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ABSTRACT

Globally Optimal Kinematic Control of Redundant Manipulators

with Applications to REDIESTRO

Ming Liang Dong

This thesis presents a global optimization approach for resolving redundancy in
kinematic control of redundant manipusators. The approach which is termed Globally
Optimal Kinematic Control (GOKC), minimizes a performance criterion of integral type,
and yields an optimal solution at the joint velocity level. The formulation of the
performance criterions is such that the approach suppresses lurge joint velocities near
singularities while reducing tracking errors, so that a singularity-robust control is obtained.
Furthermore, the approach can be carried out in real-time for a class of desired end-effector
trajectories. This is an important consideration in practical applications, and is also the
main advantage of the approach over other global optimization methods. The approach is
illustrated by extensive simulation studies for a variety of redundancy resolution goals for
REDIESTRO, a kinematically isotropic redundant manipulator constructed in the Centre

for Intelligent Machines at McGill University.
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CHAPTER | INTRODUCTION

1.1 INTRODUCTION

Over the last two decades. robots have played an ncieasingly important 1ole
especially in industry. Because of their stability and precision as well as their ability to
function in an environment which is impossible o1 difficult for humans to work in, 1obuts
have found their way into almost all walks of life. The increasing demand and the potential
of robots have thus inspired more and moie research on the design and control of 1obot
manipulators. An important aspect of this research has been the focus on nomedundant
manipulators as opposed to redundant manipulators. A manipulator is sard to be redundant
if it has more degrees of freedom than are requited to accomplish a particular task.
Although the kinematic and dynamic control of nonredundant manipulators has attained a
certain degree of maturity, some inherent shortcomings of this type of manipulators have
hindered their applications in practice. On the other hand, due to its dexterity and
versatility, the redundant manipulator makes it possible to implement a significantly largen
number of practical tasks. Therefore, during the lust ten years, rescarch attention has turned
to the area of redundant manipulators.

Focusing on redundant manipulators, this thesis discusses methods for solving the
optimal redundancy resolution problem, and proposes a new global optimization algorithm.
In the rest of this chapter, some background on redundant manipulators and redundancy

resolution, the motivation for this research, and the structure and contents of the thesis, are



described.

1.2 MANIPULATOR KINEMATICS

The position and orientation of a manipulator’s end-effector can be defined by the

4 x 4 homogencous transform matrix | 1]

r=|. R _ip (1.1)
00071

where R = | i',j} is the 3 x 3 end-effector rotation matrix. and p = [a.y, 2] Tisthe 3 x 1
end-effector position vector, with respect to the base. One common representation of the
end-effector orientation is the set of roll-pitch-yaw angles (o B,7y). These three

parameters are related to the elements r,, of R as follows [2]:

o = Atan2 (rys. 1733) (1.2)

B = AtunZ(—-r”.,/rfl +r§]) (1.3)
Y = Atan2(ry. 1) (1.4)

where Atan2 is the two-argument arce tangent function, and the pitch angle B is assumed to
be within (=90”,90") . Therefore, the end-effector position and orientation can be

described by a 6x 1 vector X = [x,y,z.0.B,ylT in the manipulator’s task space.

Conventionally, the kinematic relation of the manipulator, which maps the manipulator's

(3]



joint space into its work space. is defined by

X =1 (1.5

where 0 is the m X 1 joint configuration vector. It is easy to see that s should be equal (o
or greater than six for equation (1.5) to be always solvable. ie.. it is necessaty for a
manipulator to have six or more joints in order to achieve any arbitrary pose (position and
orientation) in its workspace.

The linear velocity v and the angular velocity w of the end-etfector with sespect to

the base coordinate system can be computed using the vector cross-product torm | 3] [-]

v= Y b6 =M/ (1.6)
i=1
ni
w= ¢ =M,0 (1.7)
1= |
where
3. %P when link { is rotational

h. = ! {(1.8)

Z, when link 7 is translational
Z, when link i is rotational (.9,
¢ = )
1 . .. .
0 when link i 1s translational

where Z; is the unit vector along the z-axis of link frame {7}, and P is the position vector

from the origin O, of link frame {7} to the origin of the end-effector frame {m}. We can



combine v and o into a 6 ~ 1 velocity vector of the end-effector to yield

- = r —'I
vztéz Mg (1.10)
\‘J M”‘l
In order to relate the joint velocities to the rate of change of the roll-pitch-yaw angles that

represent the end-effector orientation, the rotational part in (1.10) should be modified to

yield [5]

-1
o (} —siny cosycosP

4 B! = {0 cosy sinycosP M\-,é = LM\'ré (1.11)
yJ I 0 —sinB

From (1.10) and (1.11). we obtain the 6 < end-effector Jacobian matrix

J = I—LM"' (1.12)
| M,
which relates X and 6 as
X =76 (1.13)

Equation (1.13) is called the Jacobian relation of the manipulator.



1.3 REDUNDANT MANIPULATORS AND REDUNDANCY
RESOLUTION

It has been found that the configuration singular 1egions of tobot manipulators near
which a small translaticn or orientation in work space requires physically unrealizable joint
speeds, significantly limit the work space of a robotic system. A successful means of
overcoming this problem is to introduce some kinematic redundancy. In recent years, some
researchers have solved a variety of tasks requiring sophisticated mechanical motion in an
unpredictable and dynamically varying environment. These tasks also motivated the design
of redundant robot manipulators. For example, while a nonredundant system is very limited
in performing a task for external obstacle avoidance, a kinematically redundant system may
successfully solve this task {6] [7]. In addition. redundant systems are capable of
optimizing various performance criteria such as joint-limit avoidance [8], minimum joint
motion [9]. minimum joint velocity [10], minimum joint acceleration, minimum joint
torque [11][12]. minimum kinetic energy [13]. minimum impact force ete.. Manipulator
redundancy can also be used to solve problems such as singularity avoidance | 4] ana
posture control [9]. Recently, it has been shown [15] thatkinematic redundancy can be used
to address the problem of joint flexibility in robot manipulators.

Consider the kinematic relation of the manipulator

X =f(9), (1.14)

where X € R” is the vector containing workspace variables that denotes the end-effector
position and orientation, and 6 € R™ is the joint vector. Most conventional robot

manipulators are kinematically nonredundant, i.e., n = m. If n<m, the manipulator is
said to be kinematically redundant. As discussed above, any motion task for manipulators

can be generally defined by six independent task variables, in which three variables denote



the position of the end-effector and the others denote the orientation of the end-effector, it
is usually assumed that a kinematically redundant manipulator should have more than six
joints or six degrees of freedom (d.o.f.’s). However, in general, we can say that any robot
manipulator is kinematically redundant with degrees of redundancy r = m-—n, where n
denotes the number of task variables, and m the number of joints or d.o.f.’s. For instance, a
four-link manipulator has two degrees of redundancy when it pcrforms a positioning task
in a 2-dimensional plane. Note that, in redundant manipulators, there is usually a continuum
of alternative configurations that yields the same end-effector position and orientation.
Therefore, the control problem for redundant mampulators is to find a proper joint space
trajectory from a possibly infinite number of joint space trajectories, which produces the
desired end-effector motion, and at the same time meets the need for achieving some
additional task(s).

Fundamental approaches for resolving redundancy can be classified into two
categories: (i) local optimization methods, and (i) global optimization methods. Most of
the approaches developed to date are local optimization methods. They are based on local
information, and give joint trajectories that depend only on the local behavior of the work
space path. Accordingly, sensor-based real-time control can be implemented, and the
formulation is relatively simple as compared to global optimization methods. Local
optimization, however, has some inherent drawbucks. First, global optimality cannot be
guaranteed. In general, the solutions are suboptimal compared to those obtained using
global methods. Second, motion control under a local optimization algorithm may lead to
some undesired effects. For example, problems of high joint speed may arise, and in some
cases, a closed path in the manipulators work space does not yield a closed path in its joint
space, i.e. the motion is nonconservative. A more serious problem is that certain numerical
and algorithmic instabilities may occur, e.g., see [16][17][18].

In contrast, global optimization methods compuie the joint trajectories from

complete information of the workspace path, so that the two drawbacks of the local



optimization can be overcome. However. global optimal control methods reported to date
are limited to off-line approaches, and do not allow real-time path corrections based on
sensor measurements. Besides. global optimization usually requires  expensive

computations, which also rules out real-time control in practice.

1.4 MOTIVATION FOR THIS THESIS

The motivation for the research presented here comes from the intent in redundant
manipulators for practical applications, especially in space robotics. The aim of the
research is to examine the nature of local and global optimization methods for redundancy
resolution, and to show the advantages and shortcomings of the two types of methods. In
recent years, a significant amount of literature has appeared concerning control of
kinematically redundant manipulators. The following are the main characteristics of the
strategies developed so far. First, the common thread in all these studies is that redundancy
should be resolved in such a way that the manipulator optimizes some performance criteria
while carrying out its given task. Second., while many researchers have proposed
redundancy resolution methods involving optimized solutions to the inverse kinematics
problem, there are very few techniques that use global optimization. Finally, most of the
global methods can only be implemented in off-line strategies. This thesis makes a
contribution to the area of redundancy resolution by developing novel techniques based on
global optimization, while attempting to achieve efficient computational solutions for real-
time kinematic control of redundant manipulators. This thesis also includes the results of
several computer simulations that illustrate the techniques for obtaining globally optimal

redundancy resolution for an actual 7 d.o.f.’s robot manipulator.



1.5 OUTLINE OF THE THESIS

The thesis is organized as follows:
In Chapter 2, a review of local and global optimizing algorithms for redundancy
resolution is given. Most of the local optimization methods utilize a formulation of inverse

kinematics at the velocity level. Recall the Jacobian relation of the manipulator

X = J6, (1.15)

where J € R" %™ is the Jacobian matrix corresponding to £(6) . In the case of redundancy
(m > n), equation (1.15) is underdetermined. Section 2.1 introduces three major local
methods for solving the underdetermined equation (1.15) while minimizing a given
performance criterion. These methods resolve the redundancy by utilizing: (1) a particular
solution of (1.15), which can be detined by means of a generalized inverse of the Jacobian

matrix; (2) the general solution of (1.15), which can be represented as the sum of a

particular solution of (1.15) and the general solution of the homogeneous equation J 6 = 0;
and (3) a nonredundant system, in which the dimension of the workspace is extended by
incorporating m — n additional constraints. Two global optimization methods are presented
in Section 2.2. One of them resolves the redundancy at the joint acceleration level based on
the calculus of variations. The other gives the optimal solution at the velocity level based
on Pontryagin’s maximum principle, in which the solution is obtained by solving a two-
point boundary value problem. The results of these two methods show the main difficulties
in real-time global optimization. These problems, along with other unsolved problems in
optimal redundancy resolution, are discussed in Section 2.3.

In Chapter 3, a new global optimization scheme for redundancy resolution called
globally optimal kinematic control (GOKC) is presented. The real-time computation of this

method is an important advantage over other global methods. Section 3.1 describes the



formulation of the GOKC problem in the framework of using redundancy to minimize the
weighted kinetic energy. The GOKC control law is derived, and properties of the optimal
solution are investigated. Section 3.2 deals with the problem of real-time GOKC. A
recursive algorithm for real-time optimal tracking control is derived. This real-time
algorithm can be used for tasks in which the desired end-effector trajectories end with zero
velocity. The stability of the real-time GOKC is proved in Section 3.3, Finally, Section 3.4
proposes several variations in using GOKC for redundancy resolution.

In Chapter 4, an isotropic redundant manipulator is considered. The kinematic control
problem is solved using GOKC. Control simulations for ditferent redundancy resolution
goals are carried out. Section 4.1 introduces the 7 d.o.f.’s isotropic redundant manipulator
REDIESTRO. The rest of this chapter presents five control simulations for resolving

redundancy to optimize certain performance criteria. They are: (1) minimum norm of joint

velocities, which minimizes 6’6 globally; (2) optimal joint motion, in which the user can
restrict the motion of any joint at the expense of the motions of the other joints; (3) joint
limit avoidance, in which a new method is proposed to achieve the goal; (4) obstacle
avoidance; (5) posture control, which utilizes redundancy to adjust the arm configuration.
Finally, Chapter 5 presents some concluding remark.s and suggests some future work in the

framework of GOKC.
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CHAPTER 2  OPTIMIZATION SCHEMES FOR
REDUNDANCY RESOLUTION

Since 4 redundant manipulator has more degree-of-freedoms than are necessary to
fulill its primary motion task, we may utilize these “redundant” degrees-of-freedom to
optimize some performance criteria while the end-effector tracks a desired trajectory.
Optimization-based redundancy resolution usually involves one of two types of
performance criteria: the instantaneous performance criterion, and the integral performance
criterion. The instantaneous criterion containing the local path information leads to local
optimal redundancy resolution that optimizes the performance criterion ateach step in time.
Generally, the local optimal resolution is not unique so that a closed trajectory in the work
space may not yield a closed trajectory in the joint space. i.e. the motion is nonconservative.
This problem is further discussed in section 2.3.3. In contrast, the integral performance
criterion containing the entire information of the basic task yields globally optimal
redundancy resolution provided that the initial joint configuration is given. This resolution
is unique and therefore leads to conservative motion.

Many schemes for optimal redundancy resolution have been reported to date, and
most of them use local optimization methods. Very few global optimization algorithms
have been proposed, and the problem of real-time globally optimal redundancy resolution
is as yet unsolved.

This chapter surveys both local and global optimization based kinematic control
schemes for redundant manipulators, The advantages and drawbacks of each scheme are

also discussed. This survey provides the motivation for the idea of a new global



optimization based scheme which can be implemented in real-time. The detailed

description of this new kinematic controller is presented in Chapter 3.

2.1 LOCAL OPTIMIZATION FOR REDUNDANCY RESOLUTION

Most local optimization methods for redundancy resolution use repeated solutions of
the differential relations between joint space coordinates and work space coordinates. That

is, if the transformation from joint space to work space is defined as

X=/00) (2.1)

where X isan X 1 vector denoting the position and orientation of the end-effector in work
space with respect to the base-frame coordinates, and 8 is a mX I joint space vector,

n<n, and the differential relation forequation (2.1) is given by

X=/(06)8 (2.2)

where .J (8) is the Jacobian matrix of f(8) . Then asolution 8 of equation (2.2) is obtained
at discrete time steps during the motion of the end-effector. Ay equation (2.2) is sulved
repeatedly inreal-time, X canbe modified according to sensor measurements or interactive
human commands. Several methods have been proposed to solve this equation for
redundant manipulators, each differing in the manner in which a unique 6 is chosen among

many solutions to this equation. The most common approaches for locul optimal

redundancy resolution are outlined below.
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2.1.1 MINIMUM NORM CRITERION

Whitney was the first researcher to discuss redundant manipulators, and to suggest
resolving redundancy by using a performance criterion [1]. That is, the manipulator’s
motion must satisfy some performance criterion while executing a given task. This

performance criterion is usually a quadratic optimality index, for example,

—

1T

min [ = _6 A6 (2.3)

4 2
where A is a positive definite weighting matrix. The problem for resolving redundancy then
becomes a constrained optimization problem, i.e. minimize L in (2.3) subject to equation

(2.2). The solution for this problem can be obtained using the method of Lagrange

multipliers. Adjoining equation (2.3) and (2.2) using Lagrange multipliers, we get

1

T s
L' = iE) AB+ A (X -J0) 2.4

where A a 1 xn Lagrange multiplier vector. The necessary conditions for minimizing L'
has been found as

L

and

E—)-l—"

T
=0 A4A-A = 0. (2.6)

Note that equation (2.5) is the same as equation (2.2). Solving equation (2.6) for 8, we get

14



67 = wat. 2.7

Assuming that./ has full rank. by multiplying I in the both sides of equation (2.7) and then

using equation (2.5) in the resultant equation, X is obtained as
T N
r=x" a7 (2.8)
From equation (2.7) and (2.8), the optimal 6 is then given by

6" = x" Ay laa (2.9

Note that this is a particular solution of equation (2.2), and the solution optimizes weighted
kinetic energy function L.
The weighting matrix A in (2.3) can be chosen so as to meet different performance

criteria. The simplest way is to choose A as an m X m unit matrix. The optimality index then
VATa o : - e :
becomes 56 6 which is proportional to the norm of the joint velocities. The optimal

solution minimizing the norm of the joint velocities is then obtained directly from (2.9) as
. o 7 =1
6 =J"h) X (2.10)

Next, we use the concept of a generalized inverse 2], denoted by P*, of an n x m matrix

P, the matrix P” is characterized by the following equation

PP*P =P (2.11)



and in the case of rank (P) = n (<m).

PP" =1 (2.12)

where 1, is the n xn unit matrix. Moreover, the Moore-Penrose generalized inverse or

pscudoinverse [2], which we shall denote by P7, in addition to equation (2.11), satisfies

prppt = pt, (2.13)
T "
(P'P) = PP (2.14)
and
w1
(PPY) = PP". (2.15)

When rank (P) = n < m, the pseudoinverse is given by

pt = pT(pP!y~". (2.16)

Thus, equation (2.10) can be written in the well-known form

0 =JtX. (2.17)

Another choice of the weighting matrix A may be the inertia matrix of the
manipulator. This leads to a solution which gives the minimum kinetic energy of the
manipulator [3].

We can also choose A so as to emphasize the role of some components of X and de-
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emphasize others, e.g.. by heavily penalizing the motions of the former relative to the latter.

To synthesize the required A for this purpose. we begin with the optimality criterion

1

min ' = _,\"l.BX (218
X 2

where B is chosen to be positive definite and provide relative emphasis. e.g., we can change
the end-effector’s orientation while keep its location fixed. Substituting cquation (2.2) mto

equation (2.18) gives

min Y = 18'1‘.118.19 (2.19)

8 2
Comparing equation (2.19) and (2.3), we can define A as

A=JIR (2.20)

Although the methods that use the minimum norm criterin mentioned above are
appealing because of their generality, they have some drawbacks. First, these methods have
the general undesirable property that repetitive end-effector motion does not necessarily
yield repetitive joint motion |4]. However, there are some exceptions, e.g. |5], where
repetitive joint motion is achieved. Worse, although the motion is pointwises optimal, the
manipulator configuration can blunder into a region near a singular point, where the
minimum norm is unacceptably large [6]. Due to these drawbacks, the control methods

based on equation (2.9) are rarely used in practice.



2.1.2 GRADIENT MINIMIZATION OF POTENTIAL FIELDS

The muain idea in developing the general solution of equatior (2.2), originally due to
Liegeois [7], derives intuitively from the fact that it is possible to add to the solution of

(2.17) any vector consistent with the constraints. This is asserted by the following theorem.

The set of linear consistent equations such as (2.2) with rank (J) = n<m, admits a

solution as

6=J*X+U,~J,N)2Z (2.21)
where .ll* and .Iz’" are the generalized inverses of /. /, is the m X m identity matrix, and Z

is an arbitrary m X 1 vector.
The proof of this theorem is straightforward. From equation (2.21), (2.11) and (2.12),

we have

JO = LI X+ (J=01FNZ = 115X = X (2.

to
S8 ]
2

The matrix (/,,—J,".J) in equation (2.21) is a projection operator. which projects the

arbitrary vector Z onto the null space of J along the range-space of .12*.1 .

If we set

Z = kVH(9) (2.23)

where A is a real scalar, and VH (8) is the gradient of a function H (8) with respect to 9,
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and if the projection operator (/,,—./,".J) is chosen properly, then the component
(I, -.I;".l)Z serves to decrease H (8) when A < 0, and to increase H (6) when A >0, A
common choice for the operator is to implement the orthogonal projection, i.e.

(5 =0t (229

and

VAV RN AN (2.25)

It can be eusily shown that equation (2.24) and equation (2.25) is satistied it we set./," to

be the pseudoinverse of /. i.e.,

I == gty (2.20)

For simplicity, usually we set "1* = .I:,_* = Ji. Thus, the general solution (2.21) fu
equation (2.2) becomes

=0 X+k, ~I")VH(@). (2.27)

The joint-velocity vector in (2.27) consists of two components Gp and 6, where F)p =JiX

stands for the particular solution of equation (2.2) which causes the desired motion of the
end-effector, while ég = k(lm—.ﬁ.'.l)VH(G) stands for the general solution of the

homogeneous equation J8 = 0. The term G'g drives H (8) towards either a minimum or a

maximum, depending on the sign of &, but does not affect the end-effector motion. The joint
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motion due to 6 . is therefore called the “self-motion™ of the manipulator.

One may chose H (8) according to certain performance criteria so that equation
(2.27) can be used to resolve redundancy. If one wants to reduce the value of H (6), &
should be a negative scalar in equation (2.27), and for increasing the value of H (9), it
should be a positive scalar.

The term H (0) is called the objective function or potential function. In the
literatures, the proposed potential functions include the so-called manipulability index [&],
the inverse of the square of distances to obstacles [9] or limit stops [9] etc.. It can be shown
that the joint trajectories which avoid singularities can also be generated by an appropriate
choice of VH (8) in equation (2.27). However, it is difficult to construct a potential
function that guarantees that singularities will indeed be avoided at all times without
introducing large gradients that in themselves induce large joint velocities. This issue has
not been thoroughly studied., and a comprehensive analysis is complicated by the fact that

the trajectories of joints depend on the speed of the path in the work space.

2.1.3 EXTENDED JACOBIAN TECHNIQUE

The original work on the extended Jacobian technique is due to Baillieul [10]. As
mentioned in the preceding sections, there are many possible joint configurations 6
corresponding to a given end-effector configuration. One way to impose practical limits on
the number of choices of 6 for a given X is to insist that © optimizes some potential
function H (0). For the purpose of optimizing H (6) subject to equation (2.1), the

following theorem is very useful.

1l 22

Let X be a given configuration of the end-effector, and let 8 = 8 be a joint

configuration setting at which H (8) is extremized subject to the constraint X = f(8). If



N, isan mx~ (m—n) matrix belonging to the null-space of J. i.e. J-N, = 0.then the

equation

NI(B,) - VeH (8,) = 0 (2.28)
must hold.
The proof of this theorem can be found in [10].

Now, once an objective function H (8) has been selected, we define a function
G(8) =N (8) VuH(8). (2.20)

If a linkage is positioned with its end-effector at X so that // (8) is extremized, then the

equation

[”9)] = [X] (2.30)
G(0) 0

is satisfied. If the end-effector tracks a trajectory X (1) along which the corresponding joint

configuration 0 (1) extremizes the objective function H (8) at euch point, then we have

[f‘e(’“] = [X“)]. (231)
G®((1n)] L0

Equation (2.29) consists of (m—n) scalar equations, and the kinematic relation (2.1) has
n scalar equations. If these equations are independent, then equation (2.31) has m

independent nonlinear equations which now fully specify the m unknown joint angles 6.
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Note that equation (2.31) has to be solved numerically.
If G (@) is differentiable with respect to 6, an initial solution for (2.31) can be

propagated along a path by solving the differential equation

Ty = H (2.32)
0
where
J(6)
(2.33)
d0

is an m X m square matrix called the extended Jacobian matrix. Provided that the extended
Jacobian matrix is non-singular along the entire path, we may solve the inverse kinemnatics

problem as

6() = -’E{X (‘)”}- (2.34)

Since equation /2.34) gives a unique solution for 6, conservative motion is obtained, i.e. a
closed end-effector trajectory generates a closed joint space trajectory.

When extended Jacobian technique is impiemented in real-time, it is very important
to find an efficient method for computing N, in equation (2.29). For this purpose, Chang

[ 11] proposed following

t2
(28]



-1
N = ',n "Im—n . (2‘5)

m-=-n

where J_ is an # x # matrix which consists of » linearly independent columns ot J, ./,

is an nx (m — n) matrix which consists of the remaining m —n colunms of Joand /1, _

is the (m—n) order identity matrix. Without loss of generality we may assume that

I={, 14, (2.30)

It is easy to see that the N, as detined in (2.35) belongs to the null-space of JJ because

J-N,=1J ]

wi—n—dm_, = 0. However, this approach may not be numerically reliable,

especially if ./ is ill-conditioned (e.g. in the neighborhood of a singular contiguration). A

numerically more reliable approach would be a QR decomposition of J ora singular value
decomposition, e.g. see [12].

Equation (2.31) provides a fixed transformation from work space to joint space,
which directly solves the inverse kinematics problem for redundant manipulators. The
accuracy achieved in the viork space with this method is better than that with the
pseudoinverse method. The fact that the approach generates conservative motions is

another advantage.

2.2 GLOBAL OPTIMIZATION FOR REDUNDANCY RESOLUTION
In contrast to local optimization methods, global optimization methods compute a

joint trajectory from a complete description of the task in the work space. Therefore, all the

global optimality criteria are in the form of integrals. As mentioned previously, there are

only a few papers on global optimal redundancy resolution to date in the robotics
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literatures. Some of them are aimed at optimizing particular performance criteria such as
completion time or average kinetic energy [13] [14] [16], while others deal with general
cases in which performance criteria can be any arbitrary objective functions. These
methods usually produce joint trajectories with acceptable joint velocities, but most of them
are limited to off-line planning, and do not allow for real-time correction based on sensor
measurements. Two global optimal methods outlined in this section show the major

features of the existing work on this topic.

2.2.1 GLOBALLY OPTIMAL REDUNDANCY RESOLUTION BASED ON

LOCAL OPTIMIZATION

This method, proposed by Kazerounian & Wang [17], exposes an interesting
relationship between joint velocities and joint accelerations as redundancy is resolved
globally by minimizing the norm of the joint velocities, and locally by minimizing the norm
of the joint accelerations.

By differentiating the Jacobian relation (2.2) with respect to time, we can get the

acceleration relation
Jo = X -16. (2.37)

Using the same method as described in Section 2.1.1, the optimal solution for joint

accelerations 6. which instantaneously minimizes the performance criterion 59 0, can

been found as

=0 (X-16). (2.38)

The study on the global effects of the local optimal solution 6 in equation (2.38)



involves by examining the solution to the following global optimization problem:

L,
Minimize [ = J(ele)‘[’ (2.30

llY

Subjectto f(0) =X = 0. (2.40)

This optimization problem can be solved by applying the general theory of algebraic
Constraints in calculus of variations equation [ 15].

Define the augmented objective function
L* = [7g(6.6.0)dt. (241

where

2(8,6.1) = 6'6+A(f(8) —X) (2.42)

The A in equation (2.42) is the Lagrangian multiplier vector, then the extremal of L* s

governed by
dg _d 98, - 3
36 ;1—’(5—6) = (2.43)
and
Jg 44
3% = X—-f(8) = 0. (2.44)

25



Equation (2.43) is the Euler-Lagrange equation corresponding to variable 6. and equation

(2.44), which is the Euler -Lagrange equation corresponding to the variable A, recover the

constraint condition(2.3Y). In equation (2.43),

dg o T.r Iy T
00 ~ (_) k =72
and
(1 — 7..
(lt(ae 26.

Substituting equation (2.45) and (2.46) into (2.43) yields

JIAT =28 = 0.
Theretore

8 = 05707,

(2.45)

(2.46)

(2.47)

(2.48)

Equation (2.48) and (2.37) together construct a system of m + n differential equations in

n -+ n unknown variables ( 6 and A). Substituting (2.48) into (2.37) gives

051\ = ¥ - J6.

Fora full rank /. A7 can be solved as

AT =20y (X -16).
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then we can obtain the optimal solution ) by substituting (2.50) into (2.48) as

8 =Ty (K- =0 (X -8, (2.51)

which is the same as equation (2.38). Therefore, the local minimization of the joint

accelerations will result in the global minimization of the joint velocities.
In order to uniquely specify the optimal solution 8, we must consider the boundary

conditions for 8 and 8 in addition to the necessary condition given by equation (2.51). In
general, the only constraints imposed on the initial or tinal joint configurations and
velocities are that at times 1, and 1, they should satisfy the kinematic relation and Jacobian

relation. That is

f(O(r)) =X 1=ty (2.52)
and

X (1) =JO) 1=ty (2.53)

In such cases, which are referred to as “natural™ boundary conditions, we seck the least-

squares solution over all joint velocities which satisfy equation (2.53), i.e.

6(r) =J°X () 1=ty (2.54)

The necessary condition equation (2.51) and the boundary conditions (2.52) and
(2.54) together define a system of second-order equations. The solution to these equations

gives the minimum value of the objective function in (2.39) for a specificd trajectory.

For a given trajectory in the work space, the boundary conditions 6 (1,) and 6 (1)
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are specified by equation (2.54). Here, the problem is to find the initial joint values such
that the joint velocities reach specified 6 (1) at time 1. To solve this problem, the initial
value adjusting method [24] is used, which can be briefly described as follows. First, the
initial value 0 (z,) which is governed by X (1)) = f(8(t,)) is estimated. Second, the
differential equation (2.51) is solved based on the estimated initial values. Then, depending
on the difference between the specitied 6 (t) and its computed value, the estimated initial
value is modified. These processes are repeated until the boundary values converge to the
given values at both endpoints ¢, and . Obviously, these processes require extensive
computation and can only be carried out in off-line control.

If the joint values and velocities are specitied at time . equation (2.51) gives the
evolution of the optimal solution satisfying the initial conditions. However, the boundary
condition of joint velocities at time 1, may not satistied, the value of the objective function

of equation (2.3Y) will in general be larger than the one in the case of “natural” boundary

conditions.

2.2.2 GLOBAL OPTIMIZATION FOR GENERAL OBJECTIVE FUNCTIONS

In this section, the optimal problem of redundancy resolution is formulated as:

I

Minimize V= [[p (6, 1) +6'6]dr (2.55)

l(l
subject to X = f(9). (2.56)

where p (0. #) is an objective function defined such that V represents a performance index

of the integral type which evaluates the performance of redundancy utilization. By



differentiating (2.56). we obtain the Jacobian relation
X =788 (2.57

Suppose that a 8 satisfying equation (2.57) exists: then, from Theorem 2.1 (see section

2.1.2), equation (2.57) can be replaced by
0 =X+ (-T"NZ. (2.5%)

where JT € R is the pseudoinverse of J and Z € R is an arbittary vector, The second
term on the right-hand side represents redundancy. By replacing (2.56) with (2.58). the

optimal control problem of redundancy resolution is represented by the problem

’I
Minimize =V = j[p(e.nm’é]m (2.59)

I(J

subjectto @ =X+ (I-J1))Z=g(0,2.1). (2.60)

Although equation (2.6()) represents the kinematic relations between 6 and X, it can be
regarded as a system equation of a time-varying, non-linear, dynamical system with 6 as
the state vector and Z as the input vector. Now, regarding equation (2.59) and (2.60) as an
optimal control problem for a dynamical system, we apply Pontryagin’s maximum
principle [ 18] to the problem.

The Hamiltonian for this problem with a fixed initial value 8, = 6 (1) and free final

value 0 (tf) is as follows:
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H(\0,1,Z) =-p@,1)-g g+ATg. (2.61)

where A € R™ is an adjoint vector. Equation (2.61) can be rewritten as
) q

H(LO6,1,Z) = —(g=050)T(g-05)) +025ATA - p. (2.62)

If we choose a Z (t) such that the Hamiltonian is maximized at every moment ¢, the optimal

joint trajectory 6 (¢) is obtained by solving the following differential equations:

6 = [g%ly (2.63)
A= -[g—’(ﬂr. 2.64)

Such a Z (¢) can be obtained from equation (2.60) and (2.62). In equation (2.62), because
Z (1) is included only in g (8.2, 1), the Z(r) that minimizes || g — 0.5A| will maximizes
H. In other word, such a Z (1) should satisfy g (6, Z,t) = 0.5A. Thus equation (2.60)

yields

Z = (l—ﬁ./)f (=JF X +0.51). (2.65)

Using the following property of pseudoinverses:
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U-PPY = (1-PiP) (2,66

and

(-PrPYPT =0, (2.67)
equation (2.65) yields
Z=05-TNA. (2.68)

From equation (2.61), (2.63). (2.64) and (2.68), it is found that the optimal trajectory 8 (1)

is governed by the following differential equations:

8 =T X+05(-J" =g (2.09)
and

. o T . . T

A= (56) (2¢-2A) HF)'@’ . (2.70)

The boundary conditions which are necessary for solving equation (2.69) and (2.70) are the

given initial joint configuration

B(r,) =96, (2.71)

and the boundary condition derived from the condition of a free 6 (1) 18]

X(tf) = 0. (2.72)
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This is a two-point boundary value problem and a detailed numerical example can be found

in[19].

2.3 SOME UNSOLVED PROBLEMS
In this section, three major difficulties in solving the optimal redundancy resolution

problem are discussed.

2.3.1 ALGORITHMIC SINGULARITIES

In the case of local optimization for redundancy resolution, a suitable objective
function H (8) can be chosen such that optimizing H (0) yields the desired performance
in addition to achieving the desired end-effector trajectory. When H (0) is chosen, the

optimal joint velocity can be calculated using equation (2.27), i.e.,
6 =X+ (I-J'J)VeH ().

However, in some joint configurations, the gradient VgH (0) may be very large. so that an
unacceptably large joint velocity will be induced. Such a joint configuration is said to result
from an algorithmic singularity. A similar problem also exists in the extended Jacobian

technique. Algorithmic singularities may be introduced in the extended Jacobian matrix

Jry due to the submatrix g—g (see equation (2.33)). These algorithmic singularities occur

when either g—g is rank-deficient, or some rows of J and g—g are linearly dependent. By a

judicious choice of the objective function H (0), some algorithmic singularities may be
avoided [20] [21]. but a systematic approach is not yet available for totally avoiding

algorithmic singularities.



2.3.2 REAL-TIME GLOBAL OPTIMIZATION

To date all reported globally optimal redundancy resolution can only be carried out
off-line. Two major difticulties arise when one tries to implement these algorithms in real-
time. First, most global optimization algorithms give the optimal solution at jumt

acceleration level, e.g., the algorithm in Section 2.2.1. Therefore boundary conditions have

to be imposed on both the joint configuration 8 and the joint velocity 8 at time ¢, and [
Usually, the initial value adjusting method is used to solve this problem. This requires

estimation and adjustment many times to tind an initial joint value © (1)) such that the joint

velocities reach a specitied boundary condition 6 (#y) . Obviously, suchan algorithm cannot
in general be carried out in real-time. Second. several global optimization algorithims are
based on Pontryagin’s minimum principle. All these algorithms lead to the two-point
boundary value problem as shown in Section 2.2.2. There are many methods for solving the

two-point boundary value problems, but none of them yields an algorithm which can be

implemented in real-time.

2.3.3 CONSERVATIVE MOTION

If a closed trajectory of an end-effector in its work space yields a closed trajectory in
the manipulator’s joint space, we call the motion conservative. In practice, many
ranipulator tasks are cyclic closed-trajectory motions in which conservative motion is
desired. However, kinematic control under a local optimization algorithm cannot guarantee

conservative motion. This problem was further discussed in[22] [23]. Itis shown thatif the
relation between the work space X € R”" and the joint space 8 R™ is defined as
X = f(0), where f(+): R" > R" is a continuous function, then there are some

mechanisms (for example, a two-d.o.f. pointing mechanism and a three-d.o.f. orienting

wrist) where no continuous closed-form inverse kinematic function exists over the whole
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work space. In the global optimization approach, no closed-form inverse kinematic

functiuns are necessary. However, for some desired trajectories in the work space, even the

global optimization algorithm may lead to nonconservative motions. This problem has yet

to be investigated thoroughly.
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GLOBALLY OPTIMAL KINEMATIC
CHAPTER 3 CONTROL (GOKC) OF
REDUNDANT MANIPULATROS

In this chapter, a new global optimization algorithm for redundancy resolution, namely
globally optimal kinematic control (GOKC), is proposed. The algorithm gives the optinl
solution at the joint velocity level rather than at the joint acceleration level. The proposed
approach provides an automatic means of balancing the trade-off of the task error and the
joint velocities, thereby yielding a singularity-robust implementation of optimal kinematic
control. Another advantage of the GOKC is that, foraclass of trajectories inthe work space
of a redundant manipulator, GOKC can be carried out in real-time and yields conservative
motions. The stability of the GOKC is guaranteed, and the tracking error in the woik space

can be made arbitrarily small.

3.1 GLOBALLY OPTIMAL KINEMATIC CONTROLLER DESIGN

3.1.1 THE FORMULATION OF THE GOKC PROBLEM

The Jacobian relation of robot manipulators may be described as a linear time-varying
system. This property makes it easier to use the Jacobian relation as a4 constraint in
optimization-based redundancy resolution, rather than to use the nonlinear kinematic

relation. The system can be written in the state-space form

{ = OX+J6

Y= X (3.1)
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where X is the n X | state vector of Cartesian positions, 8 is the m x 1 input vector of joint
velocities, and Y is the output of the system. Obviously, this system is controllable and
observable if the Jucobian matrix is of full-rank.

In order to control the system (3.1) such that its state X tracks a desired trajectory X4

while using minimal control energy over the entire path, we choose the following integral

performance criterion with quadratic cost terms

l/ -
V= j[é’Ré+ X-X)T0(X-X)1dt (3.2)

l()

where Q is an  n X n nonnegative definite matrix, and R is an m X m positive definite
matrix. Q@ and R can be either constant or time-varying matrices. The quadratic nature of
the cost term ensures that the optimal control law will be linear while the constraints of the
matrices Q and R guarantee that the control law leads to a stable control.

Now, for redundant manipulators, the problem of achieving a desired trajectory with
minimal weighted kinetic energy can be expressed as the following constrained optimal

control problem:

Iy
Minimize V = [[6'RO+ (X-X)TQ(X~X,)dr (3.3)
IU
Subject to -X+0X+J6=0.

We can chose R to be a diagonal matrix such that its elements reflect the relative cost, in
terms of energy, of using each joint. R can also be chosen to match with certain

performance criterion. For example, minimization of the true kinetic energy requires that
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one minimizes the cost term GTMG. where M is the inertia matrix of the manipulator, so
that we set R = M. A similar argument can be applied to the matrix Q. It may be that the
orientation error of the end-effector is not critical but high accuracy in position is required
in a welding task. In such a case, we can choose a diagonal Q0 whose elements
corresponding to the position variables are much larger than those corresponding to the
orientation variables.

We can also adopt the extended Jacobian technique to meet the need for different
redundancy resolution goals. When the Jacobian matrix J/J is extended to an m Xm square
matrix, Q should be an m X m matrix too. Usually, .he objective (potential) function has a
value with different units from that of the Cartesian positions, and so the elements of Q
corresponding to the objective function should be adjusted appropriately.

Since the constraint in (3.3) is based on the manipulator’s kinematic information, and
the solution for this problem is globally optimal, we refer to the problem as globally optimal
kinematic control (GOKC). Note that the optimal solution for this problem is at the joint

velocity level. The boundary conditions are therefore only imposed on joint values.

3.1.2 BRIEF REVIEW OF LINEAR OPTIMAL CONTROL

In this section, we give a brief outline of the basic theory of the lincar optimal control.

In linear optimal control, the plant that is controlled is assumed to be linear, and the
controller is determined such that a quadratic performance index is minimized. The index
is quadratic in the control and state/error variables as shown in equation (3.3). Methods
that achieve linear opiimal control are termed Linear-Quadratic (LQ) methods. Such
methods have been used successfully for two types of control problems: the optimal
regulator problem and the optimal tracking problem.

Consider the system
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) =F)x()+G()u(r) (3.4)

y(t) = H()x(1)

where F (1), G (1) and H(t) are matrix functions of time with continuous entries. The

optimal regulator problem is to minimize the following quadratic performance index

Iy
V= xT(tf) Ax(1) + j (WR(Du+x"0 ()x)dt (3.5)

l('

with equation (3.4) representing a dynamic constraint. In the optimal tracking problem, we

seek to minimize the quadratic performance index

ly
V= jluTR (Hu+ (v -NT0 () (yy—y)1dr (3.6)

’()

subjectto (3.4), where y , is the desired system output. If Q (#) and R (7) have continuous
entries, are symmetric, and nonnegative and positive definite, respectively, and if A is a
nonnegative definite symmetric matrix, we can obtain linear control laws as solutions to
both the regulator and the tracking problems.

To solve these two problems, the use of the Minimum Principle of Pontryagin [1]- [4]
seems particularly well suited. Consider the optimal regulator problem (3.5). Define the

Hamiltonian using the costate vector A as

Hxu, t,A) = (WRu+x"0 () x) +AT[F()x (1) + G (D u () ] (3.7)
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and its minimum as

H(x,1,A\) = min H(v. u, 1\) (3.%)

H(x. 1, A)

.. . - oH :
If the minimum exists, and at the minimum., =— = 0, then the equations

du
X = %H*, A(0) given (3.9)
) = —ﬁ— = ..Q_ y .
A=-gHL M) = S Ay (3.10)

\ (I,)
are satisfied along the optimal trajectory. Note that equations (3.9) and (3.10) are coupled
ordinary differential equations with two-point boundary conditions. This problem is called

a two-point boundary-values problem. An approach [1] for solving this problem leads to

the following optimal solution of the problem:

¥ (1) = —-R7'6TPx (3.11)

where P is a symmetric positive-definite matrix, and is the solution of the following

deferential Riccati equation:
—P = PF+F'P-pPGRT'GTP+0, P = A (3.12)

A similar approach can be used for solving the optimal tracking problem,
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3.1.3 DERIVATION OF THE OPTIMAL CONTROL LAW
Now, we go back to the problem (3.3), which is an optimal tracking problem, and apply

the above approach. We define the Hamiltonian with costate vector A as

1
2

%e%m’ﬂx 3.13)

H = ~E'QE+

where E = X — X, denotes the tracking error. According to Pontryagin’s Minimum

Principle, we have

?TZ = RO+JTA =0 3.14)
i = -2 - —oxm+ox,0 (3.15)
}\(rf) = () (3.16)

Equation (3.14) is the necessary condition for minimum H, that is
8 = -R"LT (3.17)

Substituting (3.17) into the constraint of the problem (3.3) gives
X = -JRLM (3.18)

Then, adjoining (3.18) and (3.15), we geta linear time-varying system with 2n differential
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equations as

X 2|0 =R [X}g[“] (
H o= TR™. : (3.19)
- LRl o

Among the 21 boundary conditions, which are needed for solving (3.19), there are n
initial states X (1) and » final costates A (tf) . The initial states X (¢,) are known, and the

final costates k(tf) are given by (3.16). The solution to (3.19) can be expressed as

{
X(t) X(’n) -1 0
= ®&(ne,) + (O N { 3.20)
[k(r)] 0 HX(:(,)} lj (th) [Q&,(r)}”} (

where ® (1, ¢;) is the 211 X 2n state transition matrix of the system (3.19). Therefore, at

the terminal time t = I we have

!

X (1) X)) oy 0
= O, d , it} . 3.21
{W} (ff'{[w}’! 0 lex, ) 2y

If we divide the state transition matrix ¢ into four n X n sub-matrices as

b = 011 91 \ (3.22)
q’21 ¢22

then equation (3.21) can be rewritten as
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X(t,) = 0, (1 X(t) +¢]2(rf,t)k(t) +Q, (1 1)

and
Mt = 0, (1p 1} X (1) +0,, (1, DA+, (1:1)
where
l :
Q, (1,0 = [0y, (10) 012 (1 0] [0 (1) [ng(t)Jdr,
1
and

iy
Qz(fs’) = I:(p:” (fﬁ t) ¢)22(1,1):IJ-CD"1 (t,1) |:QX(1)(T)}(1‘E .
f {

From (3.23), (3.24) and (3.16), the costate A can be solve as
A =P)X()+b(1)
where P () is an n X n matrix defined as
P() = 10500 =05 (107 0 (n 1) =0y (1p1)]
and b (1) is the nx 1 column vector

b(t) = X(tf) +Ql (tj, 1) —Qz(rf, t) .

(3.23)

(3.24)

(3.25)

(3.27)

(3.28)

(3.29)

Equation (3.27) shows the linear relation between the costate and the state, and that P (r)



and b (t) depend on the end time g but are independent of the initial state X (7;,) . One may
note that solving for P (¢} and b (1) requires calculating inverse matrices of order n X n
and 2n X 2n, i.e.. itis computationally expensive. Therefore. we try to find some properties
of P (#) and b (r) by which calculation of the inverse matrices can be avoided. To do so,

we differentiate both sides of (3.27) to get

A = POX(D) +POX (D +br) . (3.30)

By substituting (3.27) into (3.18), we have

Xty = =JIRVITP(yX(y-Jr b (3.31)

Then, substituting (3.31) back into (3.30) yields

A= (P=PIRTITPYX=PIR I D+ D (3.32)

Next, we recall equation (3.15):

A=-0X+0X,. (3.33)

Equation (3.32) and (3.33) will hold forall X (1) , t & [t tfl , if the following equations

are satisfied

P=pPIR'IP-Q (3.34)

and

45



bh=PIRIb+0X,. (3.35)

From (3.16) and (3.27), at the end time 1 we have

K(tf) = P(tf)X(tf) —h(tf) =0. (3.36)

Since (3.36) should be satisfied for any X(tf). we can conclude that the boundary

conditions for (3.34)and (3.35) are

P(rf) = (,and h(tf) = (. (3.37)

Now, from (3.17), (3.27). (3.34), (3.35) and (3.37), the optimal control law for

optuaal tracking problem is given by

() = -k ()T OW)POXW) +b(1)] (3.38)

where P (1) is an nx n symmetric positive definite matrix given by the solution of the

following differential Riccati equation

Py =PMJO@)RT IO M)P() -0 (3.39)

with boundary condition P (tj-) = 0, and b (1) is an n X 1 column vector which can be

obtained by solving the following differential equation

hit) = P(DJOM)IYRINIT@(N) b (1) +Q ()X, (1) (3.40)
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with the boundary condition b (1) = 0.

Since the boundary conditions are given only at the terminal time te equation (3.3Y9)
and (3.40) have to be integrated backward in time. Obviously, it is difficult to implement
this in real-time. Besides, .J (6 (tj) ) 18 needed for solving (3.39) and (3.40), and 8 (7))

should satisfy the kinematic constraint

X (1) =10)). (340

Usually, it is difficult to solve for 6 (tj) from (3.41). These two difficulties can be
circumvented, and the details will be discussed in Section 3.2

Fig. 3.1 shows the closed-loop kinematic control system using the GOKC control law
of equation (3.38). The signal b (1) can be regarded as the reference input which is driven

by the desired trajectory X , (1) .

b(1 ) X
(1) —R"].IT J J‘ »X (¢)

Py [

Fig. 3.1 Block Diagram of the GOKC Control System
3.1.4 EXISTENCE AND UNIQUENESS OF THE OPTIMAL SOLUTION

To show that the GOKC is a global optimization scheme, we should not only show that

the optimal solution exists, but also prove the uniqueness of the solution.

47



Lemma 3.1 The optimal control given by equation (3.38) produces a minimum of V

in equation (3.3).

Proof As has been shown in Section 3.1.2, the optimal control law satisfies the

necessary condition for minimizing V in equation (3.3). The sufficient condition is that the

Hessian matrix of the Hamiltonian function in (3.13) is non-negative definite. This matrix

X is defined as

)

0°H
« = | 2
o°H
080E
L
From equation (3.13), we have
9 il
JH o°H
3 = Q. S5 - R,
dJE” 08"

PH
a’fae _ (3.42)
O H
26°

2 2
J H, = a,H =0, (3.43)
0EJd®  dBOE

so that the Hessian matrix is [Q “}. Siice Q and R are chosen to be non-negative and

0R

positive definite respectively, this matrix is non-negative, and the sufficient condition is

satisfied.

Lemma 3.2 If an optimal solution exists to problem in (3.3), then this solution is

unique and given by equation (3.33).

Proof Consider equation (3.31):

X = —JRYITP(O)X (1) IR ITh (1)

4R



The nXxn matrix P (#) is uniquely determined by (3.39), and the » x 1 column vecto

b (1) is uniquely determined by (3.40). Therefore (3.31) has a unique solution X (¢). The

optimal control law is given by
81 =R (NI OO IPOX @) +bD], (3.44)

since P (1), b (1) and X (¢) are unique, the optimal solution 6 (1) must be unique.

3.2 REAL-TIME GOKC

For high tracking accuracy and flexibility of operation, it is necessary to have real-time
kinematic control. To meet this requirement, the following method is proposed.

When the GOKC is implemented on a digital computer, a discrete optimal control law

is needed. The control signal 8 (¢) can be computed at each time step. That is. the matrices

R™1, 7, P, and the vector b are computed at each step. Thus, these parameters are assumed
to remain constant during each sampling interval. The discrete optimal control law can then

be expressed as

é(tf-kAt) = —R“JT(G(tf—chr)) [P(tf—kAt)X(l/—kAl) +l)(r/—AA/)| (3.45)

At

where At is the sampling period, and & = 0, 1,2, .., . The joint configuration

0(t), matrix P (1), and vector b(r), which are needed in equation (3.45), can be

calculated by using first-order estimation based on first derivative information, i.e.,

4y



S

0 (1 (k+1)Ar) = 8(1,~ kA1) — A1 (1,— kA1), (3.46)

P (1;= (h+1)A1) = P (1= kA1) ~ AtP (1,— kA1), (3.47)
and
b(t- (A+1)A1) = b (1~ kA1) = Ath (t,— kA1), (3.48)
where
P(1,- kAr) = P(r]-kAr).l(e(tf—kAt))R“' (3.49)

J'(0 (1= kA1) ) P (1, kA1) - Q

b (1~ kAD = P (t,= kA1) J (8 (1,~ kA1) YR (3.50)

I (8 (1,—hAN) b (1,= kA1) = 0X (1~ kA1) .

Now, we describe a method to implement real-time GOKC based on the discrete control
law  (3.45). Assuming that the desired end-effector trajectory is symmetric about

e+t
2

t = in both position and orientation with continuous first derivative, as shown in

Figure 3.2 for one element of X ; (1) . For this kind of trajectories, we have 6 (tf) = 0 (1y)

and the following result holds.

to+ 1y
2

Fig. 3.2 Symmetric End-Effector Trajectory
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Lemma 3.3
When the end-effector traces a trajectory that has continuous first derivative and is

_ g,
symmetric about ¢ =

. using the GOKC. the control sequence 8 (7, ~ KA1,

to

k=0,1,2,... (tf—t(,)/(At), has symmetric properties and satisfies the following

equations:

(1) = -6(1)

0 (1,+ A1 =

1

|
=]

1
>
-~

6 (1,+2A1) = -6 (1~ 241
(3.51)

.t

PR
O (5= -an = -6 (1=

2

+ Ar)

Proof  Consider the symmetric end-effector trujectory shown in Figue 3.2, the

1+t

Ir+ty, .
is the same as that from 1, tot =

trajectory from f,to t = 3 f

proceeding in the

-

opposite direction. So that if there exists an optimal solution for the control sequence

6 (1)), 6 (1g+Ar), 6 (1 +24A1), ..., 6. (1,241, 8 (1= A1), B(1)) |

then the sequence

-6 (1)), -0 (1= A1) . =0 (1= 240)., .., —B (1,+ 2A1), =6 (1,+ A1), -0 (1)
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is also an optimal solution. Since the optimal solution is unique, the equations shown in
(3.51) must hold.

For 4 given initial joint configuration 6 (1,,) , conservative motion can be deduced from

equation (3.51), i.e.

+ 1
2

tr+ 1 t
(1) = B(tf),9(t,,+At) = e(tf—At),...,e( —Ar) = 6¢ + A1) (3.52)

2

Equation (3.51) and (3.52) show an important property of the proposed GOKC scheme.
This property makes real-time kinematic control possible for a large class of trajectories. If

te+ 1

the desired trajectory X, (¢) is defined in the time interval [’0- _fT:I with continuous

Ity
2 -

first derivative, and if its first derivative is equal to zero at the terminal time 1 =

. 5 I+t ) . . . . . . . .
e, Xy( —j——,—)—(—) = (), then by extending its mirror image in the right side of the vertical

axisat ¢ = 5 we have

=1y
X lty+1) =X, (=1, 0sr< 7 (3.53)

Using equation (3.5%) in equation (3.48), and noting that 6 (tf) = 0(ty) , we can get the

e+t
kinematic control sequence by using (3.45) recursively from t to f 5 0 as
> . . . tf+ t() - Ij‘+ t()
0 (1)), (1, —AN. 8 (1,-241), ... 9(-—2—— +At), © (—2—) . (3.54)
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Since we have already shown that this sequence is the same as the following sequence

. . . N At
-0(ty) . 0 (r,+ A, =0 (1,+ 240 . ... =6 ( AN, 0 (—5—). (3.5%

2

. +1,

it means that we can obtain the kinematic control sequence recursively from 1, 0 —_-

i.e., the real-time GOKC is realized.

For illustration and verification of the above mentioned method, a simulation has been
carried out for a 3 degrees of freedom (d.o.f's) planar manipulator. The link lengths of this
manipulator are /| = /, = [; = | meter, and all joint oftsets and link twists are zero. The
end-effector is required to trace a straight line from point a to point & in the 2-D plane, and
then go back from point b to point ¢ along the same path. The desired trajectory of the end-

effector is given by

Xy =2 (2= o sin (270))
X, (0 = ’: , =205, (3.50)
Yo+ 0.2(21— 2—n-sin (2mr))

and

Xg=2+2(2 = -sin (2))
X, (1 = “] . 05<r<t. (3.57)
;+0.2-0.2(2r- i;t-sin (2ne1))

where x; and y, are the values of point @ in Cartesian space. With the sampling period

At = 0.001s, the matrices Q and R are selected as
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100]- (3.58)

o = [0 o ]
0 10000 R=1010
001

The simulation results are shown in Figure 3.3. The exact symmetry of the joint
trajectories, 0 (r), yields conservative motion, just as predicated by equation (3.52).
Therefore, if the desired trajectory of the end effector is only defined for the period

() £r<0.5 as in equation (3.56), then by extending its mirror trajectory (equation (3.57))

. !
and calculating the joint velocity, 0 (1), from = I to Ef = (.5, the GOKC can also be

achieved in real-time since we have the relations shown in equation (3.51) and (3.52).

To verify the effect of the GOKC, we have compared the performance index

(V= ZGT (1, + kAt) 6 (t,,+ AAt) Ar) of the GOKC with that of K.&W algorithm, which
k

is described in Section 2.2 as a global optimal approach. The GOKC has V = 3.2508
which is almost the same as V = 3.2600 for the K.&W. algorithm.

Note that if the desired trajectory of the end-effector has nonzero end velocities,
i.e.X,,(tf) # (), this method may not work. In such a case, after extending its mirror
trajectory, the first derivative of the whole trajectory defined for the period
fhWSts (th— ty) is discontinuous in the moment I, SO that equation (3.51) may not hold,

i.e., we cannot realize the real-time GOKC.

3.3 STABILITY OF THE GOKC SCHEME

In this section, we shall be concerned with the stability of the closed-loop system
formed when the GOKC control law in (3.44) is implemented. There are actually two key

issues in the stability analysis of this ‘‘control’’ system. The first is to ensure the
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boundedness of the matrix P (1), the vector b (¢) and the control signal 6 (1) . The second
is to ensure exponential stability since one of our major concerns is the tracking error.

Recall the open-loop system, i.e. the Jacobian relations of the manipulator
X=AX+J8, A=0 (3.59)

and the optimal control law (3.44)
8 = -k (PX+D).

It clearly makes sense to restrict attention to the boundedness of J, O, R, R, X ;. Then with
[A,J] uniformly controllable, [A, D] uniformly observable, where D is any matrix such

that DD' = Q. and X, continuous, it can be shown [6] [7] that the GOKC achieves the

desired boundedness and exponential stability. In (3.59), since A = 0, the controllability
and the observability will be satisfied if Jacobian matrix ./ and matrix Q have full-rank. In

this case, the stability of the GOKC is guaranteed.

3.4 GOKC FOR GENERAL REDUNDANCY RESOLUTION GOALS

In this section, we discuss how the GOKC scheme can be applied to achieve

redundancy resolution goals other than that of minimum weighted kinetic energy

(J-GTRG(II). Actually, there are two ways to resolve redundancy to meet the needs of

different performance criteria. One way is simply to replace the matrix Q or R with
appropriate matrices. Another is to introduce the extended Jacobian technique in the
GOKC. For some goals which cannot be described with an optimal performance criterion

such as posture control, a generalized extended Jacobian technique called configuration
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control [11] can be used. In this section, three examples are provided. Each example is

typical of its kind.

(1). True Kinetic Energy [8]
A manipulator’s redundancy may be utilized to improve the dynamic performance of
the system rather than the kinematic performance. The closed form representation of the

dynamic equations of a manipulator is

T=MO+C(0.0)+G(0) (3.60)

where M e R™*™ iy the inertia matrix of the system, te R” represents the actuator
torques applied at the joints, 8 represents joint accelerations, C (8, 0) € R denotes

torques caused by Coriolis and centrifugal effects, and G (8) € R represents
gravitational effects. The dynamic control of robot manipulators involves generating joint
torques T, i.e., driving the joints with torques T, such that the end-effector fallows a desired
trajectory closely. It is expected that a good control law would require a minimum amount
of the joint torques or minimum true kinetic energy. The true Kinetic energy of a

manipulator system is defined as

6’ M6, (3.61)

Therefore an integral performance criterion which minimizes the true kinetic energy over
the time duration of interest while the end-effector truces the desired trajectory can be

chosen as
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Yy
Minimize V = [[6'M8+ (X=X )70 (X —X,)1dr (3.62)

,()

Obviously, equation (3.3) is the same as equation (3.3) provided M = R.Note thatM isa
symmetric positive definite matrix, so that we can apply the GOKC to achieve the
minimization of true kinetic energy. However, M is a function of 6, i.e., it is time-varying
and must be calculated at each step of time. A simple simulation is given below for
illustration. The three-link planar manipulator shown in Figure 3.3 is used in the simulation.

The manipulator dynamic parameters are link masses m; = m, = my = 10.0kg, joint

viscous friction coefficients v = v = v = 4().()Nt.m./rad.s"1; the link inertias are

modeled by thin uniform rods. The inertia matrix is then givenby M = [m,-j] , where

ny = 73.33 + 50cos0, + 30c0s0, + 30cos (6, + 6,)

nyy = my = 40+ 25c0s8,+ 15¢0s (6, + 6,) + 30cos6,

nyy = myy = 16.67 + 15¢0s6,

Ny = 40+ 30cos6,
My = M3y = 16.67 + 15c0s6,
may = 16,67

The desired end-effector trajectory is chosen as same as equations (3.56) and (3.57). Let

Q = diag {1000, 1000}, R=M, and At = 1.0ms, the GOKC vyields a solution which
minimizes the true kinetic energy. Figure 3.4 shows the profile of GTMé. The performance

index 38" MOAr = 1259.1. as compared with that of 1251.3 in the case of R = 5.
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Fig. 3.4 The profile of true kinetic energy in GOKC with R=M

(2). Gravitational Torques [9]

In this case, redundancy is utilized to minimize the effect of gravity loading on the
joints. This yields the optimal configuration for which the payload capacity of the
manipulator is maximized. It also enables the user to optimally preconfiguie the redundant
manipulator before picking up a payload.

The joint torque due tc gravity loading is represented by G (8) in equation (3.00), and
is configuration dependent. Let us define the scalar weighted gravity loading objective

function as

L =G (®)WG () (3.63)
where the m x m constant diagonal matrix W represents the weighting factors assigned by

the user to the joints. To optimize L subject to the end-effector constraints X = f(6), we

require (from Section 2.1.3)

59



N? (e)gfé =0 (3.64)

where N, (6) is the mx (m—n) matrix whose columns span the null space of the

Jacobian matrix J, i.e., JN, = 0. The optimality condition (3.64) can be treated as a set of
- . . . . .. T oL .
additional kinematic constraint functions by defining @ = h(0) = N, (8) 35" and their

desired trajectory as @ (1) = (. The augmented kinematic constraints can be expressed

ds

= | X| = |f(8)
- [- T

and their desired trajectories are

X, (0
Y, () = |4 . (3.66)
o {cbd (,)
The extended Jacobian matrix is
J(9)
Jrye = ) (3.67)
Cx d
aeh(O)

Finally, by usin Jpy. ¥ and Y, (r) in the GOKC law in place of J. X and X, (1)
respectively, we can attempt to minimize L while ensuring that the end-effector tracks the

desired path. Note that the weighting matrix Q should be set to be an 2 X m matrix since
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J gy is an m x m matrix in this case. A detailed simulation study using the same technigue

can be found in Section 4.3.

(3). Posture Control [10]

The presence of redundant degrees-of-freedom in a manipulator structure results in an
infinite number of distinct arm configurations with the same end-effector position and
orientation. This leads to a phenomenon known as “self-motion™, which is a continuous
motion of the joints that keeps the end-effector motionless. In posture control, we wish to
utilize "self-motion" in order to adjust the arm configuration to certain desited postures. For
this  purpose. we define m-=n additional kinematic  constraints
®(0) = [9,,0,.....9,, _,], which specify the desired posture. The desired trujectories
&, (1) can be determined such that the munipulator reaches its desired posture smoothly.
Once the ®(6) and ® (1) have been defined, we can use the generalized extended
Jacobian technique of configuration control [9] to implement posture contiol by means of
the GOKC framework. The only difference from the previous case (gravitational torques)
is that @, (1) can be arbitrary functions because @ (6; does not come from an optimal
perforimance criterion.

For the sake of illustration. let us consider the three-link planar manipulator shown in
Figure 3.5. This manipulator is redundant with the degree of redundancy equal 1o one.
Suppose that we want to control the elbow position A or the shoulder angle 8, in addition
to the end-effector position, the additional kinematic constraint ¢ (8) can be defined in a

number of ways, e.g.,

$(0) = /sinB, elbow vertical position
$(0) = 1]‘;0591 elbow horizontal position
¢(8) =8, shoulder angle
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Fig. 3.5 Planar Three-link Manipulator

To adjust the arm configuration from its initial posture ¢ (1) toits desired final posture

O (1)), we should define a smooth trajectory ¢ (1) with zero velocity at the final point, i.e.

(bd (1) = 0.For example, we can choose a cycloidal trajectory

(t) =& (1) -
¢, = ¢(,(I(,)+¢d ! ,)Kq)d 0 {2m-sin@J (3.68)

2 T T
where T = 1.~ 1,, is the specified time duration.
The augmented kinematic functions Y, its desired trajectory Y,(r) and the extended
Jacobian matrix ./ can be obtained by using the same procedure as that in the extended

Jacobian technique, that is

d
r= |:();):| ’ y‘l ) |V<):)d(t))} ’ ]EX = aef( ) (369)
(1([ aaed)(e)

By using Y. Y, and Jpy to replace X, X, and J in the GOKC scheme, the desired posture



control can be achieved. A simulation based on a seven-joint redundunt manipulator is

shown in Section 4.6.

3.5 GENERAL REMARK ON GOKC

As mentioned in Chapter 2. in conventional control schemes for redundamt
manipulators, there are usually two parts to the control law. One determines the mation of
the end-effector, and the other contributes to the “self-motion”, e.g. by optimizing some
performance criterion. But, when the GOKC is used to control redundant manipulators, we
cannot explicitly separate the control effect into such two parts.

The GOKC can be used to control non-redundant manipulators as well as redundant
ones. In the case of non-redundant manipulators, we have to make a compromise between
the tracking error of the end-effector and the upper bound of the joint velocities. We can
select the matrices Q and R according to the task priority and the limits on the juint
velocities. For the redundant manipulators, there are two cases in the GOKC which are
worth mentioning. Some redundancy resolution goals such as minimum joint velocities and
minimum Kkinetic energy can be achieved by using the GOKC directly. In these
applications, the tracking error E and the performance measure are two distinctterms in the
objective function V. Since there exist some degrees of redundancy, the GOKC' may
uniquely determine a sequence of the joint configurations which minimizes the tracking
error as well as the performance measure. In other goals such as posture control and
minimum gr.vitational torques, the tracking error and the performance measure are in the

same term that forms an augmented tracking error

EF = y{l - y = ¢ . (3.7“)
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This corresponds to a non-redundant systemif ¥ € R”. The GOKC can achieve arbitrarily
small augmented error Ey provided the matrix Q is sufficiently large. On the other hand,
we can restrict the joint velocities to lie within given limits by increasing the magnitude of
the diagonal elements of R. However, this will be at the expense of the augmented error.
Therefore, a trade-off should be made in selecting Q and K. The restricted joint velocities
yield a singularity-robust solution, and give an important advantage which may overcome
the difficulty of algorithmic aingularities. This advantage makes it easier to achieve

various redundancy resolution gouls using GOKC.
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4 OPTIMAL KINEMATIC CONTROL OF AN
CHAPTER ISOTROPIC REDUNDANT MANIPULATOR

In this chapter, five studies of the optimal kinematic control for redundancy
resolution are presented. The globally optimal kinematic control (GOKC) schemes of the
previous chapter are applied to an isorropic redundant manipulator with seven revolute
joints. This manipulator, named REDIESTRO, has been designed and constructed at the
McGill Centre for Intelligent Machines. This robot is now fully operational and
experimental results for the verification of optimal kinematic control are also presented in

this chapter. All the desired trajectories are chosen to have zero velocity at 1, so that the

real-time GOKC scheme is used in this chapter.

4.1 THE ISOTROPIC REDUNDANT MANIPULATOR

A manipulator is termed isotropic if the conditica number of its Jacobian matrix can
reach the minimum value (=1) at certain kinematically achievable configurations [2]. These
configurations are called isotropic configurations. The main advantage of an isotropic
manipulator arises from the fact that the condition number of a manipulator’s Jacobian is a

measure of the sensitivity of the solution of the inverse kinematics problem for the
manipulator [1], i.e., if we consider the system X = J@, for a given AX, the smaller the

condition number of J, the smaller will be the magnitude of A@. Therefore, more accurate

kinematic control can be expected for isotropic manipulators. An isotropic manipulator has
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been designed at the McGill University Centre for Intelligent Machines. This is a seven-

axes, revolute joint isotropic redundant manipulator which has been named REDIESTRO

(REDundant, Isotropically Enhanced. Seven-Turning-pair RObot) [3]{4]. The Hartenberg-

Denavit parameters of this manipulator are given in the following table:

Table 1: Hartenberg-Denavit Parameters of REDIESTRQ)

Joint No. a (mm) b (mm) o (degree) 0 (degiee)
1 0.0 (1.0 -58.3127 0.0
2 231.1273 -229113 -20.0289 -11.0101
3 0.0 36.9275 105.2568 91.9445
4 398.837Y (.0 60.9094 113.9273
5 0.0 -471.5880 59.8823 -2.2616
6 135.5890 578.2057 -754715 150.24601
7 234.4458 -145.0499 0.0 63.7630

In table 1, a is the link length, b is the offset distance, o is the link twistangle, and 6 is the

joint angle. From these four parameters, the 4 x4 homogeneous transformation, 7~ h

which relates the position and orientation in coordinate system J to those in comdinate

system i — 1 , may be computed using the expression |5] :

Ti~!

s0.
{
(0
L0

-
CG’ —secai

cO.ca. —cOsa
] { t ]
SO co.
{ {

0

s0 s0.
] ]

0

a,co
i
a,s8
]

b

!

1

(4.1)

where ¢, and s0, indicate the cosine and sine respectively of 8. The transformation

between various link coordinate systems may be obtained through multiplication of the
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intermediate transformation matrices.

The joint angles listed in Table 1 denote one isotropic configuration. The condition
number of the Jacobian matrix J is equal to one when the manipulator is in this
configuration. Fig 4.1 is the assembly drawing of REDIESTRO in its isotropic

configuration.

Fig. 4.1 Isotropic Manipulator REDIESTR()
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4.2 MINIMUM JOINT VELOCITIES

The original globally optimal kinematic control problem is to minimize a weighted

norm of joint velocities 8 RO globally while the end-effector tracks the desited trajectory.
When this control scheme is applied to REDIESTRO in simulation studies, a local
optimization algorithm is used for comparison, This local optimization algorithm is based

on equation (2.16) in Chapter 2, i.e.,

8 =JtX. (4.2)
The position error E(1) is given by
E(t) =X,(1)-X(r). (4.3)
We assume that E(r) satisfies the equation

EMNM+KE() =0 (4.4)

where E (1) is the velocity error, K = Kyl . with &, a positive constant. Then £ (1) — 0 as

t = oo, Using equation (4.3) and (4.4) in equation (4.2) yields

0 =T (X,+KE). (4.5)

In the present simulation, the locally optimal kinematic control (LOKC) of equation (4.5)

is compared with the GOKC. The desired trajectory of the end-effector was chosen as
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[ Q. (0) ]
Q. (1) Qy (0)
Q (1) Q, ()
X, () = Q0] PX(())+1.5(1—§%sin2nt), 0<r<l. (4.6)
Px(t) :
P (1) P (0) + 1.5(t—ﬁsin2m)
£ (D ] 1.
LP\ 0y +1.5(r - ~2—E.sm2m)J

where € and P indicate the orientation and the position of the end-effector respectively,
the subscripts a, y, z stand for the X, Y, Z axis of the base frame coordinate, and the

subscripts v, B. oo stand for the orientations about X, Y, Z axis. This trajectory has

Xy (1)) =, sothat we can use real-time GOKC to trace this trajectory while minimizing
the weighted norm of the joint velocities at the same time. In the simulation study, the
(6 x6) matrix Q is chosen as a diagonal matrix, Q = diag| 104...10% }, whilethe (7 %x7)
matrix R is selected as R = /4, and the sampling period Ar = 0.001s. The simulation

results in Figure 4.2 show that the maximum relative tracking error is less than 1%. Figure
4. 3 gives the corresponding profiles under LOKC and GOKC. As can be seen, the GOKC

performs optimization better than the local method does.
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Fig. 4.2 Trajectories of End-Effector and Tracking Error

in Minimum Joint Velocity Control using GOKC
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4.3 MINIMUM JOINT MOTIONS

In this section, the extended Jacobian technique is applied to the optimization task
within the GOKC framework. The optimization task is to distribute the joint motions mn
such a way that a weighted sum of the joint motions is kept at a minimum. For this purposc,

the optimization objective function is chosen as follows:

7
G() = %ZI\,IG,.(I) -8 (1) 1°, faSt<a, (4.7
Ti=1

where £, is the scalar weighting for the motion of jointi. 8 (1) and 8 (1) denote the
current joint angle and the initial joint angle respectively. By choosing appropriate
numerical values for k;, we can resolve the end-effector motion among the joints such that
the joints with larger &, move less thun those with smaller & .

In order to minimize the objective function G (6) subject to the end-eftecton

constraint X = J@, we can apply the results obtained in section 2.1.2 to get the necessary

condition for the constrained optimization problem as

oG
(1 —.rf./)m = (4.%)

where J is the pseudoinverse of J. The m xm matrix (I ~.JTJ) is of rank r (= m—n)

and therefore equation (4.8) reduces to

N= =0 (4.9)
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where N is a r xm matrix formed from r linearly independent rows of (/- JtJ). The
rows of N, span the r-dimensional null-space of the Jacobian I, since J (1 - JiJ) = 0and

(I—.J%.1) is symmetric. Equation (4.9) implies that the projection of the gradient of the
objective function G (8) onto the null-space of the Jacobian matrix ./ must be zero. Now,

we define an additional kinematic function as

K, (8, (1) -8, (1))]
ky(0,(r) —8,(1)) (4.10)

QJIQJ
@l Q
I
=z

0(0) =N,

_/\7(97(1) —97(I()) )_

and the desired trajectory as ¢, (1) = 0 to represent equation (4.9). Then we construct an

augmented configuration vector Y as

, X
f“”} = 3l @11

y = [ )
$(0) T

The desiied trajectory ¥, (¢) is defined by

X, (1) X, (1)
Y ) = |40 = (Ta ) (4.12)
: LD‘,U)} { 0 }

Thus the extended Jacobian matrix "Ex is now
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g
_— 3G |. (413)
rx RN,

(Ne35)

el
The GOKC cun now be applied directly to ensure that ¥ (1) tracks the desited trajectory
Y, (¢) by replacing X, X ;. J with Y. ¥, and J py respectively in the control law. Thus, the
GOKC minimizes the error E (= Y, — Y) and the joint velocity globally. In the case of the

degree of redundancy r = 1, there is no enough degree of redundancy to meet the needs
of the minimum joint motion and the minimum norm of joint velocities. By choosing
proper values of matrices Q and R, the GOKC automatically balance the trade-off of these
two requirements. Therefore, a singularity-robust redundancy 1esolution is obtained at the
expense of tracking accuracy. Note that the additional task is given by an instantancous
performance index (4.7). the GOKC in this case yields a solution which locally optumiz the

joint motions and globally minimize the joint velocities. Because the resolution is

singularity-robust, the algorithmic singularities, which may be introduced into J; y due to

. JdG . . .
the submatrix —a—(N(,——), can be avoiced. Fig. 4.4 shows the simulation results for

d0 " “do

REDIESTRO where the degree of redundancy » = 1. The desired end-etfecton trajectory
is the same ar in equation (4.6). Plot (d) gives the joint 2 trajectories for two different values
of A,. It can be see that larger value of 4, constrains the motion of the joint more than the

smaller valu-,
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Fig. 4.4 Minimum Jouint Motion Control using GOKC
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4.4 JOINT LIMITS AVOIDANCE

When a robot manipulator carries out some motion task, its links may come into
collision with each other if one or more joints exceed certain limits. The limit tor cach joim
is usually a function of all joint angles and is thus very difticult to determine. A practical
way to detect whether a joint reaches its limit is to use proximity (distance) sensors. For
non-redundant manipulators, the only way to avoid link collisions when some joint Hinity
are exceeded 1s to stop the current task immediately. This is one of the migor limtations of
the application of non-redundant manipulators. But, in redundant manipulators, the
redundant d.o.f.’s may be used to avoid joint limits while the manipulator continues its
basic motion task. Several methods have been reported on this topic [6]. In this section, a
new method based on optimal joint motion is proposed to implement joint limit avoidance.

We assume that we have information on each joint limit, or that we have clear sensor
signals when a certain joint is close to its limit. The principle of the proposed method is to
constrain the motion of the joint that 1eaches close to its limit. When no joint limits e
being exceeded, the redundant d.o.f.’s are used to achieve the minimum joint motion, as
described in Section 4.3, (with all k, = 1). If a certain joint, say joint i, moves close to ity
limit, a larger A, is assigned to restrict the motion of joint i. In this way the joint linut
avoidance is implemented. Due to the global optimization, if & is large enough, the GOKC
will not only restrict the motion of joint i, but may also drive this joint back toward its initial
value. This property allows the possibility of avoiding multiple joint limits 1f these limits
do not occur simultaneously. For example, when joint i reaches the neighborhood of ats
limit, a large 4, in the minimum joint motion control moves it away from the limit and
toward its initial position. When joint i is sufficiently far from the limit, we set &, back to
its normal value, (all & are normally set to the same value). If joint j moves close toits Timit
later during the operation of the task, we repeat the above procedure for joint j.

In the following simulation, we assume that 6. is constrained by
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06,2 1.2 rad. (4.14)

The end-effector is required to track the trajectory as expressed by equation (4.6). The
normal values of &, are chosenas &, = 1.0, i = 1,2,...,7. When 8, reaches 1.2 rad,, ks
is setto 3. But, a sudden change of A, wiil cause “‘chattering” in the robot system. To avoid
this a (digital) filter is necessary in practice. To incorporate the inequality constraint
smoothly, it is necessary to introduce a ‘‘buffer’’ region around the joint limit. In the
present case, this buffer region is defined as 6, < [1.19, 1.20]. Thus the inequality
constraint is active when 6, 2 1.19. The weighting factor k, was made dependent on 8, as

follows:

I 63<l.l9
6,-119
hy = A ins (D g< . 4.15)
3 ]+...sm2 (——————].2_1.]9) l.])_93S1.2
3 1.20< 8,

In order to restrict the relative tracking error withir, 2%, the 7 X 7 matrices Q and R are
chosen as Q = diag! 10" ... 10* 100} and R =1,. The sampling period is

At = 1 ms. The performance of the GOKC with joint limit avoidance is shown in Figure
4.5.1f & increases gradually up to 20 when 0, reaches its limit, the trajectory of 6, moves

away from the limit and tends toward its initial value as shown in Figure 4.6. This property

gives the possibility of avoiding other joint limits in successive motion tasks.
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Fig. 4.5 Joint Limit Avoidance Using GOKC, (a) Trajectory of 8, with no limits

(b) Trajectory of 6, with limits, (¢) Change of £, when joint 3 nears its limit
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(a) Trajectory of Joint 3 (rad.)
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Fig. 4.6 Juint Limit Avoidance Using GOKC, (a) Trajectory of 8,

(b) Change of k; when joint 3 nears its limit
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4.5 OBSTACLE AVOIDANCE

The optimization control problem in this section is to demand the end-eftector to track
some desired trajectory while simulta.ieously ensuring that none of the manipulator tinks
collide with workspace abstacles. In formulating this problem, we can follow the approach
proposed by R.Colbaugh et al [7], which is based on the configuration control technigue.
In this formulation, all workspace obstacles are enclosed in convex volumes, and euach
volume defines a **space of influence™” (SOI). The SOI's are assumed to be spheres in
three-dimensional work space, but extension to other geometrical shapes is straightforwind
(see [7]). If any point on the manipulator enters the SOI of an obstacle, the manipulator
redundancy is used to inhibit the motion of that point in the ditection toward the obstacle.
To implement this, we first need to find the “*body critical point’™ (the point on the
manipulator currently at minimum distance from the obstacle) and then determine whether
this point is within the obstacle’s SOI. To find the body critical point, one may proceed by
locating all of the link critical points (the points on each link closest to the obstacle) and
then pick the point which is closest to the obstacle as the body critical point. Figure 4.7

shows the relationship of link 7, an obstacle and its associated SOI in the workspace.

Link i

Fig. 4. 7. Relation of Link i and Obstacle
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In Figure 4.7, [, is the length of link i, X,, € R* defines the position of the SOI center
in the base frame coordinate, r(, is the radius of the SOI chosen to allow some *‘buffer’’
between the SOI and the obstacle, X, € R3 is the location of joint i relative to the base
frame, o, is the distance measured along link 7 from joint i to the link critical point (X ) i
p, = X,~ (X)) isthe 3x 1 vector pointing from joint i to the center of the obstacle. By

using these definitions in Figure 4.7 and defining the 3 x 1 unit direction vector
¢, = |X;,,— X171, the following recursive algorithm for locating all link critical points

is derived:

0 o, <0
. 1 .
o, =4 elp = FIX =X ITIX=X] O<o<; (4.16)
!
l, ozl
(X)), =X, +ae,. 4.17)

The distance from the link 7 critical point to the center of the obstacle is then

(d), = | (X)), =Xq|- 4.18)

Detining the critical distance . = min { (d.) .}, the corresponding link critical point as
the body critical point X, and noting that the critical distance is joint configuration

dependent, we can express the criterion for obstacle avoidance as the following inequality

constraint:



d.—r,=g(8) 20. (.19

Once the obstacle avoidance problem is formulated as the Kinematic constraint equation
(4.19), two possible cases need to be considered: (1) ¢ (8) > 05 in this case, equation (4.19)
is satisfied and the entire manipulator is outside the SOL Therefore, the manipulatm
redundancy can be used to achieve other additional tasks. (2) g (8) <02 in this case, the
manipulator is inside the SOI of the obstacle. Here, the 1edundancy is used to achieve
obstacle avoidance by inhibiting the motion of the body critical point in the ditection
toward the obstacle. To this end. the inequality constraint (4.19) is replaced by the equality

constraint
g(0) =0, (4.20)

so that the extended Jacobian technique can be used to resolve the manipulator’s

redundancy. The end-effector configuration vector X is augmented to obtain Y as

Y = [X] (4.21)
¢

The desired trajectory of Y is

Y, (1) = [Xd(f”} , (4.22)

The extended Jacobian /. is obtained as
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J /

Tex = |0g| = od,|, (4.23)
d9 00
(—)(I{ . . . .
where 5 May be computed through direct differentiation of the elements in equation
(4.1¥) as

dd

‘= l|x -X |7'Ei)f" =1
d "¢ 7000 d,
where Jy is tecognized as the Jacobiun of the critical point X .
Now. we can work in GOKC framework using the results in equations (4.21) - (4.23).
By the same approach as that shown in the previous sections, obstacle avoidance can be

implemented by replacing the end-effector configuration vector X, the desired end-effector

trajectory X (1), and the Jacobian matrix J, with the augmented configuration vector Y,
the desired trajectory Y ,, and the extended Jacobian matrix J ;y, respectively in the GOKC.

In the following simulation, for the ease of computation, the link critical points are
assumed to be in the middle of each link. The simulation task is to avoid a moving obstacle
while the end-effector remains motionless. The trajectory of the centre of the moving

obstacle is given by

0.24
X, (1) = 10.6+0.8¢ 0=<e<1. (4.25)

0.8

The radius of the SOI is chosen to be (.25m while the radius of the obstacle is assumed



0.2m. The obstacle would collide with link 4 if obstacle avoidance control was not

employed. To avoid chattering at the SOI boundary. a simple digital filtet is implemented
in this simulation, the 7 x 7 matrix Q is chosenas Q = diag | OB TTA Q. } . where

Q.. is a scalar weighting corresponding to the obstacle avoidance task, and is set to be

0 d.>r,

Q(. = d.— Or 1 d.-0, (4.20)
8000 (’—(';—_—-0—~ - ;5-& sin (27{;“—:—()—' )) (), < (Il‘ < "y
] - 9]

!

where d . is the critical distance, i.e., the distance between the body critical point and the
center of the obstacle, 1, is the radius of the SOI, and O, is the radius of the obstacle,
When d.>r,, Q, is set to zero, thus the manipulator redundancy is utilized to achieve the
minimum norm of joint velocities. If o <r,, the redundancy is used to solve the obstacle
avoidance problem. The other parameters in GOKC are chosen as K = /5, and sampling
period Ar = 0.001s. Figure 4.8 shows that . >0, = 2.0 is satisfied. It also shows that

when d_. < r(, the GOKC drives the joints to avoid collision with the obstacle.
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Fig. 4.8 Obstacle Avoidance Control using GOKC
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4.6 POSTURE CONTROL

. .

For a manipulator with » redundant joints, a phenomenon known as **self-motion’
exists, which is a continuous internal motion of the manipulator joints that keeps the end-
effector motionless. The problem of posture control is to use self-motion for the purpose of
adjusting a manipulator’s configuration while the end-effector is tracking a desited path.
The main idea of the configuration control based method for posture control has alieady

been introduced in Section 3.4,

In the following simulation study. the posture control task is to move joint 2 of

. n .
REDIESTRO from its initial value 0, () to the desired value 9_, (g + 5. while the end-

effector stays motionless. For this purpose, the additional Kinematic constraint can be

defined as
¢ (0) = 92, (4.27)

and its desired trajectory is chosen as

o, (1N =8, + - (r—%tsin?.m). O<r=| (-1.2%)

T
2

The end-effector configuration variable X is augmented to Y as

Y = (X}. (4.29)

L)

and the desired trajectory of Y is specified as
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X y
Y, () = D) O (.30
0, (1) o, (N

The extended Jacobian matrix is given by

J
.I}:\' = a(p . . (‘1.3‘)
00
where
d )
5% =o100000) (4.32)

By using Y. Y, (1) and J -y in the GOKC, the posture control is achieved. The parameters

of the GOKC are chosen as: Q = diag| ..o ). R =15 and Ar = Ty The
simulation results show that the relative tracking error is less than 0.5%. Figure 4.9 gives
the position trajectories of the end-effector and the position tracking errors und Figure 4.10

shows the trajectory of joint 2. It is clear that the posture control sub-task has been

accomplished.
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CONCLUSIONS AND
FURTHER WORK

CHAPTER 5

5.1 CONCLUSIONS

The main contribution of this thesis is 4 new approach. called globally optimal
kinematic control (GOKC), for optimal redundancy resolution. The approach minimizes an

Iy

integral quadratic cost function V' = J[ETQE+ 6’ RO| dr, where E is the tracking crror
ll:

vector and @ is the joint velocity vector, such that the GOKC' strategy achieves a trade-off
between the tracking error £ and magnitude of the joint velocities. The following are the
main advantages of the approach:

(1) Itis a globul optimization method, which ensures conservative motion,

(2) It yields a singularity-robust implementation of optimal control, which can be
used for both redundant as well as nonredundant manipulators.

(3) It does not require computation of the generalized inverse of the Jacobian matrix
which is computationally expensive.

(4) It can be implemented in real time for a class of trajectories which occur in
industrial application, e.g., for pick-and-place operations.
On the other hand, the GOKC scheme has disadvantage that it may cause the tracking errors

in some siwations, even when thc manipulator is far from any singular configuration. In

other words, the weighted kinetic energy 6" K8 can guarantee bounded joint velacities and



smooth transitions through singular configurations, but the tracking performance at well-
conditioned configurations may be unnecessarily compromised. This problem may be
alleviated by using a configuration-dependent weighting matrix R (8) instead of the
constant matrix R. The matrix K (8) should have a large value in the neighborhood of

singularities, and a small value away from the singularities.

5.2 FURTHER WORK

There are some aspects of the GOKC which could be investigated further. The most
important ones are as follows:

As indicated in the preceding discussion, a constant positive definite weighting
matrix R can give rise to tracking errors in some situation, e.g. in singularity avoidance. One

possible way to overcome this difficulty is to choose R as a function of the manipulability

index such as Jdet [.I.Ill where .J is the Jacobian matrix. Another choice could be as a

function of the condition number of the Jucobian matrix. Note that it is tempting to choose

R as a function of the joint velocity 8, with R increasing with increasing 6. But this

approach is not useful since the solution to the optimal problem (equation (3.3)) is obtained

assunming that R is independent of 0.

The GOKC scheme ensures exponential stability of the redundant manipulator, so
that when the final desired configuration X ; tf) is constant, as is common, the steady-state
tracking error vanishes, i.e. X = X, as 1 — co. But there is no a analytical expression or
simple way to control the transient tracking error E(1). Also, the relationship between the
tracking error and the parameters of the GOKC scheme is not straightforward. Some
existing results from optimal control theory may be help in this respect.

At present, the GOKC cannot be implemented in real-time for a general class of

trajectories. Future work should be directed at enlarging the class of trajectories for which
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the GOKC strategy can be applied at real-time or. as a first step. in obtaining a sub-optimal

(approximate) scheme that can be implemented in real-time.
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