemma 6.4
) ¢ , ; ~

such a message cannot be discarded and thus leads to a contradiction’ 4

Case 2+ If possible let the Pending or Newly generated message M,

L)

-

whose Send event € a RBR of S, not be discarded. By deﬁnitioﬁ since

¢

the Seld event € a RéR' tfle ‘me‘ﬂsag;}ust be a faulty mkessage and by
lemma 63 ’a. cogt;'adiction results. - | |
/- ‘_ Q.E.D.
¢ b ' ‘

Lernma 6.7: ‘The messages that are effectively forwarded on each channel

¥
will be in the sequence in which they were gene/ated by

ey

2

4 the Sender. 4

°

[}

Proof: As far as the pending and the new messages are cp;u:erx}ed it is
easily seen that the sequence is not affected. This is because the chanmel
is FIFO and if a pending méssage in. the channel is discarded thenall its

successors will also be discarded. The sequence of undisarded messages is

©

in no way altered. _ Additionally, as new messages arq added bhly to the

tail of the channel they will not affect tl{Aseduence;'

G -
YR - -
o

‘. H
. 'e,
: xgc




Now consider the case in which mess&ges are inserted to-the head of
the channel due to "rollback of the receiver. This is the only possible
action 'vvhich can disrupt the sequence. Consider two . messages m, .and
m; whidh are reinserted by process P; on its input chainel from process

J

P;. Let m, be inserted ahead of m,, whereas rha ‘was generated ahead of

my, at the sender. During rollback, messages are reinserted only if they

. intersect the corresponding recovery lines. The following two cases must

be cpnside&. & ’

por

Case ]a!: m, and 'my are reinserted due to rollback induced by a

-~

rollbagk |me:ssage I?L(k,f). ‘ ‘ E .
From the rollbdck algorithm it is clear that if m, was inserted in
front of m, in the channel, then the Receive(m, ). < Receive(m,). ’Since.
the channel is FIFOO this implies Send(m) < Ser;d(m&), th,us giving raise

to a contradiction.
7

-

Case (b): m, and my are inserted during rollback induced by two

a
A Y
/ L3
different rollback messages R(k,x) and R(r;y) respectively .(fig.6.11a,b).

+ a

. Consider ,the following temporal orders in which R(k,x) and R{ry)

b .

are’ received. v

~——

'(Order 1): R(kx) = R(r,y): Due to the receipt of R(k,x), message m, is

inserted to the head of the channel.. Now if my should be inserted in
. ) )
front of m,, the rollback message R(ry) must be received before m, is

L]
consumed, otherwise m; and m, will once again intersect the same

>
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Xx_y < X0

contradiction.

correct. .

this section.

my must be réintroduced, this requires

otherwise ~ Receive(m,) would ' also  be
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recovery line leading to case (a). Since in rolling back to R(ry) message

@y——: X;x, otherwise my cannot

"

‘. be introduced in front of m,). Since m, and m; do not intersect a
' ‘ i i
common recovery line, X < X,, implies Receive(m,) < Receive(m,).

This requires Send(m,) < Send(m,). -Thus giving raise to a contradiction.

-
.

(Order 2): R(ry) < R(k,x): When the process rolls back to Xlry message
m, is ‘inserted into the channel, If m; should be ahead of m,, this

message m; must be received before R(k,x) is received and additionally

'und[one.

XLX < Receive(m,) since m, should intersect /}:{ka. This as above leads

to the requirement that Send(m;) < Send(m,). Thus giving raise to a

Q.E.D.

7

' Corollary 6.2: The proposed rollback recovety algorithm is functionally

- I'd
¢

Proof: From Lemmas 6.2 to 6.7 and- Corollar} 6.1, it can be readily seen

that the algorithm meets the correctness criteria listed at the béginiling of

g . QED.

b
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6.5 Related work and Qomparison

In [54], Wood reports an unplanned checkpointing and recovery

control protocol intended for a system of intercommunicating distributed
' 3

%

} -
processes. The two criteria addressed by his protocol "are: reverting the

-

system to .a consistent state and supporting recovery point safety. He

does not address the domino effects. In his case the processes are allowed

i

to establish checkpoints asynchronously and ?o coordination is enforceda
between their ‘checkpointing operations. At the time of rollﬁack, .the
system searches for an a-;;prolgriateq recovery line ‘and rolls back all a.ffec’ted
processes to this recovery line. Due to the uncoordinated checkpointing

the domino rollback problerﬁ,could still exist in "his case. However, there

Vv ! ‘ -
is little overhead incurred during the normal execution of the processes, as’
opposed to recovery time, which makes his method suitable for certain

?

‘realtime applications.

As our algorithm is based on a planned and asynchronous strategy
only such algorithms will be considered. Consequently, although Randell

[38] has proposed a planned checkpointing strategy for” domino-free rollback,

v

as the algorithm is synchronous in nature it is not compared here.

4

Briatico et.al. [7) have proposed a distributed domino-free rollback

protocol. In their scheme the processes are allowed to" establish
checkpoints at their own pace and are assigned ordinal numbers from a

monotonically increasing counter which is incremented every time a

checkpoint is created.  Every process appends its latest checkpoint number

. /
. . « :

P



” , »
LA )
with every application message it sends out. Upbn receiving a message

(M) a progenss P; will check the received checkpoint number (s) 'withY its
own (r) (fig.6,12). If 8 > r then (s-r) additional (dummy) checkpoints are
forced on P, If on ‘the other hand s < r then the »Inessage (M) is
associated with all c};eckpoints whose ordinal number (y) satisfies the
The receiver appropriateiy updates its ordinal

relation .s <y <r.

number counters. All checkpoints of 'Pj with numbers < s are joined to

: 7
corresponding 'ch"eckpoints' of P, the sender ie. the recovery lines are
constructed by joining checkpoints with the s$ame ordinal numbers

(Iso-checkpoint number). Consider the case when r > s.and P, is latet

required to rollback to ‘its ath checkpoint.
' L]

This will fofce‘Pj \to be rolled

. h . ¢ . “ P .
back to -its g checkpoint. However, it would have been enough for the

receiver (Pj) to be rolled back to its r checkpoint in order to undo the
effects ?f this possibly contaminated message. Tl{us this algorithm results

in unnecessary rellbacks. Tt has another drawback in creating excessive

x . :
dummmy checkpoints if the sender’s checkpoint number is greater than the

receiver’s checkpoint number. These drawbacks are possibly caused by

their labelling scheme which does not consider the temporal relationship

_among the interprocess interactions, unlike .ours. In contrast, to Briatico’s
S . \ { I
our sch'e\m_e\‘ guarantees Minimal distance rollback by utilizing the recovery

> T

points (eﬁ'icigntly . while setting up the recovery lirres.

Moreover, our

scheme does \not create unnecessary .checkpoints. However, to engure

-

minimal dista.hci rollback, which is not ensured by Briatico et.al., our

s
: 7

I = )

o

‘i"\\'
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L4

Unnecessary Rollback

e

4
‘

-

Remérks: \ , .
(1) PJ and P, are unnecessarily rolled back to their Checkpoints

corresponding to RL, in order to'overcome fault F in Py. It

would have been sufficient to rollback Py and P, to states A |

and 8~ respectively. ‘ .

-(2) Lot of dummy checkpoints will be created when a process (P,) which
infrequently - establishes checkpoints, infrequently
communicates with a group of frequently communicating and

_ checkpointing processes (Py and P,).
\\ a

Figure 6.12: Exceptional cases for Briatico's Checkpointing ;chene
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scheme may induce ‘more checkpoints than their scheme. ‘The exact
increase will depend orn _the frequency of checkpointing within the processes

~
and the dynamics of interprocess message communication.

9

Koo [25] has proposed a rollback recovery a.lgorithrfl recentTy.' In this
algorithm processes establish local checkpoints based on their requirements.
Once a proceés«' ‘ta.kes a checkpoint, then it requests (the other processes
also to checkpoint. A process rgceiving this request will establish .a ‘new\
checkpoint only if its. previous checkpoint does not account for all the »
causes whose effects haveﬂ been felt before this che;:kpoint of the originator.
. Thus a Consistent global state is captured. Like Briatico’s algorithm this

scheme also does not track dependencies and hence could lead to

unnecessary rollback in a. situation s_imfla.r to the one depicted in fig.6.12.

: °

Stzrom et.al. propose a scheme’ for domino-free rollback [46]9‘ Their
strategy involves a slow speed stable store. Their model of DCS is not
the same as ours. However, it can be observed that every message
\

crossing an arbitrary recovery line is saved in their scheme and they also

assume that computations are exactly repeatable. ']

In their latest work Kim et.al. [24] report a tecl?nique wherein
distributed ' recovery block's are executed aynchronously. Their checkpoints
are coordinated to ensure domino-free and minimal distance rollback.

- $

They do not address the issue of multiple and simultaneous roll




170 >
\ :

[50,37] and - Kim’s) -have a similar approach to the coérdination of

checkpoints. | ! ' $
_ :

6.6 Summary‘ )
\ B
We have presented a checkpointing scheme which coordinates the

9

creation of checkpoints in the processes based on inter-process interactions.
. g

Within itself a process may initiate checkpointing”based on its own local
. i .
requirements and environment. This algorithm minimizes rollback distanceﬂ ¢ _

saves messages selectively, does not require special control messages during

checkpointing and does not create dummy checkpoints. Additionally, this

%

algorithm purges only the contaminated messages while rolling back to the

chosen recovery line. For rollback purposes a process would normally

8
A}

choose a checkpoint owned by itself. This is done so as to nroliback just

» ) ‘
the right amount for undoing the computation contaminated by the error.

. In large distributed systems mﬁltiple’ errors could concurrently occur.
N /

Our algorithm has been designed to work efficiently even in those
5 > )

environments where multiple processes initiat}e recovery actions concurrently.

Then processes cooperatively define an Effective recovery line to which they

1

" asynchronously rollback and restart their execution.

<
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Conclusions i
. 8

System-wide information is necessary, for efficiently solving a number
of problems in distribpu‘ged systems. The exact information to be gathered
and the coordination required between the processes while gathering this
information depends on the applications. One of the main contributions of
this thesis has been the evolution of a Globalfsta.te classification, scheme.
Chapter 3 was devoted to this study. A number of problems requiring
global information were analyzed and the Global states were classified into
four .distinct ca.tegories{;) namely: Statistical Global states, Stable Global
slta.tes', Consistent Global state :.nd Synchronized Global state. Interesting
properties of these states have been derived after studying generic
problems. Stable global states ha;'e been proved to be able to detect
Stable properties and the Global Minimum property. Consistexii; Global
states have been found to gosses’propertiesnof Reachability, Recoverability
and Global invariant preservability. The Global states themselves have

been shown to be interrelated. A Synchronized Global state = Consistent

Global state => Stable global state = Statistical Global State. . o

[N

The problem of detection’ of Global states has been addressed.
Message efficient Global state detection algorithms for detecting Statistical,

Stable and Consistent Global states have been proposed. In the model

used, there is at least one process which initiates and one process which

-
¢

. .
o M \ \
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compiles the global state. These algorithms have a message complexity of

172

O(n); where n is the Number of processes .in the system, and thé;e
algorithms have negligible local recording time. The algorithms ,achie\}e
this performand® by distributing the task of accounting for the messages in,
transit, between the receiver and sender pll'ocesses. The algorithms' have

marker flags piggybacked on application messages in -order to support

" Non-FIFO communication subsystems like prioritized message delivery and

out-of-band signalling.

" Application of the. Global I;/i'mimum detection property of Stable
global states to Distributed Discrete Event \simula.tion has been examined.
A new scheme has been ;roposed for updating local simul:_a.tion clocks in
process graphs havix;g strongly connected components. The problem has
been methodically analyzed and three differentv Optimization problems have
been formulated. The Eéga:’ﬁch for an optimal solution for minimizing the
total number of mes‘s‘age‘s needed "in order to update the c.Ioc.k: has been
shown to be NP-complete. Logically. Synchronous heuristc solutions have
been ~prt?posed ‘for this problem. The performance of this solution for
strongly connected components of process graphs has been shown to be .

better than the existing solutions. Subse“queﬂtly, a hybrid scheme which-.

dynamically switches between a synchronous update scheme and a,

asynchronous update scheme depending on the estimated clock jump has

it
/

" been proposed. The performance of this algorithm can be tuned by

properly selecting the threshold value for performing the switch.
. .

+
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As an application of Consistent global states the problem of
‘Backward Error Recovery of distributed systems was consid;red. The \
reasons for Domino Rollback were carefully analyzed and a new algorithm
for achieving ‘Domi“no ifree rollback has been proposed. This problem is an
applicatio’n of the recoverability property of Consistent Global stat;as. A
coordinated dependency tracking scheme has been designed[ for
checkpointing the distributed éomputa.tio\;l. This scheme selectively stéres
messages for playback during re-execution. The rollback scheme has been

designed to support multiple concurrent rollbacks which is highly probable

in large distributed systems. The recovery takes place without having to
freeze the appli;;ﬁon. The algorithm neither impos®s restriction on \
intercommunication patterns nor requires periodic synchronization. This )

scheme' minimizes the ‘rollback distance by rolling back only the -affected

processes and choosiné checkpoints in each process which were created in

response to the Self induced checkpoint in the faulty.process which just

precedes that fault.

In short, in this thesis a Classificg.ti’on scheme for Global state has
been proposed.  Additionally, methods for efficiently gathering and
, managing the required Global information specific to t}xe ‘needs of two

different applications namely: Distributed Discrete Event Simulajion- and

\ ]

Backward Error Recovery have been developed. ) I

—
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7.1 Suggestions for futire work 7

o ¢

A broad spectrum has been covered in this thesis.  Consequently a
. Y 9‘ e > 7 . o ' L34
number of interesting venues for continuation -of - this © work |can ybe ‘

’

suggested. - ‘ o ' e

.
¢ - ~
& . ¢ . . >

- : . ° A SR I
In the work on Global state detection, the model used in this thesis

assumes sp;aciﬁc processes for initiating and compiling\ glob;l ‘;!:ates. There
’ are other interesting models in which specific initiatoré may bg;, absent.
For instance the\"model suggested by Liskov [31] for Distributed garbage
collection as;umeg that all processes would téke their own state whenever ﬁ
they want, and send it‘; to “a central site. ~This central site compiles the

local regérdings meaningfully to  evolve a Stable Global sta.te: In this

model no specific process initiates a system wide recording. It will be .

8
¢

interesting to develop Consistent Global State " detection algorithms for
these models. Deterministic algorithms for Consistent global state detection -

will require coordination between the processes ciuring stater recording.

*

However, probabilistic algorithms could be examined in this context.
DebuggingJ in distributed systems require a support facility for :

. fecording Consistent Global states. Generally on detection of an etror, in

. 2“‘5, " A X v
' order to be able to diagnose the %ﬂix}e of the error the error will have to
be recrehated. In this case the system will- g!m,ve to be rolled ba,ck’to a

previously saved Cc;)‘%istent global state and re-execution will have to be’

Nied

commenced from that state. During this run more detailed ‘information v

which could aid in diagnosing the error can be gathered. An important * ',

‘ ’
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M o
aid to debugg'ué will be te reconstruct the sequence of events that

4

occurred in each .of the processes. In this problem ‘Bependency tracking of
-y - '
messages could help i identifying thege precedences beﬁwsen events.y This -

wr 7 .
;

Lo . ) ) . [
should be combined with Global state detection tethniques to evolve.a

pra.ctigal algorithm for reconstructing the Pomsets. )
. B ey
The General Global state detection a.lgori(khm proposed in Chapter 4,

- . . ' .
records global states in which the number of messages in transit on the

s

channels can be determined. Ho;:vever, if the exact messages in trapsit are

necessary i.e. /ju;t the number of messages is not sufficient, then these
) .

4

algorithms will have to be appropriately extended. ThYenders cah keep

a log of all mesgages transmitted by them and these sehders will Have to

be informed about the messages accepted by the receivers before the
receivers’ state recording. Efficient ways for disseminating this information

to the senders will have to be designed and analyzed.

In the context of Discrete Event Simulation we have developed
»

heurjstic algorithms and have shown that the upperbound is significantly

lower than ‘comparable algorithms. . The exact tradeoff however s

7

-

dependent on parameters like prbcess structures, patterns of interaction
A}

during simulation and the magnitude -of clock changes. In the hybrid
algorithm additionally the threshold parameter is crucial for tuning the
‘ ‘ [

algorithm. An experimental stud‘): of practical problems would clarify the

exact trade-offs and aid in tuning the algorithms for maximum efficiency.

L.
z
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. The problem of Backward Error Recovery has been examine-d and

solutions have been proposed for some important issues here. This work

o

can be extended in several different directions. Based on the knowledge

‘

gained in solving the above problem we are .convinced that adopting a

strategy which requires playing back of old messages during re-execution is
not good. for Real time systems. fl‘his(_is because by the time the rollback ~

to a previous checkpoint is performed the world might ha've altered
(o 4 o
significantly, and playing back these old messages may not be meaningful
r B -
_t% . at all. = This however depends on the process’ gynamics.. A scheme for

-

fadlt . tolerance in Real time .systems must address a number of - issues

P stj&rjipg with a model for Real time systems, support of periodic “and

e,

aperiodic processes, scheduling and load balancing algorithms' for meeting

deadlines, process replication strategies, determination of the number of

B} o S T oA il o L e R e e
- .

replicas required for achieving a certain degree of fault tolerance and other

4

related issdes. In this thesis it has been assumed that checkpoints once

created are not discarded. Aspects worth investigating are the criteria for

B T KT AT B T T A R LT

" discarding checkpoints, optimal checkpointing strategies for our model,

'harid_ling of suspicioys messages, simplifications in the context of pseudo
: ¢ ) ‘ ’ . >
5 synchronous algoritlls, ‘supp_orting low speed . stable storage, and

»

coordinating shadow processes if any.

"¢+ In conclusion the tip of the global state iceberg seems to have been

examined in this thesis. Lot of issues rer‘n‘ain to be'sqlved.
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Appendix A . .

-

CLA algorithm for global state detection

-~

First, we briefly review the. CLA algorithm due to Chandy and
Lamport through ‘the same ex;.mple ) us;d in §4.2.' ‘Suppose once again
station “A” wishes' to know the distribution of wagons (global state) in
the sy;stem. qu 'should “A” proceed? For convenience, assume all
wagons are black ,and apply thg CLA to t}{ distributed system. As ‘
before, the state of a tré.ck' (channel) is defined as thepnumber of black

. : .

'a
wagons in transit and the state .of a station (process) is the number of

black wagon;' in the stations. CLA also assumes the availability of special

'“Reti” wagons (Marker). 4n addition CLA assumes that no wagon will

overtake another on a frack, and expects the system to be accident free.

9 N 8

Station “A” initiates the global state recording by counting the

number of black wagons ~“presently in “A" and sends a “Red” wagon

13

(marke;) on each of its output tracks, AB and AC. It also appoints
- 4 -b\
“observers” .for its input tracks BA and CA, in order to count the

number of° black wagons which arrive afterwards. The: above set of

<

operations na.ﬁlely counting the number of black \anagons, sending the red
wagons and the appointment of observers is considered to be indivisible ar
atomic. Upon receiving the first red wagon, station “B” (or “C”) counts’

v

the number of black- wagons currently in the station. Then it sends a

" “red” wagon on each of its output tracks and appoints “observers” on its

- 185
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input tracks to count the number o‘f black v;r ons which arrive afterwards. . °

° . Subsequently, when a station (“A” or “B” or “C") receives a l"ed‘wd"gon
on any of its input iracks the oi)server' of that ;;raci( vfrelezes - his count. A

station stops its state recording activity ‘after it has received a red wa.éon )

on each .of its input tracks. This locally ‘ recorded informatiéﬁ is ‘;eturned

to station “A”. A global state is formed when station “A” has -received

.the local state information from all stations. Tliﬂe procedure is

non-intrusive i.e. black wagons are still traversing the tracks during state

recording. But the collected information does not .constitute an

‘ingté.ntaneous snapshot. As we will prove next “the CLA al@éﬁthm

g

actually records a Consistent global state though they have pr ed it in

the context of stable property detéction.

. In summary, the CLA assumes derailments (accidents) and overtaking
»
of wagoms never occur. It should be noted that the “red” ‘wagons are

. overhea g and should be minimized.

Theorem A.1l | /‘\\ .

The CLA a.léorithm records a Consistent global state.

£

Proof: Assume the state S* recorded by CLA is an Inconsist‘ght global

- -~ . »
This could .arise only if (1) the state of some process P; is not

state.
- <1 s o s
recorded in S, or (2) a message which is in transit is not recorded, or

(3) a message sent by a process P; after its recording, has been received

by' Pj qwbefore its recording. s

- > . -
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o Case (1) State of P is not mcluded in S An iteration in CLA does : ‘

- not termma.tg until a ma&ker traverses each channel'm the system andJ 4
o Lo b
" a process records i;s state as soo\_rl, as it receives the’ ﬁrst marker of
-~ . / ¢

-

the “iteration. So if P is “reachable fro;n the untlator through some

input* cl.llé;mel to P;, eventua.lly the state of ' Pi must be tecorded, in

S*.  The stated possibility cannot a.ri‘se.' . ' v

. . \ . " . ¢ . - . ! * \

Case (2) A message ‘M which was in transit on channel; is not \
pf recorded’ by P, Therefore M was :received after the recording ‘of . L
' - v o .. P ‘ t -

ché.nnélij ‘had terminated, This implies that M was received after the
N e . ) ' Y -
) : xma.r}:er message on cha.nnelij and' therefore it~ must - have been sent on
_the channel after P, recorded . its state, giving rise to a ‘contradiction-
'\ - " I3
-anain SR : -
¢ ,‘»- N . S .
Case (3) A message M sent by P; after its recordihg, is Drecei\'red by P- v

" before its rqcordmg Message M must have been recelved before  any *

( marker message is received by P But thls is 1mposstble as M must

a [}

follow the ma.rker sent by P!, 1mmed1ately ﬁWstate recordmg, on

-
-

/ channeli and the cha.nnel -is FIFO in natufe o .
o ,.;'5' - _ . QED.
) o . :
fo the sta.te ‘recorded by C'.LA; corresponds to a Consxstent cut’ (whlch

will not contain ba.ckwa.rd chamiel edges) Thusa CLA s capaple of ,L #

L solvmg Consmtent global state problems rather than Just Sta:ble .ones. N
, o . . A
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Appendix B L

) Illustration -of Chéckpointing and Rollback 1oper'a.tions >

, .
0“ ! N A - )

+ Checkpointing 'Scheme

nsider a gistributéd;‘ system of ‘three processes. Let the STM

\representz;tlion of an instance of a distributed computation be as shown in

fig.B.l-.' (Al inessa:ges ghown in ‘the figure are Application messages, since

no control messages are necessary during the checkpointing phase.

Sigr'lifec aspects of the algorithm have been presented in -the example.
’ N
y . 5 . C
'The computation 'is split into six segments and their significance is given

below: : ' . _ | ;

Segment, 1-° -

3 !

.. a .

Each process establishes its first Self induced checkpoint and due to
3 ‘ . :
message inferaction Response checkpoints are setup in the other processes.

- K 4 B
- Focus on' process P,.

: '
e B, creates its Self induced checkpoint and its CCP, = ( 0 -)

°

. When P2 receives message M1 thh RCP = (--0) \.,.
; Smce CCP’2(2)~- 0. & RCP(2) =

-

4tta.ch M, to Checkpoint  (-,0,-); .

Sinte CCPy(3) = - & RCP@) = 0; o

‘_li ~ . o, i’

BN
a 'Create Response Checkpomt (-,0,0);

New 6P, = (00) o

"
. s
AN T
]
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"o When P, receives message M, with RCP = (0;-)
Since CCPy(1) = - SYRCP(1) = o; |
Create Response Checkl;oixft (0,0,0) - '
Since CCP,(2) = 0 & RCP(2) = -; o ;

Attach M2 to Checkpoints (-,0,0) and (-,b,-).

New CCP, = (0,0,0)

Similar functions occur in P, and Py also. - Notice that when M, is
e -..:Dl Yt —

received bfy Pg, it creates two response chéckpoint's one belonging to RLy,

and the other to RLm.

q

‘Segment 2 ! roeie -

\

_ Before this segment all processes have CCP value of (0,0,0). In‘. this -

segment no new Self induced checkpoints are °created. Hence no new
response checkpoinj;s\\vv111 get created. This is how the algorithm limits

" the number of checkpoints.

-~ . "

Segment 3
Self induced checkpoints (0,1,0), (0,2,0) are’ created by P,. Since no

interaction wit}} the other processes * occurs, no corresponding response

>

checkpc;ints are created. , N
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B

Segment - 4 ’ . ‘ oy

Shows how recovery lines get created because of indirect dependencies:

Segment 5 Co " ' -
| Illusi?rates the _Cnopy Qhéckpoint phenomenon. Focus on process P.3'
,At; the beéinnipg of the segment CCPg = (0,3,0)
* Py receives r'r;ssage M, with- RCP = (2,3,0)
Since CCi’s(l) = 0 & RCP(1) = 2;
e Create’ Response Checkpoint (2,3,0)
» New CCPg = (230) ¢ - -
| ) P; receives message M,, with RlP = (1,&,0)‘
Since CCP4(1) = 2 & RCP(1) = 1; . : \ .

V,A‘ttach M, ‘to Ch;ackpoint (2,30); -

’ * -
3 . X
Since Checkpoint X , does not exist create response checkpoin§ (1,3,0)
by copying Checkpoint (2,3,b) but deleting M;; from its message list.
Note two Recovery lines owned by the same process do not intersect
each other. ‘
Segment 6
P, creates .a Self induced checkpoint (2,4,0). " When Pl receives
messa.ée M,, it creates a Response checkpoint. Hére the Recovery line is
confinzd to processes P, and P, only.
I;.;T. ' ) 1 A ':'x;
- N
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Rollback scl'leme__P__/

In order to clearly specify the operations of the Rollback scheme the
following terms are defined.

1

1) RME- (1) (Received message set): Set of messages sent out by the
xjyk

)

process Pq before its checkpoint X:j which are received by process P after
its checkpoint X;k as observed at time “t”. )
(2) PM:;yk(t) (Pending message set): Set of messages sent by P before its

. . §
checkpoint X;k as observed at time t.

(3) VM:;(t) (Valid message set): Set of “unrevoked” messages sent by P,

—to P, after P, has crossed its checkpoint X:j as observed at time t.

Consider two processes P, and P, in a n process system. Due to
error;; detected let a simultaneous rollback to ﬂre set S:(RL,, RL’;Z, RL,q)
be in effect. Let recovery lines and. the interactions between the processes
be as shown in fig.B.2.

‘Let P, receive the Rollback messages in the ordt;r R(y,2), R(z,3)
and R(x,1). Let these messages be received by P, at t;, t, and tg
respectively. Let P, also receive the Rollback messagt;s in the .same order
but at t,, ts,\ tg respectively. Let t, > tg.

Assume that for simplicity a message M gets discarded from the

channel only when' it is scanned and its RCP depends on atleast one

element in the ARM list say R(j,a) of the channel. We denote this as

.

M > R{j,a), the complementary condition is denoted by M < ARM ie.
. ’ . *

@

checkpoint X:j which have not been received by process P_ even after its
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M does not il‘epend on any element in the ARM list of the channel.

Possible sequence of events that might occur duxing' recovery for this

example. . ) >

1
At time t;: P, receivés R(y,2) and completes rollback to Xy2 by (t1-+6t)
21 ' 21
RMxlxl(tl) = (Ml’ M2); PMxlxl(tl) =. (Ms)
. Channel,; = M3 M, My Mg
At time t;+6t °
21 .21
RM, (81 +6t) = (M,); P¥x1x1(t1+5t) = (M, My)
ARM,;, = R(y2)

Similar actions occur at t, and, tg on receiving R{z,3) and R(x,1).

S/
ARMZ]. = R(y,2> R(z,3) R(x,l) : . //
-/ .
Assume that partial re-executions occur between rollback%of process P,.

Then a possible state of the channel if we assume/,‘fhat P, is frozen

Gl § = tg + 6. -

4

Channely; = , M;M;MgM MMoR(y,2)MgR (z,3)MgMgR (x,1{M M;M,
. //'/ \ i
. after’t,”  after tg after tg.
ARM,, = R(2) R@3) R@x1) ‘

N /
/e
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Assume P, scans the channel sequentially

v
(1) Sees M,: since M; < ARM,, it is accepted )
’ So is the ccase for M2 zind M,
(2) Sees M: M, > R(x,1) it is discarded
So is the case for M; and Mg , ? ’

o

(3) Sees R(y,2): Deletes entry frqm ARM list. ARM,;: R(z3), R(x,1)
(4) Sees Mg: Since My > R(z3) it is discarded
(5) Sees R(z,3): Deletes entry frogn ARM list. ARMM: R(x,1)

(6) “Sees M;: Since My > R,J,l) it is discarded. ~

S
.So is the case with Mg b 1
(7) Sees R(x,1): Deletes entry fror'n'ARM list.. ARM,; = 0 *
(8) Sees M,: As M, < ARM,, it is accepted. 3 A
B ) .
So is the case for My and Mg
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Therefore the sequence of messages received by P, : ' @
' 21 21 21 ' .
= (RMxlxl(tl,)’ PM, ., (t1),- VM, (t>tg)) :
= desired computation sequence
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