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CHAPTER 1
\ ‘ .

4INTRODUCTfON ' o

This thesis is concerned with the design of language

structures for . implementing real-time/system programs on a
. ‘a ) : '

"bare machine". The term "bare machine" 1is  used here to

indicate’ the absence “of any nucleus, kernel, or¥virtual

machine on which proérams in the 1language implementing the

structures '<run.' The class of qgchings for which the

structures are desiéned'are small computers, chatacterised by

the present generation of mini and micro computers, These are
[ ! o N R . P
the architectures most often used in dedicated applications

hd .

and .custom operating system work. ' ‘ ‘ -

L

o !
The usefulness of a set of language strUdctures may be

’

assessed by,proéerkies such as: freedom frqp run time supbort

and preempted system‘ design decisions, and functional ,

. 1 3
completeness which refers in this work to the coding of

real-time/system' application programs\without recourse to the -

. . - 1]
use of assembly language. S . oo . '

4

The importapce of these properkies and the"bare machine”
concept -must be emphaéized, especially for. systems ga&bé
implemented on small machines. ,The time critical' nafure of
most real-time/systems .work- makes langﬁage'Structutes which '

-
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Preempt system design decisions undesirable. The philosophy

2

of the language designer in this regard must be to provide

+ _lanqguage structures which do not require thg‘ language

)

implementer to make system design decisions. Freedom from run
time support is desirable in: any real-time/systems
implementation language.\jrhis property. has additicnal

significance in a small computer environment where the

.

principal‘ application areas are dedicated or stand alone

systems. Functipnal completeness is another desirablé

language property. Functtional compléteness makes it possible

to eliminate the wuse of assembly language in system

-1 t

implementation. This not only enhances the portability of
programs implemented in the 1language, but also makes it
relatively simple to, adapt these programs to changes in system

~configuration.

Y

- i . ‘ . | ¢ .
Language structures characteristically = required in
s ' . ’ .
real-time/systems  work are: strugtures for sequen&ial

hd - N
programming, structures for multiprogramming, and structures
ot . .
for performing 1/0. Our major efforts in this thesis have
been directed towards determining language structures which

-

noit only provide tlhHese facilities, but also possess the

. desirable properties mentioned above. Structures  for

sequential br.ogramming‘ which sa.tisfy ou; requirements are
almost ,routinely provided by most real—tjme/system?
.implementatiqn languages. | Language structuress for the twp
other Eapabii‘ities . provided - in contemporany implementation
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languages do not, however, fully satisfy our requirements.

The principal language design d\e,c'isions therefore addressed in
s >

this work , are: decisioris ~ concerning structures for
. —~—
mul tiprogramming, and decisions concerning structures for
: .

programming peripheral devices.

Contemporary real-time/system implementation lanquages
addre'ss these subjects from different *points of view which
classify them 1into two .categories. Languages in the first

category provide a set of structures which allows the

impl ementation of a complete system iIn a s'ingle language.

" These structures, howeve'r, 1<rp$y a run time system, which

preempts an extensive set o designff/’rsions from the system

‘designer. Languages in tHe second ategory ‘5‘0 not .preempt

system design decisi"on‘s. They do not, however, provide a
complete set of landuagé . structures for + implementing
real-time/systems programs. These languages therefore require

the use of assenbled langudge for 'ény realistic

-~

real -time/system work. @

t

Our investigations concerning the structures required for
implementing mul tiprograms, and for performing real-time 1I/0,

have led us to.some fundamental conclusions regarding their

\

characteristics. Firstly, the study suggested the need for
language structures to represent paths of control in a

program, and explicit means for controlling them. The
. y / ‘ : (
sequential nature of the machine suggested that the means for

controlling the control paths should be explicit rather than

K
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4
implicit, Consideration of the way in which contemporary
H
hardware supports multiprogramming, and our efforts in

a

determining structures for performing /0, forced us to
recognise the need for language structures for processing the
interrupts in a system. The dual puréose served by guch a
structure requires th6£ it .have certain capabilities, Its
role in processing I/0 fnterrupts requires that'it possess the
capability of returning é;Jthe interrupted control ,bath. On
the other hand its role in ptoqessinq timer interrupts
requ1res that it have the capabllxtx\of transferring control
to a control path other than the one whlch'was interrupted.

In either case, however, it {s essential that the structure

processing the interrupt preserve the status of the

interrupted control path.

These conclusions havﬂmied us to introduce in this work,
two .new 1§nquage structures: "coprocesses" for representing
mu}tiple_ paths of control in "a program, and *"interrupt
handlers® for processing the interrupts i; a system. These

N 4
structures are sufficient for implementfng multiprograms, and

for implementing structures which perform I/0 in a.bare

machine environment. In’ conformity with the requiremg?ts of

structures for implementing real-time/system programs

discusséd above, they neither require run time 'support nor

preempt system design decisions. ' Ina-addition, they are

functiohally complete, which allows implementatiou} of _a

y

complete system without recourse to the use of assembler

PRy
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languége.

]
This thesis is &rganised  in two parts: a general

. L[4
background * in laﬁguage design consgderations, and the design
A '
of specific languagde constructs for the implementation of’

real-time/system programs on small computers in a bare machine '

environment.

_The first parﬂ, which consisté of chapter 2, discusses the
maior issues 1in lahgquage design. These include: application
area, ptogramﬁing methodology, <“ and (implementation
considerations. Insofar ' as- application area and
implementation considerations hawve been exte;sively discussed
in the literature, the dichSsion of these subjects in
chapter 2 is brief. Moreover, sinc; our major interest ,in
this thesis is real-time/systqh implementation languages; the
discussions are oriented towards these applications. A large
part of chapter 2 is devoted :owards identifying the influence
of the'proqramming methodologyi"structuréd programming®™ on the
design of‘_programming Lanquages.Q This h&&\g&ggn ipcluded
because of the growing reéognition of 1its' importance ' in
language design. This question of methodology underlies the
motivation of‘the structures develope; in this work.  The
‘coprocess and ﬁnterrupt handler structures introduced in
part 2 of thisithesis are*instaﬁ%es of temporal and procedural

.abstractio hich have been designed specifically for

‘implementation in bare maéhixe environment. Chapter 2

provides t reader \with'the background of the work done in

- o
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this. area along with a general concept of abstractjons in

N

programming lanquages.

Part 2 of this thesis, which consists of apters 3, 4,
and 5, is essentially devoted to/ the design of language
structures for implementi ~time/system programs for

small computers in a bare/machine environment. The structures
13

are designed to be fﬁncorporéted in a Dblock structwred

4

programming language, léince PASCAL is rapidly gaining in

E

popularity, it is used as a host for the concepts developed
here. The application area, essentially real-time/systems

appligdtions,' and the host language PASCAL suggest the name

- « !

"real-time/system PASCAL", abbreviated here to RT-PAS&AL.
This ;name, RT~PASCAL, is wused to refer to " the language
incorporating the structures developed 1in vthese\~cha§ters.
Chapter 3 “ provides a basis for the design Sf RT-PASCAL, and

discusses an approach for making language design decisions

concerning structures for multiprogramming and for performing
. Y . .

real-time 1I/0. Structures for these purposes, nahely
coprocesses and interrupt handlers, dtre developed in detail in

chaptefs 4 and 5 respectively.
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CHAPTER 2

\ -

ISSUES IN‘LQh&yAGE DES IGN

& s

2.0 INTRODUCTION ’ '

A great deal of research has been done on language design
considerations. Suggestions to language designers have been

* given by [Hoare-81)}, (Richard-76], [Wirth-74b], [Walf-77].

Their suggestions can, be classified intq: applicatiqn arlya,
programming methodology, and implenentation consider;tions.
The application area enables a language designer to
chardcterize programs of the application, Fﬁué providing a
basis for the design of the language as well as providing
criteria for its evalu;tion. Programming methodologies
address the problems oé design and goding of programs. For
full effectiveness in the use of these methodologies, it is
neéeSSary ithat programming languages have structures which
support, ;heirr use. Programming‘ methodologies therefore
provide a basis for the design of features in a programming * L

/ .
language.. Implementation considerations permit a language

designer ..to estimate the cost of implementing the features ip H]
a language,
12

A typical language.design cycle is as sho&h in figure 2.1. '
The required features of a‘languagé are defined by a number of "
factors. The requirements of the application area will have a

» , - 7 ) »

N oL , )
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tions
Characteristics . - Set of features required for
of programs effective use of methodology

¢

Implementation Features
requirements ° required

Set of lanéuage
features required
for application aréa

. Vd -
,
Implementation
—_———— considerations
Implementation
cost of features
. " [
Evaluate: Implementation
( cost satisfy implementation .
requirements?
{
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Figure 2.1 Considerations in Language Design '
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strong influence on the sét of features to be included.

e,y sl B s AR 1
<

Programming methodologies, such as .structured programming,
will dictate the inclusion (or s&petimes the exclusion) ‘of,
constructs, and ‘influence the design of the application

oriented features.

The implementation requirements of these featurés are
themselves influenced by the application areé, in aspects such
as .the required degree of implementation efficiency, or 3
availability of run time support. The cost of implementing oo
these feétures pén then be détermined. These implementation
costs can then be evaluated using 'the implementation

requirements of the application area to determine their

LA

suitability in the language.
' ¥
. !
This chapter is organised as follows. « Section 2.1
e

discusses the impoftance of application qtéa considerations in
languagevdesign, and illustrates their influence with a few
examples. Section 2.2 examines the impact of programming
methodological considerations on language design., - The

+

methodology specifically considered is, "structured
v ko]

R T
.

programming® = (Dijkstra-72a}. The major portion of this

L

section examines the need for abstraction in programming, and’

its influence on.language design. Issues surveyed 1in .lesser

; detail are: sequencing mechanisn¥, data structuring
. 4 Y \

facilisies, facilities for top down development of ‘programs,
' ' .and . facilities for hierarchially structuring' programs.

'Sectian 2.3zdiscusses the implementation considerations in

‘

oy privey - < P - o, -,
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10 : .

language design. Major impleméntation strategies and policies
in 1a§guagé implemé;ta;ion which affect the characteristics of
prog;ams implemented in .a language are discussed. Also
investigated are thedlangane design decis;ons which affegt
the choide of these implementation strategies and poliéies.
2.1 APPLICATION AREA CONSIDEERATI?QEQS
Curreht technoloéy in programming: 1an&uage design and
implementation tends to indicate that, successful languages
will cont;nue to be those that are designed to duit a
parﬁicular'class of applications. This situftion is indicated
‘by: ‘ : A
' | . . .
1) The failure of. general purpose languages in gaining
widespread usage (Hoare-81]. Promingpt exampies are
PL/1 and ALGOL-68. This situation conténues'in spite
of the fact that PL/lyréceives support: from a méjor :
. computer manufacturer, and that ALGOL-68 was designed
by a team of intgrnaiionally recognised experts.
2) The, sucdcess’ of 'languages designed for particular .

applications. .Examplés are: FORTRAN, ALGQL-60 for

scientific appiicatioﬁs, and COBOL for bu§inessA

~

. -
.

applications.

3) The absence “of new c;ncepts for désign’oﬁ gener;l
purpose‘programm}ng fanguages ;[séegmuéier—76]. The
concept of extgnsibfe.ianguaqes has not fulfilled its

SR initial promise for development of families® of
! I .
\k va . ' "
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laﬁguéges.~N

It- fherefore appears that any serious lanqua e design effort
e \ b4 nguag g

L]

must.'pay considerable attention to the class of applications
which tHe language is to serve. e

CN ~ .
’

1l \

In light of the apparently infinite range of computer

applicat}éns, the above argumenﬁé mighg suégest a | '
corresponding proliferation of languages, Such a fing

i -classification is, m;owever, not nécessary. Existing \Q
brogramﬁgng lahguageS'l constitute 5 much =~ cparser
classificati?n;u | Their féaturés and implementation’ g

.a characteristics cover ' large classes of applicatione

‘adequately, if‘nét optimally. Tﬁ:ee major application areas '
are épparent; o+ o o )
1) Simulation and moéelling Sipli;ations. , ' .
EB Real-time and systems applicatgqﬁs.

o
[l .

3} Non real—fime/systems and non simulation/modelling

.o applications, ¢ .
2 ? , L.

This categorisation is appropriate to  applications

tfaditionally " covered by general purpose  programming

langdages. Application areas excluded}l from this are

~

~ non-prﬁcedural, and/or applicative languages such as guery and

list processing llanguages. Table 2.1 ‘SUmmariges the

difference " in the characteristics and implementation

. L4

requirements of these application areas.

PR

The application area enables a 1language designer to

characterize programs for the application. ;pis makes it

'
4 .
- . )

s
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¥
' 3
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-~
o ¥ 4 4 .
' Simulation Real-Time/Systen Non Real-Time/System
applications Appllqaéions Non Simulation
' Applications

! ) -

1) process required, required, ' not reqguired
. . features programs generally programs generally

! consist of 2 consgist of)a .
fizxed number of dynamically Yar&ing ~

~ proc.snos/ number of processss

2) degree of ‘ elaborate elaborate elaborate.

cun time run time support run time support run time support
pcrmltt;d . is permitted ' should be avolded permitted

as far as possible

e e

*3) relative important very important ifmportant
. + importance of
) ¥ ‘
! efficiency
4) relative important . very important, important ’
R [
. fmportance of but may be ) should be left to  but may be , ®
presmption of  preempted the programmer preempted o
system design © whenever possible : ' '
decislions . .
3 \ ¥ ! ) ‘é'
$) 1/0 I1/0 statements facilities for 1/0 statements %
. X .
facilities pcttornfhg i
required N " realetime 1/0. i 3
f) typical lonikh short ° ‘ long wed j um
R of software ‘ ¥
.'( . ' \ h
{ 1{fespan . .
! . ’ ’
: . ¢
\ . . o , Table 2.] Progtemming language application ares characteristics .

< . . >
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o«

possible to determine the type of structures reéquired in the

. . - et "”) .
language, as well as the im ementatlohﬁw}equlrements of

e o i 51 et R

programs written in the languagse, The application area

therefore not only Serves as a basis of a language design, but

also serves to provide criteria to evaluate the des?qn of a

. language. ’

As an example of the way in whiqh the application area

influences the désign of featﬁres, consider programming

lahguaqes such as FORTRAN and ALGOL-68. These languages a}e

priﬁarily designed for scientifié appliéations, which come

under the non real-time/system and non simulation/modelling

group:of applications, and therefore do not} have facilities

for temporal abstractions. Another example is the inclusion

monitor—lige features [Hoare-74]}, [Br.inch Hansen-73a] in

languages suck: as MODULA {Wirth-77a), and CONCURRENT PASCAL

[Brinch Hansen-¥5a], [Brinch Hanseg—7)a]. These languages are )
primarily 1intended ‘fot real-time/systems applications, and

- suﬁbort their need for temporal abstractions with langpagé ' -
cpnstruéts for defining processes.- A conéeéuence of using

process structures implies the need for synchronization, hence
T L

the inclusion of monitors in thiﬁg\fynguages. -
' !

As an example of " how implementation requirements can

inflgence the design of features in a languagé, consiaer agéin

- - languages such as CONCURRENT PASCAL and MODULA. ' These
~ | languages do not permit . features such as dynamic arrays,

dynamic processes, and general recursive procedures (permitted
: C. . o :

. ‘ 7 .
: = ol o » i et e S
W S T A A - e W g » R e € "l S
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to a very limited extent in MODULA). Implementatidn of these
~featur;s requ;rg ,dyhaﬁic storage management. -The absence of
these features is attributed to the implementation requireﬁent
B of real-time/system'applications concernin§¥ilaborate run time

systems. .
- .

7~ 0

2.2 PROGRAMMING METHODOLOGICAL CONSIDERATIONS

IN LANGUAGE DESIGN

Traditionally, languages have Been designed in an ad;hoc
manner. Consideration was mainly given to the application and
target machine of the language eag." FORTRAN which Ggs
initially ‘ designed for scientific applications for a

-particular IBM machine (see (Wirth-73]). Very little
; attention was. paid to the design of features that would
enhance the éuality dﬁ programs written irxt?e language. New
languages, attempt to improve the quality of progréms wr&pten T
in a language by 1including features deemed necessary’ on
methodoloqfcal \grounds. Examples are: CLU’ {Liskov-75a],
- (Liskov=-77], AL;HARD [Wulf-77]1), CONCURRENT PASCAL,
MODULA, ADA [Ichbiah-79a],\ MESA [Gelschk‘e-75']., [Geschke-77],
EUCLID [Lampson—77],§: D {Johnson-76], [Morris-791, ‘ana

A o

ASBAL [Moss-777.

L4

-

¢

Software quality is generally estimated by .propdrties such
as pofiabiljty, reliability, efficiency, understandability,
human engineering, testability, and mbdifiébility (Boehm-78] .

I? is vital that these properties should be reflected in the

!

P”M’,.ﬂﬂ“‘a ottt opapdn
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program text [Wulf-77}, [Wulf-76],. The landﬁage used to code
programs therefore plays an important role in determining the

L

quality of the resultant product.

As an extreme example of the role of language, consider a
program ceded in two languages: assembly and a high 1level
JJlanguage. In addition to having a shorter developmenfltime
(due to greater brogra}nmer producthity) . the program written
in the  high, level language will be mote reliable,
understandable, portable, . and possibly more efficient and
modifiable than the assembly language version of Ehe program.
Programming languages, 'Bowevef, are not the only factoer
contributing to the qdi}ity of prog;ams. Properties such as
portability are largely lénguage dependent. Other pfdperties

such as efficiency, reliability,” understandability, and

"modifiability, however, also depend on the factors such as

program structure and modularity ([SP-76]. These factors,

primarily influenced by design strategies \~f5ﬂ[ coding
. 4

desciplines, are some of the subjects addressed by programming

methodolodfes,

~

Prégramming methodologies such as "structured'progr%mming'
'[Dijkstr§—72a}, address the general problem of producing
quality‘so;ﬁyagg. A good (complete) methddology e.qg., the
chief programmer team, ideally addresses all the major issues
in software develdpmént'{Baker—?B], [Mills;73]a This includes
dgéign' strategies, coéing and documentation standards, and

management policies. When properly used, a programming

o °

A ———
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methodology’ can ~ be the # single most important factor
contributing to the development of quality software. This can
be inferred from the success of systems such as: the "THE"

system [Dijkstra-68b), [Mckeag-76], the ™New York Times

et

“Thformation Bank" [Baker-72a], (Baker-72b], [Baker-73], and
Thi

@ﬁ%’VENUS operating system [Liskov-72a). Two points must be

noted in the use of methodologies. # They do not guarantee
. N AY

programs which are well structured and modular. They do,

>
however, inqrease the 1likelihood of producing well designeq

pEngams. To be fully effective, the methodologies must be
sdpported by the language in which the program-is coded. More
precisely, a language must include those featprés which
support the use u°f the mg&ho&ology?" This implies~ the
importance of programming méthodological considerations in

language design.

This section considers some of the language features
required for sgpportinq the X programming # methodology
“siructured proqramming" [Dijkgt{a—72b]. The term structured
programming as used b§ nDijkst}a, Wirth [Wirth-71al,
[Wirth-74a}?" ' and others {Denning-76al, [Gries-74],
(Woodger-71] refers to a constructive method of préducing

correct programs. Although f@ is not a complete methodology,

it addresses those, issues in software design which largely’
influence language design. In particular it addresses t?ﬁf’

' design and coding stages of software development with the

following procedural and structural recommendations:
% : . .

K Rl LA e
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2)

3)

17-

v v
Strict adherence to the wuse of rigid. (simple)

sequencing statements in programming.
4

The use of hierarchy to control program complexity to

manageable proportions.

M \"
The use of stepwise refinement in program development.

The proof‘ of program correctness (informally) during

-

programming development.

The first recommendation has had tremendous influence on

>

the design of control structures in languages.*'Originally, it

‘

only '3gﬂressed the design of sequencing mechanisms in

sequential processes [Dijkstra-68c]. The debate following its

introduction, however, has motivated corresponding discussions

on the design of synchronisation primitives for concurrent

processes (Hoare-74, [Brinch Hansen-73a],
-747. In

"{Brinch Haﬁsen-?Za]. {Campbel

addition, it has

-

motivated discussion on the design of data  structuring

facilities ([Hoare-72], [Hoare-78). Sequencing mechanisms for
~—p

+

sequential and concurrent processes are discussed  in

4

section 2.2.1. -

The second recommendation requires that the structure of a

program be reflected in its text. Some useful types of

4

hierarchical program structures and their wvirtues are

s

bl .
“discussed by [Goos-75b], [Turner-80]. tLanguage support for

hierarchically structuring is discussed by ([Goos-75a).

. ) . .
Examples of languages whichdpartialf; support hierarchically
~ =

structured programs are block structured languages such as

Ve

r

/r



4

ALGOL~60 and PASC%L. Some deficiencies of these 1languages
concerning global variabies are discussed by [wulf—73](
Various solutions tp these ﬁrobfzzs are proposed in languages
such as MODULLA, EUCLID, and ADA. More complete support ls

provided by languages such as CONCURRENT PASCAL, CLU, ALPHARD,

.
SIMULA [Dahl-66], [Birthwhistle-70].

The procedural recommendaffon, advocating stepwise
development of programs as a method . for achieving
hierachically structured programs, implies the need for twd

faéilities in the languages:
1) Abstraction facili;ie;;
2) Facilities. for top down‘development of programs.
Various top' down "design methodologies are discussed by
[Dijkstra-72b], {Wirth-74al, [Wirth-71a]l, [Baker~72al,

(Baker~72b], [Baker-73]. An example of a language which

supports top down desigha and implementation is CLU.

“

b

Facilities for abstraction which are of direct interest in

this thesis, are discussed i{n section 2.3.2.

Dijkséra's suggestion on proving programs correct during
program development has motivated a corresponding ‘development
of 1language strgstures' which are amenable to proofs of
correctness asing techniqués such as those proposed by
[Hoare-69]. Examples of languageL s;ructqres influenced by
this recommendation ar?: the assert stateméht [Po}ek—f?], thé

GOTQO statement (Wulf-71], and aliasing [Popek-77].
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*2.2.1 - SEQUENCING MECHANISMS

r

]

L

: o

2.2.1.1- SEQUENCING.MECHANISMS FOR SEQUENTIAL PROGRAMS °
. i‘n.

o '
‘Many 8f the early discussions on the subject of sequencing

mechanisms for.struétu;ed programming suggest the use of three

&

' basic types of sequencing in‘programming, and the elimination

of the GOTO statement as a means of controlling .the flow -of
control in a program. The.three mechanisms advocated are:

l) Concatenation, which 1is represented by placing the

)

. statements of programs ir a segquence.

2) Sglection, implemented ‘by st;tements such as the
IF-ELSE-THEN, and CASE. {
3) 1Iteration, Iimplemented by statements such- as the

WHILE, REPEAT, and FOR.

(‘!

The main Justificyutions

adherence to this policy
.

f

1) AnyA program containing GOTO statements can be
convéfted into an eqﬂi;alént program without " GOTO'S
using these basic Sequencing'gtaﬁimentg [{Bohm-66].

2) -These ‘'statements correspond to comgonly used patterns
of reésonind in br&blem so%ﬂinq i.e.  identifying " and
placing the steps in a solution .12' an otderl§

sefjuence, enumerating and separa;ely‘solving the cases

. " of a problem and répea;inq a problen step‘qntil a

’

satisfactory result is obtained [Denning-76].
N Eaidw=d » 5
»3) These statementg'correspond to the some of the mo;t

[ 4 .2
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offered in support of rigid
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powerful proof techn}gues in mathematics,,i.e.“proof

_ by considering eadch step in turn, proof by enumeration

of cases, and proof by induction (Denning—761,,

(Dijkstta-72a]. ‘

)y Efficient :ompilétion of programs is made egsier'nfn
lanquages which do not have GOTO statements.

5) Eaéh statement or group of statements in a GOTO free

program can be represented as a single éntry single

exig block. This enhances .the intellectual

Ay « !

manageability of a program (see [Zelkowitz-78]). 3

Th;se recommendations gave rise to _the GdTO contrz%ersy
(Leavenworth-72]. ‘A recent discussion on the subject b;'Knuth
{Knuth-77] shows that the question of GOTO is in fact
peripherél £o the problem of constructing strlictured proérams.
He has sbown several commonly occurring examples such as:
loops that need multiple exits, and the 'N and a half' loop
probleﬁ, wgich can not be Edéquately expressed by the three
simple forms of seguencing. He therefote suggests the
;nclpsion cf at.least two additional type of statements to
handle these cases: Zahn;s situation indicator loop (Zahn-741},

and Dabl's 'N and a half' loop (see [Knuth-77].

4

@

2.2.1.2 'SEQUENC%NG MECHANISMS FOR CONCURRENT PROGRAMS

There is a great deal  of similarity between
synchronisatioh "and sequencing. Elson (Elson-73] argues that

"synchronisatidon and sequencing are- logically the same

~ - N 4
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phenomencn, though intuitively they may seem quite distinct.”

Yor example a mutual exclusion semaphoTre is used to enforce

- sequential access to data and resources shared by cooperating

processes. .

The first solution- to the problem of synchronising

proéess;s,' which was easy to wuse and did not involve busy

wd&tiap, was provided by;Dijkstra {Dijkstra-68al. He proposed °
synchronisagion primitivés {the so called P and V operations)

which operated on special variables called semaphores.

Semaphores are adequate for expressing the major
synchronisation requirements of processés. Their use for :
achiev&ng mutual exclusion, , however, 1is often questioned
because they \ are" unstructured [Brinch Hansen-72al,

(Brinch Hansen-73a}l, [Hoare-74]. Structures such as ~

conditional critical regions [Brinch Hansen-72al, and monitors

. [Hoare-74], [BrinEh Hansen-73a)l’ .are therefore advpcated to

overcome.these problems. @«

S f

Monitors are easy to use and also pféduce programs with

v

4

good stRicture. Prohlems have, however, been found in
constructing monitors, as the synchronisation code of the
monitor is mixed with the code qccéssing the shared resource.
Problems have also been foundo in implementing monitors:
effﬂbiehcy problems {Kessels-77], problems related to nested
monitor calls [Lister-77]1, and problems related to excessive

, .
serialisation’ [Campbell-74]. Some of these implementation
Lo '
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problems are addressed by the manager concept (Jammel-77]. A
&oreﬂ comprehensive . solution to both construction and
implementation problems is, however, providea by path
expressions [Campbell-74]. Path expressions achieve a
separation between the synchronisation code and the code
accessing the shared resource. In addition, they allow a
programmer to specify concurrent access to shafed resources.
.Path expressions, however, are hard to formulate. Suggestions
te improve their formulation have been made by Bekkers et al.

(Bekkers-77]. Approaches similar to path expressions have

been proposed by Laventhal [Laventhal-78].

2.2.2 INFLUENCE OF STEPWISE REFINEMENT

e

Abstraction pldys an important role in programs devéloped

N -

using stepwise refinement to guide the design process, The
fundamental activity occurring in prodrams developed -in this

manner is the 'recognition of  abstractions [Wulf-76],

H

[Wulf-77], [Liskov-72b]. A program, using stepwise

refinement, is developed in stages. At each §taég the program

is written using just those data objects and operations which
are idealiy wited to solving the problem. Some ot all of
thése objects may no riéitive'in the language. These are
éalléﬁ abstractions:\ The process términates,when the lowest
level abstractions have been  implemented in tefms of the

primitives of the programming language.

e
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There is a definite need for programming 1anguages to ~

support the expression of abstractidn. A problem noted in
L]

programs developed using stepwise refinemerd, and which are

implemented by a language not supporting abstraction, is that

the abstraction and refinement steps are absent in +the final 8

w

~
program. Lan@uages supporting abstraction have several

potential benefits: abstractions act&aﬁ,units of modularity,

thereby enhancing program»modifiabifity and pnderstandability;

ad

they reduce the apparent complexity of a complete pfogram by

displaying the various‘/lévels of abstractions; and programs -

expressed in thesévlanguages are more self doEumenting than

others [Linden-76], [Meertens-77), [Horning-76].

‘' <

The decision to support abstraction reqdires the

.
-
H

R specification of forms of abstraction which will be useful in

Y

progfémming, and the identification of the subset of these
which requires programming ) language support. Prograhs
represent a sequence of actions on data in time. Each of
these major\ componénts of programs, actions, data, and’
sequence in time, can be subject to abstraction: Thisidefined'
the three principal fp;ms of gbstraction: procedural, ‘data,
and control [Sahasrabuddhe-76)]. Sife these afe abstractions
Bof the major compopents of programs, they must be supported by
programming languages. Sections 2.2.2.1, 2.2.2.2, and 2.2.2.3
discuss these abstractions and lthe support they need from

v

pregramming languages.

- . B
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There are other useful forms of, abstraction. For example

~

Sahasrabuddhe [Sahasrabuddhe-~76] credits Knuth [Knuth-77] with
. the discovery of a form of ﬁ?bstraction that he calls
structural abstraction. Using  structural  abstraction,

programs are developed for clarity, and then subjected to

.

transformatiqn to improve their behaviour. Knuth suggests

that structural abs;réction i{s best supported by program '
. development systems+ rather than by programming languages

[Knuth-77]. Examples of such systems are those proposed by

[Chedtham-72], [(Darlington-73]. .
) — '
Another form of abstraction which is extremely'useful for

expressing a certain ¢lass of programs is temporal .

+ abstraction. Using temporal abstractions, elements of —

-

sequeficing necessary for lower levels of description are
«

- eliminated from more abstract levels where they are no longer //’
needed [Sahasrabuddhe-76]}. Temporal abstractions and theit
, o language support are Qiscussed in section 2.2.2.4.

. )
“r .o . R 3

2.2.2.1 , PROCEDURAL ABSTRACTION 2 ~e

&

o ke

' © 'Procedural abstraction is a term used to refer to any

abstract operation implemented by some unspecified algorithm

B L

in a progrém. Two types of procedural abstraction can . be i

distinguished by the manner in which they are invoked.

u
;
%
7
d
¥
.

. ~ ‘ Abstractions invoked directly by the program text are referred

to “as functions or procédures. Those invoked directly by the

hardware (in response to interruﬁt conditions) are called

-

\ .

. ’ ‘ ’ 7 )
i .
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interrupt handlers [Wegner-71], [Wegner—GBJ,kﬁOrganick-7l].
.Programming 1lanquages generally support \E?;cedures and “
functions by dllowing a programmer to define™a ﬁame to refer
to a group Lf stateme&ts implementing some abstract operation.
Executioﬂ oﬁ’this abstract operstion is caused by referring to
tﬂé name.‘ Interrupt handlers are usually not supported by

programming languages.’ They are not discussed in this
1 .

section.

Investigatoys studying the use made of procedural
abstractions distinguish two categorieg of usage in practice
(Parnas-75],w[Goos—77]. They are:.

R q"r. 1) Those that return a result but neither use nor make
dny changes to the environment. o “ -

2) Those that sometime return a result and also use and

make changes to the environment.

e More than one invocation of these abstractions, when suppfied
with identical actual parameteré, will resﬁlt in the’return of
idéntical résults in the first case but mdt 1in the secoéd

. case. In programming  languages, these categories of
procedural abstraction §9cilitié§ are generally referred to as
functions and proceddres (subroutines)-  respectively, The}e‘is

' ano;her reason for distinguishing betyeen .functions and

3 . : procedures. Since funciions ne@ther depend nor make g;;nges

to the environment, programs using functions are much easier
;

to prove correct than those using procedufes. This reason is

often offered as justificaéion in providing these two

1

5 ; o .
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A .
alternate : types of Hrocedural abstraction facilities

[Popek-T77]. 1!
. " . ?

One o¢f the most desirable geatures required of the
procedural abstractidn facilities, and one that ‘ﬁas been
traditionally supported by programming languages is
parameterization. Parameterization serves to enlarge tHe

scope of applicability of a single definition of a procedure.

The definer of a parameterized‘procedure specifies the type

and number Sf parameteré required for cofrect operation of.th
procedure. When the procedure is invoked, the invoker musj\\\\\t
supply the actual parameters or arguments of the procedure,

A language designe; has to make several decisions in the
dééign of a procedure parameterization .facility of a languagé.
The first class of deciSions are primarily syntactic, being
concerned with issues sudh"as positiondl versus keyword
paraqgter passing conventioné [Hardgrave;76], and they use of,
default values [Ichbiah-79b]. These decisions, essentially
dictated by taste, are also influenced by the %pglication
area. For instancé default values and }eyword ﬁar;meter ;
passing conventions are appropriate in JCL  languages.
Conclusive e:idenc; indicating , the éﬁperio{ity of any
particuiar policy in less speciai purpose languages is» not

available.
AN P

The second design decislon concerns the binding mechanism,

or. rules used to bind actual parameters to the formal
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> ' ]
parameters of la procedure. A sprvey of several binding
! &

’

policies commonly used in programming languages is available
* . .

in [Waite-76a], [Aho-771. This decision is of vital

importance as it has a considerable impact on the efficiency

and understandability of a program. For example, the complex

run time behaviourf,éome;iﬁes displayed by "call by name"
binding mechanisms makes them difficult to understamd, whereas
“call by value™ parameters can be extremely 1inefficient for

passing large data structures. Two essential pr&pergies that

s a wvalue as an argument, and ability féé a
procedure to chahg; the global environment (without resorting
the use of élobal vagzables). Adain, no evidence is available
ind;catingxthe clear suberiority of any particular set of

a set of paragleter binding mechanisms must display are:
' ?
s

ability to

parameter binding mechanisms. Taste is therefore an important
factor in deciding on a set of binding mechanisms. Experience
of successful languages such as PASCAL, however, providesg a

basis for making these decisions.

The third decision that must be made is the wuse of
automatic Qbercion [Waite-76b] of actual parameters to formal
parameters. Automatic coercion is usuélly rejected on the
grounds of“ understandability, efficiency and reljability
(Parnagz76]. The need for automatic type goercion, however,
%}g been ?bserved by [Geschke-75]). The present trend is to
permit automatic coercion in éertain limited contexts while

other coercions must be specified by the programmer

)
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[Geschke-75].
-

Lastly, a2 language designer must mgke decisions to deal

7

w}th 'aLiases".in Rrograms [Popek-77]. Aliasing is caused by
overlap of parameterg. This causes procedures to return
unexpected results, Shd' complicates procfs of correctness.
New languages such as EUCLID include features to detect
aliasing. A |

R

- L]

Recent developments in programming methodology have
. r ,
indicated the need for two additional features in a procedural

apstraction facility: generic definitions, and overle¢ading of
procedure names. Parameterization considerably expands the
scope of applicability of a single definition. Restricting

. %y, ’

parameters data objects however, constrains the

- applicability of a prodﬁ?ure. It is not ¥ possible, for

example, to define a single procedure to sort an array of
. ’l
real$ and integers in PASCAL. Permitting types to be valid

. iy .
procedure parameters presents a way to define operations which
L Y

are applicable to a wider variety of objects, Such

procedures, called generic procedures, are discussed by
e .

[Demers-76], [Schuman-75], [Wegbreit—fﬁl-
f

Tréditibnally, progfamming languages gither prohibit two
procedures from having identical names, or hide procedures
with the same name. The need for generic procedure and
generic data definition ana data abstraction features. in
.programming languages has, however, created a requirement f;f

£ \ R A

-~ o
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+ |
a more flexible naming policy far procedure -definition and §

identification. This policy should permit more than one

procedure to have the same name without hiding each other.

Such procedd?es, called overloaded procédures, are discussed '
! L 4

by {Demers-76].

c A language designer must also make decisi;ps concerning
the use of global variables in a procedure body. Procedures
serve as units of mpdularity'[Horning—76]. It is therefore
desirable that a procedufe body contain no free variables

. (Dennis-75%5]. The advantages of modularity, however, must be
weighed against the increased overhead aAd linconvegience
(conséquently encouraging error) caused by a long parameter
lisf. In essence, however, this is a trade off that is_most
effectively/ made by the'\progéammer. Many new languages
proviée a compromise §olution to this dilemma. They permit

’ freé variables in a procedure body, but require the programmer

to explicitly 1list the free variables used by the procedure. ’

An example of such a language is EUCLID.

4

—rtleta e -7

-

2.212.;. DATA ABSTRACTION : : .

Data objects in programs generally represent certain
i ' : ?
<% abstract ' quantities in the problem being solved. 1In practice

-
0

there are only certain specific operations that can be

. meaningfully applied to these data objects, These operations
i . ' )

/ . 1 “ ‘ e
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\ are called the behavioural properties of the data objects.

The data objects and operations may, however, not be present

in the language to code the program,/and may 'therefgre have to v‘

be impleménted {in the simplest case) in terms of primitive

. .langu‘age structures. These implementation details are ‘qalled
representational properties of the data object ([Shankar-801,

- 7 (Mestor-76], (Liskov-74].

A 4

The programming methodology "stepwise refinement”™ suggests

a two stage development of data objects used in programs. A‘t-

RN the first stage, the Programmer decides on the , data objects
and operations.neceséary to solve the problem. At this level

he is solely concerned with the behavioural properties of the

[

data objects. At the second stage, the programmer is
concerned  with the implementation of the data objects and the

operations. Here, he 1is solely concerned with finding

. !
represegtations that will exhibit the desired behaviour. The- 3
term afa abstraction' 1is generally used to describe this

concept o sign-of data objects. COUON /

]

]

A programming Nanguage structure intended Eo support data
“g_ ) ab§traction should permit ' the use o‘f data objects by namim;\
ghem without any' knowledge of their Implementation. This
requiresgd that the structure used fo(r implementing L:iat:a
abstractions should allow: ¢€he designer to define . the
representation. as we']..ln as the o‘peratior_l of. the data objects,
the implementer to hide vthose represedtational details and

operations which the user need not to know in order to use the

«

e
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oBject, and the implementer to force the user to manipulate
the gbject using the operations provided and not by direct
manipul atign of its storage representation [Liskov~75al,

[Shaw-801, [Shankar-80].

Traditional programming languages d(o_ not support data
abstraction. Procedural abStract':ions are sui table for
expressing abstract operations. They are, however, inadequéte
for reapresenting datia abstractions for two reasons: data
abstractiochs require several opleration's or entry points Awhich
are hard to simulate with a single procedure, and it is
difficult to express the representation of a data object using
a procedure. The( need for another program structute. for

-~

supporting data abstraction is therefore apparent.
\ " '

f
Programming language structures that form the basis of

conventional data abstraction flac‘ilitie.s/ are:

1y Class structures [Da?l-GG}., and

2)~ User defined type defin‘itions [Wirth-71b], [Wirth-72].
The prlnc1ple difference between these is the manner in which

the data objects are createé, and the rules whlch govern their

li fetimes.

v

Class structures support data abstraction*by permitting a
programmer to define the data- represtntation (i.e data
structure) of the class objeét as well as thel proceddres that
Bpera'te on objlects of the class. .. These representational

details and procedures are called the attributes of the class.

- ‘
\ L)
- ’
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.

Class objects in SIMULA are created dynamically by special

cperations, and have a lifetime independent of . the procedure

that creates the object.

.

T§pe definition facilities support data abstraction by
permitting a name to bg associated with the applicgtion of a
data structuring operation. This name serves to characterize
the representation and define certain prh;}biye access
algorithms on object of the type. In addition, this name is
used. for:

1) Declaration and denotation of objects of the type.

2) Identificatiog of generic objects.

%) Error detection by type checking.

’Objects of the type are created when the procedure, in which

they are” declared is "called and <cease ‘to exist when the

+

procedure is exited.

5 D

- Neither class structurés nor user defined type definitionsu

¢

provide complete support for, data abstraction. Bo th'

approaches fail to provide means to enable the definer of a’

data abstraction to prévent a user from directly manieulating

the representation of the data abstraction. In SIMULA'S class

' structures, all the attributes of the class gre‘viéible to the

user. In PASGAL, the fine structure of the  type definitions

-is wisible to all ﬁrogramé using the (object of the type

[Kostef-&B]. Useful data abstraction facjlities,’can -be

obtained by adding to cla;s s;ruct;rés ;nd type definitions
y - . : ’

means for controlling access to the attiibutes of a clds% or
4 ) \ .

s
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! ) - ~ .
to the fine structure of a type definition. Examples of data
abstraction facilities based “on class structures are CLU, and
ALPHARD.  Those based on type definitons are MODULA, ADA,

MODEL, and MESA.

Consider for example the data abstrac¥ion facilities in
CLy and .MODULA. fn CLU the data a?straction facility is
called a "cluster". Clusters age similar to 'classes, except
that they— permit the definer to explicitly specify which of
the défined ob?ects defined by the‘qlusfqr are avaiihblé) to

the wuser. This allows the implementer to hide details of

representation of the abstraction. The data :abstraction

facility in MODULA is the module. Modules permit the Jefiner

.of an abstraction to explicitly state which objects foined by
a modu}é/ are available outside it. Furthermore, when type

names. are exported in this manner, the fine structure 1is not

automatically eiported. This prohibits the user from making

‘ise of the representation of object of the type. -

s

6tﬁer features considered desirable in data abstraction

'ﬁacilbties are overloading,; generic definitisns,

nd uniform

referentes, =~ ™

. ¢
s .

,on  procedural abstractl in

7

sdpportind data absﬁ?actfcn is éttributed to "'the flexibility

it provides definers of different abstractions in providing

' " [ F
'symbolic names to the operations of datia abstraction ‘without

%
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>

the danger of causing name conflicts or hiding._ .- -

e
n A
\ . p

Generic data definitien facilities, like generic procedure

definti®ns, permit the definer of a data abstraction to expand

-

considerpbl& the scope of a single definition. Such
‘/‘ . -

definitions require that the language . allow overlgading ‘nd

type or class definitions to accept parame;eis. An instance

-

of a generic object is created when actual paraméters are

supplied to the formal parametei§ of a generic definition. An »

example of a language which allows such definitions is
7

CONCURRENT PASCAL. More sophisticated generic definition
facilities also allow type or class objects as parameters.

‘ -~
Examples of such 1languages are CLU and ALPHARD. Correct

S

‘ operation of such definitions requires that the langudge

possess facilities which allow' the definer to specify

Scceptabie actual parameters [Wulf-J7], ([Mitchell-78]. An

example of a languaée which has such facilities is ALPHARD.

-

The property of uniform references gives -an imblémenter of

a data object freedom in determining t

-

> .
abstract data object. This, freedom is achieved by

'incorporatinq in a language facilities for un‘formlyureferring

-

\
to attributes of an object, irrespective of its

\ i R . .
representation. The importance of this property was first

v v N
recognfsed by (Ross-70]. A sophisticated implementation of
- r

_such a facility is' discussed bil[Geschkgf73].\ It is available

in vérying degrees in languages such as“MESA, and CLU. L

*
o .
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2.2.2.3 CONTROL ABSTRACTION

The concept of.a program as a sequence of actions in time
on data suggests the need for mechanisms for sequencing
arbitrary sets . ;f actions. Some sSequencing mechanisms
appropriate for structured ﬁrogrammin; were discussed in
section 2.2.1. Section 2.2.2.1 on procedural abstraction
discussed meahs for sequencing user defined actions. These
sequencing mechanisms are instances of control abstractions.
The discussions on proéedural,and'data abstraction fa&ilitie;
in. sec;ions 2.2.2¢l, and 2.2.2.2 respectively, discussed
facilities which permit a' programmer to define a more
convenient se# AQ{\ opefationg -and data objécts than,those
;provided as primitiveé .in  the programmiqgv lénguage.« A
Forrespondihg discussion of con;rol abstraction wquld ié: ve
consiQeration of a set of control primitives from which a(wide
variety of control structures could be derived (Prenner-711],

~

[Prenner-73], [Bohrow-73]. ‘The .following discussion is
. 3

limited to fixed set of control p;imitivgé'defined by the

langpage. This excludes the possibility of user definition.

"In general it is pqssiblé to conveniently sof@b,problems in a

particular application area with ‘a small set of standard
. . v )

contrel abétractions. ' .

{
Data abstraction facilities in a programming langhage

accentuate the need for a new control structure for iteration.

¢

The purpose of many loops in.programs is to iterate thrpuéh a

collection of objects, and " to perform. some adction on the

’
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elements of the collection. Some deficliencies of WHILE,
REPEAT and FOR léobs used for this purpose are:
1) ?hey specify' too much, preventing the compiler from
’ finding efficient representations.

2) They do not clearly express the purpose of the loop.

Code for producing ‘the element from the collection is

mixed with the code which performs the action on the -

element.

3) When the collection is a data abstraction, these loops
stveft the data abstractioh, as it is necessary to
allow the programs of such a loop to ;ccess the
lrepresenta.;t:ion. , v

Alternate structures are Eperefore'suggested for this purpose

(Liskov-77], [Gries-77], [Wulf-77]. |
As an example of ‘ these structures consiéer the

"generators" in ALPHARD, A‘generator allows a progtahmer to

specify the order of traversal over a collection 'of objects,

without raising any of the problems mentioned\ above.

A genératér is used in conjunction wfth FOR statements,
which invokes at approptiaée point§, five asic operations:
1) Start, which initialises the loop.
2) Done, to determine whether the loop is finished.
‘3) Value, to determine the value of the currént element
in the collection,

4) Next, to step to the next elemeqr/ﬂn the collection.

5) Finish, - which performs clean up operations on -

etk
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terminationuéf the loop.

These operatipns are provided by the definer of the generator.

Generators avoid all the problems mentioned abave.
Firstly, generators allow a programmér to separate the code
used to produce thf next element in the <¢ollYection from the
operation which must be performed on the element, thus clearly
expressing the purpose of the loop. Secondly, since
predefined collections such as array objects[ﬁan be provided

¥

with predefined generators for iterating over them, it 1is

possible for the compiler to implement them efficiently. -

Fipally, the use of a generator to iterate over a collection
of objects does not require the user -to be aware of any
representational details of either the collection or the

g§nerator, and therefore supports data. abstraction.

2.2.2.4 TEMPORAL ABSTRACTIONS "

»

A ) characteristic of 'programs const}ucted qsinéarthe
absftaction,facilities éiSCussed 55 far is that ghéy consist
of a -single péth of control., 1In such program; the state of
the system at any time can be determined by examining“ its

progress. Some programming applications, however, may, require

‘facilitigs for implementing programs consisting of multiple

i n e e

paths of control. VYhe major motivations for such facilities

are economic and methodo

2

PO
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It is Yairly easy to see the need for programs consisting

of multiple paths of control for economic reasons. Such

programs allow concurrent execution of individual paths of

control, thergby making efficient use of system resources.

v

e o e

The need fork programs consisting of multiple paths of

control on. methodological grounds is not immediately apparent.

Programs constructed using procedural abstrac;iang are .
suitable for solvihg programs “which have a hierarchical oy
structure [fisher-?Z]. In essencei such progﬁems are solved

by decomposing the afiginal problem inté 1pgica11; Separate

parts, and impleménting each of them separately as procedures o
or functions. . Some problems however do not have such a’
hierarchical structure. They may instead requireseveral
interdependant stages in processing, which in turn requires
interleaved execution of muitiple paths of control. TIt is
possible to implemgnt programs regquiring Tultiple paths using

techniques such as "program inversion®™ [Jackson-76a], and

simulption of. coroutine structures using  procedures

[Zelkowitz-78]. These techniques, however, 4o not preserve

°

pProgram structure and are therefore undesirable.

This section discusses two 1an§uage structures:s processes
. &
and coroutines, -which can be used for representing temporal

abstraction in a program. '

Coroutines were in:roduced‘ by Conway [Conway-GBf to

display a decomposition of a compiler in which the main

. st - i) A R S T N e A PN ettt
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components of the compiler had a symmetric rather than the

traditdonal asymmefric calling felationship. These structures ‘

allow a programmer to define multiple‘baths of contrel in a
program, and provide the programmer with means for controlling
their execution. Transfer of control between these ‘multiple

paths is explicit. 1 s

s g o i s i it

Process structures were introduced into computer systems
to diséinguish between static prog;éms and their dynamic
behavioup)and to be able to identify and understand the ﬁ;ture
of coordination problems that arise when several programs are
execﬁted . in parallel [Freeman-73]. In languages, these
structures were introduced mainly to allow a programmer to
define 'several paths of coqtrol in a program which can be
executed concurrently. The process structure provides for'thé,
definition of' each process independently pf any. other
,co-existing process. ‘Tranfgr of control between processes is

transparent.

L}

Many of the features desirable in process and_ coroutine

structures are similar to features desirable in procedures.
It is desirable, for example, to allow processes and

coroutines to have parametefs, to allow free variables within

process and coroutine bodies, anqpso allow several activations

of coroutine and process structures to exist simulgpneously.

The main difference between them is in the semantics of

.

their call statements. In a procedure call, control is

]
v
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transferred to the called procedure, thé 'ca11er becomes
passive and the called procedure is activated. A procedure
call does not invélve creation of a new path of control. ' Thus
a prograh constructed. using only procedures consists of a

single path of control. 7, o -

Coroutine structures require two types of call statemen;s:
1) An initial call ststement which 'creates a new path of
control Eor the called coroutine, but doeé qgt involve
a transfgr of c¢ontrol. .
2) A resume call statement which transfers control to a ¢
' path. This path |is resgmed at its last point of
interruption. The coroutine Tesumed becomes active
and the caller becomes passive.
Unlike procedures therefore, a coroutine struz&ure allows a
érogram to consist of multiple paths of activity. Like
procedures, prevérl there_ is odii"a-single path whiéh is

. )
" : : active at a time. ’

Process call statements. involve both creation - and
activation of a new path of control of the called process.
Unlike procedures and coroutines however, both the called and

the calling process remain simultaneously active.

Processes need means for synchronising their activities. -
The two maigkpotivations for these facilities are: mutual
i ‘ exclusion, and interé%ocess communication [Dijkétra-GSa],

L ] ' .
. ’[Habermadn—ﬂzl.' Facilities for synchronising processes have

i . *
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already been discussed in-section 2.2.1.2.

¢
. 9

2.3 IMPLEMENTATION CONSIDERATIONS

Decisions made in.language design ;nfluence the choice of
implementation strategies or policies which in turﬁ'#directIQ
Ldflﬁence characteristics such as efficiency, run time
support, portability, and availability of programs implemented

.in the language. Implementation requirements of major

1
importance, especially in real-time/systems are: availability,

run-time support, run-time efficiency, and portability. This

sectlion discusses language design decisions which influence
the choice of implementation strategies and thus influence the
characteristics of programs implemented in the language.

-~ '

2.3.1 .INFORMATION BINDING *
/

]
Programs are composed of a sequence of symbols (or names),

yhich are used to refer to particular objects,’for example
operators and datal The set of symbols used in a program can
be classified into ‘two cdtegories: predefined symbols, and
user defined,symbols. Predefined symbols generally have ﬁixed

meaning which is defined by an implementation of the language.

User defined symbols on-~the other hand, must have meaning

assigned to them in a program. The term.information binding

refers to the binding of attributes which give meaning to the

™ symbols in a program. , .

<, S R
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'2.3.1.1 METHODS OF 'PROGRAM EXECUTION

a2

Elson [Elson-73] has classified the attributes required by
the symbols used in programs into six categories:
name-declaration, declaration-declaration, declaration-object,
declaration-cohstraint, declaration-description, and
location-value bindings,'and distinguished five binding times:

program creation, linkage-edit, load, call and the execution
#

reference at which they can occur. Table 2.2 shows examples

of the binding times of typicai language éontructs in some

v

commonly used programming languages. ’

The time when information is bound plays a'major role in
A 2 ”
determining:

-

1l) The method to be used in program execution.
. i

implementing a language.

]

These impementation strategies (or policies) have a,great\

impact on the run-time efficiency and run-time supporﬁ
éequired by pPrograms’ implemented in the . language. The
following subsections examine the, impéqt of these
implementation strategies o; policies on the characteristics
of Yrograms. In addgtion they highliqﬁt , bindingI time

decisions which affect the choice of strategy.

’
oy a

S
Two alternate methods for executing programs implemegted;

in a particular language are:

1) Idferpretation:.direct simulation of statements of. the.

- -
. ‘ 1}
-

1,

" 2) The choice of the storage management policy in
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TIME | Program_ |Linkage Load Call Execution
creation . reference
BINDING ’ .
Name- ALGOL APL
declaration | names names
7 o
Declaration- FORTRAN Argument- -
declaration common parameter ¢
d binding
4
Declaration- ' FORTRAN ALGOL WYL/l
object , data local "based"
data % data
-— z
Deciaratio‘n— All ,
constraint data .
DeclaraEion-— ALGOL * APL
Description names = NAMES
Location- Constants
value ~

‘Table 2.2 Attribute binéing times in some
common programming languages '’
{Elson-73). '

-

1
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programming language.

2) Compilation: translation and subsequent execution of a,

machine code version of the program.. ) j

The §Undamental factor determining the method used to
execute programs in a language is the binding time of symbols
used in a program. A langhage construct according to Wegner
[Wegner-68], Elson [Elson-73] is‘ compilable if all its (
required informétion bindings are determined before the_
; constrqct is encountered during program execution. Qn a Lo

larger scale, a language is compilable if a majority of the

language constfucts are boqnd before execution reference timé.“ . i
Interpretaiion versus coméiiation is @ typical example of ’

the flexibility-efficiency trade-offs involvéd in language g
designm. FlgxibiIiQQ of features .requires postponement of

. Ei;diﬁés until execution reference time. This requires the

‘pregrams .to be interpreted. The method chosen to execute

‘programs implemented in a language influences both the

-run~-time efficiency as well as the run-time support required
' ‘ : Y ]

by the programs. Ekecution of a program via ‘interpretation

does not require a separate translation phase before execution

can begin. In general, hgwever, the combined timz fequire&
for the -translatioﬁ~and execution phases ;f program executei/?ﬁ
/yr by-compilation is mucgaless than the t{re.taken to execute thé
prégram via interpretation. 1In addition, sincé a translated
program can be repeatedly executed without recompilation, the.

potential 'saving can be even greater [Wegner-68]. Execution

P

Ao,
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of a p}ogram via intefpretation requires an elaborate run-time
system in the form of an interpreter. 1In addition. to addiqg
overhead;to the execution of a program, this interpreter
occupies space fhat could otherwise be utilized byythe user's

7

o

~
program,

2.3.1.2 STORAGE MANAGEMENT POLICY

The storage management policy used .in the 'implementation
of a ranguage plays an important part in determining Ehe ’ !

efficiency of implementation of the language. Three commonly

whFe e SR

used storage management polic&gs in increasing order of

-

- .

flexibility and implementation complexity and decreasing order

of implementation efficiency are:”’

1) Static storage management policies.

2) Overlay storage®™Management policies. ' o LA
3) Dynam?b storage management policies. -

S

A survey of these storage management policies is contained in
[Griffiths~76al, {Aho-77}. Static and over&ey storage
maqggemenf policies are similar in the seﬁse that in both
" these methods storagE‘Ts allocated statically at compile time.

The main diffetence between them is the manner 1n which space

is allocated for the different subproqram uni;s. In static
. ‘:g‘ ’
storage managyement, space allocated for different subprogram .

units is disjoint. On the other hand Space allocated ‘for

different subrogram units in overlay storage managementﬁ

policies |is non-disjoint. In .dynamic .storage manageﬁent
) » .

i ’ o
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4
-~

\:3

policies space 1is allocated on demand at :run-time. Two

4 0

'important classes of‘dynamic storage management policies are:

1) ‘Ftack based dynamic storage man

2) Heap based dynamic storage management.

The main difference between these tw

— ¢ . . r
in " which allocated storage is ‘réleased. In stack based

olicies is the -manner

dynamic storége management, units of ace allocated are
deallocated ., in a last*in first-out manner. This rule is fot

dﬁQgrved in heap based management policies. .

Two imporfant factors which influence-the choice of the

storage management policy to be used in an implementation of a
langauage are:: bindf:; time, and .;ules of lifetimes of
opjects. Static and overlay policiesxreQQire that ﬁhe,amount
of storade éo be allocated for objects in a program be known
aé compile time. This requires that bindings, such as

declaration-obJect and declaration-description bindings which

aye often postponed until run-time in many compiled languages,

be done at compile time. Postponement of these bindings until

run time generally requires dynamic storage management. Rules

'

governing the lifetime, of objects are a major factor in

* choosing between heap aﬁd‘ stack based dynahiq‘ storage

. management policies.' In generél, objects- which have a

lifetime langer than the subprbgram (or unit of allocatiod) in
which they are created require heap based storagér management.
ony the other hand}\objects whose lifetime is the same as the

subprogram unit in which they are created can be allocated on

¢ . . !

~-

AT e AN

¥
i
P




" i N
%
t ] a
B
M O
.
< ¢
2
{ R .
L)
Yy
*
-
'
&
."’j& i
.
. v
v
A o
N
‘ ’
A=
- 1
R
“
U, .
-
- .
. 1
cats ST -
ShwE L T s
o by ia A i idrobetrcasi

. . . . : {?/
. .
. s ~

47 ,
IV
;a stack. ’ ' h ‘ ‘
. . . -
The choice of storage management policy plays an important
part in dgtermining tPe\ fléxibility - of features and
implementation efficiency of a 1anguaqé. Later binding times

permitted by dynamic storage managemenf policies allow a

~

& (greater \éfgbdom in design of features in a language, in

I . p
. £ . X . o X
addition to allowing. optimal use of storage space. Static and

overlay policies produce programs whose execdtion‘ltime

therformance,is optimal, at the cost of less flexible features.
o . .

~G§%tic ‘manadement policies dq not allocate stordge optiﬁally.

Stoqége allocation in bottom up overlay policies [Bochmanm=-7¥]

have performance between dynamic and static allocatipon
L}

policies. - y
, v

v

2.3.2. SCHEDULING AND SYNCHRONIZATION™ -

- ™

Languages that include process structures discussed in

. ' i .
-¥gection 2.2.2.4 require varying degrees of run time support

for féaturgs such-as creatlion, destryction," si%eduling and
. . A . -
8ynchronization. For ef%mplql the process structures in PL/1

L i&nd CONCURRENT PASCAL require different degrees of run time

L4

support. Inzthfs section we inveéﬁigate the run time supporfj

rédﬁited by process séructures in lapguages suéh aswndouLA and

. CONCURRENT ‘PASCAL. ° e o : -

.

The two aspects of,p;oéeSS‘stcucturqs in these languages

‘requiring: run time supgort‘are: scheduling and synchronization

. N

-
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i

of processes. A program in these lahguages consists of a set

2 ‘
of cdncurtgntly executing sequential ., programs called

processes, each of ghich runs on its own virtual processor. .

If the number of processors in the system is equal to the
number @f processes in the prog?am, then each process can run

on its own private physical processor. This 1is not ‘usually
the case. 1In practice the number of processes is far greater

“

than the number of processors in the system. It is therefore

necessary- to have a mechanism by which a large number of

. ' P ; , -
processes can share the limited number of physical processors.

\

This mechanism i% called a scheduler. The scheduler'; task is

to interleave the execution of the processes, thus giving the

appearance that each process has its .own physical processoiﬁ

In lgnguaggs having process structures, the aléorithm and
daxa\structures'used‘by the scheduler to determine the order
of inferleaving :of ﬁrocesses is fixed by'the impleme;;ation
(Brinch Hansen-77b}, [Wirth-77b]. These algorithms and data
structures not only form a run time system for programs

implemented in ‘the 1anguége, ‘but: in addition represent

decisions that are preempted by the implementation of the

\
.

language.

2.3.3 INPUT/OUTPUT

/

Programming languages in general do not pfovidé structures

for programming peripheral devices. Instead} they generally

- provide sequehtial I/0 statement$ for expressing the 1I/0

‘ &

%, o cosbns v
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requirements of a program. fThese languages therefore require
an elabofate run q}me system which implements these ‘i/0~
routines. These run time systems not only degrade. the
portability of programs in the lénguage, they also make ' these
programs extremely configuratisn dependent. For example,

A v

adding an I/0 device to a system requires changes to the run

-

ot time system.

Even languages whigch provide structures for programming

. .

peripheral devices; such as *device monitors [Ravn-80] (a
¢ proposed extension to CONCURRENT PASCAL) or device pracesses.

in MODULA may require run time systems. Consider for éxample

the device §r0ceSSes in MODULA.Y The representation of a

K\J, : device driver as a process requires run time support.
) ]

2.3.4 RUN TIME PROGRAM ORGANISATION ‘\{‘

s
-

In compiled languages therg are two ways in which the run

. 'time representation of the prog¥am can be organised: Fid
. - 1) regntrant. . .

¢

{ . 2) ‘non-reentrant.

These run time organisations of ‘programs can ‘be clearly

— 0\ expressed in terms of Wegner's [Wegner-68) ‘data structure

Ve
model of program execution.

* -

: In thg data structure model of program execution, the

s

execution Qf a program is represented by a series of snapshots

LN o, - : . N
called instantaneous descriptions. Each snapshot consists of:
-t f

-
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1) A program part, which consists of the executable
statements of the ﬁrogram to be. executed.
2) , A data part which represents the data on which the

4 ’
program operates.

3) A stateword representing the information in the
processing unit of the computer.
In programs organised non-reentrantly, the program part of the

instantaneous description is' modified during its execution.

‘Futhermore,’ each activation of a program re§uires creation of

a new instantaneous description of a program. In ‘programs

organised reentrantly, the program part of the . instantaneous
1

,descriﬁtion is not modified during program execution. Each

. : D
instance of use of such a program, called an activation,

.

requires creation of a stateword and data part of- the

instantaneous description. It does not require creation of-

¥

Qhe program part of the instantaneous desScription, thus
allowing several instances of activations of a Jprogram to

share a single program part.

4

'‘Reentrant organisation allows 'programs to be organised
“ ¢

'much more efficiently thah programs.organised non-reentrantly.

Such an organisaﬁﬂen is most effective when a language has

features such as recursive procedures, or has structures such
. ) .-
8s processes and coroutines. .

PRV
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CHAPTER 3

\\

DESIGN OF RT-PASCAL

A pnsh s, Kn Nt

3.0 INTRODUCTION "

A
‘

This chapter discusses a framework and outlineg a Q\\\

philosophy for the design of a set of language structures to

Pk e e ————

support the implementation of real-time/system " programs.

Programs implemented in the language iﬁcorporating\ these
stryctures are assumed to run Qn,"sﬁall computers” in a "bare .
mac ing" environment.‘ The basic framework for the design of
structures in a language is provided by consideration of the
application area. This framework‘is often augmented by other
* properties sought in programming :languages. Thé philosophy
,squesfs development -of a functionakﬂ§ complete language which

‘ allows 1mp1ementatioﬁ of a system without recourse to.the use:
A4 * 1

of assembler language. It also suggests avo{ding lanquage
- structures which require run tiqe suppﬁrt, and preempt system
design decisions. This chapter applies this philosophy in

' making language design decisions concerning structures for

multiproqrammﬁrg, and for performing“ I1/0. Thexstructures
specifically designed for. these purpoigs are the "coprocess"
and "interrupt handler" structures. They are introduced in
this chapter and discussed in detail in the following

# ; .
chapters. , . , ®

ARPICT
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The chapter is organiseé as follows. Section 3.1
discusses considerations specific to the apphication area. It
characterizes the features and implementqtion requirements of
real-time/system \pgggrams, and highlights the special
requirements -of 1languages for implementing programs on small
computers in a bare machine environment. Providing these
features and satisfying the implementation requirements is the
major design goal of RT-PASCAL. The other design goals of

\,//fRQ;PASCAL concern preemption of system design decisions, and

reliability. These design goals, which form the framework or

section 3.2, which in addition identifies’ ianguége design
decisioﬁs wéich significantly affect these design étﬁls.
Sectioﬁ 3.2 also investigates the approach ‘taken by fextant
system implementati?n languages in making lahguage design

. ;ecislans concerniqg structures for multiprogramming and for

performing real—timé\dI/O.‘ It then outlin®s our appfoachlin

making theﬁe 1angua§e esign decisions. Sections 3.4, and 3.5
discuss languagé issues in implementing mul?iprogramming
systems and iQ berforming real-time 1/0. These sections also
introduce two new language structures, “coprocesses” and
!interruptfhandlers“\yb;ch are specially designed for these

purposes.

o S o o T e
o ke g o A N ;&2§ﬁ31n§”¢a AR

e basis for the design of RT—PASCAL,ﬂ are discussed in-

-
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3.1 APPLICATION, AREA PROGRAM CHARACféRISTICS

The application areay for which RT~PASCAL is designed is

real—%}me/system applications which are to be implemented on

small computer architectures as character}sed by the present

generation of mini and micro computers. By this statement we
wish to cover single appbication or dedicated systems which

are the primary applications of this c¢lass of computer
'architecture. ’ ‘ ’
Wirth characterises ,real-time applications as
multiprogramming applications in which an additién&k* faqtor,
zfeéution‘ time, is taken into account in program construction
[wﬁrth—77c]. He describes a Aultiprogram as a. set  of
sequential programs’' each of which <can be exetuted
concurrently. " In coﬁclusion, he suggests that 1languages
intended for real-time applications should include: structureg
for sequgntial proqrammiﬁg, structures foé multiprogramming,
a?d structures %or performing real time I/0. Structures for
sequential programming include data and sequential coptrgl
structurfing facilities as well "‘as proceduz*l, data,. ,and
control abstraction facilities. Structures for

. multiprograqming include -structures -such as processes and
means for synchronising their activities. Real-time. systems
ins general consist of a number of -concurrent pfoc%sses.

. |
“Real-time control of I/0 requires facilities for programming

I/0 devices. Examples of such facilié}es are device processes

[Wirth-77a], device monitors {Ravn-80], and: interrupt handlers

o

1
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t
[Manacher-71}.

Pt
1‘. {

Some authors distinguish between feal-time and systems :

implementation languages on the basis that faE?lities for
programming peripheral devices are fiot necessary for systems

applications. For ‘example CONCURRENT PASCAL (which is

designed for systems applications) doesynot have facilities -’

for peripheral devices. Various propesals [Ravn-80]) to éd@
. : >

these facilities to such language indicate their importance in

v . ’
systems applications.
The . three ' major implementation requirements " of
real-time/systems applications are availability,

-~ .
implementation efficiency, and freedom from elaborate run-time

support.

Implementation requirements c¢ ncerning

"

run time support

and implementation efficiency are wid
. V4 '
for these implementation requirements in system implementation

regognised, The need

languaéés has'been discussed b§ [Lang-68], [Dreisbach-76] and
[Freeman~73]. The application area addressed by RT-PASCAL

emphasises the importance of these requirements.  Firstly, the

rélatively low processing capabiiities of the small target

machines accentuate the need for Implementation efficiency.
Secondly, the é%pss of/ applicatiéns, namely, éédicated or

stand alone systéms accentuates the need to avoid run- time

support.

T Lt N
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The implementa ion'requirement concerning availability is
not often recognised. Real-time/sysFem programs denerally
contain a set of ‘time critical tasks.l For reliable operation
of the system it is important that these tasks"be executed
within a critical perisd of time. Languages intended for
real-time/systems applicafions should not therefore d4nclude
features that may cause a delay in executing these time
critical tasks. This requirement, referred to as
availability, is of wvital impértance in real—;ime/system

LY <
applications.

© 3.2 DESIGN GOALS AND DESIGN PHILOSOPHY

The principal design objective of RT-PASCAL is to' provide

the requisite features and satisfy the implementation

. »
- requirements of real-time/systems applications, We emphasise

both functional dompleteness and conformity ta the
implemeﬂtation requirements, By functional completeness we
refer to the set of ! features required -by this cla?s of
applications. This property allows co&fﬂg of a compleée
system without recourse to assembler language therebyQifeatly
enhanciné the system portaSility of programs ‘implemented in

the language. The .importance of the 1mplementation

#7
requirements has already been discussed above. !

-

The other design - objectives of RT-PASCAL concern

preemption of system desigh decisions, and language aids to

'

reliability. In real-time/systems applications, design

( | o C ..
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decisions can significantly affect the performance of a
system; A system implementation ”language should therefore
avoid preempting i?stem vdegiqn decisions. These decisfons
should be left to the system designér whenever possible.
. Ex;mples of sttem design decisiogs\ in real-time/system

-~

applications are decisions concerning scheduling and

synchronisatioﬁ.' Reliability of programs is affected by

several issues. Languages should assist thée development of.

-reliable programs by avoiding as far as possible constructs
which are prone to errors, and by introducing constructs which
allow a language processof to detect e;rors. Exammples of such
‘constiycté are pointer wvariables, and type definitional

facilities respectively.

A variety of different approaches have  been taken in

designing real-time/systems implementation languages. These

approaches are typified ‘by -BLISS. [Wulf-71]), ° ASTRA
[Hegeripg-76], EUCLID, MQDULA, CONCURRENT PASCAL, and most
recently ADA. While each of these Yanguaqes has features
which suppt}t the desién of real-time/gystems applications,
n;ne contains the full set Qf characteristics sought in this

work.

LY

The two language design‘decisions'addressed by this work
which significantly affect our desigp goals are: decision;
concerning structures for multiprogramming, and decisions
‘concerning structdres for programming peripheral devices. The

way in which these two subjects are addressed classifies

- * ¢ [
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_PASCAL, MODULA, and ADA. Thése languages provide the

4

extant real-time/systems languages Into two categories: those

that provide exclusive use of a high level language for

systems - implementation, and those that require partigl

implementation of the system in assembly language.

Examples of languages in the first category are CONCURRENT

structures necessary for systems’ implementation without any
assembly code. Thése structures however, depend on the

v

existence of a run time faéility, which consists, in the case
of MODULA and CONCURRENT PASCAL, ;f small (W%rth—77b] and
med ium [Brincﬁ Hansen-77b] sized kernels respectively. the
implementation of this run time system implies an extensive
set of design aecisions, which are thereforé preempted from
the system designer. Fgrthermore, this run time syste§{2§nnot

be implemented using the structures provided by the language.

It has to be implemented in aésembly language.

The second category of lanéuages, which include ASTRA and

EUCLID, do not require run time support and consequently do

_not preempt system ‘design decisions. They do not, however,

have structures to represent multiple pafhs of c¢ontrol in a
program -and structures to perform I/0. These Jlanguages

therefore require the use of assembly language code for most

‘

real-time/system work.

’

The philosophy used in the design of the 1language

structures presented here représents a third approach. As the

¥
]
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language is required to run on a sequential machine
. )

architecture, all of its structures are essentiallyk

sequential. Structures are provided for eﬁpressing a program

as a set of sequentia} control paths of control; and means-:are

provided for controlling these control paths. In‘ an
implementation of a multiprogram, policy decifions concerning
scheduling, synchronisation, and I/O processing are entirely
in the hands of the programmer as it is in_ the®case’ of
languages in the second category and in assembly language
work. These structures therefore provide the programmer with
hi;h level language constructs whidh.;eflect the operations
concerned, and hide the details not required . for the

)
expression of the system functions, -

A third language desigq .éecision ~which significantly
affects our design goals isibipding time. This question *is
not séecifically treated‘l§p;2this‘work. It should. be noted
that the bare machine environment ahd our design goals
concerning run time Eupport suggest that the language shou}d
not imply dynamic storage management. Furth?rmore,vour désign
goal concerning preemption of system d;sign decisions suggests
the need to provide the programmer with means for managing the
allocati&n of storage. In this work we will discuss whenever
possible an imﬁlementation in which storage is managed using
géchmann's bottom wup storage management policy. 'tpis allows
an efficient implementation which we expect will enable us to

gain some practical experience on the utility of the concepts

.
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R L]
developed here. It should be noted that the choice of storage

.

management policy affects the design of the structures

addressed in this work. Their design therefore proceeds in

two stages. In stage one, structures are developed withodﬁ
)

regard to their implementation. In stage two tpe. design of
the structures is examined with the view of implementing them

in an environment in which storsge is allocated statically..

'

) r

"3.3 STRUCTURES FOR MULTIPROGRAMMING .

R S
Implementation of a multiprogram requires a system

implementer 'to providé an implementation of facilitieé for:

schedul ing the execution of paths of control, and facilities .

&

for synéhronisind the activities of concurrently executing

paths o control’ Low level synchronisation 'réquired for

impfeméntation’of these facilities is greétly dependent on the
environment in which the multiprogram runs. In a uniprotessor
environment{‘ iow level synchronisaefbn can be achieved by
interrupt control. A multiprocessor énvlronment,' however,

dlso requires hardware  support in the form of a Test and Set

o . .
‘instruction “or external logic which <can, under program

!’ foie

‘control, put a processor in a hold Stateﬂ_fln this work, we

provide constructs ’whicb ;can  implément - low -. level

A

synchronisation in a uniprocessor environment., In other

) i g

words, we provide- facilities : for inmterrupt control. No

A

special constructs are providéd for implementing low level

synchronisation in a multiprocessor environment. In general,
. . ‘ 'v-: A
< . . <
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centrol path other than the one it integrupted.

60

! : t
mini and microprocessars do not have any special functions for

this purpose. It is therefore inappropriate to provide

language' structures which presume the existence of these
o, ' N \ .

-

b
functions.
rd
. .

Implementation of a multiprogram in‘a 1angnage in which
L -‘ >

there "is no ruh time support implies that the software which

_implements multiprogramming must be explicitly Programmed by

L}

the system implementer. This ‘task is greatly facL}itated if

the system implementation languégg has structutes = which
. *

1

represent péths .of control, and the -operations which are

characteristically‘tequited for implementing the ‘structures

!

for schedul ing and synchronisation r facilities of" a

“

‘

P : N . ¢ ' “
Implementation of the scheduling facility requires that®

the system -implementation lanquage possess means for

represeiting paths 6f tontrol in a program, "and -means for

Y

transferring contrel ' between  them. Furthermore, -the

implementation of a schedulinq facility for a multiprogram
which 15 to rune in the environment descrdbed ab;ve, is usually
supported in hardwate by a ‘timer in(grrupt' . Iy is ther:}ore
essential that ‘the implementation language possess structures

for processing these - interrupts. This language structure

’*‘ .
should have the capability of transferring control to a

- : - 5 “

4
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A S Implementation of synchronisation facilities requires that

the  systems iﬁplementation langfmge provide means for

accessing (synchronisation) vari

- \
shared among several ‘(coficurrently executing) paths of

les, which are in general

b Sk

L; \"' ‘ lcShprol. _The'ptinciplés-of structured programming, especially x
} G thQ""@lating te data abstraction, suggest the implementation

of certain (synchronisation) operations which are applicable

to. these variables. BSpme characteristics of these operations {

are; they are-accessed by several control paths and therefore

5

may be entered nsimultaneously, and their implementation %
* generally involves transfer of control to a control path other

. than the one that called it. The former characteristic . %
)

‘o : ‘requires that the language allow the structure defining .a

l“ control path to access globally defined structures, and that
“ n procedures be- implémenteda reentrantly. The lattér
\charaoteristig requires that a subgequent transfer of control
. ‘ to the original con;ggl path cause its'execution to resume at

the point where ié relinquished control in the prdcedure.

&

'Finélly, implementation of scheduling and synchronisation

g

R SR S Y
i
.

facilities of a multiprogramming system in a language having
-the structures describéﬁ above requires that: the languagéjhﬁbeA <
one additional faciLigy: the ability to specify the execution.

‘ . of ‘ procedure on inter path transfers of controlM More
’ v . W g&
’ - precisely, it. i~s necessary to provide an instxruction b)’Which

o » R .
Lrangfer between control patzhs\J may - be .accompanted by e

‘g‘ 4 i
,ingqcation of a procedure. 1In these instructions ébntrol is

v
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L] ' R
transferred to the target conttol path, Its execution,

however, is preceded by execution of the procedure.

RT-PASCAL satisfies all these requirements of a system
imp}ementation language which assumes 'no run time support.
RT-PASCAL is a block strucéured sequential programming
laﬁguage in the tradition of PASCAL. In aadition to PASCAL'S
structures, however, RT-PABRCAL supéorts the implementation of
a multiprogram by providing structur;s for defining programs
consisting of multiple paths of control, facilities for
transferring control between them, and mean$ for pr7éessing

the hardware interrupts in a system.

o~

2

Thé structure which implements the sequential control’path

in  RT-PASCAL is the "coprocess" structure. The name has beén’

chosen to reflect its affinity to the process concept in

IWifth;77a], and [Brinch Hansen-75a], [Brinch Hansen-77a] with
modifications which ‘ére reminiscent of‘ characteristics /of
coroutipeé. The structure is developed in detail in
chapter 4., The following paragraph;ﬁfxiqﬁlights the central

idea of the coprocess cbncept.

»

The coprocess: structure is essentially a sequentfsl

'ccntiol sérdctpre. Like a coroutine, it allo?s the defirition

-

of a %togram consisting of several paths of géﬁtrol, and the
- ' / -

‘means for E?ansferqing control between them, The main

. ) LN
- difference between the coroutine and coprocess structures is

3 v
2

in the semantics of a’ procedure call. Ir)/-th/e,tase’,o'f




o

coroutines, transfer of control by a)proceduré to a control T a
%ath o;her than the one that called it causes the procedure to.
be terminated. Subsequent transfer of control resumes the
original control path at the statement following the procedure

crll. In the case of coprocesses and processes, however, the

‘procedure activation 1is retainéd. hRelinquishing control : !

within a procedure does not cause the procedure to be exited,
and subsequent transfer of control (explicit in the 'cqse of
coprocesses, and implicit 1in the case of processes) resumes
the original control patﬁ‘ at the point\ where transfer of

-

control occurred within the procedure.Y ~ oy

The structure provided fpf procgssing the interrupts in a
. - system in RT-PASCAL is the interrupt handler.' The hardware
3 'intefIUpts \in a system generally serve two functions: “device
i interrupts" act as mechanisms for making efficient use of
system resources.'and "timer interrupts" serve the scheduling
function mentioned above., 1In its role 'as a language structure
' for | processing device interrupts, the interrupt handler
structure allows the programmer to specify retutn of control
to the ' interrupted path of control aétir processing a
intergupq.y In iterole as a language structure for probeésing
,*timer interrupts; the interrupt handler strudggre allows the
programmer'té specify transfer of control to a2 control path S
other than the one that it interrupted. The interrupt handler
structure is deve{oped‘in detail in‘chapter 5. The following

a .
section on I/0 highlights some of its essential concepts.
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3.4 INPUT/QUTPUT h

I

%?he. aQsence of run time support #gssumed in RT-PASCAL

.

. implies that it cannot provide abstract operations such as

et
LY e

, . READ and WRI?E for performing I/0. This in turn implies that
language structures must be provided for programming the
péripheral devices in a .system. A language -structure
essential to the programming of ‘peripheral deyice is a
facility for accéssiné the set of reglsters shared betwsen the

. device and the CPU. Language strucfhres for this purpose,

[§

which are applicable to a large class of mini and micro

i AP i o A e k1

computers, have beenh discussed by Wirth [Wirth~77a)l. They are
not ‘further " discussed in this work., More .important,
especially from the point of view of makifig safe and efficient,
use of system' resources, are _language strucéures for

processing and controlling the interrupts in a system. Tﬁ}se

-

J “ facilities are _provided by the "interrupt handler” structure
¢ and instructions which explicitly control }he occurrence of .
interrupts in a sysZem. Although an interrupQ\Soncept for

programming pgripheral devices 15 common in most computer

’ atchitectures} its details of operation are often varied. ‘The

interrupt mechanism discussed in chapter 5 is applicable to a

- large class of mini and micro computer architectures.

Chapter 5 develops in detail the interrupt handling facility

for this class of interrupt structures. The £ollowing
-,

-

paragraph briefly presents the concepts of an- interrupt in

'RT-PASCAL. . - X .

&
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An interrupt in RT-PASCAL igé viewed ;é a call to a
procedure called an "interrupt handlerﬁ. This procedure ﬁay
be conceived as being invoked by the executing control path.
As in the case of procedures, exiting an inte?;upt handler via
a return- statement returns to. the interrupted control path.
Unlikk a normal procédure however, relinquishing éontrol to a
control‘ path other than the one in whose path it is invoked,
terminates the interrupt handler. “These explicit transéers of

control are necessary for handling the scheduling function '

‘served by timer interrupts. There are other minor  difference

- '

in implementation between procedures and interrupt handlers.

These differences are discussed itn chapter 5.
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CHAPTER 4

\

coprocESs STRUCTURES ¥

4.0 INTRODUCTION

~

\ This chapter develops a lanquage structure called a

"coprocess®, ‘which is well suited for imp%eméﬁting

f‘

multiprogramming systems at the system implementation 1level. (

Somé of the essential facilities required for implementing N
multiprogramming systems provided by this structure are:
, representations ' for  sequential paths of control, and

s

_facilities Ffor controlling their execution. 1Implementation of

a language incorpcrat&ﬁéw—this**;tructure— on a sequentiaf

macélﬁe characterised by most present day computers does not
require a run time system. The structure the;eﬁore‘prqvides
the ,system implementer with \a(.tool éér implementing {//
' m&ltiprogram which neither requires. run time support no}
preempts system design deéisions. In addition it goes a loﬁ<

way towards eliminating the use of assembly language in systen

implementation.

This chapter, and the next make extensive "use of the
’ » :
contour model of block structyred processes for describing the
semantics of function modules. Section 4.1 of this chapter

therefore briefly discusses the essential characteristics of

.~ this model.
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The rest of this chapter is organised as follows.
Section 4.2 discusses language structures which can be used
for implement%hg multiprogramming at the ‘system design, level.
It examines the use of coroutine structurees for this purpose,
and identifies an important area in which it is  inadequate.
It then introduces the coprocess structure, and demonstrates

"“‘\ . L ue =
its aJ;quacy in this area. Section 4.3 discusses the design
A

of the «coprocess structure. It first develops the features

desirable in this structure, and then discusses its
N .

-wimplementatibn in an environment in which storage is allocated

statically. ®

4.1 THE CONTOUR MODEL OF BLOCK STRUCTURED PROCESSES

4

Information structure models [Wegner-68], [Wegner-71]
A

characterize a process as a time invariant "algorithm” and a
time varying "record of execution”, More precisely, they

describe - a process as a sequence of "snapshots" or

'instantaqfous descriptions”, each of which |is composed . of

these two components: the <time invariant algorithm and the .

record of execution, as shown in figure 4.1.

¢

The contour model of block structured processes .forms ' a

subset of Wegner's information structure model of

computational processes [Johnston-71]. The conecept of a

o v

process covered by this model is restricted to block:

structured processes. More specifically this implies that

4

both"the record of execution and the algorithm have an

L L,

y ‘ |
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ALGORITHM

’RECORD'OF EXECUTION

Fig 4.1 A "snapshot" in the -information
structure model of process execution

-
I3

underlying structure that cam be characterised aé a nested

o o

contour structure as shown in figure 4,2,

“%\The contour model, like the general information structure
- .
model, also has two components: the algorithm, and the record *

-

. ? b
of execution. The ,algorithm consists of a fixed reentrant

! 21

. pure procedure, and the record of execution consists of the

variable déta cells. This Eeco;d COntains several

-

DR SN L TR 13

'processors",.which are cells that control the - execution of
[ 4

the algorithm.

. , . . -

The term processor 1is used here in a logical sense. 1In

this context it is defined és a data itém rathe{- than q

v * hardware CPU. In an actual implementation a processor would

need to reside in a CPU in order to execute. Stripped to the
1'4_\ * .

2

N
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i - Bl
: Bl 2
. v
A 0 ' / I
i ~ Q ' - - ) ! :
B3 < B3 .
|
|
Call @ . Call ¢ |
i
- "~
» /]
Y .
call ¢ - - : ' Call @ )
: . B2
! ' B2 ‘ - . ')
L]
» o
L]
: |
Figure 4.2a Block Pigure 4.2b Nested contour ‘ .
structured program. structure of program in A
Bl, :B2, B3 arxe blocks figure 4.2a.
* Q is a procedure, . )
: . o N

o

<

essentials, a processor consists of an instruction pointer 1P
7 [ - ' .

. “which 'points to an instruction |in the algorithm, an
.+ environment -~ pointer EP which points to an accessing

environment containing the data cells n “the record of

~ ¢ P

l
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execution, and a return pointer RP, This returm_pointer, RP,

normally points to the.processor which created it.

Every contour contains as an integral part of itself a
DECLARATION ARRAY of named cells. 'Opjects in the declaration
array (analogoust to 1local variables? are those that ' are
deélared within the contour. As an example,,bbserve the upper
left corner of each contour, in figure 4.3. In an
impiementétion of the contour model for representing the
execution ofﬁprog}ams, space not only has to be allocated for
the declaration array but also for copies of the registers of

the processor when it is not active.

Execution of the -algorithm is achieved by having the

instruction. poihter scan the instructions in the algorithm

step by step. Transfers of control involve a change 'in eipher
“w ~
the "IP or both the 'IP and _EP of the processor. When an

1dent1fier is encountered in the algordthm, the processor uses

the env1ronment pointpr to bu11d the address desxgnated by the

identifier in the record of executtion.
. o

. . -
The version of the contour model used in this thesis is an

adaptation of the‘version used by Berry fBgrry~1l] to. discuss

the semantics of OREGANO Although the version used here and

Berry's version are semantically the same, small notational
differences exist between them. For 1nstanq&‘ processors in

Berry's version cons1ét of an (IP, EP) pair, whete;g\in this

n

version they consist of a,triplet (IP,'EP, RP). The RP in
‘ ' . K . " :

et i % =

- i n n o
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Bl ey
N N
) . ' 0
1
Ay Cl
0 0
A A
. 1
B3 - . ' Cp3
N N
g
call @
xxx~‘\\‘\\¥ | I
call @ \ | 2 >
B2. ‘\\\\\ , \f‘\;\ . ‘o
A :\\\\‘\~ 11 R \
. \ ‘ Pz
. \]\ ‘ip a
-~ . ] \\ °P
p
| pl p{ngll)
1 Bl Tep

t

1 v
Figure 4.3b Record of

Figure 4.3a Algorithm
T execution

Example of a snapshot in the contour model. In figure
4.3b, processor P%l has invoked proceduxe Q, and Q hsas
been called recursively by block B3.

-
Note: The circles represent processors. The gymbol

Fy indicates a procesﬁﬁi\zﬁii? 13 active.
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Berry'se version forms part of the contour. Other notatiog;l ’
differences made for sake of clarity may be apparent to the

reader,
¥

There is a great deal of similarity between the stack
model which has been extensively used, to deéscribe the
semantics of block structured languages such as ALGOL-A0 and
PASCAL, and the contour moéel presented here. 0f interest.
with regard to subseqﬁent discussion is the manner in which
they treét procedure activations. A procedure activation is
‘called an activation reco;ﬁ”}Wegner—GB] in the stack modei and

a contour in the contour model. The main difference between

maret Bt v e

them 1is in the manner in which procedure activations are
N ) deleted on procedure exit, In the stack model the activation
record is wunconditionally deleted on procedure exit, whereas

‘/

the contour model uses a reference counted storage management

0

policy to deallocate procedure activations. . : t

i

s’ J

4.2 STRUCTURES FOR MULTIPROGRAMMING AT THE

B ) A

SYSTEM IMPLEMENTATION LEVEL

PR L g e,y

- ~ : A ' i

R

4.2.1 COROUTINE STRUCTURES

Like processes, coroutine structures éroviae a

- Eepresenéation for multiple paths o} c¢ontrol in e program.
‘ Unl;ke processes however) only one path of‘control is active
at any éarticular t;me. Corodtines, therefore, do not specify

. icohcurrent, execution of individual’ paths of control at the




kX

-language level, Assuming the existence of a structure for
‘ ?

processing timer interrupts, coroutines can be used to *

%mplement cohcurrent execution of }ndiéidual paths of «control
at hﬁe system\implementation level, Such concurreht ;xecution
~ ‘is achieved by implementing a scheduler which will schedule
more than one path of control simultaneously. Controllis
transferred to the scheduler either by a conttél path or by an~
interrupt handler. As in assembly language 1anguaée’work,
ensuringlthat a coroutine or the schedulerdis not entered «by
more  than one processor is the responsibility of the

programmer. Coroutines can therefore be used as a basis of

implementing. concurrent execution of control paths at the

2

The use of coroutines as a program structure has not been

LS

system implementation level.

. 7

exploited by language designers. To our knowledgehonly a few
languages such as 'BLISS, OREGANO ({Berry-71}, and SIMULA
include coroutine structures.’ The major purposes of cgroutine*
structures in theée languages are to érovide the language with
a’' program - structuring facility,, or.to provide the language
with a strﬁcture which can be used in simulation applicgtions.

. " We have therefore observed certain deficiencies in the use of

corbutines  for implementating multiprogramming systems. ' {

statement in a procedure which has been called by a coroutihe,

.In particular we refer to the effect of a ™resume®

N

We are unable to discern from the limited information -we have

on BLISS: the precﬂse effect of such a statement. In OREGANO

a
- -
f LN . * ? 1 : -
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and SIMULA however, it is clear that this statemenﬁ causes the™

-

coroutbne specified in the "resume” statement to be’ continued

and the procedure to be exited. Subsequent reéump%ion of the
. 3 - i
qriginal coroutine will  cauge this coroutine to be resumed in

-the statement following the procedure call.,
. ' R

As an illustration Eonsidgr the skeleton program shown in

1 Program EX41; d .
2 var RO, Rl, R2: pmth-descriptoer; °*
3. procedure Q; . . L f
4 4 : . begin “/w\\, '
- 5 &\V. ; resume (R2); \ *
6 ' end; SR ’ ) y
. 7 ' coroutine- '%; '
8 begin v
* 0 s , . ' ¢
9 ‘all.Q; , f
. 10 - end; ) Y ©o ’ '
. 11 s coroutine Y; - - 0
2 begin a " . . . ’
13 . résume (R1); o
14, * end; ) :
15 . _begin N ' -
16 © start-up{X,R1,EX41); oo ,
17 start-up(¥,R2,EX41); =~
18 resumeénl); " : *
19 end.: 1
. s ‘ -

< . Example 4.1

. - h Y
example 4.1. In 1line 16 and 17 the main program initializes

B ‘ . #
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proceduxe Q resumes processor P'Y in line 5 of,
,‘xampI[l& «1l. ‘.
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at t&is\

v

q}ate of record:of executioh
L. v % ‘

fig I'e"'4. 50

point is as sQowﬁ-in

Observing figure 4.5 it is \
3 .

resune call in"line 5 not only causésﬁ control ' to be

3

. . . - .. . . .
transferred in coroutine Y but 'also causes the deletion of the

contour and processor of -the procddure Q. ' The effect.of ;hi%

deletion. is that, when the Edfoutfné X is resumed in line 12,
control

procedure Q, i.e. to the statement f£51lowing ‘in line 8,

“

¢ A 4 \ -
v - e - Ld -
. . ’ !
»> { N ’

apparent that the,

L Y

" is Eransfertgd,to-phe stétement Follbwing the'?all to °

"x
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. Con&;ast these aspects of coroutine semantics with those N
- - p‘ Y
of processes, 'illustrated with the example 4.2, expressed in
., ' . . ¢ =
P
) : 1 program EX42; ,
. 2
* ' 2 monitor A; g
A - 3 var'C : condition;
\ :’ ."‘
; 2
S, 4 ‘ procedure Q! " . .
. 5 { begin -~ ,
! 4 - i T . _ C.wait;
. o, ‘. .. , v
| 7 . cend; ~ - '
C . % oo\ P ) .
L 8 "+ begin . ' )
’ * & o \
‘ 9 . , _and; ’
r , . f“/ ) 7
; . (107 . process X; ' ) , ’i
b 11 . 2 beg(iV : ,v ‘ ‘ 1
. : ' BV cpll Q; - ' : |
% 13 end;F 4 ) B '
S . . . . '
3 4 - ) ,»lsl T process Y; ' -t ) (
- 15 begin . e *
T o 16 < end; . ‘ .. /
:‘:* 4 ) * < -
HEN C :
- , f , v e . P v N
¢ ’ (*other process declarations*)
= » ' ' ' LI AN - ’ - ' ' ) 1
- ¢ . ? / a \4 ’ 1
t 17 =« l‘jegin (*main program*) oo ’ :
‘ ’ ' LI ' ' ) -
) N’ 18 . start(X); , . N ’\. '
N : ) 19 . start(¥); » . . 3 ‘) .
: . [ « .
‘..' \ . 20 ;endo. !
£ LT ’ y .
% . . Y, t . \ N \ N B
® - . " Example 4.2 ”' - . 3 ]
:}“ - C : s ot - ’ ‘ ;-
& b . o . . J . . ¥ /\
5 cONCURRENT PASCAL.. In this dase, as ‘before, the majn' program
%, _ . . > ‘ i . ) . " s . .o -
‘ . initializes two processes X and .¥ (in 1lines 15. and 16" L
) 4 v . e , , | . /"
§ T . ) . ) N

+ SRR S
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o . Head>condition-c-list > other processés waitiﬁé
. : r .\ o e on condition C,
' , A\ ’ G'd.\ o )
: e .7 . s ‘
. 14 . ’. - »
. . = ' Figure 4.6¢( State of the record of execrutibn when process
<, P waits on conditiod C in line 6 of example 4.2, v
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. respectively). When the main program completes execqpién, the
scheduler will transfer control to the process X. During its
execution proc¢ess X calls the monitor procedure Q (in 1line '

12). When process X executes the WAIT operatioga(in line 6},

let us assume that it has to wait for condition "¢ "o be
N .

satisfied, It is reasonable to expect that the implementation -

N

v i of the WAIT operation not only makes process X wait, but also

transfers control to another process. Thegstate of execution
N

[FRPORSEP

L
¢ record at this point is as showp in figure 4.6, /0Obsggve that

- when condition C is satisfied and control is transferred again ;

F—

to process X, it wfll cpntinhe exetution at the statement

.following the WAET statement within the procedure (in line 6).

-
(el

Examining: these two exampfes we make the folldwing

observations:

P ‘ ) Sy -

1) Bothy programs have similar structure.

. - ¢ .
2) The WAIT J%eration in the second example can be viewed
- ! DN

. : s t

- as executing an operation analogous to s resume,

g o ‘following gome housekeeping operatidng.

>

T PR ey,

3) Observing- thh\»éffects of the  RESUME . and WAIT ‘ g

g ' '. statements in/ figures 45 and 4.6 reﬁpectively,,we

» .
< * £

f , o . notice that th; contour and processor of thg procedure

#1 Q ia‘ deleted in the case offtbé coroutines and is
ﬂ\ yxetained in the case of the processes. This deletion

" is attribytéd directlyflfo the semantics Pf the N

coroutine sé:uctunes.

A

,- We therefore conclude that although coroutine structures form, ~ g
. ' . C 4 ) '

A ‘ - ) _‘;;

o e — B —

[oragfankante St I IR R NI LI DT R U gt
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a basis for implementing mulfiprogramming at the system
- / 1 s

implementation level, the#r semantics are not adequate £or

implementing synchronization primitives:.(which in geperal

include transfer of control outside the':coroutine) 'at the

system implementation level. L %ﬁ-is

[ , ’ « » - '
. . - . ,
| Y | / :
4.,2.2 COPROCESS STRUCTURES

‘ v .

, v

With reference to thé discussion of the previous section,
it isfapparent that coroutine structures provide some of the
facilities required for implementing multiprogramming’ system

at the system implementation level. *In addition, "it showed

that ~ their semantics a}fwf inadequate for implémenting
v . ,"‘ Py . 3

~ .

<§f§chronization primitives in the lanéﬁéae. -Sincgl it is

. _ <y, :

deézkhble to have the capability of implémenting
synchpoﬁiza;ion primitives at the system implemertation level

. ' {
we introduce the concept-of a "coprocess". L ¢

v I

Some of the properties of coprocess structures are similar

to those possessed by process and coroutine structures. Like

' ¢

: . ' o
coroutines and processes, coprocess structures provide

representations for multiple paths of control in a program.
. f
Unlike processes, coprocesses do not specify cgpﬁyrrent

executfon of individual paths of <conftrol at XQNL lanQ%age
level, Coprocess structures however, like coroutines, can he

used 'to implement concurrent execution of individual paths. of
I ! o
control /% the sydtem implementation level. Finally, like

- ' » N . .
processes and . unlike \coroutines, coprocesses can' be

a

~

A e 7
r

USRI

e - - i e st 4§

(USSP




, #
, $1 ’
. ; ‘
' N ) ’ ,;’:\
.| gram EX43;
2 var Rl, R2: thh—descriptorL
3 procedure Q; ‘ o ;
! 4 begin ‘ }
. 5 ( resume(R2); ' )é
6 end; . '
\ -
7 coprocess X; ‘
8 begin o ,
' LY * . /{
9 call Q;
10 end; -
11 coprocess Y; L ]
12 ' begin ' : ’
13 ‘tesbme (R1)}
. LI )
° 14 end; - ’ C
15 begin ' . L o
16 start-upfX, Rl, EX43); - ,
- 17 ’ start-up(Y, R2, EX43): '
. ‘18 resume(R1);
. - s @ - * - M
" 19 ' end., ‘ , -
< v ‘ ‘ R T
i N ’ '
- Example 4,3 . . . . ~
. -
| !
represented by a sequence of dynamically nested activation H
‘ , ‘ ' ™~ ’ 1 -
records which are retained even when contro} 1is transferred
H

)

outside the coprocess. ~

I

As can fllustration  of the essential difference between

c?routine and coprocess structures, con&ider example 4.1, 1in -
& . - ‘

whfch‘ we“replace ‘é:he coroutines X and Y by coprocesses X and Y

réspéctively as shown 'in example 4.3. The effect of the

. ) —~ R
. A : :
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I
P

s
RESUME statement 1in procedure Q (in line 5}, is that control

is transferred to coprocess Y. The state of the record of

0

execution at this point is as shown in figure 4’7°/‘1

. - , /
. Z
roeo iy
L,
¢
i ;
)
;. .
. >
i
Y :
.a , S . #
]
~ .
Figure 4.7 State of the record of ekKecution after .
. ‘ procedure O transfers 'control to coprocess Y in line 2
.- 5 of example 4.3. R . :
: o
” ' (1IN
. N, . . .
. . ‘ ‘)”\ ‘ ‘ ” ' \"", o s
. ) Unlike ; the case of coroutines, “the contours and processor of P
) = ) : . .
AN
" . oy ' . ’ .
M V 3 b A ~ 4
) . , / - . :
Do, . - )
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procedure Q is not deleted. Hence when coprocess X is resumed
by coprocess Y (in 1line 13), control is transferred to the
statement following the resume statement in procedure 0, and

“ ° not at khe statement following the call to procedure Q as

-

happens in the case of coroutines.
<€

We observed from example 4.2, discussed in the previous

section that Iimplementation of synchronization ér@mif?bes in a
high level language requires that execution of resume
operations occurring within ﬁroce@ures should not cause
~ termination of the _procedure. Cegééfess. structureé which

provide this facility are therefore 'rbetter sSuited than

coroutines for implementing multiprogramming systems at the

system implementation level.

.

L 4

\
v

.4.3 DESIGN OF COPROCESS STRUCTURES )
AN ” ’ ° '

.3.1 CONCEPTUAL DESIGN

: Coprocess semantics can be viewed as an extension of
coroutine semantics. It is therefore logicdl to discuss their

. semantics with respect to those of coroutines.

Like coroutines, coprocesses. haye two types of call
) statementfN ' T

1) A START-UP call. statement, which creates a contoyr and

a procedsor, and Initializes e control path to refer
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' Figure 4.8ay state before ‘ . i
. ) ) process°r P; referred to “
) . by path descriptor R calls , »
! . . *
T prob!ssor 0. :
. ' - ]
, ) : oo Figure 4.8b State after
s . processoflpl ferred to
. ' — : A
%, " . ! / by path descriptor, R calls
3 ‘ A\l £l t « -
o ] ' ’ processor Q.
‘ ~—rt ’ T ‘ \ :
y ‘ R . ’ ' 1
% S p |
M N ' 1
- - L Sl .
3 .p - ~ ) ., . i ,
. ) . 1
N s e SN
~ A J ' , I . s B s
* ) ‘ ' T o i
3 & .

- N P@bure 4.8c State after ' S ' .
§ . 4| procedure’Q is exited, T, -
Notte: As before. circles. represent processors, -
g These figures show only the dynamic o ' t
- - nesting of the, processors.. v . <
A - ~~ The symbol "% indicates processor which is e .

. . ‘ active.
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'S

2) A ' RESUME call, which transfers control to the

coprocess whose path is séecified in'éhe call.
’

PO

The main difference between coroutines and ?Bprocesses is
in Ehe semantics of the procedure call and return statements.
In the case of coroutines, a procedure call statement involves
the creation, initialization, and transfer of control to the
égocéssor of the called procgdure.‘ It does not updéte the
p&éh desériptor which"controls the execution of theJcoroutine
invoking the procedure. A return statement merely involves
returning control to the dynamically nested processor. , As a
side effect, the contour of the returning procedure ‘fay be
deleted if there is no external reference to the contour or to
any element in the contour. These semantics of procedure call

and return statements are illustrated in figures 4.8a, 4.8b

and 4.8c. ' ' o

Now compare the semantics of procedure call and return-

statements in the case of coprocesses. ~Iﬁ th{s case the
‘procedure call not only involves initialization, créaﬁlon ang
tranéfer of control to the processor of,;h? called précedure,
but also igvolves updating the control path which controls the
execution of thiicobrocesses to refer to the procgssor of t;e
Eiiled ‘péocedpre. . These} semantics  are illustrated in
figures'4.9a and 4.9b. These semantics allzw resump;ign of a
coprocess-at its last point of exit, qyéa“when this is ‘'within

e

a dynamically nested procedure. This is possible because a

P
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Figure 4.9a State before

referred tb by

processor Py

‘'path descriptor R calls

procedure Q.

+
.

(G-

rp ‘\‘

et i b o

. Figure 4.9b stateiafte;” M
. 2 .procedsor Pi referred to
, by path descriptor R1 ~»
, calls procedure Q. . '
. g g,
a , , 4 ¥ ,
t . s R
’ ‘ R’ ) ‘ »
- i
3 ‘ * ’ '
L 3 _ . ' ‘
S ’ o o
Figure 4.9c sState after (/ Figure 4.9d State after
procedure Q exits via a B procedure Q\exits vtaty
resume instruction. S - ' return 1nstructxon. M
. . . : ‘ ’
\
A H; s
N "v _,/ ' . “J’ N ’ L
. ' 9 SR
:4‘ x ° s R P B -‘».%
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reference to the procedure activation i{s retained on exit from

_the ©procedure via a resume statement.' A consequence of the

procedure call semantics is that the return statement not only
involves transfer of control to the dynamically nested

processor but also involves an update‘ of the control path.

These S ntics of the resume and returgh instructions
' >4

(occurring’ in a procedure) are shown in figure 4.9¢c and 4.9d.

The above d@scuséfbn motivatas a change in the processor
structure of the contour model discussed in section 4.1. This
change i{s motivated mainly by the neéé{ to, update- the path
descriptor .of thé control path controlling the execution of

4

the coprocesses. More specifically, it is necessary for a

processor executing ' a call or return statement to have a

Ireferencslﬁi-;he path descriptor\céntrglling‘thé execution of

a coprocess, to perform the updates required. We therefare
. :

"add to the prp?éssor of the contour model, the field PD, which

xefers to the path descriptor controlling the eiecutiqn of a

coprocesses. . .

a :

For correct operation of coproqesses,-it is necessary that
there exist only a siﬁglé reférence to any node (processor) in
a contr%ﬁ path. This requires us tg prezent situations where
more than one path descriptor refers to a node in a control
w7;:»at:l'1.' Such Si;uatiéns arise when path gegcripfor variables
are assigned values as shown in figure 4.10a,  and wﬁen

coprocesset are started—up as shown in figure 4.10b,

Observing figure 4.10b it is apparent‘thgt'the effect of the

Y
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1l _procedure P(var S5 ¢ SEMAPHORE);

2 . var R : reference path descriptor;

3 . begin . .

4 "' disable;

S if S.STATE = 0

6 then begin .

7 , enque;

8 R := SELECT;

9 , enable;

10 ° resume(R);

11 ' end ~ .

12 else begin ' e '

13 , S.STATE := 0; . o -
14 - ' enhable; ' . , .
15 end; -

16 end;

Example 4,4

~ N

Thée contout for thé coprocess specified” in  the
2 N ' . ‘
start-up. operation is created and 'its

parameters

s

initialized. -~ ‘ , ' - ..

i I P .
2)s A hidden ~path descriptor variable 1is created and

3)

step 3.°

The .processor for

initialized ;tQ refer to the processor created in

\

.

the coprocess is created ‘and

4
- ipitialized as follows:

1) IP, . EP are 1initialized as 1in 'the case for

R
procedures- ’

k]

.2) RP is initializeé to nil.

3) PD is initialized to.refer to the path descriptor

L

. variable created in'step 2.

. 4) RPD is initlalized to refer to’'the path descriptor

variable referred to by the reference

4

ey
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. . descriptor variable in'éﬂ% start-up ({.e. RPD?). '
.o &, P : ) -
N -4 o

The reference path descriptor Gariahle\specified in

- » the start up statement is initialized to refer to the

0

e ’ ‘path descriptor variable created 'in step 2. 4

19

5) The processor axecuting the start up operation

» S ' . continues exéchtiqn. e s

. . ¢
.The form of the.coprocess resume .instruction' is as follows:

.
A v

resume(RA, P(arg-list))

' i where . . . . : . .
i . .

RA is a reference path descriptor variable” which

El

indirectly refers to the proceSsor‘to which control. is

) to' be transfer;ed by thé resumei;tqtemenn.
‘ P " is the name of an optional procedure which is 'Fo 'be“ .
. executeé, in the path of the control path indirectly
\ referred to‘by RPp, rand arg-list is the‘ list ofl
‘ o , arguments of the proceduré. ;
The semantics of ébe_ coprocess resume .statemént ;re "as
, follows:  ° ' ' : )
- ’ ‘ ’ * ¢
' .1) If a procedurd is specified then ' : . \ :
= ) . 1) create and‘initial§ze a contéuf for the' "erocedurgh 5
;l ) | (as in ;He case o\ grocedures). | ! ’ :
7 2) Create "a - pfocegs r forr the procedute and
% b initialfze it as f?llows;‘ ’ '
% - . ["/J 1) 1P, EP and RPD Qre)iniuiaiiéed.as iq:égzj/casé
é, ( - . .~ . of érocedures; ‘ ‘
e ' x ~f ‘ 2{ PD is 'initialized-‘io refer to the path

& * 1] B .
/' °

.
—— « e LA RN -, - L K P erme e s o e t——— e .

f
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: : N ' ' ) g
descriptor- specified in the resume statement.

'3) RP is initialized to refer to the processor

. .- L+ I
A indirectly referred to by the Trefdrence path
4 . .

. descriptor variable specified in the reé%gg////,//»
statement. J”Jﬁ,,,r-””“"/ﬂ,r
—— .
3) -The hidden path descriptor vatriabIe referred to by

the reference path descriptor variable specified

in the resume statement is updated to point to the

newly created processor.

w

2) control is transferred to the processor indirectly.

reférred to by the reference path descriptor variable.

. .. The form of the coprocess return statement is as follows:

Return(p) .
where > .
P is the name of an optional procedure which is to be

b

follows:

1)

)

executed in the path of the control péth, to which
v e v .

control is transferred by the return coperation. In

other words, this provides the option of executing an

exit procedure P, upon termination of a coprocess.

The semantics of the coprocess return statement ate as

-
N “

4

If a procedure is specified in the return statement

then

+1) Same as 1.1 in the case of thé resume statement.

2) Create a processor - for the procedure and

initialize it‘as follows:

P

f
st
PR

=




1) IP and EP are  initialized as in'the 'case for

procedures. ’

‘

2) PD is initialized to refer to the hidden patH

v

descriptor variable whic? is referred to "by i

the RPD field of the processor exécuting the

”. . . b
resume 1nstruction.

. 3) RP is imitialized to refer to the processor - .
} N . Y “ D
" - v indirectly referred to by the RPD field of the

\

£ pro€essor executing ‘the return instruction.
' 4{ RPD field is initialized to refer .to the ‘ X
. . a ]
' hidden path descriptor variable, which is
O ’ referred to bQIthe RED field of the ‘proceézor
executing t@e réturn instruction. ' }
- . . 3). The hidden path descriptor variable refeéred to by ) :
' | o, - the RPD field. of the processor execut#gg the :

-

return statement' is updated to refer to the,newly 4 R
crééted‘brocessdr.

2y Tﬁe processor executipé the return instruction is set
to a . terminated staig, abd.contrbl is t%ahsferréd to

the .processor indirectly referred to by the RPD field Dy

of the processor executing the return instruction.

The semantics of the procedure4£§;1 statement are as follows:
1) Create- Shd initialize the c;ntour an& the parameters
. of the célled'procedure;
L . 2) Create a processor for the called procedure and

§ . 9 -
initialize it as follows:

B

e —— puey. [P P - e

. . s .
T B Y et e - ~ - -, e > )
e . : ,
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1)- IP and EP are initialized to the procedute value
(a p@océdure value is representedias "an _(IP, ER)

pair).. - : -
2) RP is initialized to refer to the ubrocepsor
: N

T executing the call instryctivon. . ey "

3) RPD and PD are cobied from the corresponding

. / g .-
fields of the processor exXecuting the . call

instruction. '

£
L

3) Transfer control to the procéssot- 6f .the called

procedure. ‘ ’ C ‘ - L

k - ! 0 " Lor
The semantlcs of- the procedure return,6 statement are as

follows- r ‘ ‘ ‘

1) Update the pefh descriptor“pdintea‘to by rhe PD  field
of -the processor executing ' the return statement to
refer’to the processor pointed- to by the RP field of
‘the processor executlng the RETURN statment. ‘

2) Transfer control to the processor polnted to by the RP

field of processor executing the RFTURN 1nftructloh.

¢

4.3.2 ENVIRONMENTAL CONSIDERATIONS - 5 c

'
The previous section .makes no assumption ‘on - the
environment in which the coprocess concept may be 1mp1emented.

Obv1ously the coprocess corncept may be 1mplemenbed _ain

different envirdnments, .. The purpose of this section is to-,

I4

investigate the implications of implementing coproce%ses in an

[T CVC ST, SE 5 S T N,

.t i

) . "
£ A i A ROyl v Bere TV Sy Py Oaire AT SR 3 o TP - PR L oy P L TG P . syrwigndise i dmindyiud N
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. R ‘environment in which storagé is allocated using Bochmann's
.. o : . ' , ; A .
'.botééb ‘up overlay storage:- management - policy. Some
restrictions on language features have already been discussed f i

by~[Bochménn—78]. This "section  discusses some dditional

rgstrictioﬁs which are particular to the coprocess concept and ! o

identifies some the structures discussed above which/ cannot be

%

implemented using this policy.

The first “and most obvious restriction is that coprocess

instances should hot be' created dynamically; Since ‘it+ is

] . . \

- desirable to allow more than qgne instance of a coprocess in a

+

. progfa@,ycop ss instances should be created statically R
\ ’ . L 4 . ‘ /

. . ) i .

. 1 program EX45; ’ - . ;

k4 R ) - - : -
L - <2 var PD1, PD2 : ref path descriptor , %?
I 3 data start-up(X, PDl, EXA45); ) ‘
- L 4 data start-up(X, PD2, EX45);
, 5 coprocess X;
v 6 begin
7 ' ‘e , . -
‘ - 8 . end; ‘ . - ' -
’ »" . 4 . [y ' . ‘
: ’ . 8 begin . * .. '
£ - . "1 9  end. /
’ . - Example 4.5 . . . = - Lo
.. . . -y . . ~ ' - . _-‘5
A Lo ‘ s - - i
L using declaratofy statements, as shown ipn exampie 4.5.
. * * . ’ *A

| ; ‘ i
Tﬁe second restriction we place on coprocesses is that

- ": they are not pgrmitted to be #tatically nested , within

4 5 ) : T o . :
; procedures. The; need for this restriction becomes .apparent
N N *

1 -

. L 4

>
>
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\

when one considers the fact that coprocess instances

a fﬁ

_created ' statically and procedure instances are created

dynamically in the o&erlay) storége management policy.

- .

Creation of a coprocess instance includes initialisationiSE‘\

the processor of the coprocess." This, however, includes
initialisatiop of its environment, ghich itself includes the
énvironment of the procedure within which it is nested. It is
therefore impossible to statically:initialize the EP of the

coprocess which is statically nested within a procedure,

. T e

'

, The third restriction we place on coprocesses 1is’ that

value parameters of a coprocess should only be compile time
constants, and reference par®meters should not be wariables
local to a procedure. As all insYances of Loprocesses are

statically created, the need for these restrictions’ |is

obvious,

A feature which cannot be implemented using the bottom up

A : :
‘storage management policy is the (optional) invocation of a

-

procedure on transfers 9f control ibetwéen control pgths.

These érocedurgs must'be_aLlocated pon~over1apping {disjoint)

r

storage in a coprocess segment,
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- . CHAPTER" 5

‘ : t

‘ - ' INTERRUPT HANDLERS

»~

s

5.0 * INTRODUCTION . »

.

| ! This chapter i%~concerhed with the design of. language \
- structures ' for processing/ﬂhe interrupts in a machine. There
is a great deal of similarity' between ah interrupt and a
. .
procedure call., Concebtually the qgs%;rénce of an interrupt
may be Jiewed as a procedure call initf;ted by hardware. This .
conceptual view not only enhances our ‘unde{standing of
interrupts, but also ©provides us with -’ guidelines for
i . - “
determining the language structures required for processing
the interrupts in a system; Tﬁé conceptual view of an
interrupt does not, however, providé an adeéuatgfbas&s for
;/making all the design decisions 1involved 1in the dgsign of
ianguage structures for processing/“ihterrupts. Design of .
‘ .

these structures must take into cohside;ation the specific

interrupt -structure of 'thq target maéhine, as well, as the |

imRlementation reguirements of these structures. In the
foYlowing, these considerations are used as the basis for the

d sign of high level ianguage structures for process%nq and ,

]
controlling the interrupts in a system. , R
i ‘ . .

) The structures developed in this chapter gr pro’cessing,

-

and controlling fﬁﬁjinterrupts in a system, are similar_ in

4 . *

L R o ol ¢ b -
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many respects to the structures in ESPL [Manacher~71]. Those

This, conceptual view is independent A&f the precise interrupt - - ‘

N 1
‘ ‘ .13 : :
i

presented «here, however,.are less powerful. This, we believe,

e g e, e v L

makes them more consistent with the.,stringent requirements for

performing real-time I/0, and wEll suited to the application

area addressed by RT-PASCAL. The structures developed in ESPL-
L s

are designed for more general application.

The .chapter 1is organised as follows. ‘Section 5.1
discusses interrupts from a conceptual point of view, and
makes somé b?eliminary‘observations congerning the languagé
structures required for processing ghem. » Section 5.2
discusses an interrupt architect;re which is applicable to a
large jolass of conventional mini and micro computer
architectures, which are the primary target machines oé 'E
RT-PASCAL programs. In ;ddition, it discusses the
implementation requirements ©of l?nguaqe structures éf
p;gcessing the interrupt% in a machi;e;«\section 5.3 diséusses "?

the design of language structures for ptocessing interrupts ~f

forp the class of machines discussed in section 5.2. Special :

St 2t et M

attention is paid to the implementation— requirememgih/pm the

d;éign of these structures.

4

‘\.

5.1 CONCEPTUAL VIEW OF INTERRUPTS

Conceptually, an interrupt ma$ be viewed as a procedure

R s LT I ey

call to a programmed procedure called an interrupt handler,

-

structure of a machine, and also independent of the particuiar
. /

..,.,..' a . — fore = . 'i




- implementation requirements of thé interrupt proéessing
“facility. .The actions which occur on the acknowledgement of

an interrupt closely resemble the actions that occur on

DA

execution of a procedure call statement. As in the case of

] .
~

procedures, an interrupt causes creation and ikjtialisation of
< a contour and processor for the interrupt handler, followed by

transfer of control to the newly created processor.

4

A characteristic which distinguishes an interrupt)ﬁiﬁéka ,
1 ‘ * v e
. normal procedure cgall &E that {t occurs asynchronously, and

“hat it s directly invoked by hardware. A consequence of

v

N this characteristic is that the interrupt handler is invoked

L '

directly 1in the path of the executing control path. In order

v

i

to maintain the sequential order of the interrupted path,
these intéfruptions should be transparent toﬁthe interrupted
control pathiv,lﬁ is therefore necessary to restore tke s;ate
) of‘ the interrupted contro&' patﬁ on exit from an interrupt

handler-.

‘ LY .
Since interrupt handlers are similar to procedures, it is

reasonable to assume that the semaﬁt&cs of return and resume
instructions occu}ring in them are similar’ to tho;e occurring < ~°
( within procedures.‘ Assuﬁing this,aa return instruction will /I
restore the : state 'of the record of éxecution 'of the
interrupted control path. The resumé instruction, however,§~ <
causes problems. These problems can be eliminated by
requifing that the hidden path descriptor variable be updated

r  to refer to _the intérrugtéd processor before transfer of
; ! - \

<
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The. need .for these updates can be eliminated by modigling
tﬁe initiali;ation of the processor of an interrupt handler.
These modifications are: initialise Rgb and- PD of the
processor of the . interrupt handler to nil, and transfer

" control without wupdating the hidden path descripéor variable
in whose path the interrupt handler is invoked. It is

interesting to hote that these modifications also make the

implementation.of an interrupt handler much more efficient.

of It 1is apparent that these modifications - necessitate
. \‘B« corresponding modifications in the return and resume
. , instructions occurring within an interrupt handler. In a ,

i

1return instruction, this involves returning~cantroltto éhe
processér referred to 'Ey the RP field of the processor
executing the return instruction. In a resume instruction,
control is transferred to the p}oceésor indirectly referred to
by the path descriptor variable specified in the instruction.
Minor extensions to ‘these semantics are also necessary t; deal
with cases in ‘which a resume statement specifies the exgcution 4 }
. of a‘procédure‘in the path of the resumed coprocess. The
o nééessary mddificatioﬁs are similar ‘té those discussed in

chapter 4, and therefore are not discussed in this chapter. -
r p) .

¢

Lo ) It is desirable to adlow interrupt haﬁdlegf to call

¢

ptocédures. The procedure ¢all should have semantics similar
L / ) .

o

to interrupt . handlers. In particular, exit of such a

- N - y
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1 program EX51; ' - 3-
2 Qér Rl : reference path descriptor;
3 COND : boolean;
4 data start-up(X, Rl,.EX5X);
5 ) interrupt handler IH;
6 . begin
7 . 1f COND then resume(EX5X);
- 8 end;
9 ' coprocess X; . , .
10 begin ' '
11 cea(A) oL,
’ . ¢ .
12 . wee{B) ...
13 end; .
57 14 | begin é
15 resume(R1) ; 3
LR i
~ 16 end. N
Example 5.1 ‘

v

i

ERS T ST e =

procqdure via a resume statement should €;rmihate the

procedure -and the interrupt handler. This requires a

[

»
#
}
K
[
]
3
i

modification in the procedure call semantics discussed in
chapter 4. These modifications concern the initialization of

the procedure’'s processor. .‘They are similar to the

'

modifications discussed above in connection with interrupt

—

handlers and are therefore not discussed any further,
N .

& _ L~ Ce . .
"As an illustration of the call and exit semantics of an

interrupt handler, consider eiample 5.1, Let-“us assume for

! o
illgstratiqn purposes that there are two occurrences of the

-

4 ™ T
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EX
Hidden
path
descrip~.U K
tor vari- "
ables '
@
., 8
Figufe 5.1 State of the record of execution before
occurence of the interrupt which causes interrupt ,
handler IH to be invoked. The value of the field ip
of processor Pi is 9 when the interrupt occurs at '
. point A a&f 10 when it occurs at point B -in example
5.1. ‘ B
¢
interrupt which causes interrupt handler IH to be invoked. = N

) v PR

Furthermore let us assume that these interrupts occur when

coprocess X is executing at pofhts (A) "and (B) in example 5.1,
* . . .

and that .the interrupt handler 1is .exited via, a -return -

Y

kg 1 . e
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\ .
Hidden . v
path .
descriptor
-variables
, : ! \ ¢
- v l' ’
. v A .
- . \' »
.
v ‘ .
N 4 N i
Figure 5.2 State of the record of execution after ~,
. the 1nterrupt handler IH is invoked, - ° .

. * - ! ’ " ‘ ,{ a '
statement in ﬁirs& 1nstance, and via a resume statement In the
second 1nst:an<:ceq - o - ‘

The states of the record of execution before -interrupt
handler -IH is-invoked in thé ¢two cases,  are as shown in
: Y. ,' . . A .
‘” . o i . . - .
o, : .
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Lrn
EX |51

IR
) Hidden
, . path .

: N descxrips
tor vari-
ables

.

pdd.

" . o EX51 L
- rp, |ip Byrp
rpd - =

. R . -
1 . . - .

£

Figure 5.3 3State of ,the record 6f execution after the -
' Jjinte rupt handler IH is exited. Processor Pl is active
o f TH exits via a return statement, Processor PEx51 is
R active if IH exits via a resume(EX51l) statement

. s

.‘\ " ’ - i
‘ - _  figure 5.1. ‘H'e,ré! we have assumed that the co"qtrol patl/i,‘

referred to by Rl has not calle} a procedure. The only

e E -

R S S T

. difference between the records of execution in the two cases

s that their IP's are different. The state of -the record of

L et R e Y e Y

execution ,after the interrupt handler IH is invokéd is shown
ﬁ B ' .

by - .
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in figure 5;2. Note in this figure that the RPD and PD fields

* of the interrupt handler's processor are set to nil, and tﬁgt,

the hidden path descriptor variable of coprocess X is not
updated. Finally, thé state of the record of‘execgtion éfter
the interrupt hanéier is exited via the return iﬁstruction‘ in
the first instance and via the resyme instruction in the
second instance, is as shown in figdre 5.3. In either\ case

i ..
the state of ‘the record of éxe$u;ion is the same. :The only

- . ‘
difference between them is that coprocess X ks active in the
first instance, whereas the main program is active in the

second instance. Note also that figure 5.3 1is identical to

figure 5.1. The only difference is thag coprocess X is active

in figure 5.1, whereas in figure 5.3 this is mot necessarily
’ 4

true. Here the main progfam is active when IH exits via the

resume statement and coprocess ls actlve when it exits-via the

"return statement., : B

r .

' ' i o,
The above conceptual view of an interrupt ‘allows us to

-make some preliminary but important observations.regarding the

¢ language structures for processing the interrupts in a system,

Firstly, it suggests that the language provide representations

"for interrupt handlers. Secondly, since Interrupt handlers

are invoked directly by hardware, it suggests the need for
language restrictions for preventing them from being invoked
by software. Finally it suggests the need for language

structures for binding interrupts to interrupt hapdlers.

¢ .
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+ 5.2 INTERRUPT MODEL AND IMPLEMENTATIQN CONSTRAINTS

Most, real-time/systems implementatiomgg#anguéges uspally
avoid Entroducing language structures for processiné the
inter;upcs in a méehine. This 1s because of the great .
diversity of interrupt mechanisms in conventional computer
'arcﬁiteptures, which makes it difficult to devise strucfures
which cén be efficiently implemented *ton all machines, and also

makes it difficult to devise a generally applicable set of

language structures. This section therefore dis?usses an
o "interrupt model which models the behaviour of a large class of
) mini and micro computer;’ which are the principal target
machines of ’RT-PASCAL programs., The implementation
requirements for language structures for processing . and )
,;ontrolling interr&bts dre more stringent than the =+
tmplementatién ‘requirements of ‘other language strPctures.
‘ " This section alsg discusses the special implementation
requirements %g,thgse structures. ‘ . o .
! .
- Our model, which in many respects is an adaptation of : , ~
Manécher's model ‘[Manacher-71)}, can be summarised by the - .
following points: . ‘ : ‘
. % ' . '}ﬁ . ¥
. 1) - KA interrupt consists of: ’ o v

s A
1) A transfer of control caused by an sxternal device

: fconpected to 'the computer, to a routine called the
interrupt handler (or interrupt program, or
"interrupt routine).
\

2) No loss of information occurs in the transfer,

-

L 3
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thus making it possible to later return to the

3

.. interrupt program,

2) A machine may have several different interrupts.

N ' .
Associated with each interrupt is a fixed location 1in

memory, - calléd the interrupt location. This location

-

serves to -identify the i%terrupt handler to which

control is to be transferred on receipt of the

P
interrupt. No assumption is made on the number of

interrupts connecéed éo a~sing1e interrupt: several
devices may be connected to-a single interrupt as in
: . the M 6800, or an interrupt may be dedicated to a
particular device as in the PDP 11.
3) The machine has the following fegtsters and
s n instructions:

1) Associated with the m?chine is a one bit register
! ‘callgd the interrupt enable register, ﬁo}
controlling all interrupts. Instructions dxist

for enabling and disabling ,all interrupts..
. 2) Associated with each interrupt is a one bit
register called the specific ;nterrupi enable
) register (or mask ister). Instructions exist
for enabling and dissbliég ,these specific

‘ interrupts. §; = : . iy ’
. . ° ' 3) Assotiated with every intérrupt is a -priority,
which |is set by “the hardware of the machine.

+

- These priorities are basically tie ' breaking
mechanisms: higher priority interrupts are

Is A
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¥ .
acﬁpowledged before lower priority interrupts. |

v . 4) Associated with every interrupt |is ;an one bit

interrupt request register, _An 1/0 device

' The register is reset when the interrupt is

acknowledged.
L4

4) A request for an 17;?{?upt is acknowledged if and only

- N

if the following four'conditi%ns are simultaneously
\ - -

‘ satisfied. ‘ /
. . ‘ ' o
1) The intefPupt requegh register of the interrupt is
set.
2) The spe&ific interrupt enable register associated
N S - . 2
with the intef?hpt requested is enabled,

~

enabled. i

B

4) 'The interrupt request has the highest priority
among all the 'other ‘interrupts requested which

<
simdltaneouslf satisfy conditions -4.1, 4.2 and

4.3. ’ : Y . S~
5) An interrupt request is acknowledged by the following
L

sequence of events: ‘ ‘ *

1) the interrupt register and the interrupt request
« M 7

register are disabled. ’ . -

2) ‘"The stafe of the ongoing conmputation is saved.
3) Control is‘trénsferred to the interrupt handler,

whose’ identity 1is .obtained from the interrupt

location associateéed with the‘interrupt.

Raad - P R

requests an interrupt by enabling this register...

3) The interrupt enégie register of ‘the machine’ is .

o

!
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-~ The most important considerations 1in the désigh of

\ language structures for processjng the interrupts in a sysfem

P

e ot e F iy

are efficiency and availability. The nature of an interrupt

A

makes it a time critical task, that is a task which requires a -

response within a critical period of time. This implies that
ERPIEINS ek
tﬂéi;l structures designed for processing interrupts ’ o

P\l

&
. should b fficiently implementable., More specifically, the
3 ] " call and return semantics of. an interrupt handler should be as

efficient as possible, The time critical nature of an

3
interrupt alsojmakes availability an important consideration.
] N N
Dynamic allocation of contours of interruipt handlers)may cause
unacceptable delays in the execution of an interrupt handler.

. It is therefore imperative that storage for the contours of .

interrupts be allocated statica{%y.' - -

5.3 DESIGN OF INTERRUPT HANDLING FACILITIES

The conceptual view, the interrupt model and the -

implementation requirements provide a basis for the design of
- v : 7 .
structures for processing the interrupts in a system.
. Ty

. It s q&ear from the conceptual wview that a language

should provide means for defining -interrupt handlers, and

. - s
means - for preventing these §;ructures from being invoked by

software. Means [For defining iinterrhpt, handlers may be
. a t * : ey

: o H .

i : provided in a fashion similar to the way in which languages
i \ allow the definition of procedures. These structures may bf;’”
prevented from being‘invoked by software by not providing them

¢ . -~

.
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with a call statement. Other restrictions are’ necessary.
Firstly, unlike procedures which may haye parameters,

A interrupt handlers should not have parameters. Parameters are
generilly used to transfer information from a point of call to

the calling procedure. Since ;;Q interrupt model -does not
transmit information, parameters are proﬁihi)ed. Secondly,

, since interrupt handlers are allocated storage statically, it

is necessary to restrict their declaration within procedures,

which in RT-PASCAL are dynamicﬂ

. A

The conceptual view of interrlpts also makes it apparent
that a language must prévide means for binding fnterrupts to
interrupé handlers. This raises several issues. Firstly,
de?isions must be made 'concerning thei; biné?ng time.
Although general q?namic binding may not be necessary, it may
be desirable to permit .dynamic binding of ihtefrupts to -
interrupt handlefs on entry to a procedure. We will see later
that such biﬁdings raise efficiency problems, especially when
considered in conjunction with dynaﬁically nésted ‘interrupts.
We therefore rest{ict bindiggz of interrupts to interrupt

. handlers to be static.‘ éécogdly, decisions must also be made
- concerning whether an interrupt handler may be bound to
several interrupts. Since ;torage for interrupt handlé;s must

be allocated statically, such bindings should be prohibited.
. Each interrupt handler should therefore be bound to a single
T intérrupt. Finally, decisions must be made concerning the

' precise syntax of the bindings of interrupts to interrupt
. ) s PY
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handlers. Consideration of the interrupt model suggests that N
fuch bindings may be performed by associating in - the

declaration of an interrupt handler the interrupt location

which uniquely identifies an interrupt. As an illustration of
such bindings, consider example 5.2, which defines an
interrupt handler INT-HDLR for an interrupt whose interrupt
location 1is <OOFFH> (where |H states that the location is in
‘ .
interrupt handler INTZHDLR <OOFFH>; ‘
(*{ocal declarations of interrupt handler*)
beg i ‘ ' \ ,
g n . -
(*body of interrupt handler*) -
end; -
: Example 5.2 ‘ ‘
h hex) . . . aan L ’ ‘
It is apparent from the interrupt model that it does not
?ﬁ permit ' dynamic nesting of interrupt handlers, since it ‘ RN

e

disables the interrupt enable register as soon as an interrupt

is agknowkiéfed. it is, however, desirablé to permit dynamic
nesting qf interrupt handlers, to permit . reascnable responsé‘ \ gA
times for extremely time critical interrupts. Hence the
intefrupt register should be enabl?Syjugé béfore entry to the .
interzupé handler (that ‘is afger housekeeping ‘tasks to

maintain %gntrol have been performed).




.
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‘The possibility of having dynamically nested interrupt

(hahdlers "raises efficiency- problems, if dynamic bindings of
- //

Anterrupts to interrupt handlers are permitted on entry to a

scope. As an illustration of the efficiehcy problems,
)
!
Y i
1 program EX52 ,
2 .~ interrupt handler CRIH1 <QOFlH>;
3 begin
4 end; o
" § interrupt handler PREH <00F3>;
6 begin -
7 end .
8 procedure P; ¥ . , ’
9 interrupt handler CRIH2 <Q0F2H>;
10 = begin *
1 end; ‘ e
12 begin _ )
? : «ss{B)
' 13 end ‘ co
14 . hegin
15 call P .
, ' co-(A) . ’
16 end y . .
t ‘ . -~ . ’
Example 5.3 \‘
{ consider the skeleton program shown ip_example 5.3. o

In example-5,3 there are two interrupt handlers CRIHl and

CRIH2 for the interrupt <00F1H>. Interrupt handler CRIHl must
< . i )
be bound tb6 interrupt <OOFIH> in ‘the scope of the main

. program, whereas interrupt handler CRIH2 must be bound to the
. P Y ’ ’

&

»
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interrupt <00F1H> when control #hters procedure P.

The proQ}em of effibiency arises because interrupt <00F3H>

can occur at ®either point (A) or point (B) in the ;rogram.

There {s no probleh’if it occug; at point (A), since the

interrupt handler bound to\ interrupt <0O0F1H> is CRIHl. £

however it%occurs at point (B), then on entry to the interrupt

. handler PRIH, it will have to bind ‘interrupt <00F1H> to
interkupt’ha%dler CRIH1, since by block structure scopeu rules

CRIH1 1is agtive 1in PRIH. Furthefmore’ on exit from Ehé

interrupt handler it will have to.restore the original bindihg

b i.e. it will have to restore the binding of XO0O0FlH> to Cﬁjéz.

’

The only general wéy to handle this problem is to save tﬁe
original bindings of all interrupt handlers, replace them with
new bindings on'qntry to a interrupt handler, and restore the
original bind}qgs on exit from the ninlerrupt handler. This
undoubtedly is inefficidnt. We therefore prohibit all forms
ofndynamic\bindingﬁ of interrupts to interrupt handlers.’ Thié

rule thereéore specifies.that interrupts may only be bound to

an interrupt handler in the outermost scope of a program.

-

.uDynamically nested interrupt handlers also raise problems
concerniné récursivi or circular entry #f interrupt héndlers.
Recursive 'o; éﬁrculaé entry of an interrupt handler is
undesirable for the following reasons: ’

\ o 1) Recursive or circular eﬁtry of an interrupt handler

implies the need for dynamic . storage management of

2
’ 5

- . o

t

. ' |

&
»

3
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activation records of interrupt handlers.. We have

NN

seen abéve however, that sForagé for interrupt
handlers must be allocated statically.

2) Global data accessed bg recursively or circularly
entered interrupt handlers is subject tp corruption

since it cannot be protected from simultaneous access

by severdl activations of an interrupt handler.

-

Hence ipterrupt ;handlers must be protected from recursive or ‘
3 )

circular entyry.

.
o

‘ Recursive or circular entry of an interrupt handler can be
easily prevented by disabling the specific interrupt register 4/
5 on entry to the interrupt handler, and only enabling it on

exit (via a return statément) from the interrupt handler.

Since in general it may be desirable to prevent a whole class

of intetrupts when a particular interrupt handler 1is active,

S we adopt a generalisation of the abovel 'scheme.
At ’ e
e \ '

Our method for preventing recursive of circular entry of

g

an interrupt handler is essentially based on the method used

v to prevent recursiye or circular entry of an interrupt hanqler

1 f in ESPL. As in ESPL, we introduce the notion of an interrupt
level which specifies &rich interrupts can interruﬁt theL
execution of an ,interrupt handler servicing a particular ,
interrupt, ' The idea is in essence a software concept, whose
undérlying ha;dware is the mask register discussed above (or .
thf .+ processor priority in the PDP-11}), and ‘is quite

. f ,
independent of the hardwaag conceptt of interrupt priority

- e o . . e mtee e e e s wemm e e am
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[Manacher-71].
¢ x

In this scheme, each declaration of an interrupt héndler
is accompanied by a declaration of an interrupt level I, where
0 <=.I¢<= (N-1) , and N <= the number of interrupts in the
system. Recursive or circular entry of interrupt handlers |is
prevented by ensuring that an interrupt handler at level I can
be interrupted by an interrupt handler at level J, if and only

if J ¢ 1.

AN

It is essential to provide Ehe programmer with means for
controlling the interrupts of a machine. For examﬁle, an
interrupt ié needed when an ongoing computation‘ and an
interrupt handler share an‘interrupt buffer. Again,wg adopt a
solution originally proposed .in ESPL.  We propose two

< 3

instructions: ENABLE(LEV-LIST), and DISABLE(LEV-LIST), where

LEV-LIST in both cases is a list of level numbers:; These"

instructions enable orfdisable all the intérrupts associated
with a particular 1gvel number specified in the instruction.
In the special case where no level numbers are specified in

LEV-LIST, these insfructions enable or disable all interrupts.

We conclude this chapter with the following summary.

«
Pad

Interrupt handlers‘are declaréd as follows: y
| _interrupt hand}er IH <n <1 ;

where.

‘" IH 1is the name of the interrupt handier .

¥

n . is the interrupt location (or interrupt) to which the

.
s = .

REDT LI TRk DU %,y el .
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interrupt handler is bound.
8 ,
1 'is the level. An interrupt handNer-at level I can be

~_ ‘interrupted by an 'interrupt handler level J if and
only if I<J. ' l

<

The following are the restrictions on interrupt handlers:

¢

1) ‘'shey cannot be invoked by software.

2) Théy cannot have parameters.

3) They are bound statically to iqterrupts(yand they

cannot be bound to more than one interrupt,. -

4) They cannot be dec%pred within brocedures.
Prdqrammer control over interrupts is provided by the

following instructions:

1 ’

1) ‘enable(lev-liétl which enables all the interrupgs
associated with the levels specified in lev-list.c~

2) disable(lev-list) which disables all the interrupts
associated with the levels specified in lev-list.

Interrupt handlers and procedu?és called by interrupts have.

semantics similar to procedures discussed in chapter 4.,

: N .
The diffegbnces in the procedure call semantics are as

follows: , ’ - " -
’ 1) The fields RPD and PD of the processor created byithe
) call instruction are set to nff?b
%‘ * 2) Control is transferred to the newl} created"proceSSOr
% without wupdating the hidden path descriptor variable
i ] of the 1néerrupted control path: ‘ )
Z- . : The

semantics of the return statements are as follows:

_ 1) Transfer control to the processor referred to by the
l .

WA it AR PO
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"RP field of the processor executing the return-

v

instruction.
o t

The sﬁrhctuggs for .processing " interrupts discussed in this

$
»

chapter provide all the facilities required for performing

- real-time I/O and dealing with timer interrupts. Static

allocation of interrupt handler activations and restrictions

on " their bindings . to Interrupts allow  efficient
’ : N 30

implementations wit@putx violating the . constraints on

availability. Finally, dynamic nesting of'interrupt handlers

permits efficient response to time critical interrupts. .
@ . L §
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CHAPTER 6 {

. CONCLUS ION f

’

This thesis has preseﬂted the design of struétures for the .
implementation of « dedicated Eeal—time/system gpplication
- programs on small systems in a bare machine environment.’ §ﬁe
- gtructures are specifically desigéed to provide a sequential
language with facilities fof implementing multiprograms, and
for performing 1/0. These structures aré the "coprocess", and
the "interrupt handler" respectively. The structures , :
developed have properties much sought {n real—t&me/systqms
implémentation languages. Iﬁ'particular, they neither preempt
sysfem design decisions, nor fgquire run time support.
Incorporation of these structures in a sequential language
makes it functionally complete (with regard to implementation
of real-time/system programs). }his allows impleméntation of

a complete system without the use of assembly language.

A3

Ve Compared to  languages such - as CONCURRENT f;ASCAL,Q
') ¢ implementatian of. a system in a sequentlal -language
R / inco}porating these structures, placgs greater responsibility
?\ ' on the éroqrammer. §?1is, however, is'more than compensated béf
% . the absence o0of preempted éystem design decisions,vwhich in

real-time/system applications have a great impact on’ system'
. Y :

v .
per formance. In addition, these structures do not require run

. - 123‘ .
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time support, thereby greatly enhancing the portability of
programs. Compared to languages such ?s EUCLID, which also dP
not preempt system design decisiohs, these high level language
.structures provide facilities for implementing
v

real-time/system prograﬁé without recourse to the use of

assembly language. This adds to the understandability and

portability of the system.

1

The design of the structures wés based én language issues

in the implementation of multiprograms and facilities for .
performing real-time I/0. Implementation of a multiprogram
required that the 1language have structures for defining and
controlling paths of control, fn‘addition to facilities for
dealing with ‘“timer interrupts®, Furthermore, safe and
structured implementationk of a multiprogram wusing these
structures required that the language.opﬁionally allow inter
path transfers of confrol to be accompanied.by in&ocation of a

programmer specified procedure. Implemegtation of fadilitdes ,
‘for performing’ I/0 required that the language possess
/ structures fqr prégrgmming peripheral devices. Spe%ific;lly
‘ required in a sequential language ;ere structures for éealing
with interrupﬁs in a systém. This included facilities Eor
defining interrypt handlers whichh could. be iﬁboked on
A?ccurrencé of corresponding int?rrUpts, and ‘faCilities fr

- binding interrupts to interrupt handlers. Other facilities.

&
~ - %
were noted. The need to obtain reasonable response to time J
’ kY

. critical interrupts required that the .language allow dynamic
* “»
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nesting . og interrupt handlers. The need for low 1éve1

. ’

synchronisation required that the language possess structures
. .

for controllinq‘the interruptd in a system. Finally, the dual

purpose served by interrupts in a system required that
interrupt handlers ‘posess capabilities which allowed ‘them to

return either to the interrupted control path, or to a path

“
i

other than the oné it interrupted. These facilities are

incorporated in the structures developed in this thesis.

- 0

The significant contribution of the new strugtures, the
coprocess and the interrupt handler, is the ease of
implementiné multiprogrémm;ng systems oﬁ a bare machine. They
are particularly suited for implementing the functions of a
real-time kernel, and they pr&vide the primitive fungtiéns,for

~, - A
performing’real-time I/Qyusing high level language structures,
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