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ABSTRACT
. ) V ’
Higher dimensional analogues of the tent ‘maps

p ™

Pierre Quinéon Gauthier

’ -

»

A familj of point transformations:

T(x,y) : [6,1] X [0,1] > [0,1] X [0,1]

is defined, and the main characteristics of this family are

investigated. It éﬁall be shown that. this family satisSfies a

sufficient condition for the exisﬁence of continuous ergodic
dinvariant measures and, in particular , that a sub-class of

this family has Lebesgue measure as its invariant measure.

¢

111
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. . ) ’ CHAPTER I A 7 l
b\ ¥ o 3 :
e ' . Introduction C .

-, Recently there‘has.been considerable interest in simple

discrete. 8 interest”stemsﬁ\rom the fact that these

systems show features which mlmic phy51ca1 phenomena such

.as turbulence. In flulds, turbulence can be thought of as
"‘ the chaotic mixing of wviscous flows induced by 1arge scale
eddies which produce ever'smaller-scale eddies. All laminar
flows become unsteble'and change into{turbulence when a
flow parameter, cailea Reynolds number, becomes large
enough. The term turbulence - 19 also appllcable in a wide
range of other fields, such as mathematical biology where
tﬂe cgaplexity and extreme- non-linearity of biological
systems makes chaos 113é1y to occur. Statistical mechanics

and Hamiltonian dynamics also provide a rich source of

. ) exsmples of systems that can _exhibit complicated behavior.

. low dimenslifal dynémicai systems, both continuous and -
\ i

-

. . n )
Therefore pKysicist, -biologists, engineers and mathe- -

maticians all have rfsson to understand this type of

!

phenomena.

n

A recent concept that has led to a greater under- -
standing of puEh chaotic systems, is the so called
strange attyactor. Mathematically this iﬁﬂa complicéted

' 1

.|



, set wit{:ﬂh a Cantor-like’ cross-section. p simple example of : ¢

a‘s‘trangeﬁattractof was given in 197%‘by M.Henon [14], - .

|

s who investigated the properties ‘of the two-—dimensional

family of quadratic mappings

- - - ‘ . ool - .
- T(XIY)‘ - (1 +'y - axz‘: bx) ' Ve . v
. ! ‘fi" . v |
For a = 1.4 and ‘b = 0.3, he found that points under \
" “this transformation tended towards a limit set with a .
. Cantor-like cross section, as shown in ,Fig 1 1 .
+.40
‘ A
) -
’ -~
- - 4o | .
) "-1.50 . “ C 4150
. ; . FPig. 1.1 . ’ -7
/ 02 ’
' ' [ ]
/ - - By
Py . 1 - * ,\. -
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The importance of stranQe attractors can be seen in .

. fiﬁid‘ ,mechaniES, /;where the di%covery of coherent

structures has engendered new* excitement in turbulence

'research. The discovery of these strange ettractor -like
structures is quite exciting ‘because the time evolution
of a turbulent flow might now be mathematically tractable

v

[16).  —.

"behavior of such systems is obtained . numerically by
,cohputer experiments. Abeve all, what seems to be lacking
is a\ig;mple generic two-dimensional nm4p upon whicp
’mathem;tital questions may\be focused and insight gained
Jtowards the study of t e above mentteded systeme. In this

Y presented as such generic model. A detailed analytic

“‘description of tHeir dynamics is given along with a

¥ - method of generalizing these maps to higher dimensions;

First, to motivate the construction of this class of

transformatiens, a one-dimensional example is presented

M3

g‘,‘\‘ ey A

D - .

ol

\ N -
) s

s

kS

CUrrently,xmost'of our knowledge of the complicateé

thesis a class of two-dimensional‘ peint mappings is -

~
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1.2 The ohe—dimensional family'of tent-maps -

o

-

Y

One of the most stﬁdieq one—dim%gfgﬂ’h. systems’[1,2] is
defined by - ' | .
i - . .
o N o i
B | “x/a | L, 0¢%¢a
Tatx) = : S
. 4 . /
(x-1)/(a-1) , a < x <1 N

Ll d . - >’

4
)

where a denotes the turning poiht, as shown 4in Fig. ;{2 .
This family of point transformations is simple and has extra-

ordinary rié@ dynamical behavior [1]. It has therefore become

" the prototype for one-dimensional discrete dynamical systems.

A3
-—.’ l ' -
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Some characteristics of thiéxf;mily‘qre- ‘
1. Restricted ﬁbheith;r [o,;] or-fg,l], Ta is_p homeo-’
| morphish onto [0,1]. |
o | .
. 2, Inf l Ta'l > 1 , that i%s f& is a piecewise expan-’ |

ding transformation. -

5:,Given 0 < ac b ¢ 1 , there exist§ a homeomorphism .
ha p such that ‘ '
- . Tpha,p) = ha,b(Ta) /
that is the mags are’topologicqlly conjugate, so,rich
éynaﬁicql behavior is shared by each map in the family
[3]..'__ -

-

4. The'map Ta(%) preserves Lebesgue measure. ;ﬁ‘

that is ' P ‘

, m(Ta~1(A)) = m(A)
- for all Lebesgue measurable. subsets A in [o,i],(where m

denotes Lebesgue measure). ¢

Ju

S
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in ghapter"zl a twd-dlmensional gnaloéue of th; family of
tent-m?ps will be introduced (181. They will be zeéerzea to
’as‘ "spinge-maps-'. - ' :
In Chaptgrq III a sufficient condition for thg egistence of
measures invariant with éespect to continuous mappings on

.

. topological ppéces is présented "and proved. The existence of
/ ’ r
‘an ergodic, continuous invariant measure for the spine-maps is

then shown. The.main result of ([9) is then used to establish
the exlsteﬁce of an absolutely continuous invariant measure
0 Eof a certain sub-class of the familf of spiﬁh-mgqg. We end
this chapter by shéwing that-another st-class of the spine-

maps‘pzeserves Lebesgue measure.
. e

/i In Chapter 1V the family of spine-maps is generalized to
/ - highex dLmensions.[ ' ‘

¢

In Chipf&r V some numerical exsmpleg“are qiven;
- .

-

£
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' CHAPTER II

Spine-maps . “

’
* o v .
'
a
I'd R a s N .
u' 9 . LA
[ (7N 1
: . .
& .
'

2.1 ;Definition‘ *

-
.

. . N
~ . s

Let ', PO C . - .
T(x,y) : [0,1jx[b033] ———> [0,1]x[0,1] * -

LY k3

.

be defined by T(x,y) = (t1(x,y),ta(%,y)) , where
S
>, . °

tidx,y) [o,l]x[o,i] —> [0,1]

¢ tp(x,y) % [0,1]x[0,1] —-T> [0,1]

t; and’ t, are shown in Fig.2.1 . Refering to Fig.2.l (a), we

’

see that the antinuous function x = g(y) - acts as a 'spine' -
at ie?el .2 = I&§, and'tQaé-all of the'créss—;éctipns of the
surfaces ﬁl(x,y) are tént—mapa having their éeaks on the
'spiﬁe. Clearly 'asé~:y varieg over [0,1], the tent-maps will
’ continuogsly'chqnge their sHape. Thus the sides 'of the
. Surface ’ tl(xLy),:will"not‘°pe planar, rather, a curved
surface. :p | - Co. "

o

A4
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- 1 I’ ’ L - :
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3 - " Y
i 4 :
9 4
L - it&s’/, . B i -
/ @ . . ¥ Bt
b & . - : R . -\
. , 1 ‘ ﬁt Fig.2.1..

" We shall assume that x = g(y) is q'monotonic\ function on
[0,1]. Similarly, we -let ., y = f(x) , also monotonic on

(0,17, serve és a 'spine' for - t2(x'y)’ Projecting these

two - spines down onto the x-—plane will divide the unit

. 8 B
' , 2 ' N v o
. " s
/ " -
Vo .
i\ 7 '
\\ ":q



e,
~

square [0,1]x[0,1] will be dendted by X .

( x/g(y) . y/£(x) ) ., (X,y) € Ry

( x/q(y) (y-1)/(£(x)-1) ) , (X,¥) € Ry
T(X,y) = :

'l- * a ) 0" 7
( (x-1)/(g(y)-1) , (¥-1)/(£(x)-1) ) » (%X,¥) & R3

( (x—l)/(g(y)‘-l),%’ y/£(x) ) » (X,¥) € Ry

.4 - 1y

" Note that each spine-map is uniquely determjined by the two
¢ - o .

4

spine-functions f(x) and g(y).
The family of spine—mapé share some impor{antlﬁroperties

with the one-dimensional tent-maps. These prbperties are;

L
1. Restricted to one of the four reéions Ri,i-1,2!3,4 P

(éee Fig.2.2), the spine-maps are homeomorphiémé onto

°
'y

the unit square.

-

2.-Certain spine-maps are expanding.

3. Spine-maps are topologically conjugate to each other.

We shall demqnstfate_each of these properties. The unit-




Let -

Theorem 2.2.1 (18). Let g(y) be monotonically decreasing

4 3 ! ’.
and £(x) be monotonically \increasing (or,vise-versa).
Then !

, . LA
.. ’ \ T :Rf —2 X
~ . A

e

M

is a homeomorphism for i=1,2,3,4.

Pxeof;: (This will be proved for i=1)

. . 3 .
To show that T is one-one on'Rl, we must-show that there
exists a unique iolution_to the pair of equatioﬁs

>~ o

> ‘ .x/g(y) = a anqu y/f(x) =Db
with a and b elements of [Q,1). That is, the curves .

x = ag(y) aﬁd Yy -' bf(x) ﬁu&t {ntetsect ,at énly one
point. But this follon_from‘the monotonicity of £(x) and
q(y) .. 8ince ¢this is true for every a,b ¢ lo,ii, T is
;lao onto. - ~

ry chlob. '




’

Where v = (vy,...,v;) and |v] t;fJ;12¥ et vp2

.
’ 5

2.3 Piecewise expanding spine-maps.

»

We have ‘seen that .ﬁhe spine-functions, . £(x) and ‘g(y).
divid; the unit square into four regdions: Ry, i=1,2,3,4 ,
§ﬂd that, .restricted to each of the Ril the corresponding
spine-map is a hbmeomorphism to Eo 1]x[0 1]. We now wish to

show that some of these spine—maps are also expanding maps

~on each of the Ry. We finst deflpe the operator norm:

- 1l +

|a] = suec |av] ¢ fvl =2

N

Also, we will need the following result: .

Lemma 2.3.1

- . ' max IAvl -\'m;'l

v} =

Where w; |is tﬁe-larggst,eigenvalue of the matrix ATA.

Proof: The matrix ATA is sy;;éyéif. Let m 2 ... m,
be its eigenvalues gnd vy, ... ,vq be the oxthonormal

system of eigenvectors- belonging to these eigenvaiues. Now,

any vector u ,-with norm equal to one, may be written:

-

o,

Then,

3
¢

el N . * ‘ C12 + e e w +. an - 1

11 !
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Moreover, ' C v

»

v <AV,AV> = CV,ATAV>,
' -T1c12 + v +Wpen2
| ‘ ‘ L T (k12 4 ..a/f::2)
( , WM

For the eigenvector v1, we haxpE

<AV1,Av1> = <Vv1,ATAv1> = <vl, 1vl> = T~

&

'piug 1 j’ﬁ' ' = '“1

Q.E.D.

The following iesult glves a sufficlent condition for a

.

given spine-map to.be expanding on each of the Ri.

o

\ ’ ‘
Pro {t] 1 - '
& . * / ] . "

Let Ti be the restriction of a given spine-map to the

reg;;\c- Ry , 131,2,3;4 . Let 81 = Ti-1 "and J8

~

Jacobian magrix asaoCi§fed with 81 . 1f
. . - ’

[ .

8up lJ31(x.y) ' £ ol < 1,
(x,y)¢R1 ’ ;

then

12 “

- &
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¥

A

Praof: Consider tﬁe line segment joining\ﬁhe two points . . g:5

LA

”“u-Ti(xdiéo) end'v-Ti(xl,yl) in [O, I]X[O 17. Since Ty 1is a

homeomorﬁhism and " [O, 1]x[0 1] 1s conVex then this lineﬁhq
segment may be represented by a differentieble function ’
h{[O,l]\:——) [0,1]%X[0,1], in’ fact, h{t)= (1-t)u + tv. Now,

the length' of this line segment is ot o

- ) ,
b NS ® Y

1 . ' .
~d{u,v) = J <h'(t),h' (t)>1/2 at .
- 0 "

Now, S; 'h is & curve in Ry whose length is . - 2\

.

1
* ' vy
: L = J <(Sy* h)'(t),(Sy- h)'(t)>1/2 gt
' 0 L,
1 .,'
- J JIgi(h(t)) h'(t),JSi(‘h(t'))"h'(t)>1/2 dat /
) N f
Let At = -Jgy(h(t)), X¢ = h'(t) then, =~ °
- 1
L = - J C(XeTAgTagxe) /2 at oL
., 0 ’ A
- 13
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/

sirice’ A4 TAy 1is a symmetric .matrix there exists.an
orthogonal matrix Oy such Ehat‘ OtTAtTAtQt = D¢, where

L4

Dy J§° a diagonal matrix with real entries m S ... Sny -
Not, o _ , T e ‘
/o R TALTALKE. = X¢T0£0y TALTALOLOL Txy
= (x¢Top) Dy (0£Txy)

= 1TDeyy ¢

where Yy = ogTXt. Therefore,

(¥ﬁTDt¥£)1/2 - (*P Y12 “i-)l/Z

@

* < fytl_ (max-;if)l/z

L g
BRI L £

S R Y

By Lemma 2.3.1-

herefore, L -
l.u; . — ‘ \l"l S d;} < '}. -
Thus,
‘ * T v, y1/2 -1
(Y DY) ™/ < a 'th

R [



v
(134

g

Thus' ! ¢ . ‘ N ~ i

That is

i

d((xg,y0),(x1,¥1)) S a7t d(Ty(xg,¥0) T1(X1,¥1))

P \,’( o )
and the proposition is proved.

w °

/

- 7

To show that a given spine-map satisfies the con- -
ditions of Proposition 1, we have to show that the Lﬁrgest

is 1less than unity., (Or the

Is1TIs1
converse, that the smallest eigenyalue of

eigenvalﬁe of

JTiTJTi is

greater than 1.) To illustrate this, we shail consider the

spine-map resulting from the two constant spine-functions

*
—

g(y) =m and f(x) =k, 0<mk <1

'

“ ‘

‘Therefore, -in R;, we have:

— e

v , (]

.

Ty(X,y) = (x/m,y/k)



-

which gives us:’

- PR

o ’ i/m - 0
< Jpp(xy) = L -
‘ 0 " 1/ke | ‘

And, thus: .

—— .

I Tapy, = . e -

~ ’

Therefore the eigenvalues oﬁ this matrix are: /‘

’

"m = 1/m? and * my = 1/k2 . -

)
>
Y. ~

so, 0 ¢.mk <1 implies that 1/m2,1/k2 > 1. Thus, all

- 4
spine-maps defined by constant spine-functions are’

1

piecewise expanding on (0,1]x[0,1].
‘If we now consider’ the most generél spide-hap, that is »
where f(i)_ ang g(y) are 'arbitrary,' monotonic, sSpine-

functions, we obtain in R;:

’
« . -
.

[
-

. Ty (X,¥) = (X/g(y),y/£(x)) "

/ -



—

R

(‘J

1

| f
Therefore: . JipyTJqy

1 y2(£'(x))2
(g(mﬁ it
- x-f - ¥f'(x!
(a(Y)_)g (£(x))
P

/ A

Therefpre, setting the smallest eigenvalue of this matrix

*

- xgv“!! P £'(x
o (g(y)) "(E(x))

1+ - -x2(q'(x))2

CEEN2 T (g

to be: greater than 1, we; obtain

“/\

L L

]

| 20§02
((91‘2+ E f’& )

Cw2igt12

X2(g a+

ST )

. ) '/z_ .

i

x2(g'12 \ + [ xg"_+ yf
(9) @3 ™3

' Thus, éiven the two spine-fﬁngtione, we may determine if

. the resulting spine-map is piece-wise expanding.-



€

In thIs section we. show thataany two plecewlse expand{ng

splne-naps are topologlcaxty conjugate (10,11,18).

Ergodicity and weak mlxing are examples of properties vhlch_-

are

conjugacy . invariant. That is, two conjughtg

transformations eitﬁez bath- ' have the weak mixing property

Y

or both “do’'not have this property. We will see later that

the spine-maps admit continuous, erdbdic lnvarlant measu- .

res, thus every map in the family must share thia pzoperty

’

Ve shall Jcail the union.of the boundaries of ;11 the

t

regions Ri (i=1,2,3,4) the l-skeleton. That is,

{o,1} x (o,1) v (0,1) x (0,1} U {(x,£(x))} U {{(g(y),y)}

o,

the

. .1.
.2,

will be xefered to as the l—skeletoﬁ. On the l-skeleton

family of"spine-mapb, as. defined 1in section 2.1,

satis%y‘the following conditions i ‘
T({0,1} x (0,1)) C {0} x (0,11 ’
T(10,1) x €0,1}). C. (0,1] x {0}
T(x,£(x)) ¢ (0,1] x {1} .

3.
‘.

T(g(y),y) ¢ {1} x (0,1}

'

-

Furthermore, as shown in sections 2.2 and 2.3 , the spine-

maps are plecewise ﬁoneonozphic to the whole unit uﬁuarc X

18
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and piecewise expanding. ' .

Theorem 2.4.1 (18). Let T1 and T2 be any two piecewvise
;xpand;ng spine-maps, with spine functions £1(x),91(y) and
£2(x),92(x) .-Then T1 and T2 are topologically con:juéate.

+

Proof: We must show that there exists a‘ unique.'homeomotph-

ism h_ of the unit square, such that

-

heTl = T2+ h

_Note first of all that T1 (or T2) vhen restricted to the

boundary of the square, or to one of the spines, is a 2-1
expanding tent-map. And, at;y two such’ mappings are well
known to be topologically conjugate [10]. Then ‘1'1 (1=1,2)
g.st:lctcd to {0}ﬂ~x (0,1 and [0,1]) x {0} -

are tobologically éonjuggte tent-maps. Let k ho- be the
hom.iomotphim such .that

¢ . —

T2 h0 = hO°* T1 on (0} x [0,2] VU [0,1) x {0}

1S

/ ‘
Ve may extend ho to the remaining boundary of the unit
sQquare by setting ’ ‘

O

" Ry = ‘!'2-1(°h00~'rl) on {1} x [01)

: . _
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where h0 « T1 1is already.detlned,and we take the branch
of T2-1 corzesbonding,to the position of y. Similarly we
define hoO for x € [0,1). It is stralght forwazd to

verify that h0 is a continuous conjugacy on the boundary

. of the unit squgre."Now,‘to define h0 on the rest of the

»

l-skeleton , that is, on the splﬁes, ve set

ho(gl(y),y) = 1‘2-1(h0-'r1(gl(y),y)) on graph{g2}.
!‘ LY
Once again, being careful to choos; the appréprlatc brgnéi

0of T2-1. In this way we extend the conjugacy hoO on the
1-skeleton of T1 onto the 1-skeleton of T1 . Now let

&~

C = {h:X-->X:h continuous and h=hO"on the 1-skeleton of T1}
ay

I
J .

Then C is a complete {Wetric space with respect to the

uniform topology. Ani\f is not empty by the Tietze !xt;ns—

don Theorem. We now define a contraction Qppptng ‘

~
-

P: C—=>C,

°

f

" from which it fallows that F  must have. a unique fixed

‘point im C ;‘ which will be our reguiréd conjuqacyz’%bw

define the contraction mapping F, by setting

3

P(h(x,y)) - = T2-1(h(Tlix,y)). .‘for (x,¥) ¢ X,




[

,
. o
. N . . w
. . *
Hence, .. ¢
. - - N ) . .
A M *
i

CT2-L(M(TL(x,¥))) = . hO(x,¥)

’
. .
. -
N N
L4
. “
’ [N .
.
. -

N . . v

[ .
\
. . . '
» t .
i Ce * . % ~
. , .
t - . \ . - »
.

“belnq caraful to choase the approprlate bzanch of 12 1.

. & .
Since Tg is piecewlse hommomorphic onto the vhole unit

squn%g the above 1nvexse is wull deflned for each branch.

g
roz points on the splnes,portlon of the

Yo L 0

have T h =h0. Thus, . 73?// . _
~ . A N o , :"‘;,j , . S . - i .
T ) ) - ;o
‘hO(THK,Y))‘ » = Z,TZ(hO’(X,Y)) ' Vo £/ l
‘m) . - ” \ , " . ~ e o
:\{. ‘ LA ‘e 5 \ g . “9:

: i o \.. Lo . ”.

Theroiozo, P(h(gny) 1:'v011 definéd and equa} to ho when

~ restricted to the -l-skeleton of TI1.

To show that, F is indeed a contra;tion na;piné, choose

'(x,y) ( X, hl and h2 ¢ C, and the sup norm on C. . -
« k4 ? s N ’ v .
¥ -

4(F(h1);F(h2)) = -a(-rz-unun)),-rz-uhz(?ig)”)
&

-

. =

< 1k ’dlni(T1), h2(T1)) -

- . -
. -

where k>1. = - S A
_'81nco'72 is piecevwise sxpandiﬁ§, thus, , ;
\ ' ~ : .
Sup {A(F(h1),F(h2))} < 1/k Sup {d(h1(T1),h2(T1))}
L BT V" 8Sup (d(n1,h2)} -
S, . = 1/k d(h1,h?) ‘
o 21

1—skeleton, we -
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Thus, taking the Supremum over each region, Ry, 1=1,2,3,4

we obthin

d(F(h;),Fthy)) S 1/k d(h\l:h,z) 0 < kot 1. -

‘T
Thus F 1is' a contraction on the cqgmplete metric space C
. which establishes the existence of a unique;fixed point n*,
such that ‘

~

. j N0
h* - Ty(%,y) = Tz h*(x,y)
AY
Note that all we have -shown so far, is tile existence of a
conﬁinﬁous map h* ,such that . o

*: %
'h “i?l .= To+ h

o’

We have not yet found a :homeomorphiSm.'Hénce we have not -

yet obtained our conjugacy,''only a ' semi-conjugacy. We must
now obtain another semi-conjugacy;,k*,gin the other direct-

ion) such that _ I ) oL ‘
. C Lo ‘ E {

~
3

R . ’ . K . .
Then, using arguments analogous to those in [11], we-can.
show that =~ h*-l * =  k*. Therefore h* 1is indeed the

‘required homeomorphism.

22
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In this Chapter, we consider the more general case where
'X is a topological Hausdorff space and T a continuous ;

mapping £zom X into 1tael£ 112). Later we apply 'our

[N

results to the spine-maps of sectlon 2.1 [18]).

[%

v .
. \ - 1

" The space X 1is the collection' of all popslble states

of the ystem (T,X). The evolutiqp of this aystem is gover-

ned by the transformation” o S Yy

4 \T =\x—> x"

-
~ .

where Tx ls taken as the | state of thc’systbn at t;né 1,

vhlch at time 0 is at x f'x. ‘By a meas&re_va nc;é any:x
‘requlax probabilistic measure deflned on the sigma algebra
B of Borel subsets of X. ‘A -easure m is called invari-

~=gnt undez T 1if

t

m(T-1(E)) = m(E) for every K ¢ B...

. "

’ £ 4

A\ / )

-

N
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R

I

We say that the measure m is continuous if

(_ L 7

m({x}) = 0 for each singleton (x}.
‘ -
- , N . )
A measure’ m is supported on E 1if

| ) !

v ' m(E) = 1. A

Now, let (X,B,m) be .a comglete probability,gpace where m
and T saﬁisf§ all of the above conﬁitions. ' ,
The orbit of a péint. X € X., under T-,. can be thought |
of as a history ‘of the above system, and shall be denoted'
by ‘ ) |
. {(TRkx , k &2} = { x,Tx,sz,T3x,...§

where Tdk = T T:T «ooaee TX (n times).

ro .



v

Given any ‘B ¢ B , the measure associated with P
EeprosaAts the brobabllity.that the orbit of a pélnt,in x_;
will eventually enter 'E, where this probability is n(E).

"We.will now present, and prove, a sufficienf -conhitioq for
the existence of such lnvarl;nt méasures'cozrespondlpg to

continuous mappings on topological spices.

A ]

"

Ihnnxnn_ILZLL {12]. Let T bhe a continuous mapping from a_
topologlcal Hausdor£f 7ace X 1into itaeli 8uppose that
there exists two non-empty, compact, disjolnt ‘sets A0 and

Al such that
v Tt N Tan) D) aouar’

@
~

‘Tﬁcn, there exisfs a continvous neasu:é which is invariant
* -~

with respect to T.

)

Pxogf: The method of proof will be to construct a set DOO.-
such that. T-1D00 = DOO, which implies (via Kryloff and
3égollqbo££)-thnt the set of -Qasuzcs, ‘invarlant under T,
" supported on D00 is non-empty. We then show that the:e
exists a subsot/ff the set of invarilant -aasures, contain-
.lng exclusively continuous noasurds. To start, let Y =

T(A0) [) T(Al) and define ,80 and 81 by the following:

»



“

(1) T S9g = T S; = Identity . -
(i.e. right inverseﬁmappings of T)

N

R I ‘ ~'(2) ‘?S? (Y) g,_ Ao' and SIJ (Y) .I_C_: Al‘ R

o

No&,we write

-«

S .
“Dki.:.ka, =- Ski...kn (¥)

‘whéie ki =0 or 1 for'isl,..,n. Using the above notation,

we obtain then, a . decreasing family of compact non-empty
' subsets of X, for each combination of ‘the ki's. Referring

1.4

to the above definition we notice that ‘ "
¢ ) LI . N . ‘, ’u N

o

1 ‘ T(Dk1...kn ) = Dk2.,.kn
r

< and, also that - | ' S C
’ % . '

! . f
- el S .
Dk1i...kn (. Dki...kn-1 N T 3D2...kn) -(1)-

Fer each n, there are 20 Qoss;ﬂlescombinations of 0's
and 1's. Thus Dgl...kn h répresents 20 disjoint, compact
non-empty sets. For each c{-the intersection of all these
sets will,6 also ce non-empty. with thic in. mind, we will
define‘fhe‘set Dgo @s

} D. - . n : | Dkllookn'
o OO n21 k‘ll" -kn

26
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where the union 1s‘taken over every possible sequence
(k},..kn). By -(1)- Dgo enjoys thf}fbllowing property
T-1(Dgo) = Doo
P

Thus, by,Kryléff;ﬁgaol%ub?ff's theo:em; the 'set of measures
‘‘invariant with respect to T is non-empty. Let M’ be the
.<set'of these invariaﬁflmeasures supported: oh Dgo+ Denote

ﬁy Mg, the Subsét of M yhich consists of Q}l measures’
' satiszing .

?

m(Dky...kn ). = 17207

_Note: if m ¢ Mg then . ' ~ : -

m(. % Dki...kn ) = ,t‘} m(Dg1...kn )
kl okn "' ;
o = 2B - /2R
[ ‘ - 1 )
"o ‘ N )

The set . M may be considered as a subset of the space
of linear functional defined on the space of continuous
fuhctions on ‘Dpg. That is

M C c*(Dgg) .

b4

27



Now; M‘is contained in the closed unit-ball of c*(Dgq),
since the measures in~&_& are supported on Dgg- By tha
theorem of Alaoglu, the closed unit-ball of ¥ '(Dgo) ‘is.
compact 1in the 'weak topology. Thus, M weakly closed
imélies that M is also combact in the wea&_topplogy:

The set M is also a. convex set, for, let . mlmy, €M

[

sand 0 < k ¢ 1, then

[k ﬂil + (1-k)jm2](D00)- 7 k"ml(Doo) + (1-k) my (Dgg) -
' = k + (1-k) L
{\ . -
= 1

o

T-1(Dgg) =. Doo o

v
3

The set Mo i§ a non-empty cqgvé;jlwéakly* compact subset
of .M. This follows fro% the convexiky of M and from the
- facf that Mg {s a weakly closed subset of the weckly*
compact set M. | \ ‘
> We now show that every measure m € Mg is continuous.
To do this weé must show that

m({x}) = 0 .
for every m & My and for every singleton (x) in X.

“Let x £ X and assume that x Dgp - If not m((x))=0 auto-

matically.

28



Now, x ¢ DOO /ggans’that,-foz‘eacb Eﬂ ‘
—/// - // - - ~ '
r ! x ¢ Dkl...kn for some séquence {kl,...,kn}.
‘* . : . ! I
Thus,

m({x}) < m(Dkl...kn )
: ‘w 1/2n —=> 0

Thus,we have shown that there exists a contlnuogs neasure,
.2 (
which is -invariant with respect to T. This completes the
\ « ’

"proof of Theozen 3.2.1. -

Now, to add to the zesult obtalned in Theorem 3.2.1, we
will use the fact that MO. is an extremal subset of M in
order to show that there‘ exists a continuous measure,

_invariant ylth rcipect to T , which is ergodic.

We have seen that MO is a*ﬂon-empty, convéx, veakly*‘

compact ﬁet. Therefore, by the Kzeln-g{lnnn Theorem there
\\thon o*ists an extremai point ne 4+ MO. Thus, sinceﬂthe\set

MO is an extremal subset of M, me is' then an chzenal

3
LY

point of M.

Ve are now in a position to prove the .following Theoresm.

Theorem 3.2.2 Let (X,B,m) be a complete probability space
_ L d
and T : X —> X. Then, the probability measures invariant

with respect to T form a convex set and the ergodic

~—
Ina:u:ﬁf‘czo exactly the extreme points of this convex set.
0 ' - "“ -



A

where a, £ A,. Then,

. ~(Tnat is, invariant measures are uniquely representable as '

N

. combinations of ergodic measures.) co _ -

Proof: We will first prove the following claim- A measure
m is ergodic if and only if there is no other measure m,
invariant under T -, that is dist;nct from m; and where
ng,.« m . We will use the symbolism‘ my << m .for mo,

absolutely continuous with respect to m . To show this,

'suppose that there is. another ergodic measure m2 and that

4

‘my and m, do not coincide. Then, there is a set E ¢ B

such that

my (E) = My (E)

»

Now, if" Aj is the limit set where

8 : ' ‘

m  1/n 3z X (TRtay)) = my(E)

where a; € A;. XE denotes the characteristic funetion of

the set E. Let A, bg the limit set where

‘n—l N K
lim 1/n (T (a )) - m,(E)
koo Xe 2 2

-

- Y
Ai n.AZ - ﬁ and 'ml(Al) - 1’ - rmz(‘bz)_

30
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which implies that m; and m, are mutually singular.

Thus, if "my and my; are both ergodic then they..either

- ] coihc_ide or are mutually singular. So, if we ‘have an ergo-
dic measure ‘m  such that m; << m (hence m; is ergodic')
then since m and m; cannot be‘mutually singuiar they must

coincide: m = m;. On the other hand, assume that m )& not
= A) such that 0 < m(A) < 1. Now, define a measure m; by

my (D) = m(D/A)

~

where D ¢ B. . B ' RN

m (T1D) = m(T~1(D/K)) = m(D/A) = m; (D)

- \ v
r - f .
. .

Hence, m 1is invar@with ‘réspect to T and m;  is

‘
~

distinct from m. Moreover

m(E) = o implies that m; (E) =0 )
Thus, m; << m. This concludes the proof of . the claim that

\

invariant under T, that is distinct from m and m; << m.

Now, suppose that m is a convex combination of invariant -

measures mi and my, that is m; ¢ mp; and

b
*

m=km + (1-k) m, , 0 ¢k < 1.

ergodic, then there must be an invariant 'set A (i.e. T1p"

o s ergodic if and only if there is ng other measure my



] N ’ i
Then ' ’ ' f . ©

m(E) .k my(E) + (1-k) my(E) fog every E & B.
. ‘ . _

.

Now, m; << m (or mé <¢{ m) since m(E) = 0 1mplies that

»

i

m(E) = my(E) = 0

and m; 1is disfinct‘frpm m. Therefore, m is not ergod-

ic. There is a non-trivial set h such that

\,

m(A) = k and m(AC) = 1-k

Thgn; with ' . ' . .
. m; (D) = m(D/A) AR <

afd; : L ' ’

- " my(D) = h(n)AC) | s .

we have d SR ;

.. m(D) = m(A) m(D/A) + m(A®) m(D/AC)

| = k m(D) - + el-k)ffmz(b) A

PR 4

a ‘convex comﬁinatién. Therefore, m 1is an ergodic measure
) . L . .
-if and only if it cannot be expressed ‘as a convex combi-

[ .
‘nation of invariant measures. So, the ergodic measures are

exactI§~the'extremal poihts_of M.
. ' [ 4

We may now state a stronger version of Thporemia.z.l.

>

- . N
. . N . \
. . . v,
.
»

‘e

T

. ' . R .

[ . ' .- .



‘inJariaqt'under T.

1

Theorem 3.2.3'° Assume that Sy

T ¢: X => X

-~

is a \mapping s&tisfying the condition§' of Theorem 3.2.1.
Then, there exists a continuous measure which is ergodic"'

P )

and ;évariant with respéct to - T.

-

- Proof: By Theorem 3.2.1 there exists a continuous measure

invariant under T and, by Theorem 3.2.2 ergodic measures

are the extreme points of the. set of continuous measures
‘ .. Q.E.D.

- * ¢
f

4
1

In the fonowifj section, we apply -these. results to

’ . LY
4

spine-maps. . . o .

4 ’ '

.
PR ’
"""""" ’ 3
B
. ¥ -
Yo
v e, -
- t
! ., -
! -
, , -
- .
T b ‘/
-, " “
| -~
—
5
4 L3 » -
i
' 1 }
'I
—_ '
T
.
-
. 4
. ) ’/ _
¢ - . + .
- » .
’
4,
—_— s ' )
-
" -
r .



N »
4 - 5

; 3.3 Spine-maps have continudus,ergodic %pvériant measures.

~ - .

-

s ) _ L
Choosing any two regions Ry and Ry , i $+ i (as defined
in 2.1) we ohtain | . .- :

[y . ‘
’ <

!

T(Ry) = T(Ry) =X D Ry URy ' _°

'ThusJ by- Theorem 3.2.3 , the;eféxists a ‘continuous ergodic
measure which is’inv§;1antlwith resﬁect t; the sﬁlne~maps.
If we now restrict splne—funcﬁions to be analytic, we can
“show that the spine—maps admit an a?solutely continuous

1nvartant measure. _ . -

at

21 .
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3.4 Absoiutely,fontinubus Invariant Measures. . '

-]

. /. X
If we assume that the " spine-functions £(x) and g(y)
‘are analytic, then the,résﬁlting spine-map will be piéce- .
' wise ‘analytic o the . unit square. Henéeg we‘ may use the |
main fg?ui%ﬂof [9] to establish the existence of a un;que,
finite invariant measure, absolutely continuous with resp-
ect £o Lebesgue measure. This fgsﬁlt iék»stated; without | -
proof,‘in‘tﬁe followiqg Theorem. ct °, p
. ‘ ‘ 4 C ° ) |

Theorem 3.4.1[9] Let ' T be a p{ecewise expanding and

pilecewise / amalytic on X. Let the spine-functiors be
analytic on [O0,1]. Then’thefe_is a finite measure,
absolutely contdinuous with respect -to Lebesgue measure on \ﬁ

X that ig T invariant, which is unique.’

e

R .

. Léter, we shall prove that if one of the spine-functions ..

t -
¢

} ' ‘ .
n Lebesgue measure is invariant

!

is parallel to an axis, the
for the resulting spine-map. The only . restriction on the

other épine—funct}qn will be continuity. ‘

-~

First, we will formally introduce the Frobenius-Perron_

oberato:, which is of considerable use in studying the
; r o o ‘ ]
., béhavior of dynamical systems [13]. - ) ’
. . . 1
' ' h

i +



: ,'A - ' ~ .
% ’ " =
- A transformation T B

. T X —> X o e
v ." t, - . ' ,.; '
is called non-singular 1f

m(T-1A) = 0 * whenever .m(A) =0 =

for every Borel subset A. Let (X,B,m) be a nqpéurd5§}géé.‘
If | | '

T X —>x .

1s a non-singular transformation, the unique operator

A

o \| ' ' -
.defined by, > ’ I

. . e
\ . . '

< \\ - ) " "3»‘
- j\PTf&{ am = j £(x) am -t2)-

A B 2T U C

where A ¢ B and f ¢ L1l(x), is’ cnlled the r:obonlus-
- Pezron opozatoz corresponding to T. It 1: stznlght £otuuzd

to show, . £zom this deflnition, that PT has, the gllovlng

’ °

properties: .




A

. . .
~ . g ‘,\' . .
i ' ‘ . . .
R ; 7 .{1) PT(alfl + azfz ). = a3 PTfl + &y PTf2

n‘} )> ) {\
(2) Ppf 2 0 if £ 2 o0

K . \ e . - ' ) ' . -(\ \"" T .o s . - L&
{3) ¢ I Ppf(x) ‘dm’ o= - J ‘ff;3 dm .

- ) x ) » ' i' x . .

SR , ‘ . o

Ih some spECiél cases weﬂmay obtain an eiplicit form of

”

theyFrobenius—Pegron,operator. If X = [a;b] Snd Ar= [a,x],

f{hen_we:mqy obtain the fo;lowih&??rdm -(2)-

Lot T - ) —I-,PTf(t) dt -\ £(t) dt
"ﬂ .a r=17a,x)
‘DifieredtiaEion yields. . . :7' . .
) v Ppf(x) = d- .| -£(t) dt -
RN *. ' B .t %‘. a-x- ’ . “ . v
a R ot TR S I ; - .
. ) .'-..-'4 B L .. . . ;_ " B ) ‘.'
Noteé: if T _is monotdnic/pn [a,x] then
] ! 1 ) . R N
. ‘ '\T;l[a;k] Q'ijla,T‘Ix]' ' (for.incrzfsing T) =
- T . , Q.

¢ Y . ¥ A



‘NT/l(x) B - ‘
Ppf(x) = ‘g_ f(ty dt = f£(T°1lx) cal_['r'lx]
- X . S X

' T +(a) .
\ oo
\ *
“Zn general, - R
/ Prf (%) "grr-lx) |4 [7-1x]
X -
- T ’ a-i

° ( [] i
-

In our case, however, we wish to use.the Frobenius-Perron
operator on the unit square in R2. We take X = [0,1)% and

A= [0,x] X [Oty]. Hence we have

-
L)

ds

"

Ppf(s,t) dt - ‘ J f(s,t) dsdt -

[ SV

T-1(A)

Differentiating, first with respect to x, then with respect
to y., ylelds: . o )

<

A . .

" Ppf(x,y) = d2 [ f(s,t) dsdt
o , dxdy :

: S ¢V

Analogous foxmulae may be derived for X € RP, 81milar1y to

the one dimensional case, we may obtain yet another form

for Pp when T is piecewise diffeomorphic.

38
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1

" v
»
o i fe
a ‘ . g
That is, . = ,
\‘ . » .

Ppf(x,y) = = _f(T"l(x,y;) - lJ“l(iml

- 4 S

where the summation is ° taken over each piece of T and

care is taken in choosing'the appropriate branch of T 1 ,

°
.

and. J-1 is the Jacobian of ' T-1, '

.



3.6 Spine-maps have Lebesgue measure as Invarjant Measure

. In the case where one spine-“function is parallel to an

axis, the definitions of section .2.1 are then modified

]
to:
( - l
(x/k , y/f(x)) . l ». (X,¥).€ Ry
(x/k , (y-1)/(£(x)-1)) » (X,¥Y) € Ry
T(fo) = 9 ' : .
a ((x-1)/(k-1) ,. (y-1)/7(£(x)-1)) ., (X,y) € Ry )
TUx-1)/(k-1) + y/£(x)) °, (X,y) E Ry
g )

¢

as shown in Fig. 3.1. '

Note that T may not be expanding (if one spine is

“longer than one) ‘yet we have existence of an absolutely .

comtinuous invariant measure.

e

X3k

3=fu).

Fig 3.1
40,
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|

In this )pec_iad case, we are able to calculate the

—~

; Probenius-Perron operator corresponding to T.

o

" Theorem 3.6.1 (18]. Let
R [ \ &
a . T : X => X

have one spine-function parallel \b an axis and 1let the

. othe:'dplne-function be continuous.' Then Lebi@gue measuré

is invariant under T.

L]
/ IS .

Proof: We will need the following fact: If (X,B,m) is a

measure space with Lebesgue measure m, and

R ' T:x—>x *
o is & non-singular transformation, and PT is the Frobenius-
Perron operator cor:eaponding' to T, then the -Qasure'
- defined by: ) . ’
/ . L “ h
— “ : i
. mE(A) = f dm

» - A

is invariant_ {f and Bnly if £ is a fixed point of PT
(13].

-«

i.e. PTE = ¢£,

41
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Note that if f = 1 then,

my(A) . = j dm - xn(h)
o g Ac,

Thus, Lébesgue measure is invariant under T if and only
Af f = 1 is a fixed point of Pp. We will now calculate
the Frobenius-Perron operator for the Above case andishow

-

that Ppl = 1. The Frobenius-Perron operator is:

~

‘ )
Poh(x,y) = _dZ_ h(s,t) dsdat
N T ° N a-idx ’ ' ' he

T=1([0,x]1x[0,y])

‘where h € L1. In this case, the inverse transfqrmation is

'easily found fdr each region Ry (1-1,2,3,4)2

A

(kx,yf(kx)) .

Ry: T-l(x,y)

Ry: T-1lex,y)

(kx,yf(kx-1)+1)

R3: T-1(x,y) = ((k-1)x+1,y(£((k-1)x+1)-1)+1)

Re: T1(x,y) = ((k-1)x+1,y£((k-1)x+1))

Thus, the inverse image of the rectangle [0,x]x[0,y] will
be the four shaded regions of Fig.3.2.
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We have, =~ € ' ’
R kx yfE(x) ' 1 ’
Pph(x,y)=_d2 J\ J h(s,t) dt -+ 'J h(s,t) dt ds
dydx | ~ o .
o, 0 o . ° - yE(x)+1-y
) ' o 1
, . . yE(X) )
+ J h(s,t) 4t  + ,J h(s,t) .4t ds

kx+l-x yf(x)+l-y

e e

= kf(kx) h(kx,yf(kx)) - k(f(kx)-1) h(kx,yf(kx)+1-y)
4+ (k-1)(£f(kx+1-x)-1) h(kx+l-x,yf(kx+1-X)+1-y)

A

o (k-1)f(kx+1-x) h(kx+l-x,yE(kx+1-%))
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‘Applying this Frobenius-Perron operator to the function °
h(x,y) = 1 _we obtain, I .
" -

©

”»

© Ppl = kf(kx)-k(£(kx)-1)+(k-1) (£(kx+1-x)-1)=(k-1)£f(kx+1-X)

- 1.
. | B
Hence, 1h(x,y) = 1 is a fiied point of Pr, whicﬁ‘implies B
that Lebesgue measure is invariant under this pafticular
sub-class of the family of spine-maps: ’ T -,

¢
To conclude this chaptér,\ﬁe wish to present an example
b4

of a spMe-map ‘T , where the spine-functiohs are linear,

_but where' Lebesgue measure is not invariant under T.
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3.7 _Example ‘« R "

Consider’theLSpine—map determined by the spine-functions

y=f(x) =cx+4d and X = g(y) = a§ + b
as.in Fig. 3.3. y

- -

y =

ot Fig. 3:3 - i ~'“ﬁ>

We will use the alternate form of the ‘corresponding Froben-
ius-Perron operator, as it applies in this case. '
Thus, : | S . .o

«

CPph(x,y) = ©  h(T"l(x,y)) - lJ‘l(x;y)l

Py

Hence,

Ppl =° B lzJ‘l(x,y)l o
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4

branch of T-1, we obtain:

o

’

Ppl = - ac(y-1)(x-1) -

© )~

’

9

(acy-1) (acx-1)

‘ (1 - acxy)” ’

not invariant fbr this type of spine-map. :

N 2
& '
’ )
g .
~ . . ,
\ -
~ .
~
T
| -
v
.
]
s
.
‘o . \
‘e .
'
¥
- 3
~
LA
L
¢
a
’
. .
- 46
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Calculating the determinant of ‘the Jacobian,

’

1

for each

for all (x,y) € X, which implies that Lebesgue measure is



8o far we have presented the spihe-maps ‘ln éwo-‘- .

dimensions. Now,we shall show that we ' ‘y ge;nezau‘ze the

previous %QGII to_  higher dimens{;ns-llél.'rhls gdnqrhl-'
t;at.ion may be .accomplished "in two directions. The first
direction will - involve -staying .with the unit square
lO,ll"xFo,_ll and sigply f‘nc;'easlnq the number ‘of spine—
functions. ‘l‘hual,6 th‘es‘a spine-maps will be constructed ufzon

[N M | 5

the spine- functions: + \

4 \

.3

x = gyl ., i=1,...,m

and,

" s ’ ‘ Yy = £3(x) ¢, ‘5'10-00",\

‘L. 2 -

.. ’ .
¢ / : . e

Vhere the numbering of ‘the ~spine-functions is done

Y

‘according to the féllowing:

1

-

gl(y) < «.. < gmly)

: =
“£1(x). < ... < fn(x)

‘-(



‘G ' .
)

3
. ° ~ - .

<
-
\ -
- ]

The unit square is then divided into mxn rebiéns, each of
which 1s’mappeé homeomqrﬁhically onto [o,l]x[o,}] under the
resulting spine-map. - \
.To—preserve the topoloéipil conjugacy betwpen any two such
“piecewise éipanalng_qpine-mgps, we need to modify copndition
~(§)‘of §?ction 2.4.'This moqified ipnditionowill be: -,

¢

-5

(3*) ! f(x,fj]x)) € [0,1] x (1) , j-1,3:5,...,odd 1 T
o and, ‘ s " ' )
T(x;fj(x)) € [0,2) x (0) ; ;j-2,4,sz...,even
sfmilarly, - ﬂ o o .
T(gi(y),y) £ (03 x [0,1] . 1=1,3,5,...,0dd"

.and, , . ¢

-

T(g4(y),¥) € (1) % [0,1] , 4=2,4,6,...,even

1]
e

Y

For eXample, the crdss-section fhrough the épine-functionsA

*'fd(x)'at p 4 -"xo would be as invFLg.4.1.

¢
E

L ‘ S I A

3 y v -
\ 1'310 m— L
- 7 #z‘m “)’ i‘ s ‘5
i ) ‘ R | @ ] - / ) ,
° Fig . 4 .o 1 . ‘ '
® !
48 e .
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‘ -~ o - 3
{ ) ‘ v ©
° ‘: . J‘a !
‘ Note that"thc czoss-loctlons are still 'tent-naps'», so the ’

tesulting spinemnaps nay,be deteznined 1n a sinllat nanner

o % . N -~
. as described in section 2. 1. ' . c
. D ' -
e
p Also, choosing any two rogions Rm,n and'Rp,v. we obtain
‘ ? " [ . ° I N . '
. 10,1)x£0,1) = T(Rm,n) = T(Ru,v) _) Rm,n U Ru,v C
R . , . S . ’ .
n R ‘ ' - - .
M o ¢ ro .
& Hence these spine-naps admit contlnuous ergodic lnvaziant -
nelsuzes, by Theoren 3.2.3 of section 3.2. . C :
? ) ¢ . ¢ ‘ . »
# , i3 i e, . .
K ” ] A ’ ' * v
B . ,' v, ) : . I ’ : !
» . . [ 1 - ' s E §J .
. - . rL v
- ) v i - \ , - ) . - x .
+ ) ‘ : ¢ . N . . 4 I
: D , ) ) ST '
” \ ! * . 4 ,' N ‘
- ) B = 7 . - P 7
. . , 4 ,
: . 3 d
. [ R - . . N ! N \
- - "~ . * - ) , ‘ ‘\
T ] ®e X
t ’ \-, ;\ ) ) . ’ )
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4.2 - The .n-dimensional unit cube [0,1]2

"Finally, le£ ﬁs briefly consider generalizing the spiﬁe~
maps from the unit square [Q 112 to the n- dimensional cube
I =[O, 1]n To obtaih results analogous to those of

| Chépteré 2 and 3, we denote the fages of ;“ in the

L3

,  ‘following way: S : , “

Ay ='[0,1] x [0,1] x .%. x {0O) X ... x [0,1] x [6;1]
: i Coe

.

13

\' . » \
Where the {0} occurs in the ith position, for i=1 2,...,n.

Similarly, let’ e ‘

"By = [0,1] X [0,1] X ... % {1} X ... x [0,1] x [0,1)
. A : -
_where the (1) 7also app?ar; ‘in  the ith position for"

_i-I,Z,...,hf' If we now consider the following continuous

~

functions from ' IP-1 into (0,1),

- ' . xi = fi(xi,‘o.o,xi_l,xi.*,l,-o-'Xn)

O".

T 5

. for i=1,...,n. Then we may generalize the two-dimensional
- spine-maps of section 2.1 in the following manner:

§ A #
'

:T(xl,-o-,‘an = (tl(x1,ooo,xh)' 00‘000 I3 tn(xlloco’Xn)-)



.functions fj in the, following way: - \

* The

oo © ‘
‘ti o i=l;...,n. ', are obtained by the continuous

’ -~

xi/£40%) . . Xy < £y,

by(x) o= 4, o

"(xi-l)/.((fi(x)—l)ﬂ N ‘xi, > fy S

¢

iel,:,.,n' ." Under the

where k'.\q (X1,..w,xn5 " and
appropriate conditions.on - e
° ’fi 4-1“‘"1 > (0,1),

it may be: shown that these mappings satisfy the following

conditions, arialogous to those found in section 2.4.

{

(1**

(é**

(3

.

v

(

* %k

KKk

)

)
)

T(A) C Ay ‘. . i=1,...,n o

T(By) C By “1a1 1,v..,0
T(il,.....,fj(xl,...,xn),..,..,xn) *C:‘ By

When. the mapping T i restricted to any of the 20

regions given by the inequalities

(5%

L3

T is a homeomorphismu

)

K3

v xi ( fi(xl'noo'Xn) ‘ . ‘e !
and, | ' .

Xy > fi(xl,...,xn)

4
?

Under condition analogous to those of section 2.}4

Some of these mappings qfe expanding on each' of the 2n

regions defined in (4**).

, - sl
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CHAPTER V

]

Numerical results.

N

"~

o —-— * s

re

A simple Fﬁftran code was written to calculate the orbit

. of a point under a gived spine-map. ,The wunit square is

divided into a grid of 100 squares and an initial-point, or

~.seed, is given. The program then counts the number of times

the orbit of this point 'visits' each small square. .

In Chapter IIT, Theorem 3.6.1 tells us that Lebesgue

]

measure 1is invariant under a spine-mﬁp where one of its

spine-functions is baralrel . to ' an axis. So, as a first

-exaﬁble, we. will consider the following spine-map: -

y4 x= s J2yes
1 ! Y
- , o
2 R,
3:.6
R, 2,
0 L F '
. ‘Fig.,4.1 ‘ . o | | 4f
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ét’!“a‘; - e

(XIY) € R]_

h

Snry

(x,y) € R2

<

(x,y) € R3

(er) E. R4

¢

Thus, starting at the point ( .35 , 591 ), we obtain the

following distribution of 100,000 orbit points:

-

¢

i
(4~ iTee =7 al e -y e ilee \"l L4 M
ja IS B TS g0 | v s | e -\,' In4
‘- - .. } 44 .0y e " L ] s (8834
it - ~3 3 LI} ‘A:Q o -4 ro1 L,
+ E) IRTE N ITEE BRELE BV B TS TS B8 BEXN FPY )
> ‘.f . } 24 T8 - -7 "3 s 7% "
1221 9%a e a3 "2 L2V} s | caw rec Gt
. .18 ”r L 1 ’zr “s =4 s k4] na
tie2 e B34 9 k 3% °«<3 -3t i 3y TZe o,
s 1 . 3 -] 22 .4 At lea ‘% B4
J .
) 4.l

Fig. 4.2
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In Section 3.7 it wés shown that Lebesgue measure is not
invariant under a spiﬁé4map_'with linear spine-functions
where neither is parallel to an axis. That is, we should
not expect a uniform distribution of points uﬁdqr such a

spine-map. .To illustrate this we cdﬁsiger the following

sé}ne—map: ' o
4
I § x:t(z*/u}
Y
;
6x , _4y ) . (%X.¥) € Ry
2y+1  2x+1] ‘
. . ! i
) 6x ., 4(y-1)| :+ . (x.,¥) € Ry
| Zy+1 2%-3
T(x,y) = ‘ .

6(x-1) , 4(1-1;) ., (X,y) E Ry o
2y-5 2%X-3 :

x-1) ., 4! ) ’ (x,y) € R4

54




. Thus,with seed ( .11 , .37 ) we obtain the following
distribution of 100,000 orbit points:

-
-1\
- 4
o ° ° ° ° ° ° ° ° . 3.
- R
-
~ s ° t 2 3 3 ° ° ' ° =
~
. 4 . ’ r s o « v . 1
o e [ 470 § 892 ] ea2 | we | 8% | S74 | 30 410 }‘
. |
: r,
L] AR70 { 4807 0943 {432 [ 49EB | a84e | 4711 | amv0 | saX3
Ivea 308 “hr 40" | 4173 [ 4C% | 41D [ >-~1] are 418
L] a3e 42 378 e L ] 344 s =1 304
2 ] L] 3 3 3 2 L] L 2
° ] 1 ] -] o ° 13 3 1
[} ° -] ° L] © © © [ o
1 3
» O " X
Fig. 4.4

The following example will illustrate the fact that
there are spine-maps which are not expanding but presefve
Lebesqgue measure. Consider the splnevﬁap co:zesponding to
the spine-functions in Plg.4.5 . The part of f£(x) that
bounds the region Rl has atc-ldﬁgth:'

.9
. \Yﬁ + (E(x))2 ax =  1.15
. o ' ’ ‘ «
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""a‘:

The corresponding spine-map wiil map this part of £(x)
onto the _upper boundary of the unit square, which has
unit length. Thus this spine-map is not expanding. However,

by Theorem 3.6.1 this spine~map preserves Lebesgue measure. °

T
s
B:#‘xs" | v

0

r ‘ 09 41
" Pig. 4.5

The last example will be of a  spine-map—which'is
expanding. COLsidez the spine-map associated vf@h the
spine-furictions of FPig. 4.6 . In the region Rl the spine-
map will be given-by:

- . T(x,y) = ( 2x , 3y/(x+1) )

. ‘ : ’
Thus, using the «zesults of section 2.3, with JT

representing the Jacobian matrix of T, the smallest

v

eigenvalue of the matrix JTTJIT will be:’
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(x+1)6

- 1. ( axen)® - 9yixen)® - umf_'_tx")
.2 | '

- now, in R1l: 30f$~x £ .5 and 0 £y s‘}s‘.

' Therefore, : ' . - \
@ "5‘. 12 2 ‘
(x+1)4 L asAE
and,
Y
2.
2
-1 2 _ - 4 2 )
2 (x+1)e ™,
‘ \
. ,
> -1 AT - 9(xe)”
2 (x+1 \
\r
N U2 f
2 - ( 4(1.5)2 - 9¢1) + 1)  m, -
2 ' ‘ / 2

(\
- Thus, \ \
. S \
S SRR A
, A 2 287 - 0.5 = 2.07 >°2

57
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.

which, ‘5y Proposition 1 , shows that this spine-map is

a %

expandlng\on Rl.
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