l* Nationat Library Bibliot
of Canada

Acquisitions and

ue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontaro
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ocnsure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
QOttawa (Ontario)

Yot fike Volre rolorence

Our e Notre rélerence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si i’'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Graphical Development Environment
for
Postgres Object Oriented Database
(GDEP)

Khaled A. Jababo

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

May 1994

© Khaled A. Jababo, 1994

ional Li o)
.*l National Library Bibliothéque nationale

of Canada duCana

Acquisitions and Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Weilington

Ottawa, Ontano QOttawa (Ontario)

KI1A ON4 K1AON4 Your lle Votre reMrence

Ow hle Notre réivence
THE AUTHOR HAS GRANTED AN L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE NON-EXCLUSIVE IRREVOCABLE ET NON EXCLUSIVE
LICENCE ALLOWING THE NATIONAL PERMETTANT A LA BIBLIOTHEQUE
LIBRARY OF CANADA TO NATIONALE DU CANADA DE
REPRODUCE, LOAN, DISTRIBUTE OR REPRODUIRE, PRETER, PISTRIBUER
SELL COPIES OF HIS/HER THESIS BY OU VENDRE DES COPIES DE SA
ANY MEANS AND IN ANY FORM OR THESE DE QUELQUE MANIERE ET
FORMAT, MAKING THIS THESIS SOUS QUELQUE FORME QUE CE SOIT
AVAILABLE TO INTERESTED POUR METTRE DES EXEMPLAIRES DE
PERSONS. CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

THE AUTHOR RETAINS OWNERSHIP L'AUTEUR CONSERVE LA PROPRIETE
OF THE COPYRIGHT IN HIS/HER DU DROIT D'AUTEUR QUI PROTEGE
THESIS. NEITHER THE THESIS NOR SA THESE. NI LA THESE NI DES
SUBSTANTIAL EXTRACTS FROMIT EXTRAITS SUBSTANTIELS DE CELLE-
MAY BE PRINTED OR OTHERWISE CI NE DOIVENT ETRE IMPRIMES OU
REPRODUCED WITHOUT HIS/HER AUTREMENT REPRODUITS SANS SON
PERMISSION. AUTORISATION.

ISBN 0-315-97666-7

Canadi

ABSTRACT

Graphical Development Environment
for
Postgres Object Oriented Database

(GDEP)

Khaled A. Jababo

A Software Development Environment is a collection of tools that suppors various
phases of Software Development. The environment in which an application is devel-
oped may have a larger effect on the programming process than does the language
in which the programmer writes an application. Thus, tools of a Software Develop-
ment Environment are very important; GDEP provides some tools to help Postgres
developers be more efficient and more productive.

GDEP provides Postgres users the ability to create, edit, view, import and export
classes to and from the Database without knowing the syntax of Postquel, which is
the query language for Postgres. Also, GDEP provides developers with a Command
Line Interface window allowing them to issue direct Postquel commands.

In this report, we discuss the functionalities of GDEP and how to use it, as well
as the two enhancements GDEP adds to Postgres: propagating, or adding a new

iii

attribute to all instances of a class, and changing the parent class of an existing class.
In addition. GDEP has the ability to show class’ properties as a flat class as well as
a regular class with inheritance properties. These features are not supported by any

available Postgres tools.

iv

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Bipin C. Desai.
His guidance and encouragement made my project work a pleasant and extremely
educational experience. Dr. Rajjan Shinghal has also been an encouraging professor.

I would also like to thank Mr. Frangois Lambert for the technical support he
provided to me, and Alan N. Bloch for his proofreading assistance.

More than anyone else, I would like to thank my mother. It was her continued

support and encouragement that made this degree possible.

\7

Acknowledgments

r o

1 would like to express my deepest gratitude to my supervisor, Dr. Bipin C. Desai., . .

His guidance and encouragement made my project work a pleasant and extremely
educational experience. Dr. Rajjan Shinghal has aiso been an encouraging professor.
I would also like to thank Mr. Frangois Lambert for the technical support he
provided to me, and Alan N. Bloch for his proofreading assistance.
More than anyone else, I would like to thank my mother. It was her continued

support and encouragement that made this degree possible.

’

s,y

Contents

List of Figures vi
1 INTRODUCTION 1
1.1 Organization of the Report 2
1.2 Overviewof Postgres i i i vt iii e v 3
1.2.1 ThePostmaster, 3

1.2.2 The Terminal Monitor 4

123 TheBackend 4

1.3 Overviewof Motif oo 4
1.3.1 Our experienceusing Motif 5

1.3.2 AdvantagesofusingMotif 6

14 Overviewof GDEP o .. 14
1.4.1 Graphical UserInterface 15

1.4.2 Database e e e 15

1.4.3 Implementation 16

vi

2 COMPONENTS OF GDEP

21 MainWindow L
22 Header Window e e
221 ConcordiaLogo L e
222 Current Datubase Name
223 RootClassName enen..
2.3 Display Area Window e
24 Command AreaWindow
241 ClearPushButton.
2.4.2 Execute PushButton
243 LogPushButton
25 MainMenuBar o
2.5.1 Application Main MenuBar Item
2.5.2 Edit Class Main Menu BarItem

3 GDEP ENHANCEMENTS TO POSTGRES

3.1 AddAttributetoaClass
3.2 Change Parentsof aClass
3.21 Exceptions. i e e e e

4 SAMPLE APPLICATION
4.1 Overviewof NCSA Mosaic o v i i i it et e e i e v

4.2 Mosaic Sar.ple Applicationin GDEP

vii

22

23

24

24

24

25

25

26

28

28

29

31

32

37

67

67

73

78

80

4,21 Mosaic Main MenuBarItem. 82

5 INSTALLATION AND CUSTOMIZATION 90
51 Installation 0 o e e e 90
51.01 Hardware e e 91

51.2 Software e e e e e 92

5.2 Customization i it i e e e e e e 93
521 LogFile e 93

522 StatusFile. o o oo oo 94

6 CONCLUSION 98
6.1 Advantagesof UsingGDEP 98
62 Future Work L e 99

6.2.1 Graphical Representation for Class Hierarchy Tree. 100

6.2.2 Enhancing the Sample Application 100

vin

List of Figures

1.1

3.3

3.4

GDEP Main Window Components 8
Command Area and Display Area of Main Window 27
Log Command List Window Jo
Main Menubar with all its Pulldown Submenus 33
Screen Lavout of the Application 3
MAMMAL Class Hierarchy Tree oo oo o000 41
MAMMAL Class Hierarchy Tree after Detroy Root Class PERSON . 42

MAMMAL Class Hierarchy Tree after Add New Child Class STUDENT 45

Add instance to class STUDENT 48
Edit instance of class STUDENT 51
Edit Help Popup DialogBox 55
Employee class inheritance graph. 70
Employee class inheritance graph after Add Attribute address in monitor. 71

Eniployee class inheritance graph after Add Attribute address in GDEP. 72

STUDENT and Employee class inheritance graph. 76

ix

3.5

4.1

4.2

4.3

4.4

6.1

COOP STUD class with new Parent Class EMPLOYEE. 7
GDEP main window with Mosaic menubaroption. 83
NCSA Mosaic: Main Application 85
NCSA Mosaic: Document View 87
NCSA Mosaic: Invalid Document View 88
Graphical Hierarchy Tree For Class Object 101

Chapter 1

INTRODUCTION

Since Postgres is public domain software, many development environment packages
have been developed to make Postgres an easier database to use. Some packages
use a command line interface such as Spog [Spog] to access the database, and others
use a graphical user interface to access the database. examples of the latter are
Aiberi [Alberi] and Geo [Geo]. When Spog was introduced. it was a better tool than
monitor [Pg Rel 4.1], which is the standard command line interface for Postgres.
Subsequently, Geo was developed with a graphical user interface, but it is not a
general tool. It is specialized for geographical maps, which is useful for landscape
domain applications. Finally Alberi was developed, which has a nice graphical user
interface, and some functionalities that are useful for Postgres users. Alberi was
developed on top of OpenWin tools.

In this technical report, we discuss the GDEP package, which we developed as

a graphical development environment for Postgres using the Motif Toolkit. GDEP

provides Postgres users all the functionalities that Alberi provides, as well as some
others that Alberi does not provide. Also, GDEP adds some enhancements to Post-
gres which are important with respect to Object Orientation principles. Throughout
this report, we describe the functionalities of GDEP and the enhancements of GDEP
to Postgres, give a sample Postgres application using GDEP, describe details of how
to customize and install GDEP, and finally present our conclusion and talk about
future work.

In the rest of this chapter. a description of the organization of the report is

introduced. This is followed by an informal description of Postgres, GDEP, and

Motif.

1.1 Organization of the Report

The functionalities and features of GDEP are presented in Chapter 2. Enhancements
of GDEP to Postgres are described in Chapter 3. In Chapter 4, we give a sample
application, with specific features to instruct GDEP users how they can use GDEP to
build their own applications. In Chapter 5, we describe how to customize and install
GDEP, in addition to a description of GDEP as a package. Finally, conclusions are

given in Chapter 6.

1.2 Overview of Postgres

Postgres is a database research project developed under Professor Michael Stone-
braker at the University of California at Berkeley. It is a multi-user Object Oriented
Database Management System.

Postgres has a query language called Postquel, which is an incompatible superset
of Quel. Names in Postquel are sequences of no more than sixteen characters (al-
phanumeric), starting with an alphabetic (underscore is considered an alphabetic).
Postgres adds an Object Identifier (Oid) to all instances automatically. Oid is a
unique identifier of an instance, not reused, thirty-two bits long. Postgres supports
five types of constants: character, string, integer, floating point, and other constant
types defined by Postgres users. It also supports a date type, which is a character
string of the following format: ‘MMMDD[HH:MM:SS]YYYY'.

The reader may refer to [Pg Rel 4.1] for more details on any subject related to

Postgres syntax or semantics used in this report. Postgres consists of three processes:

1.2.1 The Postmaster

This is a process which acts as a clearing-house for requests to the Postgres System.
Basically, front end applications connect with the Postmaster, which keeps track of
any system error and communication with the backend process. The Postmaster

must be running to run any of the Postgres commands.

1.2.2 The Terminal Monitor

This is used for direct access to the database, and is a front-end user interface to
the Postgres backend. It sends commands to the Postmaster, which forwards the
commands to the backend. GDEP has a command window which plays the same role

as the monitor, but the results are displayed in the display area window in GDEP.

1.2.3 The Backend

This is a process which does all the ‘real work’. This process is started by the
Postmaster when the it receives a connection from the terminal monitor, or from any

other interface that talks to the Postmaster, such as GDEP.

1.3 Overview of Motif

Motif is a toolkit from the Open Software Foundation (OSF) that allows program-
mers to write window-based applications. The Motif toolkit is based on the X Toolkit
Intrinsics (Xt), which provides an Object-Oriented Framework for creating reusable,
configurable user-interface components called widgets, supporting a convenient inter-
face for creating and manipulating X windows, colormaps, events, and other cosmetic
attributes of the display.

Widgets are objects that operate independently of the application; they know how
to draw themselves and how to respond to certain events. For example, a PushButton

widget knows how to draw itself, highlight itself when it is clicked on with the mouse,

and respond to that mouse click. Motif provides a complete set of widgets that follow
a Motif Styvle user-interface designed to implement the application.

Xt and Motif follow the Object-Oriented approach, where the application pro-
grammer is completely insulated from the code inside the widgets. A programmer
has access to functions to create, manage and destroy widgets, plus certain public
widget variables known as resources. If the application programmer wants to keep
the user from modifying resources, the values of a widget may be set at creation. An
important class of resource, which must be set from the application, is a widget’s
callback lists. Each widget that expects to interact with an application publishes
one or more callback resources. The application must associate with that resource a
pointer to the application function, that will be invoked when the widget is selected.

In summary, X Toolkit Intrinsics provides functions for creating and setting re-
sources on widgets. On the other hand, Motif provides the widgets themselves, plus
an array of utility and convenience functions for creating groups of widgets that are
used collectively as a single type of user-interface element. The reader may also refer
to [Motif] for more details on the Motif Toolkit.

In the following subsections, we will discuss our experience with Motif as well as

the advantages of using Motif:

1.3.1 Our experience using Motif

From our experience, it is in the best interest of Motif users to spend some time

learning the Motif Toolkit before they start building applications using Motif. This

can be done by going through examples that give users an idea of how to use Motif;
such examples are given in [Motif]. There are some constraints on using Motif widgets,

which can only be found by going through Motif examples. These constraints are:

1. Manager widgets should not be managed until all their children are managed

first.

2. Frames are nol supposed to be created as unmanaged, because frames can
only have one child. Usually, in Motif, classes are supposed to be created as
unmanaged, then they may be managed after creating all their children. After

managing a class, you cannot create any more children for that class.

3. The Motif window manager always forces the dialog shell to be directly on top
of its parent. The result is that the shell that contains the widget acting as the
dialog shell’s parent cannot be placed on top of the dialog. This is considered

to be an application design bug.

4. If an include filename ends with capital P, it indicates that this is a private

header file, and application programs should technically not include it.

1.3.2 Advantages of using Motif

Once a programmer learn Motif, then using its Toolkit becomes easy. Motif allows
programmers to build a nice Graphical User Interface for their applications with very
little effort. Motif provides its users with a nice set of widget class libraries, designed
to meet all the needs of building a Graphical User Interface for any kind of application.

6

So, Motif allows programmers to spend more time on designing and implementing
their applications, instead of worrying about the Graphical User Interface part. of the
application.

For example, to build the main window shown in figure 1.1, we had to build the
top level window for the application first. This is done in Motif in the following

statements:
XaTopLevel = XtVaAppInitialize(&XaApplication, "Main_Project",
NULL, 0, &argc, argv, NULL, NULL);
XtVaSetValues(XaTopLevel, XmNx, XaMainWindowX,
XmNy, XaMainWindowY, NULL);

Second, we built the main window as a child of the main application:

XaMainWindow = XtVaCreateWidget
("XaMainWindow", xmMainWindowWidgetClass, XaTopLevel,

XmNwidth, XaMainWindowWidth, NULL);
Third, we built the main menu bar for the main window:

String XaMainMenubarltemName[] = {"Help” ,” Application”, "Edit
Class”, "View Class™, "Utilities"} ;
char XaMainMenubarltemLabel[] = {"H’,’A’, 'E’, 'V",'U’} ;

for i=0;1<5;i++)
XaString[i] = XmStringCreateSimple(XaMainMenubarltemNameli]) ;

7

Application Edit Class

View Class Utilities

Database Name: Jababo

Class Name:

Display Area

o 5

o EL

-+ - - |
Command Area

I

L2 u:)-

Log

Figure 1.1: GDEP Main Window Components

o5

XaMainMenubar = XmVaCreateSimpleMenuBar

(XaMainWindow. "“XaMainMenubar”,
XmVaCASCADEBUTTON,XaString[0], XaMainMenubarltemLabel[0],
XmVaCASCADEBUTTON,XaString[1], XaMainMenubarItemLabel[1],
XmVaCASCADEBUTTON,XaString[2], XaMainMenubarIltemLabel{2],
XmVaCASCADEBUTTON, XaString[3], XaMainMenubarltemLabel{3],
XmVaCASCADEBUTTON,XaString[4], XaMainMenubarltemLabel[4],

NULL);

Fourth, we build the pulldown submenus for each item in the main menubar. For

example, the pulldown submenu code for main menubar item Application is:

XaString[0] = XmStringCreateSimple(” Load Database”);
XaString[1] = XmStringCreateSimple(”Set Root Class”);
XaString[2] = XmStringCreateSimple(” Create Database”);

XaString[3] = XmStringCreateSimple(” Quit™);

XmVaCreateSimplePulldownMenu(XaMainMenubar, "application_menu”,
1, XaFeventMainMenubarApplication,

XmVaPUSHBUTTON, XaString|0], 'L’, NULL, NULL,
XmVaPUSHBUTTON, XaString[1}, 'S’, NULL, NULL,
XmVaPUSHBUTTON, XaString|[2], 'C’, NULL, NULL,
XmVaDOUBLE_SEPARATOR,

XmVaPUSHBUTTON, XaString{3], 'Q’, NULL, NULL,

NULL);

After creating the pulldown submenus of all the main menubar items, we managed

the main menubar:

XtManageChild(XaMainMenubar);

Fifth, we created the main window work area of the application and its header win-

dow:

XaMainWorkArea = XtVaCreateWidget(” XaMainWorkArea”,

xmPaned Window Widget Class, XaMainWindow, NULL);

XaWork ArcaHeader = XtVaCreateWidget ("XaWorkAreaHeader”,
xmFormWidget Class. XaMainWorkArea,

XmNwidth, XaMainWindowWidth,

XmNheight, XaWorkAreaHeaderHeight,
XmNscrollBarDisplayPolicy, XmASNEEDED,
XmNscrollingPolicy, XmAUTOMATIC,

Then, we created the logo (Concordia University Logo), the database name and the

class name within the work area header window. The code for the logo window and

its content is:

XaWorkArealleaderLogo = Xt VaCreateManaged Widget
("XaWorkAreaHeaderLogo®,

10

xmMainWindowWidgetClass, XaWorkAreaHeader,
XmNuwidth, ConlUlogo_width,

XmNtopAttachment , XmATTACH_FORM,
XmNIleftAttachment . XmATTACH_FORM,
XmNbottomAttachment , XmATTACHJFORM,

NULL) ;

XtVaGetValues(XaWorkAreaHeaderLogo,
XmNforeground, &fg,
XmNbackground. & bg,

NULL) ;

XaPixmap = XCreatePixmapFromBitmapData
(XtDisplay(XaWork AreaHeaderLogo),
RootWindowOfScreen(XtScreen(XaWorkAreaHeaderLogo)),
ConUlogo_bits, ConUlogo-width, ConUlogo_height,

fg, bg, DefaultDepthOfScreen(XtScreen(XaWorkAreaHeaderLogo)));

XaWorkAreaHeaderLogoPic = XtVaCreateManagedWidget(” XaLlabel”,
xmLabelGadgetClass, XaWorkAreaHeaderLogo,

XmNlabelType, XmPIXMAP,

XmNlabelPixmap, XaPixmap,

XmNleftAttachment, XmATTACH_FORM,

XmNtopAttachment, XmATTACH.FORM,

11

XmNbottomAttachment, XmATTACHFORM,

NULL) ;

After creating all the components o, the work area header information window, we

managed it:
XtManageChild(XaWorkAreaHeader) ;

Sixth, we created the work area display window, which contains the label and the

text area:

XaWorkAreaDisplay = XtVaCreateWidget(” XaWork AreaDisplay”,

xmPanedWindowWidgetClass, XaMainWorkArea, NULL);

XaWorkAreaDisplayLabel = XtVaCreateManagedWidget(” Display Area”,

xmLabelWidgetClass, Xa\Work AreaDisplay, NULL) ;

XtSetArg(XaArguments[0], XmNrows, Xa\WorkAreaDisplayRows);
XtSetArg(XaArguments[1}, XmNcolumns, 80);
XtSetArg(XaArguments[2], XmNeditable, False);
XtSetArg(XaArguments[3}, XmNeditMode, XmMULTILINE_EDIT);
XtSetArg(XaArguments[41]. XmNwordWrap, True);
XtSetArg(XaArguments[5], XmNblinkRate, 0);
XtSetArg(XaArguments[6], XmNautoShowCursorPosition, False);
XtSetArg(XaArguments[7], XmNcursorPositionVisible, False);

XtSetArg(XaArguments[8], XmNtraversalOn, False);

12

XaWorkAreaDisplayText = XmCreateScrolledText(XaWork AreaDisplay,
" XaWorkAreaDisplayText™, XaArguments, 9);
XaFfillupTextBufferArea(XaDisplayBuffer, XaWork AreaDisplayText) ;

XtManageChild(XaWork AreaDisptayText) ;
After creating all the components of the work area display window, we managed it:
XtManageChild(XaWork AreaDisplay) ;

Seventh, we created the work area command window which consists of the label, the
command area text window and the option window. The option window cousists of
three pushbuttons: clear. execute and log. The code for the work area command

window and its clear pushbutton is:

XaWorkAreaCommandOption = XtVaCreateWidget
("XaWorkAreaCommandOption”,
xmFormWidgetClass. XaWorkAreaCommand,
XmNfractionBase, 10,

XmNpaneMinimum. XaButtonSize,

XmNpaneMaximum, XaButtonSize, NULL) ;

XaWork AreaCommandOptionClear = XtVaCreateManaged Widget (” Clear”,
xmPushButtonGadgetClass, XaWorkAreaCommandOption,
XmNtopAttachment, XmATTACH FORM,

XmNbottomAttachment, XmATTACHFORM.

XmNleft Attachment, XmATTACH_POSITION,

13

XmNIleftPosition. 1.

XmNright Attachment, XmATTACH POSITION,

XmNright Position. 3,

XmNshowAsDefault, True,

XmNdefaultButtonShadow Thickness, 1, NULL) ;
XtAddCallback{XaWorkAreaCommandOptionClear, XmNactivateCallback,

XaFeventWork AreaCommand,0) ;
After creating all the components of the work area command window, we managed
it

XtManageChild(XaWorkAreaCommand) :

Finally, we managed the main window, realized the top level window and created the

main loop for our application:

XtManageChild(XaMainWindow) ;
XtRealizeWidget(XaTopLevel);

XtAppMainLoop(XaApplication):

For more details on Motif source code and its widget classes, refer to [Motif].

1.4 Overview of GDEP

GDEP is a Graphical Development Environment for Postgres users. It has many

functionalities in addition to some enhancements made to Postgies. The enhance-

14

ments made to Postgres are the following: GDEP propagates a new added attribute
to a class to all instances of the class. and GDEP allows Postgres users to change
the parent class of an existing class. Functionalities and enhancements of GDEP,
plus other issues related to GDEP, will be discussed in the following three chapters.

GDEP consists of three main parts which are described in the following subsections.

1.4.1 Graphical User Interface

GDEP uses the Motif Toolkit to build the front end Graphical User Interface to the
Postgres application. The Graphical User Interface consists of the main window, the
main menu bar, the header area, the display area, and finally, the command area. The
system is supported with dialog boxes and selection boxes when needed, so the user
does not have to remember any Postquel command or the contents of the database
to access or manipulate it. Tue input to the system can be done either by clicking on
the mouse or by using the keyboard; both are compatible with Motif and X toolkit

functionalities to navigate through the window.

1.4.2 Database

The backend Database Management System (DBMS) used by GDEP is Postgres.
GDEP supports most frequently used Postquel queries through the main menu bar.
GDEP also has a command area windew, wiich plays the same role as the Postgres
terminal monitor. It allows users to issue their queries directly to the database. This
is useful in case users like to issue Postquel commands that are not provided through

15

the main menu bar. In addition to the terminal monitor functionalities, GDEP
provides users with a selection log option, which will pop up a selection window
allowing the user to select a previousl:' executed command. Every time the user

executes a command, it will be added to the log file.

1.4.3 Implementation

GDEP is written in C. The code is written to be very general, in that all functions
can be reused. This allows the GDEP users to modify the source code in order
to build their own applications. Every function is preceded by a short paragraph
explaining what it is, and how to use it. Examples of these are the input and output
functions. Also, every block in a function is preceded by a short paragraph explaining
the functionalities of the block.

The Motif and X Toolkits follow the same style in coding: they both add a
special symbol at the beginning of every variable parameter used by their code. For
example, X Toolkit adds Xt at the beginning of every variable and parameter used
by the X Toolkit, which nmeans ‘X Toolkit intrinsic variable’. Also, Motif uses Xm
at the beginning of every variable used by the Motif Toolkit, which means ‘X motif
variable’. In this manner, we followed the same style in coding which Motif and
X used in their code. In GDEP, all parameters and variables that belongs to the
Graphical User Interface start with Xa, and all other variables and parameters that
belong to the main application start with Ma. Also, functions that are concerned

with the Graphical User Interface start with XaF, and other functions start with

16

MaF.

GDEP consists of a Makefile file, a header file, and nine C files. The Makefile
is used to compile and link all the Object files used by GDEP. The Header file
contains all the include files of the external libraries called by GDEP, the define
section of all the constants used by GDEP modules, the define section of all the data
structures used by GDEP modules, and finally defines all the global variables needed
for the application. The libraries called by GDEP are: Motif library (Xm), X Toolkit
Intrinsics library (X11), and Postgres Library (libpg and libpg-fe). Each C filename

can be considered as a module. These modules are:

1. mainfile.c

This module contains the main function to start the Postgres database
application. It initializes the paraimneters, then builds the main win-
dow for the application. This module uses the status file if it exists to
initialize the variables of the application. For example, it initializes
the width and the height of the main window, in addition to many
other parameters. If the status file does not exist, then GDEP uses
the default values set by the application to initialize its variables.
This is useful if GDEP users would like to reset the application; then
all they must do is remove the status file from the directory where

GDEP is running.

2. xaevents.c

17

This module contains all the functions needed to handle the events
that occur in the main window with respect to the user request,
whether it is an input command, a submenu choice, a menu choice
or any other request. Every time the user clicks on a Pushbutton,
an event is generated. The generated event sends to this module
an event identifier to instruct this module what type of event has
occured. Then, this module invokes the right method in module

xahandle.c to handle the specific event.

3. xahandle.c

This module contains all the functions needed to respond to the events
that the program must take care of in xaevents.c. Every event handler
has its own method of handling the event. It might respord to the
user directly by displaying or executing the command requested by
the user. Otherwise, it might invoke other events such as a dialog

box to get more detail needed for the original event to be handled.

4. xatools.c

This module contains all the functions needed as tools to the Graph-
ical User Interface of the project, such as clear a particular window,
get contents of a particular window, fill a particular window with a
string. and so on. Also, this module contains the functions to set
database window values, as well as the class window values that are

18

selected by the user. In addition. this module takes care of setting
the X and Y positions of the main, dialog box, and instance win-
dows. It also manages and handles all the dialog boxes created by

the application.

5. matools.c

6.

This module contains all the functions needed by the main Postgres
database application. It contains functions that are used to open
and close the database, and destroy the class trec. It also contains
functions that initialize the application, and store the current sta-
tus of the application. Finally, it contains functions that handle the
Postquel queries that are issued to the database. These functions
are of different formats: some of them return a string to the calling
program, others return specific data structures to meet the need of

the clients of this module.

instance.c

This module contains all the functions needed by the Postgres database
application to respond to the user request to manipulate, instance by
instance, a particular class in the database. This module handles
different functionalities for the instances such as add a new instance,
delete current instance, update current instance, show next instance,

show previous instance and cancel. In some cases, previous and next

19

pushbuttons disappear, according to the contents of the database and
the position of the current instance in the database. In some other
cases, the instance window might disappear by displaying a notice
message if there are no more instances for the specified class in the

database.
7. maexport.c

This module contains all the functions needed to export class defini-
tions and class instances to external text files. The exported text files
are compatible with Postgres monitor command files, in that there
is a \g at the end of each command. This is useful in case those
commands need to be issued to the Postgres database from Postgres
Tools other than GDEP. It also contains functions to import text files

to the database containing Postquel commands.

8. function.c

This module contains all the functions needed by the main application
to manipulate strings and linked lists. It contains functions to create
and free pointers of a specific data structure. Finally, it contains
functions that get size or find a particular string in a linked list data

structure.

9. pattern.c

This module contains all the functions needed to find a particular
pattern in a string. Also, it has the capability of finding a specific
pattern in a file. In both cases, the module returns to its client the
string which comes right after the pattern if the pattern is found.
Otherwise, it returns an empty string. These functions are used to
find the value of the parameters in the status and log files, which will

be discussed in section 5.2.

{)1

Chapter 2

COMPONENTS OF GDEP

In this chapter, we will describe the diflerent parts of GDEP in detail, and describe
the functionalities and features of each part individually. In addition, we mention
the exceptions of every part when applicable. To clarify our description, we refer to
many figures, each representing a particular state of GDEP.

To start GDEP, first the user must install it; this is described in detail in section
5.1. After downloading the GDEP files, the user must type ‘make’ from the same
directory where the GDEP package resides. Make will generate an executable file
called ‘gdep’. When the user types ‘gdep’, a GDEP main window will appear, as

shown in figure 1.1.

[)
N

2.1 Main Window

The main window for GDEP is shown in figure 1.1. As we can see in the main window
layout, the GDEP header title is shown at the top of the window, which is entitled
‘Graphical Development Environment for Postgres’. Then, the GDEP main window

is split into four main subwindows:
1. Main Menu Bar
2. Header
3. Display Area
4. Command Area

Each SubWindow will be described in detail in the following sections.

GDEP users can take advantage of Motif built-in features (tools) to resize each
subwirdow within the main window. The user can do this by clicking with the left
button of the mouse on the small rectangle on the line that separates each subwindow
from the others. then moving it up or down according to the user’s need. Finally,
releasing the button at the new position of the subwindow will resize the old windows
to the new size desired. This operation can be done with any other window created
by the GDEP main window. If the user relocates any window created by GDEP, then
its location will be saved by GDEP in the status filename, which will be discussed in
section 5.2.2. Otherwise. whatever changes are done to any GDEP window will not
change the status of the GDEP application.

23

2.2 Header Window

In this section, we describe the Header Window with respect to GDEP, and discuss
in detail each of the three components of the Header Window. As we can see in figure
1.1, the Header Window is located at the top of the main window, between the main

menu bar and the display area. It is composed of three components:

2.2.1 Concordia Logo

This is a drawing area that displays the Concordia University logo. It is located at
the left-hand side of the Header Window, and its left, top and buttom borders are
attached to the Header Window. This logo’s code is embedded within the GDEP
application’s source code. and it cannot be modified or changed through any external

resources for GDEP.

2.2.2 Current Database Name

This area is used to inforin GDEP users as to which database they are currently
working on. The area is located high on the right-hand side of the Header Window.
It contains the field name ‘Dataliase Name' and the field contents located to the right
of the field name. As we can see, in figure 1.1 the field contents is ‘jababo’. How to

set or modify this field contents will be discussed later, in section 2.5.1.

2.2.3 Root Class Name

This area is used to inform GDEP users of the current root class. The area is located
low on the right-hand side of the Header Window. It contains the field name ‘Class
Name’ and the field contents located at the right of the field name. As we can see in
figure 1.1, the field contents is empty. How to set or modify this field contents will be
discussed later, in section 2.5.1. In the rest of this report, this field will be referred

to as ‘Root Class’, ‘Current Class’ or ‘Selected Class’.

2.3 Display Area Window

This window is located between the Header and Command Area Windows. It consists
of two parts: the name of the window, and the scrollable text area where the user
can use the up or the down arrows to see other lines of the text simultaneously. The
user can also use the left or right arrows to shift the display view in the left or right
direction. The name of the window, ‘Display Area’, is displayed at the middle of the
top of this window: the scrollable text area is located right below the name of the
window. in a read-only mode. It is used to display the results of the queries executed
in the command area of GDEP, as well as the view instances option of the submenu
item View Class. If the field length of any instance variable in the result of the
query exceeds seventeen characters, then only the first seventeen characters will be
displayed, and a star will be displayed at the end of the ficld to inform the user that

there are more data in that particular field. If the uscr wishes to see the remaining

25

data in that field, ‘view instances by tuple’ may be selected from the View Class
option of the main menu bar. For example, as we can see in figure 2.1, there are stars
at the end of the data fields of the instance variables career, hobbies and address.
From this we know that more data exists for these particular fields. Also, we realize
that the buttom srcollable arrows arc half highlighted, which tells us that there is
more text at the left side of the Display Area window. Clicking on the left arrow

allows us to see the rest of the instance variables and their data for class STUDENT.

2.4 Command Area Window

This window is located at the buttom of the main window; it is also attached to the
display area window. This window consists of three parts: the name of the window,
the scrollable text arca and the command area. The name of the window, ‘Command
Area’, is displayed at the middle of the top of this window; the scrollable text area
is located right below the name of the window, in a write-only mode. It is used to
input the user’s Postquel commands to interact. directly with the Postgres backend
process. The user can click the mouse within the scrollable text area, and start
typing the Postquel commands directly. Finally, the command area consists of three
pushbuttons which are used to manipulate the scrollable text area of the Command
Area Window, and execute the Postquel commands as well. When any of the three
pushbuttons is pushed. it will be highlighted as a feedback to the user. The name and

the functionalities of each pushbutton will be presented in the following subsections:

Edit Class View Class Utilities GCraphics

Database Name: Jababo
Class Name: STUDENT
O
Display frea
Query retrieve portal eportal0 (STUDENT.all) sent to backend process.
Result Of Query :
Returning the following Database Result
carreer hobbies address ssnunber nanse
Part time employe® Swimming, Skiing,® 3586 Cote des Nei® 273601024 JoHe
Part time employe® Dancing, travelli® 17 Sherbrooke Estw 568035491 JoRp
@
Command fArea
retrieve (STUDENT.all)] E
o
1
e] C =]

Figure 2.1: Command Area and Display Area of Main Window

o
-1

2.4.1 Clear PushButton

This pushbutton is used to clear the command area window. After this button is
pushed, the value of the command area text will be an empty string, regardless of
what contents it had before it was pushed. This is helpful in case the user wants
to issue a new Postquel command to the backend process. Instead of deleting the
old Postquel command and retyping the new one, the user can push this button and
then type the new Postquel command, or select from previously executed commands,

which will be discussed later in section 2.4.3

2.4.2 Execute PushButton

This pushbutton is used to issue a Postquel command to the backend process of the
Postgres database. The contents of the command text area will be the value of the
Postquel command. The result of the Postquel command from the backend process
will be displayed in the display area window. If the executed command is an invalid
Postquel command. vnen GDEF will display an appropriate message informing the
user that the command could not be executed. Otherwise. if the executed command
1s a query command. then the result of the query as instance variable names and
corresponding data values will be displayed in the display area. Else, if the executed
command is not a query command then a message stating that the command has been
executed successfully will be displayed. The GDEP user is always given a feedback for

the executed command, to be informed of its status. For example, if the command is a

not a que.y and could not be executed by the backend process, then GDEP displays
a message in the display area stating that the command could not be executed,
and the user knows that there is something wrong in the command. Every time a
nonempty string is executed, GDEP will append the executed command at the end
of the log file ‘username.log’. For example, in figure 2.1, after pushing the ‘Execute’
pushbutton, we see that the buttou is highlighted. Then GDEP issues command
‘retrieve (STUDENT .all)’ to the Postgres backend process of ‘jabaho’ database. The
command could be entered directly by the user by first clicking in the command area
text, followed by typing the command through the keyboard, or it could be sclected
from the log file through the log pushbutton to be discussed in detail in the next
section, 2.4.3. The result of the query is shown in the Display Area window. The
first line displays the query that has been issued to the database. The fourth line
displays the name of the instance variables, such as ‘career’, *hobbies’, eic. The fifth

to the last lines display the instance data values of the result of the executed query.

2.4.3 Log PushButton

This pushbutton is used to help GDEP users look at previously executed commands,
and give them the option of selecting any of them. When a user pushes this button, a
selection popup window will appear, as shown in figure 2.2, displaying in a scrollable
window all the previously executed commands. Every logged command will appear
on one line. The user can click once on the selected command, which will copy

the log command into the ‘selection’ field of the selection popup window. At any

29

selection_popup

Log Command List:

retrieve (EMP.0id>
retrieve (EMP,all>
destroy EMP
retrieve {e.all) from e in Circle

retrieve (EMP,all)

retrieve (person.,all)append DEPT (dname = “"management”, floor = 34, manasger = “Lerc
append DEPT (dname = "management”, floor = 34, manager = “"Lerou")

retrieve (Herculesl,oid)

retrieve (e,all) from e in STUD_EHP

retrieve {e,0id) from e in STUD_EMP

delete STUD_EMP where STUD_EMP,o0id = “218840"

crsate EMP (name = text, salary = int4, age = int4 , dept = charlb)
create STUD_EMP (location = point) inherits (EMP)

append EMP (name = “Joe", salary = 1400, age = 40, dept = “shoe")

append EMP (name = "San", salary = 1200, age = 29, dept = "toy")

append EMP (name = "Bill", salary = 1600, age = 36, dept = “"candy")

append EMP (name = "Bilal", salary = 1650, age = 36. dept = “"candy"?

append EMP (name = “San”", salary = 1200, age = 29, dept = "toy"?

append EMP (name = “San", salary = 1200, age = 29, dept = “toy")

retrieve (e,all) from e in Circle

retrieve (e.8ll) from e in EMP vhere e.age < 40 and e,salary = 25600

retrieve (e.all) from ¢ in PART

define view empdept (vsalary = e.salary, f.manager) from e in EMP, £ in DEPT where
destroy empdept
F-etrieve (STUDENT. a)

Selection
retrieve <STU.T'T.all>]

wHunun

—

e

[Srpventaguol?

Figure 2.2: Log Command List Window

30

time, the user can edit the selection field if needed, because it is a text field type.
Then, clicking on the ‘Ok’ pushbutton will copy the data in the ‘selection’ field into
the command area of the GDEP main window, then destroy the selection popup
window. Or, the user can select any log command by clicking on it twice, which
will copy the selected command into the command area of the GDEP main window,
then destroy the selection popup window. Alternatively, clicking on the ‘Cancel’
pushbutton destroys the selection popup window without changing anything in the
GDEP main window. For example, clicking on the last line in the scrollbar text area
‘Log Command List’ of the selection log command popup window of figure 2.2 causes
the log command ‘retrieve (STUDENT.all)’ to be copied into the selection field at
the buttom of the selection popup window. Then, clicking on the ‘Ok’ pushbutton
will copy the contents of the selection field into the command area of the GDEP
main window, as shown in figure 2.1. and destroys the selection log command popup

window of figure 2.2.

2.5 Main Menu Bar

As shown in figure 1.1, the main menu bar is located at the top of the GDEP main
window, right after the window title, ‘Graphical Development Environment for Post-

gres’. The menubar consists of five menu items:
1. Application

2. Edit Class

31

3. View Class
4. Utilities
5. Help

Each item is a title for a pulldown submenu. When the user clicks on any of the
menu bar items, then a pulldown submenu will be displayed giving the user more
options to select from. The user can click on any of the items in the submenu, which
will activate a specific task that is attached by GDEP to the selected item. Figure
2.3 shows all the items of the main menu bar, and all the pulldown submenu items
of each item in the main menu bar as well. The purpose of each menu bar item, a
list of its pulldown menu items, and the functionalities of each one of them will be

described in the following subsections.

2.5.1 Application Main Menu Bar Item
This menu bar item consists of four pulldown submenu items:
1. Load Database

This pulldown submenu item is used to set up and initialize the
database for a GDEP application. When the user selects this option,
a selection popup window will appear with a list of the available Post-
gres databases the user can select from. The user must select one of

the database names in the list ‘Database List’, as shown in figure 2.4.

32

Main Menubar

Application | | Edit Class View Class Utilities Help
Load Database Create New Class View Class Hide Command Help Application
Descraptaon Window

Set Root Class

Destroy Reot
Class

View Parent Of Class

Refrech Windows

Help Display Are:

Create Database

Add New Chnld

View Children Of
Class

Flear Display Area

Help Command AreJ

Quit

Add Atiritute
Class

View Class Instances

Export Class

Definition

Add Instance
Class

V1ew Class Instances
By Tuple

Export Class
Def Inherat

Edit Instance
Class

Help

Export Class
Instances

Change Parent
Class

Heip

Export. Class Tree

Import Postquel
File

Help

Figure 2.3: Main Menubar with all its Pulldown Submenus

33

13 Graphical Oevelopment Environment for Postgres

{3 Xaldislog_popup

polication {dit Cless Yyow Class {Rilitise ravhics

(23

Deteoaee Name:

O List Dularm For Class STADAT 15 Bty

Porort For Chass STAONT

Dinly A

Jatabese List:

[Lesplotel
shirt
derdwni

Clor |

=

Entor Tuoe for Attribute merstalstatus For Class STUNEMT

Enter New Rtritute Mane For Class SRCENT

1”2

T

Erter ey Child Nee For Cless

imd habbies
m2 address
floatd

flont®

e

g
—
snaon
L
PSR
oW
st
snewt

Figure 2.4: Screen Layout of the Application

34

If the user selects an item that is not from the list, then a warning
message will be displayed stating that the selection must be from the
list. After the warning message is acknowledged, GDEP destroys the
selection popup window and goes back to the previous state prior to
selecting this pushbutton. Otherwise, if the selected item is from the
list ‘Database List’, then GDEP sets the database for the application
to the selected database named by the user. Also, it sets the value of
the field ‘Database Name' in the header window to the value of the
selected database name through the selection popup window, then

destroys the selection popup window.
2. Set Root Class

This pulldown submenu item is used to sct the root class for a GDEP
application. When the user selects this option, a selection popup
window will appear with a list of the available classes in the current
database. The user must select one of the class names in the list
‘Class List’, as shown in figure 2.4. If the uscr selects an item that
is not from the list, then a warning message will be displayed stating
that the selection must be from the list. After the warning message
is acknowledged, GDEP destroys the selection popup window and
goes back to the previous state prior to selecting this pushbutton.

Otherwise, if the selected item is from the list ‘Class List’, then GDEP

35

sets the root class for the application to the selected class name by
the user. Also, it sets the value of the field ‘Class Name’ in the header
window to the value of the selected class name through the selection

popup window, then destroys the selection popup window.
3. Create Database

This pulldown submenu item is used to create a new Postgres database.
If the user selects this option and the value of XaSystem Administra-
torPrivilege (discussed in section 5.2.2) is set to zero, then a warning
message will be displayed stating that the user does not have the
privileges of creating a Postgres database. After the warning mes-
sage is acknowledged, GDEP destroys the selection popup window,
and goes back to the previous state prior to selecting this pushbutton.
Otherwise, if the value of XaSystemAdministratorPrivilege is set to
one, then a selection popup window will appear with a list of the al-
ready existing database names. The user must enter a new database
name that does not exist in the list ‘Database List’, as shown in figure
2.4. If the user selects an item that already exists in the list, then a
warning message will be displayed stating that the selection must not
be from the list. After the warning message is acknowledged, GDEP
destroys the selection popup window and goes back to the previous

state prior to selecting this pushbutton. Else, if the selected item is

36

not from the list ‘Database List', then GDEP creates a new Postgres
database with the name entered by the user, and displays a message
informing the user that a new database has been created. After this
popup message is acknowledged, GDEP destroys the selection popup

window.
4. Quit

This pulldown submenu item is used to terminate the GDEP appli-
cation sessjon and return control to the Unix prompt. When the user
selects this option, GDEP closes the connection with the backend
process of the database. Then, it opens a file called ‘username.sta’,
described in section 5.2.2, and writes the status of the current GDEP
application to it. Also. it opens a. file called *username.log’, described
in section 5.2.2, and writes the log of the current GDEP application
to it. Finally, it destroys the GDEP main window and all the windows
created by the GDEP application as well, before returning control to

the Unix prompt.

2.5.2 Edit Class Main Menu Bar Item

Clicking on this menu bar item reveals a pulldown sub.nenu with eight items. All
submenu items of this menu bar item except the ‘Create New Class’ and ‘Help’ options

require that the root class in the GDEP header window be set to an existing class in

37

the database. If the root class is not set and the user selects an option other than
‘Create New Class’ or *Help’, then GDEP will respond with a warning message telling
the user that the option cannot be performed because the root class is not set. The

list of the submenu items and their functionalities is given below.

1. Create New Class

This pulldown submenu item is used to create a new class in the
current database. When the user selects this option, a selection popup
window will appear with a list of the available classes in the current
database. The user must enter a new class name that does not exist
in the list ‘Class List’, as shown in figure 2.4. If the user selects an
item that already exists in the list, then a warning message will be
displayed stating that the selection must not be from the list. After
the warning message is acknowledged, GDEP destroys the selection
popup window and goes back to the previous state prior to selecting
this pushbutton. Else. if the selected item is not from the list ‘Class
List’, then GDEP creates a new class in the current database with
the name entered by the user; it then asks the user to enter one
instance variable name, then its data type, for the new class. Finally,
it displays a message informing the user that a new class has been
created. After the notice popup message is acknowledged, GDEP

destroys the selection popup and notice popup windows.

38

2. Destroy Root Class

This pulldown submenu item is used to destroy the root class in the
current database. When the user selects this option, a confirmation
popup window will appear asking whether the user really wants to
delete the root class. If the user responds by pushing the ‘No’ push-
button, then GDEP destroys the confirmation popup window and
goes back to the previous state prior to selecting this pushbutton.
Otherwise, if the user responds by pushing the ‘Yes’ pushbutton, then
GDEP creates a class hierarchy tree consisting of the selected class
and all its subclasses, destroys all the classes in the class hierarchy
tree starting from the leaf nodes to the root node, sets the root class
of the GDEP application and the value of the field ‘Class Name’ in the
header window to an emipty string, and finally creates a notice popup
window informing the user that the root class has been destroyed suc-
cessfully. After the notice message is acknowledged, GDEP destroys

the notice popup window.

For example, if the current database contains the class hierarchy rep-
resented in figure 2.5, and a GDEP user sets the root class to be PER-
SON and selects the Destroy Root Class pushbutton, then the current

database will consist of the classes represented in figure 2.6. Compar-

ing figures 2.5 and 2.6, we realize that classes PERSON, STUDENT

39

and FEMALE have been removed from the class MAMMAL hierarchy
tree and destroyed by executing the Destroy Root Class PERSON.
Figure 2.5 is a class tree hierarchy that we built in database jababo.
The rectangular boxes contain the class names, and the oval boxes at

the leaf nodes of the tree contains the instances of the classes.

40

MAMMAL

PERSON ELEPHANT

STUDENT FEMALE

Y
C Jjoun) (JoaNn) (BiL) (MARY) (DUMBO)

Figure 2.5: MAMMAL Class Hierarchy Tree

41

MAMMAL

ELEPHANT

(DUMBO)

Figure 2.6: MAMMAL Class Hierarchy Tree after Detroy Root Class PERSON

3. Add New Child

This pulldown submenu item is used to create a new class, which is
a child ‘subclass’ of the root class. After this pushbutton is selected,
a selection popup window will appear with a list of the already exist-
ing classes in the current database. The user must enter a new cla:s
name that does not exist in the list ‘Class List’, as shown in figure
2.4. If the user selects an item that already exists in the list, then a
warning message will be displayed stating that the selection must not
be from the list. After the warning message is acknowledged, GDEP
destroys the selection popup window and goes back to the previous
state prior to selecting this pushbutton. Else, if the selected item is
not from the list *Class List’. then GDEP creates a new class with
the name entered by the user. The newly-created class inherits all
the properties and behavior of the root class. Finally, GDEP displays
a message informing the user that a new class has been created suc-
cessfully. After the notice popup message is acknowledged, GDEP

destroys the notice popup window.

For example. if the current database contains the class hierarchy rep-
resented in figure 2.6, and a GDEP user sets the root class to be
MAMMAL and selects the Add New Child pushbutton, then the

current database will consist of the classes represented in figure 2.7.

43

Comparing figures 2.6 and 2.7, we realize that class MAMMAL has
two subclasses, STUDENT and ELEPHANT, after executing the Add
New Child operation, while it had only one subclass, ELEPHANT,
before. After the Add New Child operation, we added instances

JOHN and JOAN to class STUDENT.

44

MAMMAL

ELEPHANT

STUDENT

(Coun) (CJoaN) @E@

Figure 2.7: MAMMAL Class Hierarchy Tree after Add New Child Class STUDENT

45

4, Add Attribute Class

This pulldown submenu item is used to add a new instance variable
to the root class. After this pushbutton is selected, a selection popup
window will appear with a list of the already existing instance vari-
ables for the root class. The user must enter a new instance variable
name that does not exist in the list ‘Attribute Names’, as shown at
the buttom of figure 2.4. If the user selects an item that already ex-
ists in the list, then a warning message will be displayed stating that
the selection must not be from the list. After the warning message is
acknowledged. GDEP destroys the selection popup window and goes
back to the previous state prior to selecting this pushbutton. Else, if
the selected item is not {rom the list ‘Attribute Names’, then GDEP
creates a new selection popup window with a list of the data types
that the new instance variable can have. The user must select one
of the data type names in the list ‘Type for Attribute’, as shown in
figure 2.4. If the user selects an item that is not from the list, then
a warning message will be displayed stating that the selection must
be from the list. After the warning message is acknowledged, GDEP
destroys the selection popup window and goes back to the previous
state prior to selecting this pushbutton. Else, if the selected item is

from the list *Type for Attribute’, then GDEP exports to a temporary

46

external text file the root class hierarchy tree with all the instances
of the classes in the tree, then reimports the tree with the new in-
stance variable added to the root class of the tree from the exported
temporary external text file. Finally, GDEP displays a message that
the new instance variable name has been added successfully to the
root class. After the notice popup message is acknowledged, GDEP

destroys the notice popup window.
5. Add Instance Class

This pulldown submenu item is used to add a new instance to the
root class. When the user selects this option, a popup window will be
displayed on the screen that consists of four parts: the header name
*Add Instance Class’, the Class Nanie that contains the name of the
class that we are adding the instance to, the instance variable names
and their data values, and the menu bar option at the buttom. The
instance variable part is split into two major parts. As shown in figure
2.8, there are some instance variable fields at the top of this display
which contain data fields of twenty characters length; these fields are
of any data types except text. And, at the buttom of the display
there are scrollable text fields of two rows each, representing text
data type fields. In the menu bar, we see three pushbuttons labeled:

Clear, Add and Cancel. The ‘Clear’ pushbutton is used to clear all

47

Add Instance Class

L 1) Class Name : STUDENT
SInumber |P73601024
name |JJOHN Le Blanc
dob |Fri Jan 15 00:00:00 1993 EST
studentid | 13068920
I career

Part time employee at le journal de Montreal.

[
n ™
L hobbies
Buimming, Skiing, playing cards
and watching comic movies,
g ™
! address

Fontreal, Quebec,
H3T 4(8

=

[Ty

Figure 2.8: Add instance to class STUDENT

the fields of the current instance, by. assigning an empty string value
to all the fields of the current instance. The *‘Add’ pushbutton is
used to add a new instance to the current class, with the values in
the instance variable fields assigned as data values to the new added
instance. The new added instance could be a duplicate or a modified
instance of the previous added instance, or a new instance. After the
instance is added to the database, GDEP displays a notice popup
window informing the user that the new instance is added successfully.
After the message is acknowledged, GDEP destroys the notice popup
window and the user can continue to add new instances or perform
any other task. The ‘Cancel’ pushbutton destroys the *Add Instance

Class’ window.
6. Edit Instance Class

This pulldown submenu item is used to edit existing instances in the
root class. When the user selects this option, a popup window will be
displayed on the screen that consists of four parts: the header name
‘Edit Instance Class’, the Class Name that contains the name of the
class whose instances we are editing, the instance variable name and
their data values, and the menu bar option at the buttom. The in-
stance variable part is split into two major parts. As shown in figure

2.9, there are some instance variable fields at the top of this display

49

which contains data fields of twenty characters length; these fields
are of any data types other than text data type. And at the but-
tom of the display there are scrollable text fields of two rows each to
represent the text data type fields. For example, in figure 2.9, the
fields SInumber, name, dob and studentid are regular fields of twenty
characters length each; the fields career, hobbies and address are text
fields that have a scrollable text area each. In the menu bar, we see
five pushbuttons labeled: Previous, Next, Update, Delete and Cancel.
The ‘Previous’ pushbutton is used to show the instance which comes
right before the current instance of the current class in the database.
If the current instance is the first instance for the current class in the
database, then the ‘Previous’ pushbutton will disappear. The ‘Next’
pushbutton is used to show the instance which comes right after the
current instance for the current class in the database. If the current
instance is the last instance for the current class in the database,
then the ‘Next’ pushbutton will disappear. The ‘Update’ pushbutton
is used to replace the data values for the current instance of the cur-
rent class with the values in the instance variable fields assigned as
data values to the current instance. After the instance is modified in
the database, GDEP displays a notice popup window informing the
user that the current instance is modified successfully. After the mes-

sage is acknowledged, GDEP destroys the notice popup window and

50

]
&Y

Edit Instance Class

[..* Class Name 3 STUDENY

——

SInumber | 273601024

name |[JOHN Le Blanc

dob |Fri Jan 15 00:00:00 1993 EST

studentid |13068320

[career

Part time employee at le journal de Montreal,

—

{ hobbies

!

Buimming, Skiing, playing cards
and watching comic movies,

w m

[address

Fontreal, Quebec,
H3T 4CS

[< s .

oo

o] Dol

Figure 2.9: Edit instance of class STUDENT

51

the user can continue editing new instances or performing any other
task. The ‘Delete’ pushbutton is used to delete the current instance
of the current class in the database. When the user selects this push-
button, GDEP displays a confirmation popup window asking whether
the user really wants to delete the current instance. If the user re-
sponds ‘No', then the confirmation popup window will be destroyed
and the user can continue editing the current instance. Else, if the
user responds by ‘Yes’, then GDEP destroys the current instance in
the database and informs the user through a notice popup window
with a message stating that the current instance has been destroyed
successfully. Then the next instance will be displayed as the current
instance if it exists. Otherwise, the first instance will be displayed as
the current instance if there is at least one instance for the current
class. Otherwise, GDEP destroys the ‘Edit Instance Class’ windo's
and displays a notice popup window stating that there are no morz
instances in the database for the current class. The ‘Cancel’ push-

button destroys the ‘Edit Instance Class’ window.

7. Change Parent Class

This pulldown submenu item is used to set the superclass ‘Parent
Class’ of the selected class to a specific existing class. When the user

selects this option, a selection popup window will appear with a list of

92

8. Help

the valid parent classes in the current database. A valid parent class
is a class that exists in the current database, which is not a subclass
of the root class. If the user selects an item that is not from the list,
then a warning message will be displayed stating that the selection
must be from the list. After the warning message is acknowledged,
GDEP destroys the popup window and goes back to the previous
state prior to selecting this pushbutton. Else, if the selected item
is from the list ‘Class List’, then GDEP checks if there is a conflict
in data type between the root class and the new parent class, then
displays a notice popup window about the conflict, stating that the
root class cannot be a subclass of the new parent class. After the
notice message is acknowledged, GDEP destroys the notice popup
window and goes back to the previous state prior to selecting this
pushbutton. Otherwise, if there is no conflict, then GDEP exports
the whole hierarchy rooted at the current class with all its instances
to a temporary external file, destroys the root class tree, imports the
tree with the root class inheriting the new parent class, erases the
external file and finally displays a notice popup window stating that
the operation has been done successfully. After the notice message is

acknowledged, GDEP destroys the notice popup window.

This pulldown submenu item is used to provide help on the ‘Edit
Class’ menu item of the main menu bar. When the user selects this
option, a help popup window will be displayed on the screen providing
the GDEP user with the appropriate information on how to use any
item in the pulldown submenu of the menu item ‘Edit Class’. The
help popup window will be destroyed after being acknowledged by
the GDEP user. Figure 2.10 shows the Help Edit Popup Dialog Box.
All other help Popup dialog boxes offered by GDEP have the same
window layout as the edit help Popup dialog box, but differ in the

contexts of the help text.

2.5.3 View Class Main Menu Bar Item

This menu bar item consists of six pulldown submenu items. Al! submenu items of
this menu bar item except ‘Help’ require that the root class in the GDEP header
window be set to an existing class in the database. If the root class is not set and
the user select an item other than ‘Help’, then GDEP will respond with a warning
message telling the user that the root class neme is empty. The submenu items and

their functionalities are:
1. View Class Definition

This pulldown submenu item is used to show the instance variable

names and their data types for the root class. When the user selects

54

Edit Help Dialog

This Edit Submenu contains all the
functions to Edit Classes in GDEP, It
contains different options, all but the
first of which require that the root class
be set,

The options are:

1- Create New class: This option allows the
user to add a new class to the Postgres
Database,

2- Add New Child: This option allows the
user to create a new class, where the new
class will inherit all the properties of
its parent class, which is the root class,
3- Add Attribute Class: This option allouws
the user to add a new instance variable to
the root class,

Figure 2.10: Edit Help Popup Dialog Box

33

this option. as shown in figure 2.12, a popup window will be displayed
on the screen that consists of four parts: the header name ‘View
Class Definition', the Class Name that contains the name of the class
whose definition is being viewed, the instance variable names and
their data types, and the menu bar option. In the menu bar there
is only one pushbutton, labeled ‘Cancel’, which destroys the ‘View

Class Definition’ window.
2. View Parent of Class

This pulldown submenu item is used to show the Parent Class list
of the root class. When the user selects this option, as shown in the
upper right corner of figure 2.4, a popup window will be displayed on
the screen that contains the list of the names of the parent classes for
the root class, if the root class has at least one superclass. If the user
selects any of the parent classes, then the selected parent class name
will be the root class for the GDEP application, and its name will
replace the child class name in the Class Name field of the header area
in the main window. Otherwise, if the root class does not have any
parent class. then a warning dialog popup window will be displayed
informing the user that the root class does not have any parent class.
The notice dialog window will be destroyed after being acknowledged

by the user.

50

View Class Definition

Class Name ¢ STUDENT

SInumber [int4 I

name | charib

dob | abstime

studentid | int4

career {text

hobbies |text

address | text

Cancel

Figure 2.11: Class Description of class STUDENT

ot
-1

3. View Children of Class

This pulldown submenu item is used to show the Children Class list
for the rvot class. When the user selects this option, as shown in
the middle rew of figure 2.4, a popup window will be displayed on
the screen that contains the list of the names of the children classes
‘subclasses’ for the root class if the root class has at least one child
class ‘subclass’. If the user selects any of the children classes, then
the salected child class name will be the root class for the GDEP
application, and its name will replace the parent class name in the
Class Name field of the header area in the main window. Otherwise,
if the root class does not have any subciass, then a warning dialog
popup window will be displayed informing the user that the root
class does not have any subclass. The notice dialog window will be

destroyed after being acknowledgedu by the user.

4. View Class Instances

This pulldown submenu item is used to view existing instances in the
root class. As shown in figure 2.1, The instance variable names and
their data values are displayed in the ‘Display Area’ region of the
main window, in the form of a table. Every instance is displayed in
one row. Each instance variable value is displayed within eighteen

characters. If the data value exceeds eighteen characters, then a star

38

is displayed at the eighteenth character location, to inform the user

that there are more characters for that particular field.

5. View Class Instances by Tuple

This pulldown submenu item is used to view existing instances in the
root class one tuple at a time. It has almost the same functionalities
as the submenu item ‘Edit Instance Class’ of the menu bar item ‘Edit
Class’, described earlier in section 2.5.1. The only difference is that
this option does not have the ‘Update’ or ‘Delete’ pushbuttons in the

menu bar section of the ‘View Instance’ window.

6. Help

This pulldown submenu item is used to provide help on the ‘View
Class’ menu item of the main menubar. Whe~ the user selects this
option, a help popup window will be displayed on the screen, provid-
ing the GDEP user with the appropriate information as to how to use
any item in the pulldown submenu of the menu item ‘View Class’.
The help popup window will be destroyed after being acknowledged

by the GDEP user.

2.5.4 Utilities Main Menu Bar Item

This menubar item consists of ten pulldown submenu items:

59

1. Hide Command Window

This pulldown submenu item is used to hide the Command Area in
the main window of the GDEP application. When the user selects
this option, the command area will disappear and the display area
will be extended to occupy the previous space used by the command
area. Then the ‘Hide Command Window' option will be replaced
by ‘Show Command Window’ in the submenu of the ‘Utilities’ menu
bar item. The size of the main window will not be affected by this

operation.

2. Show Command Window

This pulldown submenu item is used to show the Command Area in
the main window of the GDEP application. When the user selects
this option, the command area will be redisplayed and the display
area will be decreased to allow the command area window to be dis-
played. Then the ‘Show Command Window’ option wiil be replaced
by the ‘Hide Command Window’ in the submenu of the ‘Utilities’
menu bar item. The size of the main window will not be affected by

this operation.

3. Refresh Windows

60

This pulldown submenu item is used to reset and refresh the dis-
play view of the main window. When the user selects this option,
GDEP destroys the main window, then recreates it again. The state
of GDEP before the execution of this operation and after is the same;
only the view display of the subwindows of the main window might

be changed after the execution of this operation.
4. Clear Display Area

This pulldown submenu item is used to clear and reset the display
area of the main window. When the user selects this option, the value
of the display area text will be an empty string, regardless of what

contents it had before the execution of this operation.
5. Export Class Definition

This pulldown submenu item is used to export the class definition of
the root class as a flat class to an external .cdf file in Postquel format.
For example, if we select this pulldown submenu item and the root
class is set to FULL-TIME of the class hierarchy tree shown in figure
3.3, then GDEP creates a file called FULL-TIME.cdf that contains
the postquel command ‘create FULL-TIME (name = charlC, salarv =
float)'. The exported text file can be imported later by any Postgres
tool that has the ability to do so. After the class is exported, GDEP

displays a notice popup window informing the user of the name of

61

... S

the external file to which the class definition has been exported. The
notice popup window will be destroyed after being acknowledged by

the GDEP user.
6. Export Class Def Inherit

This pulldown submenu item is used to export the class definition in
an inheritance form of the root class. It exports the root class name,
the instance variable names and their types that are not inherited
from the parent class of the root class. and finally the word ‘inherits’
and a list of the parent classes of the root class if the root class hzs
at least one parent class, as a class that inherits its parent class, to
an external .cdi file in Postquel format. For example, if we select this
pulldown submenu item and the root class is set to FULL-TIME of
the class hierarchy tree shown in figure 3.3, then GDEP creates a file
called FULL-TIME.cdi that contains the postquel command ‘create
FULL-TIME (salary = float) inherits (EMPLOYEE)'. The exported
text file can be imported later by any Postgres tool that has the
ability to do so. After the class is exported, GDEP displays a notice
popup window informing the user of the name of the external file to
which the class has been exported. The notice popup window will be

destroyed after being acknowledged by the GDEP user.

7. Export Class Instances

This pulldown submenu item is used to export the class instances
of the root class to an external .cin file in Postquel format. The
exported text file can be imported later by any Postgres tool that
has the ability to do so. After the class is exported, GDEP displays a
notice popup window informing the user of the name of the external
file to which the class has been exported. The notice popup window

will be destroyed after being acknowledged by the GDEP user.

8. Export Class Tree

This pulldown submenu item is used to export the class hierarchy tree
and the instances of the classes in the tree of the selected class. It
exports cach class’s definition and then its instances, before starting
with another class. It exports the class hicrarchy tree, from root
to leaf nodes. to an external filename in a Postquel format. The
exported text file can be imported later by any Posigres tool that
has the ability to import Postq_ue] files. After the class is exported,
GDEP displays a notice popup window informing the user of the
name of the external file to whicli the class has been exported. The

notice popup window will be destroyed after being acknowledged by

the GDEP user.

9. Import Postquel File

63

This pulldown submenu item is used to import an external text file
into the current database. When the user selects this option, GDEP
creates a selection file popup window allowing the user to select an
external file from a list of existing files. After a selection is made,
GDEP tries to import the selected file to the current database. If it
succeeds, then a notice popup window will be displayed, informing
the user that the selected external file has been imported to the cur-
rent database. Otherwise, a notice popnp window will be displayed,
informing the user of the selected external file could not be opened to
be imported to the current database. The notice popup window will
be destroyed after being acknowledged by the GDEP user. Failure
to open a file is not the only possible hindrance to importing; for
example, the file might have lost its Postquel format. This issue is

not dealt with here, as it is peripheral of our present field of interest.

GDEP imports the selected file by opening the file in a read mode and
reading its contents line by line, issues a Postquel command to the
backend process of the database, consisting of ¢ach line read from
the imported file, and finally closes the selected file. GDEP does
not parse the contents of the lines read from the selected file; it just
assumes that they are Postquel commands. It is the backend process
that parses the Postquel commands issued by GDEP, and decides

whether to accept them or not. In all cases, a feedback message is

641

displayed in the main window by Postgres. informing the user of the

status of each command issued to the database by GDEP.
10. Help

This pulldown submenu item is used to provide help on the ‘Utilities’
menu item of the main menu bar. When the user selects this option,
a help popup window will be displayed on the screen, providing the
GDEP user with the appropriate information as to how to use any
item in the pulldown submenu of the menu item ‘Utilities’. The help
popup window will be destroyed after being acknowledged by GDEP

user.

2.5.5 Help Main Menu Bar Item

This menu bar item consists of three pulldown submenu itemns:
1. Help Application

This pulldown submenu item is used to provide help on the whole
GDEP application. When the user selects this option, a help popup
window will be displayed on ithe screen, providing the GDEP user
with the appropriate information as to the purpose and functional-
ities of GDEP as a Postgres tool. The help popup window will be

destroyed after being acknowledged by GDEP user.

2. Help Display Area

This pulldown submenu item is used to provide help on the purpose
of the ‘Display Area’ window and its role within the GDEP applica-
tion. When the user selects this option, a help popup window will be
displayed on the screen providing the GDEP user with the appropri-
ate information as to how to use and clear the ‘Display Area’ window.
The help popup window will be destroyed after being acknowledged

by the GDEP user.
3. Help Command Area

This pulldown submenu item is used to provide help on the purpose
of the ‘Command Area’ window, and its role within the GDEP ap-
plication. When the user selects this option, a help popup window
will be displayed on the screen providing the GDEP user with the
appropriate information as to how to use the ‘Display Area’ window,
and the functionalities of the three pushbutton items in its menu bar.
The help popup window will be destroyed after heing acknowledged

by the GDEP user.

66

Chapter 3

GDEP ENHANCEMENTS TO

POSTGRES

"In this chapter, we will describe the two enhancements that we added to Postgres:
Add attribute to a class, and Change parents of a class. These added features are
not supported yet by any existing Postgres tools. In the following sections, we will
describe the effects of using each enhancement to the database. Also, we will discuss

the importance of these enhancements with respect to Object Orientation.

3.1 Add Attribute to a Class

Inheritance allows us to reuse the behavior of a class in the definition of new classes.
Subclasses of a class inherit the operations of their parent class, and may add new

operations and new instance variables. Figure 3.1 describes EMPLOYEE by an

67

inheritance hierarchy of classes (representing behaviors). The class EMPLOYEE
has FULL-TIME and PART-TIME as its subclasses. The class FULL-TIME has
EMPLOYEE as its superclass. The instances JOHN, JOAN, BILL, MARY and
LARRY each have a unique base class. For more details on inheritance refer to
[Wegner90].

According to Dr. Bipin C. Desai in [Desai], with respect to Class-Hierarchy and
the 1S-A relationship, an instance of a class belongs to its superclasses and it super-
superclass because of the 1S-A relationship.

In Postgres, if we add a new instance variable to a class, the new instance vari-
able does not propagate to its subclasses. For example, in figure 3.1, if we add a new
instance variable called address ‘o class EMPLOYEE, then instance BILL will have
‘the instance variable address. as shown in figure 3.2. But all other instances, such as
JOHN, JOAN. MARY and LARRY. will not have the instance variable address after
the add attribute address operation in Postgres. Since those instances are instances
of classes FULL-TIME and PART-TIME, and since FULL-TIME and PART-TIME
are EMPLOYEE:s according to the class hierarchy, then class EMPLOYEE is a su-
persuperclass of those instances. As we just mentioned, an instance of a class belongs
to its superclasses and its supersuperclass; so these instances should belong to class
EMPLOYEE. and contain the instance variable address.

To overcome this problem and keep the database hierarchy as was mentioned in
[Desai}, GDEP modified the Postquel add attribute to a class function, and propa-

gates the new added attribute to all instances of the modified class. The GDEP user

68

does not have a choice not to propagate the new added instance variable to its sub-
classes. The value of the new instance variable in the already defined instances will
be assigned to NULL. For example. if a user adds an instance variable ‘address’ to
class EMPLOYEE through GDEP, then all instances will have the instance variable
address, as shown in figure 3.3. Also, all new added instauces to classes FULL-TIME
and PART-TIME will have the instance variable address, which would not be true
with the regular add attribute in Postgres. The value of address for instance LARRY
is NULL, because it has not been modified after we added the new instance variable

address to class EMPLOYEE.

69

EMPLOYEE

namie

FULL-TIME PART-TIME

salary hourly rate

[JOIN]

25000

(Joax)] [BiLL) [MARY)

Figure 3.1: Employee class inheritance graph.

(LARRY)

12

EMPLOYEE

name

address

FULL-TIME PART-TIME

salary hourly rate

N

Y A .
(JouN | [Joax) [BiLL)] [MARY) LARRY

25000 20000 8 12

ottawa

Figure 3.2: Employee class inheritance graph after Add Attribute address in monitor.

EMPLOYEE
name
address
FULL-TIME PART-TIME
salary hourly rate
f
JOUN) JOAN] [BiLL] [MARY | [LARRY)
20000 20000 8 12
montreal ottawa ottawa vancouver NULL

Figure 3.3:

Employee class inheritance graph after Add Attribute address in GDEP.

-1
(3]

3.2 Change Parents of a Class

In some applications, Postgres users may need to change the parents of an existing
class that inherits properties from a particular class, to a new parent class; Postgres
does not provide this feature. To make this feature available to Postgres users,
GDEP added this option. In this section, we will discuss the change class parents
enhancement feature that GDEP offers to Postgres users, in addition to the effects
of executing this option to the database.

A user can select the ‘change parent class’ option whether the current class has any
parent class or not. In both cases, GDEP considers the selected class as a flat class,
and adds the inheritance feature of the selected class to inherit the new parent class.
But in the first case, where a class already has a parent class, GDEP takes the selected
class from the children list of the previous parents. so that the previous parents will no
longer have the selected class as a child class. After this operation is completed, the
selected class will have as parents the new parent class only. Also, the new parent
class will have as children the selected class, in addition to the previous children
classes it had before the operation was performed. All instances in the databasc
that inherit new instance variables from the new parent will assign a null value to
those new instance variables at the execution of this operation. When performing
this operation, two exception cases might occur: circularity in the database, and
compatibility between instance variable names and types between the selected class

and the new parent class. In the next section, 3.2.1. we discuss how GDEP handles

these two exception cases.

To clarify this operation, take as example a database that consists of four classes:
STUDENT, EMPLOYEE, GRAD STUD and COQP STUD. As shown in figure 3.4,
class STUDENT has two instance variables, name and stud id; it has two subclasses,
GRAD STUD and COOP STUD; and it has one direct instance, BILL, in addition
to other instances of its subclasses. Class COOP STUD has parent class STUDENT,
and two instance variables, name and stud id, that it inherits from its parent class
STUDENT. It also has two insténces. MARY and LARRY, each with its own stud
id. Also, we have class EMPLOYEE that has two instance variables, name and
salary, but no child or instance. If through GDEP we set the root class to be COOP
STUD, then we could select the ‘change parents’ option and select EMPLOYEE
to be the new parent class. Then the state of the database would change, and
after modifying the instance variable values of class COOP STUD wil be as in fig
3.5. EMPLOYEE will have COOP STUD as a subclass. COOP STUD will have
three instance variables: stud id and name that it previously inherited from class
STUDENT belore this opera.tion, and instance variable salary that it inherited from
its new parent class EMPLOYEE. Finally, MARY and LARRY instances will have
the instance variables name. salary and stud id. If we compare figure 3.4 and figure
3.5, we realize that these two instances had two instance variables name and student
id before the operation. But after this operation they have a new instance variable
salary added to the previous instance variables. The default value for the new instance

variable inherited from the new parent class is NULL. As we see in figure 3.5, the

!

value of the inherited instance variable salary for LARRY is NULL. Also, MARY
has a 24,000 salary after modifying the value of the inherited instance variable. In
section 3.2.2 below, we defend against type clash between inherited fields of the same
name. Complete rigour would demand in addition a check for meaning clash; but

this is beyond the scope of this project.

75

STUDENT EMPLOYEE
name name
stud id salary
GRAD STUD COOP STUD
supervisor
(Joun) [Joan) [BILL) MARY)} [LARRY)
3040000 3040001 3040002 3040003 3040004
Dr. Desai Dr. Alagar

Figure 3.4: STUDENT and Employee class inheritance graph.

STUDENT EMPLOYEE
name name
stud id salary
GRAD STUD COOP STUD
supervisor name
stud id
A 1
(JOHN) JOAN) BILL (MARY) LARRY
3040000 3040001 3040002 3040003 3040004
Dr. Desai Dr. Alagar 24.000 NULL

Figure 3.5: COOP STUD class with new Parent Class EMPLOYEE.

3.2.1 Exceptions

When the user selects this option, GDEP will handle some exceptions, which are

listed and discussed in this subsection. The exceptions are:

1. Circularity:

If the new parent class is a child of the selected class, then there
is a circularity. In this case, GDEP will warn the user and give an
appropriate message, then cancel the operation. If the user still likes
to change the parent class of the same class, the same operation must
be performed again. But this time, a parent class should be selected
that is not a subclass of the current class, because GDEP does not
allow Postgres users to create circularity in their database through

any of its submenu options.
2. Conflict in instance variables’ name:

In case the selected class and the new parent class have the same
instance variable name, then two possibilities might occur: the ywo
instance variables n:ay have the same or diflerent domains. In the
first case, il the two instance variables have the same domain, then
everything will be normal and those instance variables will have the
same values as they had before the execution of this operation. But

if the two instance variables have different domains, then if the old

-~1
o

instance variable domain is a subset of number type! and the new
instance variable domain is a subset of a string type®, then GDEP
will transform those instances into the new types. Otherwise, those

instance variables will have null values.

nteger and float types are subsets of a number type.

2Charl6 and text types are subsets of a string type

79

Chapter 4

SAMPLE APPLICATION

In this chapter, we discuss the sample application (Mosaic) that we added to the
standard features of GDEP. The purpose of this sample application is to show GDEP
users how they can extend GDEP to handle specific tasks such as searching a docu-

ment and launching an application.

4.1 Overview of NCSA Mosaic

NCSA Mosaic [Mosaic] is an Internet information browser and World Wide Web
client. It was developed at the National Center for Supercomputing Applications at

the University of lllinois, Urbana-Champaign. Mosaic comes in three flavours:

1. Mosaic for the X Window System

[]

. Mosaic for Microsoft Windows

3. Mosaic for Macintosh

It provides different types of information to the World Wide Web:

1. Serve Information to the Web

Mosaic provides a hypertext interface to the global Internet. Hy-
pertext is text which contains highlighted links, called hyperlinks or
anchors, to other texts. Each highlighted phrase (in color or under-
lined) is a hyperlink to another document or information resource
somewlhere on the Net. A single click with the left mouse button
on any highlighted phrase is nsed to follow the link, which means
that Mosaic will retrieve the document associated with the selected
hyperlink and display it.

The Mosaic client communicates with HTTP servers. HTTP is the
HyperText Transfer Protocol of the WWW (World Wide Web). Mo-
saic can also communicate with more traditional Internet protocols

such as FTP, Gopher, WAIS, NNTP, ¢fc.

2. Create HTML Documents

The hypertext documents viewed with Mosaic arc written in HI'TML
(HyperText Markup Language), which is a subset of SGML (Stan-
dard Generalized Markup Language). Among the many formatting
features. HTML allows Mosaic to display inline images. (In fact, an

inlined image can serve as a hyperlink. just as a word or phrase can).

3. Provide Complex Features

Mosaic also features unlimited multimedia capabilities. File types
that Mosaic cannot handle internally, such as mpeg 1aovies, sound

files, Postscript documents, and JPEG images, are automatically sent

to external viewers (or players).

For more details on the NCSA Mosaic package, the user can refer to [Mosaic].

4.2 Mosaic Sample Application in GDEP

We extended the standard features of GDEP by adding a new menu item called
Mosaic, shown in figure 4.1, to the main menu bar described in section 2.5. This is
helpful to GDEP users, because it can be used as an example of how they can extend
GDEP to do specific tasks. In the next subsection. we describe the pulldown submenu

items of the newly-added main menu bar item, Mosaic, and their functionalities.

4.2.1 Mosaic Main Menu Bar Item
This menu bar item consists of three pulldown submenu items:
1. Launch Main Application

This pulldown submenu item is used to launch a Mosaic application.
Once the user selects this submenu item. the system command ‘sys-

tem /pkg/Mosaic/bin/Mosaic &' will be issued by GDEP, and will

(o]
(V]

Graphical Development Environment for Postgres

fpplication Edit Class View Class Utilities Mosaic

Database Name: Ijababo]

Class Name: [7 I

Display Rrea

Command Area

» e

Coe 1 [l

Figure 4.1: GDEP main window with Mosaic menubar option.

83

create a process in the background starting a Mosaic application,
which causes the Mosaic main window application shown in figurs
4.2 to pop up at the top left corner of the screen. Since the created
process is in the background, it is totally independent of the GDEI
application. In other word, quitting GDEP will not cause the Mosaic

window to be destroyed.
2. Launch Selected Document

This pulldown submenu item is used to launch a selected document
using the Mosaic application. Once the user selects this submenu
item, GDEP will check whether class Mosaic exists in the current
database. If not, GDEP creates a popup dialog window warning the
user that the current pulldown submenu selection item cannot be per-
formed because class Mosaic does not exist in the current database.
Else, if class Mosaic exists in the current database, then GDLE will
create a popup dialog box requesting the user to enter the subject he
is interested in searching documents about. Afte:r the subject is en-
tered, GDEP will search in the Mosaic class of the current database
for instances with a subject instance variable having a data value
which is the sanie as the one entered by the user. If there are no
instances in the database matching the subject entered by the user,

then GDEP displays a notice popup message to that effect; if there

84

NCSA Mosaic: Document View - LT L
Fife Options Navigate Annoftar ¢ Ielp

Document Title: LNCSA Mosaic Home Page] S
Document URL: [htto://www.ncsa.u‘iuc edu/SDc/SoFtware/Mosa‘ic/ﬂ

Welcome to NCSA Mosaic, an Internet information browser and World Wide Web
client. NCSA Mosaic was developed at the National Center for Supercomputing
Applications at the University of 11linois, Urbana~Champaign.

Due to the TREME NDOUS load being handled by the NCSA WWW server there
may be times that you are unable to get the NCSA Mosaic Home Page when you first
start Mosaic. This in no way should affect your ability to retrieve documents from
other sites. To alleviate this problem you may want to set an alternate home page for
Mosalc to automatically load on startup.

For details on how to do this. follow the link appearing later in this document for the
particular flavor of Mosaic you are using.

Each highlighted phrase (in color or underliined) is a hyperlink to another document

P P 3 . bine et

[Cact J{t vizw] [Home]|Reload]{Open..][Save As..][Cione][New Window}{Close Window]

Figure 4.2: NCSA Mosaic: Main Application

o
o

are instances matching the user request, then GDEP will create a se-
lection popup window containing the list of the available instances in
the database. When the user selects any item in the list, the system
command */pkg/Mosaic/bin/Mosaic URL_.VALUE_FIELD &’ will be
issued by GDEP. The URL.VALUE_FIELD is the data value of the
URL instance variable field corresponding to the selected instance
by the user. This system command will create a process in the back-
ground starting a Mosaic application which causes the Mosaic selected
document view ta pop up at the top left corner of the screen. Since
the created process is in the background, it is totally independent of
the GDEP application. In other words, quitting GDEP will not cause
the NCSA Mosaic window to be destroyed.

For example, if the value of URL in the selected instance is
‘http://www.cs.concordia.caflocal.html’, then the system command
‘ /pkg/Mosaic/bin/Mosaic http://www.cs.concordia.ca/local.htm] &’
will be issued by GDEP, causing the window shown in figure 4.3 to
pop up at the top left corner of the screen. If the URL value is an
invalid value such as ‘http://www.cs.concordia.ca/local/html’, then
the system command

* /pkg/Mosaic/bin/Mosaic http://www.cs.concordia.caflocal /html &’
will be issned by GDEP, causing the window shown in figure 4.4 to

pop up at the top left corner of the screen.

86

&} NCSA Mosaic: Document View .
File Options Navigate Annofate

Document Title: | CONCORDIA UNIVERSITY: DEPARTMENT OF COMPUTER : S

Document URL: lhtto 1/ /wew . Ccs.concordia.ca/local . html _l

CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

This home page is under construction. In the meantime enjoy this demonstation of the
World Wide Web and Mosalic.

The following resources demonstrate to you what is available in cyberspace:

® Some on line references to hypertext, World Wide Web, ete.

® A guide to internet. This gives information about the internet.

® An index of resources. Gives a detailed {ist of muitimedia documents
accessible via Mosaic. Prepared by Simon Gibbs of Univesity of Geneva,
Switzerland.

@ The NCSA Mosaic Demo Document.This is a good example of the audio
capabilities of Mosaic,

® Suggested Starting Points for Internet Exploration.

I

{Back]li v e][Home]lReload]{Open..}|Save As..]ICione][New Window]|Close Window]

Figure 4.3: NCSA Mosaic: Document View

ﬁ NCSA Mosaic: Document View
File Options Navigate Annotate
Document Title: [untitled, URL http://www.cs.concordia.ca/loca | S

Document URL: lhttp 1/ /www . Cs . concordia.ca/local .abe

Error 500

Unable to access document.

{Cact JIr vr) iHome){Reload] | Open.. || Save As..}){Clone]fNew Window)i Close Window]

Figure 4.4: NCSA Mosaic: Invalid Document View

88

3. Help

This pulldown submenu item is used to provide help on the ‘Mosaic’
menu item of the main menu bar. When the user :elects this option,
a help popup window will be displayed on the screen providing the
GDEP user with the appropriate information as to how to use any
item in the pulldown submenu of the menu item ‘Mosaic’. The help
popup window will be destroyed after being acknowledged by the

GDEP user.

89

Chapter 5

INSTALLATION AND

CUSTOMIZATION

This chapter is split into two sections: Installation and Customization. First, in the
Installation section, we instruct GDEP users how to install GDEP, as well as the
environment under which GDEP can be installed. Also, we talk about the docu-
mentation that is provided to GDEP users. Second, we describe to GDEP users the
parameters that they are allowed to manipulate in order to customize GDEP to best
suit their needs. Also, we describe how to manipulate those parameters to customize

GDEP applications.

5.1 Installation

This section consists of two main subsections:

90

5.1.1 Hardware

GDEP can run on any machine that both Postgres and Motif Toolkit can run on. So
far, Postgres has been tested by the Postgres development team on Sun Microsys-
tems Sparc architecture machines running SunOS 4.1 and higher. Postgres is also
supported on DECstation 3100’s and 5000’s running Ultrix 4.1 and higher. In order
to use Postgres, your machine should have at least 8 megabytes of memory and you
will require at least 45 megabytes of disk space to hold source, binaries, and user
databases.

The Ultrix version requires a kernel which allows 4 megabytes of shared memory.
Also, the original release of Ultrix 4.3 has a kernel bug that causes the operating
system to hang when running Postgres.

Motif can run on any of the previously-mentioned machines. We tested GDEP on
Sun Operating System version 4.0.1, and compiled it under the SUN C++ compiler.
We believe that GDEP can run on any machine, assuming that Postgres and Motif
are properly installed on the machine; but this is not guaranteed. Further testing
for GDEP is needed on machines other than the one we tested it on, to prove our
assumptions. For more information on how to install Postgres, refer to [Pg Rel 4.1].

Also, for more information on how to install Motif, refer to [Motif].

91

5.1.2 Software

GDEP is a package that consists of a Makefile. nine C files that contains the source
code for the application, and a document file that contains the documentation for
the application. To compile GDEP, you need to have the SUN C++ compiler, the
Makefile and all the source code files under one directory. When the user types ‘make’,
the Makefile will generate nine object files, one for every C file in the application.
Finally, it will generate an executable file called gdep that is three hundred and
twenty kilobytes in size. Typing gdep will start GDEP by displaying the GDEP
main window. GDEP can be started from any directory, provided Postgres is well
installed. No path needs to be set to run GDEP.

Postgres and Motif have a type clash in declaring a typedef String. To overcome
this problem, you can modifiy file /usr/postgres/include/tmp/c.h on line 442 by
replacing the following statement:

typedef char *String;

by the following block:

#ifndef XINCLUDE

typedef char *String;

#endif

As we can see in the Makefile, we have -DXINCLUDE at the end of the CFLAGS
line; this will eliminate the redefinition of the String in Postgres. In addition to

the standard C library. GDEP uses tmp/libpq.h and tmp/libpg-fe.h files from the

Jusr/postgres/lib Postgres library. Also, GDEP uses the Xm Motif, Xt X Toolkit

Intrinsic, and X11 X Lbraries.

5.2 Customization

In this section, we describe the two files generated and used by GDEP to initialize
the setup for the GDEP environment. The two files, Log file and Status file, are

discussed in the following subsections.

5.2.1 Log File

When GDEP is started, a username is retrieved using getenv and used to set the
log filename that resides on the directory when GDEP was executed. Then GDEP
tries to read the log file, which is called username.log . If the file exists, then GDEP
reads the Path to be used by the project from the log file. Otherwise GDEP uses the
default Path, which is the current directory where GDEP was started.

The Path that is set by GDEP is used by the whole application for many purposes.

The Path is used for:

T

. Setting the Patii to write the Log filename.

[S]

. Setting the Path to read the Status filename.

3. Setting the Path to write the Status filename.

=N

. Setting the Path to Export class definitions.

93

(4]

. Setting the Path to Export class definition inheritance.

[=2]

. Setting the Path to Export class instances.

. Setting the Path to Export the class Tree.

-7

For example, if we start GDEP from an account having username jababo, then GDEP
looks for a file called jababo.log. If file jababo.log exists in the current directory, then
GDEP opens the file and looks in the file for pattern MaProjectPath. If it finds the
pattern MaProjectPath, then it sets the value of the global variable MaProjectPath
to the value followed by pattern MaProjectPath in file jababo.log. Otherwise, if it
does not find the pattern MaProjectPath, then it sets it to its default value *./". In
the latter case, the path for all GDEP external files for read and write operations

will be the current directory from which the user started GDEP.

5.2.2 Status File

After initializing the variables to their default values to set the environment, GDEP
tries to open status filename username.sta, to set up the variables customized to meet
user needs. If the status filename is opened in read mode successfully, then GDEP
reads the values of its parameters from the stutus filename and sets its environment;
otherwise, GDEP keeps the default values as the values to set the environment. When
the user elects to quit GDEP, GDEP will open the status filename in write mode and
write all the environment set-1p parameters to the file, so when the user runs GDEP

later, GDEP will use the same environment the user was last using.

94

There are many parameters to customize GDEP; the user can go to the status
filename and modify its parameter values as needed, or some of the parameters can be
set directly through the GDEP window. All these parameters are listed and described

helow:

1. XaSystemAdministratorPrivilege: This is to set the system administrator
privileges for the application. The user can only create a new database through
GDEP if XaSystemAdministratorPrivilcge is set to True. The dzfault value for

XaSystemAdministratorPrivilege is 0.

2. XaMainWindowX: This is to set the X position of the main window for
GDEP. The user can move the GDEP window with the mouse, which will
update the XaMainWindowX value in the application, or XaMainWindowX

can be set in the status filename. The default value for XaMainWindowX is 0.

3. XaMainWindowY: This is to set the Y position of the main window for
GDEP. The user can move the GDEP window with the mouse, which will
update the XaMainWindowY value in the application, or XaMainWindowY

can be set in the status filename. The default value for XaMainWindowY is 0.

4. XaMainWindowWidth: This is to set the Width value for the main window
for GDEP. The user can reset it by modifying its value in the status filename.

The default value for XaMainWindow\Width is 550.
5. XaMainWindowHeight: This is to set the Height value for the main window

95

for GDEP. The user can reset it by modifying its value in the status filename.

The default value for XaMainWindowHeight is 800.

. XaWorkAreaDisplayRows: This is to set the Number of Rows value for the
Display Area for GDEP. The user can reset it by modifying its value in the

status filename. The default value for XaWorkAreaDisplayRows is 16.

. XaWorkAreaCommandRows: This is to set the Number of Rows value for
the Command Area for GDEP. The user can reset it by modifying its value in

the status filename. The default value for XaWorkArcaCommandRows is 4.

. XaShowCommandAreaStatus: This is to set the status value for the Com-
mand Area for GDEP. The user can reset it by modifying its value in the status
filename. I XaShowCommandAreaStatus value is one, the command area is
shown on the screen. Otherwise, the command area will be hidden by the

display area. The default value for XaShowCommandArcaStatus is 1.

. XaHelpDialogBoxTextWidth: This is to set the Width value for the Help
Dialog Box for the GDEP application. The user can reset it by modifying its
value in the status filename. The default value for XaHelpDialogBoxTextWidth

is 300.

10. XaHelpDialogBoxTextRows: This is to set the Number of Rows value for

the Help Dialog Box for the GDEP application. The user can reset it by modi-

fying its value in the status filename. The default value for XaHelpDialogBox-

96

11.

12.

13.

14.

15.

TextRows is 6.

XaHelpDialogBoxX: This is to set the X position value for the Help Dialog
Box for the GDEP application. The user can reset it by modifying its value in

the siatus filename. The default value for XaHelpDialogBoxX is 0.

XaHelpDialogBoxY: This is to set the Y position value for the Help Dialog
Box for the GDEP application. The user can reset it by modifying its value in

the status filename. The default value for XaHelpDialogBoxY is 0.

XalnstanceShellBoxX: This is to set the X position value for the instance
display popup shell for the GDEP application. It can be reset by modifying its

value in the status filename., The default value for XalnstanceShellBoxX is 0.

XalnstanceShellBoxY: This is to set the Y position value for the instance
display popup shell for the GDEP application. It can be rcset by modifying its

value in the status filename. The default value for XalnstanceShellBoxX is 0.

XalnstanceAreaDisplayRows: This is to set the number of rows value for
the text fields in the instance display popup shell for the GDEP application.
The user can reset it by modifying its value in the status filename. The default

value for XalnstanceAreaDisplayRows is 2.

97

Chapter 6

CONCLUSION

In this chapter, we conclude our report with a description of the advantages of using
GDEP for Postgres users. We suggest future work concerning GDEP, and describe
what can be done to extend GDEP and make it a better Graphical Development
Environment for Postgres users. Also, we propose a scheme which allows the sample
application described in chapter 4 to be extended, in order to make GDEP more
practical and more efficient for searching a document before launching an external

application such as Mosaic.

6.1 Advantages of Using GDEP

Throughout this report. we discussed the different features and functionalities of
GDEP. Comparing GDEP to other Postgres tools such as Alberi {Alberi], Geo [Geo)

and Spog [Spog], we find that GDEP provides many features not provided by any

other available Postgres tools. Some of the features help Postgres users to issue
Postquel commands to the Postgres backend process without knowing the syntax of
Postquel commands. We saw this in the functionalities of the pulldown submenu
items of the main menu bar items in section 2.5. Other features introduce new
functionalities to Postquel, and enhance its query language for Postgres databases.

The two enhancements are:

1. Add Attribute to a Class, discussed in section 3.1.

2. Change Parents of a Class, discussed in section 3.2.

These features make GDEP a better Graphical Development Environment for Post-
gres users, allowing thein to spend more time on designing their database instead of

thinking about the syntax of Postquel.

6.2 Future Work

Many features can be added to GDEP to make it a better Graphical Development
Environment for Postgres users. We chose two features that can be used as examples

for future work:

1. Designing a Graphical Representation for the Class Hierarchy Tree.

2. Enhancing the sample application described in chapter 4.

In the following subsections, we describe in detail the two features that we think are

important for Postgres users.

99

6.2.1 Graphical Representation for Class Hierarchy Tree

It would be helpful for Postgres Users if GDEP could provide a Graphical Represen-
tation Hierarchical Tree for a selected class, showing the class and all its descendants
in a tree structure. For example, viewres tools installed under Sun Unix allow its
users to see the class hierarchy tree for class objects. As we can see in figure 6.1,

viewres shows us the root class object and all its descendants.

6.2.2 Enhancing the Sample Application

Postgres does not allow two classes to have the same instance, where the two classes
are not related to each other by a parent-child class relationship. Because of that,
we could not build a class hierarchy tree in a Postgres database to let us search a
document URL from the database, and launch a Mosaic Application with the fetched
URL. What we did in the sample application in section 4.2 is to search a document
only by subject. We describe what can be done in order to enhance this feature and
allow GDEP users to fetch a document by any stored characteristics of the document,
such as title, author, efc. First, we need to create a flat class called Mosaic in the
database, that contains all the instances needed to hold all the references needed to
search for any document. The class Mosaic will have as instance variables: Author,
Title, Subject, Call Number, ISBN, DocType, Publisher, Place and URL. Second, we
need to create an abstract class called SearchDocument with one instance variable

called Objectld of oid data type, and another instance variable called name of charl6

100

Override Shell — Simple Menu
Shel < TopLaveiShel — AppiicationShel
WiShes ——— VendorSted < * hiane
TransientShet

Rect Logo

StripChart
Text ———— Text

Object

SmeB3B
10 < oo

Tex(Sink ~— AsciSink
TextSrc — AsciiSre

Figure 6.1: Graphical Hierarchy Tree For Class Object

101

data type. Third, we need to create eight classes as children of class SearchDocument:
Author, Title, Subject, Call Number. ISBN. DocType. Publisher and Place. We next
need to design a procedure that reads all the instances in the Mosaic class, takes one
instance at a time, takes every instance variable in that instance and appends its value
and its Object Id as a new instance of the appropriate class. The appropriate class
is the one with the same name as the instance variable name to be appended. After
finishing this procedure, the user can fetch the SearchDocument tree by any desired

type, take the object Ids of the fetched instances and look for their corresponding

URL in the Mosaic Class.

References

[ACMY0]

[Alberi]

[Desai]

[Geo]

[Grogono]

[Grogono91]

Rebecca J. Wirfs-Brock and Ralph E. Johnson; “Current Research
in Object Oriented Design”; Communications of the ACM; Sept
1990; Vol 33, Number 9.

“Alberi Graphical User Interface for Postgres Release 0.91”;

ftp site: athena.cs.uga.eduy;

Directory: /pub/dist;

Tar file: alberi.0.91.tar.Z

Bipin C. Desai; “Object Orientation”; Technical Report; Concor-

dia University; Montréal, Canada.

“Graphical User Interface for Geographical Environment using
Postgres Release 1.377;
ftp site: s2k-ftp.cs.berkeley.edu;

Directory: /usr/postgres/geo.

Peter Grogono; “Object Oriented Design”; Technical Report; Con-

cordia University; Montréal, Canada.

Peter Grogono; “Issues in the Design of an Object-Oriented Pro-
gramming Language”; Structured Programming; Springer-Verlag;

New York Inc.; January 1991.

103

[Kim90]

[Mosaic]

[Motif]

[Pg Rel 4.1}

[Spog]

[Wegner90]

Won Kim; “Introduction to Object-Oriented Databases”; Cam-

bridge, Massachusetts; 1930 MIT Press.

“NCSA Mosaic World Wide Web browser Release 2.4”;
ftp site: ftp.ncsa.uiuc.edu
Directory: /pkg/Mosaic

Dec 1993.

Dan Heller; “Motif Programming Manual for OSF/Motif Release
1.2, Edition 6”; O’Reilly and Associates, Inc.;

USA: Feb 1994.

“Postgres Installation Instructions Release 4.17;

ftp site: epoch.cs.berkelev.edu;

Directory: [usr/postgres;

Feb 1993.

“Command line Interface for Postgres”;

ftp site: epoch.cs.berkeley.edu;

Directory: /usr/postgres/src/contrib.

Peter Wegner; “Concepts and Paradigms of Object-Oriented Pro-
gramming”; OOPSLA-89 Keynote Talk; Brown University; Ex-

pansion of Oct 4.

104

