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! . This major technical report attempts to put together

methods, approaches ahd'teqhniques which can be used to
A 4 4 »
implement recursive and non-recursive digital filtérs. In -

L ¥

other words, it is the analysis and design of dedicated
N —
digital hardware that qsn be used to perform real-time

filtering tasks like the many required.in communication -

g
3 \f’

systems. . A Co C

and its izations. It starts with basic definitions of

the digital filter, its operation, then the different

K

al and combinatorial approaches. Other implementations that

e

use counters, RAMs and residue number syStems are described.
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"Chapter III degcfibes problems, variations and other

associated aspects of ﬁhe approaches used in the hardware

implementation. of filters. Basic considerations of digital

signal processor hardware architecture are described also.

-

-

Chapter IV, which concludes the report, gives a summary

and an evaluation of the differentlhardwa;ehimplementation

: t
2 . L
approaches described in the report.
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" NOTATIONS
) ' .
- a,  The ith cqefficient of a filter (for input
i ‘
data . . . ]
) bi ( The i— coefficient of a filter (for delayed
output in a recursive filter)
. B The word-length in bits
v
‘23 The word-ffngth of a;
Bx ‘ The word-length of the input data word
b Bt The total word-length for a shift rqgister in
the counting implementation, = B, + Bx -1
by " The k& pit of the 3 coefficient "
d,,e.,£., )
Fl 1 lh Logic functions of i,3 -
CFi,3091 \ :
. th .
Ft The t— Fermat number
F(p) "A Galois field of order p - 7 N
H(z) . The transfer function in the z-domain
mi The i52/ modulo in a residue number system
ﬁ-l The multiplicative‘iﬁVerse of,mi
s Y ' t ' R
ﬁi ' The dynamic range of the modulo m, in a residue
T " number §¥stem'
oot The multiplicative inverse of Ei
i / :
R The response of a filter .
T The sampling period

.

zzxn,X(nT) The QEE sample of input data

X The Discrete Fourier transform
xi(n),|Xn|ﬁ The input data modulo'mi in a residue number
-1 system : 7 ‘
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CHAPTER I

) " BASIC CONCEPTS

_ 1.1 INTRODUCTION . - ot

’

Filtering is a proceés by which the frequency spectrum
of a signal can be reshaped, modified pr manipulated accord-
“?nq to some desired specification. It may include amplify-
ing, attenuating, rejecting or isolating frequencylcomponf
. ents. Such a process can be used to eliminate -signal con-
tamination such éé noise, to remove §}gnal distortion. s
brought about by an imperfeét transmissionm ‘channel, to ‘separ=

ate two or more distinct signals and many other applications.

:Vﬁyiﬁgﬁaigital filter is a digital system that is used
to filfer'discrete time signalé. It is implementea by means
of software (computer programs) -or bﬁ means of dedicated’
hardware. The hardware implementation is very useful for
real-time data, although real-time and non-real-time data can
be filtered b&nbcth a hardware or a software—implemented digi- -

tal filter. / , ¥

-
’»

Digital filters have tremendous applications in digital
signal processing. These include digital communications,
lacousfics, biomed}cal engineering, radar systemé, movﬁng-,
target indicaéors, and so forth. Thg deveiopment in digita%-

' filter hardware is progressing rapidly.'%This will lead to




‘the production of efficient and low-cost digital filters

that are suitable for a variety of applications.

e

1.2 THE DIGITAL FILTER- AS A SYSTEM

A digital filter can be viewed as a‘system. The in- '
put is a discrete time quantized function which would excite
the filter to produce a disgrete &ime output. Figufe 1.1
depicté such’a representation. The response is related to

the excitation by some rule of correspondence. If X(nT)

and Y(nT) are the excitation and the.response, respectively,

)

then the filter can be characterized by <
» I
S g ” ,
Y(nT) = R X(nT) (1.1),
where . 5 )
R is an operator. \ “ .

‘ If the internal parametéﬁé of the filter do not ch&nge
with time, the digital filter is said to be time-invari;nt.’
Usually, the response of a filter depends on the currént and
some previous values.of the excitation. Such filters are

saig, to be causal. On _the other hand, filters in which the

‘response depeﬁdé onrfuture values of the excitation, are

said to be noncausal..
- »
If the response of a digital filter is a linear func-
¥

tion of the excitation, the filter is linear. For example,

a linear digital filter would have its response doubled if

[
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1.1 The digital filter as a system.
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4

its excitation is doubled. In addition, in a linear filter,

the response to a sum of different excitations is the sum of

~

the individual responses.

Digital filters are of two basic types: recursive
and non-recursive. A non-recursive digital filter is one
in which the response depends only on the values of the

excitation, that is .

Y(nT) = £{..., X(nT-T), X(nT), X(nT+T) ...}

Assuming the filter to be linear and t4ime-invarient, ¥ (nT)

can be expressed as
. C %

Q

. ' @
“ Y(nT)= I

i=-w

a, X(nT-iT)

where
£
ai.represent‘constants.

Furthermore, if the filter is causal °

Y(nT) = I a; X(nT-iT)

®

If X(nT) =0 for n < 0 and a; = 0 for i > N, then

z

N ‘ .
Y{nT) = L a; X (nT-1i1) (1.2)




.
.

’

Therefore, any linear, time-invarient, causal, non-recur§ive
LI ’ ‘;
filter can bgrrepresented by an NEE-— order differencé‘ﬁﬁ;

equation. N is the order of the filter.

- .
- 1

The recursive digital f£ilter, on the other hand, has a

* response Wwhich depends on current and previous wvalues of the

»

excitation and the, previous wvalues of theﬂresponéés. So,
" for a 1inear, time-invarient causal filter
- N ‘N ' .
Y(nT) = 1 a; X(nT=iT) - I bi Y (nT=-iT) (1.3)
: i=0 i=]

t

] -

1.3 . DIGITAL FILTER REALIZATIONS

. . V4
! e

[y
N

. ¥ . .. . ' \'
There are three types of elements involved in the.

digital filter realization: the unit delay, the adder and

-\

the multiplier, The proper inter-connection of these ele-
ments would prod&ce a network which would realize the digital
filter. ' ; ’

It is convenient and usefﬁl to analyze-ﬁhe digital
fiXter characteristics by examining'the Z-transform of its
respons;; Taking the one-sidedﬁz-transform of Equation (1.3):
we obtain l

N N
z[Y(nT)] = 2[ L a; X(nT-iT)] - 2[ I bi‘Y(nT-iT)]

i=o.. i=1

or
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7 ¥
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"15 L , : A
. Y(2) = °< X(2) (L.4) - ]
' 1+ £,b, 27%
where ¢ *’
. r' X "~ 5 ; ) ?i:
.Y (Z) = 2[Y(nT)] ‘ g
\ | . " :
X(z) = zZ[X(nT) ], ) - ‘
| : i . . T .
Let us define N(z), D(z), D'(z), H(z) as follows:J "
N -
N(z)y = I ay Z -0 (1.5
i=0 ' N .
~ N ;i ‘ : N
D'(z) = I b, Z . (1.6) &
/ ) i=1, . I
— | *
D(z) = 1 + D' (z) . (1.7) :
. , \ ) o
- N z) M . o. -
With these definitions, Eq. (1.4) reduces to -
— N 1 I
‘ i ’:
Y(z) = H(z2) X(2) . o
where ‘ D,
/ + ¢ ¢ . ! -
H{(z) islthe transfer function of the filter.
'There are many methods for realizing a digital filter.’
The basic and common principle to all of them,to break down
the'filﬁer transfer function, H(Z), into blocks and to re- o

arrange them into different configurations! Four confiéura—

tions for realizing digital filters are described here [l].Q

¢ —



-

'shown in Fig. 1.4.

&

1.3.1 Dpirect Realization

"With H(Z) defined as in Eq. (1.8), we can write

Y(Z) as | « .
| ¥(@) = Uy (2) + Uy(2) .9
where . !
U (2) = N(Z) X(2) . . (1.10)

v e

s

U,(2) =~D'(2) ¥(B) . - (1.11)

e

The realizatidn can be obtained by realizing N}Z) and -D(2)
separately, and then connecting them, as shown in Fig. 1.2.
The realization of polynomiai N(Z) is easy and can be
obtained in several ways. One possibility is depicted in’
Fig. 1.3. The same approach can be used to realize.~ﬁ(z).

I s -
The direct realization of a second-order filter, N = 2, is
-

1.3.2 Direct Caﬂbnic §balizabion

CIf Eq. (1.4) is rewritten as

Y(Z) = N(Z) Y'(2) ‘ (1.12)
where

Y'(Z2) = X(2) -~ D'(2) Y'(Z) 11.13)
we can deduce a direct reali;ation'which has the structure
shown in Fig. 1.5. Notice thatithe number of unit delays

is N, which.is the'brder of the filter. Because of this"

property the realization is said to be canonic with respect

-
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.Figure 1.5 Thé‘Canonic realiza.tion of H(z). S :
Noticé that points A & A' are the same '
_ , point indeed.They can be combined togefher '
S to gliminate the excess usage of delay units, ,3‘.'
; . * The same thing applies to points B & B',..etc..g Cy
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.to the number of unit delays.

‘. 1.3.3 Cascade Realization - .
e - 4 R S

The transfer function H(Z) gefined in Equation {(1.8)

can bevsplit into a product of second-order sections, i.e.,

we can rewrite Equation'(L.S) as N
L ' ‘
. ‘ M - \ .
/B(Z) = 1 Hi(z) (1.14)
. i=1 v QQ
where o
. | -1 -2
a . + a,.2 + a, 2
B (z) = 2L _1i 4, (1.15)
) 1+ bliz + bZiZ
~ Each Hi(Z) can be realized by using the ZEQ;- Order

canonic structu?e of Figure 1.6. The cascade realization

can be obtained by cascading the realizations of Hi(q) . as

in Figure 1.7.

1.3.4 Parallel Realization

In this approach, Equation (1.8) is rewritten as

.

&

M .
- . H(Z) = £ H,(2) ) (1.16)
i=1 ot '
where , ,
. l ‘G
3. +a, .2 ’
m(z) = —2 ¢ qarn
1+ by 27" + byZ. .

\;qph H; (Z2) +is reglized as a.separate blo#k,, as in the

. cascade realizatio;T‘\The blocks obtained are "‘then connected

i

() ;’;
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he 7 ' .
in paradllel as, in Figure 1.8.
~ ' )

1.4 DIGITAL FILTER IMPLEMENTATION

\

A

Certain arithmetic operations are required very often

L}
—

in digital signal processing.’ This includes bit operations

which are the elementary operations dealt with in impiementa-

tieq. ‘

L

Recalling the characteristic equations of the non-
recursive digital filter (Equation (1.2)), and that of the
recursive one (Equation (1L3)): éhe filtef operation involv-
ed is a ~ "multipdy-and-add" one. Sometimes, the initidl
input and final output ¢f the filter are continuous time:
analog signals. Hence, to be able to use a .digital filter in .
such a case, another process is regquired, namely} sampling
to obtain discrete data, and smoothing to recover the contin-

‘ uous output.

The "multiplication-and-addition" process is the
thing that identifies the different methods of implementa-
tion. There are many types of implementations becau;e of

the different ways one can multiply aitd add binary numbers.
One possibility is'to use a multiplier énd an accumulator, .
Orfe other way is to érecompute all possible products of the
goefficients of the filter and all possible inputs, and )

store them in a table, thén~u§e the input to look into this

table and find the partial p;oducts and accumulate them.

! « ’
'
A

¥
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Manf other ways are suggested, and described in Chapter II.
However, these methods require one or more of the following

digital operations:

e -

(a) . Addition or accumulation™ This is the proceéess

of adding a computed value to a register. This

- is done by an accumulator/register, using full

adders and combinational circuitry.:

r

(b) Multiplication by 2P: This is an easy operation

realized by a shift register. To multiply a -

register value by 20 ’ we simply shift

v S

the n bits toward the most significant bit in

v

" the register. Similarly, to divide by 2% the

bits are shifted towards the least significant

! bit in the register.

(c) Multiplication of two binary numbers: There are

many algorithms to multiply two binary numbers.
The most common one is the serial multiplication.

Let xlxz ‘e XN~ and Y.Y eee Y be two N-bit

172 N
binary numbers, (i.e., X0 Y5 € [1,0] ), then

1,

vy

2,2 veo &

12, can be obtained as follows [1]:

N
- (1) Initialize an accumulator (a shift register of

' - 2R

"

bits.)
(ii) Fomm A15 by ‘gating (AND) Y, and X; for
j=1,2, ..., N, and accumulate the result in the .

- )

7 ' o~ 'f' "“_-;7

oy A P Bron Ao

m LM e e et
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(d)

(iii)

(iv)

s

&
accumulator/shift register.

towards  the most 51gn1flcant bit

multiplying by 2.

accumulator.

The final result in the accumulator is

17

shift the contents of the shift register one bit

(Ail), i.e.,

Add the contents of the shift register to the .

(v) Repeat steps (ii), (iii), (iv) for i=1,2, ..., N.

the product
3

‘flzz e+« Dgy. Another approach for the multipli-

cation of two binary numbers is to use the serial -

magnitude mult%Fller. This multiplier receives

the multlpllcand bit by bit, serially,

and the N

bits of the multiplier in para;lel and produces

the product serially, bit by bit. It can be realiz-

ed by delay flip-flops, gateshand full
- N

adders.

Residue arithmetic encoding and decoding: Another

pair of digital operations that is,sometimes used in

the implementation of digital filters,
arithmetic encoding and deqoding@ If,
X, X, Ve X, is a binary number,ﬁtﬁe
process is to find M binary numbérs,

sented by K bits as 0

is residue
for example,
encoding

each repre-

T IR T

LT

b ———

Ul




‘o

[ .

R = {xllxlz ) e s e xlx; lexzz "o 0 xzx' . e ey %

X1 o Xugl ' © (1.18)

7

— where those M binary numbers are ,the originalj‘
. 3.
| . binary number x1 x2 e xn
. modulo Pyr and ' ©

p,'s is a set of M relatively prime
integers.
’ ) v ’ /
The decoding process is the reverse of this opera-

W

tion, i.e., given R as in Equation (1.18),

XX, ... X, 18 obtained.

{e) Counting:‘ The “ﬁult{ély—and—add"‘ opération can

| be 1mp1emented by addlng all the possible products
of all the bits of the data and the coefficients.

E - o These bit products are gated bits, hence by count- .

ing the number of 1l's obtalned at the gates, and-

shifting and accumulating, we achieve the filter

,/ ' operation. This requires binary counters which

are implemented by using flip-flops and gates.
i '

", Any implementation method uses tWwo or more of the

above operations. The choice of operations affects the
}

efficiency, accuracy and speed of thé implemented digital

”

) filter.

el
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CHAPTER II

HARDWARE IMPLEMENTATION OF
DIGITAL FILTERS

2.1° INTRODUCTION

Hardware implementations of digital filters have

different characteristics. These characteristics are deter=

mined by the implementation approaches used. These approaches

use mostly logic circuitry that are basically combinatorial
and yse shift registers, ROMs, RAMs, counters, encoders and

Y
decoders. The basic approaches discussed in'this Chapter
. N
i A
are %idely different from each other’; and hence their hard-

ware characteristics differ with respect to speed, accuracy,

reliability and other aspects. Six different approaches

-

are discussed here, and the basic concepts are analyzed and

]

compared.
) I

" 2.2 CONVENTIONAL IMPLEMENTATIONS ,

One of the standard épproaches,towards the implementa-
—tion of digital filters is to replace the muitipliers and
adders in the filéer real}zation by arithmetic units that
would multipiy and add. A specific multiplier unit was
proposed by Jackson, Kaiser and McDonald [2]' as early as
1968. This ﬁultiplier im;iements the filter using serial »
arithmetic, and performs addition and subtraction, as well.

The filter can be constructed from a small set of relatively

<

LA

B
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e
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. simple digital circuits, primarily shift registers and
2
adders. This configuration is highly modular in form, angd
is well suited to large-scale integration. 1In fact, such

a filter can_be easily multiplexed to process a number of

distinct signals.
2.2.1 The Arithmetic Unit

-~ *

There are three operations involved in the filter
opgration: delay, addition and multiplication. Each one
of these operations can be implementeé by a simple digital
circuit. A delay is achieved by a delay flip-flop, and the
addition is done by using an accunulator of a set of full
adders. The multiplication, on the other hand, is not éasy
to implement by a simple digital circuit. However, if them
multiplication is examined oﬁ the bit level, iﬁ\fﬁrns out

to be a simple process of gating. This is because the pro-

duct of two bits is the same as their gated value.

oy
* o

Consider the multiplication of two B-bit wofds, b'3

i

\ and a, éuch,that
Y B ., v
. - ox= Lox(20) = XX . ... XX
' i=0
\ (2.1)
B i
~a= % a,(2)" = vee AJA
iZo M pipel 1%0
', where . ' ' 3
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[Eaeilts

. , )
N 2
I .
c Xi' Ai E {0('/]:} . . - .\\
If y is the product of x and a, then
' ’ " B 4By ' .
y =xa= [ X,2 A, 2
R A
‘ 1 —
B BN . ,
= ¢ 2hz xa.29) (2.2)
i=0 ' j=0 ]3 . . . N
This can f:e rewritten as -~ ' A
/ . ’ ) . b
y = (xBxB_l' '\n LI} xl'xO) (ABAB-l' LI N Ale)
= SZB SZB_l, 00y Slso 1 (2.3)
. N / -
wherDSi e {0,1}. Bits Si's can be obtained from the . -
 following algorithm. !
— o XpXp_p - eeees Xp¥pXg ‘.
. . 5 .ABAB_l ve s sese e AzAle M
qO'B . LRI A B qo'qo 0 "
9,8 91,8-1 **°" 91,1 9,0
qz,B qz'B_l oltl"‘ . qz'é i
, | % ° /q3’B q3’B_1‘--‘--...... q/3’0 \
/
- f . P
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- Here, qij is given by’
. L Bl 24
/ o
fdr ‘. i,j = 0,.‘1’ n;-' B '

¥

The partial producqé are used to qpmputé/fhe final product

bits . N \ .
. Si = Zi mod 2 _ - (2.5)
where ° - ~ .
p L. i
Z, = I 'qq s s+ Cy_
) i 5=0 J,1=3 “i-1 )
and
Ct = Zi - Si . _ "
Notice that
-
> ) ( = a3
- Co = 0 Sg = 9,0
) 2, = S\ *
0—.."0 ‘
J . /
A
i ,' ' .
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Notice that for‘every input, Xi,“ a proéﬁss of gat-
ing takes place with every other bit of A,. Adding these “

gated results, a partial sum is found. This éartial sum
would be controlled by a timing sequence that realizes the )

shifting process tq account for the relative position of X
and the iEE partial sum. Therefore, a 2B bit‘multiplier | .
can be implemented by using gates, full agders and delay
.~ ’
Flip-Flop. Figure 2.1 shows a seérial multiplier. It is
composéd of multiplier bit sections which are gated full-
adders. Xj is fed in to be gated with A, then the result
is accumulated, i;e., added to a partial sum which was calcu-
lated in the previous step. This partial sum is gated with . -
a timing sequence, r,.q SO as to be sure tha£ the proper bit

gating is added to the 0ld partial .sum, starting at the

proper bit in this sum.

Negative numbers can be rgprégented in the two's comple-
ment form ot the signed magnitude form. A sign bit can be
fed to a sign detector or multiplier. 1In fact, an exclusive-
OR gate is what is needed. It takes two signs as input and
produces their product sign. Timing is rquired to prevent °

the 'sign bit from Eeing taken as a magd&tude bit, thus result-

ing in an erroneous output.. After the sign multiplicatibn

is done, and the final output is computed, the sign adjustment

is trivial. The timing will cause the sign bit‘tovbe taken

to the sign’detector {(the exclusive-OR gate). The timing , |
sequence ensures that there is synchronization of this shift- A

’ A |
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\ Multiplier bit- - sisn(arg*xn)
v 'sections . ,
X g1 AD —— : ,
. X v —° ‘
81lgn s fe—— e — !
. S - -
k3 “_\ sig‘(g—r} 1 - tl l - ; ‘
) ‘ o - aN-1 TN ay Iy j)o . N
° ¥ = '
sign(ay*x.) . |
T . . -
- V G : ,
Figure 2.1(a): Serial ‘multiplier for signed magnitude
Y : ‘ - ‘
! J X*a where azay j8y.pee+378; o 2y i-sy '
the sign bit. o
2 r-—--——- —— e e - e - et = —- R
. 4 - f ‘f 1' &
' ' »' N . :
“ l ! .‘,
] b FF. : 0 “
.. data | | : data- L
. ] i .
| | S
' g | FF —+—° .
i full o "new partidl sum
ol [
" 'y adder { o\ ,
' old pértial ) - H .
- —— - kY ' =
’;f smltl ___________________________ S
240 Priy | :
. * J ;
; Figure 2.1(bY 7 A mulfiplier bit section. . :
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ing’ process, and thd addition of this product to the old

part V'l sumi. Fdinally, £here/ are two things f;o do: change . | )
SR Y - ' .

- | the product sign, as mentioned earlier, and secondly, to
ot . .

.- uncate- or round the..final product to 4 word of the requir-
' | 4

ed ‘num'b_er of bits. i - )

‘

" 2.2.2 Implementation of Digital Filters

o ”

» E&uations (1.2) - (;1..3) can be exbressed as T e
“ . . N ’
A y. =" L a,X _. ,  (2.8).
. ‘ / , \'&-n i=0 J- n l
and v . o ‘
. o . N ) r N . zv,
C 'y.°s 5. a,X _,'-.I bY .. (2.7)
jmg fm-i joyitn i h

o XpE X(AT-iT) -

-\

S

' .
for'non-recursiye filters. E !
The z-transform gives . / y
3 LA -~
. Y N .
’ f Y(z) = I a2z X(z)] - (2.8)
. b : \ i=0 ’ -
- ’
s - l- " v ’ ‘ & ) "l
"+ and proper scaling, Y(z) can be expressed-as. :

. , oy X . S ’ -
- . -t .E Y(nT-lT) N o . ) .
I e .
' A] \ /
N o oo

= o
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v o X ) ! ‘ \
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\ (AN g . ot 3 3 ' ' v . . ;" N
] | o S R R " . T T
. ol ) - - - LA N
‘ Yﬁz) = Ko(lfalz +azz, + ..t a.z ) X(z) _
. B - . oo o i i ﬁﬁ‘trwm ~.

R . — i . I3 TR VS N Toa 4 ‘
| , ='Y"(z) K, . . -V, '

A}

‘that is . A S o - -

: | N . o
S - X' (z) = X(z)(1+ I a; 2~ » (2.9)
. . i=1,

T,

« ' B R N ' -
8 Alternatively, by factorizing the polynomial (1+ I a; z
i * , Y =

% s
= b4
‘ we obtain . ’ &
‘[; Y l , \~ N . ) ’ \ R L' “ g
Ne ©yr(z) = 10 (ikag, 2" 4, 272) X(z) (2.10) - "
. izl l 'Q";
. where ’ . ' ; o
:. . . ; . , . ) 5 .' - l'
! ) ¥ N/2 Nieven : t
) ' N = G
d‘- .. K - ‘ .. 0‘ ' 1 ) 'Eé
\ } ) - ; | (N+1) /2 N:0dd ' s
k« ‘. - ; . ' ' l
1 B . ) il “,
o . Each secondsorder polynomial in Equation .(2.10) can be ' Cs
4 - s , N . 5
t |
L ' ) realized 'by a second-order filter section. By proper scaling \
¥ ’ . r
b _againgfihe input data can be scaled so as to satisfy the o
¥ — : : o . .
1 ; following condition:. 7 ‘ . L
3 ! ° ' o . ' 1
- ‘ » |
;‘r K ® !
) . ~ = ,
SR ) e -1 < -< .
o \ \ 1<x <1 (2.11)
‘ N : & * . " M .
’ B ¢ " #“_ -
- ’ The complete filter can be realized he using N, - second-order )
B ‘ . sections in cascgde.El : ' |
’ :" . 1 . N » N . /
‘} . X . M . ' . ' ' s % : / ..}-/
| .‘ . L . -
h ! § ‘ : . .I :‘
| B ‘ ) ; ’ v /‘. ?:
l ’ ‘ » ‘ 1 - A “ I :
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. ® ‘ . LiKewise, |for the regursive filter, Equation (2.7) " s
‘ gives .
‘ 3 N ) .
4 i o :Z " a; Z v x
a ' SR | Y(z) = 1=g X(z) -~ ¢ (2.12) g
. . . ! [] "‘i e
‘ c 1+ b, Z . 5
/ -] : iél * :
This equation can be written as ‘ :
| LN (1 0+ aliz,'l + ,az'iz'?').
. ' ' Y'(z) = X(z) (2.13)
- i=]1 =1 -2
. (1 + 142 ~ t By,2 7)
o . 14 r °
and hence,. a recursive filter can be realized in cascaded
form of second-order sections. Equation (1.12) can also be
~ revritten as ‘ ‘ , .
) .ﬂ'e * )
o | r A T : |
¥'(z) =G + I : (2.14) o
. N { i-‘—'l -1 . _'2 o Y
. ) (1 + Bliz + Bziz ) M .
j - This equation results in a parallel realization of second- &
3 4 ' . 5 ‘
N order sections.
S | : : - o - ‘
o " The implementation of-the filter therefore can be
. ¢ L)
5 - accomplished by cascade or parallel connection of second-
. order s%mple filters characterized by P
\ / e ¢ ;
. | (1 + aliz-l + a2iz-25 T - ,, ,
‘ . / ¥, (z) = - —— X{z) . _ (2.15) '
§ ' (1 + Bliz + BZiz ) . .
) * z "3

::«r,ﬂc;mwf""‘*“i“”“ o
N
»
-
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N
To implement a simple section, we require four multipliers,

" two delay flip flops, three intermediate accumulators, and

ahother accumulator to hold the final output. The implementa-

tion of Equation (2.15) is depicted in Fig. 2.2 . The
cascade implementation-of Equation (2.13) is slower than the
parallel one of Equation (2.14). These implementations are

shown in Figures 2.3 "and 2.4 , respectively.

The multiplier, itself, causes a delay of B bits
in going throqgh to ;ompute the product serially. This
delay has to be deducted from the unit delay that is provided
by the delay flip-flops. Also, on adgition, the operation of
checking the sign bit, a delay of B bits occurs which is
the time needed to pass tﬁe absolute value of the input data.
anabtﬁe arrival'of the input sign bit. ’This has to be

considered, too, in determining the delay time of the input

data.

]

2,2.3 Multiplexing
' [

-

If the input rate bit is far below .the speed capability

- of the digital circuit, the digital filter can be miltiplexed

to utilize the circuit more efficiently. The filt can be
L]

multiplexed to operate on several input signals simultaneous-

ly, or to affect a number of different filters for a single

input signal.
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ally into the arithmetic unit: ﬁThe use of multiplexing is

31

"If there are M input signals, a multiplexer would

»

cause the M input signals to be interleaved and fed seri- 5

illustrated in Figure 2.5 . The bit rate in this scheme is "y
increased by a factor of M. This means tRat the filter is , .ﬁ

opefating M times faster. o : .

The other po;sibili#y, is to use the same unit to o o

compute, or participate in computing thé outputs of several

‘filters for given inputs. This implies that the filter sec-

tion has different coefficients td use for every distinct

input signal. These coefficients ‘can be stored in ROMs. It - .

is also possible to muitiplex one arithmetic unit, so as to

implement a higher order filter. This can be achieved by 4
‘routing the output back to the input of the unit, and,at the
© same time, .changing thé“coeffiqients in the unit by reading

a.new set from the ROMél Figqure (2.6) illustrates thi; multi- ’ .

plexing scheme.

2.2.4 Multiplexed Hardware Structures

A more elaborate hardware structure for recursive "
digital filters was suggested by Gabel [3]. High speéd

operation and low hardware cost are achieved in this structure.
- N =N

/‘;ts operation is based upon a multiplier andfa set of ROMs

.'that store the coefficients. However, the control and the _ . e

-

timing circuitry are different from that of the implementa-
N - ;o

t
v

tion disc ssed, so far.
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Cascade or parallel implementation is possible., The
cascade structure is shown in Figures(2.7) and‘(2.8).‘ﬂme
input x(t) is digitized and fed to the multiplexer MUX1,
together with the previ;us values of the input, Xn_i, where
i=1,2, ..., N. xn will be passed to the adder which accumu-
lates in the AC register. This partial‘outpﬁtﬂgﬁ fed back
to a hold register for the next Nygquist interval, then
N shifted to the shift register REGl and then to REG2. Both

of these)registers are used to generate the old or delayed -
values of the partial outputs. Meanwhi;e, the counter would
» control the ROMs to érobide the proper coefficients which are

fed to the multiplier. The product is transmitted to the

adder through a régulatiﬁg multiplexer and the new partial

output is accumulated.again, in the AC register. Feeding the

output back to MUX1 tﬁe cycle can be répeated over and over.

The counter is all the control circuitry needed. It controls
, the data flow. Each count triggers a certain event in the

system to happen. For example, an Bth

- order filter is to
be implemented. The control and the timing of the circuit must

be of the form described in Table 2.1.

For a parallel implementation, the same hardwére is '
used, but all sections now have the same input kn and‘their
outputs have to be accumuléted, rather th;n to be fed 5ack
as inputs to the other stages. This structure is shown in

Figure 2.9.

7
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CONTROL AND TIMING IN GABEL'S MULTIPLEXED

TABLE 2.1 '
‘ FILTER / _ .
Count Event
-0000 Pass previous output to D/A

0001

0010

0011

Coefficient ROM selects —ﬁ&l P

MUXZ selécts w .

n-1
MUX1l selects xl

AC enters sum

-//96§fficient'RGM selects -ﬁ5l
MUX2 selects wn_2 )

MUX1l selects 'xl

AC ‘accumulates sum

g

Coefficient ROM selects -q&l‘

MUX2 selects w__,

MUX1 selects Xq

AC contents (=wn) are passed to the

i

hold register

: !
AC accumulates sum

t -

- '

Coefficient ROM selects -4,

MUX2 selects w _o

MUX1 selects X,

'SR shifts right, entering conterits
. R of hold registér

AC accumulates sum

R Ao g e

. _
T S e TL e I A ST R WO
S B AR e Vi N ury

"
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- FILTER (continued) . -
: * ; *
- : * ’ A
Count - = h . Event
. : ' — ’ , ‘ . ) )
. 0100 ‘ . ‘Coefficient ROM selects ‘1312 :
) - MUX2 selects wn 1 8
HAN ,  MUX1 selects 2° x, where oy
2% is a scaling factor used
y, ’ . : between sections, and
X, is the output of the previous
: B \
¥ i - : u section ) < h
. AC aﬁcumulates sum . . L ‘, I
' .«+ ... and so;for a total of 2 ' F A
" ) . _ 7 16 counts. L
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The cascade and parallel implementations offer advan-

»

tages such as low-cost hardware, fast operation, simple con-

2

trol circuitry and easy -programming. No bound is imposed
- .on the number of bits usgd to represeﬁi\g ternal or internal

variables. However, overflow should be studied carefully’

oo e X
because it may drive the filter easily into incorrect-compu- '
. , [ d
tation.

2.3 COMBINATORIAL IMPLEMENTATIONS = :
3 ' “

-

Croisier et al, in a U.S. patent/ [3], and later

*  discussed by ‘Liu and Peled, F[4,5,6] have introduced an

'implemeﬁtation method whi;h is coﬁpletely qifferent from
A that of Jackson;dxaiser and McDonald [2]. ‘Thé sum of the

prgducts ‘can be computed digitally,,without muléiplicétion

at all;; This ié possible beqapse‘if the multiplier is one

bit only, then the multiplication is reduced to a process of

; .

%ating. This partial result, the bit mu;tiplicétion, can be

“precomputeé for all possible combinations of input bits,

~

thus these products can be stored in memory, such as a ROM.

.

In fact, these input bits are nothing but each single bit
v 4 -
. —of the input, and its corresponding bits in delayed-input

wvalues'. Hence, the implementation reduces to a process of

read; shift and add operations,
\ . =~ a

+

A -
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2.3.1 Non-Recursive Digital Filters : ) o
As was shown in Section 2.1.1, a non—reéursive diéital
\ ,
filter is represented by
K N-1 o
Y = I a, X _ - (2.6)
n j=gp 1+ 'n i ’
o Let the input samples be quantized and represented
in the 2's complement form in words of B bits. Also, assume
that .
, -1 < X < 41 (2.16)
j ( . n ,
This condition can be“satisfied by proper scaling procedures.
-é The nth Anput sample is given by
. o |
/ B-1 g |
Xn = 'E 2 xn,j - xn,0 i (2.17)
. j=1
where !
! . ‘/
e X035 € (0,1} ' r -

% Substitution of Equation (2.17) info Equation (2.6) yields

) . N \T\

f . / ) N- l B—l _j y ) s
: : e Y = I a.{ L 2 R e 2.18).
D .0 { i j=1 xn-l,j n-1i,0 ( )

-

B-1 -5 o\
Y = I .
LA N A (2.19)
—————— ‘\*/
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F, . 1is given by

e | (2.20)
Ji ! Fi-j B izo 1 xn‘irj ) o

The above analysis leads to the following implementation.

The jEE-bits'of the input and its delayed versions are used

to form a word. The resultant word is then used to address

a ROM which contains all the possible values of F the
resulting value obtained from the ROM is a part1al result

:that has to be added or accumulated in a shift register. The
\\
contents éf this register have to be shifted towards the

least significant bit, thus d1v1d1ng by 2(or multlpljlng by

2 l). This process is repeated N-l tlmes, where at the la8t , ﬁ

L4

bit, the addressed value has to be subtrac;ed/ rather than

added, as Equation (2.19) indicates. Figure 2.10 depicts

this implementation.

2.3.2 Memory Optimization

N . B, and contains all the

The ROM used is 2

possible values of Fi 3 Notice that the size of the ROM
N 1

lngreases rapidly as N increases, or as B 1is 1ncreased.

This will make this implementation meractxcal for a filter

Hence, high-

of order 12 or more, or for large word lengths.
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3

order or high-precision filters are difficult to implement.

“
\ To pvercome the‘above problems, the computation can
E ‘be done through éeparate steps. The objective is to reduce .
» as much as possible the size of memory needed. This can - . g
be done by decreasing the memofy size and increasing the '

nghber of accumulators or by multiplexing one filter section.

1)

o The membry size can be decreased exponentionally by
increasing linearly the;number of accumulators used. This
wit due t&séhe fact that if the filter is realized by using
parallel low—ofder sec;idns, the memory size will decrease.

Consider a filker of order N-1. The transfer function can
: N

’ "

be expressed as a sum of M- transfer functions, each of

order K such that
" ‘ {g 0
g N-1 = KM . (2.21)

[

/ |
’

rrrrr

- p K 2K ‘
, y. = L a, X .+ I ax .+ ...+ -
{ n =g 1+ n-i j=g4y + n-i S {
;é) ‘hﬁ [ ‘ |
'l‘ * ’ ¢ :
» MK ’ 4
o + L a.X_ <. T (2.22) Y]
pr . - . 1
= (M-1)K+1 T P71 < / |
bt . - ) / ) o
b . or ‘ : ) .
’ A Mo : ‘
i y. = L V. (2.23)

i - n i=1 1 . .
b ) ~ / / ’ / : ‘

’ ‘ ‘. 0 ’ ¢ . /

| - 7
X : n S e

B L S R Uy P

.
-
R S - . BRI TR L Vo . LR
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{ V; ‘is the 1 partial sum S
ix | ‘,
v, = j=(iEL)K+1aj xn-j ’(2.24)
There are M such small filters, and if éhose operate in
parallel, we get M partial sums (Vi Vo, «ver V). There-
‘ fore, the final results are the sum of all those results.
Such an implementation is depicted in Figure 2.11. Notice
that the memory requirement is reduced from MK to MZK
éince M roMs of 2% words are neé@ed instead of one ROM
lof 2MK ‘words. This represents a significant reduction in
the required _RdM size. For example, if the filter i§ of

l5‘-‘32,798 words of storage are

o order 15, N-1=15, then 2
required if the filter is implemented directly with one ROM,
while if it is implemented as three small 5-1EE - ‘order
filters in parallel, the @émory requirements would be three

f ROMS of 32 words each, amounting up to 96 words only,
compared with 32,798 words. The modified implementation,

however, requires two additional accumulators. This varia-

3

tion is sHown in Figure 2.11.

o 4 One other way to de??ease the'memory requirement is
by trading memory si;e with the speed of operation, by
litting the filter into M smaller filters of order K.
? he filter can beerélemented by using one ROM of M2%
‘words in the direct implementation, as in Figure 2.10. This ;

7 -

’ * .

——
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would be the only small filter needed, because by multiplex-
ing it for M channe%f, the partial results Vi’ will be
acc%muiated, and hence, t@e'final result wéuld be obéained
after M sub-final addit;qns, or BM clock cycles. Figure

?.12 illustrates this structure. . .

1

One important fact that can be used to implement a
high order linear-phase non-recursive digital filter is the
symmetry of the filter. This fact reduces the order of the

@

filter by a factor of 2, because

. , , . \

5 a, = aN-l-i + (2.25)

If this relation is—used in Equation 12.6), the difference

equation characterizing the filter would be reduced to

/
S

‘ N-1 (N=-3) /2 ' \
{ = = . .
A iﬁo’aixn'l iio a; (X, _; ¥ .
L S i (2.26)

X ‘

Y

Furthermore, from Equation (2.17)

B-1 .
X = I )ln . 27
) B 4=0 "I :

and hence, Equation (2.26) reduces to the following equation

after the order of summation is interchanged:

)

VAN

T
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)bits which can be used to address a 2

(N-3) /2 ’

B-l g

Yy = § 2°{ b a (x_ . .+

nooy=1 i=g X TR :
X e+l ) S (2.27)

The sum of the two input bits would yield a zero or *

a one with a zero or a one carry to the next summation.

- (N=1) /2 full adders can be used to generate'(N-l)/Z output

(N-1)/2 5 RoM which

contains all the possible combinations, assuming that the
(N~1) /2 coefficients are unique. Figure 2.13 shows this
implementation clearly for an (N-l)-order symmetric fiiter.

N-1 5 (N=1) /2

The memory size is reduced from 2 to words.

For example, a IOEE - order filter requires a ROM of

10

25=32 words rather than 27 '=1,024 words, but it requires

five more full adders and five delays.

2.3.3 Recursive Digital Filters _ ‘

/
. As was shown in Section 2.2.2, a recursive digital

filter has been represented by the equation :

N-1 L
e i Y = iio a; X_; - Eby Y .. (2.28)
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/ Here, ai and bi are the filter coefficients, and

N-1 is the order of the filter and L is an integer. ‘Using

. the binary representation,, the input and output can be
) J .
"expressed as ; o

- X B"‘l B

= J -
' ' t (2.29) T
- . B"l __j
’ = 2 ) - -
. Yn jil : yn,J yn,O
A%
. By substitution and interchanging the order of summa- - Y
-7 tion, Equation (2.28) becomes
- - X — :
Brl _j N-1

. Y. = I 2-°(L a.;x__. . .

; ‘fi =1 120 i"n-1i,3

E L - 1 4

: + L (=b)y_ ;s =X . ot |

t{i’ , ’ i=1 i n-1,3 n 119 N ) - |

iy ‘ ‘ : + ) I 2-°F, . (2.30)

% 5 , X ‘yn—i,q jo1 n,?

?:/ ’ where : ) e

5 |

? , T T N+L

r.‘ w . ' -

¥ : . - ‘ (2.31)
\ g' y The direct impleméntations of Figure 2.10 can.be-

% uSed’again,‘except_phat\L bits are coming from the. output to

e )
7 SRR

be combined with‘ghe N input bits to form the address for
NG A “ '

-y ’ -
- - ~ 4
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.fhe ROM whidh contains the values of’Fi

- 52,
\ :

5 This implementa-

r

tion is §hown in Figure 2.14.

-~

~

; <
High~o6rder filters can be implemented by breakifg the

" filter -into many second-order sections that can be cdnnected

in parallel. Equation (2.28) can be rewritten as:

=

cw (N=3)/2 . o
i Yn = mEO Cm Vh,m R (2.32)
& .

where o
[ /
~Va,m = *pin+2 am+2l+-arh+1 Xpem-1 ¥ Ap¥pem -

i} oy . - >

- bm+2 Yp-m-z - b1h+l Yh-m-1 . (2.33)

¢ _ 8

and Cm. are constants uéed for scaling purposes. Eachnvn m
N 1

-

is;L partial Qum and can be summed directly as in Figure 2,1l5a
ign
or in parallel, as in Figure 2.15b. These partial sums -can

now be used to implement Equation (2.32) by addressing an ROM

which contains all the possible values, of Fn’j’ according to
, ‘

Equation (2.31)., and then accuﬁulating the result to obtaig
~th

Y. This implementation is shdwn in Figure 2.16 for a 6= =-

- 5

order filter.

Another way of implementing high-order filters is by
operating serially, as in’ the implementation of Figure 2.12.

The modification necessary to: take care of the recursive

nature of the filter is illustrated in Figuré 2.17. The .

-

filter can be implemented with one second-order section multi-

. s

it
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. plexed (N-1)/2 times, using an ROM of (N--l)ZN"2 words.
' ~ 4 ( .
2.3.4 Monkewich-Steenart Implementation
N

Monkewich and Steendrt have adopted anothér way of

. implementating a second-order section of the recursive digital

s A

filter, [7], They basically use ROMS to eliminate the
need for multipliers. Five ROMS are used: three'to contain
all possible input signai products with each coefficient

separately, and the other two for the output ‘signal. Reading

those five products that correspond to the input samples

with each coefficient separépely, the finaf\output is obtain-

)l

ed by summing up ail the partial results as a common accumu-
)
lator. This method is depicted An Fig. 2,18. Notice that
’ . : . .
it can be used to implement*filtgrs of any oxder through the

use of 2%%-- order sections.

2.4 IMPLEMENTATION USING COUNTERS

A completely different hardware realization of digital
4 . .
filters was introduced by Zohar [8,9] early in 1972. This
method is different in the sense that the conventional

v .
multipliers or ROMs are not needed, at all. Instead,'count-«

. ers are used to calculate the output of the digital filter.

' The principle behind this method is very simple? Consider

a.filter in which the required output is the sum of E\jl

prodqgfs ‘of the correspondlng coeffic1ents and the "delayed

/

Dl
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Figyfe' 2,18 Steenart-Monkewich'implementation of a
R 'segond-order section. '
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inputs. Instead of considering all the: i bits of a single
product, where 0 i“i <B -1, and\_B is the number of bits

in each product, the iEE- bit of each possible product is
‘considered, first. The number of ones in these products
(counted by a coﬁnter), will be the coefficientsof the power-
of-2 polynomial, which when evaluated, will give the final
result. 1In her words; instead of the "multiply-then-add" or ‘
"shift—tgzﬁii:ok—in—a-ROM-then—add" strategies, the T"gate- ) \\\‘:
then-count-then—shift-tﬁen-add" strategy is imélied in this ..
Qethod. . '

2.4.1 Non-Recursive Digital Filters

If Equation (2.6) -that represents the non-recursive

digital filter, is scaled to inﬁeﬁéts, it can be rewritten

as . . -

/ %

N-1

Y = I a X _ * (7.34) .
N ysg K DK , - //ﬁ\“

-

Since Xn /and a are integers, they can.be coded as

K

. binary numbers of word lengths Bx and Ba bits, fespective-
% . : ! .

ly, ‘as follows: ’ : ;

B ~1 o B_-1 -

(x -~ J a . J ’ ‘,_l
R A
where ’ ‘_ C - :
.:uk’jr vk,j‘e EO,l].'
<@ :

- I VR
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wWith these deé&riptipns of xx and ays Equation (2.34)

becomes
. N-I[Ba‘l ' ° i][Bx—l j
Y = [ 2 I V__, s 27]
M kmg im=g K j=g Bk/3
: L4
or - . ! . -~ e
: N-1 Be 1 Bé-l ,j,
Y = § I ( My = Voo 2_4)2 (2.36)
N0 j=0 i=0 k,i 'n k'J.l \
where
. Bt = Ba +.Bx -1 B &

¢
-

Equation (2.36) can be rewritten as the summatdon

over i, then k,j, by interchangingvthe order of summation,

" that is -
- _ Bt-l N-1 Ba-l S 5
= ' . 2.37)" -
.. ~'a jfo “emo 400 ki ”n*ﬁqg-i’z (2-37) /
Define the function hj as
N~1 Ba-'l Co ; :
, "5 T kfo iEO “k,i Yk, j-i (2.38)
) o ~
then, Equation (2.37) reduces to
- ' ! * ’
) ‘ Bt—l .
Y =-.I h, 2]
. ' j=0 I
- “1- ‘

¥
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»

The function hj can be evaluated therefore Ey gating the

‘all possible combinations of the bits of Xn and ay and

then counting the number of 1l's that result. With this de=~
finition of hj, Equation (2.37) can be rewritten as

t .
= J - ~ ’
Y = 5 hj 2 (...(((ZhBt_lH?B _2)2 + ...h1)2 +

]

t

-

" + h0 . (2.39)

This is simply a shift (i.e., multiply by 2) and add opera-
tion. Equations (2.38) -~ (2.39) are the basis of this

implementation. It can be summarized as follows.

1) Pass the input bits in parallel to the bits of the
corresponding coefficient in reverse order (because
of the j~i subscript in Equation (2.38)) and gate

them every time. Do this each time you feed in

another bit of-the inpﬁt. ) ' - -
A
2) When gatis, use a counter, to count how mahy TRUE *
-~ 4 * .
o or 1 gates result.
( 1
3) Use the output of the counter to calculate th i

output of the filter by accumulating all the results
in an accumulator, a shift register, that will add

and shift, hence multiplying by 2, each time a bit of'

the input causes an evaluation of a part of the output..,

-

4) Repeat this. for all tﬁe”bits'of the input.
s \ , A

¢ - ) /




2 ‘ e . .h

. 6
-

h 1

[y

Thié realization needs tﬁo registers, one to hold the
coefficients of the filter a,, k=0,1, ..., N, and the other
to hold momentarily, the bits of the current input and the
‘previous values of it in a sequential way. There should be
a matching between the cells of these two registers such that
éhe paired bits of the input and the ‘corresponding coe?fie— ,
ient are gated by usual AND gates, and the results fed to a
binary counter. Figure 2.19 illustrates this pr;ce§s. The »
output of the counter is then¥fed to a shift.registeg which
is used to multiply by 2, and add these partial products.

After passing all the bits of the ihput intowthe two registers,

the final result is obtained. 7The case of a 3£Q - order
Yo

)

non-recursive filter, using 5 bits ZXor the coefficients and

3 bits for the input word, is sho in Figure 2.20. [

A o Yy

2.4.2 Extension To Negative. Nupbers

The most common methods of representing negative

numbers in binary arithmetic are either by the signed magnitude

- g

\
(bit 0 for +ve and bit 1 for =-ve) or by using the two's- J

complement form. The number 6 in base 10 is.{(0110) in gase‘Z,
assuming a 4-bit word-length. If a fifth bit is added as a
sign bit, thus ﬁaving a word length of 5 bits, then*(—G)lO is
(10110) ,. Using the 2£s-chblement form, we get for (-6),,
the binary form of (1010)2. This is achieved by complementing

f : every bit and adding one to the overall result.
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L] L] L . . L] * . 2 l 0 L L] ' .

. (11i) ~

Figure 2.19 The shifting and counting process,

( Integers in the cells of the shift registers
indicate the power of the =2 radix for that

' particular bit.A(.) represent a zero bit. )~.
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The altgrnativé to these two‘hax; of:handiing negative

numbers is the negative ;gdix_represektation.' If =z ig an -
\ "

integer, it can be represented as a set of B binary bits

‘wifh a radix of +2 as 7 ' e
. B P ) , . .
z = I _zinz) » where z; is either 0 or 1 (2.40)
i=0 J ‘ . . a .
S

If the radix used is (~2), Equation (2.40) becomes

J |

z, (-2)% : (2.41)
. " | ‘

™M@

N 1 . N ) z =
’ s 1i=0

The representation of ﬁquation (2.41) cannbe,used to |
repreéent negative integefs. For examéléi our (+6)10 beqomeé
(}10167_2 and (--6)Jj0 bec;mes (01110) _,. This represehta-‘
tion‘provides a much s}mpler method for the handling of negatiée\
nﬁmbers and hence, makes this implementation mﬁbh'simpler thah
that whicﬂ uses the 2's-com§lement or the signed magnitude T
number representations. The fact that thé increase in word
length for negative radix form is eventual, the trade-off
between’the increadse in word-leng;h and the comblexity of~the .

hardware for the 2‘q—complehent or the signed magnitude is

worth it.

H
~ L

Equatioh‘§2.35)=can be redefined by using a negative
R ) - 4 . ;
radix’ such .as ., ' : P




" “ +
1 -
[ N °
: 0~
- hd \ ¢ -
s N .
" _ » r L} 6 - U
-t < - ‘ ) ’ ' 7\,, |
& * ‘ . ‘ 4 ) \ |
* | Bl - . B_-1. \ ' |
LT ‘xKé‘z w23, 4 = : " .\(-2)j ‘ . .
; "R gm0 k] ko y=g kD o e L
- ﬁﬁ‘. v ! -t ’ ' // x‘
. L ! . ’ 6‘ [l s 3 {
. 'qunce,’from~Equat10n (2.34), we get L K
, . Ny Bgml By-l B j Betl L5 .
o LY, = L L L ou N (-2) = &  h.(=2)"" - . .
S O k=m0 §=0 im0 k,i n k 3 =i =0 3 . o

/q-

*  where ,// « ' K .
® L s . :, ] i . '
: :”" h, is as defined in Equation\(2,38).
. ¢ ¢ { . .s *

I N . - 1-\',

N s

~ . ' The fhplementation, using the negative radix, is’the
: : , . k , 13 R

ST : 5
. same as’that desc¥ibed before 45a§ically because the counter

4

counts the TRUE of’l's lrrespectxve of t@e form of represeg;a-

tion used. Oficourse, the input bits should be in the neg

v

tive radix form, therefore, a negative radix canverter -
\ has to=be used, but the output is obtalned directly in. the
standard binary form.‘ Notice that hJ is exactly the same

as before, i. e., it is Lndependent of the number system used,

- ]
although noﬁ its argumehts are in the negative radix system

Also, the ;hift in the accqhulator has 'to be modifled, such
that it will multipT?‘by (-2) and not'by C+2) Thxs can be

* done by adoptinq the signed-magnltude representatioh ﬁar the

!

accumu;ator.‘ %his is ‘of particular interesty ?écause the S

output of the counter will be qdded to tha accumulator, a' shift

' » @

(mdl plication by 2} then follows, and then the si§h bit = .

v g - ‘l“u

cn e, - . L
*aewill be reyersed immedlately, (multiplicatlon by 11) £y ’
- ) 2 U ‘ ,!/",

I ’ v~ i .
-— M,,-v v , R ‘ﬁ
Fa " - l .' )
a ,. ‘v LN N .3 .
“ ’ ~ "‘ R .~ .t ‘-‘. 4
- "' 1« \ ? : é B
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;. ' o , ’

v ) Thk coeffic1ents have to be stored in the hold register in

the negative radix form They can be computed on a digltal

’

1 computer by using a: program. However, the input values
) ' ‘ N DY
o have to be converted too, to base (-2) and that has to be
, : [ ' .

2 . ~done in the f:;ter instantaneouely.' An analog input has to

be fed lnto an3A/D converter, i.e., to be converted from _

" decimal to base. +2, Here, the dlgltized lnput, in blnary

P

+2, ¢an .be fed to a converter which would convert from base .

e

.
T i e ran, e e e RS T Bt 3 s, o 3K o R Q
S ot e

+2 to base -2. This radix converter was suggested also by

.
¢ . ki

Zohar, (10]. og spegial interest is a converter. that will ., -

convert dlrectly frqm analog to base (-2). This can be

' manufactured as a combined circuit from an A/D and a negative

o«

~ radix converter. . ] .
N\ ‘ ' . , N ; . . £
& ' “»In summary, the mode/of operation of thls implementation
: o I ) . . .

¢ ' is ‘4s follows: ¢ .
y s " -~ ¢ ;

e = e B

o

p B ’ . - . . 'fl s A
>1l) Accept the analog\lnpu{'and guantize it to 'an L. : oo 4
‘ o

—
~—
»

3
-

o approximation which gives scaled integerg*” : B \\ V

. . -
) , . , -

v » . J -
Pass this input: into an A/D converter, then convert.

)\ it through a negative radig-conyerte; to base (-2). .
: | .

T B N, et S o wn, e e -
&
b d

,
! 4

r "3) Feed these ihput bits to a i?ift registervwhich is
‘cross-linked to a hold redister, whi&hiconteins the
blt Y 2) representatlon of the filter coefflclents.

Each/ time an 1nput bit is added, gate the cross-linked -

T -
e

é » . bits of the input and the coefficients and,goun;.the .
* ) . e . .. e

F . [ \ bl N ws

& N .

-~
* ’ )

P
. ’ -
T

a . v
\ . . ‘\h ~‘ . ‘ X . ‘r. - - ‘ { .
' ) 1

) . PN ; . ' 4 7 -t
NI i ' ‘ : A "
. ~][‘ i . *,1 A . . . K/ AP ;
- . - - S
- [T [ . R

- - ,crc.-ﬂw_m.".».. — -

L ‘. s R
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esult from the gating process.

.4) Feed the count produced to an accumulator/shift reg{E-

ter that will add to its contents the count r%ceived,

p)

then shift the contents of the input pegister to the

: left,'thus multiplying by (+2)

the sigﬁ bit of the agcumulator to §ccount for the

fact that base (~2) is being used.

and tHen complement

Do this each time

a new bit of the input "®erd is fed to the input"shift

o
register.
¥ Yo «

‘A 5) When thls 4is done for one complete word for the , §

S ,

!
R

input the value present in the output accumulator/shlft

register is the regyire% output. Pass thls to-a D/A

of"‘ﬁ

converter (normal D/a, i.e., gfgg,base +2, not from

*

R

Yo
R {
‘e

s

base-—Z), then rescale the output of the D/A .

x
h 3 . .
! -

{
{

2.4.3 _Reeursive Digital Filters - s

2

Equation ¢2.28)., as

,Yn =

-
4 N ¢

If‘ah:integer'ﬁar;able, Z
L " . f

4

COnslder thé‘*ecursive digltal fllter characterlzed by

gL

A}
. N -

Z a, X . - E b (2.28)
q=0 2 “n-i i=1 i n i R
is defined asg

o . : ‘
. .' L_l - * . \; { ‘

xn+l + kfi Z k( bk#i)‘ (2.42)

' /\ N

[ TN T TN

R
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o/

\ then it can be shown [9] that Equation (2.28) becomes \
- v “ . ,
. ) Y
4
, N-1 . .o -
> e Y = 150 zn_id ay , (2.43)
The ingut data and the filter coefficients now can be rspre-
sented by bits in base (-2) so-as to be able, to represent
negative -riﬁhxbers; as well. These can be expiessgd as
follows; : * N B
. : ) 1 : ¢
B_- - .
) ‘ a,’ g i ( 2;j ¢
\ . k i=0 ki3 ’\‘ ﬂ
. Ba—l ; 5
: -b, = I v .(~2) (2.44)
k =00 k'.j s - : s
' B_-1 )
. \ a
- - _5v3 1 .-
: %x 'io pkuj ( i) : ~ ¢
- s L j -
v
»where . ‘ ’
Ba‘ is the coefficﬁent word-Length ‘(a.k ‘and 'bk are
b ' ; ;
' , . assumed to have the same word-length, othex-
" wise B, is the ma:glimmn of both lengths),
Ny .
. , L
B, is the word-length for z,) and
k4 RN \,. . :
|' ‘lv ‘;\\ ‘ L
K ; (uk'j: Vk;jl pk,j) e [0,1].
/ . I 4
. _Sﬁbs{:.ji.tuting for ‘ak " and j zm:—ic in Equatidn (2.43): -
. ‘ L . “‘ .
\ s . . e ] o «
":4 ‘ \ 2N . w 8! R ° .
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{ s | *
: ' _’} / 71
' N-1 B,-1 B -l 4
Y = L ( I - (~2)7 )( Z By 4 (=2)7)
, . n a0 3=0 Pn ) P j=0- k,3°.
\ o
i - ° PN;‘]. B‘;‘—l (Bz"l . ) ( 2 j Lz . _ p)
[} ‘ . N . = H - - .
- k=0 ju0 im0 Krifnok 3-1?iTE | i
\\\ . Here, B, is used for the total word-length, . B
e ", ° \) ! «
S " . B, =B, +B, -1 : .
. 4 ‘ S . \ ’
e -Again$\by interéﬂanging the order of summafion, we get - ’
. : |
‘ - \ » Bt"l§ N-l Baf'l ( j
: ” Y = & (Z L My P 4o (=2) .
\. © ) . n j"o kgo iFO ~k'i n k,] f) i
’ ’ . h ) i a 3 !
J : o I T Bl ¥ ., - ,
: j . ¢
.o = 2 hy (-2)7 - . (2.45) - o
] ' ' \ j'o Py . R
v w" " ' - 1
.\ where Lo . . SR \ D
- : ¢ ‘ /N-1 Ba™1 S e N
N =~ h., = . 2.
. o . 3. xfo 150 Yk, 1Pn-k,3-1 , ( «46)'&/ :
- ' . , ———y
4 . ‘ ] ' ' \‘
Thus, if zn is known, we/fgn gate its,bits'q;ég the bits o
: ' J
. of the a, coefficients, then the resulting count, hj' can =
be used to compute the power—ofdminus-z polynomial- (Equation 7
(2. 45)), and hence, obtaining Y . The polynomlal evaluatagn .,
is nothing but adﬂand—shift-and-complement—sign-blt opera-w i , e
tlon, whicy can be done in 'an ordinary accumulator/shift rer - v ‘5
'Y ‘ : ‘ ' . o
gister, . | ) , A
. _ , . ¢ ?
RY ) ie
U ' ‘ . !
« _~':y". “ \ "L_ . » a {jl
‘ . . . il - '..‘: N ::fd. ;,




To calculate zn' we substitute Equation (2.44) in
Equation (2.42): ) P

[RRGEPSNE P ST

‘ SR L Bl Byl i/]
z ='[X + I ( I  (=2)7 )( I oy, (=2)7)
k=0 gm0 Bk 4= K3

s 2t
PRS- S

-
-

and after some manipulation and arrangement, as done before, '

w5 g

we get ) : . A e

o oew,

Bt-l

= ’ J .
» Zh-1 [X 4 * E 9 (= 2f 1 (2.47)
' 3-0‘:
where \ ' s ) 2
. ’ L ?a*l. *

. = ¥ : . ' ' 2.48

RV

[4

AEcording to Equation (2:4,7)‘,'2n can be constrycted by ’ L
evaluating a power-of-(-2) poi}nomial whose coefficients .are
the counts r&snlting from gating all the bits of the by

coefficients and the previous vaﬁres of Z..fThis results in

% -

a count which should be added to xn+i‘ - 4

_Therefore, the complete realization of the recursive siJ

' digitaﬁ filter deseribed by Equation (2.28) can be carried’
o . L, ’

oyt as follows: \ "
) —~ o o
1) Accept the analog input to the filter, quantlze qnd ;-

aggroxlmate to give scaled lntergers._ * S
2) Pass this input integer into an A/D converter, thus Y ‘L\s‘ :

‘ converting it to base (+2),, standard binary. ) !




3)

4)

. 5)

I e

QT T ST Ty e

L

et TR R AR e T T Wt

-
-

Biiediishant Sabnter

shifting to the left and flipping the sign bit. Take. # ]

the other output of the gates (2 and b), to a counte % 4
then add the count to the input accumulatpr, thus. %.
evaluating, after adding #he new input*frOm the A/D, ;
_‘the value of ?n+1 " ;. ‘ ' ‘ | g
- ) , . K

_.the bits of the b

Feed this to an accumulato;:, ;hen pass ):ff into 'g

i o S

negative radix converter to convert it to base (-2).

+

£

it

Pass the bits out of the negative converter into a
shift register which is cross-linked to a general

of the a coeffic-

k
ients on one  side and to another rggister which contains

L

register which,contains,éhe\pic

X coefficients on the other side.

Notice that the stored coefficlents must all be in " -
base (=2).. Each bit coming from the input negatlve
radix conveyter is gated withr;he bits of b, , thus
calculating the next value o the input to the negatlve *
radix converter, and slmultaneously is. gated to the
bits o}\ 7k ‘hence calculating the partial value of
the requirpd output.

» &

.

Take the output of the gates of 1z

n
er, then t0o an accumulator, where the output will be

calculated by summing the outputs of that counter, - "

and a to a count- oA




L 4
e

Yindex sequence Dfﬁ{ or the least significant bit leading -

§§art-
. ‘ S ’
' ing to compute the value of Zn, i.e., before starting to! ° ' .

, feed in,the bits of Z, -

Sl

!

Repeat (4) and (5) untii all the bits of the input

are fed to the shift register, which is cross-linked

to the coefficient-registers. Then, take whetever is
in the output accumulator and convert it to anaiog

through’ a D)A which becomes the output of the filter,
theu take the contents of the input accumulator, add

to it.the incoming new input from the A/D converter,

. and then repeat the whole process for a new value of

the output. . . ‘ . . f

f&gure 2.2] shows this implementation, .considering a
& . w '
simple ‘filter as an example;"

The input bits of Zp can be fed to the, shift register

in two ways: the ﬁcst significant bit leading (decreasing
(increasing index eequbnce IIS). In the DIS case, Ym is

calculated, startihg with the function: HB -1’ WhICh, in

Dl v Dot v

T et

turn, is calculated by gating all the bltS of the coeffic=

S
. ak N
Equation (2.47) and Equation (2.48).

ients with the (Bt-l)—— bit of Zn, according to , :

This process requires

that the value of 'z be computed coﬁpletely before

m=~1

l'to the negative radix converter, %nd
This is because the evaluation of the

[ ¢
1§ done by additlon in the accumulatér, whlch produCes

the shift register.

zn

the bits of the new,walue in IIS hence, there shouﬁh be a s s

- B4 < ' ? 0
S - . \
- , 5 - . f
. "o . s, N 1
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storage device to store all the bits of the sum until the ' .g
last one,'g.e., the most significant bit which is supposed
s

to be fir of‘all other(bits. l

wivh

“ On{the other hand, feeding iusing IIS, requires that’

<

the least significant bit be leading.

-
Sup SRR

IRCY;

Since this least signi-
ficant bit' is the first to be evaluated inkthe addition pro-

cess, we do not have to wait untii all the bits of zﬁ{ are

o

calculated, but rather, feed immediately the bit that is

.
.« y

H

£

produced by the addition to the next step for evaluating the

value Z;+l. This means ther hsl is calculated first, t g h
rather than hB wl’ as‘is in the case of DIS. No auxiliary "
storage is needed, either, hence, it is faster and simpler

in terms of hardware ¢omponents. The unportant ‘feature of ;

the I1IS cage is that the’'shift has to be to the right,
‘multiplying by 1/2, which means ﬁhat\There is an assumed,
(B—i) b}ts from the- left of the register.

¥

N 3 .
‘The way the input bits are fed affects the coeff1c1ent o

registers, since always the blts of bbth registers, the

Z, - and should be in opposite order. Figure 2.22,,and_

A

Figure 2.23 show both IIS and DIS operatipnef °

, , Lo : ) (/ \ e . ﬁ °
2.4.4 Other Vvariations . X :

4‘

;Other implementations u51ng couLters, can be derlved

B

by szmply varjing the general form of the Tilter equatlon.

In fact, betterfimplementatlons can«be obtain€d, once few '>l

. . .
i ) -
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! ’ N-1 ‘ .
. \ Yn_‘:: iio ay Xn-i c
\ , i -
fLet the values of a; bg either gnsigned positive
binary numbers or binary numbers reéresented in the 2's -0

complement form. If each ifdput data is represented in a,

word of B bits, then X ~can be rewritten as: -

4 +

T x 2\ 27 ©(2.60) -
AP . ‘= X ,] . R .60) -
. .n j:l n, . . . N
and | , .
/ . xn“'j € (071} o “ . -
The input is limited to Eh% range [1,-1],.i.e., !
. . . . .—

'7‘1<Xn 1 ‘ v

S

This condition can be satisfied by using scaling. Substitut-

g

ing Equation (2.60) in Egquation (2.6) ) .
MY i ‘N B __j . i ' .
. Yn ='£ (a- Z xn_i,jz . . ‘

' I

After interchanging the order of summation, we get

. . B N ) s
‘Y =L (E a%x>. .27 7 ' (2.61)
| o B 4=l gm0 B7I/] |
. - 3 ,
7 N

i B

b e AR
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' o
, " If we define the fungtion F . as Cf » . ;
1
. ‘ ' . .
; .. = I . . .

. m, 3 & ’al xn_l'J (2.62)

‘
’ R N

then Equation (2.61) can be expressed as:

*
[ R ¢

‘ B i
- : : Y = Fy 279 (2.63)

.

SN

o

/ . This is a polynomial of 2-3, which has as coefficients . -

the values of the function F These coefficients can be

n,j°
. either precalculated and stored in a table, or they can be

' ‘calculatéa at the fime«they are neeaded. Henc;, a trade-off

exists. Speed is achieved by’ precalculation, but the size

of memory required is large. On the other hand, the size of

memory required dan be. minimized but spged is reduced, due to

the iarge aﬁouﬂt of computation time. However, since high

o speed is highly desirable, the fﬁnction Fn,j shouid’be

: alculated and stored in memory.

Define a table, C of 2N entries, i.e.,

v

1

e N
»~C(K), XK=20,1, ..., 2°-1

rr/. - N , , ’ N
such that - ,( - .,
N N-1 : ‘
C(K) = L Ki 2= ' (2.64) « .
a - .- i:o ' __/
B . » ' K. ¢ {0,1} :

TS b

i

A
(S

23 _E__‘,m,‘;:?,'; AL MW Lo R JOE 2 IO

"% g e ialn
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Comparing Equation (2.

S » s

K as : E -
’ N ' ‘i , l
. K 2 K ., = T P 3 . :
’ ‘ Snad T oiig Tagted . (283 -
. " for all the B bits a,1, ..., B=1. This is eq‘uiv"alent : %
, ) ' ) S . - W
to taking the ji"» bit .of the input and its delayed valueg - 3

. ) 9
to form a binary number of N bits. Equation (2.62) and ' -

Equation (2.64) become equivalent, i.e.,

N t

R R

S F_ . = C(K . ' 2.66) N
n,j = ( n,J) Lo ) N
[“d
. . . . ' ' -
ﬁ th ~ R Y .
) The n—= address, is given by Equation (2.65). The (n-1)
8 — a
. address, K1 )3 is: . _
N-1 N-1
- —l“ L X tea2tlr Xn-1,i 2t
, , n=Ll.3J i=q Tty J i=o t1,]
- ' !
- N-1— ' -
-1 i n+l
. ' = 2 ; - +X ~-N . 2
[iio Xpmi,g 2 = %n,9 Xy )5 ]
. : ; "
Al -1 <
= 2 .- X + ”
~ [KnoJ n,j
Hence L ’ ' B
f ] !
’ ’ Kn,j = 2 Kn-l,j = xn-M+l,j ‘ -
' ) N L
. ‘o N 4 \' - ‘. ' 1 : . 9
o o = [2K 1, 51n0a 2N T 7n, 5 , (2.67)
i o ' L “ <§i' . e
- - ‘ -

SARY
.
F-J
A ]
-
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. ' «This is a powerfuf result, since it enables the

next address to be generated diredétly ﬁrom the present one.’

Since the address is a binary number, it is stored in a
shift register, &such thatI: it can be shifted one 'bit towards
] - ’
the most significant bit, thus multiplying the current
j / .

address by 2, as Equation (2.67) ' shows. The most signifi-

' i
cant bit would be shifted out of the register, hence the

' .
s modulo-zN is computed. Next, in the least significant bit,
. which is empty now, the “jl-‘-}1 bit of the present value of
input is shifted. ‘ / . S
.
! — The algorithm now is complete. The value of Yn‘
- can be calculated as follows:
’ /
- . . .th L
. 1) Find the address of the j— coefficient, K

. n,j’
by taking the jEE bits of the dinput and its -

delayed values and form an N=-bit binary number. (Use

is number to get C(K_ .) from the ROM. P
n'J N .

ft the address register towards the most signi:

cant bit, i.e., multiplying by 2, and feed in
the least significant bit, the next bit of the

. current input value considered. This will be the’
address\ K.-1 5 Use the addressed value C(K

7 n-l,j
v e tS add it to the fimal accumulator and then shift

)

it to continue the computation of Equation (2.63).

o
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P ) .90
+ . . ‘A ! A \
. i 3) Rgpeat (2) for alllthe B bits of the input, in
g order to compute Y . Figure 2.26, d:apiéts this
\ ) implenientatioh. , .
4 ' : ~r -
2.5.2 Recursive Digital Filters . " . .
] The difference 'equation (Equation (2.7)) character-
- izing a recufsive filter, can be expresséed as
: ' ’é“
! 1] .
— N-1 N-1 <
e . Y = I a,X .+ L (=b.)y _. (2.68)
: B j=p + BT ikl toonmd T
¢ A ' ’
N & where .
' N-1 ‘ A
Z. = 'L R
\ , x i=o 24 Xn-i , ‘
- and
X . N-l ] o. v
* - z, = 1)51 Y _; by (b; = -b;)
Each of these difference equations be’ implemented by .
s : , : ; 7
. “~ .
' ’ - u=ing the approach of Section 2.5(;9“[‘
] v ’ o ' * .
| , , - Two ROMs are used 5eparately to hold tables for both
\ C -
b , z' Z, and 2. | o g
One other way of realizing. the recursive digital +
., filter is through combining both ROMs into one ROM of 22 N
) : words. ’

(7]

.
X s
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Define 'K ‘as'a 2N, bit binary number such that
- 2N—1 i i . ‘ \ -
K E K > = z V. 2 - - -
b n,j oo L : _ (2 69)
where ; ) ) : e SRS
. ) -1, 5 . for i < N | ' o
v, = : (2.70) -
. , : k
N Yn+M—i—l,j for i _>_ N %
Table C(K) becomes .
o o |
. N_l .. " N 1 . B > b
’ C(K) = L a, V., + I b, V, . (2.71)
j=o * j=1- & ~:|.+M 1
where - VT .
K=0,1,2, oo., 22N =1 5 ' g
- C . . b " ‘,
A similar analysis for Kn-l,j' to that used to }’ i
‘derive. Equation (2.67) yields the following result: k !
- R ¥
} — : I3
) . . . " th - ’ ;' y
1) To obtain the Kn 5! take all the Jj—=' bits from )
, v € !
: the inpi;t and its delayed values, then take the ~ 1
o , ’ ‘ ' i ~,
. jE-h- bits~.of the N-1 past values of the . o
8 , :
computed output and form a binary number of 2N .
. : h . /
S N .
'bits as: ) M
- '[/{ ~ o ' v\'
4 + [ : H
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GBS L

-~

3 ( .
. ‘v 3
- ! ~ - :\N‘
L * 3 2 - 3
. ‘ i, 93 ) I
a - '?T . . , - )7~ ) 1‘3
L o ‘ o , .
— Kp'j = va"l' ey VNVN‘-ll eo ey VlVQ "" s || X ‘ . %
« 3 . - rk \ . £ ’ . : 1
4 a ro o . . T t
u - Yn"N+l,j.’ ¢ e ey Yn‘-l,]’}in—N'f'l,j' ...,Xr}’j. -w . %
R | RSN
2) ,Address the ROM and use the C(K ) to add to , il
P §
' the accumulator then shift the contents of thls R \
~ : ° ‘ : e, L K
: accumulator. = - . “ 5
’ 13 “ 4 ‘
« 3). shift the address n, 3 one bit towards the most \ it
n, . .
‘ _ significant blt then replace its Yo pie .
, (the least signlflcant, V ) by, the current input 8
.‘ ) JEE bit, Also replace the NEE .blt, YN‘ by the )
j—ﬁ bit of the computed putput. : ‘ ‘_ .
, ‘ . » [ , . “," ¢ "
4) Repeat (2) and: (3) for every.bit of the B :
bits:+'§his implementation is shown ‘in Pig. 2.27. "
- , o - _ : = :R/ . - ,
, ' . ' 1
2,5.3 Extension To Negative Numbers ‘ ' S
’ - ' - o i
The negative.input values can be coded in three ways: , . !
) . - . . .
The signed magnitude, the 2's complement and in the negative v
) . v ~
radix form. To use the signed inputs, -the sign bit should . }
. . o . . 1
. iy ! .
not be used 'in giving the storage addxesses. This can be
. , » . . - . - .
. done by. "biasing" the /input. ) . Co. .
P | ) e . . . 2 . . \ ¢« 3
Let B .be a humber“such that . ‘
' * \ . ’
.. t , K -N ~ ! :
0 < X4+ B<1l-2. . (2.72) . . . o
. [ - ) - - @ < .t .
. , o
g
- *
o ( -

g o | |
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o “then Equation (2.6) becomes - ‘
: g N-1 Nel - N-1 o ,
- Yy b oay (x ?B) L ragX, + I a8 (2.73)
o . i=mo i=o i=o

L3

Therefore, negative inputs can be handled by adding<AB to - ~

| them, compute the output, then subtract from lt the term
1 ‘ 4 - N=1l

v B I a,, as in Equation (2.73).
. i=o * ’

é%
o
&
T
!
i
<

- One other way, suggested by Yuen [12], is that 'of
using the 2's complement representation for the 1nput Since

; , o it was assumed earlier that

\ , .
: T ‘ . 0 < xn_i < 1 .,'
! - wé have o ' , .
- i ; B 3 . , .
. | X 4 5.0 x__. .27 ' (2.74)
n-1_ §=1 “n-1i,3 o
; with x " peing the 38 bit of x If a sign Sit ‘ ~
5 - n-i,j g 3 nei® g 0 .
: o is used, and X_ . is represented in the 2's complement form,

n-i

A\l - ' . Py

: : we can rewrite Equat&on (2.74) as

; ' g : B . .
3 - ¥ ' = - . =J ; :
§ T N . xn-i Sn--i + .E xn-i,j2 (2.75) : C \
! J_l .
! A
. where . . B
o / : : » *
é' K Sh-i 1S the sign bit of Xooge
! T ‘
; th
Take this 51gn bit as the 0— input blt, xn_ilo,_tpen B
‘ Equation (2. 75) becomes ;- Co. -

R e
-




L

L

/

\ / )
._96
‘ N i - ‘ ?
X .= I x__. P (5)- 2.76 -
| n-i j=o n~i,j (3) g )
—— ) >
where ‘ .
‘ . . .
’ -1 if §=0 ‘
_ RGI) ={ .
o | -27 .otherwise -
With Eﬂis representation, Equation (2.63) becomes .
't " ~
\ . o *- N ’ b ' ‘
Y = ¥ F' ., P(j - 2.
/ n i, Tnid (3) (2.77) .Q

The input to recursive filters would follow the same

analysis as shown for the non-recursive filters. The third
[}

way of handling negative numbers, is that of using the
ik

negative radix conversion. The input should be gpnverted
S
from base + 2 to base - 2, hence enabling the coding of

negative numbers.

2.6 THE RAM DIGITAL FILTERS

e

. The fast algorithm of Little %izjfmplementing digital
filters @escribg@ in Section 2.5, turfis out to be quite K
efficient, and Qr&btical to“use. Hawéver, the hardware need-
ed is demanding. Zohar [8] tried to apply the basic princi;“l
ple of the counting digital filtér, discussed iﬁ Section‘3.

ﬁé introduced a RAM that will stére the éab}e of all

bossible products. In fapt, the RAM filter ﬁ:% aspecté of

the counting filter, Little's algorithm and the approach of

O .

vman

’;«\. I R NP, S
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3 -
_ / -
A ) : \ / i
” . 3
97 = - !
Peled and Liu, as shown in Section 2.2. . ;
: 7 1
| . }
‘ o K o i
Rewriting Equation (2.6) "as . %
) .. N - ' H . ’ \ - %
\ v Y = I a, X W, ‘ 1
. ) n j=g * n~i 5 ) %
then, as shown in Section 2.4, we can express . Y  as .
g j . . “o'
7 : ¥ = F_o. (= : . 2. .
| n= k) n,o‘{ 2) ; (2.78) . -
where g \ )
ah , N ‘ , R .
FoL.o= . s oa 2. . - -
a3 Tyl ey L ) ~

' AN

-

°

Here, B is the word-length of the input'in bits, and the
'inbut is coded as a word of N bits in base (-2). This is

done to allow the representation of negative numbers. .

. N
Hence d - -
B-1 j . . -
X = I x_ . (-2) (2.80)
. n j=o n,J . /
where ( : )
!'_./ \ ‘ xn,j €. {01\1} - " - .
. - Again, by a similaf derivation to that of Section 2.5.1,—
we can raepresent the table, gﬁ 3 .as:. .
. ’ .
.y /9
‘ CRY =, €Ky 302 % Ty, 5 ~
. .
= I a, - (2.81)
‘ ¢ . i=0 toathe * )
© % R /

R _',J-n . K e n s o Ad———— - - .




- where - T . o
, N: - i ' ) . bl !
K. .2 XK= I x . 2 2.82 . |
n,j jmo B~i.] (2.82) , o
. . s
- - Therefore, if the tgble C{(X) is stored in a RAM,

.

the address needed to read a partial output K, has to be

generated again and again, for every delay input. As

Equation (2.80) indicates, this address is notling but a

«” binary word composed-by taking the jEl-1 bit from each
iﬁpdf delay and that of fhe present output. Furthermore,

as Little's algorithm shows, the next address, can bé found

- by shifting the present address ‘and storing in the least
significant bit the jEE" bit of the present lnput.
s ' ) R - L

To implément a non-recursive RAM digital filter,
the analog input/has to be converted into a binary input in /
base (-2). This is then fed, bit by bit, the most -signifi-
cant bit leading, into a large shift register of length MN
_; ) bits. The first, BEE, ZBEE, NBEE bits are tapped and
- used to form a word of N+1 bits. This word is the address
of the RAM; To generate the next address, shift the con-
tents of the shift register one bit and feed in the next bit
Qf the present input. Every time an address is generated
s the addressed value in the RAM is the Fn,j needed to ]
—- ' compute' Yn’ as in Equation (2.78). This addressed value,
is accumulated in a shift register-accumulator. Each time

t

_ a new value is added, the content .of the accumulator is ,




N

L
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.

shifted towards the next significant bit, thus multiplying
the partial sum by 2. This operation has to be done N+l

times. Notice that the accumulator is a standard binary

~rs

- adder (base + 2)., This is because the table C(K), stored

in ‘the RAM is irrelevant to the input coding. The non-

retursive RAM digital filter is deﬁicte& in Fig. 2.28.

The shifting process in the input register p;ovides
the new addresses very simply. Tapping the particular bits
of this register is all that is needed. Fig. 2.29 explains

the tapéing and shifting needed to generate different addresses.

The recursive digital filter can be implemented by not-
\ A )
ing that it can be split into two non-recursive digital filters.

v

Thus, the input is used to address a certain RAM, and the

output also would/pe summed: Recalling Equatlon (2.68), th

recursive digital filter 1s characterized by

A

. N N .
Y =1 a, X .+ I blyY . x
n.oyoo i n-i j=1 L m i ,
hY - ] )
= Zx + Zy . ¢2.83)
where .
- _N N
2= L a, X .,% = L Db!Y .
. X - i=o ‘i n-i’ Ty 4o, ip-1

Therefore, the implementation of this filter can be obtained

by storing all the entfies of each table needed to compute

Zx or 'Zy in a RAM, then address it by generéﬁing the

[

addresses by tapping bits from input or output values. Notice
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that the output, Y ~is taken from the accumulator and is

|

converted to negative radix representation before it a@éﬁgsses
i

the z, RAM. Fig. 2.30, shows the RAM recursive digital
filter by using two RAMs, - v Y

¢
f

One other approach is ﬁo stora both tables in one

o —RAM,,usiﬁg only one address. THdg bddress is given py

g -

K. =Y ey e, X

n,j n-N,j’ Yn-llj xn"Nl\j’ n,J

-

¢

Therefore, the output is converted to 'the negative radix re- _
spresentation and fed into the output general shift register

to be tapped for the neyvaddress.

\ This, implementation is shown-in Fig. 2.31. .
/ . | AY
2.7 RESIDUE NUMBER SYSTEM IMPLEMENTATION
\\ Among the different number systems there exists an

upusual one which has s@he interesting feature;, for%example,
it leads to high-speed multiﬁlication and additiéﬁ.\—Although
division ang sign detection are done at a slower rate in this
system, itlcan still provide‘a very good implementation of /

q& digital filters. ' This number system is the residue number

- system (RNS). v

Residue arithmetic was introduced by'Szabo and Tanaka
[13] and was later applied to filter implementation by Jenkins
. ) oy K
‘and Leon [14]. It depends bgsically on choosing a finite

-
o




e - S o datld

2

—

~

RN

*SNYY OM3 w:wmz hwvaah WVH aAisanoad

\

|

1

LY

—

A}

B

-



. \
~ :
- ¥
( b =
- .
~ . . i -
‘ gt e B it P A T . . i
TSP 2% e ianyn e vt o o oo T o . . A
-, - . ° B
s « .t
\ R ) , ,
14 ~ ) R
. , ] i |
- " — o _ .
k T . -
- ~ / y[ W {
- / . R
/ .
.
.

] - : ~ ..
L] .. A

, - ,. H

1 s i - ) .,.\ ot ~ ) . \. . .. .

: T . “Ze3TTJ oATEIMOS WVH V  TC'Z eandtd \ q M
. . samo , | . :
- - ) ) " , N pv R ) - | . .4 &
. . . . . . ) |
| . ‘ y | . . . , ) [ ) — : ) . |

,,_. » ) - .. .. .p\a:x O.llll_nmlvﬂ\<, T | . . |

. ’ m - . " ) - M
- fer-u, ¥ 5 . . v

A
ey

- 4 -
— i N
. G — e — } . ~ a
N N . )
) : T N ; = \ -

| — .

! - i * T - LN

¢ T - E
2 )
4 N /[
~ )

- J—
R - £y - - * .- . - - - i . \‘. . s .rruﬂ\.aitﬂ =
, > - - oo . . .
) . v -



o

Galois field which contains integers. A process.of coding-
L] i

the input and coefficients is needed before the residue

arithmetic is performed. The output also has to be decoded

by employing ;he Chinese remalnder theorem //// :
. V4 1

2.7.1 -\\é\iggebra of Hindte Fields S e o

0

Let 0,1,2, ..3% be the set of all the N+1 integers

from 0, to N, and let p = "N+l be a prime number. Define also

s,

two operations,the p-modulus addition and the p-modulus multi-

plicaﬁion, as follows:

‘é— / S=A7A*38B *
where )
] . . "
* jis either multiplication or addition, and ¢
Smodfp = ISIp -

mod-p(A * B)

)
{
u

1]

*
A * B,

\ residue %f\if-* B) at p.

These two operations and the set of integers, 0,1, ..., N Lo

form a finité‘fiéld'which has p finite states. 'This~field,

F(P)/is the ba51s of the resxdue arlthmetlc

. " Let m be an integer, such that

I

meF(p), i.e., me {0,1, ..., p~1} ° ' a

Ao
o

T S

N

B2
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’

Then, the multiplicative inverse of this number is defined .
as the least multiple of m which has a p~modﬁlo of 1. For

eiaﬁple, let p=11, m=6, then the multiplicative inyverse of

< m, denoted by nl is

bt W Y st s st o}
o s TI Ay

e tee

mL.= (E';+l) o -

2
v

. e . '\ = g'l—é'i'tl_)- e i 0'1’2"..- (2.84)

_ The smallest i' that satisfies tgg_condition that n~t

h should be an intéger is 1, which gives m = 2, as the multi-

’

«

o

" plicative inverse of 6 in (11).

In general, the multiplicative inverse cdan be written

as : . )
. : L0

-1

- (i-p+1)
m

P

P

-
&

o

The RNS hses a set of numbers as moduli and on which

"¥ \ other nﬁmbers are‘;cted upon., Let P = pl,pz,p3, cevr Pp

be a set of relatively prime number§, integers, then any

integér 1 g [-w,w] can be uniquely represented in a residue . /f

number system that i ined by the moduli set P. This

representation is set of residu hich are the residues

) “of I at-the moduli in P. The interval defihed By w is.

i

Mo

- Ve e




at B .
' a 1.07“
- ' ‘ “ . \ ‘ )
! . . 4 ‘ by . ' P s
[ z pi~1] (2.86)
1=l \ ' ¢ ": :
\ ‘ .

, | P ) - ,
. The residues used to represenid I .are Rl'Rz' cses RL' ;n

other words, i T

. ; 4 o P I= ‘(Rl!Rzr sy, %) . )
where ' .
7 :
I mod-p, Te [0,w]
2 ) R R. - “l .
! . i . _ - -
e _ p;+I mod Py Ie [-w,0]
) ' ’ ) ¢ ’ // ’ '\ \ i=‘J-l2’ OOOInL {

The arithmetic of the RNS is valid within the opera-
!

tlonsqgeflned for the flelds of each p; Hence, addition in

A0

the RNS applies the addition operatlon palrw1se to the
correspondlng residues in the resmdue representatlons of the
two integers involved in the ope}atlon. Multlpllcatlon 1;‘
done fin the same way, i.e., by multiplying the correSpondlng
|
- l res§g es of the two 1ntege;s. In general, for an operation
* defined as *, and for any two residue representetipns of any .

two integers, r,s, where Ty

. N v
(\ + L
- . .

r = lARz, ooy RL -

and \
- u’s = Sl,S'zl I.-, S '4
’;/ E then for an operation defined, and operating on r and s: ) L
- “ ’
L ; o )
[= -
o . : ' - -
: - TN

-

T S,

R N LTy T
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o
-

R e T

o~
g i s

(Ry/Rys weer Rp) *:(81,85, «orr §p)

-
21
»
n
B

(Wl‘leluovol WL) o (2-88)

=
]

* -
(Ri Si)mod P; )
.. M . (‘ ) . o .

e : The choice of the moduli set determines the dynamic range of -

-~ N -

the system. - Actually, the computed results are identical to ‘

"those obtained through the usual integer arithmetic, if the'

.\ A4
N . result is within the range [-w,w]. Noting that there is

T . . ng fbunding involved, the result,@an be obtained free from - - '/

xu \‘rounding error, provided-enoth dynamié rangéQMigth is used.

-« "This can be done by choosing the moduli set large enough to

give a large w, as in Equation ﬁ2.86);4 This gives a wide

B «» _dynamic range. This, of course, requires mo;e*hardwérea

- The multiplica;ion“through modulus p can be stored

.
. (1]

as‘a function in‘a ROM . for all possib}e—valﬁes within F(pi),

-

thué givihg fast ﬁultigiicgtions. The coding gnd §écoding of
.é residue set will be the operation that should be performed .
’ before the operhéion of the filter isléonsidered. The calcu~
lations of the output can be done'in a parallel way, thus'
each residue of the set will be prbc;ssed séﬁaraéely, iﬁ | .

»n ( [
parallel circuits. A v i

. . )
¥ g ¥ e B

2.7.2- Encoders and Decoders

it St . - The inJut'to\thg digital filter has to be converte@ from

e 'thé-binary to\th_Eg§idue number representation. Thiseimplies

. ' .

)
~»
s
o
i
s
|
e
‘»Zfﬁ&%%;{},‘_!}’a‘lggﬂ‘”

{

v ' -
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. This value has to be coded as
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R
3o

+
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that the input has to be coded into a set of residues. from ' §
S A - %
a binary number. Szabo and Tanaka [1l3] suggested a method, 2
in 1967, which turned out to be simple‘ and .easy to implement. ”f
e | < . | I N
Consider an input X and let it be represented in .
the two's-complement form of a word-length of B bits. Let . ;5
. 3 ° R
- also the sign bit to be the BER pbit, :
/ L : . -
; "B . .
h X=.1I B, 2 (2.89)
i=o * ‘
_ Dol “a . ,
. where - - “ ' ’
, ) 8y e {0,1} i

»
[

® x = xlx2, . .,' 2 XN
where N
. xj € [0,p51] and Py 's are the N moduli of B
; the RNS chosen. ¢ * )
Since S ' - . -
' X, % |x|_ , | ‘ :
- , J Pj -
. '9 -
then from .Equation (2.89) A ) T ’
B - i‘ 1 T, ’ N . ;
X, = Ix = p) 2 2 (2.90)
AR N ) ”
.Q A
Taking the residue of the te that repreée‘nts the Mers of
2, and separating the B-‘:‘-ll it as the sidm pit, we can e N
/ ’ N
oy . . . o-
. - ’e N




B ' o P 110
rewrite Equation (6.7) as follows: Tﬂ
Q & ' / ¢
. B=1 .
B i
x, = [8gfps = 1281 )+ £ g2}
3 8P - Pyl jag 1T o |p. (2:91)

— -
Ay

Let Fi(i)' be a function that is defined as

5 <
‘2 Ip.‘\ i=°'l'2' -"oc' B—l .
Fi(d) = J : ,. (2.92)
Pj = IZB}

o,

i=B

definition, Equation (2.91) can be rewritten as

A\ d

With this

B

|

. ’ ' B .
‘ Xjn= z Bi Fj(l)

T (2.93)
i=o :

Py

-
- )

Eventually, ail the va;ues‘of thg kilter function Fg(l)
can be stored in a ROM. Such a ROM ¢an be addressed by
.the input bits,hence giving péétial results. If those
partial results-are added in médglo-pj adders, wejget the jE¥
éésiéue~of the input, as given by Equétion (2.93). ‘Furthe:ﬁ
ﬁore, the speed can be improve§ by storing partial results of™
‘é;fﬁnction in differépt ROMs, thus by using®several input
biljts to address several Roué simultaneously, thevtime is
aved.’ ' ~_ )
St :
The other process that has to be done before the
filter operation is what to do to getﬂéhe output batk from .

the residue number representation. Certain decoders help in

doing so, and those are tmplementations of certain algorithms -

y

BN

AU

T e b b T
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or methods to convert a residue representatdon to a natural ‘ !
integer. The method discussed hé;e is the most well-known ‘

one and it uses the Chinese Remainder Theorem.

v

Let x e [0,M)

where . ‘ ’

=

t
L I
ie)

.

N A
NG ' “ ' .
\
N

N
and let xlxz, vo ey XN be the resiéue representation of x.

The Chinese Remainder Theorem can be used to compdte the
value of Xx: ’ , ' ‘ h

b3

y 4 ]
= -1 / (2.94) ‘

and m.' is the multiplicative inverse of

lmj]b -within F(pj), defined by Equation (2.85).
By S '

* Notice that M is‘a large integerlwhich demands relati&éiy
- - T j

large amounts' of hardware to perform multiplication or addi-

\ tion in modulo-M. However, the terms |m; Ip are fixed

parameters and do not change with input. Therefore ‘they

can be premu;fiplied and the results can be stored as a

modified filter ‘function in a ROM.

P Let _ o} . |
- . . J .'J: J f ]Pj k=0

o e v A ke s oy A A RO e © o
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where
. R
s is the largest of the word lengths of the moduli

. Py, and bjke@q. J

- E?uation (2.94) reduces to

N s
Im. I b

d
2
j=1 J k=0

M

jk

s
X { z }’
k=0 mj ik

—

' s L -
" d% , =l 2*rm - {2.95)

where

F = .b. : .
(k) ﬁ msbiy o (2.96)
j=1
* '
Such a function uses binary bits of each residue of the N
moduli and produces a certain coefficient of the power-of-2

polynomial, which when evaluated, gives the putput in a

natural integer form. ) ' -

»

2.7.3 Implementation of Digital Filters

The application of RNS - coding to digital filters can
£ be very desirable in many cases, especially in real time-
u

processing of digital signals at high data rates. The mini~

\

-~ ’;t%;zation of round-off error is easily achieved in such imple-

{

s

Y
T 2 R el .
. .\ \

AR
- W
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-mentations, as well.

’

There are certain considerations that determine the
efficiency of a residue number digital filter.- Any imple-

mentation should be designed such that these considerations

. be met properly, hence producing an efficient and desirable

filter. Of these considerations:

- »
4
/ ‘ @

1) The dynamic range of the filter determines the
moduli set to be chosen. This range can be set to. '

[~w,w], where

and the pi's are the moduli set. The magnitude of -
the p,'s détermine'the word-lengths of ﬁhe’indivi@-
ual residue representations of the ipput/and the
oufput. The order of the set, N, determines the

— '
number of channels to be used for residue representa-
p ,

tions.

/

Kotice that the p;'s should be prime integers, or
gt least, prime to each other, so as to have a unique
residue decoding to a natural -integer, i.e., the

'set of moduii should be a finite field and not a
finite ring, so as to be able to use the Chinese
Remainder Tﬁeorgm, 80 as to decode a residue rgpreé'

’ .

sentation uniquély to a natural integer.

t

A%} N 0y

T S st

/

2 v ittt
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2) The choice of the moduli set determines the magni-

tude of the quantization error of the residue number -

¢

representation of the filter coefficients. Therefore,
the larger the,quaétization word-length is, the T
higher -the accuracy of.the ffequency response of the

”{/~(\ ‘ filter becomes. Usually, eight to ten bits would

yield a good guantization accuracy.

>

-

/

.

3) The filter function can be stored in PROMS rather

than ROMs, thus providing for more flexibility in

- . . Lo . s »
the design. Besides, the residue representations can

[}
T . be split into different ROMs .or PROMs, of small ' .
size and addressed simultaneously to get partial - -«

- /

Y resuits; rather than using large ROMs to be 4

addressed by a larger subset of the residue representé—
.tion. The_partial results can be combined]properly

to give the final result, thus decréasing noticeably

\
\

the size’of the ROMs needed.
’ %

. - } 4) The speed of operation is determined by the numﬁer of
/ - parallel paths the filter has. The use of RAMs can speed

‘up the process and thus the filter operates on a higher

!

y

e data rate. ; 'y
. . ) . X

-
' . \ The desigﬁ, itself, is straight forward. Fig. 2.32

x%f~“ " shows a residue number implementation of a digital filter usipg
a moduli set of five relatively prime integers: 7,9,11;13,16.

“The input X(n) is fed to five different PROMs which would
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————

' produce the residue representations of the input as
xlx2x3x4x5. Shift registers.are used to keep the incoming

bit representation and produce words which will be used to . -

ot A BB s e Separ iy = Gt

address a RAM that will contain the filter coefficients.

Vs
~
N

It g

:  The overall result, up until now, is the partial product of ’

the input bits of the particular residue in concern. This «

~
¢

now can be used to address the filter function which is

store%‘in a ROM, thus giving the total product of the in-

put médulo P;- Accumulating those results in an accumula-
- / r for all corresponding bits of each residue, then shift~

(z;§>and adding the results in decodihg the bﬁtput from the
s

idue number representation to binary representadion.

\

However, further hardware shnplification‘can be
achieved by shifting the "distributing" shift register
yf ‘ ahead of thé parallel modulo—pi ROMs, thus saving more hard-. //‘

. ware components. Fig. 2.33 shows this.

~
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. CHAPTER III T

FURTHER ASPECTS OF IMPLEMENTATIONS # -

—

4

3.1 INTRODUCTION

"The implementations disci¥Sed in Chapter II can be
extended and varied in different'ways. Such variations
., constitu;é the basic layout for mere efficient-implg-
mentations. In this Chapter, some variations on the
implementatioﬂs discussed in Chapter II are analysed.-

. , Y
Some related aspects are also discussed. Those aspects
/
include s¢aling, convolution and hardware considerations., i

3.2 TECHNIQUES IN RESIDUE NUMBER
SYSTEM IMPLEMENTATION

Residue arithmetic proved to be:a very promising

t
tool in the implementation of digital filters. The . -

S

' theory, in fagtt,is generalized to include residue algebra

P
of rings and finite ‘Galois fields. To implement digital

¢
filters using residue number systems (RNS), data and
coéffic;ents should be transformed into integers by using

‘'scaling. Scaling might be a problem, but still there

are effective scaling algorithms that wérk agreedbly [15],

Furthermore, new methods in implementing addition.and

subtraction in RNS would result in a more efficient

]
implementation.

o
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14

, 3.2.1 Scaling-

o

RNS does not allow fractionms, thereféré, dividing
a residue number by a constant and quantizing the result

to an integer is a difficult problem. ,h However, Jenkins [16]

has 'suggested an algorithm which is easier to implement.
i “¢

The Chinese remainder theorem helps to convert back an 'RN

. V
répresentation into. a normal integer.. .

Let L moduli be chosen as My My, ..;, my and

-~

R )

let y;(n) = [y(m)] -, i=1,2, ..., L. Y(n) can be comput-

i
ed as ,
y Y m v,
Y(n) = [ I m|m,” ¥Y.(n ]
el i1 i my M
where . C , ‘
, ) ) S l R 3 N
™ = _.__M m —l- = -
RS M-l A L L) Im 1
) . ’& v 1 ~ 1 S
and ) ' . /
. L '
) ., M= 7 m; (3.1) -
i=1

The computation of Y(n) can be simplified by'mﬁlfiplyi

Ei in many 'ways. If the fii;er has constant coefficients

that are péymanently stored, the ﬁ;l'sfcan be premultiplied
by them and stored. It can also be premultiplied into '

' @ . ——
the multiplication tables stored, or by the translation

s / i

‘codes, if encoding and &ecoding are done by stored transla-~ A

tion dodes .

-
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3.2.2 Hardware Structures

The implementation of residue recursive digital

—

- filters is highly modular .and structured. Thrée concepts

of this hardware struéturing are the following: - .

)

a) Residue coded combinatidhal filter: (

Recalling the ROM implementation®method of ,
A . . -
Croisier, Peled and Liu [4], a second-order section can

be used as a subfilter. Three moduli can be choseﬁ as

2k' k k-1

27=1,2 -1, where k is an integer. Notice that

k™S
the choice of these three moduli L = 3, will have a

convenient scaling factor of 2k(2k-l-l). Those three

" subfilters are then implemented and connected in paralle%.

This is shown in Fig. 3.1.

b) Small moduli combinatorial filters: °*

If the moduli set consists of small integers, then

the oﬁtput y;(n) can be expressed as

——

gy o= ey = FLE U by [ Xpaln )+

- f ' + F3(Yi(n"i) ’ !i(n"z) ) ’ lxnimi]]

. . had -
A

Fl,F2 and F3 are filter functions which depend

where

" on the coefficients.

“eng,

PR
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A !Figufe 5.2 depicts ,this implementation. This is & high-
K o « .
_ \ sp ed and hlgh-preciSLOn lmplementatlon, sihce the sub-

‘ . / R
g o fllters operate 51multaneously, and no bits are lost

3 + B .
- ‘ »
. . . . . — P

e + @) Scaling circuitry

’ ) \\\through the use of general scallng c1rcu1try‘ ‘.
t ST ‘

' For fi{ters with varying coefficients, i.e.,
~ adag;}ve filters, the filter function has to be computed

- T eueiyltime they change.' An alternative is to use’ conyen-,
oo ' . 4w .
- . ‘tional multiplier ROMs that are more flexible: for such

| . .o

B ) variations. ‘ L ,

| N Y Ry , ‘ | .
o -, .2 3 Otngr RNS considerations .

0 o N - - \ 4

[ -
-

. g; Filters that aré implemented by RNS and combina-

f . . ial methods are referred to as hybrid, such as shown

in Figures 3.1 and 3.2, Hybfidilmplementation,i@\fadt,

¥ . . .
~ . ks highly desirable,.due’%o the favourable gqualities of - .

£
: . D) .
f.‘ ;' 5y both combinatorial and RNS - implementations.
A e ‘*‘{ P - N 4
T ' i » i .
r § i . ;‘ fi‘the order of the filter is:N=LM, . whege L,M
IS . . .
L ? L are integérs; then the filter can be implemented; using
;w}é ‘ . *M sections with an L1 _ order subfilter in each*
nE o . A 4 . .
}‘ N ‘ With M < lO}‘bombinatorlal implementation is suitable,
« - 4
f' g and hence it can be used. L subfilters can be connected
. E- . [ - ' -~
E i .. . in p&%allel.to give the_partialceﬁtputdof that section.
S 5 " L] : ) ’ ¥
] “I" °
o0 s ' 2 ~ N
k « - AT ’ o~ "
[ T \ Iy
3 r )

b
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Thi; 1ls fed to the next secgtion and so on. The subfilter
itself, is, in fact, a simple combinatorial ROM fi}tér.
This is shown in Figure 3.3.

’ \

This implementation provides a filter which has data
rate reasanably independent jof both coefficient and data
word length, because increased precision can be obtained
by addingdresidue subfilters in parallel to the, original
structure.

A

N

. Soderstrand [17] suggested a RNS implementation for

a léw-cost high-speed digital filter. "In this implementé—
tion, blocks aée used to construct Ehe filter structure
and each block handles a certdin function. In Figure 3:4,
a‘digital filter with three moduli_is implemented. The
moduli are 4,7 . The bloqk labelled BﬁNS (Binary to
RNS) converts an,input data sample from binary to RNS
representaéion, while the RNSB (RNS to Binafyfﬂdoes the
opposite. Each MOD blogk is a ﬁodulo adder with delay
,feedback wgﬁch does gverything% delay, add and look=up for
precomputed%multiplicétions. MUL are designed to perform

a table loock-up foé fractional myltiplication.‘ Addition

and subtraction of RNS codes are the basic operatidhs often
required in filter implementatién. A ggod implementation
[18]. '

of such adders is due to Bannerji

- [




~
TR Fagn e

LS
N

SR R v T%Mtg-:'j:f—w'.».»,,h_'\

s

— — == 1 4
& ) ) '
. Oc.'é:')";> S
— ) W
— 125
. » r;":'
/ [ h
v From subfilters - ----—o—y r—---—- To subfilters
X l ‘ , :
a
o ROM___" | ROM 5, Fesidu o |Y
n
scaler ms
D a : J
1 mg
N -
b
) D ROM ROM
’ ' b l ) o )
3-2 Mes 2 mi . E ’
J 1 \]/ . .
ROM ROM ROM
—_ ¢ k.l
Figure 3.3 Architecture with general ROM-myltipliers -
for an adaptive second-order section.,
o D
/ ~ L,
R < A B [,




’ 5
« / J—

\\, ' 126
Binary/RNS - / RNS/Binary
converter converter

0 m
z ’ )
'\ x > z
= g
v ,
mod L1]5 rmod 3 [nﬁd__uj {mL | - - /(
' ) ‘ ]
MUL mod 15 [mod ¥ [mod 4]
K S K .
Binary/RNS
P 1]
' ‘/ , 4
, @
— m
’ " ' Figixre 3.4 A residue number system second-order
: section based on Soderstrand’s approach,
. -
§ et
P Y -
:? w/// P

n
|
|
|
;

[



7

“plicatign, any'digit of the result is solely dependent

. .
. /A

o ‘ C ' 127 -

One important property of an&‘residue number system

is that in any opefation, addition, subtraction or multi-

or the,cofresponding digits of the operands. This means
that no carry is needed from one residue digit to another.

It is this property that is used, here. Notice that the

For

set of residues are cyclic under addition modulo M.

- }

example, if M=5, the addition table for f{|X+Y|5 can be

_ written as Ny
- Y
- 0 1 2 3 4 _
roL b 4
0ojo 1 2 3 4 1011 )23 |4 k-
!
!
\1 1 2 3 4 0  cememmcemecm—memen ] '
S 212 3 4 0 1

313 4 0 1 2 \
4 14 0 1 2 3 ‘

¢

[ . Loha
H,.,;,Wq,'\,\ g

If these residues are stored in a shift register, then to add
two numbers, X,Y, the contents of the register are rotated ,
to the left x times, then the ,yEE cell in the register

contains the sum of x and Ay. So, if x=3,‘y=4, then , )

xbylg = [3+4], = 2. ' , | \

By shifting the contents of the shift register three

times to the left, the contents would be

e e .. N NI ST s g R 0, b1 013 7, T T
S A b B D RS AR s bt
.
s

A

.
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- . Eventually, the 433- cell contains the sum which is 2.

The implementation of a mod-3 adder is shown in Fig. 3.5.

o . ' gy '
The subtraction can.likeWise be done by shifting the

contents of a register which contains the subtraction

1

residues. The residues for M=5 are 0,4,3,2,1. The shift,.
in this case, is performed x times, and at the end, the

. , §
yEE cell contains the difference X~-Y. The resulting imple-

mentation for M=3 is shown in Figure 3.6.

3.3 TECHNIQUES IN DIRECT IMPLEMENTATION : ’

i ’ , There are certain aspects of the direct implémentation

methods that make them suitable for MSI or LSI. These aspects

include modularity, high-speed, low-cost, aécuracy, and
so forth. Certain variations or changes in the basic imple~"
. . mWmentation may result in better implementations. ‘Two

, " importantavariations are discussed here. The techniques

!

usually used %o obtain better implementétions include maxi-~

s b ]
mizing the pre-computations, optimizing memory locations,

. multiplex}ng, énd structuring the impleﬁszétion.

-
)

3.3.1 Cycling Filter:

The implementation of a filter using a counter was'
discussed in Section 2.3. Notice; that in Figure 2.20, the -

.gates used produce outputs simultaneously.’ This is not

©
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Y ‘ ~ : ™ sum gating
‘ — ‘ ,. |
1 H
Decode u 5 ¢
1 out of 3\"‘] . '/ \P] \/ T
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Mo sum mod 3 regis'tert ,
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~ Figure 3.6 Alternative implementation of mod adder
r . (mod-3) using rotation by power of 2.
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needed in practice, since only one output of the gates is
counted eéch time. Hence, one gate can be used to perfWm
all the gating. This can be implemented by using a shift
regist;r such 'as a circulating line. Consider a circular

shift register, which contains the coefficients, and /

another which contains the input data and its’dgghyed values.

This regisFer has an entry point, where data. gets into it at
every sample period. During this'period, both registers
would shift in opposite directions at different pulses.
Thus, each pair of bits is gated and is then fed into an
up-down counter. This” implementation of a non-rgcursive

digital filter is depicted in Figure 3.7. It is extended -

to a recursive filter in Figure‘3.8.

" —_—

s

3.3.2 The Heute Filters

4

am w

—

. Another implementation which dgpends uponnthe
shifting coefficients or data in registers, is that due

to Heute [19]. This implementation depends on shifting
completely the contents of registers in opposite directions
such that one inbﬁt word and the corresponding coeffigients
are multiplied together. This multiplier can be a serial
arithmetic unit which is‘used in the conventional multi-
plier implementation, or a ROM which contains all the

possible woducts of a B-bit coefficient and a data word.
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< Two registers would contain the input data and the
filter coefficients. These registers have to shift in
parallel, and each bit is tapped(on both.registers to
gaddress the 'ROM  and produce the p?oduct. Figure 3.9
.shows an implementation, using a‘serial multiplier, where-
as, Figure 3.10 shows an implementation using a look-up

<
This implementation becomes demanding in

. table in a ROM.
storage or in multiplier hardware for a large N. To
eliminate this problems, so as to speed up the filter

!
operation, jparallelism is applied. ' -

One form of pafgzz;lism is'splitting the {iltér
into two or more subfilters. Take n, = (N/2], i.e., the
integer part of hqlf N, then implement the filter in one
subfilter for the lower ﬁalf, and in another subfilter for

the upper half. The filter can be expressed by

a

N N, N
y. = :Z2a;, X =L a, X .+ )} a;, X__
noooo i -l D T i i=n +1 i "n-i
' Qa
*=¥Yi3.at¥2,n ‘
where T
n
» 1
Y = LT a, X
« l;n i=o i "n-i .
and P
_ N
4 = X a, X_ .
e v
1 \ -

vy i o e——— o A L L

LT Y
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‘This implementation is depicted in Figure 3.11. This is

very useful when the hardware used ii/gqp slow for the
* - (4 5
required sampling rate. _
AN ‘ '
. R ' A

Y

\
If the multiplier is slow, the filter can be‘speeded

¢

4 up by using two multipliers. ‘As shown in Flgure 3. 12

xn and a, are tapped fed to the flrst multlpller,

/-\v/. . ’
. vhlle at the same time, Xn&i and a ié“?;z;:fd to the .
o - second multiplier. Both products are adde \o”an accumulat or.
A shift of two words would follbw, feeding X, and es
A . -
: : ' a _, to the first multiplier and X _3 and aj to the

5 second, and so forth.-

“~ »
" [

R .
One other variation is the one shown in Flgure 3.13.°

) Y \ ,
. This is useful when both the registers afd.the multiplier

are slow. Each word is split ifnto two parts and fed in

parallet to two multipliers. Such an implementation is

4
.

/’-efficient for linear phase filters.'

@ . N

3.4 - IMPLEMENT_L}\TION OF DIGITAL
SIGNAL PROCESSORS

1
PR

- ) .There are certain methods of calculating the output

e of a digital filter that require the evaluation of a
transform of the input and the coefficients. The output

* is computed easily in the domain of the transform. This’

A

et e WL etz &
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cessor implementations  which can be geneéalized easily to

U3

method is very.good for finite-impulse digital filters.
. .
Such methods are useful for the evaluation of convolution,

-

as well.

' i

There are+hardware implementations of certain
processors that take the transform of the input and
e&gluate the output in the transformed domain. Such - oL, T

/
implementations are more complicated than the digital
{

filter implementations, due to the: fact that larger numbers™

of data points have to be dealt with at the same txme.. .
L : .
Even so, the transform methods can be very sultable and effl-

" cient for digital filter implementations. The abstract

presented here, presents-the general overview of FFT pro-'

other transform proces;zrs, then summarizéé the character-

.

istics of the hardware architecture of these implementations.
/

il

3.4.1. Convolution

Convolution is a basic operation that involves

multiplications of arrays. It is, in fact, the process of

-

evaluating the output of a non-recursive digitél filter.

.

The complete iﬁput sequence has to be available, in order

A

to compute the output seguence.

Convolution demands a lot of multiplications. There

are many methods and algorithms that do the convolution

- ‘\ e e



iﬁ.a 1ésser number of multiplications. Many 9f those ﬁlgo— -
rithms depend upon the idea Sf transforming the data into

a new domain. Such a transformatlon w111 lead to the
reduction of the number of multiplications required. The
output can be obtained by inverse-t;ansforming the products.
back to the original domain. The other type of algorithms

depend on numerical techniques not associated directly with

=21 1

a transform. ! , ’ ~

!

/ ~

The Discrete Fourier Transform (DFT)— [1] is one of

the most important of all. It is the .discrete version of

) .
the Fourier Transform. It is defined'as

N-l - -~ S~
— : ‘ v =kn '
. : Xk = I X W (3.1)

- n=o i

¥ a

\ Where

&
h

.1 -
W = eTIF (3.2)

If the non-recursive filter is ch#éacterized by

I M U R

N-1 | ; )
‘Y = z a. x i\ (3-3)

. . ‘. - nK-O' ’ -:-' N-l

0
L]

- Then by taking the DFT of both sides, we-get = °

<«

- N=l1 N-1 —nj -
¥ = L (I a, X__ AW - ;
R jmo i=o0 * R !
“N=1 -1 -
v = E a W) (F x, W= 1’) [EX)
i=o . J’O j An xn

JEET

i

\
[

S ST YN
ST JOC

~
L T



/
-+
’

\

by

\ : Y 143

Hence, by taking elem nt-by-element product of the DFT o

( /
‘ -

- of both the input seguence and the coefficients, we get

the DFT of the output %eguence{ Taking the inverse DFT

of Yﬁ, we get the output Yn. There are algorithms to

S g S S i T B

o
PR

compute the DFT, referred to as the Fast Fourier Transforms
(FFT) . Any implementation of a non~recursive digital’
i )
' filter by convolﬁtion has to consider the implementation of

a digital signal processor that does the DFT and the

inverse DFT.

There are other transforms which are useful. A

-t

particular one, called the Fermat NumberiTransfaim (FNT)
’ provides a yéry good basis in impledé;ting the convoiution.
This is diécusseﬂ in Section 3.4.1.1. Other transforms -
that can’ be useful include Mersenne Number 'transforms [20],
7Walsh,Transforms [21] dnd the Discrete Cosine Transférm R

[22]// These transforms require complicated hardware, and

are useful in particular cases, 'depending on the nature of

signal that is to be filtered. One other method is discussed

"'in Section 3.4.1.2, namely, the Cook-Toom algorfithm for

computing the tvonvolution. This represents the other way

of ¢omputing the convolution where no direct or specific

.

transform is usﬁir , o

/
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3.4.1.1 Number theoretic transform N

. « : /
Consider any N by N nonsingular matrix T
. >
whose elements are tk,m for k,m=0,1, ...,ON—l, and N is
a power of 2. This matrix gan be used to transform the

input X  and the coefficients A , as in Equation

{3.10). Let this transformation be defined as

' * X=Tx, A=Ta —

I
L}
|
P

4

,x,&and y are again’ N-e nt column vectors,

whose elements a X.

. 4. and y i
respectively. X, A and Y are their
N-element transformation vectors,

c -
The matrix T can be chosen such that 24

N

- Y = X*A _ (3.6)°

where

* denotes element-by-element multiplication
4 L

L

Such transformations are éalled number theoretic trans-
forms -(NTT) . The proper choice of the matrix T .- de-

termines the complexity of the transform. A proper choice

is

;

s e AR ot s

oSGV

e s
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: o ' _ km
: : . ' tk,m = 0./ k,m=0,1, ..., N=-1

and the inverse T * has elements t, = as ! u
’

s - | -

t]'(lm = N-la-km ’l

and the structure established by this choice is orthogonal.

The transformation involves computations which are of the A
form
/ Lq"‘ l ik
Xk = I x;a
' i=o

- Tr‘
Notice that this is of the same form &§ the DFT if ®=e ' N

However, if this computation is done in modulo arithmetic,
the\ resulting transformation is known as Fermat Number Trans-

fo (FNT) [23]. Modulo arithmetic is very helpful

when large or negative numbers are involved. The FNT is

\

r defined as
0 NT1 )

o ‘ Xk = I x. alk(mod F.) (3.7)
ci=0 * ‘ t

where

Modulus Ft is ca%led the tEE Fermat number..
¥ ' - . '

- i

The inverse transform is defined as

a ™ mod F) - (3.9),

- s ¢

3
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w \
) : t
. 2
= +
Ft 2 1
.. , . and o is chosen such that !
» ° \
- o' = 1 (mod F) ‘ «
. This hardware implementation depends upon two facts: .o
1
1) a, itself i3 a power of two, i.e., o = 25
N / -
o c where |
- o . 8 .is an integer.
This means that in taking the FNT aEcording to Equation
‘ (3.7), or the inverse FNT, as in Equation (3.8), the
’“ ‘
ﬁ operations needed are shifted right (or left) a number of
@ ' ’ Yo~
e - }times, the contents of the input register and then
; , accumulate~the result for all input data that are loaded
3 . into the input register.
g {
§4 2) The second fact is that the choice of a Fermat
f’f '\ number of the form o
w ' {
L t
&l 2
N} = +
% . P, 2 1
.-gg:
i ’ ' , .
o ’ makes the Ft-modulo arithmetic easy to implement,
y - The operations modulo a Fermat number can be implemented
£ “ y */
as follows:
[ ~

i




a) Addition: ! ‘g
—_— _ e
s - N If two 2%-bit integers are added, a carry bit may - %
_ be obtained, which is | E 4
. ;!
i ) ] \ 2t / , ) . _}?’
carry 2% = -1 (mod F ) . ) 5

’ o ' ~

Therefore, if the carry bit is subtracted from the __

result, the modulo addition is completed. e.g., take

‘ 14 )
i ( -
t =2 Fp =17 o \\
10+ 9 =19 = 2 (mod 17) ' 1010 B
¢ : 1001 -+ '
: 10011
;‘;’f - . 1 f”
{ 0010 = 2
o . A
P . b) Subtraction:
Yha To subtract find the Ft complement of the subtra- .
% . ' | hend, and add. he Ft complement is obtained by .
é - complehenting every bit and adding 2. e.g., take. ' ~
Ay «
" ' i
ﬁ 9 -4 =5 (mod 17) ' -
v _ =9+ (-4 =9 +13 =25 (mod 17)
i c © . 4 : 0100 ‘ )
- .= 4 : 1011 + 10 = llgl !
Y ’ . ' 1001 +
L S , 10110
: . | l : ’ B
’ : . 0010 = 5 . .
: .
!
) A ,
SN _ '

e e G ————
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@) Multiplication:
The multiplication gives the result in 2t bits
or two adjacent words of 2t bits. The multiplica-
) tion is done by Simply subtracting the higher word
from the lower one. e.g., take
. 13 x 9 = 117 = 15 (mod 17) '
i 117 = 011t 0101
. H L
-.H = 1000/ + 10 = 1010 : .
. I
/ . L 0101
- H 1010 o N
1111 = 15 i
3.4.1.2 The Cook-Toom Algorithm - ~ e
. s ‘ . !
The number of multiplications required for the con-

volution of Equation (3.3) can be reduced further than that
needed in the DFT implementation.

[24]

The Cook-Toom algorithm--

!
is a very efficient one and performs the convolution

4 N . S-SR Y PP
. L 3 e 2 X N T
s ek D A R

in 2N-I multiplications.

Define a generating polynomial for - X as i %
* \J

2
~ 4 .

N-1

_ X(z) = I x;z (3.9) —
\\\\;;(/,_\\ t=o ' ﬂ
i . M\

3 L
This is, in fact, the Z-transform of Xy except that the.

!

powers of z are positive., Likewise, define H(Z) for hn and

Ve

‘.
T L s .
B I D e
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Y(Z) '= H(Z) x (Z) © (3.10)

+

¥(2) is a 2N-2 degree polynomial. S

!

Select 2N-1 distinct numbers, b, i=0,1, ..., 2N=2, and =

substitute thpgg for Z in Equation (3.10), to obtain my

9 3

such that ‘ ‘

1

mg = Y(by) = Alb;)X(b,) {3.11)

1

' -
There is one polynomial of degree 2N-2,W(Z); that satisfies
! .
these equations. Using the Lagrange interpolation [24],

W(2) can be expressd as . 7

. 2N-2  2N-2 (2Z-b,) s . - ﬁ
. ) W(z) = L m, w —iN (3.1
) iso 1 j7i (bs=by)

w ' - ‘ <

R T

The evaluation of W(Z) requires 2n-l1 multiplications. Since

’

A(b;)'s and X(b;)'s are linear combinations of the a ;'s and 1

xi}s, respectively, Equation (3.11) can be rewritten'in a 'é'
0 / - ~

matrix-vector form

m=(BA) * (B X (3.13)

! ' L.
, .
A and X are N-element column vectors, whose . \\iXA‘

elements are a; and X, respectively.

[

M is a 2N-2 element <column vector with eleﬁents

!

B : N .““n
mistﬁ. . - , 5

ey
2]

S TN eI

LR
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.The matrix B has its elements ag bj . where
. P . ! ,“,\" J ’ [
R " | . =
- « ‘ 4 rd jgolll o o g N-l
Do, b!, = bl = :
; IR L i i=0,1,...., 2N-2

Now Equatxon (3 12) 1mplze§ that Y(2Z) is a polynonu.al ‘that’

has coefficients wh:.ch are 1J.near comb:.natz.ons of mi, or if

~

‘

i

1ot of precomputatz.on,

il

-#The operation * .is an element-by-element multiplication.

P

_ 2N-2 i

. ¥ Y(z2) = T y, 2

P i=o J’i

. . X
then . s o \
- 2N-2 -'
X . Y= I C
. i ]xo ij j ‘ s ’ !
where >
A} i ¢ ~ . J
. G4 j 's are constants. ‘ - -
. S -
This can be written as ",
. .o, N '
' YL

where ‘ i

Y and M are 2N-1 elemént column vectors with

Ay ) ~ i
. ©  elements Wi‘ and M respectlvely,, and
~ L]
» c is 2N-1 by 2N-1 matr:.x. . ,

1

us making the implementatioﬁ,

5

" . - ': . 5 ‘
The hardware imp-lementat on of @th;s algorithm requires g

o

:Lt%elf , simple. Eachk bi ‘is"different, and ;ﬁon-repeata.ng,
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i v . S
'for example,. ‘v e "'3,-2,—].,0'%'2, “eey mﬂn Inatrix B can be
constructed. Since a; are constants (filter coéff;cientg),
the product B A can be precomputed, too. Let .
e, \ i . L]
~ B-‘l ‘i
X. = I xi. 2 (3.14)
' » j=o I .
t ~ ! ’:'\‘,‘
where 7 N\
’ X.. ¢ {0,1} and . s
1] : ‘ ~
- B is the word-length of the input data. '
And let X.j be an N-element column vector whose elements,
are the j—EE bits of all X, . Equation (3.12, becomes i
e . B-1 ., .
m=(Ba) *B (I Xj2) / .
—'h) ' j‘:o’ ~ ‘ . . . .
B-1. ' . . '
/ =" I {(Ba *BX.j3}23. , ' :
/ ‘j"O . . . a‘
; ) -
- B-1 Do :
= L F.j2) : )
N j=o - P .
. / * ' ¢
where . /
. . "Nl._ . / ‘4 ’ -8 ,
F.j is an N-element column vector defined by ' ‘
- > ' v )
, F.j= (Ba) *(B X5
5 ' 1‘/, ‘
'Furthermore . ‘
] ' . .
. , My = jio Fij 2 '«v . {3.15) ;
\~ " i=051, «.., 2N-1 . d
v ¥ "\1“ . L
" ﬂl
N . . . ‘ﬁ, i

X
&)

IR
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Substituting Equation (3.15) in Equation . (3.13) T -

2N=-2 B~1

y. = & C,. I F,:2
: L j=o ij k=0 ik

k

' - =B;lcikzk._‘ (3 «
" k=0 :

where

2N~-2

!
G = L C.. F ’ . (3.17)
ik j'_'o 1] Jk ’

; |
i Accordlné to Equatlon (3. I ), the output of the filter can
be computed by using the function le, “which is derived . ) L
+ from Equation’ (3.15), uging Equation (3.17). Notice that

. b \ !
}the evaluation of Equetion (3.15) requires the jEE bits

PR

. i S

‘ A X
F ' ‘ of all the input data jsamples. , o
. . | ‘ - ‘ |
3.4.2 FFT Impleméntations ,
! R ‘ | ' .
t ™~ .

. FFT, implementations differ widely due to the fact

e e - e,

P 'Fthat the process of evaluatlng FFT, as well as the approach,

can be dlfferent. Many of the ideas. of dlgltal fllter imple~
L. N mentation can be adopted as a basis towards the 1mp1ementatign-
‘¢ ‘ ' '.eﬁ.the FE?. In fact, Peled and Lin [25] suggested hardware |
o f FFT implementations, using ROMs, and Zohar [26] suggeSted: \
| ‘ another usin; counters. However, FFT implementaﬁions are of

higher complexity than those of the digital filters. | . N

- I * '¥\
' N (().l

o e e

Ay
-
;j
¢
}
|
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g There aré& many methods, but four of thdse are very

basic, and well-suited for processor design. They are as:

)

, follows: — N

’ 1) Sequential processor
— 1

A memory is used to store resulting Fourier
coefficients. Since only one basic operation is

. involved (i.e., one complex multiplication follow- \
. . ’ - 4
ed by an addition or a subtrattion), and since also

— ’

the accessing pattern is highly régular, the amount

of hardware can be relatively small. The sequential

processor is shown in Figure 3.14. This processor -

?

S U

”~

has one arithmetic unit in which (N/2)log2N opera- ‘/}

s

TE
<

,tions‘&re performed sequentially, with execution

Gae
1

R

time of T N/2 logzN. T is the time needed to

+ 3

perform one operation.

b

’ 2) Cascade processor

Parallelism can be introduced into the flow diagrah .

o of Figure 3.14. This is done by using separate

arithmetic units for'each iteration. The throughput

is increased by a factor of logzN by doing so. The

' . . . 4
first arithmetic unit performs the operations

: labelled 1 through 4, the second performs 5 through

8, and so forth. Fig. 3.15 shows this cascade .
N f ) %
structure. There are m arithmetic units, m itera-

Wi o
w -

R tions are performed in paraiiel, N/2 operations are

\

. .
B / .
i B
.

-~ IR .. Al e e T LTS . B DTN B Ll o
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- forming one‘gasic operatién. There are (N/2) logzN
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]
performed sequentially. Buffering is incorporated
within the processor in the form of time delays.

This organization lends itself well to multi-channel

operation where sets of samples are interlgaved. ‘

Parallel Herative Processor

Parallelism cgn be introduced within each iteration.
By using four arithmetic units, the operations
labelled 1 through 4 can be performeﬁ in parallel
before performiné ope;ations 5 thfough 8 in péralleli
etc. The processor performs iterétions,sequentially,

!

but'performé all of . the operations foryeach itera-
4 )
tion in parallel. Figure 3.16 depicts this organiza-

tion. N/2 arithmetic unizi/ére needed with execution

time of T log,N us. Ther are m iteMations per-
v * .

formed sequentially.

£ )

Array analyzer

+

By pipelining a number of different sets of data
through this processor simultaneously, the effective
- -3

-/\ -
execution time is simply the time reequired for per-

arithmetic units and that much operations ﬁerformea

in parallel. ,TZﬁ/gxegption time igs T u sec, which
is very fast, but very expensive, in terms of hard-,

ware. Figuf§ 3.17 shows this gtructuref/

=

N . \ -

i

B T e

B

-~y



o

e

Y
-
e

!
: % g : o
Sp A S

.

e

]
&

T Mémo&

s> output
A.U. .

Mem.&

A.U.

* Mem.&

¥ | a,uU.

’ M .& \ §
R
, A.U, : 5
3.16 Parallel iterative processor.
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'3.4.3 HardvareﬁArchiteEEure
Y ‘ “ N o
The design of hardware systems for digital signal
.processors, can be done in a similar way to that of other
designs of other hardwaré/gystems, i.e., it is based on
a good” hardware architecture. The p}inciples involved are

various. The most important ones are discussed here.

\ a) Paralle}ism'

The sub-units used for the design can be constructed

’

and connected in a parallél way. This implies that
some units are working in parallel to speed-up the

‘processing. i

b) Modularization

-
\

If the units are designed in such a way so that
they can be assembled together to_reéresent_the >
processor as. an architectural outfitgccomposed of-

well-designed and integrated moqdle,-the impleménta-

L

tion becomes more efficient and suitable for MSI,

4
.
[

or even LSI.
- { \/,
c) "~ Specialized memories
- =3

Instructions leading to the processor performance-

—

' !
"have to be stored in memories. If special memories

are useq’ the instruction fetch can become much

-~

N

oS0,

o

/

=
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e)
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faster. Therefore, higher speed is achieved.

!

Specialized arithmetic units

High-speed multipliers that can be multiplexed

easily would be very important-building blocks for .

b

the arithmetic uﬁits of the processor. A‘ﬂuas%ie%ﬂ’
al module which computes (x.y) + 2 is highly use-

ful s;nce it is ideal for sum-df-products calcula- - - i
tions. Such a unit wouid be}perfect for implement-
ing convolution, transformation and inverse-trans-

formation with high-speéd floating-point units.

[y

T

/ . d,
Combinatorial and sequential logic v

The design of the arithmetic units can depend on . b

-

éither sequential or combinatorial logic. Combina-~

torial logic is more efficient and includes array / - ) }{

o

multipliers and.multiplexors. - , /o

-~ . -

4. : ] . -~
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_CHAPTER 1V _ :
& CONCLUSIONS

v - .

-

t There are several approaches to the hardware imple- . .

e ®
B S

mentations of digital filters. Each approach has to trade
~

. ' one aspect of the implementation fér another. Speed, for
. o . _ example, has to be traded for high cost. ‘The diffefent

‘methods, discussed earlier, provide very convenient

implementations for certain appliqations.

Tﬁe conventional implementation, by using a multi-
plier, emplo?s a small set of relatively simple digital cir-
cuits in a\highly regular and modular configuration well

v suited to LSI constructibn. By using parallel processing ‘ a
v : aﬁd serial two's complement arithmetic, the required
arithmetic circuits are greafly simplified. The processing
rate is limited only by the speed of the basic digital ) l
circuits (adders and multipliers). The resulting\filter !

is read?ly multiplexed to process multiple data inputs, or +

tO’effect(muLtiple, but different f£ilters or both. -This

a,

J
multiplexing would use the same arithmetic circuits, thus

. providing for efficient hardware utilization.

»'74 .
Combinatorial implementation is more efficient

than conventional implementgtions.‘ The multiplier is re-:
' L 8

. ; -

L AR ARt At ’ L - - i
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\ N . o

Iy !

placed by memory in this approach. This method offers
significant sayings in cost and power consumption over
conventional implementation., It permits operation at

. higher speed also. These savings and efficiency
are due to the fact tha£ the flexibility inherent in us-
ing a multiplier and thus permitting ;n infinite number
of transfer functions to be realized is not utilized in
practice when implementing_filters for fixed systems3.
This method eliminates this o&er-capacity. Therefore,
the general pufpose multiplier is avoided and instead,
high density and higﬂ speed memory are needed. Such
implémentations are generally better/ more efficient,

i -

and, faster than the conventional lementation.

Implementaﬁion using copnters provides a very

-

convenient method for eliminatifig found-off errors. It

provides also a high speed and relatively low cost. However,

the cost is affected'by the fact that radix converters

\ ) ‘ . , .
are necessary. Computation errors can be minimized in this,
N

implementation, especially when the digital filter is
~designed in second-order bibcks. This implementation,
however, requires a'larg? number of bits for a specified
error bound. Even so, it st provides a definite cost.
advantage. If higher speed rather than low cost is the

I
main goal, one should consider using this implementation

N . %

. L | - o
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/ 4 . \J . ‘. ¢
to construct the second-order building blocks and tealize

.

b

— e the overall filter as a cascade of these.

. ) : -
‘ bg.‘mplementation using RAMs can be advantageous in . -

f_ ' , some :applications. A filter implemented by using a'RAMd,,, .

would aéﬂieve its speed by the total elimination of any

computing to get the accumulator, fhe partial results to

Ve summed, Therefore, its delay is lower (the time elapsed

fromkthe availability of an input séﬁEIé to the generation of

the corresponding output sample.) “Hehce, the RAM filter

- has a definite advantage in those applications whefe a

minimal delay is important. Sihce the storage requirements

é _ of the RAM filter increase e#ponentially with its order, this

™ . implementation becomes less appealing for a high-order filter. -
‘o . 1he

¥

. ' - The Residue Number System implementaﬁion'is attractive
i . fér non-recursive digital filters, which require oﬂly multi-
plica£ion and addition, becauée these operatioﬁs are very N o
“u/fast in an RNS. Both residue addition and multiplication
o o ' ‘Zan be implemented by loock-up tables stored in high-speed
;?\ . : - -’bipolar PROM. The Chinese gemainder theorem brovides a 3,

11 | : . (R -
":ﬁﬁgmple and efficient decoding algorithm which is easily ° ' -

&{ o implemented. Since the RNS implementation in its fundamental

: : ’ ! -
= ’ form produces filter quatputs with full pred&sion ’;o roundoff.

P

&
G
|

error), it is particularly attractive for real timejfiltgr-




4

i
" i .

1

ing of Tadar and. image data. Although/emphasis has been
placed on the RNS as a high-speed implementatlon mechanism,
tge.RNS structure is also attractive for cert;in low=-speed
operations. Although cost-speed trade-offs are evident,

i
the RNS sfructure appears to compete-favourably with the
9

- -

conventional filters. "
I}

\. d .
Larger digital -signal processors can be implemented-

and used in filtering data. Processors that use the

v

Fast ‘Fourier Transform algorithms to compute the Discrete

Fourier Transform of  the input sample can do the filtering -

AT

by minimal multiplications. Other processing would use
other transforms, like the Fermat Number Transfo¥m and
others. They also may be implementatio of as?orithms

implemented to do gpnvqéution. Convoluti¥on, as a matter.

of fact, 1s a noh-recursive filtering process. Hardware

Y

implementations are demanding’ in terms of hardware compon-

-ents. However, they are very useful and can be used to

impleméﬁt a high order non—recursive digital filter. The

" major appllcation of such implementations is digital

“ﬁ;gq&luuaﬁh‘lmage processing.

A

("' %&' - 4{% , '
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