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ABSTRACT ,
- GUIDED DISCOVERY TEACHING IN MATHEMATICS by IVAN GOMBOS :

N

Motivated by a desire to foster a more acttve 1earni‘ng
env)ronment 1 decided, approximately two years ago, to incorporate a
guided discovery approach into my general teaching strategy. In Chapter
I of the thes1s a background of the events that led up to this decision
is given. along with-a brief survey of "discovery" tenmnology and
related matters. \

Guided discovery teaching proceeds simultaneously at two levels

in my courses. At one level ich | p tition into three stages - the
i ‘
students and I engage in a dia]ogue centering op-the general themes of '

experimenting with mathematical patterns and relationships, forming sub-
sequent generalizations; studying methods of proof and solvipng various types
of protlems. At the other level I select specific course topics which I '

§
feel can easily Blend in with-a discovery scheme. Level ) (the General

or Global Level) is discussed in Chapter II, while a representative sample

of the more highly course-specific discovery work (Level 2) forms the core

" of énapter IIT.  Two Questionnaires and the taping of ‘a lesson on Elementary

s Ma.tﬁces have been used to gage student reaction to my teac%ng style.

" Thus, the final Chapter contains a report and an analysis of the\ feed-

back obtained from these sources.
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CHAPTER 1 Lo
INTRODUCTION

The Origins of an Idea

In 1971 I began teaching Mathematics, at Vanfer C.E.G.E.P.

Soon afterwards I joined the Dawson Maths. Department. Thus, -it s

1

now m}‘.wt—h- year at Dawson College.

- |

As it héppens quite often, I imagine, my classroom presentation
in the beginning strongly reflected my own experiences with tea{;;hers in

unfversity and in high school. -The first year or so of a novice teacher

‘is spent largelj on course preparaﬁon.' So it was with me. I loved

my Job (sti11 do! ), compﬂed notes and exercise sats eagerly, and tried

to 1m1tate Professor George P. Styan s teaching style. (In graduate

school at McGi11, his lectures were meticulously organized, his presentations

s

always clear, his patience in answering questioﬁs quite exemplary.) '
Of ‘course, I had had my share of poor, even atrocious teachers

and therefore had to work very hard not to transmit variations of their

'mistakes, me thods or teaching procedures to my own students. - No one

wantm% spread an ep'ld'emic of bad teaching, )
" Two or three semesters went by and it was time to relax a °
1ittle -’;o sit back and reflect upon my ap‘proach to teaching., I
fe1t comfortable with the c!assical lecture or "ta]k-and-chalk"
method but was ready t’r’) experiment .wi th the occasibnal variation,

For instance, I organized some group-problem sessions. In each

course, | would present 2 lectures a week to the whole class and

- then meet with smaller groups once a week for problem-solving, This

worked very well - at first. Then [ noticed that attendance was




FE

dropbfng.- Oh, the best studénts kept gomisng faithfully. But the weaker

studénts slowly drifted away. After 2 terms 1 abandoned the idea’. It ,

was clearly necessary to devote some serious thinking as to ‘what had

"gone wrong. (Now, 1n¢1981, 1 am planmning to return to the smali- .

group-_sessipn mode] once again, hopefully with better results.)

In 1974 1 decidedsto implement a system of handing‘out detailed
set of_pote; to ny studen-ts‘prior‘ to each topic to be covered, No longer
would they ﬁave to be passive note-takers. They cou1ci sit back, listen,

ask‘questions and learn. I was prepared to answer some well-thought-out,

_even profound questions. After all, they had a chance to study the same

* material that I would cover in class. From passive note-takers my students

_ changed to passive listeners, A poor accomplishment. They did not pepper

me with a barrage of penetrating questions. They didn't - for the most
part - even read the notes ! had given out. And attendance was on the -

\

decline, again. A few brave souls came up to me and asked me to stop
distributing packages of lecture notes, I was stqnned and disappointed.“
They said they were bored, not having anything to do in class,

But there 'was something to be learned from both unsuccessful

ventures. In the prob?em-rsolving groups I had done most of the problem-

solving, By giving hand-outs I had provided a conven?ent security

blanket: a nice set of notes to glance thraqugh just before the test.
0
In both cases I had dyne 1ittle to encourage active learning. Naturally,

anotﬁer tescher could have perhaps taken either or both of m; Tittle

projects and turned them into successful - and active - learning

@

‘ experien‘ces. {In fact, one of my colleagues - Jm Britton - has

been conststenﬂz very successful with sets of typed-up notes that
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she provides for her students® And, as I've a]regdyrsaid jI “ihtend to
try the probl;lg;'s.o‘l\‘(ing sessions once morea,h after making a few strateqic
changes. But this will not be the c,entra1 is;ue heré\'.v ; |

. My "failures" led me']to re-think my teachina approach. My

mind, focused on the word "passive", Here was an agjective I really
‘ +

began to dislike. I reso'lve.:d to. start varying my sequenge of presentation, :

Instead of always stating theorems or prolperties first, proving them, -
and then giving a set of examples, I would try, whenever faasible, to
"pick away” at a general concept via preliminary examples, to then develop

a proof (with the help of the class, as much as possible), and follow it
,

.by a good so0lid selection of examples and exercises, This, I found was

quite conducive to increasing the dialooue between my students and myself,
, ’ 'Y
I enjoyed’ the ensuing dialoques and became aware of a rise in the level

of classroom activi tz'. Moreover, there were new challenges in store: -
How to direct discussion? How to find time for the new diaioque‘ap)proac_h
and still co;/er all the required material? How to know ypg_r_\: a certain
topic was appropriate for 1nltroductory experimentation? 1 am still
working on the answers to these questions, usingﬁmostly the_ragher slow,
Iéam-}y-experience method. [See, for example, Chapter IV'.]

Increasi:\g student participation by generating class dialogue -
thfs was my initial aim. While I was busy with such plans, we opened
our new Math Learning Centre. It had the usual tablés, reference books,
Calculus film loops etc. four;d in any math study room, and one more thing:
each teacher picked one period a week during which he'd be available to

assist anyone working in the Centre. Im“this way [ met a large cross-

section of students, from those struagling through elementary algebra

S
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to the more. experienced devotees of Calculus 11 and III,  One particular
) 1 4

y

tybe of comp]'aint caught my attention. It usually came from shy, nervous-
,.\ * .

looking individuals but the vocal s agre;swe students were not excluded” .

—_— 7

. either. The“comphint boiled down to: "I just can't do this'stuf.f:"_

Furthermore, t?wey refused to try even after [ had given them some hints.'f
Theyvpreferre:d to sit and wait %n silence until I had out,‘lineq the

complete solution. They had no confidence whatsoeveriin their abil{ttes
when it came to certai;1 areas“ln mithematics. I suspected that this |

"mental block™, 1in many cases, had taken a few years to fully develop. .

- My suspicions were confirmed when a few students were angry enough to

vent their feelings at length. Perhaps, I thought, one of my teaching
objectives should be to somehow let students discover that they can

indeed do such-and-such a problem;:/‘ I fully believed then, and do now,

‘that my efforts at promoting dialogue would be helpful in this regard.

Then in the fall of '78 I registered for Math 629 (Heuristics)
and in the spring of ‘79 I enrolled in Math 624 (;1athemat1'cs. Education),
both given at Concordia Universi ::y, Montreal. By means of these.courses,
my knowlgdge of problem—somng and of the psychology of leariding
mathematics increased greatly, I embarked on re-reading Polia's' classical
volumes and was introduced to new ways of looking at heuristics. Then
came discussions of the work of Piaget, Ausubel, Gagné, Bruner, et al. in
Maths. 624. For the first time I read about "'discovery" and "quided
discovery" as viewed by experienced ps’ycho‘logfsts and ‘educators. I was
motivated to try channelling class discusslions towards helping students

do their own mathematical detective work. (I had not forgotten my earlier

ob\}qﬁtive - the one involving confidence-buﬂdjng. On the contrary, I

S . [ — —
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suspectfthat strengtheninq‘ student confidence” and teaching via - guided
discovery are 1n1t1mate'|y connected. However, eXderimentally substantiating'
such connection is beyond the intent or the scope of this thesis, 5

Thus tarting-ﬁpemﬂ;bout:?:q?a my interest—n the quided discovery
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approach has grown steadily. How this approach can be a part of coHege
mathematics - and specifically, how I've incorporated it into my courses

qt Dawson - is at the core of the present thesis.

Some Remarks On Definitions .and the Concept of "Discovery"

. human behaviour,

The concept of discovery was defined b} J.S. Bruner—as "a
matter of re-arrangir;g or transforming eﬁvidence in such a way ?:hat one
is en%b'led to g0 beyond the evidence so re-assemb1ed'to new insights", {1}
A critical person may theﬁ ask: "What are insights?" He might look up
"insight" and fun across other difficult words which are used to define
it; difficult perﬁaps because humn beings are attempting to dese¢ribe
their own cognitive processes. But we know that discussions of learning

and teaching continue despite difficulties in descripti 6qs of complex

VJ/

The noun "discovery" is sometimes accompanied by one or more .
adjectives. Wittrock, for instance, talks about three types of &iscgvery:
deductive quided discovery, in which some general rules or solutions are

: { -
provided by the instructor; inductive quided discovery, in which student

and teacher work jointly to build up generalizations or rules from special

cases; and pure discovery, in which no hints are given concerning appropriate

algorithms, .rules or procedures., |2| Robert Gagné speaks of qui dedeiscovery
guided

,A’a/ki;d of discovery experience in which the teacher provides hints or ,

Y
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tlues to a problem in order to decrease the "search time" réquired to . : A
resolve the problem. [3] The paper referred to in [_3] vas presented Lo

at the_ 1965 New York Conference-ontearning—by Discovery. The prt;ceedir;gs
at this conference are published in Learning by Discovery: A Critical

Appraisal, edited by Lee S. Shulman a'n{! Evan R. Kei¢lar. [4] The

participants at the conference generally agree that discovery is rarely

“
e ——

employ the adjective "guided". (One member of a workshop even went as

far as saying that pure discovery was pure nonsense!- [5}) i
. .

. “What do 1 mean by guided discovery instruction in this,thesis?

Simply: teacher~directed manipu]atior{ of' student behaviour to assist in

the inndinq and understanding of certain processes; patterns, relationships.
' - . -

and genperalizations in Mathematics. - 5
. 4

sy . ° "
¢ It is worth noting that while Learning by Discovery is the titlg f
/

3

of Keislar and Shu]man’s book, it contains a numbgr of references to dis- .~

-

covery teaching. One need pn1y peruse lLee J. Cronbach's article, for:3

instance. [6] Moreover, the index on page 215 of Learning of Discovery .

contains no less than 9 references to discovery teaching. 'Now, one would
S >
usually expect that Tearning will take place whenever there is teaching. -

The qugétion is: "What {s the effect 61' guided discovery teaching on

- learning?" or ‘“How does varying a teaching method influence the learning?"

A modest, and s’omewhat' indirect, attempt to answer these questions is
made in Chapter I\V.

Now, one may ask: l' "What name is given to the opposite of dis- — .
“covei;y?" (This, of céurse.‘is a cautfous way of asking: "Whatﬁ j_;_ the’

!

oppoSi te of discovery?") Ausbel writes about reception Iearniné in-

<




contrast to discovery learnina and carefully notes that he does not
equate this with' rote learning, [7} On the teachina end of the scale, .
we. note that Bruner refers to expository teach1 ng-as opposed to discovery

"teachina [8] whﬂe Cronbach cites didactic teaching as the antithes1s

to the dis}overy method [9] In my own naive terms: “non-di scovery"
equates to laying all: xour cards on_.the taﬂe, wherein the teacher

exposes all the eTements_nf a partic 1ar problem or topic to his students.

e

(@cidentaﬂy.,ong of the most imaginative comparisons .of active "discovery"

versus t_he more passive "reception” was made recénﬂy by gne of my students.

It is quoted in Chapter IV.)
For my own way 5f using the discovery technique, quidance is

very. 1mpdrtant It prov1des continuity in the classroom by minimizing

the number of m1nutes o?si‘lence resulting from students having reached

a cul-de-sac along their path of reasoning, (The challenge for the teacher

is to learn how to distinguish dead silence because of a dead end from

dead silence because of intensive mental activity inside a student's head.)
I y

" Guidance clearly helps to cut down on the arn‘i‘)unf of time needed to "find

an answer" or to make anfobservation: Without it, covering the required

course material might become virtually 1mpo¥t:1b1e. A

' -
A Brief Guide to Some Related Literaturg

One possible source to use for starting ;n inveostigation into
Iearning/tggching by discovery 15 the .comprehensive volume, Learning by .
Dig;:ovérz',é mentioned earlier. This book contains a selection of opinions
and obsﬁf‘\rations by such prominent workers in ttfé fleld as Bruner, Gagné,

Cronbach, and thtrock as well ag number thers. Each of the four
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major sessions at the conference (corresponding to Parts One to Four in

the book) is followed by a discussion or simmary of the‘pertinent fssues = 7 . )

that had surfated during that particular session, Furthermore, an extensive
bibl1iography is available on pp. 200-212 of the text. '

As a mathematics teaiher I tm:ged first to Robért B. Davis'
article on pages 114-:128 of ‘Shu‘lman and Keislar [’IOJ In this article,
examples of discovering patterns and rules in Mathe‘matics‘gat the elem%ntary
and junior high school level are givgn._ The examples inc]ud‘e gr;phing
lineaf equations, solving simple quadratics and noting patterns in certain
matrices. Prof. Davis feels that the dfscovery experience aHovg.s the
student to gain some fnsight ipto how Mathematics is often developed throtgh
trials, failures, modest successes, looking at probiems tlhroughtmany different
angles. The students then can perhaps betfcer appreciate tBe struggles ar)d
excitement that has been a part of much of the history of Mathematics. J:H]
He also relates an interesting case involying elementary arithmetic in
which ‘a teacher who did not reject a seeminaly incorrect solution from one
of ng studen;s actffaﬂy learned someth%ng from that student - a new algorithm
for the subtraction of i‘htegers\\ [12] (This - learning from oné's students
during a discovery session - is an important "fringé benefit" of disc;ver:;
teaching that had not previously occurred to me.) Davis also points out
that discovery experie;\ces may be more valuable to the genera1 process of

education - as opposed to theFrower or more limited process of training

" for specific tasks by expositjon - by being mare realistic in not giving

“ away atl goals, algorithms, rules and methods at the beginning of a

presentation. [13,]4{1na11y, he 1ists fifteen general goals that he feels
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one should seek after when teaching Mathematfcs. Among these goals are:

- mastery of basic. Tchniques. 'Improvement 1n students' facility to relate

varibus parts ‘'of Mathematics to each other, to allow students to have a
reahshc a%essment of their own abilities\to discover Mathematics. to
show students that Mathemat'ics is discoverable, and to show"that Mathematics .

can be fun, exciting and worthwhﬂe. &4 In short, according to Dr, Davis,

. education is for people, not robots, and discovery teaching is a realistic

‘Way of obtaining an education in Mathematics, with its emphasis on creativity °

and divergent ways of thinking, as opposed to rote, mechanical training.

gnother reference source is Béyne-l.ogan's On Children's Mathematics
[15]. It begins with a giscussio;\ of the theoretfc;,al rationale behind the
discovery appro’ach as envisaged by Bruner and then focuses on the theorefica'l
exﬁectations corresponding to this gpproaeh as postulated by Brunerian
theoty. Such expectations are: ?
(a) the ability on the part of; the student to obtain greater

o

. (b) greater "intellectual potency"; t\l?.twis, an increase in the

understanding of problem solving strategies.

S ability of the student to devise and master strategies on
, his own (coming from prolonged experience in diécovering .
‘ patterns and relationships). ' {
(c) 1less difﬁcuﬁzy in ovegcoming .the language in which a
prdb]em may be couched and less difficulty in gétting to
o the essenc‘e\gf a probleﬁ. \‘
{d) greater f]e;ibﬂity in prohlem solving - that is, students

"should be less susceptible to ‘functiona'l‘fixedness, that

Rrma i Bt A maL ma + o A
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(d) continued... T . oo
fnability to percgive and tb pursue viable alternative
soiutions". .

(g): students should be able to'cope with various notions in
Mathema%ics a£ various stages in thefr cognitive develop-
ment pré;ided this Mathgmatics is approached at an

- ’ appropriate level of soqhisticétion. [‘lﬁl
Loggg};hen reviews some pf the wbrk of Piaget, Wilson, Moody,
Peters et al. réIated to research in Matﬁematics‘educaéioﬁf'particularty
at the elementary school'levél. He observes that’thére saems to bek

evidence that: R '

-

(a) maturation is more important in how a student will learn
Mathematics than in determining gﬂgﬁ he will learn, ,

(b) intelligence, eading ability and problem-solving ability
are probably integ-re]afed.

(c)‘ the discovery approach tends to lead to a greater ability
fn general problem-solving or heuristics. [17] )

To compare fhe expository and discovery methodss—Logan than
poses a few reseérch hypotheées. In these, he postu]gtés thht: ajlowing
for control for variations in intelligence‘and reading ability, thg
discovery approach should yield betger results in:

(H1) comprehens1;n of number and operation concepts. ~

(H2) Yearning of personalized problem-solving strategfes,

\ (H3) flexibility in problem;so1vfng strategies, J

(H4) —abflity to apply cdrrect strategies to problems of vart?u

, i
\ , .
v % k . '
. . .
\
NS ) .
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(H4) continued... - .
levels of contextual complexity. [18]

He then proceeds to test the hypotheses via three research

1nstruments The Sequentia] Tests of Educational Progress: Mathematics
T

Levels 4A and 4B, The SequentiéI,Tests of Educational Progress: Reading s

Levels 4A and 4B, and The Longe-Thorndike Inte’ngence Tests [16] The

tests were administered to students 1n grades 4, 5 and 6 ranging id age
from eight to twelve years. A comp]ete discussion of the above tests, "
of general experimental design, of the selection of experimental “suDJECts";
and so on, 1s available in Logan, pp. 26-5N. S -
Briefly, the results of the;jnvestfﬁations &re as follows.
Three of the four hypotheses kHl, H2; H3) were supported at the .95 level
of sjgnificance{/ But, 1§«the case of the fourth experimental hX;othesis,
H4, no significant differences were seen between groups exposed to the
two "treatments" (discoveny and expository methods). Both the children .
taught by guided discovery and the children taught by the expository
technique could handle the mathematibal oper;W§ons involved in problems
with edual ease (or difficulty) provided thew understood the language
and concepts associated with the prob]ems. A]though:\things mdy portend
well for the discovery procedure, Logan cautiously calls for continuing
and extensive research into the two major teaching strategies discussed
in his manuscript. [?Q]."ﬁe concludes with a quote from Kahl1il Gibran's
The Proghet.ﬁ The last part of the quotation, referring to ﬁthe teacher”
_ reads:

"If he 1s indeed wise he does not bid you enter the house of
his wisdom, but rather leads you to the threshold of your oWn mind." [Zﬂ

I think that a more elegant description of guided discovery.
|

“
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teaching mgy be very hard to find.

The 6?qjiography in On Children's Mathematics lists contributio
by Bruner as well as others to the field of learning theory and to the

,Special area of guided discovery.

An Overvfew and A Look Ahead ™
’/ D. Wheeler quoted in [22] recoﬁmendﬁ: We must astohish the
most anxious and insecure into some success, and in‘such-a way that they
know it is %heir success.” This statement summarizes beautifully my
basic motivation to imprd&e my teaching methods during the.past 5-6 |
years, Above all, ~have leéys wanted my students to like Mathehatics

and to improve upon the way ;ﬁéy were exposed to Mathematics in my class- |

room. Some geherai discugggon on how I have Eried to achieve these goals
was given in the first section of this chapter.
" In the past few semestersat Dawson, I have done a lot of work in
(a) 102k1ng at the major components or overa11‘p1an of guided

discovery in elementary Mathematics, with a view of classifying and com-

" piling examples and exercises as well as pfoof-types that are, in my

op1n10n; representative of g} aménable to the discovery process at the
college level, » ‘ |

- (b) re-wu1t1;; my notes and problem sets in Linear K1geb§a,
falculus and College Mathematics with the intention of treating topics
by the diScovery mode whenever possible, and '

/Lp) obtaining feed-back from stu%ggts about my teaching and

. about their strengths, creativity and weaknesses.

Roughly speaking, Chapters 11, III and IV, respectively, are
N

X

4
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repre§%ntat1v§ of the outcomes of my efforts described under (a); (b)
and (c) abd’e.

| The sections of Chapter 11 break the procesg\gf gufded dis- *
cbvery teaching up into 3 major stages: exper1mentation/genera11zat1bn(.
provi?g, and consolidatiqgt Although some,ﬁf the examples inen in
,Chp:~i;>cou1d pérhaps be routineiy interwoven into one or another
Dawson Math Course my‘planwfor the chapter is a more generél one. What +
types éf proofs arisewfresuent1y - and confound students just as
frequently - at the.college level? What types of “warm-up” exercises
work rather well? What kind of follow-up préblems tend to firm up tFe
" {deas presedtedlfn_}he inductive stages of experimentation and formalization?
These are’the questions I have in mind when I think of.Chb. II. of couf?e.
éach of the 3 fundamental stages (which constitute the 3 sections of the
chapter) are themse]vé; quite amenable to quided discovery instruction -
sa we also have "émbedded guided discovery". In my teaching I take advantage
of every spare minute - sometimes tahgrg aﬁ entire lecture session - to

talk, in-a genéra} way, about the kinds of problems, proofs, patterns etc. .

exemplified in Chpi II. Briefly then, Section 1/Chp. 1l deals with

)

suggested "warm-up” or pre-generalization examples [Experimentation] .
Section 2 follows with a classification and overview of standard proofs

in elementary Mathematics [Proving or Formafizat1od]. Section 3 concludes

. with a 1ist of problem t;pes which I feel miz)be effective in consolidating

the ideas introduced in Stage§ 1 and 2.[?on5011dat10n]. The dialoques

R4

scattered throughout the chapter reflect my feeling as to what good dis- -

covery-dialogue sessions. can be like.

[ o
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Chapter 111 is a bread-and-bubter chapter. In'it I turn to X

£

(Linear Algebra, College Mathematics and Calcqus 1) 1 choose representative

topics for analysis; representative in the sense that I have taught these

.
\\ {rdver the last 2 years via "discovery”. anh section {s followed by a

LN

\

bl
T

[

R

e N

Y

\ my success at getting across Stage 1 and Stage 2 discovery notions

list of "special” or "consolidation" exercises. Many of these exercises

-~ are fairly challenging in that they test the students' _ability to "think

4

hard" or to reason beyond the level required by most textbook problems.
Mos; of the problems Yn these sections have been sprink1ed into my
,pxercise sets and homework assignments, 1 FEEL that the number of

or
successful attempts at these exercises is directly proportional to ~

. . (see Chp. II).

+ \' ;
\\ Finally, Chapter IV is reserved largely for a summary of

student feed-back. The results of 2 qugstiennaires are discussed and “
sa;ple responses given. An experiment involving the‘faping of a "typical”
discbvery session on E1ementary Matrices is discussed A brief c}1tique

" on the\possible benefits and drawbacks of guided discovery and a few

-words sn my future plans relating to discovery teaching conclude the
main bodx of the thesis. A list of references and the Bibliography
follow Chdpter Iv.

t‘j \
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# ‘ CHAPTER IT
A MULTI-STAGE APPROACH TO DISCOVERY TEACHING
Seéiidp 1 - Stage 1: Experimenting with Patterns apd ‘Relationships, !

In order to encourage student participation and to introduce

the discovery process I often spend‘?ne or two lectures at the beginning

. Of a course looking at number patterns, geometric_ relationships, symmetries,

- "black box problems" and the l1ike. I have found thi§ to be an enjoyable,

informal way of "warming up" to Lineara®lgebra, Calculus or CoHege~

Mathematics (Dawson mathematics courses 105, 103 and 101, respectively). s

&

The Stage 1, or gxagriménting process, is fellowed by standard
course material (where guided diécovery is useq once agaip to present
certain topics) and'by another "{ntermission" or Special Class on
"generalizing and proving" durihg the first few weeks of the course.

(see Stage 2; Section 2 of this Chapéer:) In this way, guided discovery
teaching b?&éeeds‘ét two levels: 1in a specific way during daily class-
room work (see Chapter III) and in a more global and informal manner in
which students are priefly exposed to mathematics,no§ necgssari]y covered
in the standard syllabus. The headings which foliow reflect ynits of
cias;\presentation; that is, [ generally handle "black box problems" or

problems involving symmetries or problems involyfng cobnting patterns in

any one given "special” lecture or part of a lecture.

Black Box Problems

5 .
The students are asked to imagine some mysterious machinew¢hat
is fed certain data. By some process the machine converts these data

into sﬁecific outputs. Their job is to discover a rule by which the
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input 1s transformed by this "black box" apparatus. (Of course, occasionally
a student may discover several possibIe rules being used by one "machine”.

In such cases I 1like to praise the student for having made such a ‘'discovery.)

The following is an example of a typical "black box problem" I

might pose in class.

" Black Box A takes the ﬁfi§1ets 1,(3, 2, 4) and I,(1, 2, 3) and
turns them into 0,(5, 1, 81) and 0,(3, -1 36), respective1y. What s a
rule by which this black box operates?
b . After a while, jf there are no answers forthcoming, 1 might
offer a few hints: '
ﬂlﬂl;lé What can you say about the last integer in 0, and 02?@

(Right! They are perfect squares.)

HINT 2: - In what way is the number 81 related to the numbers 3, 2, 4 in I;?

(Correct! - (3 + 2 + 4)2 = 81)

HINT 3: In what way are the numbers 3, 2 in I related to 5, in 0,?
(Yes! 3 +#2z25and3-2=z1)
Now coﬁpare I, with 0,. What is a possible rule?

ANSWER: {a, b, ¢} > (a+ b, a -b, {(a+ b +¢)2)

-

[]

(In this situation the answer is not unique - the images\Qf two
elements in R3«do not déterm{ne a unique rule fgr the above non-linear
trdnsformation. -In general, it may be very difficult to determine all
possible rules for a given "non-unique solution" type of black box problem,
and just as difficult to find the most likely rule. A relative. frequency
approach - tabulating and comparing the frequencies ofcparious kinds of

solutions - may_Se of some help.) .

<
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Students enjoy working out these types of problems and require
little encouragement td make up a few "black box puzzles" to challenge '
their classmates and, of course, their teacher. It 1sda1§o interesting
to observe that%:any of those figure analogy questions appearing 65
standard 1.Q. tests are simply variations on the black box problem theme.
(They, however, are constructed so as to yield a unique solution,, or at '

least, a most obvious solution. An example is: ,

<«

is to as is to ?
31

The examinee is afygy an underlying rule which, in this case, converts
the large figures into the small ones. Unfortunately the discovery must
! . ‘

be made without any guidance from anyone. (NQES that, in this case, (ZZ)
and[ZZB.may both be aceeptable answers.)

Symmetries ‘ , . |

One example which I use 1n'c1a§s to demonstrate certain kinds

of symmetry is the following classification exercise taken from page 89

of George Polya's book: Mathematics and Plausible Reasoning [gi]

Exercise: Consider the following arrangement of the 26 letters of our i(

alphabet, ' ' | )
GROWI: A M T UV WY
GROUP2: B € D  E K ‘ ‘
GO 3 NS 2
GROWP 4: H I 0 X |
GROUPS: F 6 J L P Q R

What is th Fatiqna1e forplacing a given letter in a cgrtain group?

t
.
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The key clue I would give to my class here is: SYMMETRY. Once they are
aware of this - that symmetry is the guide to sorting - the students
qufckly rea]ize that all the letters in GroupJ have one thing in common;
namely, they possess vertical symmetry. Now the discussion proceeds
quickly. Someoqe sﬁouts out that the 1etter§ in Gfoup 2 are symmetric
about a horizontal line. Someone else notes that the membdrs of Group 3
are characterized by point symmetry (S, N, Z). (In fact N rotates into
Z and vice versa.) Horizontal, point and vertical symmetry are all found
in the letters Iistgd under Group 4, Those in the last group are seen to
posses; none of the above symmetries. But this‘iskﬂgt the end - 1 ﬁow
{ntroduce the following related exercise wh%ch also relies on the not{on
'of symmetry. [}ee "Type G" problems desé;ibed'13 Section 3] .

Exercise: Give equations (;xamples) of curves satisfying the various .

conditions listed below: G

symmetric about the Y-axis,

)
(b) symmetric aﬁout the line y = 1.
(c) symmetric about the X-axis.
(d) symmet;ic about the 1ine x = -1,

(e) symmetric about the origin.
4
(f) havimg horizonta]z vertical and point symmetry.

-

Analogies °
(a) Quadratics and Related Equations 4 3
1»),/ ‘ Most high school graduates are quite adept at solving ordinany“

quadratic equations. But solving for x in 6 sin2x - sinx - 1,2 0 or

1n log2x - 4 log x"+ 3 = 0 causes many difficulties. I have found that ’

st e = e —————— - - e— =
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A

it pays to spend a little time dfs'cd;ssfng the similarities as well as

the differences between procedures for solving quadratics in the

varfable x, y, or z, say, and qt{adratics in sin x, log y, eZ an'd‘&so o
on. We compare the methods of solution as well as the NUMBER OF ‘ROOTS

of ax?2 + bx + ¢ = 0 versus the analogous pseudo-quadratics.

w(b) Linear Systems and Isseudo-ﬁnear Systems

In an introductory class in Linear Al'g’ébra [ might ask the

9

students to solve: ° .
X~Ys= 1 !
2x+y = 2 )

1

N

by any method they wish to uge. Imediate'ly“afterwards I'11 put §_om§
set of equations such as o ' N
x2 - y2: 3 ‘ .

T2t + i 1 %
on the board and ask for solutions. Before everyone starts scribb]ing,'
I'11 ask for a pre_dictfd'rr“abqut the number of solutions. The responses
range from “none" to "two" to "inf:injte1y many". Tpe‘ students discover
that even though they can solye this system in a !;1/anner similar to
‘solving‘bgna fitfé'linear system;, there are 4 sets of ordered pairs that
satisf;v both equations. We then look at the geometry pﬁ the situation.
I aTlo é few minutes for a brief review of ellipses and:‘w‘)‘rpertr)olas.
Can’:l:\tudents visualize the 4 points of intersection f' the above
conic, sections? One or two students can then come to the board to
sketﬁh the given curves. The c]ass‘ is asked to help them, (E_QT_E_: The.

question about the number of solutions of a system gains further importance

. 2,,,!3 ‘
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in subsequent analyses of m equations in n unknowns.

\' -

Counting Patterns

, . » .
N T one

(a) The Ndmber ofwniagonaIS of an n-gon

Problem: Suppose we have a polygon of n sides. How mehy diagonals ca; we

draw jn'such a polygon?

Ideally, a discussion of this problgr might proceed as follows:

Instructor:

Student A:

Instructor:

Student A:

Instructor:

Student 8:

Instructor:

Student C:

Instructor:

Student A:

Instructor:

Student D:

Consider a triangle, How many dfagonals can jbu aréw?

None,

Consider a quadrilateral. Observe that it has 2 diagonals.

How would you define "diagonal"? -

)

A diagonal is a line that joins two opposite vertices.

Any comments?
In the case of a pentagon how do ! choose gpposite vertices?
A

‘Good pofnt. Anything else? P2}

v

Here's my definition. A diagonal is 4 1ine segment joining -

a pair of non-adjacent vertices of a polygon. .

£ ")
Very well. Let's gd on. Now then - how many diagonals dbég{"

,a pentagon have? v °

N

,I count 5 of them.

Correct. HNow consider a 6-sided.figure. Try to %1nd a

.Systematic way bf couhting your diagonalsﬁ

».

I got it. ‘Taé? apy vertex of the hexagon. ' It can be joined -.

to 3 other (non-neighbouring) vertices. Now go around the

_hexagon, vis{ting each vertex once, and keep drawing diagonals.

* Near the end of this "trip" no new diagonals will be created.

S

-

3
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Altogether I count 9 diagonals.

u
B

. : ‘ 7
_ Instructor: Quite right: Now, can anyone predict how many diagonals a

!
’

) 7-sided po]ygon has? -

1

Student C: Certainly. Each vertex can be joined to, 4 others - {t can't
‘ " be joined to 1tse1f or to its 1mmoddate§neighbours As we

;/, - journeykproqu our heptagon we could/get 7.4 = 28 diagonals,

. but these would not all be distinct.. Every diegonal is
P . counted twfce. Tﬁerefof@ ihe actual number of diagonals is
just 28/5 or 14.
Instructor:’ éxcel\ent{ Can anyone give me a general formula for the
number of diagonels of an n-gon?
Student B:‘;Sure. The number of)diagona1s_is ¢learly
“I : n(n 5 3) |
ano n, of course, is bigger than or equal to 3. We heve
already verified this fornula for n « 3, 4, 5, 6 and 7.
Instructor: Does anyone care to suggest a proof of our formula?
The-precedinghproblem and dialogue, i my mind, exemplifies

the guided discovery method -In some"Classes the interchange of ideas

. may proceed much more slowly; in others, despite all good intentions,

the discovery method may simply fail, Generally, however, I have been

‘able to generate lively discussions with the preyious n-gon problem,

(8) The Partitioning of Space-

o

I have recently begun to introduce one -or two classical

partitioning problems, via a special "interest" 1ecture. into my Co]]ege

-(‘A 4

" Math course. “They are:
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" not very easy to represent 3-dimensional situations on a plane surface.)

:2 .
Problem 'l\and 2.

22 - -
Problem 1: Find the number of régions tnto which n lines will divide
* 2-sp$ce. Agsume the !ﬁost general configurations; that is,‘
}\o 3 (or more) lines should be concurrent, ﬁnes should not

be parallel or co-incident.

Problem 2: Find the number of regions into which n plenes will partition
3-space. (Assume general configurations analofous to those

in Problem 1.)

Y

Problem 1 is ideal for class discussion in that you can get your
hands dirty (1iterally and figuratively) by drawing pictures gh the board.

(Drawings may be attempted for Problem 2 as well but, of course, it is

e TR

z=

It may not be a bad idea to make an eyet’; humbler start. Begin with:

Problem 0: Find the number of segments into which n points will partition

a straight line,

and tabulate your results thusly:

1

Number of Points - Number of Line Segments ,

SN ’ R . . ]’ /
1 2 -3
: : N\
3 4

n . . - nt 1

a new point you create a new segment. Good practice for the sfore complex
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S1mi1ar‘|y,—students can be guided in tabulating vg%hes for

Problem 1: \ « N
Number of Lines ﬁ Number_of Regions _ = i
0 . . _ ‘
1 1 2
B 2 .4
. 3 7 .
4 N
5 16 ‘
| . | . o
o etc. ? etc. [see. [24]] A

- Throughout this exercise the instructor can steer the students
via appropriate leading questions and qhallenée them in various ways.
Here are some possible: "1eading questions" and "challenges":

(1) "When I add a new line to the 4 I have drawn so far, how many new
' regions do you think I will objain?-"
(2) "Count the number of segments into which the sth Yine is broken by,
the previous 4 lines. What 1s the relationship between this number
and the number of new regions we create? f!ow do you account for )t{ﬁs'

relationship?"

-
{

(3) "Describe the number pattern between sucgessive terms of the sequence

‘l, 2’ 4, 7, 'ac" ' - ‘ /

(4) [CHALLENGE] "Can You guess what sequence we'll ot@inlin the right-
/ hand column, for Problem 27" ‘

L}
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b ]
i

(5) [CHALLENGE] "What is the general, or nEh }term of the sequence 1, 2,
4, 7...7" ' \

(6) [c 'LLFNGE] "Can you spog any re'!aﬁonship between the combihatorial
cgg#ficients of Pascal's Triangle andlthe right-hand column sequehce
of Problem 1? Can you predict any relationship between the combinatorial
§ lFoefficients of Pascal's Triangle and the right-hand column of Problem
27" | | .
A much-more elaborate treatment of Problems 1 and 2 and related
. ﬁattgrs can be found in Polya's Mathematics and Plausible Ré;soning and in
.the'Noéember 1978 issue of The Mathematics Teacher, 1?4] and [?5].

4

Concluding Remarks =

Black box problems, problems 1nvolv1ng~symmet}1es, pseudo-
quadratics and p;eudo-11ﬁear systems, diagonal counﬁing and space partitioning
‘ probieﬁg are just a few ﬁhthemitical vehicles for- examining patterns and
rre]ationships. I; the year§ to come I will be looking for other types of
problems to supplement the standara course m&terial-problgms\which have a
potential for student discovery and, hopefully, problems which are fup Ao

do, as.wel1.

% . .
tterns etc.) pre-supposes ample.class time, availability of problems ’

f course, efféciivé’experimentat1on (where students are motivated
to find é;ﬂ
. ' of appropriate levels of difficulty and good teacher-student rapport. In.
.addition, a degree of showmanship on the part of the inétructor. a knack
" for building up suspense, a talent for boosting student confidence.and
co-ordinating discussion are all definite assets. Thﬁs, besides maintaining

'Aa‘conttnqous search fo} further problems and problem types, I will not. be

.
N , 18
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able to ignore the 'fmanagement" and "artistic" aspects of any future
discovery teaching.
> ’ 1" discover
Let us now examine Stage 2 of the “"global" discovery process -
proving various hypotheses. ‘ \
" o »
. *
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Section 2 - Stage 2% Proving Generalizations and Other Hypotheses -

It is perhaps deba_tab]e’whether forming gene/ralizations from
specifib instances should be lumped together with "experimentation"
(Stage 1) or with "proving" (Stage 2). Since I try to get students

y  to generalize from certain patterns during my “special” lectures on
experimentation (see Section 1) as well as immediately after I introduce
- certain standard course'topics, I consider "forming generalizations®
usually to be the last part of the Stage 1 work described in the -
previous section. Thus, studying patterns and relationships and making
" conjectures based on these observations are often closely related
(chroho]ogica'l ly and logically) in my classroom presentations. In the
next few pages, then, { will focus on proving conjectures, the second
stage of the “global® discovery process. (It is in this sense that I
sometimes refer to the section as the section on Generalizations or -
Formalization of concepts.)
[ am motivated and somewhat encouraged by Dr. Polya's words:
"What can the Mathematics teacher do? He can, first of aﬂ,
acquaint his students with mathematical proofs. .a good textbook
and. a good teacher using good examples should make him [the student]
undgérstand the role and the interest of strict proofs. is could be
‘for a few students a great experience, but for all there is a good
chance to enrich essentiaﬂy their general culture and take a stride
forward to mental maturity.” [26] .

Unfortunately, I have found that t students feel very

uncomfortable with proofs; even the ones yho have no difficulty in
making conjectures. Many simply lack expeMNence - th}y rarely, if

ever had to carry out a formal proof in pre-college courses. Almost

'{\ all have great difficulty in star;ing a proof. ‘Some believe that checking

a half-dozen or so numerical examples constitutes a proof. Some don't

s e At 5 [EPIUSUE ) o e o - ——
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believe in proofs at all; more precisely, in the need to carry out the

formal justification of a hypothesis [see, for exgmp]e,.responses to the
First Questionnaire, in Chp. IV]. '

1 spend several hours, in each course, speaking about proofs in
general (Stage 2 discovery activity). A small pbrtion of this time is
spent on what observers would caH“'pep talk" - bringing in instances
(legal, ‘medical and maf:hematical) where a proof might be considered a .
necessity, and trying to instil a little self-confidence. But "pep talks"
are not very effective without a lot more s;Hdo supp.ort‘. In this instance,
the "support” comes from a discussion of some elementary logic (necessity
and suf~1"ic1ency, pro/of versus disproof, negations, contradictions, and
the liké), general proof formats and proof strategies.

For a start, Iggive the students some general-guidelines ’to :

follow. These are:

(a) put down all given conditions or assumptions.

(b) write down what {s required. g

(¢) look up relevant definitions, axioms and prior theorems
or lemmas. |

(d) ask yourself such questions as::
- Would it be easier to begin working on the left side or
_on the right side of the "required-to-prove”?
(This is an important consideration in simple Cross-
) " over Proofs (L.H.S.¢—DR.H.S.), the kind commonly
employed in proving elementary trig. identities, for
example, )

. If [ start with a certain stap, how will f proceed? 4

.

e g b e bt R
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- What would the last step of i:he proof be? wha; about
" the second-to-last step? ‘
- What TYPE of proof is called for?
The Jast question then leads to an examination of the various
types of proofs commonly used in college math courses. This takes up

\{ most of the time I devote to my "special” lectures on "proving*“.

Classification of Proofs

One broad classification of proofs is suggested by Lakatos.
’in his dichotomy, there are proofs which "improve’ through the discovery
of new and unexpected aspects of a set of conjectures, and.there are: «_
proofs that “do not improve® upon our prgsent state of knowledge. [27]
The first kind is generally ass'oc1ated with growing theories appearing
usua_lly at the graduate or research level. The second kind/is associated
with "mature" theories which are standard fare in high school, cb'llege
and undergraduate unfversity courses. O0f course, one gan sometimes
return to an established theoren and s'harpén or extend previously known -
results. o ‘ -

A more applicable classification, for my own éea‘ching needs,

. consists of pigeon-holing thegfrems qacc,ording to the MODE of proof, or the
T ¢

STRATEGY involved in the proof. Thus [ tell students about Proofs by
Step-Reversal,Recursive Proofs, Proofs by Contr;diction, Proofs by

Patterp Analysis, Cross-over Proofs, and so forth, Naturaﬁy, certain
'theore}qs may require a combination of strategies. Moreover, the 1ist does.
not, of course, exhaust all possibilities. As I gain more exbem’ence in .

teaching and encounter the need for other problem-solving or proof strategies,
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" more names may be added to the list. [see also Chp. I,II]

. .
Some Proof Strateqies (Each example is used to {llustrate the strategy

given under the varfous headings.)

Example A [g\_ Recursive Proof]

Given that a2 = 2 + 1 show that a* 2 3a + 2.

A discussibn in the guided discovery vein might (ideally) proceed as

follows:

o

Instructor: How would you start? !
Sam: Solve for 'a' from a2 = a+1 and then use tr;is value of 'a' to
check that a* is the same as 3a + 2.
Instructor: Go ahead, Sam.
Sam (a shc;rt while later): I give up! What's the 43‘-, power of
RER
5 !
Instructor: Rather than doing some messy arithmetic, why don't we try

another approach? Any suggestions? . = / —

o

Sandra: Well, a* = (a2)2: (a +1)2 = a2+ 2a +1, but then what? ~

4
!

. Sam:  No way.

Linda: We know .that a2 = a 4+ 1, so a2+ 22 + 1 would equal

At 142+ 1:%+2. :
Instructor: Excellent. Now express a> in terms of ‘a‘.

Sam: Aha: asS - a%a = (3a+ 2)-a = a2+

J(a+1)+2 = 5 +3.

Instructor: Now, we're ro]lingf Would anyone care to try af? ...
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Example B [Decomposing a Proof into its Fundamental Parts]

Given a point Py(xy, ¥o) and 2 1ine ax + by + ¢ = O prove that the

distance from P, to the 1ine is given by:
v
d - 3%+ byg +cf

Va2 + b2

Analysis by Chief Compénents:

>

First Component: Fing the equation of the line J4 going through Py and

/

Sub-goal 1: Find the slopeof ax+by+ ¢ = 0

perpendicular to the given line.

Sub-goal 2: Find the slope ofl, using the "slope relatignship”
‘ b-etween perpendicular lines. |

Sub-goal 3;1 Fin,d the point-siope equation for 4.

Sub-goal 4: Write the equation forﬂ in general form

Second Component: -Find Q, the point of 1ntersect10n of the - es.

<

Third Component: Compute the distance from Py to 0, to obtain the’\

Al
b

' required formula. ‘
Comments: Via this example, and others like it, the student‘s'hould learn
. to fdok for the c‘h.ief components of long proofs. For they,
somewhat ]ike skeleton outlines in the ;riting of an essay, can
act as fine threads that hold together the fabric of proof.
0f course, the given hypothesis can be proved in a much more
e]egant way using vectors and the conceépt of scalar projection. I have
found that a compar1son of the 2 methods is useful in high'lighting the

gowe r of vector methods [Such vector methods are discussed in our Linear

Algebra cours@ at Dawson Coﬂeqe]
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But my main reason for introducing the longer, perhaps more
" awkward proof of the distance formula is to demonstrate to the class yet
another general’strateqy they may find helpful. This is to survey the

overall objective, to look for key "landmarks" before wading into the

- sopeciﬁc, detailed components of a proof,

Example C [Proof by’ Pattern Analysis and Step Reversﬂ]
Show that (a2 4+ 1)(b24 1)(cZ +1){d2 +1) = 16 abed, for all

numbers a, b, ¢, d..

Simulated guided-di';cové}y discussion | ‘ ‘\

Insﬂfrugtor: I think wof the Jr;umber 4 when I look at this 1ﬁequaligy.
Why is that? J

" Ben: There are 4 similar terms on the left side and 4 simple factors

a, b, ¢, don the right side.

Instructor: Good. But what about the 16?

Marvin: Since 2%= 16 we can associate four 2's \;vi_th the number 16.

Instructor: Fine. Now can anyone start the proof?

DEAD SILENCE! (More hints needed. )

Instructor: Can anyone think of a really BAD way to begin ‘-‘a\way wﬁich
would (resu]t in complicated algebraic manipu]atiﬂons?

Sam: Multiply everything out on the left-hand side!

Instructor: Right - er, ang! Now that we know what not to do, what .
should we do? Try to solve a SIMPLER but SIMILAR problem p
by selecting one of the groups of four, (Inspiration from
Drﬁ&.) ’ ‘

e gt P PSS




. 32

Susan: Well, let's take the "a2 + 1", the "a" and one of the '2's.

. aguppose we try to prove that a2+ 1 2 2a. o

Instructor: A very promising suggesti&n. Susan. Proof, anyone?

Marvin: We did something like this, last year. welv'l. a4y 1222

qimpHes a2 -2a+ 1>0 or (a-1)2 20 which happens to be
true for any a ¢ R, So, by REVERSING the steps we can say
that sin.ce (a = 1)2> 0 clearly holds for all ‘a', it follows
that a2 41 > 2a for all 'a', as well.

Instructor: Correct.. Notice.that .

Sam: Sure, b2 4+ 1'22b, ¢2+1 =2¢, d24+ 1 22d for the same reason!

Susan: Then it's obvious that T '

(24 1)(b2+ 1)(c2+ 1)(d2 4+ 1) = 2a+2be2c-2d or
(a2+ 1)(b2 + 1)(c2+1)(d2+ 1) > 16 abed.

Instructor: AImost obvious, but please note the foﬂowing‘ fine point.
Since a2“+ 1 = nla|2 +122lal, b2+ 1 22|b[, c2+1 2 2[¢|,
a2 +13»2][d] and labed| > abed we can multiply corresponding
terms to get:

’ (a2 4+ 1)(b2 + 1){c2 + 1)(df + 1) $2%|abed| » 16 abed and not
h‘ave to worry about a possible reverse in the sigp of the
inequality. Before we leave this example can Qnyone make up
another inequal: fy whicﬂh could be proved in the sape way?

iu_saj_: Yes. How about (a2 + 1){b2 4 1)(c2 + 1){d? + 1)(e® + 1) 2 32 abcde?

Marvin: I got a better one! Prove that (a2 + 4)(b? + 4){c? + 4) 2 64 "abc.

Instructor: All right, Marvin. We'll assign your 1néqua11t_y as an exercise

for tomorrow.

~\




- v

e

7

@

( ‘ 13 ‘ D hA

-

Example D [More Pattern Ana]ysis]

Prove that if 1€ a < b <

then
s A

B

Least Common Multiple of m and n.

<d<e for integers a, b, ¢, d, €

\

‘ % where [m, n] denotes the

" ‘ , s
ANALYSIS .
This problem is taken from the May 1979 Canadian Mathematics
01ympiad cm_\test ‘pap}&r. LikeithJu previous inequality
(a) it may }M;ﬁ ey groups
and (b) it has pleasing patterns,\agq is ;asilmgeneralizable.
. Of course, it calls for a new {oncep‘ - EL\EM of 2
numbers. It is usually necessary to define "L.C.M.%-at the start of
fhis problem. After I discuss the solution with my class 1 tell them

they have just participated in solving a contest problem. Announcing

)
this at the beginning, I feel, would tend to intimidate a fair numher

- of students. During the process of so'lving the problem I usually offer

—-—

guidance in the form of:
HINT NO. 1: Write 15/16 as 1 - 1/, Row think of Example C.

HINT N0. 2: 141 41+ 1 =15 Noticethe 4 terms in the sum. |
- 2 % 8 % T :

HINT NO. 3: Associate %_with‘ 1

]a,b[ ib,c] -,

SUB-GOAL: Prove that [a, b] 22. [This is easy] Hence 1 g 1.

a,b 2
At this stage, the class has Tittle difficulty with the corresponﬂﬁqg
arguments that: | -

, 1 with _ 1 and so on. LT~
2
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Thus _1 1, 1 _(K1, 4

1 +_1 +_1 +_1 2 141
a,b ,C €d] WeJ" 2, 7 8 T6 16
Extending the proven resu]t is simp1e: ) S
£ 31 for
(a.b f|+]_5,c © ai I,e +" ?I 37 -
1<a<b<c<d<ek<f ‘ . o

Naturally, as the number of terms on the left increases we get closer

a

a
. and closer to the'upper bound<of 1. . T \

——

Example E [A Proof by Contradictfon]
Prove that there are no matrices A, B such that AB - BA = I,

where I = identity matrix.

DISCUSSION:

The proof is a dif':ﬁcult one caVling for'a ;'éther 1nspivje'd
start. It underscores the importance of guidance in guided disgo;/ery
tgachiqg. I have not as yet had iry_'studer{t who gould' begin the proof

until I had given the key word: TRACE. The proof then proceeds tike

3

th‘iS: ) ;‘c

R 3"

° , Y]
Assume there is-a set of matrices A, B such that AB' - BA'z I.

-]

(For conformability purposes we take A, B, I to be of dimension n by n. )

N

Then taking the TRACE of each side we get:
p tr(AB - BA) - tr, I ‘.
But tr I = n while tr(AB - BA) = tr AB - tr BA = 0 - an obvious contradiction.

Hence there are no matrices A, B such that AB - BA » I.
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It s important to point out to the class that proofs requiring .

’ - X .
such "clever® starts do not occur too often, in standard exercise sets.
v

But they should know about the basic strategy; namely, Proofs by

Contradiction. In CONTRAST to the above example, most classroom proof

§trateg‘1es will seem, hopefully, quite mundane. ’ -

] It is interesting to note that after we had spent some time
discussing Proofs by Contradicition, Robert Broca - a student in my
Linear Algebra. course - easily gave thé following proof of "AB = O
means at least one of .the matrices A, B must be singular”: |
'His_Proof: If A<l, B=! were to exist then

A=1 ABB-! = A"l 0B~! which means [ = 0° A

» Therefore, A, B can't both be non-singular. - It took Robert no
‘a a
a"than 2 minutis to coimer up with this proof.

x I3
Other examp‘l!s ‘that I have-used in class to {llustrate Proofs

ontradiction 1nc1ud;e Euclid's proof of the infinity of prime numbers

In Summa ummary A\

] -+ There are twg central ideas being promoted in this section
One: That by classifying or naming different proof types during the
. "special" .lectures '(which“are actually intended to be general - §

as opposed to course/topic-specific - in nature) and analysfhgsthe
qco‘rreSpond'i ng strategies some progress can be made i "& helping

students in what, for them, may be one of the most difficult areas

a

" in Mathematics.

PO . [UFRUUUIRIPR
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' Two: That by presenting the various proofs through ;he method of guided
discovery the students éan become actively involved in "proving"x -
a process which pervades all of Mathematics' as v:e]l as all subjects
which are Younded on rigorous logical bases.

It is too early to declare total success in teachiang proof”-
strategies. After all, the problems I have outlined have only been class-
room tes;ed during the past 3 or 4 semesters. (Nor have I had any recent
feed-back from my students abOl/Jt how they fared with proofs in their sub-
‘'sequent university courses.)

But I can say that there are at least some encouraging siéns.
On the '.Wh(ﬂe, my st{ud_énts seem to cope a little better with proofs when

" they take a second j(or hird) course from me. (The mere fact that many_
of them register for second and third courses with me is, perhaps, a
; good sign.) Mclreover, I am beginning to notice increasingly bettgr
response to my "special consolidation e;(ercises" both in the classroom
and ir! homework assfgnments. This brings us to the last §tage of Ebe
E " _ "gloggl“ guid;d discovery theme: solving.-and proposing ‘exercise{/whjch
may; be]p tc/> consolidat:.e learning. . ﬂ\

¢

w?

-
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Section 3 - Stage 3: Consolidation Through Problem Solving

s Since the Fall of 1979 I have developed an interest in
certain kinds of mathematical exercises. These problems all have
pne or more of the following characterist%cs: / ;o

(a) they call for a solution strategy not common1y~foynd
1‘6 text-book exercises.. |

(b} they bring together elemey{; from two or more areas

.. in Mathématics.

(c) they require "translation from English to Mathqmat‘l.e.s",

(d) they provide practice in areas which the majbrity'of,
college students find difficult. )

(e) they have a potential for demonstra\ting student creativity.

At first I simply combed through varjous textbooks, old lecture
notes and exams and started putting together a file of Miscellaneous
Exercises.. Then I decided to attach names to the various problem types.
(Interestingly, at the s'ame time, I thdught it would be nice fo make up
some of these exercises rather than to rely always on somebody e\se‘s-\
éfforts. Furthermore, perhaps I could encourage some of my students to
make up a few problems; I thou;ht. After all, this was what characteristic

(e) was all aboutl.)

The names I finally chose were as follows:

Type A: Reconstruction Exercises [characteristics (a) and (d)].

Type B: Reverse Procedure Exercises E:haracteristics (a) and (d)J.

Type C: Student-generated Probl éms E:ha acteristic (e) and possibly othérs].‘

Type D: Linkage Exercises [any of characteristies (a) to (e)]. ’

zt-

R " s m =



"3

38

Type E: Story Problems [@haracteristics (b), (c) or (di].

Type F: Proofs and.Disproofs [?hiefly characteristic (di].‘

Type G: Example Construction [?haractéristics (a), (d) and/or (ei],

Type H: . Common Feature Exercises [chieﬂy characteristics (a) and (e)].

Now a "Story Problem" may be generated by a student and call
fpr a "proof" or "reverse procedure". I would file copies of this problem
under each of fhe 3 or 4 chief headings [?ype E, F, C and 5]. I aﬁ'rather
pleased that the above eight categories are gggfmutda1ly_exc1usive. For,
I believe that coming up with a "multiple-feature" problem is a challenge
to one's imagination or creativity. Mofeover, such a problem might prove

to be exceptionally good for testing understanding of several mathematical

concepts or strategies. ‘ ‘ .

Just as with the earlier probfem-sol&ing processes - going from

specific patterﬁs to general hypotheses and then discussing ways and means
of  proving various conjectures - these eight problem types provide a source
by which one can study solution strategies. 1 LaVe found that Story
Probiems, Reverse Procedure Exercises, etc. are not only amenable to a

>

quided discover} approach but that they are quite enjoyable to solve .
together wit? groqﬁs of studénts,xas well. , |
‘ Maﬁy of these special exercises, especially those oflTyﬁe A,
8, f and G, can be designed to test an understanding of proofs,4patterns
and relationships, as will be evident from exampies coming ugﬁin this
section as well as in Chapter III. Hence I have chosen the umbrella

térm “Conﬁ%iidatibp’Exercises" to describe the set of all eight types

]

of problems.

{
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e Noﬁ some Consolidation Exércises can be incorporaéed into
\;;ob1em sets which follow up guided discovery teaching sessions!covering
specific course topics. Selections of such problems are.inc1uded in the
"nroblems of special interest" §ections of Chapter III.~-bther Consoii&ation
Exercises can be used to round out general Stagé 1 and Stage 2 c]ass dis-
,cussions. or to test student comprehensioﬁ of standard course topfics which

are not necessarily presented via guided disovery. The next few pages

focus on Consolidation Exercises of tnis more general variety.

Recanstruction Exercises

\ Many people love jiasaw puzzles, crossword puzzles or putting\\_ﬂz”"
clues together to solve a crime in a mystery novel. Why not carry this
eﬁjoyment of freconstruction“ over to mathematical problem s0lving? |

]1kg to involve my classes in piecing together\a graph, a function,-a

‘matrix or an equation from given fragment§ of data. For instance, d
consider the following: )

Exgmgle 1: Eind'a quadratic equation with inteﬁer coefficients which

‘ will have x = Y5 and x= “4 as roots.

Comment: This 1ittle préb]em always results in a kind of init?ai reaction
best typified by the word "Huh?". Even though many textbooks
may carry similar exercises, it seems to jolt students into
non-mechanical problem solving - they can't simply "grind out"
answers by plugging into the Quadratic Forﬁula. ‘

Example 2: Find a non-trivial set of 3 equations in 3 unknowns whose

ONLY'so1qtioﬁ”1s X=1l,y=2and z = 3.

S g iyt s e = e h
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Comments: (a) One must be careful not to ‘select a system hav%ng an
9

infinite number of solutions, among which (1; 2, 3) is

just one particular solution. This caution a]ways l
surprises some of my students, part{gularly those who
have harbored a belief ihat 3 equations in 3 unknowns
always have a unique solution.

(b) This pr;LIem puts the student in the role of the teacher
who might be looking for a question on linear systems. to
put on a test. A number of Type A exercisés possess a °

teacher-student role reversal property.

Example 3: Suppose f is a function with the properties:

\ (1) f(x) is dafined for every natural number x. -
~ (2) f(x) et, for all x e N. \
(3) f(2) e 2 |
N (4) f(x) > f(y) for all x, y e N such that x > y.
(5) fxy) s f(x):-fly) for a1l x, y e N. Find-f.

Hiﬁt to Students: You should be able to IDENTIFY this function f.

ggmgggg: Example 3'has’9een perceived by my students as more difffcult
than either Example 1 or 2. It is very rare for a junior college
student, I believe, to’ﬁave had any previous experi;nCE“591v1ng
'such problems. More examples will be provt@ed inf;he‘nex; Chapter

of Reconstruction Exercises in specific course settings.

'Reverse Procedure Exerc1ses

I am not too surprised that Reverse Procedure Exercises pose a

considerable challenae to many students. For it is possible that a great”
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many‘learn theofems, rules or other matﬂématica) concepts with certain
fixed purposes in mind. In fact, [ have been told by several students
that this QSS so in their case. (For e;ampIe, the B}nomia1 Theorem “ig
good for expanding things". Or, certain trigonometric identities serve
to transform sums to products or reduce expressions to‘simpler forms.)
“Reverse" exercises force studgnts to steer away from the usual or
‘conventional application of a rule or formula and to ask themselves:
"What else might thislru1e or proposition say that may have direct/
bearing on my probleﬁ?" ‘ h
Example 1: Simplify (x - 1)*+ 4(x - 1)3 +6(x = 1)2+4(x - 1)+ 1.
Comment: Almost every student to whom I've taught the Binomial Theorem
responded by expanding (x - 1)%, (x - 1)3, (x - 1)2 and collect-
ing terms. I can recall at most TWOQ student;HWhR instantly
recognized that the above expression was meré]y the exbansion
of [(x -1)+ 1]1’, and hence equal to x*.  The instruction

"Expand (x + y)™" " elicits the correct response quite quickly

possibly because the Binomial Theorem is learned "left-to-right".

But when I ask my class to find a closed form expression for

(i.e. simﬁ]ify) a certain collection of terms resulting from

some expansion, the responses are for from instantaneous.

Now consider the following example:

Example 2: Compute |1 2 -1 1 2 -1 1 2 -l
3 4 6]+ {3 a4 6|+}|3 2 s '
O 0 2 3| 1 .1 2 -1 -3 1

Comment: In Math 105 (Linear Algebra) we study the probertiés of Detgr*

minants, among which we inciude the Disection Property:
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a - b C 2 b ¢ J”yb c

d

!

f

1]

f .: d e fl$ |d e f
19+r hes I+t g h i r s" t
Yet; once again, only a very small number of students recogniie
that they should re-combine the 3 given determinants into a
.single determinant using the Disectioﬁ Property (twice) igmg

right to left.

—

Example 3: A fraction a is said to be expressed in Egyptian Form if

b
= 1 +._]_.~+"'+ 1

for some distinct natura1'?umbers
m Ny nk )

oo

‘ 5
nps Ny ...y M. Write % in Egyptian Form.

Comment: One way to do this is:

5= (14141 +f1+1) =141
3 (6 6 6) (F 6) 2 3!

After a 1ittle more proddiﬁg, someone in the class will come up

with an alternative; namély,

&

_5."__],*'__}_+"'+_l=_6_+_3."‘_]_=l+_]_+_l
6 12 12 1 12 12 112 2 4 112 ,
' \\--———V\/
to 10 terms

and so on. Egyptian Form questions are a nice way to supplement the usual

“simplify the sum" exercises on fractions. Some students might even con-

‘jecture that if a fraction can be written in Egyptian Form one way then it

can be written in this form in am unlimited number of ways. This is actually

a well-known theorem. For a proof, as well as‘a more complete treatment of

v

Egyptian fractions see Beck's Excursionéiinto Mathematics. [?8]

Example 3 can also be viewedias a forerunner to partial fraction

decomposition needed to evaluate certain integrals in Calculus.. The next

‘ » }
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example may baffle, temporarily, at least, some students who thought’

they knew all there was to know about the Quadratic Formula. . . \k,
\‘ -
_Example 4: Given x = -b+ Vb2 - dac_, write down the value of °
2a /

ax2+ bx 4 ¢. You have 10 SECONDS.

Clearly there is no limit to the number of Type A or Type B .
exercises one can manufacture. (The Russiaﬁ researcher V.A. K}utetskii,
for instance, i1llustrates his discussioﬁ on "reversibi]ity’of thought"
withsseveral such examples. He feels that such examples can be iméortant
indicators of mathematical ability. [29])

But the ultimate - and sqmewhat whimsical - reverse exercise

can be found in the December 1978 issue of Crux Mathematicorum:.

Exercise: Find a question whose answer is 22 - =.
7

P ' .
Comment:- Not many car top the response sent in by one Kenneth S. Williams

of Carleton UniveKsity, Ottawa. His "question" was:

1
"What is the value of the integral J/-x“gl - x)4 dx?"

1+ x2 ——
)
The 1ittle poem by Piet Hein, also found in this issue of

Remarkab1é! ' 0

Crux Mathematicorum is very appropriate: ] "

“Solutions to problems
are easy to find:

the problem's a great
contribution.

What is truly an art

is to wring from your mind

a problem to fit :

a solution." (3]
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Student-genérated Problems
’ Once in a while the student shQuld have ihe opportunity to

play the role of teacher [;ee also Example 2 of the Reconstruction

Exercise sectioﬁJ. He should be asked to make up. exercises on the

various topics discussed in class. In some of my sections at Dawson

' Céilege I have told the students to generate a few probléms. Naturally

I expect each person to be able to solve his or her own problem. - (Copying
out some super;hard miscellaneous exercise from a library book is of little
educational value!) For a crEafive (and completely solved) problem the “
student earns a few bonus marks. His problem, with due credit of cohrse,

may even be used 1h subsequent problem sets presented to future generations

’of students. Specific examples of student-generated problems will be given

, 11
in Chapter IV.

Linkage Exercises

Problems which 1ink together concepts from several topics er even
severalfbrancﬁés of Mathematics are, I believe,exceptionally. useful learning
tools. They usually possesséevgra] of the desirable features listed on the

first page of this section.

e s g

[ make an effort to include a few Typg‘D problems in my general "”///

interest or problem—so1viqg sessfons. Some illustrations follow.
Example 1: Find the value of k € R such that the lines |
X=y=0,x+y=2and 3 - 2y = k willt enclose a triangle

of zero area.

Example 2: Let S be the set of al) systems of equations of the form

i

N . AN .
L] -




o e I P PN R T ST BT
°

At v e 5 o h o e ey % TANWHT W G A e es et R e e T

45

abey:IO} o ‘ & '
xf2y=15 . ,

where a, b are integers with 1< a £ 20 and 1£ b 20.
Choose_ one of these systems of equations at random from S.
Find the PROBABILITY’_that this system has a solution. ﬁﬂ] |
Example 3: : « Given {ﬁeles triangle ABC,
| with ZABC = ZACB = 720. With
'the help of a construction

determine the EXACT VALUE-of

cos 369.
720 720
B , C
Guided Solution ’
A ‘ .
Hint 1: Llet BC = x, AB = y. Bisect LACB by
line ségment CD and drop the perpendicular
DE to side AC. Now show that A's ADE
} and DEC are CONGRUENT. Find EC in terms
of x or ¥y
8 X c ' _
Desired Response: ZECD = ZDAE = 36° . ~
. side DC = side DA

side DE is common.
Clearly, AADE & ADEC. Hence AF = EC = ¥4.
Hint 2: Write cos ZECD = cos 36° in terms 6f x and y,

Desired Response: cos 36% « EC = _3@_ = 21 ’ noqing' that DC = BC = x
, . I x X

" since £BDC = £DRC
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Desired Response: AB = DCoryz_x
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Hinté?(? Use similar triangles ABC and DBC to obtain a.re1at10nship

between y and x.

BC DB x y-x
y2 - xy - x2 2 0

Hint 4: Express y as a function of x.

Desired Response: y = x # V§2-+ 4x2 = x + V5x2 - x(1 ¢ V5
- 2

s 2 ) Y

]

But y has to be POSITIVE. Thus y = x({1 + V&)
o 7

. .Hint 5: MNow find cos 3609,

Desired Response: cos 360 : ?Z =x(1+ V6, 1:1¢% V5
) ’ X 2 2x 4

Comment: "Whew!" is a common student reaction, at the end of this problem,
" although after offering the abnve hints, many are able to proceed
to the next stage on their own. (I think everyone would agree

that without some hints to serve as stepping-stones, there is,

]itt?e chance that a student piEked at random could give a complete
solution.) More.than most problems one encounters, Example (3)
underscores the ‘importance of SG?dance in certain teaching

™ rsituations. Solving at least one or two such lengthy problems

(preferably in a spare hour set aside for general problem-solving)

by means of a step-by~step analysis of its chief components fis,
I firmly believe, valuable t?aining for encounters with "tough" .

or “§q§stant1al“ problems that some students will have in later

years,

s
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Story Problems

One of the 2 major hurdles {in undergraduate mat@ematics 1s'

the so-called "gtory" or "word" problems. (The other is, I believe,

¢he notion of "proof".) But of the (small percentage of) students who

will one day use Mathematics in their work, the ﬁajority will have to

dgal with mathematizing complex situations - in short, cope with "word"
problems. Thus, Type E Problems gzg_importdnt. And, they are everywhere.
Linear Algebra hgs its Linear Programmipg, Calculus has its Related Rates
and Optimization Exercises, Finite Math has its ?robabj]ity and ‘Markov
Chains, High School Algebra has its Mixture, Work, Distance-Rate-Time
Problems. A1l these are %;ailable in standard school texts. HqWever,
contest problenms, mathemagica1 game-and-puzzle books, math journals and
- special proﬁlem collections (such as thoge df Margin Gardner, Charles
Salkind, and-Wjlliam Moser) are excellent sources for those who seek that
extra challenge. ¢

I have observed that there is a certain type of story problem

which siudents are generally eager to solve. (And providing problems which .
they are at least interested in solving is a major step towards helping
those who have trouble with “word problems" - the desire to find a solution
can‘be a stroﬁz counter-force to the traditional fear that they may]evoke.)
Sdch a prob1em~either couches a standard mathematical process in "interesting
. sqrroundings"‘or presgnts—a situation close to the heart of people iévolve&
in the process of education. Consider, for instance, the next 3 examples.
| Example 1:_ Abe and Alan have the habit of re-copying examination‘questions

before solving them. On a certain exam Question 1 inyd]ves the

,
s

) J’
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~solution of a qgad}atif equation.‘ Abe miges a mistake in

copying down the'bONSTAN} TERM and gets the roots 4 and 1. -
Alan makes a mistake in copying theLCOEFFICIENT OF THE F}RST ,
DEQREE 'TERM and gets the roots -3 and 2. What is the actual
equation given on the dxam?

Comment: One might Justifiably classify thiscalso as a Type A story prob1em

~  Example 2: In a certain class there are more than 20 and fewer than 40

students. On a recent test the average failing ma}k was 48,
@1;§¥1five is the estib]ishéd pass mark] The CLASS A&ERAGE
was 66. The teacher then raised é;ery grade by 5 points.
(Assume that the highest score had been 95, originally,
and that the average passing mark had been 75.) As a result
of the grade adjustments, the average passing mark was raised
to 77.5 while the average fai]iﬁg mark became 45. How many
students had™thair grades changed from failing to passing? [?g]
Example 3; A classical archimedéan weighing prob]em, such as the one foundi
in Christy [33] can also arouse student interést, I have found
(while teaching Algebraic.Functions). ( - )
Incidentally I am convinced that most students will not re;pond
enthusiastically to problems that beg%n with: "A works twice as fast as
B or “two trains leave a station at the §3me time" or even "a ball is

dropped vertically from a tall building“ They have seen too"many ofs

these, and repetition can easi1y du11 any enthusiasm.

as

Proofs_and Disproofs , ' .

1
| o

. o :
We have looked at proofs and proving in Section 2 of this Chapter, ¥ -

i
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N Every student in my class learns to EXPECT problems to prove on class
tests and assignments. He also has to be ready to DISPROVE & statement

t -~ )\
by means of counter-examples. Let me present a few suggested exercises,

I'4
-

appropriate for various courses. '
~Example 1: [Disgroving statements of the type: f(a+4 b) = f(a) ¥ f(b).]
" DISPROVE e'a;‘:h of the fc]mowing: T
(a) Ya+b=Va+ Vb, for all positive real numbers 'a’
and 'b'. 4
(b) \’/5"4'-'-3 = "Va-«t%, for all real numbers 'a' and 'b‘.
’ ) (c) -(a-i- b)3 = a3 4 b3, for all real numbers ‘a‘ and ‘b'.
(d) P(AUB) = P(A) + P(B), for a'lyevents A and B (where P ,
is the probability function). -
(e) det(A +B) = detA + detB, for (al‘l square matrices A and B.
(f) (1\-0-8')"1 = A-1 + B-1, for all square matrices’A and B. .
g‘ (9) WY+l = N0+ D for a1l vectors v, u in 2-space (where
. 217 represents the norm of v). )
Comments : (1) (a), (b), (c) are apprépriate for high school algebra;
(d) is extracted froiﬁfoﬂege Math 101 (Dawson College);
(e}, (f), (g) are appropriate in a Vector-and-li.inear;g‘:;
Algebra course. . ' ¢
(2) ‘Prior to assigning Type F problems the distinction between
the GENERAL NATURE of a “proof" and the "DISPROOF" BY
COUNTER-EXAMPLES is d\\:ussed in cFass. .
Examgle ﬂixperimenting with Number Theory] o -

Observe that for the PERFECT NUMBER 6, :

e

r 114+l t1:=2
. T 2 3 &
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and that for the perfect number 28,

T+1l+1 41+ 1+ 1=
2 ¢ 7 14 28

Make a conjecture about the sum of the reciprocals of the
: 1

. positive divisors of any perfect number n. Prove your
conjecture. * —

Example 3: PROVE or DISPROVE each of the following:

(a) @K = bX=Pa b for all a, b ¢ R and matrix X,

(b) xY = xZ=)y =12 forall x, y, z ¢ R*

o

(c) .For any 2 distinct real numbers a, b the quantity 3

) Lza+ b_+é[a - bl , . i v//

'( alwdys equals fhe LARGER of the éwo.
(d) det C = 0 for any square matrix C whose elements are
conseeutive natural numbers beginning with Cyy = 1.
(e) det S = 0 for any k x k skeﬁzgymwetrxx matrix.
(F) x> y=)x 1oqloa >y 1ogloa fer all x, y € RY, a > 0.
Comment : Su;b—prob1ems requxre DECISION-MAKING, based on experimentation,
7 trial-and- -error, and knowledge of propositions or properties
\\ covered in class. Even false assertions provide beautiful
oppartunities for clas§ pgrticipation. danet's Hypbthesis can
be‘disproved by Nick's Cohnterexamp]e, and so on. [ GUIDE the
class toward$ the correct éplutions, letting the stdZents.take
full credit for all proofs dr disproofs. Names of stuaents are
appended to all hypotheses proofs and counter-examples. 1 have
found that such persona] invc]vement tends “to heighten student

interest in class work.




J

§
/ . Example 4: [Specia'l Treat for the Advanced Student]

Prove that if x2 - 5x + 6 <_.0 then sin 2x < 0, where x
s , . xZ - 1x+ 30 o ‘

is in radians.
Comment: This pfob]em is taken from an examinatjon given to‘prospectfve ./
. ’ high—gchoo1 Mathematics téachers,applyﬁng for entrance to the
Moscow Levin State Pedagogical Institute. It can also be
classified as a Type D problem, tomﬁining.know1edge‘of simple
trigonometry with the elementary léws of ineduaaities. For a
Qsolution to this rather novel exercise, see [34]
Clearly, some Type F exercises are especially suited for intro-
ducing unusual and/or difficu]t problems to the gifted math student.
After they easily dispense with the "routine" proofs there.is no reason

why they shouTé/}emain idle, waiting for the rest of the class to catch

K g g e

up. I like to refer them, \for instance, to Ross Honsberger's Ingenuitz

in Mathematics. Here they will f1nd an ingenious proof that there exist

powers of 2 beginning with any given sequence of digits. They will learn
why a rectangle of incommemsurable djmensioﬂs canno; be tiled with squares.
b ?7 They will read about Sam Beafiy's Theorem,’ The Thebrem of. Barbier and other
non-standard mathematical tidbits [353. Mor;over; their ability to cé}ry
‘out proofs will be truly tested. t

Example Construction:'

Many class exercises begin with “compute” or "evaluate" or "prove
that". For a welcome change of pace it is good to interject a few problems

that start with "give an example of". It's also an alternative for texting
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. defd nitions, necessary and sufficient conditions and other basic concepts.

Some sampl

Example 1:

' Example 2:

. Example 3:

N

Comment:

Example 4:
Example 5:
Example 6:

Example 7:

Example 8:

’, o

Comment:

e exampies follow. ‘

Find 2 point which is at a distance of 1 unit from the 1ine
y =2x - 1. [This 1s also Type B.] -

. Give an example of a quadratic equation in_sin x whicnh has
NO REAL SOLUTIONS. ' |
Give an e;(ample of a straight 1ine that does NOT go through
any point (x, y) where x, y are both'_integers,

This s a difficult Type G problem. One possible answer is

y-ﬂﬁx‘f-‘\/-z_.

Give an angle @ for which cos 6 = sin o,

Give an example of a function whiéh is neither ODD nor EVE'N.

Give a 2x2 matrix A for which det A = 1 but none of whose

entries "equals 1. o '

Write down the equation of a circle which lies entirely 1n

Quadrant ‘T and which is not tar;gent to either of the co-ordinate

axes. ”

Give a 2"d degree equation (ax2 ¢ bxy + cy? +dx+ey+ fa0)

that corresponds to: ' | | |

(a) ax circle | ~(b) an enuip,se ' (c) a single point in

the plane (d) two intersecting straighuj: 11nes.
Type G problems may.take up 11ttle writing space -bu;twthey often
call for much more than a little thought. Moréover, they are

perfect catalysts to class debate, and hence a natural medium

for the discovery process.




Common Feature Exercises

Type H problems test the ability to spot patterns and relation-

ships and are easily created by both teachers and STUDENTS. Moreover,
) °

they are FUN to solve. Here are a few illustrdtions.
HHAT IS THE (fOMMON FEATURE AMONG EACH OF THE FOLLOWING GROUPS?
(") {(a) 3,4,5. (b) 5,12, 13 (¢) 7,24, 25 (d) 9,12, 15

(2) (a) sin162° (b) cos 312‘0 | (c) 2% ' (d) 1Togye77.
(3) (a) sin1890 (b) cos 1620  (c) 1782 (d) Tlogo(Ms).
o (8) (@) ®¥yPel1:0 / (b) 2 sinxsz5
’ (¢} lomo(logrpsin x) = 1 (d) ] =z 5.
4 27"
(5);(a) [sina -cos e] mfh 3 s ()3 2 1]~
’ : cos 8- sin® 0'1 9 2 2 1
oo Y 111
3 2 1]
2 2 1
a 3 2

Some Concluding Remarks

" .In this Chapter I outlined a basic three-part structure upon
which I buﬂvd my global ggided discovery teacfﬁng strategy. Examples
were drawn from various areas of Mathematics to illustrate the kind of
problem solving work that takes place at each of the three Stages, Tu
the Chapter to follow I will desciibe how I have enployed discovery
teaching in three course to;;ics at Dawson College. The topics under

consideration will be:

T -
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Curve Sketching, as tauéht *n Mathematics 103 (Introduction to
pa) . | /)(/
Y
| . f
Elementary Matrices and The Determinant Product Theorem, as taught

(M

Calculus). '

(2)

. in Mathematics 105 (Linear Algebra).

(3) Conditional Probability and Bayesu‘ -Thearem, as taught in Mathematics

4
e : » .

"~ 101 (College Mathematics).
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CHAPTER 111
GUIDED DISCOVERY TEACHING IN COLLEGE MATHEMATICS',

~ <

' o
Section 1: Curve Sketching

Curve Sketching Without the Derivative

a

Prior to studying Ca];ulus, every math student learns™ow to
sketch polyrg’omia\', trigonometri c.nexponential and logarithmic curves, A
by the point-plot method and/or by analysing the given function's
perio(dicity, symmetry, domain andaso on. For this reason, pérhap&. no
one seems worried when I start sketching the graph of y = x - 1 in
Mathematics 103 (Introductory Czﬂculus).g At first, all | wa:t is a’

very rough sketch. The students find that (1,.0) is an X-intercept

and note that there will be no Y-intercept. We then examine ' the

behaviour of the given function around x = 0 and values for x approaching
o w:)-é’i/”\ 3
too, I draw something 1ike FIGURE ) on the board.

o

v horizontal asymptote

FIGURE 1 vertical asymptote

]

The class laughs at my crude FIRST ARPROXIMATION. When the laughter .
dies down [ ask them to sketch y = xz\\- 5x + 6 using only 2 plotted
points. "That's easy! This is a par:ap«{:a, which ..."; someone might

i

-

e O




1 e o S G G gh ik T 'l;,-tf‘ (RPN
.

56
8

say. “Parabola? Never heard of iti", I reply, and using the points
(0, 6) and (2, 0)4 sketch:

£

J

{ L\/3

FIGURE 2

¥

Someone else suggests that, to be fair, I should plot a few more points.
I do so, and draw a new curve, distorting it as much as possible. After

a short debate and the usual accusations of unfair tactics we make the
3

observation:

i - The point-plot method can sometimes leave us guessing about
the way in which we should connect pairs of points, ESPECIALLY IF THE
FUNCTION IS UNFAMILIAR or COMPLICATED. - '\

Next I ask for a few points on the graph of y = 3x4 - x3+ 56.
Thére's a fraﬁfic scramble for pocket calculators., I cut off the search
f .r points after aboutv;\ a minute and waiﬂt for comments. It's not long
&

bafore most students are convinced that:

\3} -___For some curves 1t may be difficult to find more than one or

-
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points. In these cases especially, Calculus techniques will pay off.
P

First Leading Question: How cah we know more about the graph of
| y = X-1? OR How can we iron out some of
the wr?nk]es in FIGURE 17
Answer (to be elici teé from the class)r.: By finding out where the curve
. ' is INCREASING and where 1t:1s
" © DECREASING. |

°

Curve Sketching and The First—Dér1vat1 ve

Exploratory Stage: Typical Dialogue

Instructor: Consider the curve )

|

|

X 3 A"L
-l i 2
. FIGURE 3

f

What is the SIGN of the slope at (-4, f(-4))? At (0, f(0))?
At (1, F(1))? At (2, f(2))? )

" Student A: Positive, positive, ZERO, and negative.

™~ ] ¢
Instructor: Good. So theLsi gn of the slope.changes from positive to
—_——e— o
negative aboit the turning point (1, (1)), and the graph
changes from INCREASING to DECREASING. What would be a good
name for this "turning point"?
Student 8: A maximum point.
Instructor: That's fine. What is the DERIVATIVE at (1, £(1))?

Student B: Zero, of course. . The tangént is horizontal.

A
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Instructor: 0.K., but now can someone come up to the board and draw a

‘picture of a curve having a maximum at (1, f(1)) but with

no derivative there?

Student X: But you just did that!

Jostructor:, said "N0 derivative”, not “zero derivative".

Several students are coaxed into going up to the board. They draw graphs

Student A:

Student A:

such as: )
f
P4 s A
A OOR | OR A
7 | : / ! v :
1 \ \ i 5
\ i 7 X jl' 4 X i 7 x
FIGURE 4 FIGURE 6

FIGURE 5

Instructor: Some graphs have maxima at places where the derivative is

' zero, some at places where the derivative is undefined,

while some maxima occur at end-points,

Let's call these

mixima Type I, Type II and Type IlI, respectirve'ly. Now

I'd 1ike you to draw one large curve having each of these

3 types of maxima.on it.

Instructor explains.'

What are end-points?

Here's my answer then.

)

Type 1l max.
&

1\?
Type, ]Il max. 7 Type I max
\' £~
. B \
~7
_FIGURE 7
b

—y o . -Il i M

|
|
| ]
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Instructor: Which of these maxima is the "highest maximum" on your
graph? . o | "‘4’
Student A: The first one on the left, obviously. -
Instructor: Right. Now let's ﬁut together some definitions.
The class and 1 go about defining "critical points" and
"Jocal versus global maxima". We also look at some minima, both

relative and absolute. Along the way, I ask for, and generally get,

examples of critical points which are neither maxim nor minima. We

end up with criteria for,‘class.*‘lfying critical points as “maxes", “mins",
"global maxes", "global mins*, "local maxes", "local mins" or "none of

the abovi". Now, one can open any standard Calculus ‘text and find all’

the necessary definitions and criteria. But I prefer to have the students
do the work, BEFORE they start flipping pages in a book. -They are GUIDED
in DISCOVERING things for themselves. As [ listen to them explain concepts
in curve sketching, I know that the guided discovery“method is having some
benefit - the students are actively participating in learning. They \'earn

-

from me as well as from each other,

Generalizations

rl

One important outcome of "the explorator& stage" is the formulation

of generalizations. We get, for instance:

"If f is a function such that f'(x) > O for every x ¢:(a, b)

then f is INCREASING in (a, b). If f is a function such that f'(x) <O.

for every x ¢ (¢, d) then f is DECREASING in (¢, d)."
;The formal proof of this is not given in our generai Calculus course at
Dawson College. 1 give what Polya would call "a plausible arqument”;

'/ \
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60 _
namely, that a POSITIVE DERIVATIVE at a poing implies a tangent Tine with
5 an inclination between Q9 and 900 (f.e. POSITIVE SLOPE) which, in turn,
implies an INCREASING FUNCT]O;‘I while, on the other hand a NEGATIVE
DERIVATIVE is associated with a tangent 1ine having 1ﬁc'11nat10n betweegv\ —_—
900 and 1800 ({.e, NEGATIVE SLOPE) which gi\{es rise to a DECREASING o
FUNCTION.
| We also record (without proof) the Theorem:
"If a function y = f(x) has a relative maximm (or minimum)
at the point P(x, y) and f'(x) EXISTS then.f'(x) =.0",
carefully noting that f' (a) = 0 or f'(a) undefined me;'er implies that
(a, f(a)) is'a POSSIBLE relative max. or min.. Finally, so that we can
routi ne]y”separate "maxes” from "mins", the First Derivative Test i\ s
"discoverj'ed" after some teacher-student dialogue and {ncluded in the

students' notes. .

o

. Conso]fi‘datfon or Problem Solvihg

One of my favourite exercises, following the preceding class

" work, is the Type G problem: n
“Glve several examples of functions whicr/r.are(,increasing for
all values of x fn the domain."
' Early responses are: ¥ = 3xor y = 7x + 1 or some other 11near '
function. But with a Htt'1e more reflection and prodding I get answers like:
ya2% ory =‘x3 or, on a particularly lucky occasion, even y =z Arctan x,
But, to use an analogy: |

SPECIFIC FUNCTION 1s to GENERAL CLASS of FUNCTIONS as EXPLORATION is to

GENERAL IZATION.  Thus, at the next level, I ask for whole classes of functions

[ ORI S ¢ e —— - — —
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¥
satisfying the given condition, Usually there is no immediate response.

I then say, "all linear functions y = rp‘x +b whe}e .+ <" and someone com-
pletes the statement with “wherem s greater than 0." Or, I might say,
*all power functions y « x™ where n equals" and quide the students towards

the completion "1, or 3 or S or any other odd number." The need for

quidance 1is very strong at all stages during this process of discovering
properties of certain curves, I have found.

Exercise: We know that f'(x) > 0 for all x ¢ (a, b) tmplies f is
SRRl o

INCREASING on (a, b), Give an example to show that f

INCREASING on (a, b) merely implies that f*(x) { 0 for

all x e (a, b). ] ‘ ’
I usually get: "Look at y = x? and the point (0, 0)", since fhis v;as one
of the. functions which we had said was increasing for all x, in” the
prev;ous exercise. ~ Right at thi; point, [ ask for another function,
“"related" to x3 whichois.increas"lng for all x but for which f!{0) is
UNDEFINED. (0f course, I'm after the inverse of x}, or /x.) So far I
haven't had much succ'ess with this question. Inverse functions do not
strike a familiar chord with «most’ﬁrspt(-year college students. Possibly,
also,! am not asking the right kinds o-f leading questions.

We return to our function, y 5__;__]_ and try to REFINE our

sketch, using the new information we have accumulated. Our graph now

looks 1ike this:
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FIGURE 8

Coe —1

In analysing f(x) = x - 1 we discover that f is always fncreasing -
- )
except, of course, at x = 0 - and consequently has no maxima or

minima, "“But there. is still something wrong wi th the picture."

Exploratory Stage

the class protests. This brings us to the next step in the discovery
process. .

Second Leading Question: How c3n we learn more about this graph?

OR How can we smooth out the wrinkles
remaining in FIGURE 8?
Answer (to be elicited from the class); By finding out WHICH WAY the

curve 1s increasing.

~

Curve Sketching and The Second Derivative

t

Students quickly realize that i curve may increase ye /s%eadﬂy
level off: - / or, it may increase in a more dramatic fa‘ﬁshion.

thus: / . Can this difference be i@g:. they wni\ask?l
pecial

Yes! Demograpn‘e‘vf.\'%r instance, would be es ‘interested in haw
- | ‘ ‘ ' ‘ "vﬂr
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a graph is increasing 1f that graph happens :b represent population
5 ‘growth! (In a sftuation clo#er to home, teaghers and prospective
'\ | teachers hope that the "student population DECLINE curve" looks at least
like \ and not like \ ') 1 then draw a pictur“e.
1ike the one ‘shown in Figure 9, and give the CUE WORDS: "slope”,
“1ncreasingf“. “decreasing", "tangent lines, and ask for comments. Once
: ag;'ln, if there is dead silence I start the ball rolling with: “On the
* extreme left the slope is 7 (fi11 in 'SIGN') and is.steadily ? (f111 in

\ specific curves and see how they fare with respect to fangent lines
N _d‘ravm at selected points, The functions

‘(1) y=x3 for‘;lg x <! (Vconc,avel down,then concave up)

* h

- {2) ¥y a x‘/f for -1 € x« (mnca§e up, .then concave down)

L4

3) yax2for28xK2 (always concave up)
(4) y » =x2 for -2 & x €2 (always concave down).
“ alid -(5) Y 3 -1 for -5& x €5 (having no concavity).

* %
h
/ " o,

e

-

[ . [N [ NSO

. W .
. \“ai'nc:reasjng" or "decreasing")."
A
‘_}" -
e \_—// ;
' i
| FIGURE 9

, _We also note.how the curve always falls below its tanéént lines to the
left of point P. 1In comparison, the tangent lines "support® the curve
- everywhere on the right side of P. It {s then usefu! to Jook at a few
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do nicely to 11]ustrate 'various possibilities. Also, I sometimes say

to the students: "I want a certain function which falls below its

tangent lines to the left of (0, 0) and which is abéve the tangent lines -
to the right of (0,0). Can you name one? "I give hints when r;ecessary. '

(1 can then change the conditions to obtain curves having other desired

h character‘lsfics .)

Generalizations and A New Look at the Parabola

students accept the usual definitiohs, or the criteria given in th

T o in iz

The preiiminary, informal work i.i followed I3y recording the
rough analogies: y': f(x) increasing 1s'to f'(x) > 0 as f'(xl) increasing
is to f''(x) > 0 AND ¥y = f(x) decreasing is to f'(x) < 0 as f'(x) decreasing
is to f£''(x) < 0. The terms "concave up®, "concave down" and “"inflection
point" are defined in terms of the second der/i(iva‘ti ve. If student partici-

pation.in the "p'reliminaries""is highl- and t;.his, after all, is the essence

of the discovery technique - 1ittle or no "brute force" is require

ing the steps one shou'ld take in analysing a functio}u prior to sketching
its graph.. The 1tehs on the sheet have all been discyssed thoroughly in
class - many have had a chance to ANTICIPATE the main results and defin*lti’ons‘
We then return to our function y = 5__:__1_ for the third and last®
time, and sketch its graph usi~ng ourarevious a:alyses’together w.ith any

infor:onation we can obtacin from the Z"d derivative. And,las the studept;

have expected, all the wrinkles disappear. Several polynomial and rational

functions are then s]o\ﬂ'y analysed and their curves sketched. .The following

problem can aiso prove quite instructives since it confirms a. previously
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known fact (from high schoof algebra) with the aid of CalcUMs.

Exercise: Use Calculus to show that the parabola y = ax?+ bx +¢

has an.absolute minfdum at (- b, 4dac - b2\ if a >0;
. 2 T a

-~ Wwhere a, b, c are fixed real numbers.

?

An Inte{gsti ng Experiment

) I chmenge the class to give me any. function they would er

to see sketched There is usually a student who wants me to work on

something like y « - 4x . I politely decline sayjng. "Please,
(- 3x2 +5)2

" be reasonable!" It's not long before someone relents and requests that

9

I sketch something simple like y - 4x3'- x2 - x - 5,
" 1 find that I'm forced to deal with clumsy inequalities and

. ‘messy critical points. Everyone realizes how difficult calculations can

o s o bmam e

get without judicious prior-planning. So then 1 poSe the real chaﬂehge'

X "Find a cubic or-quartic polynomial which uﬂl have nice 1nteger -

or, at leas't, rationn --critical and inflection points, along with of

course, factorable derivatives."

r

This is a Anon~trw1al reverse problem, with a special bonus:

.with proper teacher guidance, students can start exﬁerimenting with simplve

anti-differentiation.

Instructor: Find f''tx) so that £''(x) will give anlinﬂec,tién borin‘t
4 RGP (5 B
Student A: f''(x)'= x -1 q

Instructor: Now find £'(x). . o
voq ; N © v “
Student B: f'(x) = x2 - x o : '
A . ] s

ity aman ot N ~ e

PO
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Instructor: This is not the only possible answer. Find some otl;ers.
Student C: f'(x) = X2 - x + 1
, i 7 .
Instructor: What is_the most general answer?
Student A f'(x) a ;_2_ -x+¢c ('c’ any constant)

‘ % e
Instructor: Now find an f'(x) so that (2, f(2)) will be a critical point. -

and . the dialogue continues in this fashion.

On_Provi dianho@t-Provoking Exercises . a
1 Curve sketching affords exceHent opportunit'les for formulating |
and solving non-trivial, even 1nterest1ng, problems Now, scores of
‘t’)lcuhas texts are avaﬂable with good standard problems of varying degrees
of di;ﬁculty. Most class time will be taken up with solving such problems.
But if o;egwishes to add a little more var"iety to problem sets or homework
) as;ignments the sgarch fofr "good" problems may take a bit 16nger;. Here
then, is a samp]e of what [ call SPECIAL PROBLEMS, related to the subjecf
of Curve Sketch'lng, many of which have become part of my CaIculus 103
_course mterial since the time 1 had gotten 1nterested in "ConsoHdation

Exercises”. [See Section 3/Chp. II] ¢

—
-
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Some Special Problems “ ﬁ

(2)

(3)

' (8)
(8)

)

(7)

.(1) Give an EXAMPLE of: .

(a) a function which has neither an X nor a Y 1nte}';:opt. )

(b) a function which passes through a horizontﬂ asymptote somewhere
" in the interval [-2, 2] . |

(¢) a function which has an infinite number of vertical asymptotes.

(d) a function ‘which has 2 hori zontal asymptotes. |

(e) a function y = f(x), other than f(x) = 2 constant, for which

i /
f''(x) = 0 for all values of x ¢ R.

(f) a function, other than a quadratic polynomial, which {s CONCAVE
DOWN at all values in its domain., -
What 1s the COMMON FEATURE among:

)

u o "
(a) y = 35 41 (b) 2y - 3x+5«0
(c)y-7" ) (d) y=x¥2 \

Sketch a continuous curve y = f(x), having the followin prg;perties:
(1) £(1) = 3, €(-1) « -5 = |
(1) f'(x) >0 for -1 < x <1 and f'{x) <0 otherwis
(114) £'(1) a £'(-1) = ‘
(iv) f''(x) <0 for x >0 and f"(x!’>0 for x < 0.
Make up a "Reconstr\jctfon Exercise” er Number 3, abo e.

Show that the graph of f(x) = X + 1 has 3 inflection g

ofnts which
" x24 ) ’

are COLLINEAR. ' ) ,
Explain why (0, %) is not a point of inflection 'of f{x) =
even though f'’(0) a 0. ‘.

Sketch the gurve(s):’ fxy - 3)(y - S;t) « 0.
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(8) (a)

(b)
(c)
(d)
(e)
(f)

" (0) (a)
(b)

(c)
(d)

4 (E)

(f)
(9)
(h)
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How does the quaﬁtity b2 - 3ac determine the NUMBER OF CRITICAL

POINTS of the general cubic polynomiaj ax3 4 bxZ 4 cx + d?

(a £0). -

How many critical points does y = x3 - x2 4 x #+1 have?

Give an example of a cubic polynomial that has NO critical points

Give an example of a cubic po1ynom1a1 that has ONE critical point

Give an example of a cubic polynomial that has THO critical points.

Show that there can be no cubic polynomial with 3 or more critical

points. : Can you general1ze this? ‘

Consider f(x) = x = 'sin x, for x £0. Show that f(x) fs INCREASING

for all such x. What is the minimm point on the graph of f?

Show that g(x) » cos, x + x2 - 11s lNCREASING for all x 0.

What s the relationship E;;ween fx) and g(x)?

Find a function h(x) such that h'(x) = g(x) and so that h(0) = O.

Prove thatv, this h{x) 1soals‘o INCREASING' for x 0.

Now show that -cos x+ x* - x2 + 120 for all x 0.
U o 0 28T

Prove that -sin x+'];; - )6(3 +x 20 for all x >0.

Prove that X - ;3ésin xXgx - %_3_+T>£_8forx 20.

Verify that .8333 <sin | £ .8375. Find sin 1 using trig. tables

and compare the 2 results.

———

J U’his 'la;t exercise is a particularly nice example of a Type D’pr'oblem,bringing

fogether the notion of “increasing function", “anti-differentiation, “upper

and . lower bounds" and the {dea of constructing mathemtical tables More-

over, steps (a) to (h) clearly suggest a sequence of progressive $tages

"or 2 mode of guidance that the instructor and students may fonow. Each

e b o ananans ¥
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step 1; 2 link between the initial notion 6f an increasing curve and the

final goal of approximating the value of sin 13 S
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Sec?ion 25 Elementary Matrices and The Deterﬁfnant Proddct Theorem \

\ % - Many matrix patterns, easy-to-spot relationships between certain——

matoiceé and determinants, proofs within reach of most students, potential

for posing good, thought-provoking exercises all contribute to make
i
Elementary matrices and The Determinant-Product Theorem amenable to guided
\ ‘ discovery teaching.

~— V

— Co1tan begins with the basic definition: ”

x &<;~An«E1ementary Matrix 1s 2 matrix that is obtained from the 1dentity I by
one of the 3 types of Elementary Row Operations.“l (By this time, properties
and operations on matrices, properties of determinants, as well as the row-
reduction method for solving "m" linear equations in "n" unknowns have all
been covered .in class.) There are, of course, 3-classes or types of
elementary matrices, corresponding to the 3 categories of elementary row

operations. Each type is carefully analysed in the following manner.

Definition: A Type I elementary matrix is formed by interchanging a pair
" of rows of the IQenfﬁty. Eyy denotes the elementary matrix
which is obtained by interchanging rows 1 and j of the
“matrix I. ' S

I then pick an arbitrary matrix, say A=z ja b

and let someone in class choose an Eij suitable for pre-multiplication.

1 0 0
0 0 1} %

Suppose that E;p = [0 1 0 1s\§i:ected.
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(Q4) What is Ezl?

T e 2 Y

B o et e -

N

)

Y

We then verify that Eys A yields ¢ d | = 8B, ;ay. Fhis is followed
a b,
e -f

by a series of key questions:  ° D o )

(Q1) What is the effect of pre-multiplying A by E;,?

(Q2) What is det E;,?

(03) Wnat is Eyp Epp?

7 : .
. Students who volunteer answers must also try to explain how they

have arrived at these answers. ‘

F One or more such "case studies"f(obserbing the properties and g
effects ofoEij) fs carried out - the number of examples depending largely
ubon the strength of student response. A1l this preliminary activity

eventually leads to the more general questions:

'(Q1) What is the effect of pre-multiplying any nXxr matrix A by ann x n

matrix’E1J?
(Q2) What fs det £y
(Q4) HMtisEﬁ?

In this way we - the class and [ - put together Generalizations 1.

2]

Thégg are:

4

(1) (E1j)A results in a matrix B with the property that row 1 of A « row j
of B and vice versa. A1l other rows of B are the same as those of A.

(2) det Eij = -1, by‘a previous property of determinants.
(3) stnce Eyy gy T (by (1) 1t follows that Efy = Eyj.
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* Teft by the remarks of their ctassmates.
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In every c]a;§ of Linear Algebra that I've taught over the past
few yearébthere have always been a fair number of students who could dis-
tover these general ‘rules and state them (in their own words) BEFORE I-
wrote the above statements‘on the boarq. )

Similarly we study Ei(k) [formgd from 1 by mu]tip'lying row {
by the scalar k] and Eij(k) [formed from I by adding k timeé row j to .
row 1] and summarize, our results as follows:

Generalizations [I:

(1) (Eg(k))A results in a matrix B which is identical to A in al} but one

respect: the 153 row of B = k times the izﬁ row of"A. . . %
(2) det Ei(k) = k, by a previous property of determinants. }
(3) Stnce (k) E, G—) =T (by (1)) we have: [E(TK)]"! = E, (,}) .)
Generalizations III:
(1) (Eij(k))A results in a matrix B which is identical to A in all bu£

one respect: the i row of 8 » k times row j of A added to row i

of A. . ’ | 4

+(2) det Eij(k) ='1, by a previous property of determinants.

(3) Since Ey;(k) Egs(~k)ya I (by (1)) we have: [E (k)] = Egj(=k).

This last set of generalizations is usually obtained more slowly
@fhan the first 2 sets. A possible tactic is to develop Generalizations I
and IT in one class, define E{j(k)' give soﬁe examples of Type II} matrices,
and let the students try to work out the parts of Generalizations [II for
homework. .They can use the previous 6 results as a rough guide. I then
find out how they fared with this task in the next lecture and fill in the

remaining gaps. I g]so encourage Students X, Y and Z to fi11 in the gaps

0

ST
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I recall an interesting 1nc1dent'that occurred during one
such "wrap-up" session about a year ago. One observant s%&dent noted:
"Sir, 1 found an easy way to remember what the matrix Eijfg) looks 1like.
Just put a “k* in the 11 row and jsn-column of the identity matrix.”
The proud way in yhich he reported th;s smitl discovery told ne that
some positive things have happened. At least one student had bagun to

look for patterns and fo experience the pleasure of finding something on

~

his own - something that required more than “plugging into a formula®,
using a standard technique or solving a simple equation. (The same studgnt,
in a subsequent course in Finite Mathematics, independently tried to dis-
cover a divisibility properiy of integers and set out to prove his result.
With a 1ittle help from me he was eventually successful.)

Returning to our exposition of ihe theory of e]ement::>\matrices.

once the 3 groups of .Generalfzations have been established I summarize

L)

the chief points: |

(A) Any elementary row operatioh‘on a given matrfx A can be performed by
pre-mulitiplying A by the appropria}e elementary matrix.

(B) An elementgry matrix is invertible ;nd its inverse is an elementary

" matrix OF THE SAME TYPE. v
?Next I display a matrix suchas A« |0 0 27, Working with

'
®

the class, we reduce A to I by successive pre-multiplication by E; = Ey3,
Ez = Ex(), E5 = E13(-2) and Ey = E1p(1). [E1, Ez» E3s ... is used when

we wish to 11st a number of elementary matrices appearing in a certain orderj

e

/ ot . . F—_—
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generally ready for what I refer to as Generalizations IV.

e
Thus, E,E;E,E, A = I. I then ask: “Can all square matrices be eventually

reduced to I this way?" My question is usually greeted with sillyce.

. \
I will then ask Rosemary, say: "Could you reduce A= |1 0 O

0o 2 0
0 0 O
to I, for instance?” She (hopefully) says "NO!" and'even if she doesn't
st;meone else usually volunteers: the right answer. Now I can ask: "What
do you think the.nécessary condition is for a square matrix to be reducible
to I?" For those who st'in‘ need some guidance, I try a gradual staging;
(Q1) How do you verify that matrix Y is the inverse of some-matrix X?
(@2) Since (E EEE )A = I whst can you say about the-matrix préduct
- ELERERE; in ré1ation to A? ‘
(03) So_the matrix A that we worked with was...? ~ Therefore, if A is not

invertible we cannot.. .?\

By the end of this question / answer session the whole class is

)

Generalizations IV: (1) A ~1 (A equivalent to I) means that there ;rg
elementa'ry matrices €,, €,, ..., ék’ say, such that
B Ep _ 1oe- EsEgEp A« 1. Moreover, A-l.a E, E, _ ... E3E,E, or equival-
ently, A~k z E, Ex _ ... E3E5Ey I, since éll =.El; [t is important to
state the last result in words: "“The SAME sequence of elementarylrow o
operations that converts A into I will change I {nto A"1.* gg_qy_;_ We:
have another way go find A"l for a given non-singular A. [‘[he “old" way
was the adjoint-déterminant method.]

—('2) Since £, E3y o Eklﬂgre, of course, all invertible we

have that (A"3)"1 = A = (Ey By - ... E2E))"1 2 E73E7 0L BP0 ERD
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4

and since all these k individual inverses are themselves emeenta;Z/ﬁstggces
ANY INVERTIBLE MATRIX "A" CAN BE FACTORED INTO
A PRODUCT OF ELEMENTARY MATRICES.

we readily conclude that:

(3) If Ais any m x n matrix and A ~B via k elementary row
operations, then there exist elementary matrices €, Ep, ..., E,, say,
such that

Ey E . yr+ E2Ey A = B or equivalently,

A:EfVEY L E;‘_ 1 Eil B where, once again,’
Ey-' s Ex7l ..., Ep)are all elementary matrices.

A few exercises are essen£3a1 to consolidate this barrage of
new ideas, before proceeding to the Main Theorem. Some  typical exercises
that 1 use are: ;o

{

xercise 1: let A= 13 2 1 (a) Find A-! by making use of General-

fzatfons 1V, part (1).

(b) Write A as a product of elementary matrices.

(c) Hrite A"! as a product of elementary matrices.

Exercise 2: Prove‘;hat the fojlowing 4 statements are equivalent:
(a) A has a LEFT INVERSE.

(b) A is INVERTIBLE.

(¢) Afs a product’of elementary matrice;.

(d) the system Ax « 0 has only the trivial solution x = 0.

\‘ . Exercise 3: Try to weite B= |1 2 3] as a product of elementary
4 5 6
7 8 9
matrices. What happened? Why?

e
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" Exercise 4: How many solutions does the system have? ,

0
0
0

X+ 2y $2

X +2y+ 2

‘ X+ y+z
What about the system x4 2y +32 = 0 ?
' 4x + 5y + 62

(1]
o
\

.

n
o

7x 48y + 92

The Determinant Product Theorem

Objective: To prove the Main Theorem: det AB » det A det B for any
square A, 8 of the same dimensiuns.

This 1s'too hard to tackle right away, s0 we first prove the "weaker"

Lemma: t EA = det & det A where A is any n x n matrix and E 1s any

elementary matrix of the same dimensions. (1 br{eﬂy explain to the

class how the terms "weak hypothesis" and “"strong hypothesis" are related.

We try to come up with other examples of weak versus ‘s'trong hyBotheses. )
T;n,e proof of det EA « det E det A provides a good example of "Proofs by
Case Distinction" E’or other proof types see Section '2[ Chp. Ilj.

. For, 1f Ea Egy then det EA = -det A = (-1) det A = det E det A.
Similarly, one can easily establish the factorization for E/a Ei(k) as
well as ,.f:r Ez Eg5(k). We make use of Generalizations I, II and III
to prove our Lemma. It can then be zhown by an inductive’ argument that
det E\E;...E, A & det E, det E,... det E det A for any k elementary
matrices each having fhe samé dimensions as A. - | |

We are now prepared to prdw Jh\: Main Theorem A somewhat

~~~~~

idealized discussion centering on the proof might be:
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I

Instructor:

Student A:

~ Student B:

2

Instrucgr:

Instructor:

Student C:

Instructor:

Student 8:
Student A:

Instructor:

Student A:

Instructor:

¥
Student A:

77
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Suppose A is invertible. What else can you say about A?

Well, det A 4 0.

\

A~1. -
Good. MWhat can you conclude from A ~ I? ‘
: SILENCE. T \

Gan you write an equation that connects A and 1?
EA « I, maybe?

4"

Just one E? _
‘We don't know how many b}emen;’ary mtrices are needed.
'That's i‘t,; So By By . yoor E2Ef Aw I, say. This is Tike
what we did earlier. AN

True - very good. ‘Quf also', of course, .-n

' -1 -1 -1 gl 1 pight? You te -
A EyEET L el BT R'lght?} Can you tell me -
what det A is now? "
det A x det Ey"!.det E;71 ... 0d#t E-1 | det £l det I

. from what we dfd after the last Lemma...-

- ' . ’ . 4
. »

’ " ~
Gl'eat' (I}oo | 7

Please ... I'm not,ﬂnisheﬂ yet! So,:’ ‘
-

det A = det E\-) det Ep~! ... det E;‘, since det I = 1. 6
§ . Nowhvﬁnat? ‘
I\nstructor: What is AB? ' ‘ ‘ . E

Student 0:
Student: A:
2sucent:

A3

| det AB » det™E;"! det E;°1 ... det E:l det B s det

AB » El'tlEz.'l’ ...'En'lslﬁ'z El;l €571 ‘... E';'l B.:
Hey, now it's easy. | 4

: \ 3
A d'et Bu Yy

.

' -

.

\\ . %% ' ’
. ' '
.
M . ‘
.

. And thus the ‘dialogue continues - we show that det AB = det A det B,

Vi




eveh when A is singiﬂar. (]’he argument hinges'on. the fact that if the

W

Jast row of }xmatrix R, say, s a zero row, then the last row\of RB is

also a zero row.) MNor does the work end here.“ The Determinant-Product '

78//
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\

- Theorem has many consequences, pr;vivding ample material for exercise

. however. Here was an opportunity for me to devise a few good problems.

RS

sets. I-was surprised how few interesting consolidation exem:ées are
\ ;

found in standard textbooks on elementary matrices and related topics,

The next set of Special Problems includes some of the resylts of such

efforfs’ .

’
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More Speci;?l Problems

E13(3) Eysh E0E(2) = [18 6 15

"(1). Find matrix A given:
e oL - .
4 4.8 K
| © 3 2 s

(2) Make up an exercise similar to (1).

(3) (g) " Suppose A : FI\ a b | Show that AZ - 3A,
S A
- . (1‘1
' ] T
b % 1

(b) Using the eQu;;ion A2 5 3A, solve for det A. Are 2 solutions = q'
possible? Explain. -
* ‘(c)“ Using ‘the "patterned matrix" A as a mode] find an an&logous

4 x 4 matrix B so that B2 : 4B, What 1s det B?

(d)} Can you generalize the patterns to any analogous Q\ X n ,m&trix X?
P . What is det X?

L d

(4) Find four 3 x 3 matrices A, B, C D (none of them equal to I) such
‘ that det ABCD 24,

?

&

(5) We are looldng for a certain 3 x 3 matrix A ‘We know that .
(1) enta 3[53(3) A] « [Recall that ent; ; X is the

L , 1, 30 entry of matrgx X.J

ot

Find matr'lx A.

") EypA: [0 2 and (111) Ey (2)Aa |2 72 2
ST F - | o2
S ? 7 1 12 .23

Elnother Reconstruction Exercise.]

(6) Prove or d*FSprove each of the fo11ow1ng‘

(a) E" 1s an eTementary rnatrix for every £ = E,, and any ne N
1J

o

s R, e e st o I ok kA et
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)

(8)

(9)

(10)

.

(b) EP {s aﬁ eieméntary matrix for ever; E = E,(k) and any n ¢ N.

(e) EM™ is an elementary ﬁatrix for every E « Eij(k) and any n ¢ N.

(d) ‘The product of any 2 elementary matrices yields an elementary
matrix. 1 |

(e) The transpose of an{ elementarthatrix is/&n elementary matrix.

Prove the following consequences of th Déteinﬂnaﬁt-?roduct Theorém:u

(a) det AB a det BA  (¢) det (AjAy...Ay) «-det Ajdet Ay...det Ap

(b) det A} z 1/det A (d) det AT BS = (det A)" (det B)S; r, s ¢ N.

(e) ’det (édj A) = (det A)M - 1 where A is an n x n matrix. .

If det X = 10, find. det (c-1 -t A1 X ABC), where A, B, C are any '

3 invertible matrices of the same dimensions as’ X.

If P is/ORTHOGONAL prove that det P = +1. Give an exampie of an

orthogonal matrix whose determinant°is 1. -Give an exampie of an

o
s

- orthogonai matrix:whose determinant is -1

If X = EIEZ.-.EggElog where ha‘if of the eiemenfary matrices are ‘
Type I and aif ape Type III, what is det X? What is det X {f \
ﬁexactly 33 matrices are Type 1 and the remaining 67 are Type III’

(Y1) Make up an exercise simiiar to (JO) why is it inconvenient’to use

> Type Il matrices in such a problem?

(12) A ‘student once q/gued as follows:

\ .

*

(a) I know that det (AB)-! exists 1ff det AB £,0 since
" det X=1 = l/det X. (
(b) This means that neither det A nor det B can be equal to 0, since

det AB » det A det B by the DeterminantﬁPrSdbit Theorem.
(c) Therefore A, B are both invertible. ‘

0

A

4
7
/
’
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(d) Hence (AB)-! exists = A-!, B~! must both exist.
But we know from previous class discussion that (d) i§ ‘FALSE.\} \
: -

What's wrong with the student's argument? ’
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Section 3: Conditional Probability and Bayes' Theorem

~ . The topic of probability is greetqqaﬁith mixed emotions bxj
most classes in College Mathematics. On the one hand "it sounds inter-
esting” in thesé&days of the super Iotto, mini-lotto, inter-lotto and
all the other lcttos It is the subject.everyone who is interested in
gambling wapts to know .abput. On the oiher hand students "have heard
that probability problems can be tough." Almost all However, expect to
get something useful out of their encounter with probabilitx. Thus, l1ittle
"selling” (pep talks on importance, future/app11ca¢10ns, etc.) is required
in comparison to Math Induction.ﬂComplex Numbers, The Binomial Theorem
and other items on the College Math Syllabus. '

[ generally begin with a brief historical introduction - the days
of Pascal, Fermat and de Méré - and follow by definitioﬁs of “sample space",
"e1emen§ary outcomes*“and "P(A)", the probability that an event A occurs.
The 3-Kolmogorov Axioms and their consequences come next. During this
1ntroductory‘part,)the usua{ coin, die and card experiments'aré examined.:

'After the"#éw prefiﬁinary lectures I introduce- the notion 6f
Conditional Probability Now, if you open any standard textbook at random,
the probability is 9b!§the guided discovery mode is used to develop

the formula:

.o
P(A[B) = prqbab111py event A occurs given‘that B has occurred -

ﬂ' | = PgA nB) . Q

' ’ &

- Typically, the author will define two events A and B - say, A x event that

3 dots appear on a die toss; B = event that an odd number of dots occur -

and then ask the student to compute the quantities P(A), P(B) and P(A n B).

P
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DThe reader is\ then encouraged to guess at the value of P(A{B) and event-
ually to try ito formulate a connection between P(A[B), P(A n B) and
P(B). (I take the same approach in class.) It's good to see such
support for the guided -discovery technique even {f it 1s often 1imited e

to only one or two specific areas.

The formula for P(A|B) impediately gives rise to the Multiplication
Rule: P(A n B) = P(B) P(A[B). One can also derive: P(A n B) = P(A) P(BJA).

Consider the following example:
Example: The probability that Ten-Pin Tina géts a strike in the first frame
of her fir!'st game is .2. The probability that she gets a strike

in the second frame given that’she. got a strike in frame #1 is

. A5, " Find the pr'obabthy that she rolls a "double" in the first
| . 2 frames. ’ |
This, of course, is a rather straight-forward application uf the
Mult;p“licaﬁon Rule. Nevertheless, the student must first define events -

A and B before "plugging numbers into a formula.® I INSIST on this - for

nsuch "translation exercises [ﬁngl‘ish to Mathematical Symbolism] prove.

'essential practice for subsequent, more complex problems.. Next, I ask

someone to set u _E. a similar exercise based on 3 FRAMES of boang He
usuany has no trouble with the question" to be asked but is uncertain
about the necessary "givens".

Pattern Analysis [Stage 1]

Instructor: How many “pieces of information™ did we need in order to
compute P(A|B) in the previous prpblem? L '

" Student A: Two.
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Instructor: How many pieces of information will we neem

problem? And - oh yes. What is the question?

Student A: We'll need to know 3 pmbabiiities to find

PAnBn C)_ = probability of bowling a.triple..
Instructor: Yes. What are the first two?

Student B: P(A); P(B|A) I think.

Instructor: Correct. Now the third - anyone?

SILENCE

Instructor: Event C - the "3rd

Student B: I get it! We'll need P(C|B[A)!

strike - is to occur after ...

Instructor: Your answer has some logic to it based on a pattern we've
been following. However, there is an ambiguity - do you
mean C|B GIVEN A or C GIVEN BJA? In efther case, ft's

a

difficult to ...
Student B: I MEAN EVENT C given that there were strikes in both frame
1 and frame 2! |

Instructor: Ah - that's quite clear. Now what symbol. is generally

associated with “both ... and"? =
' rd

. Student B: The “intersection” N. So, our 322 probability will be

Y P(C|JA n B)! .
Stydent A: The formula is: P(An B n C) = P(A) P(BJA) P(C|A n B).

Instructor: Looks good. Let's see how it reads- cet It ever; sounds

reasonable, Nov; we have a plausible conjecture, as a f_alvnous‘

Hungarian problem strategist would say! Let's prove it!’
" Proof [Stage 2]

Instructor: How would you start?

o
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Student X:

Ins tructor:

Student X:

' Instructor:

Student Y:
Student X:

. Instructor:

Student X:
Sl L

{

Instructor: Good work, X! Guess what my next guestion is.
Student Y:

~ And on it goes, until w\e'arrive at the "ultimate” statement: i
P(Ay n Agn oo Ry) = P(A)) P(A2[A)) P(A3[A} n Ry)... PlAnlAy n Ay 1 oo An 1)

Thus the recurring pattern enfolds.

)
8

I really don't know. __— B J
‘ Come on - think hard. Use the Multiplication Rule we've ‘

talked about. | -

But there are 3 events, not 2.

Brackets are useful. ,

0.X. P(AnBnC) =PRAn(Bn C)]. Now what?
I seenow - PAn (B nc)] = PA)P(B nClA). Now...

I'm stuck: o : !

Well, your statement is correct. You have found another way

to.computé P(Afn B nC)! In order to apply your formula, |

though, one would have to know the values P(A) and P(B n C|A).

In some p;‘oblems, this is exactl:{ wfyaat’ would be given. But
right now our goal is to ébtain the right-hand side: _
P(A) P(B]A) P{C|A n B). These 3,r;umb‘ers‘ constitute the

\\: “givens" 'in lour bowling problem. ‘JRemember: 1n‘doing a proof
always keep’one eye on WHAT YOQU ARE REQUIRED TO SHOW. Maybe
if you just put your bréckets NX

That's it! P(AnB n ) :P[(An8) n ]
- "« P(AnB)P(CIANB) ‘
ﬂ = P(A) P(BJA) P(C|A n 8) ‘ i

What happen§ for 4 events? >

; :
L
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The next step is to talk _about mathematical {or stochastic)
1ndegen§ence. ‘Specifican ¥, the events A and B are said to be math-
ematically independent if and only §f P(A[B) = P{A) ovlequivalenﬂy,
P(BJA) = P(B), or P(AnB) = P[A) P(B). This last factorization rule

“Is the criterion most comnonlyd used. ﬁrifort\.fnate]y. events that may
appear to be intuftively independent (i.e. not to have ény effect upon
one another) are often st.ochasticany dependent. Moreover, events which
are intui tive.l y dependent may be mathematically independent. B.H,
Bissinger, for example, uses a 3-coin experiment to den)onstrate t\hat the

one kind of independence does not necessarily rimply the other. [36] ’

. Intuition doesn't always fail us, however, When A, B are (mathematically)

independent we would expect that

(1) A and B are independent

. (2) A and B are independent
(3) A and B are independent.

" Here, X ("A complement") consists of all sample points in the sample space

N
N
g’

which are NOT in A. The proofs are 're'lativeljf simple. For instance: '
P(A n B) = P(A) P(B|A) ,. by Multiplication rule,
= P(A)*D - P(BIA)] ,- from a proposition proved eaﬂ;lerb
\ in class . ' :
: P(A) ﬁ - P(B)] y s1n;:e A, B are 1ndependént, !
+ P(R) P(B) " |
This shows that (1) 'holdsi. The proof of (2) is very similar. Statement

(3) can be verified as follows:

L]
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. P(AnB) = PETE), by De Moraan's Law,
Sz -RAuE)
=1- [P(A) +P(B) -P(An B)]”, by the Ad&ition Axiom
' of "Kolmogorov. -
= 1 - P(A) - P(B) + P(A) P(B), since A, B are 1ndependen't.

[i ~P(a) - p(B) [1 - P(A]]

[i - pa)) [ - pea) _ - .
P(R) P(B). : SR

At this point, I introduce the notions of pairwise, triple-wise,

i

v .

. n-wise independence, as'well as that of complete 1ndependen¢e

Defini tions: ‘ : :

(1) The events Ay, Ay, ..., Ay are PAIRWISE INDEPENDENT if
P(Ay 0 Ag) = P(Ay) P(A)) for i 4§ withd, 3 = 1,2, ...un.
(2) The events A;, Ag, ..., Ay are TRIPLE-WISE INDEPENDENT 1f
P(Aj n Ay n Ay) = PU(A().P(AJf) P(A¢) for 1 4 § 4 k with 1, ok

1254

~,

(n- 1) The events Ay, Ag, ..., A re n-WISE INDEPENDENT if
P(A; n Az n ..on Ay s PCAY) P(A) ... P(AR). J
(n) The.events A, Ay, ...A; are COMPLETELY INDEPENDENT if conditions
(1), (2), ... (n --1) all hold. (pbviously, thisfis a very "strong"
kind of independence') | o c
Most students readily agree that pairwise independence does not )
necessarﬂy imply triple—wise independence. It is easy to demonstrate this:

xamgIe: Two dice are tossed

Let A = event that an odd number of dots occur on die # 1.

2
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for P(B n C).

et

\ a8 i

let B = event that an odd number 01; dots occur oﬁ die # 2, « d

Let C = event that the sum of the dots appearing on the 2 dice {5 odd. ‘
Then by studying the 36 elementary outcomes of this 2-dice gxperiment .
we obser\(‘e,&that .
P(An 8) «P(A) P(B), P(AnC) = P(A) P(C), P(B nC):P(B)PC) but
P(An B nC)4 P(A) P(B) P(C). | '

Hu?.eiié’r intuition rebels against the mathematical feath that
3 events may be triple-wise independent and yet fail to Pe pair-wise
independent. (A 1little controversy adds spice to the co‘urse material .) !
The challenge is to come up with an example to illustrate this property. N
I have found the followi ng one to be quite appropriate: |
Example: Eight billiard balls numbered 444, 454, 455, 455,. 544, 545, 545,

554 are placed in a bag. One ball is drawn-at random.\

\ ,
Let A 2 event that the 13 digit on theball drawn is a '4’, '
Let B = event that the ond. digit on the ball drawn 1s a '4'.
Let C = event that the 3-'31 digipt on the ball drawn is a '4',

Then P(A n Bn C) s /8 a P(A) P(B) P(C).
But P(A n B) = 3’9 £ P(A) P(B) and the same goes for P{A n C) as well as

The work on cqnd‘l t’ional probabdlity prepares the class for Bayes' \
Theorem. When I first taught this topic, I be:gan by stating the Theorem_ : .
ﬁn g’sr;eral s followed by the proof and thep the applfcations to specific. |
examples. Itwas a disaster. There were red faces everywhere. Those of
the students vere red from effort while mine was red from embarrassment. I
wasn't getting anywhere. ‘Since then T have found that the quided discovery

approach 1n this instance is not Just a nice altemati ve but [ necessary

1

{
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part of\‘ achieving the required level of understanding. Thus I now

introduce Bayes' Theorem via a "“typical” protg'lem,
Example: wealthy Roman senator wishes to choose 2 gladiator to bet
on in the upéomtng contest at the Circus Maximus. Matches are
to be made by selecting gladiators from 2 groups. Group |
consists of 6 Thracians ?nd 4 Libyans. Group Il consists of
3 Libyans ;nd 7 Thracians, The sem.stor tosses a denarius to
decide which group t;: ch'_oose from. Given that he ends up
be;fing on a Libyan what is the probability that his Libyan
came from Group I? 1 '
The first time | used th1s simple problem,-one student started
scribeng away. After a few seconds® work he announced: - "The answer

is "/7“' [ Tooked at his work and saw things«like this:

_Libyans Thragians
4 . 6\ probability of Libyan
3 7 \y | trom Grow T 45 7.
Total = 7

One notes that'John W. Dawson at Pemnsylvania State University has

'encoura“ged his students. to employ similar box diagrams in solving such

Bayesian problems. @7]15 above, they learn to segregate various groups

into different cells, to write\ down the corresponding cell probab{Hties,

and to then use the table to compyte the required “a posteriori®
probability.

' Other instructers prefer to use “tree diagrams® as suggested by

et
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a

John Kemeny [38]. Using this mode of analysis, the diagrams for the
gladiator problem would take on the following appearance:

a

-

Yt

Group 10

| FORWARD PATH

.1 >

REVERSE PATH

Gr, 11 ‘ -

2 N,

N

The “path weight” along the top branches of the "forward tree" is

r

‘}' ﬁ'-‘- %o = probability of a Libyar” from Group 1 being selected. This
must corresporid to the total path weight along the t;:p branches of the |

3

"reverse tree”. But, the probability of picking a Libyan out of‘ the '20
gladiators is 0, Hence the b'robabiﬁty. that this Libyan 1s;gpgning from _

S




§ Group I must be ’9 It 1s also a simple matter'tgitompute the 3 ° -

remaining Bayesian probab1lit1es %HESE are: /

Probab111ty a Libyan is chosen fnom Group II is 37\‘ Co~
Probability a Thracian is .chosen’ frcm Group | is %3

va ‘Probapility a Thracian 4s chosen from Group I is A,

. v
2 : ; The gladiator problem Jends itself to either .a box or tree

[

diagram type of approach as a first Took at a typical "reverse conditiona1
. ‘probability" situation. But I feel that it {s also 1mportant that the
;//Kﬁff . student learn how to solve this kind of problem %y defining the events
of interest and using the appropriate 1&ws of probability. Using the S
Tue"

basic, concepts as "building blocks" and the formal operatfons as the "

that holds theseunits together the student can be guiﬂgd to invent his

own formula (otheryise known as Bayes' Theorem). This tg an enjoyable 7-
. | Yo L .
__and, an important part of learning - putting toge;ﬁer“$deﬁs to forma - ] _)

i
cohesive whole, The stud@ntrteacher interchange might go 1ike this:

Instructor: ,There are 4 bas¥c events t%at we should define. What are s . §

-

" they? \ ‘ N ‘ .
Student X: Losing, winning, Thracians, Libyans! : .
® fnsgfuctor: Not quiﬁ;: I know you'd be interested {n losing or winning, . ~
~ | especially if you were the senator or the gladiator,.but .
: does the question asked hgve anything to do with the -actual
- ) outcome of the g]adiatorial,cont;st?

) ' } . e
. -Student Y: No. We should talk about Thracians, Libyans, Group ! and

Group II.

- g,
o




“Instructor:

Student Z:,.
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Instructor:

Student Z:

Instructor:
Student Z:
Instruétor:

Student X

Instructor:

Student X:

Instructor:

Student Y:
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Ins t‘r"uctgr:
Student Y:
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Right. So let o e : - o
Y ) ' ‘x:}' N ~

Gy « event that a gladiator is chosen from Group 1. -

Gy = eVentﬁfhat a gladiator is chosen from Group II‘.“

L]

T « event that the chose;\ gladiator 1s a ‘Thracian.

. , L
L =_event that the chosen gladi.gtor is a Libyan. X
Now tell me. Hhagis-246)) and P(6,)? '
P(G,) = “2 = P(6,) since the senator tosses a coin which

has a %o chance of falling heads or tails.

Yes /Now are we lobking ‘for P(Gllf or P(L|G;)?

Well, you know that a Libyan has been picked, so it must be
the second one. ,
Wrong, I'm afraid. ’ .
[ knew t.h;t - it's P(G,|L), of course! ®
“That's better! What is P(L|6,), incidentally?

P(L|G1) = “T0, since 4 out of the 10 gladiators in Group Iu

are Libyans. o — ’

Fine. What is P(L|G;)?

o |

We now know the values of P(Gy), P(6,), P(L[Gy) and P(L]G2). "
Ne are goirg to use these to find our P(Gy[L).

of course, we a1l kpow that P(G;[L) can also be wr‘itten as... ([N

P(GILL) P(63 nL) . Butldon't see any. of the 4 probabﬂities

-

2

you were taﬁting abotif _
Remember the Multiplication Rule!
P(Gy n L) = P(Gy) P{L|G,). Oh, I see. But what about the P(L)?

2]

& .
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" Instructor:

rd

-

.}_"

S
Instructor:

[}

Student -X:
Student Y:

-

Instructor:

-
Student Y:
Instructor:
Student Y:
Instructor:

Student Y:
Instructor:

" Student X:

Instructor:

-

Student Z:

4

¢

Separate? You mean ...? . .

Mutuaﬁy exclusive. | \\ r B B
And therefore? ' ,’ |

.NeH P{(GynL) u{GnL)aP(G nL)+ P(6y m L)

9 - C/

. S : . J “
A Libyan may come from efther Group I or II. fherefore
‘ ‘E>" SILENCE o .o
Therefore L= (Gy n'L) ‘u ++.7, (Remember, the n is roughly
.equivalent to "and" and the u is roughly equivalent to “or". )

Ahal L=z (6, nL)u(Gym L) which accoynts for both groups.

So P(Gy[L) = - P(Gy) P(L]G;)
- PG TG l)

fraction looks complicated.

. The ‘bottom of this

Group [I :
P yqu say about the events G; n L

Group I and G, nL? -

k4

They're separate.

by the Addition Ax‘iom N ) \
Good. What is the next step" Think of the original 4
probability values that we had, . - ° :

Easy! P(Gy n L)+ P(6; n L) = P(G) P(LIGy) + P(6;) P(L|Gy).

Excelient. Now let's put it all together.
P(GIIL) = P(G\l) P(LIGI) .
' G1) + P(Gz) P(L]Gy)

= 1% . %04, » .
Wo + M Mo Ho A

'Hey, part of the bottam appears on top.

) . \ .
— ° .

Look at thiis diagram. What can’

y,
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4

Instructor: I wonder if that will always hapben?‘ :

and 1(2) Aj n4y = B for all 1 45, - .

J - : _ | /

v o

At this point [ assign a second exercise similar fn nature to

the gladiator prob]em’: _The students work mostly on their own this time,

‘After: 10 or 15 minutes I ask someone to put the solution on the board.

If necessary, the student at the board is he]ped by his classmates or by
myse'lf Finauy, I state the Theorem od" Bayes-Laplace: )
k "If the events A, Az, «esy Ak are such that -

(1) Ay uAyu Aia Uoeo WA =S ($ = sample spacé)

§

then forany event B - S we have that .

P(Aj]B) = P(A7) P(BIA])
PIAL) P(BIAL) ¥ P(R,T PUBTRZ) + .. P(m?(‘rm K

i B th?s point the students are fair]y easﬂy guided 1nto .

. »
establishing the above relationship. They base their arquments on the

steps taken to solve the 2 preliminary exercises. ‘ c

5'

A Few Final Remarks on Prpbability

The notions of independence, c.:onditjona'( probability, Bayes'

Theorem and the "story problems" ar1sing thereof can chaﬂ'enge even those -

students who had previously passed other conege courses fairly easily.

But the guided discovery techniqug, [ have found, helps to make the .

subject more accessible for the student primarily because of the grewt-er

personal involvement. [t also makes the teaching much movzo,enjoyable I
\ i
havg taught elementary probability many timés but still look forward tq

’

the next occasion. . ’

> /
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More Problems

(M) .

<

(2)

Y

- (3)

Prove or disprove: ,
(a) P(A uB|C) = P(A|C)+ P(B|C) for A n 8 = § and with P(C) £ 0.

(b) P(CJA u B) = P(C|A) + p(cla) for P(A) £ 0, P(B) £ 0, P(A u 3) £ 0.
Ekpplications of Probabi]ity Laws plus some Set Theory J

Give an example of:

(a) 2 events which are mutually exclusive.

(b) 2 events whigh are independent. ' .
(c) 3 events which are pair-wise independent but.not triple-wise

. 1?dependent.

“The Game of Craps . -

You roll 2 dice. If a "7" or an “11" turns up you win the stake.
If a "2“, “3" or "12" turns up,-you lose. Othérwise, if "4", "s5",
“6", "8", "9", or "10" is rol]edoyou keep on playing until one of

two things happens: ‘efther you “make ypur point" by repeating the

| sum you rolled initially or you “crap out”" by coming up w1ta a "7".

“Making yoyr point" results in winning the stake while “crapp{ng‘
out! raesults in fhe loss of your money. CaTcﬁlate the probability
of ;1nning according to thexfgles}of this gémé.

ﬁgig; This prg?lem“has been analysed in various textbooks and

¥ - . R .
,journal%. It links the notions of "mutually exclusive events",

“1ndepsndent'gyents"\32d "geometric series" quite beautifu[ly.]

A small box contains 2 rubies, 3 emeralds, and 5 worthless pebbles.
A second box of {dentical size contains 3 rubies, 6 emeralds and 7

pebbles. Four coins are tossed. If an even numbef of heads occurs,
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’box‘ #1 is selected. Othemisé. box #2 will be selected. From the

b

"box thus chosen one item will be drawn at random, Suppose this {tem

'.turns out to be a pebble. " What is the probability thé pebble came

from box #1? [AppHcation of Bayes' Theorem]

The Tn:-é—“é??nered Duel

A, B and C are to fight a t‘hree-corneredipistol duel. AWM 'know
that\A's. chance of hitt'lng‘his tar'get is .3, C's is .Siand 8 never |
mis.s’és . They are to fire at their choice of target is succession ‘in
the order A, B, C cyclically, until t;n]y one man 1s Teft unhit. (A
hit man loses further turns and is no longer shot at.) what shoutld
A's strategy be? [39]

NOTE: -This is an excelTent problem for class disédSsion. A1l kinds
of suggestions are generated by ;he nature o.f‘the"quest'éon -

¢ some of them are even serious ones. The ideas of elementary

probabilify theory are once again, linked with the concept of

a geometric seri es. ]

The Cautious Counterfeiter

The king's minter boxes his coins 100 to a box." In each box he
puts-one false ’cl:ofn. The. king suspects the minter and from each of
100 boxes draws a coin at random and has it tested. What is the chance
that the mjnter's céunterfeiting goes undefepted? What if both 100's

are replaced by any natural number n > 1? [40]

E NOTE: The second question is a very interesting one. It gives rise

_ to 'the series expansion for (1 .-'%)";; name[y A

1-14+1 -1 +1--1 ... = e~! for large n. Moreover,
L2 3L &TET B .
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‘The Blue Team had a record of winning a race with probabfi1it 78.

97 - " '
_ the students can generalize to 2, 3 or even 'm' false coins

and thus eventually “obtain the expression l - 'Bﬁ) which

tends to e‘m when n gets large. _'_[

“Star Wars” Revisited
_ Princess Leia is captured by the evil Darth Vader. She is
blindfolded and placed in confinement on an Empire star cruise\?.
Vader wants to transport her to either the p'lanet Ragnar or to a
dismal wor1d, Organia. The probability that she will be taken to
these hlaces is .4 and .6, respective'ly. It is well known that if
you random)y select a native of Ragnar, the probability that he w‘m

not be carrying a neuron disrupter is .9. The probabthy that an

Organian carries such a weapon is .75.

After several weeks of unpleasant coﬁfinement, Le.‘ia senses the
cruiser deccelerating in preparation for a Janding.” Shortly there-
after she's dragged out onto the planet surface and her blindfold
is removed. The muzzle of a rather 1arge neuron disrupter is pointed
at her head. What is the probability t_hat Leia has just landed on
Or-gani‘a? Q.EAppHcaEion of Bayes' Theorem.] ‘ ‘
In the grand old days of ancient que, chariot races were very‘ pepular,
1
losing with probability % and tying with probabﬂfty %. <nator
Quintus Fabius Obnoxious bet 1000 sesterces that in 2 14-race schedule,
the Blue Team will win 9 races, lose 3 and tie 2. Hhat is the pro-
bability that 6bnox10us wil? win his bet?[An example 6f a multinomial

i —————————

p;obabﬂity distribution. Bi‘nomm péobabmty distributions are
f?/

€
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dfscussed in “class. ’ He\nce, in 1:.his prhobllem students are' required
to extend a notion involving a binomial dichotbﬁly (success, fa% Ture)
to one 1nvo'f31ng the trichotomy - win, I}Jss and tié._]'
"(ﬂ Suppose n coins are tossed (n ;'3). Find the ;rrobabﬂi ty 'that
exactly | head or exactly 1 tail will occur.’ This s1tua»t16rl; is
ter:md "setting an odd man out". I¥ 6 people toss 6 coiﬁs {1 coin
pe;- pe(son) what is the proBabthy that 4 plays.or trials will be
' required to produce an "odd man out"? [Applicaﬂon of the notion of
"mniti:ai]y éxc1usive gvents‘:. "{ndependent even1:.s" and 8inomial pro-
babf titfes). = - ” ° : ‘
'(IO)GWFor,Z events A and B we k4now that P(A) = .6, P(A ui/B) 2..9, P(A]B) =
.Find P(B).. [AppHcatfon of the Laws and Axioms of Probabﬂity:]-
(11) Given that P(A) = .7, P(8) : .3°and P(A n B) = .4, find P(BJAu B).
[kep1ication of Probability Laws.] |
,(12) What i< the necessary, condition on A, B, C so that

. / PLA n BJC) = P(A[C) P(Blc)? K

e 5 s oAkt SR i A e ot ot o e
)

(HINT: Independence is the key.) 5 ‘
) | : -
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CHAPTER IV STUDENT FEED-BACK AND CONCLUDING REMARKS

Section 1: Student Feed-Back

Like mny of my colleagues I have always been interested in
how students perceived my work in the c1assroom.,"(Self-evaluafion is,
of course, an integral part of "dquality control” in the teaching q
pmfession..) Course/teacher evaluations prepared by Dawson College and
by 'Students'. I}ssociations have served to provide some general feed-back.
/\\/Bft\@ing the past two yéars my interest in certain teaching methods,
' in why some individuals approach Mathematics with great trep'idat'lon and
espgciaﬂy in whether my use of the guided discovery method was having
any effect have led me;, to sgek feed-back more specific to these concerns. /’
I wanted to -try to find out.w'r.\y students found proofs difficult, and how |
they felt about "provin,g" in general. 1 wanted to know what mathematical
topics tt{ey might havg had trouble with. . [ was a'i'SO curious how they

would respond to .being placed in the role of "teacher”. Thus, in early

"~ 1979, with these points in mind, I drafted a questionnaire.

/

The First Questionnaire ‘ . .

After one or two praiiminary drafts I decided to include the
fquMng si/x questions or directives in what L now refer to as "The s
First Questionnaire”: ’

(1) What was the most difficult topic you ever studied 1n'Mathenlat1cs'?
" Why do you think you had so-much’ trouble with it? .

" (2) A student once said that it is a waste of timwﬁ PROVE anything - F

formally in this course, or in any course, for that matter. Do

you agree or disagree? Explain..

A W,
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(3) Many times a student will ask: "Will there be proofs on the exam?" ‘
60 you find proofs difficult? Explain. )
(4) Many people c;]aim' that they “just can't do Mathematics" Some even
”admit that they.would be afraid to take a‘math course or that they
hate mathematics. What do you think causes these attitudes?

(5) Imagine that you are tutoring someone in Mathematics. Your topic

for the day 'ls FILL IN TOPIC OF YOUR CHOICE. Briefly explain how

-
you would go about teaching this topic. !
- - What kind of examples would you use" .
- What, if anything, would you Eg_v_g_ in general’ 4
- How would you know that the person you are tutoring ;
| understood the lesson? ;
(6) Maie up an exefc;se based on topics we have cozered in this course. ]
"Tough" probliems copied out of textbooks will not be of special
merif.: Alsd, you shou]ld be able to SOLVE your proposed problem. .
These quest»ions‘were distributed to my c‘lasses during,the course
of two“semesters. I must admit that, with 'the rare exception, the responses
were disdppointing, for the following reasons: ' - -
(a) Only a small percentage of my students - around 5-’10% or :
abo‘fn 25 1ndividuals - }‘eturned a completed questionnaire, responding té
the questions being voluntary. I generally distributed the questionnaire ;
in the middle of our 15-week ter:m, thus giving gveryone about 7 weeks to
respond, Despite frequent reminders most people simply forgot about
the whole thing. Possibly t:heir course work prevented them from attending i

to such an optional matter. >

- @
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(b) Many students wrote long, rambling essays:, espeéiaﬂy '

when answering questions (2), (3) or (4). ! admit that thes,e"quest‘lons

w

may be too general and thus encourage the "paddjngLér vaguenass—pre- '

valent in most responses. But such hindsight does little to ease my
|

di sappointment.

() A number of respondents jotted down one or two sentences
)

for each of the first 5 questions and concocted a few trivial exampies
{

to sat1sfy the requ1rement for the last questfon/directive. They may

have been satisfied thaM"dane their duty" Clearly, I wasn't.

Any statements I had made in class in an jt%empt to prevent such slap-
dash, half-hearted work had not made much of an impression on these - d
stpdents. ’

What follows now is a summary and analysis 6f the responses

given to the 6 parts of the questioinaire.

Responses ‘to (1 )

¢

There was no genera‘l consensus when it came to selecting the
"most difficult topic”. Answers ranged from "Mathematical Induction" to
"Probability" to "Word. Problems -in Calculus" to "Lines and Planes in

Space”. Most students didn't seem to blame anyone but themselves for

any difficulties with a topic. This came as a pleasant surprise. Unfort-

unately though, they were not \Lery sheci fic about what aspect of a part-
1cu1alr concept might have puzzled them, or y_hy_ it bothered them. One of
my long-standing shspicions, however, was somewhat confirmed from the

answers given by about a dozen-individuals, Thomas Gagnon, for example,

in writing about hf_s difficulties with Probability complained:

i . v \ .
. Dor

1
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‘ "There seemed to be no standard techniques fér soiving pro-
babﬂity problems ... The teacher should have shown us Some ways of
working the various types of problems."

"1 have long-felt—that-fot having SyStematic cut-and-dried 1

procedures for solving all kinds of problems fruitraied a lot of students.

— —4

_In Introductory Calculus they are taught speqiﬁc differentiation techniques

which correspond to certain. kinds of functions - a highly structured sit-

uation. In many cases the wording of the problems [for example: "Use

the Chain Rule to differentiate the fol]owing "] leaves no doubt as to '

e

" what method to u;;. In CoHege Mathemat‘ics students are much more Hl(ely
to hive to make thefir own decisions and/or more difficult decisions: "Does .
this problem involve permutations or combinations?”, “Are repetitions (of
symbols in an arrangement) allowed?", "Are we dealing with mutually exclusive

+ or independent events?’, and so on. /The contrast between the levels of . |

decision-making in various courses is probably a significant: contributor
to the amount of frustration. Now, clearly all problems either cannot
be or sl\\ould not be conveniently tagged to a specificl method by the teacher
After all, 1n "real-1ife" or industrial or business situations@mblem
solver is often ca‘l’led upon to make decisions' about optimal ways and

. possible ways to tackle certain problems. Thus, [ contend that in addi tion

to the time spent looking for "canned prob]en,r solving procedJures“’ 2 teacher
should devote some time to érapp]in'g“with the di‘fficult task of reducing
O/}_r_l_g contrast between the kinds of prablem salying required in various

courses, In a few years | hopg to be able to categorically state that -

duided ?1sc0\'rery teaching is an important aid in this struggle. (Right | N

- now, [ simply suspect that it may be.)
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Responses to (2) ' - o

. N . !
] expected most of the students to support the “disagree” side;
; ‘ !

\ < hat is, to affirm the necessity of mathematical-proofs. I now realize

e et T

h 'jchat the question may be loaded in such a way as to elicit this "desired
res;ponse“f And indeed, the vast majority (% or more) of those whor )
« ’ expressed their opirfiions were in favour of proofs. Theilr reasons generally’ “
. '._, were: "to understand t'he 1ogi\c of a théorem", "to_improve' the abiH‘t.y to
R . think", “to set thin@s straight in your min\d", and the, 11kF. One of my

pupiis, Allan Short, expressed his v_iey«ém:

>~

Tewi ot b

“To prove something formally is to see the true beauty of
Mathematics. Manipulation of numbers is, in the long run, trivial,
‘ Anybody can crunch numbers on a calculator. -Therefore, in the,broadest
. sense, proving something is not a waste of time. It enables an individual
: ) to see the logic behind mathematical operations and it gives one the
« satisfaction that the procedures in use are not random,.lucky ones, but
that there are valid reasons fov‘j'doing something in a certain way." 1

Kno(ning Allan fairly well - he was my student for 2 semesters
and we had, during that time, many hours of discussion in my office - I
feel that his answer is quite honest and represents his true feelings

: < about the matter. But not all responses were so favourable or so well

-— formulated. A Jot of what was handed to me was, unfortunately, sheer
B . \ . .
nonsense, such as:

“Problems involving numbers are much easier than doing a proof
| even if they mean the same thing."

I had the impression that some students still did not know the djfference

between a general proof and a mere i1lustration of a hypothesis via a

. \ e . *

numerical example. . ”

. . " .
A few individuals bravely went against the strong cu(rrent of
\ . R
popular opinion and candidly let me know that they felt*that prgofs in

. e

- . fa -

¢
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class were a waste of time. Among these outspoken individuals was
Keitry Cranston who asserted:

"Proofs- fn this course TLinear Algebra] are generally a waste
of time. The general terms have really no concrete mean'lng so it makes .
"{g difficult to relate the proof to anythmg."

3. ) ‘ - ™

" agree with that'student - that proofs\are a waste of time -
_because in a course you might l‘a’ to prove sofiething one way and then
in thé next course you'll lea totally different way."

Arthur _Roich said:

~ Evigently 1t‘ will take more work on :my fart to convin}e at
least some of my students that proofs agesan import;;wt part of Mathematics.
(In The Secqnd Questionn{i re [ pose another question con€ning proof56 '
ook at the .results obtained for Ehis question, |

Y
t \

ter on in th1s

, ~ .

Responses to (3) \ ’

[

The main reason ‘qiven for difficulties encountered\in doing
proofs was: NOT KNOHING HOW TO GET. S)RTED During class discussions,
IS well this appears to be a major ‘concern. Therefore [ spend several |
hours each term talking to my students about the various kinds of proofs
[s.ee Section 2, Chp. IIJ ‘and helping them with proofs, particularly '

with “opening strategies”. /C _
There is no doubt, however, that a‘\l%ﬂe extra e_[y.(jragement-
A4

and guidance should accompany.the proof-making task in my classes. Fc;r,

as Allan Short says: e Lo

- "] .sometimas find proofs difficult because I reach a point where
I get.stuck.- Many times it turns out that you have to be quite clever to
be able.to continuk. At other .times it's so easy to take a wrong track.

T discover that the method I had started tofuse is simply not going to work '

This 1s 1scouraging, to say the 1east"‘

»

.\\_”




- “

| 105 7 e
Responses to (4) and (5).

The 2 questions which received the greatest attention were (4)

and (5) [hot every student chose to answer gVery‘questioﬁ]. However,

"while the number of responses midy have been compardtively large, the

quality and variety of éﬁswers'lefé somefhiﬁgqto be desired. -
In (4), most students attributed the negative\feeliﬁgs about
, * / .

Mathematics to no personal motivation, lack of patience, poor preparation
T e .

or insufficient time spent studying. Two ind1v1du3}s felt that some -

REY .
people shied away from‘math because it is a subject "wﬁére there s ONLY

'. .
- ONE RIGHT ANSWER". A’ few took a somewhat Freudian attitude, ascribing

d1ff1cu1t1es to unpleasant incidents that may have taken place in early
childhgod in the first few years of elémentary school. However, not one
person offered any3suggestions,as Eb what [ might do to ﬁelp students
overcome their fear of.mathematics. This was mostly my fault. 1 had
neglected @o qék for_'such suggestisns in the Questionnaire

: Personé?ﬁy\\;\has most disappointed with the responses [ got
for ( *i} ’1 had been confident that the way in wh1ch1¢he question was
worded Wpuld make it clear to everyone that [ wanted detailed descriptions .
of tutoPiqg sftuations b::;d on a specific topic. But the work’ submitted
was, in many cases, even more vague and uninformative than it had been *

)‘ P )
for the previous four questions. Several students s!mp]y ignor?q‘my

, / )
instructions to spfé/; a topic and went about writing long essay$ on

teaching{//}baﬁg/ The gist of such essays was: always give a lot of
examplesy state-the major theorems, make the person being t&tgred do a

19;/6? exercises and give them 1ittle quizzes as frequentiy as possible,

4
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Now I knéw that a number of students had actually done some tutoring but

n_o? one efected to write a personal account.of how these tutoring sessions

progressed. Nor did anyon:%ecuhte about what examples they i
might use or what properties they would E:t;ther proving in a hypothetical
tutor‘lpg‘s.i_tuati.on. Perhaps I had expected too much or perhaps [ should
have provided a much more‘det'aﬂed éxplanat‘lon as to what _I expected
from my students.

Among the many pages of disappointing réading I did run across
gt Ieast this one gem of a remark by Arnie Di Loreto: .

"“The students who(m) you tutor must be able to ask you questions
The only way that this will happen is if THEY ARE TREATED AS¢ PERSONS AND
NOT AS STUDENTS."

Responses to (6)

Despite repeated requests not to hand in routine exercises copied
from textbooks many students seemed to have done Just’/;at. Among the
"r'ew (1ess then about 2 &ozen) relatively interesting or creative prob]ems

that were submitted certain patterns became evident.

™~

- Abo_ut 40 percent of the preblems were based on patterns or
ex'tensions of patte/rns discussed in class. For instance, S{Trtly after
I had done some matrix a1geb$a Bern'le Zemaitaitis proposed t\he exercise:

“If A, B, C conmute in pairs [that is, AB = BA, AC = CA and BC =
prove that A? 82 ct s C2 B2-A2 " . .

-~
-

Matrix patterns were, in fact, quite popular. Michael Sideris

suggested the following_ b em: % F

"Given A = | 1 -1 ] show that Co0
-1 1 ] .
- ‘l 1 - ] N -
1 ]

]
J
1
1 |

%

.

ée]‘
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(a) A2 81 () A3 . (c) A2M, 2200 forallme NS _ [\

This problem might possibly appear in some textbook on Linear

Algebra but Michael assured me that he had discovered the pattern by

hjmse'lf. 1 do ‘gmt doubt his word. f 1
Another (small) group of students generated some exercises ’ {é

whose solutions would turn out to very simpie provided one started by ~ 3
SIM&!__,I}‘-',YING the given expressions. Mario Filippone, for example, “ ]
contributed: . . . B , 3
_"Analyse and sketch the function y = x3 - :2 -]4x +,4'. " ( j

’ L T \ :

Chee Yin Lu submitted: ’

»

“Giveny = 2 tanzi_ -2 secz% + (1 - cos 2x + 2 cos?x)3

find dy."
dx E .
Imitation is.a form of flattery. I constantly tell my classes

to see if they cap simplify various expressions before plunging into a A

problem.

1

'Upon some reﬂect;on I have come to the conclusion that the
quality (and the quantity) of the exercises nigny have heen higher had I

(a) been more explicit about what I meant by “special” or

"creative" problems,

(b) perhaps encouraged the students to work in teams,

and - (c) provided some special incentives for working on‘question (6).

[for example, small prizes or bonus marks]
The éreatest value, for me, of The First Questionnairg was that

’ -
f learned snmethiﬂg about FeaHstic’ expectations in relation to responses

to such a set of questions. I also learned that desfgning good questions
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was not as simple a matter as I had once believed. | I had the feeling that
a second questionnaire compiled after this experience would produce better-

(more informative) results. But befor¥this took g}ace I’would attempt

to use a visual medium to obtain further feed-back on my teachidb tyl

L

The Filming Session

. ¢
On October 23rd, 1980 Kevin 0'Connor from the Dawson Qounse]ling

Centre and Bob 0'Meara together witH'Robert Deans from the Media Resources
Department of Dawson College came into my Linear Algebra clas$ to tape and
observe a session on Elementary Matrices. R1is was an opportunity for me
to "stand back" and ;tudy the dynamics of the guidgd,d1§covery process on
fiim. While the class was going om Mr. 0'Connor sat at the back of th .
room observfﬁq and making notes. (The film has been transferred to ‘standard
$ - inch taqe and can be viewed on V.T.R. units found in most university
resource ceﬁtres or libraries. A copy of the film is in my possesion
_ and may be borrowed at any\fiﬁe,by contacting me at the Mathem;t{cs
» Department, Richelieu Campus, Dawson College.i ,
After class I met with Kevin 0'Connor to get his views on my
teaching, classroom management and the students' reactions. He raised
the following Eositfve points:

-

() A §E:30us learning environment had been evident ddring the

Elementary Matrix session, ’ T

(2) There was good progression throughout the lesson; as time

passed teacher and students became progressively more

active and invalved.

(3) My speaking style and fone were good; hands and other
. - 0
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v Fall of '79, which took place in a class on College
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’ bodily gestures were used effectively. -

(8) There was a definite improvement over last year, part- .

icularly with regard to the added emphasis being placed

on student involvement. E} had participated in a similar

taping/filming session supervised by Mr. 0'Connor in the

3

@athemat1cs.]

! .

But, of course, other points were brought up when we looked

+

‘at areas that might need 1mprovement._ In parficu]ar, Mr. 0'Connor noted

/

that: ' ' ' b
(1) The teaching pace was sometimes quite rapid. Through the
use of a few more, “longer pauses to allow for reflection
5nd comments by the students, the lesson might have beeﬁ’
more effective.

(2). Many times the students' replies were given in a low, unsure

] §
ton§{ Possibly more support was needed here, or a greater

effort to encourage the more reserved, less vocal members

of the class t9 participate in the discussion.

(3) I sometimes had a tendency to answer my own questions,

) '(§ther than using the questions to elicit responses from ;rj
’ the class. ‘ f

e I have had the opportunipy to view the film on two o;casions. \
Unfortunately, I must.:dmit that.the element of student participatign or
discovery wasn‘é as prominent as I would have hoped. I still have no doubf
that the use o;'guidéd discovery teaching to "point the way" towards

,thgoremé, general properties and other mathematical concepts cin be a

\ L3
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"valuable pedagogical tool. But cleariy there {s ample room for refining

or'pofishi;g my alassroom presentation so that I may use this tool,more
effgpgive1y. For instance I would Yike to find a way in which more time

could be spent exp]oring_fncorréct responses by students without having

to drastica?ly curtai1’/gn course sy11abus. I will return to th1s and ;
-

other issues under the ﬁ%ading "Future Plans", later in the Chapter

AN

The - Second Questionnaire

. About 2 weeks after the fiiming expériment had taken place [ »~

',decided to distribute a brief questionnaire to the game group of students.

I designed 3 very specific questions (hav1ng learned something, hbpefuily,
from my parlier efforts) to which Kevin 0O Connor added 3 excellent questions

of his own. ‘These 6 questions were to comprise The Second Questionnaire.

Q

L]

My Questions ' . f
(1) 1In presenting a tOpiggsuéh as Elementary Matrices it is possible to

(a)"simp1y 1ist the theorems and properties and then give a set of

+.." {llustrative examples, OR
; .
(b). “help students formulate many o rules themselves through

observing patterns'hnd relationships: |
Did you find that my use of method (b) actually helped you to undér-
stand-the fundamentals of E1C§pentany Matrices? Which method, (2) or
(b}, would 1__ u generally prefer and why?

"(2) Has your feeling about proofs changed since the beginning of the "

course? Explain.

(3) In your own words, briefly describe what prior information about

elementary matr1ces, row equivalence, determinants, etc. is required

- — R L SR G
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in order to prove the‘Dete&%?nant-ﬂreductifg;;:;;l}gt;j\\> -

s :
det AB = det A det B].” DO NOT REPRODUCE THE PROOF.

Kevin 0'Connor's Questions

{4) Did you find that the rate or pace of the%{;;;;;§ fs too fast, just

> right or too slow?

§\ (s) " How do you feel about answering questions in class?
(6) What rqcommendations can you make to.help improve the class?

The Second Questionnaire was distributed by Kevin 0'Connor.

Unlike in the case of the First Questionnaire all students were asked to

A respond and to respond imme&iately after the Questionnaire had‘been given

out.

" « . ¢

-

Mr. 0'Connor carefully explained to my students that the purpose

of the questions was to obtain feed-back about my particular style of
' Z‘ teaching. It was made cleay that [ was involved in a personal and com-
\ pletely voluntary project and that in no way were their responses to be

;o \  used as a teacher evaluation by the Mathehatics Department or Dawson

\ ‘ i ,

\\ College. This was done to put the students at ease and to try to solicit
‘\honest opinions and constructive criticism. A1l replies, furthermore,
&ere to be anonymous. I returned to the classroom only after the responses

\ . .
hae been collected by Mr. 0'Connor.

-

) . Reghpnses to gpestion'(l)

-

( \ Of the 32 students present 3 did not answer this question. Twenty-
one,;>\the remaining twenty-nihe expressed a preference for the discovery'

\ .
i method|%r method (b). Most of these 2) claimed that method (b) he]pedtthem
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get more involved in the lecture, and thus to ‘understand the subject matter
better. One rather exqbe?ant student even wrote: "I only wish 6the¥
teachers used your method!"# But the prize for originality surely goe%

to the individual who composed:
"METHOD B IS LIKE BUILDING A HOﬁéE FROM ITS FOUNDATIONS WHILE'

ETHOD A IS MORE LIKE BUILDING~Q;CASILE IN THE AIR."
- I believe that in transcribing this inspired support of quided discovery

teaching I'm. justif(<d in using capital letters! : S
|
The following quote represents quite well the views of those
students who favoured the exﬁository method of presentation:

\"It would be less confusing for me to understand given facts
than to try.to make up rules by mysglf.“

Several people sugge&ted that method (a) would use up less cldss time '
1eaving more time for the presentation of examples.

I was obviously pleased that the discovery method was well

[N

_received by the majority of the c]és;., At the same time, my own view

- that guided discovery may not be the best method for all persons and

under all occasions also.received some‘confirmationl Some recommendations
were made to keep using a combination of methods {a) and (b). This raises
a challenge for future course p{apning: to fin® the optimal combination
given certain class profiles (student attitudes and backgrounds) and ;he

N

usual time constraints. ~

Response to Question (2)

Although eleven respondents felt that they were starting t& feel.
a bit-more cdmfortable withy proofs my overall impression from studying all

the responses was that thg questions on "proofs" on assignments and .

/ ’ v
/ . - o

a
/ .
-
7 - R -
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and especially on tests still generated a fair amount of anxiety. Ove

and over I read: "I need more time to get used to proofs.” What I

_ found 1hterest1ng though, was that at least 6 §tudents admi tted that, as

difficult as proofsdg:y be, they were an fmportaht part of learning

. - Mathematics. (This corresponds rather wefl to the results I obtained

for Question (2) of the First Questionnaire.) About 5 people repﬁrted

that their biggest problem had always been how to start proofs but that -

they had detected an 1m§rovement in their abilities to overcome this - ~

hurdle during the course of the term. ,
| For some, of course, negative attitudes towards proofs had not
changed. (There were approximately 8 in this group.) As one spokesman

for this group aptly put it:

- u

"My feelings about proofs haven't changed for years. I still
hate them." .

[ had not expected to help everyone overcome their malaise about
proofs. A1l in all I'm now pretty certain that the actiVe«d1a19§ue/

discovery approach may be an important tool in bringing\gathemétics

[N

students and mathematical proofs clog;r together.
. »

. 3 :
Only 6 students were able to describe the prerequisite knowledge

Responses to Question (3)

one requires to prove the Determinant Product Theorem. The athers left
the question blank, in most cases. Three or four students made an unsuc-

cessful attempt putting down one or two ideas, and then gi’inq up. (One

- of them wrote: "If there was 2 test tomorrow I'd know what to do'")

The class was clearly unprepared for this question. Was it because guided

discovery teaching did not make it-any easier for them to assimilate a

(T y

N




114

;

long Mequence of ideas? Or, was it because most students make rio effort
to review their notes unless they are thﬁgatened with a test? [ really

don‘t know. -

[e - e K K} /
f <« R

Responses to Question (4)° . N

\\ ' _ Seven students %élt that the class pace'was too slow, three’
be]ievgd it was too fast, and twenty-two were satisfied with the paciné.
A few oMthose who rated the lessons "too slow" added: "I would like
- more time to think about the things d1scussedﬁ1n class." This lends further
support to Kevin O'Connor's étatemeq&bthat I shouldballow a few extra
moments for reflection, questions etc. Hpﬁever; on the whole, the responses

indicate that my presené pacing is not too far off the mark.

Responses to Question (5)

The majority of the class felt that answering questions was ang¢

important part of learning. Moreover, about 10 individuals declared that

am e

they 1iked answering questions and listening to the answers of others, for i

sy

‘fz . ) this way they could learn from their mistakes and the mistakes of others
N ' . ” &
"Qight on the spot". Some reported that they felt more confident after

"

having answered a few questions correctly.

€
-t S

{ ' . Seven students were somewhat less enthusiastic about speaking up

-

in class, saying that they "didn't mind provided they were sure that they

1

had the right answer". Finally, 3 people had the cou;age to admit that’
. theyldis11ked answering questions, one of them explaiéing that he (she?)

was~just tbo shy. (Having viewed the "Elementary Matrix Lesson" film ’
earlier and obserQed that only about S or 6 sfudents regulariy participated .

in the discussion, I'm fairly certain that these 3 spoke for a number of

' i
a
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. others who were too shy to say they were shy:!)

118
¢

f ’ .
Overall, I was definitely pleased with the responses. Comments

such as: » , .

“Answering questions in class is a good method to improve a
student's confidence in himself in relation to his math abilities. Of -
course, no one should be forced to answer questions but rather should be
encouraged to answer them. The emphasis on encouragement {s handled well
in class.” ¥ - ,

Y

. and ¥
“The class has an open and friendly atmosphere so I don't mind
answering questions. This type of atmosphere makes me feel comfortable
among people I don't know." -

were very encouraging.

Responses to Question (6) .

In summary the following recommendatiofls were made by the students
(the number in brackets 1nd1éat1ng the number of riespondents):
(a) spend more time on solving problems|in exercise sets. [6]
(b) find a good textbook. [6] ‘
(c) put more emphasis on.the applications of Linear Algebra. [8]
(d) put some bonus questions on tests. (5] | s
(e) “give more peoplé ("not just the usual smart group") a chance
to answer questions. [9] o
(f) have class reviews before tests. [3] y,
(g) allow extra time to think about hardey probIehs. [3]
~Points (a), (f), (g) all have to do with time or pacing t.he
course. This issue had been brought up earlier and clearly will require

" serious consideration both on my part and the part of various course

comittees. Also, the Linear Algebra course committee will have to sit

£




a doubt I will have to concentrate oq,invo1ving more students in my classes
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4

down and discuss the text situation since at .least 6 students, 1g mﬁ-c!ass ’

alone, had negative things to say about our present text. The question-
naire and the film has made me very aware of recommendation (e). Without
’ |
in dialogue or general discussion. Points (c) and (d) [on "applications"”
and "bonus questionsf] should also be matters for the Linear Algebra course

committee, since I believe that.there shou1d‘be a genera] policy discussion

about these issues with the hope of achiéviné consistency among the various

. § : . L ® '
sections of tﬁe course.

>

& i

. At least a dozen students either had no suggestions to make or
left the question blank. \::> >

Summary:
The kinds of questions posed

d the way in which The Second $ .
Questionnairé’was administered seemed to have made a difference. I now

. v . :
have a much better idea about the strengths and weaknesses in my teaching

. C -
style. In particular, responses to such questions as (2), {5) and (6) °

have given me some direction or 1nd1cation as to what aspects. of my
+

guided discovery teach1 g h een effective and what aspects can use

some further polishing oﬁrimprnviizifjb .
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Section 2: ‘Concluding Remarks

ol [

“Triumphs and Pitfalls , ) 3

=]

' . Perhaps my use of the preseﬁt tense in this thesis has tended

,uto lend an aura ofmugiversal app}icability to the technique of guﬁded

di;coveny teaching. Ho;;;;??\g> no means }o Luconsid;r this mode of

teacﬁing to be a panacea for gj}?@gdagogical proSlemsl For one thing,

I have noted that the lack of sﬁfficien class :img_can serioustly éffect
one's teaching strategy; specifitally, obtimal use of th; guideé dis-
‘covery method may require a greaf deal of extra time and one has to baldice
"methgd" with the overall requirements of é sy15abus.vis—a-vis “content"”.
On,the basis of some of the questioénaiée results and the figmfng exper-
iment in Linear Aigebra it is very temptipg to expand on‘ghe guided dis- )

covery feature, to involve more‘;tudents and to re-work certain. topics.

But hdw‘much would "content" suffer? How many topiés would have to be

shortened or even aliminated? A truly frustrating dilemma!

, " Another possible drgyback of the Yialogue-discovery me;hbd is
that séme students may ac;ually be intimidated by their very vocal or
’active classmates, Just when the exchahge of idea; between the instructor
and certain members of the class may be flowing beautifully, a few of the‘l

more reticent or’Slqyer students may be discovering that others’are better

at'discoverx: Moreover, the teacher will,.most probably, not even be aware

N

of such a countey-productive affect. (It takes considerable control on the

. part of a teacher to occasionally hold the agressive, vocal and “clever"

types in check, in order to make it possible for those whe don‘t usually
.participaténto maké their contribution. I know that I am often too eager

to hear the rightﬁanswer and thereby,m&y 1nadvertenf1y promote an excessive

7

"l

7

o
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amount of shommanship by a few “smart" individuals.)
Sometimes what I may see as an excellent opportunity to generate

dialogue and open the way to discovery may appear to some students as

fuﬁnece§sary sta]ljng? In fact I ﬁave met a few individuals who syowed
c;nsiderab1e annoyance at my attempts to ha;é them work towards the desired
theorem or property. I have had great difficulty try%hg to‘convince these o T
skeptjcs that there may be some advantage to yjthholding and building up - N
to ‘general results once:in a while. o

- But in the fina} analysis, I feel that quided discovery session$
can be very suécessful. In the short time (approximately 2 years) that I

. : R4 *
had experimetted with it I} believe that [ have garnered sufficient evidence

., to support this claim. The bulk of the responses to the Questionnaires,

especially to the Second Questionnaire form part of this evidence. The
We .

decrease in the number of course withdrawals I've had.(around 5 to 10 per

cent less than 3 or 4 years ago) and the high class averages [in the order

of 70-75 per cent, taking the 3 courses? Linear Algebra, Calculus, ahd '
College Mat?ematics, 1nto‘3;caunt) are further evidence, I believe. The .

. number of students coming into my office at the endvof,éach term (at Ieast“:'
r 10-15 per term over the last couple'of years) expressing their satisfaction

with my teaching 1§/sure1y another positive indicator.

"

- I know that I have not developed the use of the guided discovery

process to my ultimate satisfaction. All the better! I can look forward

to continued experimehtat1on with this exciting learning/teaching method. ‘
- ) . N é
. Future Plans .-

e

\ X As 1 had just stated there are areas d}rgctly and indirectly

v . \¥ , ,
:
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connected to gquided discovery teaching which I wish to explore in the

- future. Some of these tentative projects are:

(a)

(b)

(c)’

N (d)

. o

)

(g)

Prologue

. N
to look for ways to get‘the sﬁy or non-part{c1pating
students 1nvo1$ed in mathematicai dialogue and discovery.
to expand and refine my proklem sets, incorporating more
challenging and varied "Consolidation Exercises".

to spend more time - probably in the\unhurriedland more
personal environment of my office - following up unsﬁtces;-
ful student problem-solving strategies, finding out why
students make certain types of unjustified assﬁmptions;
algebraic mistakes and so on.

to find better ways of teaching "proofs".

to investigate the rolg of "readiness" or "mathematical
m@ﬁﬁrity“ in learning proofé. apstract concepts and in
devis1ngﬁprob1em-so1v1ng strategies.

to develop better questionnaires and look for other sources

. of feed-back to gage student reaction to quided discovery

teaching.

to look for other topics which may be amenable to the guided

_

AN

discovery approach.

Perhaps one day one of my former students will drop into my office

and inform me that he has been te;ching mathematics at a Yocal educational

institution. He may then relate how he has been trying to get his students

involved in dialogue, in discovering some of the rules-of Mathematics . for

\ themselves. That would be, for-me, the ultimate farm of career,éltisfactidn.

D e —— [P

|
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