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ABSTRACT

Graph Algorithms for Database Schema Design

Hua Chang

In this report we use graph methods to represent the
inference axioms for manipulation of relational database
schemas. The weighted graph concept is introduced and the
simplification of the inference rules can produce the
closure of a given set of functional dependencies (FD) by
using the Schnorr algorithm [25] with the linear average
time complexity. The problem of nonredundant covers and
elimination of extraneous attributes on the left and right
side of FD’s may be simplified into a problem of reduction
of redundant arcs and redundant compound nodes which are
used to map possible subsets of attributes on the left
side of each functional dependency.

For a lossy join database schema D on a given set of
attributes u and under a given set of <functional
dependencies F, we use the union of the keys of all their
relation schemes in D to construct a third normal form
relation scheme and compute a new keys union repeatedly
until a keye union K having an empty functional dependency

0 is obtained. The scheme so obtained <K,0)> satisfies the
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third normal form conditions, K->U with respect to the
closure F+ and the minimality of cardinality of keyg union
Ikl Only the final keys union K is a real key of U, and
the scheme <K,0> is in third normal form. Furthermore,
its database schema D := D\/{k,0> achieves the lossless
join property. Thus, the NP-hard kernel problem (111 of

the FD-graph closure in our approach can be avoided.
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CHAPTER 1

INTRODUCTION

Graph and hypergraph methods can be used as efficient
and formal tools for manipulation of data dependencies and
their related problems in relational database schema
design. Hypergraphs have been used in ([1,2,31 for
manipulation of join dependencies and multivalued
dependencies with the universal relation assumption. In
hypergraphs, attributes of database schema are represented
by nodes, and functional dependencies among attributes are
representd by directed edges. The concept of hypergraph
is a generalization of graph where each arc links only two
nodes. Trees and directed acyclic graphs have been used
in (4,53 to determine whether a functional dependency can
be derived from a set of functional dependencies by
Armstrong inference rules [6). Multigraphs have been used
in £73 to represent functional dependencies and
multivalued dependencies. In the later approach, the
nodes correspond to the attributes, and three kinds of
labeled arcs are used to describe the dependencies among
attributes. An extension of the usual concept of graphs

by introdction of compound nodes have been used in (8,9]



-2

for functional dependency manipulation. In this approach
18,91, two types of labeled arcs are used to represent the
functional dependencies among compound nodes and single
nodes respectively.

We would expect that i¥ a graph can carry maximally
the required information, then it will simplify the
related manipulation. In the abovementioned papers [7]
and (8,91, the graphs may carry only two or three kinds of
information by their arc labels respectively. Naturally,
weighted directed graphs will eliminate the above
limitations. There may be many kinds of arcs with
different labeled weights. As we shall see and prove
later that graph manipulation and Armstrong inference
rules may be simplified when weighted graphs are used.
Consequently, it also simplifies all the related problems,
such as the FD-closure problem and the minimum cover

problem under a set of functional dependencies.




CHAFTER 2

BASIC CONCEFTS OF DATABASE SCHEMA DESIGN

In relational database manipulation, data
dependencies are used as important constraints om
relationships between data. This report is concerned with
only functional dependencies. A functional dependency
(FD) X->Y holds in a relation scheme (XY, X->Y) if and
only if (abbreviated iff) each value of X is associated
with wactly one value of Y. A database description is
called a database schema. A database schema consists of a
set of relation schemes. Database schema and relation
scheme are syntactic objects, database and relation are
database contents. In a number of recent papers (1-9],
the upniversal relation assumption is introduced; this
concept provides a simple user interface and it allows us
to specify relations in terms of attributes of a universal
relation.

Usually, database schea design is related to
database normalization. There are two approaches for
normalization : normalization through synthesis [4,12,13]

and normalization through decomposition [(14,181. Both the
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methods use a universal relation scheme <U,F> as an input,
where U is a set of attributes and F are data dependency
constraints. The decomposi tion method stepwisely
decomposes the universal scheme into more and more simple
schemes. The synthesis method searches simple components
in a universal relation scheme. Database schema produced
by decomposition has the lossless join property with
respect to the universal scheme <U,F>. The synthesis
approach achieves only the third normal form (3NF). It
may not have the lossless join property, for which the
kernel problem (5,101 of the FD-graph closure usually is
required to be solved. Our graph algorithms are closely
related to the synthesis approach. In this approach, a
minimum cover of data dependencies needs to be solved.

We need now to list some cefinitions and notations
which are used in the next chapters.

Let uwus define a universal relation scheme as <U,F>

where U = {Al, A2, ..., AN} is a finite set of attributes,
and F = ({R1->81, ..., Rm—>Sm>} 1is a set of functional
dependencies. We uwuse A, B, C, ... for single attributes

and use ...y Xy Y, Z <For subsets of attributes. A
database schema is a finite set of relation schemes D = {
KX14F1%, euny <XK4FkK> 3.

A in Xi is a prime attribute of <Xi,Fi>, iff A is an
element of any key of <Xi,Fi>. A relation scheme <{Xi,Fi>
is in 3NF iff none of its nonprime attributes is

transitively dependent on any of its keys.




Chapter 3

GRAPH REFRESENTATION AND INFERENCE RULES

In this chapter we shall introduce weighted directed
graphs denoted by FD-graphs for representation of
functional dependencies. Our work is based on the graphs
suggested by Ausiello et al [3]. We shall show that c.ir
weighted directed graph concept may simplify manipulation
of functional dependencies.

Definition. Given a set of functional dependencies F
on a finite set of attributes U = (A, B, €L, ... }, the
FD-graph G = (V,E) representing F is defined such that :
(a) for each single attribute A in U, there is a node
labeled A in VO where VO represents a set of nodes for
single attributes.

(b) for each functional dependency of single nodes A->B in
F, there is a directed full arc --> from a node labeled A
to a node labeled B in EQ where EO represects a set of
full arcs. The arc weight for a such full functional
dependency of A-->BR is defined as w(A,B) = 1,

(c) for functional dependency containing a subset of

attributes on its left side such as X --> A, then there
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exists a compound node labeled X in Vi where V1 represents
a set of compound nodes. To represent the refletivity of
Armstrong axioms (61, there exist (X| dotted arcs with
weight w=1 for esch full functional dependency from the
compound node X to its IX| component nodes. The arc from
the compound node X to the node A is a full arc. To
represent the union rule, there exist IX1| dotted arcs with
weight w=1/1X| for each partial functional dependency from
its IX] component nodes to their compound node X. All the
IXI  component nodes together fully functionally determine
the compound node X with the total w=l1.

We can show that a schema with n attributes may
produce 2%%¥n - 1 podes. There are n single nodes for
single attributes and (2%¥n — n -1) compound ncdes for all
the combinations of subsets of attributes. All these
nodes can be coded as a set of n-bit patterns. For
example, if n=3, then 001 010 100 represent three single
nodes and 110 011 101 111 represent four compound nodes.
The number of compound nodes is not a linear function of
the number of attributes. However, most of the (2%x%n -n
-1) compound nodes represent only the reflexivity to their
component nodes. Since the reflexivity is independent of
functional dependencies, these compound nodes may be
deleted from the graph. For example, let n be the number
of attributes and IFl] be the number of functional
dependencies, then at most IF’| number of compound nodes

may be involved in the given set of functional
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dependencies F where |IF’l is the number of functional
dependencies having a subset of attributes on the left
side of a functional dependency. Thus, the number of
compound nodes needed to speci fy the functional
dependencies is of the same order as IFi. Furthermore,
many of the IF*1 compound nodes may be redundant. We
shall demonstrate how to reduce redundant compound nodes
from a given set of the IF’| compound nodes in chapter 4.

Example. Given a set of functional dependencies F =
{AB-->D, BC-->D}., the corresponding FD-graph G = (V,E) is

defined in Figure 1:

, >D

Figure 1.
where A......AB represents both the dotted arc A<......AB
with the weight 1 and the dotted arc A......>AB with the
weight 1/1ABI = 1/2.
It is easy to see from Figure ! that such an FD—-graph

representation has some advantages. Each directed arc
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carries a weight information. If the weight of an arc is
equal to one, then there is a full functional dependency,
such as the full arc in AB-->D and the dotted arc in
AB... >A. The weight of the dotted arc A...>AB is equal to
1/1ABI = 1/2 indicating that it represents the fact that
node A partially determines the compound node iabeled AB.

Now we need to +¢ind the inference rules for the
weighted FD-graph representations. The following set of
inference arxioms can be proved as a complete and
independent set.

For X, Y, Z, W subsets of U :

Al (reflestivity) Y in X implies X-2Y.

A2 (transitivity) X-2>Y and Y->Z imply X->Z.

A3 (union) X->Y and X-—>Z imply X->YZ.
The augmentation, projectivity, and pseudo-transitivity
can be derived from the subset of Al, A2 and A3.

A4 (augmentation) X->Y and Z in U imply XZI->Y.

NS (projectivity) X->YZ implies X-2Y.

A6 (pseudo-transitivity) X=-2>Y and YZ->W imply XZ->W.
Let us derive axioms A4, A5 and AL using the axioms
reflexivity, transitivity and union.

Augmentation : use Al to obtain X2Z-»X (X in XZ).
According to A2, XIZI->X and X->Y imply XZ->Y. Thus,
augmentation has been derived.

Frojectivity : use A1l to obtain YZ-2Y (Y in YZ).
According to A2, X->YZ and YZ->Y imply X—->Y.

Fseudo—-transitivity : we just proved that X-Y and Z
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in U imply XZ-2Y, and Z in XZ implies XZ->Z. According to
A3, XZ->Y and XZ->X 1imply XZ->YZ. Using transitivity,
XZ->YZ and YZ->W imply XZ->W. Thus, pseudo-transitivity
has been proved.

Given axioms Al, A2 and A3, we can prove the rest.
Thus, Al, AZ and A3 form a complete subset in Al to A6.
It is also an independent set since none among them can be
derived from the other two.

Corresponding to the complete and independent set of
the inference axioms, we need to find the rules suitable
for manipulation of FD-graphs. In this section, we shall
define & rule that can implicitly include all the three
axioms, namely the reflexivity, transitivity and union.
Definition. Given an FD—graph G=(V.,E) and two nodes i and
k in V, a weighted directed path (i, k) from i to k is
defined as the following :

(a) Transitivity : if there exist a node j in V, an arc
(i,j) with weight w(i,j)=1 and an arc (j,k) in E, then
there is a path (i,k) with the weight w(i,j) ¥ w(ij, k)
where wii,j) and w(j,k) are the weights for arc (i,j) and
arc (Jj.k) respectively.

(b) Additivity of the arc weights : if there erists a
compound node Jj composed of its component nodes ji, J2,
esss Jn, then the weight of the arc (i, J) is defined as
the sum of w(i,j1) + wiiji2) + ... + wli,in).

(c) If an arc with weight w(i, j) < 1, then the path (i,k)

may not be formed using Jj since any arc or path (i,j) with
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a fractional weight must be terminated at the compound
node j.
(d) An FD-path (i, k) is defined as dotted if all its arcs
leaving i are dotted, otherwise it is full.

Example. given a set of functional dependencies F =
{E->B, AB->D, EC~>D}, the corresponding FD-graph is

depicted in Figure 2 :

D

Figure 2.

We use only the graph transitivity rule. The graph union
rule is implied by the additivity of the arc weights.

Since the reflexivity rule Al is independent of functional
dependencies. and the refletivity is also implied by the
definition of compound node. Therefore, the above defined
graph transitivity, the additivity of the arc weights and
the definition of compound node implicitly include all the
three inference axioms. It is worth to note that if a set
of functional dependencies consists only of "single to

many" dependencies, i.e. there is only a single attribute
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on the left side of each functional dependency, then the
weight of any arc is equal to one and there is no compound
node. The above rule becomes the classical transitive
operations on the grapbh.

1f we use weighted FD-graphs and are able to
transform a complete set of the inference rules into a
weighted transitivity rule, then many FD-graph problems
may become very close to the classical graph problems,
such as the transitive closure [19) and the transitive
reduction problems [201].

Now we use some examples to demonstrate the weighted
graph concept.
Let us first take a primitive example to demonstrate the
basic ideas. U = {A, B, CX and F = {AB->C, C->BJ.
Examples with complicated graphs will be demonstrated at a
later time. Since the reflexivity rule is independent of
the given set of functional dependencies, the compound
nodes BC, CA and ABC are redundant and they are not needed

to put on the following graph :

‘va 1
- A ——>C
8'21,‘ 1 ]

Figure 3.
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Since the reflexivity rule is implied by the related
compound nodes, we can derive all the possible functional
dependencies for a three-attribute system if we put the
compound nodes involved onto the above graph. For
example, assume there is an attribute D not involved in
any functional dependency of a graph. 1§ there exists a
functional dependency B—~>C and we need to infer BD-:CD,
then we simply add a compound node BD and a compound node

CD on the graph. BD-CD can then be depicted as shown in

Figure 4:
1z, . .%9
D D"': . ! , . ; "t... ]
H i
., L H .,
’ P .
1.’ V gy
1 ¢ 9 4 ‘e
B 2C J.o.-°-CD
8 2C o

Figure 4.

It is well known that the derivation of a functional
dependency from a derivation sequence was suggested by
Reeri, Bernstein (4] and Maier [(5]. Each step of such a
sequence can be clearly depicted by our weighted graphs.
For example, let F = {AB->E, AG->J, BE->I, E->G, GI-*H}.
Its graph is depicted in Figure S.

It is easy to show that the following functional
dependencies can be derived from the graph of Figure S :
AR->BE, AB->I, AB->G, AR->61, AB->H, AB->GH, EI->GH,

AR-:EGHI . For clarity, here we depict only the paths for
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derivation of AB->GBH as shown in Figure 6.

i<
M 1 J2
1
,AB—)E " GI——>H
- ’
ai - "l ;. ’
LooES ‘12
172 ., i .
E_)ll

Figure 5.

Y GI—H l
4

'

1 .

4
—-"ﬁ.—n—'—-—.—lﬁc—-—-J

Figure 6.
1t is worth to note that most of (2 %xx Ul - JUl - 1)

compound nodes are redundant if they represent only the
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reflexivity., Thus, the total number of nodes of an
FD-graph is less than or equal to (IUl + IF*}) where IF*|
is the number of functional dependencies having a subset
of attributes on their left side. We have shown that a
complete and independent set of the Armstrong axioms Al,
A2 and A3 can be implied from the weighted tramnsitivity
rule on weighted FD-graphs. It is also not difficult to
show that the axioms A4, AS and A6 can be represented on
weighted FD—-graphs.

A4 (augmentation) X->Y and Z in U imply XZI-3Y.
According to the given FD X->Y and Z in U, a compound nade
XZ can be formed. Since all the component nodes of X are
also the components of XI, therefore, XZ-2>X. Using the

given condition X-XY and A2, we obtain XZ->Y as shown in

Figure 7:

' '—-l
X'——)v x .)\' '
1;2‘ ) A‘l'
. X2 ) :lzn
r ) 1
! P ’ L.—.J

2118 z

Figure 7.

AS (projectivity) X->YIZ implies X~ VY.
The graph representation of X-YZ may be depicted as the
following. Here we do not represent the component nodes
for X. Y and Z eMplicitly. For clarity, assume X = {A, B,
Cxy Y = (D, E> and Z = {F, 6}. We can also show that

X-»¥Z implies X—->Y. In such a case, X is a compound node
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ABC, Y is a compound node DE and [/ is a compound node FG.
Thus, ABC—>DEFG implies ABC—>DE, i.e. X—3>D and X-*E. This

is shown in Figure 8:

| )
! ! ' o | ’
| ' | > ¥ '
i | N o
, X v . e - g ' " s
. .... e oW e owsun e T wme
L'T""""""] | V3 M o= X
Sme— . ¢ ‘,a"'
>2 KX i
' ' | L] )z‘
5-—-—-—._’ '. '
1/2',¢
Figure 8.

A6 (pseudo—transitivity) X->Y and YZ->W imply XZ->W.
According to XZ—-:W, XZ must be a compound node. Using the

graph represetation of A4 and the union rule, w< obtain :

P Oe s e g0 s 0 et oa g o o s 8
[]
J 1 'y
: '.x )?'.‘ N
T SR o1
o ¢
Xz, . e |
72 > 9 A
‘L - .. '
z v . ;,-z- -\vz
Figure 9.

For simplicity, not all the component nodes of the
compound nodes X, Y, Z and W are listed explicitly on the

above three graphs.

3.1 The FD-graph closure and the transitive closure
problems

Let us demonstrate how the FD-graph closure problem
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is closely related to the transitive closure problem when
the weighted graph concept is used. Let F be a set of
functional dependencies for a relation scheme r(U). The
closure of F, denoted by F+, is the smallest set
containing F such that the inference rules Al, A2 and A3
cannot be applied to the set F to get a functional
dependency not in the set. Correspondingly, we define the
closure of an FD-graph G=(V,E), denoted by G+ = «(V, E+),
with functional dependencies F under our weighted graph
transitivity rule that implies the union rule through the
additivity of their arc weights.

Definition. The closure of an FD-graph G=(V,E) is the
graph G+ = (V, E+) where the set of nodes is the same as

in 6. The arcs E+ are defined as the following @

Dotted arc ¢ (E+)1 { (i,4) | i,j are in V, there edists
a dotted FD-path (i,j), and its weight is equal to the
product of the arc weights alone the FD-path 2.

Full arc : (E+)0 = { (i,j) | i,j are in V, (i, i) not in

(E+)1 and there exists a full FD—path (i,j) 3.
Example. Given an FD—-graph G6G=(V,E) with F = { A->BCD,
BCL-*E, CD->E, E->H I, its FD-graph is depicted as the

following : 8-

LY
Y
L )
1

A ¢ -2 :BCD >E

¢ A
Figure 10. . e e
17a: ‘U
‘ co——l'

i
e !

)oc.' -° e

H
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then its FD~closure is depicted as the following.

B

)

\ 1

o ”‘l

)Cc-....nco )E

. co-————l
¥ /

1

b 4

Figure 11.

Let us now give the algorithm for the FD-closure and
define the adjacency lists and arc weights as the
following :

LOCid, LI1Ei) & input set {jljis in V and (i, j) in EO,

ElZ;

LO+Lil, L1+[i) : output set {jlj is in V and (i,j) in EO+,
E1+43;

WwOLi,jl, wili,33 : input weight for each arc in EO, El}
wO+Ci,jl, witli, j1 ¢ output weight for each arc in EO+,
El1+;

clil : composition list {ilj is a component node of
compound node 133

sLil @ working set for LO+Li) or Li4lids
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Initialize wO+liy, j]1 = wOli, j]1 for each arcs
wi+li, jl = wili, 31 for each arcg

#I1f wWO+Li, i1 or wi+li, j]1 is not defined

#Initialize wo+li,jl := 0 or wi+fi, i1 := Og

#ENndi f

/% such construct can avoid having IVI¥X2 matrix

X/

For all i in V with outdegree > 0 do
{
LO+LCi) 2= L1+[i] 1= emptys
sfi]) := LOLid N/ L1Cid;
while sfCil not = empty do
{

select j from slil;

elements

/% closure includes only meaningful full FD*s k/

if wO+li, 3] =1 then LO+[i] 2= LO+Cil \/ j

elce

if wi+li, jl = 1 then LI1+[i] = L1+4[i] \/ ;3

for all k in LOL i) \/ L1(i] do
{

i+ wO+Li,jl >=1 then

Wwo+li, kle= wO+Li k]l + (WO+LF. k] Oor wi+lji,k1);

if wi+li,jl >= 1 then

Wwi+Li, k] s=wi+li, k] + (Wwi+[3j, k) or wo+Lj,k1);

if (WO+Li, k1 >=1 DR wi+li, k] >=1) AND

NOT (k in sl[il) then slil 2= sfil \/k:
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w

for all arcs (i,3j) in E do
/% for all arcs in EO0 and E1l,
here the subscript 0 and 1| are not indicated %/
{
if wli,jid < 2 AND NOT (i in cljil) then
/%only component node may have w<i1, otherwise w=0x%x/
wli, 31 = Op
if wli, 31 > 1 then wli,jl 2= 1}

/% for normalization of possible multiplicity x/

Let us consider the above algorithm. Suppose that Jj
is a single node, then wli, jl must be equal to one and the
path from node i to node k through node j is established
by the transitivity rule. If j is a compound node, then
wli, il might be equal to one or less than one. If it is
one, then the path (i,k) is established by the arc (i, J)
and the arc (j.k). I1f the weight wli, 3] is less than one,
then the arc (i,j) must be terminated at the compound node
J since only its component node involved may have
fractional weight. Such a node may not create a full
functional dependency over the compound node. Suppose
that wli,kl < 1, then a full path can be formed only i+f
the accumulated weight wli k]l := wli, k]l + whi,j) % wij, k]

reaches to one by the additivity of the arc weights via
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all its component nodes j. Here the wunion rule is
implied.

To prove correctness of the closure alqorithm, it is
sufficient to show that the algorithm examines every
FD-path in G=(V,E) for transitivity operations and their
weight is not overassigned which implies the union
operation.

Suppose that there is an FD-path (s,t) from node s to
node t in G=(V,E), then node t is reached from node s via
consecutive sets LIs) containing i, LLil containing j.
LLil containing k, ..., LLrl containing t, i.e. s ~> i ->
J =2 ky .. r => t. Thus, any path starting from node i
is examined via the local sets LL{jl, LLK], LC1D, ...

Every weight cannot be cverassigned since weight is
assigned at each step only for each outgoing arc for the
processing node i keeping LL£ilx, LL£3§3, LLKI, ...
unchanged.

Note that if L[fid, LLjI, ... = {1, 2, ...y IVI I and
all the functional dependencies have a single attribute on
its left side, i.e. wli,jil = 1, then the FD-closure
algorithm becomes Warshall’s transitive closure algorithm
[19]. There will be two passes over nodes i = 1, 2, ...,
IVl, and the time complexity of the algorithm was obtained
as ofivVl xx 3, However, the time complexity of the
algorithm of the closure of FD-graph is o(IV?’)] 1EI) where
V* is the set of nodes having outdegree greater than zero.

This algorithm processes each node of V’. For each node,
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this algorithm is running no more than the sum of IL11] +
2 + ... and it is equal to o(lEl). Thus, the time
complexity is o(IV*I1IEl) where V' equals the total length
of input string of all the left sides of a given set of
functional dependencies F.

The complexity of the Warshall’s algorithm is o(IVi
xx 3. The gain in the complerity of the algorithm in
this report is obtained due to wusing local sets LLil
instead of using a (IVI %x 2) matrix. Thus, the possible
redundancies of the Warshall’s sparse matrices are
eliminated. Furthermore, our algorithm can also be used
as a procedure for the node closure under a given F. The
closure of a set of functionl dependencies, denoted by F+,
may be considerably larger than its F. If we want to test
only one functional dependency X->Y in F+, then this
algorithm can generate only the closure of a node, such as
for X. 1t is very efficient because it need not generate
all the functional dependencies of F+. It simply replaces
V by X into the algorithm.

In the above algorithm, there is a statement which is
very meaningful @

" If wlhiy,jid >= 1§

then wli,kl s=wli, k) + wli,jlxwli,kls "

This statement implies the union rule by the additivity of
the weights wli .kl := wli,kl + ... The transitivity rule
is represented by the product of the weights wli, j] %

wii,kl. The "if wli,jl >= 1" Boolean condition guarantees
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that an arc having a fractional weight cannot be
transitively over a compound node. Thus, it makes the
union pperation and the transitivity operation
non—-commutative. For example, the node A in the graph
<U,F> = {A->BCD, BCD->E} can be transitive to node E only
after the weight at the arc from node A to the compound
node BCD is accumulated to one. According to our
definition, integer weight represents a full functional
dependency. However multiple paths may produce
multiplicity of arc weight. For example, A-->B-->D and
A~-—->C~-2>D produce wlA,D] = 2. For the weight
normalization, the above statement should include such
situation, and it may be written as :

" if wli,jl >= 1 then wliu,kl = wli,kl + wli,kl; "

where wli,jl is implicitly assumed to equal one, so it
need not to be written euplicitly as wli,jil ¥ wlj,kl.
To avoid multiplicity of arc weights, all integer weights
must be finally normalized to one. All fractional weight
arcs except those involved with compound nodes should be
finally deleted since they are not meaningful.

In comparison with the Ausiello’s algorithm (31, the
union operations are much simplified in our algorithm
because the union operations are implicitly included in
the transitive operations by the arc weight additivity.
Therefore, our algorithm is simple and easy to be
interpreted.

QOur algorithm can be used for the node closure or the
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membership algorithm (5]. For example, let F = { A->D,
ABR-*E, BI-*E CD->1, E~3C 3, find the node closure of AE or
test the membership AE->B in F+, The related graph

fragment can be depicted as the following @
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Figure 12.
then we obtain the node closure (PE)+ = (A, E, D, C, I3,
and from i1ts node closure find that AE->B is not a member
in F+. The complexity of the node closure and the
membership algorithm is o(lEI) and it is the same order as
in the works of Maier [S] and Bernstein [4]. However, the
concept in this report allows us to make further reduction
of the complenity. It will be shown in the next

chapters,

3.2 An efticient algorithm for FD-graph closure

As described in the above sections, the inference
rules of functional dependencies may be implied from the
transitivity rule on weighted FD-graphs. It may compute
the FD—-graph closure as with the classical graph
transitive closure problem when the problem with arc
weights can be solved. Except the additivity of arc

weights and the meaning of compound nodes, the FD-graph
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closure problem and the classical transitive closure
problem are very similar. It is well knpown that
significant progress has been made in solving the
classical transitive closure probsem. It is interesting
to use the results obtained in the transitive closure
problem to the FD-graph closure problem.

Schnorr [25] has suggested an algorithm to solve the
transitive closure with 1linear average time complexity
o(n + m+) where n=)V] and m+=]E+|. We shall show that an
efficient algorithm for the FD-graph closwe can be
developed if we use the Schnorr algorithm [253 with some
modifications. We define that an FD-graph G=(V,E) is
determined by a set of arcs E and a set of nodes V=VO\/V1
where VO represent single nodes for single attributes and
V! represent compound nodes for subsets of attributes.
The adjacency 1lists LOLiJ and Lifi) represent full arcs
and dotted arcs respectively. Full arcs and dotted arcs
should be manipulated separately. In case of LLil without
index 0 or 1, it is used either for full arcs or dotted
arcs. Since there are nno arc weights in the Schnorr
algorithm, the arc weight concept must be introduced into
the Schrorr algorithm. Furthermore, any modification
should not violate the established linear complexity in
the Schnorr algorithm.

Refore we apply the Schnorr algorithm (251 to
FD-graphs, we need to describe the Schhorr algorithm

briefly. Schnorr assumes [25]1 that all possible random
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graphs having n nodes and m arcs are equally probable.
Based on this assumption, the average time complexity is
Oin + m+) where mt+ is the expected number of arcs in the
transitive closure. The probability that the algorithm
takes more than nxXx2 steps is less than 2%k{(-n) for all
n.

The input node set is represeted by its adjacency
lists LLi) = {j) i->j is in E) for i=1, 2, ..., n. The
adjacency 1lists of the arc reversed graph is defined as
(LLiddr = {j1 j=>i is in E) for i=1, 2, ..., n. Jj is
called a successor of i and i is called a predecessor of j
if there exists a path +rom i to j. The lists (LLjl)r are
constructed in a lfnear order by inserting i into (LLjid)r
for all j in LI[i] in the order of succession i=1,2,..,n.
The linearly ordered 1lists LEil can be obtained by two
times of application of the algorithm for the edge
reversed graph ¢ ((L[il)r)r -> LLil. Both the LI[i] and
(LLi))r are needed in the next algorithms. The time for

the arc reversal takes O(n + m) steps.

The Schnorr algorithm ¢
stage 1. Associate in a breadth first search manner to
each node i a list sfi] of successors such that either (i)
or (ii) bholds:

(i) 1sfidl < trancin/2) + 1 and sli) is the complete
list of successors of i.

(ii) Islildt = tranc(n/2) + 1.
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stage 2. Apply stage 1 to the arc reversed graph, i.e.
associate to each node i a list plil of predecessors such
that either (i) or (ii) holds with pli) substituted for
alfil.
stage 3. For i=1,2,..,n. form the adjacency lists
LxCid = sCid\/€{51i in pLJiIXIN/Cil IsCili=Ipljdi=n/2+1}
of the transitive closure as unions of three lists each.
The algorithm of the stage 1.
Initialize GL3J] := empty for all i;
For i = 1 to n do
{
slil := queue = i}
stack:= empty;
counts= 13 mark ij;
while queue not = empty and counter < trunc(n/2) +1 do
{
J = top node of queue;
remove j from top of queuej;
push j ontoc the top of stack;
while counter< trunc(n/2)+1 AND L[j] not= empty do
{

a := first node of LLjl;

LLE3] 2= LLjY ~ a3
QL33 :=RLjI\/a;

if a is not yet marked then

push a to the bottom of queue;
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mark ag
slild:=slil\/a;

counter:=counter + 11]

W

H
for all j on stack do
{
unmark Jj;
L€3il 2= LL{JIN/QL5];

QL3 := empty

L4

end

Stage 3 can be implemented in a linear time of their input
data. Stage 2 is similar to stage 1. Therefore, it is
sufficient to analyze the algorithm of stage 1. The
algorithm is operated in a breadth first search manner.

It ensures some global random properties of the sequence
of visited nodes during the construction of slil. The
restriction of (n/2 +1) steps reduces greatly the
overlapping of the traversed arcs during the construction
of slil and pLil for i,i = 1, 24, eeey N. Furthermore, if
Isfill = trunc(n/2+1), then node i is connected to all
those j whose Iplili = trunc(n/2+1). Similarly, if IpL3d]
= trunc(n/2 +1), then all those i whose Islil] = trunc(n/2

+1) are connected to j. This is a trick of the Schnorr
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algorithm and it is based on the connectivity property of
the classical graph, but it does not exist in weighted
FD-graphs. This 1is a major problem in our case. In
classical graphs, it is clearly that if I1sfil) = I1pLill =
trunc(n/2 +1), then slil/\pLjil cannot be empty since this
implies IsCil\/pCjilil > n. Non-empty of sCil/\plil implies
that 1 is connected to j. It is good for the transitive
closure, but not for the FD-graph closure. It cannot
provide the necessary weight information to det.ormine
whether i is fully functionally connected to j or not. We
have to propose another approach.

As we discussed earlier, the weighted graph concept
may combine all the Armstrong rules into one weighted
transitivity rule. I+ we can decompose the manipulation
on an FD-graph nearly into a maximal set of the
transitivity operations and a minimal set of the
union-transitivity operations separately, then the part of
the transitivity operations can be solved by the Schnorr
algorithm directly.

Let us decompose the FD-graph closure into two parts
(1) the integration of fractional weight arcs for the
union-transitive operations for each compound node within
an area of a minimal number of nodes
(2 the remaining transitivity operations on the
FD-graph.

Our weighted graph has the advantage to separate
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functional dependency manipulation into the abovementioned
parts. 1§ we desire to switch off all the union
operations, then we assign zero weight ¢to all the
fractional weight arcs. The remaining graph has only the
transitivity operations to be performed. If we want to
focus on the union operations, then we need only to make
the related integration of fractional weight arcs.

For illustration of the upper bound of our proposed
algorithm, first we propose the following working
algorithm. The final algorithm will be listed after this
one as an improved version.

The algorithm version 1 :

Stage 1. Associate with each compound node i of an arc
reversed FD-graph its complete list plil of predecessors,
i.e. compute only the node closure for each compound node
on its arc reversed graph by using the algorithm of the
section 3.1 .

Stage 2. Assigning zero weight to all the fractional
weight arcs, switch off the already performed union
operations in stage 1.

Stage X. Use the Schnorr algorithm to perform the
remaining only transitivity operations on all the integer
weight (w=1) arcs.

Example. Let a given FD-graph be depicted as the
following where the dotted arcs GH...>G and GH...>H are

not listed :
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then IVO\N/Vi} = 11 and (n/2 + 1) = 6. If the node A takes

(n/2 + 1) = 6 successors including A itself : s[A) = {A,
B, C, Dy E, F3, then both the lists sLAl and pl[J] are
overlapped on the node E, i.e. their intersection sCAl /\
pldl = {(E}. However, it does not guarantee the existence
of a full connectivity between the node A and the node J
in the above FD—-graph because here exists the fractional
weight problem, i.e. the overlapping on the node E
contributes only wEiD,GH] = 1/2.

To solve this problem, we might first compute the
complete list of predecessors +for each compound node.
Thereafter, assigning zero weight to all the fractional
weight arcs, perform the remaining only transitive
operations on the above FD—graph. For such a graph, we
can directly use the Schnorr algorithm without any
difficulty. Its time complexity is o(n + m+) where n is
the number of nodes and m+ is the number of expected arcs.
Obviously, the proposed computation of the complete list
plGH) = (D, C, KB, AX using the node closure algo-ithm
contains too many redundant operations. It is sufficient

to compute only the connections between the compound node

>J
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GH and its nearest node D in stage 1, i.e. find the
nearest npeighbour having a full functional dependency to

GH, wED,BH1 = 1.

1_YE—3G"

>B 0 >D * GH >1 —

Figure 14.

However, finding such a local area for in*egration of
fractional weights and estimation of its time complexity
are not a simple problem. Tur algorithm version 1 is
specially designed to demonstrate the first approach and
to show how to improve it. It can provide the upper bound
of the complexity. Stage 2 and 3 contribute no more than
oln + mt+) steps [25]. Stage 1 contains o(IVil IEl) steps
as described in section 3.1 . Therefore, the total time
complexity oi(n + m+ + IVIIIE}) which is better than the

wisting algorithms with the complexity o(IVIIEI) [3]
where IVl is greater than I1V1il, even though the algorithm
of the node closure of section 3.1 1s not so efficient.

Let us now show how to improve the algorithm version
1. Here the major problem is how to find the minimal area
for the integration of the fractional weights. We assume
that the following boundary criteria on the arc reversed

graph for each compound node are reasonable.

2J
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(a) Any nearest neighbour node j of the compound node i
having the accumulated weight wli,jl »>= 1 is an area
boundary node.

(b) Any neighbour node J of the compound node i having
only arc weight wifi,jl < 1 and zero outdegree is a trivial
area boundary node.

Example. Let the 1local area of a compound node AR be

searched as the following :
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Here H is an end node and it is a trivial boundary, even
though wiH,AB] = 1/2.

The node D is a nearest predecessor having the
accumul ated weight wiD,AB]l] = 1 and it is a boundary.
Among the boundary D, FG, and H, only one node D is
accessible fully functionally to the compound node AB.

Now we can clearly present an improved version of the
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algorithm.
The algorithm version 2 :
stage 1. Associate with each compound node a minimal local
area for integration of fractional weights, i.e. perform
the wunion operations with connection of a minimal number
of nodes.
stage 2. Assigning zero weight to all the fractional
weight arcs, switch off the already performed union
operations in stage 1.
stage 3. Use the Schnorr algorithm [25) to perform the
remaining only transitivity operations on the integer
weight (w=1) arcs.
The algorithm of stage 1:
cli) : composition list {jlj is a component node of
compound node il
for all i in V1 do
{
mark all j in clils
queue = clily @ := emptys
while queue NOT = empty do
1 4
remove j from top of queue;
if j is marked then
{examinedLjl} := true;
/x examine each node at most once %X/
for all k in pLi) with wlj,kl = 1 do

{




s
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@ :=0 \/ kj
wlia k) 2= wli,kd + wli,jil;
if wli,kl < 1
AND Kk is not (marked ORK examined) then
/¥the Boolean condition for continuing searchx/
{
mark k;
push k into the bottom of queue
3
/% the breadth first search manner ¥/
el se
if wkiy,kl = 1 AND k is marked then
/% the Boolean condition of boundary %/
{
unmark kj

unmari all elements in LLk]

for all k in @ do
<
if wli,kl{1 then wli,klz=03
markedlil:= False}
examinedlil := False;
3
for all k in clil do

{




markedlLkl:= False;

examinedlkl := False:;

()

The algorithm of stage 1 1is to find the nearest
predecessors on each possible peth fully functionally
connected to each compound node, i.e. find the restricted
local 1list of predecessors for each compound node. Such
list is searched in the breadth first mammer. For such a
process, if it traverses no more than (n/2 + 1) nodes,
then it satisfies the criteria of the Schnorr algorithm of
construction of predecessor lists. Therefore, the
complexity of searching the restricted predecessors for
IV1l compound nodes is o(n + m+).

If an FD-graph contains a set of random distributed
compound nodes, then the local area of each compound node
may be 1less than (n/2 + 1) nodes. Our assumed boundary
criteria are too strong and these criteria split an
FD-graph into IVl s=mall local areas not completely
overlapped. The complexity is o(n + m+) either for stage
i, or stage 2 and 3. 1f compound nodes are positioned at
nearly end of their FD-graph, then the search of a local
area might be extended to the whole graph and the
complexity becomes o(IV11IEL). It happens as an
exceptional case and it serves as the upper bound of the

complexity. Its probability is expected to be very low.




In fact, the Schnorr algorithm was established for the
random graphs [25] with the average time complexity of O(n
+ m+). We have shown that a similar algorithm may be
presented for the computation of the FD-closure. Its
average time complexity becomes O(n + m+) if all the
compound nodes are randomly distributed on their

FD-graph.




CHAPTER 4

FD-GRAPH MANIFULATION AND DATABASE SCHEMA DESIGN

As described in the previous chapters, we use
weighted directed graphs to represent functional
dependencies. Such a graph is denoted as an FD-graph.
Manipulating on such an FD-graph, we intend to obtain a
minimal set of relation schemes by searaching desired
components on an FD-graph by a series of processing.

In Codd’s decomposition approach £141, a
decomposition is to start with a relation scheme.
Decomposing a relation scheme means repeatedly breaking
the relation scheme into a pair of relation schemes such
that the decomposed relation schemes satisfy the
functional dependencies losslessly and each relation
scheme is in third normal form (3NF).

Our graph method may be classified as Bernstein’s
synthesis approach [4,12]). However, it will be shown that
our graph method is much simple than the synthesis method
in 4,121,

The synthesis approach starts with finding a minimum

cover with respect to the given set of FD’s F. As stated
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in [4,5,12], it is necessary to find a nonredundant cover
and eliminate extraneous attributes from the left and
right side of each functional dependency before a minimum
cover can be obtained.

A nonredundant cover with respect to a set of FD’s F
ics defined such that if there is no set of FD's F’
properly contained in F such that (F*)+ = F+, In fact,
the process of finding a nonredundant cover is also a
process af minimizing the number of functional
dependencies in F.

A cset of FD°s F in L-minimum is defimed such that F
is minimum and for every FD X->Y in F, there is no X’
properly contained in X with X*-2>Y in F+. R-minimum is
defined similarly for the right side of each functional
dependency.

Before we give the details, some definitions are

necessary.
let U = (A, By, C:. e } be a finite set of
attributes. For some X in U and a set of FD’s Fi =

{X1-3¥Y1, ...y Xk—=2>Yk} such that the union of (Xi \/ Yi)
aover i is in X, then <X, X1->Y1, ...s Xk~-2Yk> represents a
relation schene. A database schema is a finite set of
relation schemes D = {{X14,Fl3, sy <XmaFm>3. An
attribute is prime iff (if and only if) A is an element of
any key of a relation scheme.

A database schema design problem may be stated as the

following :
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Given a finite set of attributes U and a set of FD's
Fs find a database schema D = {{X1,Fi>», .... <Xm,Fm>} such
that
- X1 X2 ... Xm = U,

-~ F is completely embodied in D that is F = { Ki~-»Xi | Xi
in U and Ki is a key of XiJ,

- the number of relation schmes ID! is minimal,

- every relation scheme <Xi,Fi> is in 3NF with respect to
F.

We leave the lossless join property with respect to <U,F>
unspecified for the moment.

Using weighted directed graphs, a finite set of
attributes U is represented by a set of nodes VO, and a
set of FD°s F is represented by a set of arcs E and a set
of compound nodes V1. Thus, a given <U,F> is mapped onto
an FD-graph G=(V,E). Such mapping correspondence always
exists, we need not mention each time in the next
chapters.

Definition. The sets of attributes X and Y are eqguivalent
under a set of FD’s F, written as X<{--2>Y, if X-3Y and Y->X
are in F+.

Example. An FD-graph for two sets of equivalent nodes
AB<~->CD is represented as in Figure 16. There is no arc
inside the set {A,B) or inside the set {C,D} on the graph
of Figure 6. It is easy to derive the full arc linking
the compound nodes AB and CD. The equivalency of AB and

CD does not mean that there exist the equivalencies of
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their component nodes, such as A<L-->C and B<-->D.
Otherwise, there is a dotted arc linking the equivalent

compound nodes AB and CD as shown in Figure 17.
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4.1 FD-graph manipulation

Let us manipulate weighted FD—graphs Ffor the
following problems in the database schema design @
i. Mapping 2 given <U,F> onto an FD-graph.
2. Finding a nonredundant covering with respect to a given
set of FD’s F.
3. Finding equival=nt nodes for merging the related
equivaient hkeys.
4. Elimination of extraneous attributes on the left and
right side of functional dependencies (LR—minimum

covering problem).
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5. Elimination of redundant arcs with respect to F.

To achieve .. nonredundant covering, it must eliminate
redundant nodes and redundant arcs which represent
redundant functional dependencies with respect to F. A
single node representing a logical attribute may not be
redundant because a single node itself cannot map a
functional dependency. However, a compound node having
only the dotted arcs to its component nodes is a redundant
node. Such compound node together with its dotted arcs
represents only the refleiivity rule. The reflexivity is
independent of any given set of functional dependencies.
It must be redundant.

A compound node bhaving only dotted arcs not only to its
component nodes is alsp redundant. For example, in the

following FD-graph
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Figure 18.
the dotted arc in ABC->BC represents the reflexivity rule
and the dotted arc from node ABC to node D is redundant.

Thus, the compound node ABC together with all its dotted
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arcs are redundant. Furthermore, if all the full arcs
leaving a compound node can be replaced by their
corresponding dotted arcs, then the compound node is also

redundant. For sxample, in the following FD—graph @
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Figure 19.

the full arc ABC->D can be replaced by a dotted arc
ABC, .. >D The compound node together with all its leaving
arcs are redundant. Therefore, a compound node having
only dotted arcs or all its leaving full arcs which may be
replaced by the dotted arcs is a redundant node.
Elimination of redundant compound nodes and redundant arcs
prodjuces nonredundant covering. Elimination of redundant
arcs is an opposite side of the FD—graph closure problem.
We shall solve such problem in the next section.

For solving L-minimum covering, we need to examine
for every FD X-»Y in F, is there X’ properly contained in
X with X’->Y. Thus, we need to check each compound node X
together with its component nodes, i.e. is there (X - X*)

~»Y redundant. For example,
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Figure 20.

the arc from node ABC to node A is redundant. Thus,
elimination of extraneous attributes on the left side of a
functional dependency leads to elimination of redundant
dotted arcs or full arcs. Deletion of the dotted arc
ABC—-*A accompanies the update aof its composition list
cfABC] = ABC into cL{BC] = BC. Then the arc weight equal
to 117icl is automatically readjusted from Ic[ABClI to
lcCLBCII. Similarly, the examipation of R—minimum covering
will Jead to elimination of redundant arcs from a prime
node to the related nonprime nodes. As stated above that
elimination of redundant compound nodes is not a difficult
problem. The major problem in manipulation of weighted
FD—graphs 1is related to the problem of elimination of
redundant full arcs and redundant dotted arcs. It will
involve the problem of redundant compound nodes and
extraneous attributes on the left side and right side of
functional dependencies.

We shall show that a subset of equivalent nodes

create a cycle on its FD-graph. Thus, there exist the
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problems of elimination of redundant arcs on acyclic
graphs and on cyclic graphs.

One of the advantages of the weighted graph concept
is that it can simplify the problem of redundant arcs of
FD-graphs into the transitive reduction problem because
the three Armstrong axioms Al, A2 and AZ are implied from

the weighted transitivity rule.

4.2 Elimination of redundant arcs in acyclic FD-graphs

According to Wlman [20] the time complexity of the
best algorithm for finding the transitive reduction of a
graph is the same as the time to compute the transitive
tlosure. We shall show how the problem of elimination of
redundant arcs in FD-graphs is similar with the classical
transitive reduction problem when the weighted concept is
used. We also show how to reduce the usual time
complexity of o(IVi X%x3) into o(IV*IIE}l) or into o(iIVI] +
IEI) +for the algorithms of the above problem. In case of
cyclic FD—graph, it needs to find strong connected
components of equivalent nodes [22]1. After the processing
strong connected components, the final algorithms are
similar as with the acyclic case.

The graph algorithms were published mostly for
non-mul tigraphs. These algorithms were developed for the
classical transitive closure (7,91, the transitive
reduction [20)} and the minimum equivalent graphs [21,221].

The Armstrong axioms may not be applied to these problems.
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We have to use the concept of weighted arcs to imply the
union rule of the Armstrong axioms. Schnorr [(25) derived
a linear transitive closure algorithm. Moyles, Thompson
£211 and Hsu [22) showed that the time complexity for the
algorithm of finding a minimum equivalent digraph is o(iIVI
XX 3). Obviously, this time complexity can be reduced to
o(IV?*IIE}) using adjacency lists where IV'! is the number
of nodes with outdegree greater than zero, and IEl is the
number of arcs.

In order to develop an algorithm for reduction of
redundant arcs, the path set pfi,jl] are needed. To avoid
having IVIi¥Xx2 matrix elements, i and j are not necessarily
over the full range of (VI. The path set is initialized
by the arc weights.
lLet wli.kl be the weight of an arc (i,k). 1f pLi,k]) = 1
and pli,jil x pLi.kl = wli,kl, then the arc (i,k) is
redundant and it can be deleted or assignhing it a zero
weight.

The algorithm for reduction of redundant arcs :
LOCid, LICiJ & input set {jlj in V and (i, j) in EO, El}j
wOli, il, wili,jl ¢ input and output arc weightss
s0i] @ working sets
pli, 3l ¢ path weight;
Initialize pfi,jl 3= wli, il for all arcs;
#1f pli.jil not defined
initialize pli,jl 2= O3

#ENdi £}
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/¥ only those nodes with outdegree > 0 may have transitive

arcs x/
for all i in V with outdegree > 0 do
{

/¥use stack for depth first search of transitive arcsk/

stack s= slil 2= {jl(i,J) in E and ILOCFI\/L1Lj]i>03;

while stack NOT = empty do

{
remove j from stack;

/% examine each node no more than once %/

if 3 not marked then
{
mark js
push j into queues
if pOli,jl = 1 OR piLi,jl =1 then

{

for all k in LOC3JI\/L1L3] do

{
if wOliak1>0 OR wili, k120 then

/%if path p exists, delete the redundantk/

if plLi, k) =1 then
Wifi kl:=wlli, kl-(WOCj,kIN/wiliskl);

else
if piliy,kI=1/IcCk]i/\ i,i in clkl then

<
clkd 2= cfkl - i3

wolk, il := O3
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wiCi,kl 2= 03
3
if pOLi k) = 1 then
WOLi 4 k1t =wOCi,k]1—(WOli, kI\/W1L j, k1)
if ILOCKIN/LICKIIXO AND (k not marked)

then push k onto stacks

>
for all j in queue do
unmark: j3
END.

It is not difficult to show that ap arc with a
fractional weight is meaningful if it is involved with a
compound node and its component nodes. For example,
suppose that the composition list of the compound node k
containg i and 3j. When there is an arc from node i to
node i, then the dotted arc (k, j) with the weight wlk,3il =
1 and the dotted arc (i, k) with the weight wli,kl3 =
1/1cfk] ) become redundant. Deletion of j from clk]l will
update the arc weight automatically. Since this algorithm
processes only nodes with outdegree greater than zero, and
traverse each node no more than once. It quarantees that
only the nonredundant arcs or their equiwvalent paths are
traversed but not the both. In comparison with the Hsu
algorithm, we reduce the time complexity from o(IVIXx%x3)
into o(IV’IIEl!) where V’ stands for podes with outdegree

greater than :zero, and E for nonredundant arcs or their
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equivalent paths. Thus, we reached the time complexity as
it for the FD-closure. If we simulate the Schnor~
trancsitive closure algorithm (241 here, then the time

complexity for reduction of redundant arcs may be further

reduced.




CHAFTER 5

AN ALGORITHM FOR THE LOSSLESS JOIN FROFERYY

The graph algorithms of the above chapters may not
produce a database schema having the lossless join
property. To this goal it needs to find a kernel of the
FD-graph closure. Such a problem is NF-hard [10,1113.

A kernel of an FD—-graph closure G=(V,E+) is a subset
Vv in V such that no two nodes in V? are joined by an arc
in E+ and such that for every node in (V -~ V?) there is a
node in V’ for which (A,RB) in E+.

The semantic constraints of FD’s F on a given
universal relation scheme <U.F> require that the database
schema { <X1,F1>, <X2,F2>, «.ay <XN,Fn> } has the lossless
join property, To check whether the database schema
produced by our graph algorithms has the lossless join
property, we may use the algorithm of Aho, Beeri and
Ullman [23]

The algorithm Test [24]:
Input : a universal relation scheme <U,F> where U = {Al,
A2, ..., Akl; a database schema D = { <X1,Fl>;, ...,




Otlher expressions :

dli, j3 array with 1<= i <= n, 1= j <= k3

a, bil, ..., bn constants, totally ordered by < as
follows a < bt < .. < bn.
Step 1| [define "characteristic matrix" of DJ;

define dLi,jl = a if A in Xi,

bi otherwise.
Step 2 [apply functional dependencies of F1l
while array dli,jil can be modi fied do :

if R-»8 in F, il not = i2 and dlil1l,j] = dli2,j] for all
J such that Aj in R. Then for all j such that Aj in S,
set dli.jl := dlfi2, 33 := minimum (dfil1,3i3, dLi2Z2, 3)).
Step 3 [test for the lossless join propertyld
If there is an i0 such that dLi0,j] = a for all 1K= j <=k,
then output " D has the lossless join property with
respect to <U,F> ". Otherwise, output " D does not have
the lossless join property with respect to <uU,fF> ".
Biscup, Daual an' Bernstein [243 proved that if a database
schema D has the lossless join property with respect to
{U,F>, then there is a comp.onent <XiO, Fi0> in D such that
Xio -> U in F+, othe. wise determine any key Y of <U,F> and
output D := D \/ KY,0>} where 0 i an empty functional
dependency.

It is obviously that the key Y defined by Biscup et

al [24]1 may not be the kernel of ite FD-graph because it
does not require that the subset U-Y has empty functional

dependency. Otherwise, if there is an empty functional
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dependency, then <U,F> becomes a relation scheme
satisfying 3NF and the lossless join property, and no more
computations are needed

Finding a key Y of <U,F> and satisfying <Y,0> means
that the key Y of the universal relation scheme has empty
functional dependency such that the formed relation scheme
<Y¥,0> satifies 3NF. Obviously, it is not an easy problem.
Biscup et al £24]1 did not provide any algorithm for a such
problem. However, it has been shown that if there is a
‘component <Xi0, FiO» in D such that Xi0O -> U with respect
to F+, then the database schema D has the lossless join
property with respect to <{U,F>. Following this idea, we
may construct such a component <Xi0, FiO> if it does not

#ist in the database schema D. To gain this qoal, we

start from a keys union Kul constructed from the keys of
all the relation schemes in database schema D having not
the lossless join property.

Kul = K1 \/ K2 ... \/ Km
where Ki, K2, ..., Km are the keys in the database schema
D = { <K1=-3X1,F1>, <K2-3X2,F2>, «aey <Km=-2Xm,Fm> 3. It is
obviously that

closure (Kul) = U
but the scheme <Kul,Ful?> constructed from the keys union
Kuli and the subset of FD’s Ful of F among the attributes
of Ul may not satisfy the third normal form conditions
and Kul 1is not a real key of the schene. For a such

purpose we may map the scheme <Kul, Ful’> onto an FD-graph
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G=(Vul,Eul) with the node set Vul and the arc set Eul.
Then we can apply the same algorithms as described in the
chapter 2-4 to search each 3NF component from G=(Vul,Eul).
Thereafter, we construct a new keys union Ku2 from the new
database schema formed by G=(Vuil,Eul). We may continue
such procedures repeatedly until a scheme <Kum,0> having
empty Ffunctional dependecy is abtained. Then Kum becomes
a real key of U with respect to F+.

Theotrem. The scheme <Kum,0» constructed by the
abovementioned procedures will satisfy the following
properties @

- Kum -> U with respect to F+,

- <Kum,0> is in 3NF,

- JKuml reaches a minimum.

Proof. Since we use the weightd FD-graph algorithms, the
keys union is repeatedly constructed from the keys on the
FD-graphs in the normalization processes. Then it has the
sequence Kul Ku2 ... Kum and the sequence Ful Fu2 ...
Fum satisfying dependencies Kuwn -> Kuim—1), ..,, Kuz ->
Kut - U under Fum Fu(m—1) Fu2 Ful in F+. Hence, we
obtain that Kum -> U with respect to F+ and {Kum,0> is in
3NF because Fum is empty. Since Fum is empty, ther is no
further processing can be done for extracting a subset
from Kum. Thus, IKuml) reaches a minimum.

Example. Let <U,F>» = { {ABCDE, A->B, B->C, C-*D» and its
output D = { <AB, A->BR>, {BRC, B->C>, <CD, C->Dx>, <E, 0> }.

It may test that D does not have the lossless join




-y

property. Let us use the above described procedures, we
obtain :

kul = AN/B\/C\/E Fui = {A->B, B->C}

Ku2 = A\N/B\/E Fu2 = {A-3>B>

Ku3 = A\/E Fu3d = empty

Insert the new component <Ku3,0> = <AE,0> into D. then D
t= D \/ <AE,0> has the lossless join property.
We shall show that the time complexity of the above
computation is not nonpolynomial.
Theorem. The time complexity of the computation of a
third normal form relation scheme <Kum, Fum> with Kum ->U
in F+ is not nonpolynomial.
Proof. Suppose that the first keys union Kul consists of
n nodes. If the relation scheme i3 not in 3NF, then
decompose <Kul, Ful> into several 3NF relation schemes and
construct a new keys union Ku2. [|Ku2l must be <= IKull,
otherwise there ic no change. The final relation scheme
contains at least one node. Thus, the computations are at
most oi{n) steps. At each step we use the graph algorithms
of the above chapters. They are polynomial, consequently,
the total time compleiity is polynoanial.
Note that the obtained <Kum,0> satisfies the minimality
criteria because at each step the minimum cover is used.

Now we can show that the relation scheme <Kum,0> is a
subset of Kul = (K1, K2, ..., Km} ¢

{Kum,0> = {Ki | Ki in Kul and indegree(Ki) = 0’

where indegree(ki) is the number of directed arcs incident
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into the node Ki. In the above example of this chapter,
the nodes A and E do not have any incident directed arc,
thus <Kum,0> = {A, E}. Here we can see that the solution
of the lossless join property is so much simplified due to

using the FD-graph representation.




CHAFTER 6

CONCLUSIONS

We show in this report that the weighted FD-graph
method is a very useful concept. 1t simplifies a complete
and 1ndependent set of the inference rules for functional
dependencies into one rule on weighted FD-graphs. This is
derived from the fact that each arc in a weighted FD—graph
carries a specified information via its weight. 1n case
of the set of the reflexivity, transitivity and union
rules., the weighted transitivity rule may imply all the
three rules on weighted FD-graphs because the additivity
of the weights implicitly represents the union rule, the
reflesivity is independent of functional dependencies and
it is implied by the related compound nodes.

As Ul iman €201 indicated that the transitive
reduction and the transitive closure may have the same
time complexity. Thus, it is possible further to reduce
the complexity of nonhredundant cover in FD-graphs because
the trangsitive closure, the transitive reduction and the
nonr edundant cover are mutually related if the weighted

graph concept is introduced. Particularly, the FD-graph
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closure as an example was solved in this report with a
linear average time complexity.

In this report we also suggested the algorithms to
obtain the lossless join property for design of database
schema D. The union of all keys in relation schemes of a
databse schema D is a good starting node set. Force the
keys union K to satisfy the third normal form conditions,
the universal closure condition K -> U with respect to F+
and the minimality of |IKl. Repeat such a process, the
final keys union Kum will have empty functional dependency
0. Then D 2= D \/ <Kum, 0> will have the lossless join
property. Therefore, the solution of the conventional
NP-hard kernel problem of FD—graph closure can be

avoided.
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