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ABSTRACT

Implementing the Dee System:

Issues and Experiences

Lawrence AL Hegarty

The object oriented paradigm has been widely acelaimed as going a long way
towards solving many problems addressed by the diseipline of software enginec
ing. Languages such as Liffel. Smalltalk and C++ are examples of object onented
programing languages (OOPLs) that address these issues, hut have not lived up to
expectations. The Dee System is a pure. strongly typed object ortented programining,
language and an environment conducive to its use. Dee offers featues not found in
other OOPLs which enhance its ability to create robust, rensable and mainta nable
code. The implementation of the Dee compiler for Unix workstations is disenssed.
The methods used to implement several portions of the compiler are explained and
suggestions are made about how to improve the implementation and the design of

the Dee System.
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Chapter 1

Introduction

1.1 Object Oriented Programming

Objeet oriented concepts are not new to the field of computer programming. Almost
Al wspects of what we entrently inelude under the umbrella of the object oriented
patadigin were present inearly programming languages. Work on SIMULA [ND81]
hegan e Norway in the carly 60°s. The first version was a simulation language. The
final version was designed to e a general purpose programming language. By the
time SINULN 67 was finished. it contained most of the features we commonly think of
as being essential to an object oriented programming language. Other object oriented
progrannming languages did not start appearing until about the early eighties. but
they are becoming very popular,

Much of the motivation for the current popularity of object oriented programming

languages is a direct result of the high cost of software creation and maintenance.



Maintenance can be described as modifying software that has already been delivered.
These modifications can consist of error corrections or alterations as a resnlt of de
sign or specification changes. On page 536 in [Som&9], Sommerville points out that
... maintenance costs are. by far, the greatest cost incurred in developing and using
a system.”

The rest of this section contains an introduction to some of the most important
features of the object oriented paradigm. The final section of this chapter is an

introduction to the Dee System.

1.1.1 Classes and Objects

A module is a syntactic unit of a programming language. Progravis can be created
by composing several modules, with cach module having its own set of variables
and procedures. The way in which other syntactic units of a program can access
the internals of a module define its interface. A class is a kind of module; it is an
abstraction of ar cutity that is manipulated by the soltware systen. The difference
between a class and a module lies in the type of interface they provide. In langiages
that support modules, a module can often export types, constants, variables and
procedures. In most Janguages that support the object oriented paradign, classes
can only! export procedures that can be performed on instances of the particular
class exporting themn. In object oriented patlance, an instance of a class is called an

object.

1Usually, a class also implicitly exports one type so that we can declare instances of the class



The class is the main condint used in the object oriented paradigm to solve
software cost probiems. Unlike the techniques used in structured, top-down pro-
gramming. system modularity using classes is more closely related to data than to
functionality, When designing an object oriented system., one first looks at the ob-
jects that are manipnlated by the system rather than the functionality of the system
[Meyss].

One example of an object manipulated by a system might be a stack. A particular
svstenn iy have several stacks as data struciures. Xach of these stacks might be an
object of the same elassc that is. the class Stack. The ways in which an object of thie
class Stack performs stack operations is by receiving a request to act from another

«:I-i('('l.

1.1.2 Messages and Interfaces

A mndthod is a procedure defined for a particular class. A message is a request by one
object. to have another object execute one of its methods. This idea of exporting
methods is related to the concept of a message. When a class exports a particular
method it means that an instance of the class will accept a message that corresponds
to a particular method. When a message is received by an object, it executes the
appropriate method. Only messages that have been explicitly exported by the class
may safely be received by instances of that class. It is the job of the type system and
semantic analyzer to ensure that such unexpected messages are never sent.

Because in most object oriented programming languages data internal to an object



can not be exported, it can only be manipulated by methods exported by its class.
In languages that do allow variables to be exported, this usually® makes them read
only and saves the programmer from having to write a function that simply veturns
a variable’s value. Exported methods may, in turn, invoke private (not expoited)
methods of the class, which may also alter an object’s data. SGll, in most cases,
any change in the state of an object is ultimately the result of a received message,

corresponding to a public method. This results in a high degree of data encapsulation

and information hiding at the object level.

1.1.3 Genericity

Genericity permits the passing of type parameters to classes. s similar to argrment
passing in functions. This passing of types allows one class to operate on many
different types. In [Mey88] Meyer uses the example of a stack. A portion of the Fiffel
code for class STACK with a generic type parameter is shown in figure 1.1

In this example. T is a formal generic paraeter (o the class STACK. Generiany
allows us to use the same implementation of stack on several different data types.
We can have a stack of integers. a stack of floats or even a stack of arrays of integers.,
Absence of genericity might force us to write a separate implementation for cach
data type. Untyped object oriented languages do not require genericity to achieve

the same degree of code reuse, but do not reap the henefits of stiong type checking.

“In some languages it is possible to make exported variables writable ‘The friends specifier in

C++ is an example.




-- Stack elements of an arbitrary type T
class STACK[T] export nb_elements, empty, push, pop, top
feature

push ( x : T ) is
-- Add x on top of the stack

do ... end
top : T is
~- the element on the top of the stack
do ... end
pep : T 1s
-- remove the top element from the stack and return it
do ... end

end -- class STACK

Figure 1.1: Eiffel code for class STACK

f1]



1.1.4 Exception Handling

Exceptions are used to indicate unexpected or error conditions occurring in a section
of code. Some examples of exceptions might be an attempt to divide by zero or
to open a file that does not exist. Means to deal with these problems are built
into several (not necessarily object oriented) programming languages including Fiftel
[Mey88], Ada [Boo383], Smalltalk [GRS83} and CLU [LS81]. A signal is the means
used to indicate that an exception condition has occured. We use the term raise to
describe the act of altering the flow of control with a signal. Usually, the method
of dealing with an exception is to allow a non-local exit from the code in which it
occurred. A handleris a section of code that has made known its willingness to deal
with these singularities. When an exception oceuts, a signal is raised and control is
transferred to a handler.

An example used by Grogono in [Gro91] is that of matrix inversion. It s diflicalt
for a function to determine if a matrix is invertible without doing much of the caleu-
lation required to actually do the inversion. This makes it undesirable to check the
precondition that the matrix is invertible before attempting the operation. Fixeep
tions give us a way of neatly exiting the inversion function if it is unable to complete
its task. In addition, an exception and handling mechanisin built into the language
gives the programmer greater flexibility in determining how and where a problem
should be handled. This is accomplished by allowing exception handlers the option

of dealing with the problem or passing it on to an cuter scope of handlers.



1.2 The Dee System

Code reuse and efficient program maintenance are two important goals of almost

every large software system. Although object oriented programming has frequently

been offered as a way of solving these problems, the potential benefits of the object

oticuted paradigim have not yet been realized in currently available products. The

Dee System is a complete software development environment created with the aim of

solving these problems,

In designing the Dee system, the following six principles laid a foundation on

which to huild,

€

b |

6.

Information should not be duplicated.
Al information related to a program entity should be in one place.

The programmer should not have to provide information that the rompiler can

casily infer and display.

1. Semantic analysis performed by the compiler should not be complicated.

A language that is intended for the development of production quality software

should be strongly typed.

The language should support the chosen programming paradigm completely

and consistently.

I present these principles so that the recader who is familiar with other object

oriented programming languages will understand some of the ways in which they

T



differ from Dee. A deeper explanation of these design principles can be found in
[Gro91).
These principles were chosen because it is hoped that they enable the Dee system

to satisfy its three primary goals.

1. a programming language that provides full support for the object oriented

paradigm;

2. a programming environment for the language that supports all phases of soft

ware development; and

3. alibrary of classes that facilitate Loth coding at a high level of abstraction and

cfficient object code.

1.2.1 The Dee Programming Language

The focal point of the Dee Project is the Dee programuming language ereated by Peter
Grogouo. It contains most of the trademark features of the objeet oriented paradigm
including multiple inheritance, encapsulation, genericity, antomatic garbage collec-
tion and exception handling. In addition it contains several features not previously
found in programming languages. These additional features center on the data base
of class interfaces maintained by the compiler and will be discussed helow.,

Figure 1.2 gives an overall picture of the Dee System and illustrates the way in

which its individual components (rectangles) and data stroctures (ovals) interact,
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Figure 1.2: Dee System Organization
I have written the editor?, the scanner, the parser and the code generator. T also
created much of the Dee run-time system including the garbage collector and several
base elasses.  In addition, 1 contributed a large amount of effort to the semantic
analyzer originally written by Wai Ming Wong. 1 will now give a brief explanation of
the most important parts of the Dee syvstem. In depth explanations of the portions

that 1 have contributed are presented in Chapter 2.

*Actually, 1 have created specialized editing features for the already existing editor called Emacs.



1.2.2 The Compiler

The Dee compiler can be broken down into several main components along the lines
found in most compilers. There is a scanner, a parser, a semantic analyzer and a code
generator. The scanner and parser create an Abstract Syatax Tree (AST) and the
semantic analyzer decorates it. Finally, the code generator traverses it and outputs
code. Unlike other compilers, the Dee compiler has an additional component called
the Class Interface Manager (CIM). This module acts as an interface between the
compiler and the database of class interfaces. Whenever the semantic analvzer needs
information about the interface of an ancestor or client class, it queries the CINL I no
crrors are encountered during compilation, the interface to the class being compiled

is also written to the CIN,

1.2.3 The Browser

The browser exists in several forms, the first completed and the most primitive of
which is the ri command. The ri command was written to allow the programmers
working on the Dee project to examine the intetface to particular elasses stored in
the CIDB by making requests to the CIM. It was created to work as a test and
verification tool rather than a programming aid. Ounly after the Dee compiler was
first being tested did we realize it was quite useful to Dee programimers as a hrowser.
It now serves as the basic tool with which more sophisticated browsers have heen

built.

10



1 he r1 command ontputs a description of the interface for the class specified on
the command line. It has several options that determine the amount of information
to display. Some of these options provide the ability to specify only one attriba -
other options add information abont how and where specific attributes are defined
and implemented. Figure 1.3 is an example of a portion of the output of the ri
conmnand on the class File.

T'his primitive command has been combined with two more sophisticated pro-
grimns to provide better browsing, The first is a Dee mode for the Emacs editor.
When editing a Dee program. Dee mode allows a user to place the cursor on the
nanie of a class and invoke the ri command on that class. A new Emacs window is
opened with the output from ri displayved init. Figure 1.4 shows an example of the
browser being invoked during an editing session. See Section 2.6 for more details on
Dee raode.

The second browser, written by Benjamin Cheung. runs under the X window
systemt and s called “Dfolder™. It is graphical, requires a mouse. and provides a
ftiendly user interface. Options and classes can be selected by pointing with the mouse
and clicking the mouse buttons. Figure 1.5 is a snapshot of the Dfolder running on an

N window graphical display. See {Che92] for more detailed information on Dfolder.

1.2.4 The Editor

The Dee system has an editor at the center of its user interface. The compiler

cooperates with the editor in displaying and fixing syntax and semantic errors. As

11



class File

inherit Stream
uses String Bool
Ancestors Output Input Device Stream

public var handler:Int
source class: Device

public var option:String
source class: Stream

public method close
From
Defined By : Device
Implement By : Device

public method eof : Bool
-~ return ture if reach the end of file.

Dee Instruction
Defined By : File
Implement By : File

public method open
-- Function open a file with its’ option

Dee Instruction
Defined By : Device
Implement By : File

public method read (n:Int ) : String
Dee Instruction
Defined By : Input
Implement By : Input

public method write (buffer:String )
Dee Instruction
Defined By : Output
Implement By : Output

Figure 1.3: Sample Output from the ra command,



] xerm

class Fishing

--This program demonstrates the use of inheritance to enforce
-~consistency of behaviour, There are three kinds of 1tem:
~-Hook, Line, anc Sinker (with apologies to Len Deighton),
--tach of which provides a method “satisfies”, khen an order
--13 processed, sach stem must “satisfy® its constraint,

inherits Progren

var tnw:list(Part) -={mventory

var transiTrimaaction  -~Current transaction
var h;iHook

var liLine

vor s:Sinher

method entry .
----Fmy : Fiching.d . 12:57pm (Dre)-=--Jop--=----=~mmeem et i oo st

class Transaction
--R transaction consists of a set of constraints, one constraint for
=-sah hind of part,

uses Stdin Stdout List Bool String Order Item lterator

private var 1niStdin
source class: Transaction

private var itemsilist( Orderjtem }
source class: Transaction

private var out:Stdout
source class: Transaction

bl cons maketransaction {inputiStdin outputiStdout )
~-Construct an empty transaction list,

Concrete
Defined By ¢ Transaction
Inpliement By : Transaction

~YI-Emace; edae-broviers , (Den)--—-Tog

Figure 1.1: An example of the Dee mode browser under Emacs. The top window
contains the program heing edited. The cursor 1s on the name of the class bheing
browsed in the lower window.

13
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Figure 1.5: An N window runuing the Dfolder browser.

errors are discovered. the editor briugs the cursor to the delinguent line and allows

the user to make a change hefore moving on to the next ertor, 'ie editor also wor ks

closely with the browser to seleet which classes to browse.

A future version of the Dee editor will he graplical and probably rup under the

N window systeni. The current version uses the Emacs editor, which runs a special

mode customized for Dee source programs. See Section 2.6 for more details

1.2.5 The Linker

The Dee hinker generates a link file from a collection of elasses. starting from a given

root class. This file is eventually linked into the final € linking phase which prodices

the Dee executable file. The linker may also generate a Unix “make” file which will

be used to control the O compiler and linker.

11




Linking in Dee is a two step process: there is a Dee linking stage and a C linking
stage. ‘This extra linking stage, not normally found in non-object oriented program-
ming languages, is a result of dynamic binding. Because Dee allows inheritance, a
vartable at run-time can be an instance of one of many different classes. When a
message s sent o snch an object. the correct method must be invoked. The key to
choosing the correet method is figuring out which is the correct slot in the method
table. The compiler can not determine the correct slot because it is not until link
time that the inheritance hierarchy becomes fixed. The same class, used in different
programs, will have a different place in the run-time inheritance graph. The job of
the Dee linker is to arrange these tables so that. in cases where more than one re-
lated class implements the same method. it is always at the same slot in the method
table. The linker then assigns these offsets to variables used at run-time to index
the tables. The linker uses table compression techniques in an effort to minimize the
size of metliod tables. More information about the linker and its optimizations can
be found in [Che92] and [Gro91]. An explanation of how code is generated to allow

dynmmic binding at run-time can be found in Section 2.4.3 about applications.

1.2.6 PC Dee

Dee methods come in two flavors, regular and special. Regular methods are written
in Dee. Specinl methods are code that can not be written in Dee, this has the added
advantage of hiding implementation details. Special methods are actually written in

€', For example, the steps needed 1o open a disk file for output are dependent on



particular operating systems. In our Unix implementation, the method open in the
class File is a special method. It is written in O and uses the open() system call,
Dee programs can avoid knowing about such system dependences because the class
library hides these details.

The original implementation of Dee was written to run on a PC. This version of
the language is different from the version currently implemented on Unix in several
ways.

The biggest difference is in the back end of the compiler. The PC Dee version
emits code for a virtual Dee machine while the Unix version emits € code. The Dee
machine is simulated by a big switch statement with one label for cach instruction
in the virtual machine’s instruction set. Eliminating the virtual machine in the Unix
version altered the syntax for the special Dee methods, In the PO version, a specal
method was like any other Dee method except that it contained at least one virtual
Dee machine instruction in its body. In the Unix version, because Dee machine
instructions no longer make sense, a special Dee method consists of a normal method
signature with its body replaced by the new kevword special. The Dee linker
gencrates a standard (' function prototype based on the current class aud the name
of the method. The programmer is responsible for writing the C function to mateh
the prototype.

The Unix version of the language has been slightly altered to avoid using interna
tional characters. This resulted in replacing the use of the “[” and “]” characters by

“(" and *)” for specifying generic class parameters. Compents were previonsly sus

16
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tounded Ly ™ and *}” and are now begun with two dashes (“- -7) and terminated
at the end of the line. This convention was borrowed from Ada because it has the
advaniag Of never allowing run-on comments. That is, if the programmer forgets to
inchide the comment terminating symbol (previously “}™) the parser can incorrectly
interpret a portion of the source code. This usually leads to a plethora of strange
error messages being prodneed or a section of code not being compiled. With the
Ada convention. it is almost impossible that the programmer will forget the end of
line character,

Despite these differences, PC Dee is close enough to the new version to have been

very helpfnl in making implementation decisions.

1.3 The Advantages of Dee

Deeis o rue object oriented programming language. Thus Dee does not have the
complexity of a hybrid language such as Ada or C4++.

Dee is a strongly-typed language. Thus Dee programs are casy to read and do
not fail at run-time. In this respeet, Dee is more secure than untyped languages such
as CLOS and Smalltalk,

Pee provides "semantic browsing.”™ Sementic browsing depends on features of the
language and cannot be added retroactively to other languages. The short and flat
utilities of Liffe] [Mey&3] might at first sight seem to provide a capability similar to

the browsing features of Dee. but short and flat read the source text of a class.

17



There is no guarantee that the compiled version of the class is up-to-date, or even
that the class has been compiled. No information other than extracts from the source
text is provided. The Smalltalk browser is similarly imited.

Dee provides fully automatic storage management. In Ada and C++4, program-
mers are responsible for storage management. Errors in storage allocation and release
are common and notoriously hard to find and correct [Sak88]. Storage management
adds to both the size and complexity of source code.

Class libraries are now available for Ada. C++, and EFiffel. Al of them provide

date structurcs. The class library of Dee is different in that it contains two levels of

classes: data abstractions and data structures. Data abstractions specify whal tasks
can be performed and data structures describe how they are performed. Programmers
code using data abstractions and only later, when the program is alimost complete,

choosc appropriate data structures to represent the abstiactions.

1.4 Motivation For The Dee Project

Reducing the high cost of software maincenance is one of primary desigin objectives of

Dec. My work on the Dee project is ultimately concerned with determining how well
this goal was attained. A fast and efficient compiler is only as nseful as the languape
being compiled. An equally important result will be offering alternatives in places
where Dee falls short of this goal.

My motivation for working on the Dee project comes fiom two different categories:

18



issues involved in designing and programming in an object oriented language. and
issies involved in writing an object oriented compiler and environment. Because the
this is the first Dee compiler for Unix and because we have very limited resources,
performance is not a primary goal. This is not to say that we paid no attention to
this issue, just that reasonable performance was required, exceptional performance
was not.

Despite the fact that I did not design Dee, I was present at many discussions which

helped shape some of the language design decisions. Ultimately these decisions are

judged on what happens when they are effected by the compiler writers and put to

the test by end users writing applications.
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Chapter 2

Implementation

2.1 The Abstract Syntax Tree

The heart of the Dee project is its Abstract Syntax Tree (AST). Many different parts
of the Dee environment have an intimate relationship with the AST. The end result
of the parsing phase of the compiler is an AST. The Class Interface Manager (CIM)
then saves the parts of the AST, which represent the interface of the class, in the
class interface data base (CIDB). The ri command, for browsing a class, uses the
CIM to read a class interface in the form of an AST.

The definition of the AST used in the Unix version of the Dee system is not
radically different from the one used in the PC Dee systen. The first task T undertook
when beginning the Unix system implementaticn was to convert the PC AST, written
in Pascal, into C. Several fields were dropped, added, or changed slightly to reflect the

new operating system and new Dee specification. The new C AS'T was the foundation
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struct {
StringPtr VarComment; /* Comment following variable */
AST VarType; /* Type of the variable */
Boolean VarPublic; /* True if public */
AttriSrc AttributeSource; /* Where the variable is from */
AST SourceClass; /* Added by the SA */
} Var;

Figure 2.1: The Var portion of the AST data structure.

on which all other parts of the Dee compiler were built. Having this accurate data
structure at such an ca,ly stage was crucial to the success of our team of programmers.
It allowed us to work separately on the different components of the system with only a
minimum of communication. Wai Ming Wong was able to complete the alpha version
of the semantic analyzer without having an AST to work with. After I completed the
scanner/parser phase of the compiler, it became possible to test the semantic analyzer
with real ASTs. The careful specification of the AST allowed us to put these two
large components of the system together with virtually no changes (other than bug
fixes). In a similar manner. 1 was able to complete a substantial portion of the code
generator before 1 was ever able to test it with a decorated AST as produced by the
setantic analyzer.

An example of cooperation and communication between different components of
the Dee system via the AST can be seen in the example of the Var section of the AST
presented in Figure 2.1, The complete AST definition can be found in Appendix A.

Different fields of this variant of the AST structure are filled in by different parts

the compiler. The parser fills in the VarComment, the VarType and the VarPublic
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fields. This information comes directly from the source of the class being compiled.
The semantic analyzer then interacts with the CIM to fill in the last two fields, If
there are no compilation errors, the parts of the AST relevant to the class interface
are written to the CIDB. Finally, the entire decorated AST is passed to the code

generator where it is traversed one last time to produce code.

2.2 The Scanner

Scanning is the process of dividing the input stream into groups of characters called
tokens. I have created two different scanners for Dee. The original scanner was
gencrated by a scanner generator. Because lexical analysis is considered to he one of
the most time consuming parts of the compilation process, a new hand-coded scannes
was written. This sccond scanner is diflerent in several ways, It resulted in . maller

compiler exccutable, but did not achieve a significant speedup.

2.2.1 The Generated Scanner

The original scanner for Dee was generated by the standard Unix utility Ler [LesTh).
It has the advantage of being casy to write and modify. The specification of the
scanner used by Lex is only about 100 lines long. The scanner it creates is compatible
with parsers generated by Yace.

Lex takes as input a set of regular expressions [ASU86, IF1.88]. It then generates

tables that are used by a finite automaton to recognize tokens. When cach regular



(A-Za-z] ([A-Za~-z0-9.])*

{

int t;

t = Lookup(yytext);

if (t == IDEN ) {
yylval.IdenVal = Hash(yytext);
yylloc.last line = Tokenline;
return t;

Figure 2.2: A Lex regular expression and its action.
expression is matched, a corresponding segment of user specified C code is executed.
This segiment of code does things like add symbols to the hash table, record comments
and string literals, and return the token type.

The portion of the Lex specification for the Dee scanner in Figure 2.2 recognizes
identifiers and keywords. The left column is a regular expression describing a string
ol characters starting with a letter or an underscore and followed by any number
of characters which may be a letter, number or underscore. Whenever this regular
expression is matched, the €' code on the right is executed. Since this one regular
expression deseribes both keyvwords and identifiers. the C code checks a table to
differentiate the two. I a kevword is found, its token value is returned to the parser.
If an identifier is found. it is hashed and the token for an identifier is returned to the
parser,

Using a finite automaton is particularly well suited to scanner generators because

the code that interprets the tables does not depend on the lexical structure of the
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language to be scanned. It is only the tables that change for cach new set of regular
expressions. According to [Waite], this method of lexical analysis is not as etficient
as embedding the translation logic into a program.

Flex is a Lex compatible scanner generator which is slightly more eflicient than
the original. The specification file used by Lex can be used, unaltered, by Flex.
Benchmarks used to compare generated and hand-coded scanners were run on both

Lex and Flex.

2.2.2 The Hand-Coded Scanner

Both [Wai§6] and [F1191] make several suggestions for writing a hand-coded scanner
which I incorporated into the design of the new Dee scanner. The most important
of these are the use of a large input buffer and the indexing of a table based on
the current input character’s ASCII value. Using large buffers for sonree input was
carried to an extreme in my Dee scanner.

The most efficient way to read the source text into main memory is to avoid
reading amounts which would only partially fill a buffer. Because disk controllers,
the operating system and even the routines that do the high-level reading may contain
buffering, it is difficult to know the optimal amount to read. This problem has heen
minimized in the hand-coded scanner by reading the entire source file with one call
to the operating system. This allows cach level of buffering to perform optimally
with the exception of the last buffer of the file, which will probably be partially full.

In addition, this significantly improves proce-sing speed by eliminating the need for
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checking when the end of a buffer is reached. Now we need only check for the end of
the file.

Traditionally, entire source files were not read into main memory because their
size might exceed the compiler’s (or the operating system’s) ability to hold them.
Classes tend to be small enough to casily fit into the very large address spaces {found
on modern hardware. The logical size of a source file in Dee, and in most object
oriented programming languages, is one class. The data in table 2 demonstrates the
trend of these source files, to be rather small. The numbers in the table are the
sizes of files measured in hytes. Because only a limited number of Dee classes have
been written, T also included data for classes of other object oriented programming
langunages. As the number of Dee classes rises, we can also expect the average class
size to increase. This increase should bring the Dee averages closer to those of the

other langnages cited.

Language | Avg. in bytes | Max. in bytes

Dee 890 2822
iffel 2370 5821
C++ 9746 18850

The hand-coded scanner was also written to be compatible with parsers generated

by Yace.



2.2.3 The Two Scanners Compared

In order to compare the specd of the two types of scanner I wrote a test driver. It
does nothing but repeatedly call the scanner until the end of file is reached. T then
created a shell script to run the scanner, on a large class, 200 times. This shell and
the Unix time command combined to produce the average times listed in the table
below. The time column indicates the total real-time the command took to exccute,

measured in seconds. The size column indicates the size of the executable in bytes.

Scanner Size in bytes [ Avg. time
lex 68779 2.1
flex 08815 2.0
Hand-coded 65728 1.9

Variations in the load ou the network resulted in a margin of error. Becaunse the
results are so close we can not conclude that any one scanner is significantly faster
than the others. Still, we can argue that with speed not a factor, machine generated
scanners are preferable.

The difference in speed between the three different scanners is not large enongh
to justify using it as the sole metric on which to judge the scanners. Any change in
the language that requires a change in the scanner will be significantly casier to effect,
using Lex or Flex. This is particularly important in young languages such as Dee.

Changing the machine generated scanners mostly involves altering the regulas

26



expressions, with the exception of the small amount of C code executed on a token
mateh. When the scanner generator is re-run, it will use the new regular expressions
to generate new tables. Because the tables in a hand coded scanner are maintained
by the programmer, altering them is a tedious and difficult task.

The hand-coded scanner does have several advantages over a machine generated
scanner. It can determine the exact position of the token on a line. Knowing the
column a token starts in can facilitate better error reporting. Both Lex and Flex
can determine the line on which tokens are found, but are unable to keep track of
which column the token begins or ends. The hand-coded scanner results in a smaller
executable as noted in the tabie. It is possible that a language may require tokens
to be matched which are not expressible as regular expressions'. In this case, a

hand-coded scanner is required.

2.3 The Parser

The job of the parser is to determine if a given source program is syntactically correct.
If syntax errors are found, they should be reported to the user in a clear and concise
manner. If no errors are found, the parser is responsible for organizing the source
program in a form suitable for seimantic analysis and, eventually, code generation.
This form, in the case of the Dee compiler, is an Abstract Syntax Tree (AST). The Dee

par-er is generated by Bison. a parser generator from GNU. It is upward compatible

HP Vi1 ) is a well known example. Such scanners cannot handle nested comments.

[ ]
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MethBody : BEGIN Statementlist END

{ ThisBody = BodyConcrete;
$$ = $2; }
| SPECIAL
{ ThisBoAdy = BodyInstr;
ClassHasSpecial = TRUE;
$$ = MakelInstr(); }
| FROM IDEN

{ ThisBody = BodyFrom;
$$ = MakeIdent($2); }
| /% empty */
{ ThisBody = BodyAbs;
$$ = NULL; }

Figure 2.3: Bison specification for Dee method bodies,

with the standard Unix parser generater called Yace.

2.3.1 The Bison Parser

The Bison parser generator accepts as input, a specification for the langnage to be
parsed. This specification is in the form of a grammar augmented with a set of
actions. The grammar must be context free and expressible as an LALR granunar.
The specification is basically a machine readable grammar in Backus-Naur Forn.
The actions are a list of C statements that are executed when their corresponding
syntactic rule has been recognized. Figure 2.3 is an example of a rule and its action
from the Bison specification for Dee.

This rule indicates that a method body (MethBody) can come in one of four

forms. It can be a list of statements surrounded by the keywords begain and end, the



keyword special, the keyword from followed Ly an identifier, or it can be empty.
StatementListis a ruleitsell and is defined elsewhere in the specification. The tokens
in all capital letters are terminal symbols (i.c. SPECIAL, FROM, IDEN, and BEGIN ).
A terminal symbol is recognized by the scanner and is not comprised of constituent
parts recognized by the parser. Comments come in the same form as those found in
(! (i.e., /* empty */).

In order to compile a program, the compiler must know more than simply an
infeger has been parsed, it must also know the value of that integer. Bison has a
special semantic value mechanism for each token. Each terminal and nonterminal
type can have a semantic value. For terminal symbols, this often comes in the form
of an integer value, float value or identifier name. For non-terminals it usually comes
in the form of a structure comprised of several semantic values.

The action part of the rule is written as a list of C statements. Special symbols
embedded in the code can be used to signify the semantic value of each token. The
parser generator replaces these special markers with their corresponding semantic
values. Tn the first part of the example in Figure 2.3, the $$ stands for the semantic
value of MethBody and the $2 stands for the semantic value of the second constituent
of the rule being recognized. In this example, it stands for the semantic value returned
by StatementList. The semantic value of StatementList is returned as the semantic
value of MethBody if the first portion of the rule is recognized. Another example can
be seen in the action associated with the from clause. In this case, the $2 is used to

pass the semantic value returned by IDEN.
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struct {
AST FromStmts; /* List of init. statements */
AST UntilCond; /* Boolean expression */
AST WhileCond; /* Boolean expression */
AST LoopStmts; /* List of loop statements */
} Loop;

Figure 2.1: Loop portion of the AST.

The action taken when some non-terminals are matched results in the creation
of an AST. This tree is a simplificd version of the source file. It is simplified in the
scuse that many of the reserved words are not present in the tree. Their meaning in
the language is retained by the structure of the particular parts of the tree that they
correspond to. Take, for instance, the part of the AST that represents a Dee loop in
Figure 2.4.

We are only interested in the list of statements that make up the from part of the
loop. If there were no statements, FromStmts will point to nil. Similar protocols are

followed by the other parts of the loop representation.

2.3.2 Parser Evaluation

It is not uncommon for academic language compilers to make use of tools such as
Bison and for commercial production compilers to nse hand coded parsers. Caom
mercial compilers tend to exist only for langnages that have gained some degree of
popularity. With this extensive use, a language gains maturity and is less like to have

changes in its syntax. Academic languages, on the other hand, are often susceptible
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MethBody : INSTR
{ ThisBody = BodyInstr;
ClassHasSpecial = TRUE;
$$ = MakeInstr( $1); }

Figure 2.5: Parser specification for PC Dee special methods.

to modifications.  The choice of which parser to use is primarily governed by two
criteria: efficiency and ease of modification. For established languages, the tradeoff
in modifiability is worth the gain in speed. For academic languages such as Dee, the
loss in efficieney is a small pricc to pay for the case with which a machine gencrated
parser can be modified.

Oue example of the evolution of Dee syntax involves the way onc writes special?
methods. The original version of the specification can be seen in Figure 2.5.

INSTR was recognized by the scanner as an identifier beginning with the character
T (ie. 'add). This notation came from the PC version of Dee. The funny looking
identifier actually corresponded to an instruction in the virtual Dee machine on which
PC versions of Dee programs run. On the Unix version of Dee, special methods are
implemented directly in O This means that the name of the method anu the class in
which it is found is enough information to make a special method unique. The funny
identifier was replaced by the kevword special. ¥ :ause ] used a machine generated

parser, this change was casy to effect. 1 simply added the new keyword to the hash

*Special methods are the way in which Dee interfaces with other languages and with the operating

systetn,



table of keywords and changed the parser rule to look like what was seen in Figure
2.3.

Hand coded parsers are more complicated from the compiler writer's point of view
and are much more prone to erras. The simplicity that makes machine generated
parsers so casy to alter also has the added benefit of making them less likely to coutain
errors. The Dec parser has heen relatively free from bugs since the very begiuning, of
the development cycle.

While speed is not sufficient cause to write a hand coded scanner, there is one
flaw in Bison generated parsers that may warrant this outlay of labor. The errvor
reporting capabilities are inadequate in machine generated parsers in general and
this is especially true in the case of Bison. It is quite casy to get the parser to repor
that a syntax error occurred on a particular line. It is quite dificult to get it to report
a more meaningful message and to recover in a reasonable way. Hand coded parsers

are better able to give sophisticated error messages and recover from eriors.

2.4 The Code Generator

The Code Generator is the scction of the compiler that takes a decorated AS'T as
input and produces (' code as output. The heart of this section is the routine Gen (),
whicli recursivly traverses the AST. Each method in the AST that is implemented
in the class being compiled (with the exception of special methods) causes one €

function to be gencrated.



method entry
-- Generate all the prime numbers up to
-- max using Eratosthenes’ sieve

var f:Filter i:Int max:Int

begin
max := 2000
f.make(2)

from 1 := 3
until i > max
do
f.process(i)
i=1+1
od
end

Figure 2.6: Example of a Dee method
Figure 2.6 is an example of a typical Dee method. It is the constractor for the class
Primes. igure 2.7 contains the ¢ code generated for the Dee method in Figure 2.6.
The name of the C function corresponding to a Dee method is created by prefixing
the name of the Dee method with the name of the class it is implemented in and an

underscore,

2.4.1 The Run-time Data Structures

Dee methods compiled into C functions do not use the C stack to pass Dee arguments
or return values. Instead, all parameters and results are conveyed using the Dee stack.
The Dee stack is a fixed size array of pointers to objects. This stack is used in much
the same way the C stack is used. It contains a stack frame for each currently active

method.



void Primes.entry( osp )
int osp;
{

int 01d_hwm = hwm;
os[osp] = NIL;
os[osp+2] = NIL;
os[osp+3] = NIL;
os[osp+4] = NIL;
hwm = osp+b;

os[osp+4] = create.int( 2000, hwm );

os[osp+2] = NIL;

os[osp+2] = Createlnstance( .ClassTableIndex Filter, osp+2 );
os[osp+6] = os[osp+2];

os[osp+7] = creatednt( 2, osp+7 );

Call(Filter M _make,5);

os[osp+3] = createiint( 3, hwm );

do {
os[osp+6] = oslosp+2];
os[osp+7] = oslosp+3];
Call(Filter M. process,5);
os[osp+6] = os[osp+3];
os[osp+7] = create_int( 1, osp+7 );
Call(IntM_plus,5);
os[osp+3] = os[osp+5];
os[osp+6] = os(osp+3];
os[osp+7] = osl[osp+4];
Call(IntM_gt,5);

} while ( os[osp+5] != true.object );

hwm = 0ld. hwm;
} /* entry */

Figure 2.7: C code generated from the Dee method Entry for class Prime
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struct Object {

ClassPtr Class;

struct GCFields Status;

union {
int Int;
ObjectPtr Bool;
char *String;
double Float;
unsigned char Byte;
ArrayPtr ArrayBody[1];
ObjectPtr InstVars([i];
int GCStuff[2];

} Tag;
}i

Figure 2.9: The C declaration of a Dece object at run-time,

Figure 2.8 is an example of the run-time data structures, including a portion of
the Dee stack. The first pointer in cach stack frame is a pointer to the return value
of the method. Tt exists, but is ignored, in methods that do not return a value,
Following the return value is a pointer to the current object. This is the object that
contains the method we are exccuting and whose instance vartables we have direct
access to.

Figure 2.9 shows the C declaration for the run-time structure of an object. The
first field contains a pointer to the class descriptor of which the objeet is an instance
(see below for a more detailed description of a class descriptor). The second field is
used only for garbage collection and is explained in Section 2.7. The last field is a
union which is used differently depending on which class the object is an instance of.

The first five ficlds in the union are used if the object is a base class. Fven ina pure
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AddOn = ( NumInstVars - 2 > 0 ) ? NumInstVars : O;
CorrectObjectSize =
sizeof ( struct Object ) + AddOn * sizeof( * struct Object );

Figure 2.10: C code to calculate the size of an object.

object oriented language, the basic building blocks of more complicated objects must
eventually have a representation in a form directly usable by the CPU. Even though
Array is not a base class, it is a special case. The field ArrayBody is a pointer to a
structure that contains information specific to arrays. This includes the bounds of the
array and the actual array of pointers to objects. The field InstVars is an array of
pointers to objeets, For objects that are not of class Array or a base class, this array
is sized to the number of its instance variables. C can be fricked into creating variable
sized structures that allow us to declare InstVars to be only length two, but actually
be the correct size for objects that have more than two instance variables. The C
code in Figure 2,10 calculates the number of bytes needed for an object which has
NumInstVars instance variables. The last field in the object data struciure, GCStuff,
is used only when the ahject is reclaimed by the garbage collector and placed on the
free list of objects. 1t would have been possible to avoid this extra declaration, but it
helps keep the garbage collection code simple by avoiding the need for frequent use of
casts. Since the GCStuff field is in a union. it costs nothing to include. See Section
2.7 for more details.

Each class used, whether through inheritance or a client relationship, by a par-

ticular Dee program contains a corresponding class descriptor at run-time. The C
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struct Class {
ClassType ClassKind;
int InstanceSize;
int InstanceCount;
Parent ParentArray;
MethodPtr *Methods;

Figure 2.11: C run-time data structure for a Class.

declaraticn for a class descriptor contained in Figure 2,11 is also of variable size in
much the same way the object structure is. In the case of the Class structure, it
is the number of methods that determines the size of the structure. The first field,
ClassKind, is a scalar that specifies whether the class is a base, array, or regula
class. The InstanceSize ficld is the size of an instance in hytes. InstanceCount
is the number of instance variables in cach instance of the ¢lass. ParentArray is
an array of pointers to the class structures of all parents of the class. Tt is used for
testing conforimance at run-time and is explained in more detail in Section 2.5,

Referring back to Figure 2.8, we see that above the pointer to self, are the
arguments to the method. Not every method has arguments, but if it does, they
are placed above self on the Dee stack, not on the C stack. Finally, the top-most,
portion of the stack frame contains the local variables for the method. Upon entry
to the method all locals are initialized to point to the special object NIL. The field
result is also set to NIL before the method is entered. The NIL object contains
as many methods as the class with the highest index into its method table. Fach

method pointer for the class NIL points to the illegal method. This method prints
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the message “Attempt to send message to uninitialized object.” and aborts
the program. Setting uninitialized objects to point to NIL prevents Dee programs
from crashing without an explanation if a message 1s sent to an uninitialized object.
The last ficld, Methods, is the variable array of pointers to functions used to dispatch
methods at runtime. This field is covered in more detail in the Section 2.4.3 about
generating code for method calls.

Two € variables are used to keep track of locations on the object stack. Osp is the
object stack pointer. 1t always points to the base of the current stack frame. When
a Cfunction corresponding to a method is called, its only argument is the new value
of osp. This is calculated ju the calling method by adding the number of parameters
and locals variables in the current stack frame to the current object stack pointer.
The global variable hwm (for high water mark) is always set to the highest location
in use on the object stack. It is used by the garbage collector to scan the object

stack for all live objects. Any locations on the stack above hwm contain garbage. See

Section 2.7 for more details,

2.4.2 Control Structures

The mapping of Dee control structures to C control structures is quite simple. If
statements in Dee are directly mapped to if statements in C augmented with gotos.
The gotos are needed because checking the Dee conditions may require some C code
fo be executed. An example of a simple Dee if statement and its corresponding C

code i1s found in Figures 2.12 and 2.13.
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if 1 < 5 then

k :=1+1;
elsif i > 10 then

1 :=0
else

b := true;
fi

Figure 2.12° An example of an if statement in Dee,

os[osp+6] = os[osp+2];
os[osp+7] = create_int( 5, osp+7 );

Call(Int M_.1t,5);

if ( os[osp+5] == trueobject ) {
os[osp+6] = os[osp+2];
os[osp+7] = create.int( 1, osp+7 );
Call(IntM_plus,5);
os[ospt+4] = os[osp+5];

goto IF1;
}
os[osp+6] = osl[osp+2];
os[osp+7] = create_int( 10, osp+7 );

Call(Int M__gt,5);

if ( osfosp+5] == true.object ) {
os[osp+2] = create.int( 0, hwm );
goto IF1;

}

os[osp+3] = true_object;
IF1:;

Figure 2.13: The C code generated for the above Dee if statement.
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i:=0
while

i<5
do

i:=1 +1
od

Figure 2.14: A typical Dee loop statement.

Dee loop statements are mapped into C while statements. Notice that the
method Int M1t, used to do the comparison i < 5, is called twice. The first call
is needed beeanse the condition must be checked before the body is executed. If
the condition fails, the body will not be executed at all. If the body is executed at
least once, the condition must be calculated again. Calling Int.M_1t the second time
leaves the truth value of the condition on the object stack for the C while statement
to recheck. ‘The only difference in the code generated for Dee while and until loop
statements is that the condition is negated in the until version. Figure 2.14 shows
the Dee code for a simple loop and Figure 2.15 shows its corresponding generated C
('U(l('.

See Section 2.5 for information on the control structures used in attempt state-

ments.

2.4.3 Applications

An application is the sending of a message in object oriented parlance. In more

traditional terms, it is the invoking of a procedure. The first step in generating
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os [osp+2] create.int( 0, hwm );
os[osp+6] = os[osp+2];
os[osp+7] = create.int( 5, osp+7 );
Call(Int M_.1t,5);
vhile ( os[osp*5] == true.object ) {
os[osp+6] = os[osp+2];
os[osp+7] = creatednt( 1, osp+7 );
Call(IntM_plus,5);
os{osp+2] = os[osp+5];
os[osp+6] = os[osp+2];
os[osp+7] = create.int( 5, osp+7 );
Call(IntM__1t,5);
} /* while */

Figure 2.15: The code generated for the above loop statement.
code for an application is determining if the method is a constructor. This can he
determined by examining information placed in the AST when it was decorated by
the semantic analyzer. If it is a constructor, the receiving objeet must first be ereated.
This is accomplished by calling the C function CreatelInstance() with an argument
specifying the class of the object to be created.

After the type of the method is determined, the next step is to set up a new stack
frame above the current stack frame (sce Figure 2.8 for an example of a stack frame
at run-time). The new result field is set to NIL. A pointer to the objeet receiving the
message is copied to the self field. All the argumments are calculated and copied into
the argument slots above the self slot. Calculation of the arguments often results
in additional messages being sent and, thus, additional stack frames being prepared
ahove the frame currently being built. When additional stack frames are used to

calculate arguments, they are set up so that they will leave their result in the slot
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for the argument. After all the arguments are calculated and stored in their correct
slots, the method is ready to be invoked.

The following is an example of the C code to call the method make in class Filter.

os[osp+toff+1] -> Class -> Methods[Filter M_make] (osp+off)

The variable of £ points to the beginning of the new stack frame. Os[osp+off+1]
is the slot in the object stack that points to the object receiving the message. The
ficld Class points to the class structure of this receiving object. The ficld Methods is
the table of pointers to €' functions corresponding to the methods for the class which
self is an objeet of. The variable Filter Mmake is an index into this table, which
was generated by the Dee linker. By making this a variable, we are able to insure
that the correct method is dispatched as long as the receiver is of the correct type.

For example: Let there be a variable X of class Shape and an application of the

method show to X.

var X : Shape

X.show

In addition, there are three classes Circle, Square and Oval, which all inherit class

Shape. Square and Oval both implement their own versions of the method show.
class Circle
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inherits Shape

class Square
inherits Shape
method show

begin

end

class Oval
inherits Shape
method show

begin

end

At run-time, it is possible that X will be an instance of class Shape, Circle, Square
or Oval. But no matter what class X happens to be a instance of, for this particular

application, the method show for that class will be invoked. The Dee linker guarantees
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that the pointer to the method show is at the same offset in the method table for
cach of the elasses that inherit Shape. If the method show is implemented in class
Shape, it too will be at that same offset. Since that offset can only be determined at
link time, that Dee linker emits a declaration for the integer variable Filter M.make,

and assigns the correct offset 1o it.

2.4.4 Assignments

Assigmnents come in two forms: assignments to local variables of the currently ex-
ccuting method and assignments to the instance variables of the object currently
excouting a method. Tt s illegal to assign to an instance variable of any object but
the current objeet. Dee syntax rules prevent these types of assigniments.

In the following example,
foo := 3

if foo is a local variable, the ' function create_int() is called to create an instance
of the class Int with a value of 3. This object is then assigned to the correct slot
in the active stack frame. 1f the offset for the variable foo is 4, the code generator

would produce the following C' code for this example.
os[osp+4] = create_int( 3 );

It foo is an instance variable it must belong to the object in the self slot of the
currently active stack frame. Because instance variables may be inherited in much
the same way methods are inherited, we index the table of instance variables with
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a variable that is defined by the Dee linker. The code generated in this second case

would be as follows.
oslosp+1] -> Tag.InstVars[SomeClassV. fool = createant( 3 );

We know which slot in the stack frame points to the current object because self is
always in the slot one above the top of the stack. The variable SomeClass.V_foo is
generated in exactly the same way as was the variable used to access method table in
the previous example except that a _V_ replaces the Mo used in method table indes

variables.,

2.4.5 Code Generator Optionus

There is one command line argument to the Dee compiler, which is passed to the
code generator. By placing a =V# after the name of the file he compiled, where # can
be 0. 1. 2 or 3. the user can control the verbosity of the " code generated. Zero s
the default and produces (' code which is not particularly casy for hnmans 1o read.
As the numeric portion of the =V switeh gets closer to 3. the code generator ennits
increasingly more verbose (0 code. The code produced by using an argnment of 3
is not legal C code and can not be compiled. hut is especially easy for humans 10
understand. For level 3. local variable stack offsets are replaced with the Dee name
of the local variable. This feature is particulaily useful when attempting the difficuls

task of debugging the generated code or when trying to write Dee special methods,



attenmpt
S

handle x; : ()
S)

handle =, : (),
q

'

end
Figure 2.16: Basic form of an attempt statement.

2.5 Exceptions in Dee

Dee has Tacilities for generating and handling exceptions (see Section 1.1.4 for an
explanation of these terms). An exception in Dee comes in the form of an exception

object, For exaniple, the following line of code raises an exception of class String:
signal "Division by zero."

An exception object can be an instance of any class.  When the exception is
signaled, the exception object is bound to the cxception register.

The programmer can write code to handle the exception by using the attempt
statement whose generie form is shown in Figure 2.16.

If an exception is generated® by S, the system will attempt to determine if it
matches any of the handlers in the current attempt statement. This is accomplished
by testing if the exception object conforms to cach class €, starting with n equal to

I. If the exception object does conform to a class Cy,. it is bound to the corresponding

SAnd 1t 1s not caught by a handler at level closer to the code that generated it.
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variable z, and the statements. S,. corresponding to that handler are exccuted. If no
match is found in the current scope of handlers. the next level of exception handlers
is tried. Eventually, if no match if found, the run-time system will print the message

“*Unhandled exception.™ and cease execution.

2.5.1 Implementation

When an exception occurs at run-time, the system will have to determine which
handler will accept it. Because of the semanties of Dee, it is necessary to test the
exception object for conformance to the class of cach potential handler. This test
requires that the inheritance graph be available at runtime,

The inheritance graph is actually embedded in the class structures that exist at
runtime. Fach class stricture has a field (Parent) that points to a variable length
array of integers terminated by a -1 in the last slot. If the class has no parents, then
Parent points to NULL. The integers contained in the array are indices into the global
array (ClassTable) of pointers to the actual class structures.

It would be quicker to test conformance if Parent were an array of pointers to the
classes. This would avoid an extra indircction but the addresses in memory of the
class structures are not known at link-time. It would be possible to generate code
that. when the program is first run, would fill in Parent array, but this would slow
down the start up time for all programs.

The C function Conforms () is called at run-time to determine if the class of

the exception object conforms to the class of ecach handler. If a mateh is found,
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the exception object is bound to the identilicr in the signature for that handler and
the code for that handler is executed. Conforms() tests conformance by recursively
traversing the list of parents, contained in the Parent array, all the way up the
inheritance graph trying to find an exact match between the class of an ancestor and
the class of the exception object. If such a match is found, Conforms () returns true,
otherwise it fails and the next potential handler uses Conforms() again. Because
inheritance sub-trees tend not to have an extremely large number of nodes (classes),
traversal is not an expensive operation to perform.

The € functions setjmp () and longjmp () are used to save and restore context,
Each time an attempt statement is entered, a new block of €' code is ereated with
a local variable to save the current context using setjmp(). After the context is
saved in the local variable, it is placed on a stack of saved contexts. When a signal
is raised. we do a longjmp() to the context at the top of the stack. If no handler
is found. we pop the next context on the stack and do a longjmp() to its stored
context. Declaring each element on the list as a local variable docs not requite us to
allocate and deallocate memory cach time an attempt statement is entered. If the
statements inside the the attempt hody complete withont cansing an exception to he
raised, the stack is popped but no longymp() is excenuted. The action of popping the
stack removes the element from the stack. The variable is reclaimed automatically
when the block is exited. This technigue is a modified version of the ideas presented

in {Don90] and [Ams91].
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2.6 Dee Mode for Emacs

Finacs is one of the most commonly used editors used on Unix systems. Much of this
popularity is due to its power and flexibility. Emacs is partly written in C and partly
in Emaes Lisp. The € part of Emacs consists of a Lisp engine and a large number of
functions callable from Lisp. A significant part of the editor is written in Emacs Lisp
and runs on this engine. To extend Emacs one writes additional Emacs Lisp code or
changes the existing code,

When editing a program using Emacs, the editor is usually in a major modc which
provides editing features specific to the type of file being edited. Major modes exist
for the C and Lisp programming languages and for natural languages.

I have written a major mode for Dee, to assist programmers in writing Dee source
code. Tt caninsert the skeleton of all the major programming constructs. For instance,
typing the keyv sequence C-¢ 1 (a control-C followed by the letter '1') will insert the

{following text at the cursor

from
while
do

od

and indent it correctly. It will leave the cursor after the from statement as this is



where the user will most likely start typing. Haing the editor insert text avoids
mistakes in syntax and spelling that are usually caught by the compiler. This, in
turn, speeds up the development cycle.

Whenever a tab or return is hit, Dee mode will automatically attempt to correctly
reindent the current line and. in the case of a return, indent correctly on the new
blank line. Aside from saving the programmer many keystrokes, this indentation can
aid in the early detection of syntax errors. Tt is usually casy for the programmer to
know how much any given line of code should be indented. If Emaes does not indent
a line as the programmer expected, it usually indicates a mistake in the code above
that line.

Because Dee mode prevents and deteets errors at an carly stage i the process
of writing programs, it reduces the amount of time the programmer spends in the
edit-compile loop. This. in turn, increases programmer productivity.

Perhaps the most useful feature of Dee mode is its built-in bhrowser. When the
cursor is placed on a word that is the name of a class already written to the CIDB
(Class Interface Data Base). the interface of that class can be viewed. After invoking,
the Dee mode browse-class command with the keystrokes C-c b, an additional win
dow 1s opened and the interface for the selected class is displayed in it FEvery time a
new class is selected with these keystrokes, its interface is shown in this window.

In the case of a class interface that is frequently referred to. the user can browse
in a different way. By sclecting the class in the same way, but by then invoking

the perm-browse-class command with the keystrokes C-c B, a permanent window is



created and the interface for the selected class is displayed in it. This window is
permanent. in the sense that browsing another class with the browse-class command
will not. overwrite it. As many of these permanent browse windows can be created as
needed,

If & class that has already been permanently browsed, is selected again, the old
interface is overwritten. This is because the class may have been recompiled and the
system must be careful never to present two different interfaces to the same class at
the same time.

The browser in Dee mode is not meant to replace a more user friendly X windows
browser, but it does have its place. Although Emacs can be used with a mouse, it
was primarily designed to work without one. Experienced Emacs users often prefer
to avoid touching the mouse whenever possible. Incorporating the browser in Dee
mode allows them this freedom. Many users of Dee will not have X windows or other
suitable windowing environment. they may have insufficient hardware or be working
over a phone line. Dee mode gives them all the functionality of a graphical browser
but without the fancy (and probably more friendly) user interface.

Emacs may not be the primary editor in the complete version of the Dee system,
but it is a valuable alternative. Many Unix programmers already know how to use
Fmacs and should not be forced to use a special Dee editor. Experienced Emacs
users have the option of performing their own customizations in addition to those

provided by Dee mode.



2.7 Garbage Collection

Garbage collection is the process of reclaiming memory that is no longer needed by
a program. Memory can safely be considered garbage when it is no longer reachable
from global variables, active stack variables or through a chain of pointers starting
from these locations. When a portion of memory is colleefed it is returned to the
pool of memory available for future use. Because Dee is a pure object oriented
programming language. memory that the garbage collector deals with is always in
the form of an object. I will therefore use the term objee! to describe the unit
of memory that garbage collectors operate on. In other languages, memory might

contain smaller units such as integers, pointers or characters,

2.7.1 Types of Garbage Collectors

The most common types of garbage collection include relerence connting, mark-and-
sweep, and stop-and-copy. This section contains a full explanation of these algo-
rithms. The first collectors where implemented by MeCarthy {MeCGO] and Collins
[Col60] in the carly 60s. These were of the mark-and-sweep and reference counting,
variety. As technology increased, virtual memory allowed large heap space. As a
result, stop-and-copy collectors started appearing in the last 60s.

In addition to the methods mentioned above, Goldberg and others [Gol91, Mar70,
BL70] have shown that strongly typed programming languages can implement garbage

collection which is specific to cach program. This method has the advantage of avoid-



ing tags, used to determine the type of an object, normally found in conventional
collectors.

By having the run-tinie system automatically reclaim memory when it becomes
garbage, we free the programmer from this difficult task. Boehm and Weiser [BWSS]
show that wlien garbage collection is added to C programs, previously unknown

menory leaks are often found.

Reference Counting

Referenee counting [ColG0] basically consists of keeping a count of the number of
references to cachi object. When the count drops to zero, the object is unreachable and
thus garbage. 1t may then be collected. Reference counting has several disadvantages.
[t 1s not possible to reclaim a circular list of objects even though it is not reachable
[rom the active variables. Because the list coutains a loop, none of its components
have a zevo reference count. Ways to overcome this problem have been implemented,
but they often have a negative aflect on the programming style because programmers
are required to make consious efforts to avoid loops. This restriction reduces the
main benefit of automatic garbage collection. that it should be transparent to the
programmer. Reference counting requires space for a reference count and maintaining
this count consumes considerable overhead. In soine implementations, every store

instruction has some garbage collection overhead associated with it.



Mark-and-Sweep

Mark-and-Sweep collection is a two phase process. The mark phase is a traversal of
all live memory. A bit is set in a tag associated with cach portion of memory that
is reachable. The sweep phase then reclaims all memory that does not have the bit
in its tag set. This algorithm has the disadvantage of needing to traverse the entive
address space of a process in order to return unmarked objects to the free store. It
also has a space overhead of at least one bit per object. Unlike reference counting,

mark-and-sweep algorithms do reclaim unreachable circular structures.

Stop-and-Copy

Stop-and-Copy collectors avoid the overhead of traversing all of a process” memaory hy
copying all live data to a new area. Once all live data in a region has heen copied out,
the entire region can be reclaimed without being examined in detail. To copy the live
data out of a region the algorithm traverses only the live data. As each live objeet
is reached, it is copied to a new region. After the copying is completed, all pointers
must be updated to reflect the new location of cach object. This technigue requires
more memory than other techniques because memory must be divided into (ot least)
two different regions, each large enough to hold all live objects with room left over,
Stop-and-copy collectors have an advantage in that they do not scan all memory, only
that which contains live objects. In additiou, copying collectors compact data as it

is copied to the new region, eliminating the need for a separate compaction phase.
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2.7.2 Generational Collectors

(‘cncralions are an extension to the above collection algorithms that allow objects
that have been alive for longer periods of time to avoid being considered for collection.
Generational collectors were first introduced by Liberinan and Hewitt [LH83]. They
make use of the fact that as objects age, they are less likely to become garbage. In
this type of collector, heap space is divided into several sections called generations.
Fach time the collector is invoked, it increments the age counts of all live objects.
When an object reaches a threshold age it is copied to the next generation. This
process of moving objects to a new generation is called promoting.

As a result of promoting. objects that are less likely to become garbage are con-
centrated in the older generations. When space is needed, the collector can affect only
the youngest generations where the ratio of garbage to active objects will be highest.
Collection in older generations occurs less frequently than in younger generations,
usually when not enough space was reclaimed from passes on earlier generations.

Generations have been added to both mark-and-sweep collectors [Zor90] and stop-

and-copy [Ung841].

2.7.3 Garbage Collection in Dee

The Dee garbage collector is of the mark-and-sweep variety. To avoid some of the
disadvantages normally associated with this type of collector, it was augmented with

generations. Currently, the Dee collector implements four generations but this can
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be easily changed. Each generation consists of a linked list of large picces of memory
called chunks. Chunks are obtained through calls to malloef). Dee Objects are
allocated from these spaces and aie never split across chunk boundaries. See Figure
2.18 for an illustration of these data structures. The design constrains Dee objects to
be no larger than the size of a chunk. Chunk size, currently 4K, is hard-coded into
the run-time system but may become a compile time option in a later version of the
Dee system.

Iree space is maintained by keeping a linked list of unused arcas pointed to by
a header unique to each chunk. The nodes in the list are portions of unused space
right in the chunk. Each node in the list contains a field indicating how much space
is free at that point, and pointers to the next and previous free slots. Keeping a
doubly linked list will allow us to change the algorithim used to maintain the free list
without much difficulty. Currently, free space is returned to the front of the list and
is allocated by a first fit algorithm.

Whenever a new object is needed, the routine 0alloc() is called instead of
malloc(). Oalloc() traverses the list of chunks in the first generation until it finds
one with a slot large enough to satisfy the 1equest. The slot is removed from the free
list and its address is returned. If the slot was bigger than the amount requested, the
remainder of the slot is kept on the free list unless it is less than the minimum size
of an object (this special case is discussed below). If no acceptable slot is found then
a new chunk is allocated and the new object slot is taken from it. Before the new

chunk is allocated. the garbage collector is invoked, Fven if enough space is recovered
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Figmie 2.18: The memory management structures used by the collector and allocator.
to satisfy the current call to 0alloc()’s needs. a new chunk is still allocated. This
helps prevent the collector from being called too frequently as a result of only a small

amount of memory heing reclaimed,

Fragmentation and padding

One of the weaknesses of the current Dee implementation is that the minimum size
ol an object is 16 bytes on most 32-bit processors. This is a result of design decisions
made hefore garbage collection was considered. but it does result in some benefits for
the collector. If a slot being allocated from the free list is bigger than the new object
but not so big that the remainder could contain another object, it is treated as a
special case. Instead of being placed on the free list. this extra memory is allocated

with the memory requested. Eight bits in each object are used to determine how
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much padding each object has. This has the disadvantage of wasting bits in each
object and bytes in fragmented chunks. Padding objects has the advintage of making
compaction unnecessary. Whenever an object is reclaimed, itis always at least large
enough to contain a base object. In practice, not many bytes are consumed by
fragmentation because base objects (which are alwavs the minimunm legal size of an
object) are created and reclaimed so frequently  Slots smaller than the mininim
object size can never exist on the free list, When a chunk is swept | adjacert garbape

slots are compacted together further eliminating fragmentation.

Marking

During the mark phase of collection, cach active object must be flagged i some way,
After the sweep phase. these tlags must be cleared. The method used by Zorn [Zor90]
maintains a bit map for cach chunk of memory. The mark/test/elear operations on
a bit map have the advantage of heing very localized hut expend the overhicad of o
table lookup. Locating the tag next 1o, ot in. the object with which it is associated
results in touching cach active object three times for each collection: onee to set the
bit. a second time to test it when sweeping and a thitd time to clear all the set ity
in preparation for the next collection.  Localization hecomes a factor on the dlea
operation. If each active object must be touched a third time, we lose nimcli of the
advantage gained by having generations. To solve this problem and avoid the expense
of table lookup associated with the bit ma: nethod, Fhave used a mark field of cight

¢

bits instead of one. This allows e to set the mark field to the carrent mark connter.
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When sweeping, | simply test the mark field with the current mark counter; a match
meany the object is alive, 'The mark count is incremented once in cach collection

r

phase, but zeroed when it reaches 255, There is no need to clear the mark field as
long as I ensure that no objeet ever goes more than 256 collection cycles without

heing swept.

Sweeping

Sweeping ocenrs on a per generation basis. After a mark phase, any or all of the
generations may he swept depending on the current configuration of the collection
strategy. A complex strategy might even choose to sweep only some of the chunks in
a particular genetation. -

The sweep algotithim starts at the top of a chunk. An object always starts at the
st aderess i the chunk., When chunks ave created. they are initialized to contain at
least one object. As they are filled with live objects and go through the reclamation
process, thev are alwavs tna consistent state. Each object in the chunk is cither a live
ohject. a dead bat not reclaimed ohject, or an empty slot on the free list. If an object
i~ on the free Bistoa single bit is set to signal this state. Objects that do not have
this bit set are either alive or ready to be collected. The former are left untouched
but the later are moved ivto the free list. I an object is not on the free list, we can
determine its size by using the field, which every object contains. that points to its
class structure. The class structure has a field giving the size of an instance of that

class in bytes. This size is added to the number in the padding field to determine
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where the next object in the chunk begins. When an object is garbage. we use the
fact that it is never less than 16 bytes to place the free list pointers and size fickl
over its old data fields. All consecutive garbage objects and slots in the free list are
combined to make the largest possible free list slot.

When an object is reclaimed during the sweep phase, its class is checked to deter-
mine if it needs special treatment. Instances of the classes Array and String contain
pointers to memory that was allocated directly by a call to malloc(). These fields
must be returned by calling free(). If other special base classes are added to the

Dee system. they may also have to be reclaimed in this manner.

Promoting Objects

Right after a live object is marked, its age field is also incremented. [ the age
reaches a preset threshhold, the object is promoted. The first step in the promotion
process is to allocate space for the object in the next older generation. A function
called NewGenSlot () is called to find this new space. NewGenSlot() is very similar
to 0alloc(). They differ in that 0alloc() only allocates space from the yongest
generation while NewGenSlot () only allocates from generations older than the first.
NewGenSlot () automatically determines the generation of the object passed to it by
examining its Gen field. It uses this information to decide which generation to allocate
from. The correct amount of space needed in the new generation is determined by
using the Class field in the object being promoted. The class structure has a field

that contains the number of bytes any instance of that class will require.
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Before copying the object into the new generation, a temporary variable is used
to save the amount of padding contained in the slot returned by GenNewSLot (). The
amonnt of padding in an object is completely determined by where the object is
allocated. It would be incorrect to copy the padding from the object at its original
location to the new location.

After Space has been allocated in the new generation, the object is then copied
into this new space. The amount of padding, saved in a temporary variable, is copied
info the new slots Pad field. At this point, two copies of the object exist. We must
he sure that the old copy will be reclaimed during the sweep phase, and that the new
object will be left alone. This s acomplished by marking the new location as live,
and leaving the old copy unmarked. In addition. we must adjust the Gen field in the
new copy to reflect its home in a new generation.

The final phase of promoting an object is to readjust all live objects in the system
that point to the old copy. This is acomplished by setting a bit in the old object that
sighals that it has been promoted. This bit, named the Promo bit. is used in a sccond
traversal of live objects. After setting the Promo bit. a pointer to the new location of
the object is placed into one of the fields of the old copy. This is harmless because we
have a new copy of the object. In the second traversal. every pointer is dereferenced
to determine if it points to an object with its Promo bit set. If the Promo bit is set. the
pointer is overwritten with a copy of the new address of the object found in the old
copy’s InstVars[0] ficld. This technique of pointer updating is a modified version

of an algorithm found in [CNS83).
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The second traveral of all live objects is only carried out if at least one object lias

been promoted.

Performance and Tuning

Because the Dee system is inits infancy, it lacks a large application base on which the
garbage collection subsystem could be tuned to optimum performance. This seetion
contains an explanation of all the parameters that might help a future programtner
optimize the garbage collector.

The size of a chunk can be altered by changing the constant CHUNK SIZE. It is
currently set to the size of a page on the SPARC stations.  Lirge objects are being,
created 3t makes sense to inerease the size of a chunh to several times that of a single
page. This variable might also change if the Dee systeniis ported 1o new hardware
with different characteristics.

Free slots placed on the free list are alwavs added to the beginning of 1he list.
The list is always scarched from begining to end, emploving a first fil stratepy, when
allocating new slots. AddToList () conld be changed to maintain the free list in g
some other order. The allocation routine Balloc() could be changed to dole ot
slots in a different fashion, such as best fit,

The most significant factor affecting the garbage collector petformance is deter-
mining when it is invoked and on which generations. The more often the collector
is run, the less memory is used by the program. This is because garbage is recycled

sooner. Frequent collections have the disadvantage of slowing down the program.
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Having a generational collector allows us to call the collector frequently without
causing noticible pauses in program execution. Each time the collector is called we
can choose to sweep only a portion of total memory. Currently. the Dee run-time
system only calls the garbage collector when the first generation is completely full.
Before a new chunk is added to the first generation, the collector is always run. This
causes a cycle in the growth of the first generation. When the generation is full,
it is swept and then its size is increased by one chunk. Because the first generation
contains young objects, a very large percentage of the memory it contains is reclaimed.
It then fills up again and repeats the evele. This has the disadvantage of allowing a
program that tans for a long time to indefinitely increase the amount of memory it
CONSUINES,

A different approach would be to call the collector on the first generation whenever
memaosy usage reaches a predetermined threshold. Each time the routine to allocate
new objects (0alloc()) is called. it would keep statistics about memory usage. The
threshold conld he set to eighty percent capacity of the total amount of memory
available in the generation. If a suitable amount of memory is not reclaimed. another
chunk could be added. This algorithm would have the advantage of keeping the
amount of memory allocated to the program to a minimum but would also result in
an increased number of calls to the collector. The increased number of calls to the
collector would slow down the program.

Evervtime the collector is called. it must make a decision about how much memory

is to be swept. In the current Dee collector, the first generation is swept every time,
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the second is swept every seventh time and the third is swept every seventeenth
time. It is easy to adjust the collector to sweep ditferent generations at different
intervals. Some simple tests revealed that increasing the frequencey of sweeping cansed
noticeable pauses in the program with only minor decreases in the total amount of
memory consumed. Using the above intervals prevents the collector from sweeping
the second and third generation in the same invocation to often. The choice of the
sweeping intervals was based on estimates and a small number of tests. After larger,
more sophisticated Dee programs are written, better test may cause them to be
adjusted.

Ungar and Jackson [UJ8S] have shown that objects which live long enongh to
reach the oldest generation become garbage at a very slow rate. For this reason, the
oldest generation in the Dee collector is never swept. Turning collection on for the
oldest generation in a few test programs showed no reduction in the nimmber of chunks
allocated to the final generation over runs with collection turned off. "This policy can
result in memory leakage. It would be better to sweep the Tast generation, hut only
at very distant intervals.

The current version of the Dee garbage collector maintains a large number of
statistics. These are used for debugging and for tuning the algotithm. At the end
of every Dee program a few of these statistics are printed. Figuie 2,19 shows the
last portion of the output of the Primes program. This program calculates the Prime
numbers up to 2000 using Eratosthenes’ sieve, It creates a filte r object for each prime

number.

GO



1951
1973
1979
1987
1993
1997
1999

Bytes Oalloced = 1661204, Bytes Malloced = 80864
Chunks per Gen: 58, 5, 5, 8

Figie 2.19: Code generator statistics.

‘The number for Bytes 0alloced is the amount of memory that would have been
allocated to the program if it had had no garbage collection. If a compiler option
is added to Dee to turn ofl parbage collection. it can be implemented by placing a
simple test at the beginning of the 0alloc() routine. If *No collection™ is flagged.
then 0alloc () would simply call malloc() to get the number of requested baytes.

The amount for Bytes Malloced is the actual number of bytes allocated by calls
tomalloc(). It is the total number of bytes dynamically allocated at run-time. This
number is also the number of chunks allocated multiplied by the size of a chunk.

The Chunks per Gen data are the number of chunks allocated for each generation.

2.8 Base Classes

Base classes are classes that contain a component which is not a pointer to another
class. This component comes in the form of a piece of data that can be manipulated

directly by the processor. Base classes also differ from regular classes in that they
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struct Object {
ClassPtr Class;
struct GCFields Status;
union {
int Int;
ObjectPtr Bool;
char *String;
double Float;
unsigned char Byte;
ArrayPtr ArrayBody[1];
ObjectPtr InstVars[1i];
int GCStuff[2];
} Tag;

}i

Figure 2.20: The run-time data structure for an objeet,
have a very intimate relationship with the code generator and the run-time systen,

Even though Dee is a pure object oriented progranuming language. it minst contain
data in a form that is manipulatable by the CPUL Regular objects contain instance
variables that are pointers to instances of a particular class. Base classes have only
one instance variable, and this variable is of a special nature,

Figure 2.20 shows the (! data stineture that 1epresents an objeet ot tn time, The
first five fields in the variant part of the structure are used to inplement the data
that is unique to base classes. For example, if the strueture is an integer at run time,
the Int field will hold its integer value. This Int field can only he manipulated by
special methods of the class Int. The fields for float and byte are used in the same
manner. The fields for string and Loolean classes are used a bit differently.

The field String. used only by the string class. points to an airay of characters
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vord Int_plus( osp )
int osp;
{

os[osp] = Createlnstance( .ClassTableIndexInt, hwm );

os[osp] -> Tag.Int =
os[osp+1] -> Tag.Int + os[osp+2] -> Tag.Int;

Figure 2.21: The special Dee method to add two integers.
in memory. This field is created by the run-time function Createlnstance() or by
a special method of the string class. These functions use malloc() to allocate the
memaory that actually holds the characters of the string. It would have been difficult
to place the characters of the string directly in the structure of the object because
strings in Dee are of variable length. They grow and shrink automatically to fit the
size of the string that they hold at the moment.

The field Bool can only point to one of two objects: the false object or the true
ohject. The two objects are created before any other Dee statements are executed.
In order to test the truth value of an object of class Boolean, we test the Bool field
to see which of these two objects it points to.

Using a variant record to hold the different possible values associated with each
type of base class saves memory, but at the cost of adding one restriction to the
inheritance rules. 1t is not legal to inherit from a base class in Dee. If this were
allowed, it would be necessary to have distinct slots for all the different base class

data values,
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Figure 2.21 shows the special method used to add two integers together, The first
C statement creates a new instance of the Int class and places it in the result slot
of the current Dee stack frame. The second O statement adds the Int fields of the
object passed to the method and the object in the sell field of the current Dee stack
frame. Their sum is assigned to the Int field of the integer object just placed in the
result slot. This is typical of how the special methods of the hases classes actually
manipulate data contained in the base class data fields. Appendix B contains the
complete Dee and C somcee code for the base class Int.

One should also note the name of the special method in the above example. As
mentioned in Section 2.3 on the parser. the infix operators, like ™+7 are transformed
into regular identific names prefixed with an underscore. This allows progranimens
to follow the same method naming convention used when the compiler generates stubs

for all the other Dee special methods.



Chapter 3

Conclusion

3.1 The Dee System

In this thesis we have explored the Unix implementation of the Dee System. Because
it is rare in the literature, we have taken the time to build both hand-coded and
generated scanners in order to get an accurate comparison. We have demonstrated
how a carefully planed AST definition can be used to allow a group of programmers
to work independently on different parts of the same compiler. A lack of discussion in
the literature was enhanced by a careful description of code generation from an AST
to (" source code. Innovative techniques for exception handling and browsing were
presented. And finally, one of the first in-depth discussions of a mark-and-sweep
generational garbage collector was presented. Unlike other generational collectors,
ours included the ability to dynamically increase the size of each generation.

The Dee System can be judged on two different critera. The first, and most
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pertinent to this thesis. is an evaluation of the compiler and its environment. This
would include the factors that determine how usable this particular implementation
of the system is. The second criterton would try to determine how successful the
Dee language is at solving software problems. An excellent implementation of an
inadequate idea is of little value to the field of Computer Science. | conelude this
thesis with a discussion of the different components of the compiler and supgest ways
in which they might be improved.

Creating a hand coded scanner and parvser would slightly enhance the performance
of the compiler, but the time it would take todo this could he better spent elsewhere,
If any change to these components is undertaken, it would make the most sense to
improve their error reporting capabilities.

Code generation is the portion of the compiler with the most room for ymprove
ment. Because generated code is so difficult to debug, the current version makes no
attempt to optimize at all. I'uture versions could produce better ¢ code Ly imple-
menting some very simple improvements such as peep hole optimization and removal
of unrecachable code.

Generating code directly into object format and avoiding the C intermediate steps
would improve performance significantly. Thisis a very diflicult step and would most
likely tie the Dee System to a particular picce of hardware, A better alterative
might be to use a machine-independent back end. The GNU team has a back end
which produces code for a large number of different CPUs. Docunmentation for the

software is nonexistent, but the source code is freely available, Il docamentation docs
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become available, this software might serve as an inexpensive but highly portable and
eficient way to compile directly fiom Dee code into object code.

The gartbage collector conld also be improved in several ways. Currently, it is
quite efficient in time and mernory reclamation, but expends the very large overhead
ol one word per object. 1t would not be difficult to get this down to a few bits per
object. As Goldberg points out in [Gol91]. modern garbage collectors should be able
to climinate. almost entively. any per ohject tag fields.

I helieve the implementation deseribed in this thesis is a surprising success. There
is no end of improvements that can be made, but given the fact that it was completed
by only a few master’s students working under one supervizor. we have achieved im-
pressive tesults, The Dee system works. Tt is the first implementation of a strongly
tped programming langnage that supports the object oriented paradigm. excep-
tion bandling, niltiple inheritance. automatic garbage collection and a sophisticated
browser, that we are aware of. We liave successfully created a small class library and
tun several small ill)l)li\'(lli()ll.\

In order to judge the success of the Dee language. many more applications will
have to be created. As the compiler undergoes more and more use we will be better

able to understand its strong, points and weaknesses.



3.2 Related Work

The work that is closest to the Dee project is the Sclf project being caviied out at
Stanford University. David Ungar and Craig Chambers have created a Smalltall Tike
language and environment. which supports the object oriented paradigm. Unlike
Dee. Self is dynamically tvped and compiles directly to machine codes For more
information about Self see [CU1].

Much work is also being done in the field of garbage collection. Work on improvine
the efficieney of allocating records is being done by Appel [AppSole One assue that
was not discussed in depth in this thesis s Jocality of memony access during, parbage

collection. Work is heing done in this arca by Wilson, Lam and Moher [\WLN5G T
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Appendix A

The Abstract Syntax Tree

/¥
Dee AST struct definitions.

*/

#1fndef _DEEDEFS_
#tderine _DEEDEFS_

#idefine NIL NULL

typedef enum { FALSE, TRUE } Boolean;

typedef int HashIndex;

typedef char *StringPtr;

/* Loop types */

typedef enum { Infin_1, While_l, Until_l } LoopType;
/* Literal Number types */

typedef enum { Int, Float, Byte } NumberType;

/* Mode for local variable */

typedef enum { Param, Result, LocalVar } LocalModeType;

typedef enum { IGNOREATTR, FROMSELF, FROMPARENT,
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FROMCLAUSE } AttraiSrc;
typedef enum { MethodM, ConsM } MethodType;
/* A method body is a ‘‘from’’, abstract, concrete or an Instr */

typedef enum { BodyUnknown, BodyFrom, BodyAbs, BodyConcrete,
BodySpecial } BodyType;

/* An ident node can be a local, inst var, handler local or method */

typedef enum { IdenLocal, IdenInstVar, IdenMethod,
IdenCons, IdenHandlerLocal } IdenType;

/* Abstract syntax tree definitions. */

typedef enum {
List, Class, Type, Var, Method,
Local, Assagn, If, IfPair, DolLoop, Loop,
Apply, Iden, Break, Continue, Nal,
Attempt, Handler, Signal, Bool, Number,
String, Null, Undef, Signature, SymTab, CTemp
} ASTNodeType;

typedef struct ASTNode *AST;
struct ASTNode {
ASTNodeType NType;
int Column, Line;

union {

/* Lists of nodes are reprsented with List nodes. The
empty list 1s represented by NIL. %/

struct {
AST Node;
AST Next;
} List;

/* A Class node describes an entire class. */
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struct {

HashIndex ClassName; /* Name of the class */

StringPtr ClassComment; /* Comment following class header */

AST ClassParamlList; /* List of Signature nodes */

/* List of the actual classes corrspnding to formal class params */
AST InheritlList; /* List of Class for inherited classes */
AST ExtendList; /* List of Class for extended classes */

AST InvarList;

AST Attributelist;
AST Ancestors; /* list of all ancestors of this class */

AST Uses; /* The classes of all variables used in */
/* stmts of all methods */
Boolean ClassHasSpecial; /* true if the class has any special methods

} Class;

/* A type has a name and a list of arguments, which are themselves
types. E.g. Array[Table{Int Straingll. */

struct {

HashIndex TypeName; /* Type name */

AST TypeArglaist; /* List of Type containing arguments */
} Type;
struct {

HashIndex Sigld;
AST SigType;
AST SigOriginalType; /* Never altered by type substitution */
int StackOffset;
} Signature;

/* Instance variable descriptor. */

struct {
StringPtr VarComment; /* Comment following variable */
AST VarType; /* Type node giving the type of the
variable */
Boolean VarPublic; /* True if this is a public variable */

AttriSrc AttributeSource;
AST SourceClass;
} var;

/* Method descriptor. */



struct {
Boolean MethPublic;
MethodType MethKind;
HashIndex MethName;
StringPtr MethComment;
AST Result;
AST MethOriginalResult

/*
/*
/
[ *

; /*

True 1f this 1s a publac method */
One of method or cons */

Method name */

Comment following header */

never altered by SA */

AST MethLocallist; /* List of Local local var descraptors
AST MethParamList; /* This is a pointer into the MethLocallist
where the parameters start (not sep. list)
Require part of a method #*/

Ensure part of a method %/

List of statement nodes %/

/* What kind of body does this method have */

AST Require; /*
AST Ensure; /*
AST Body; /*
BodyType MethBodyType;
AST DefinedBy; /*
AST ImplementedBy; /*
int LocalCount; /%
int ParamCount; /*

} Method;

Set
Set

by the SA */
by the SA */

Number of local variables */
Number of parameters */
AttriSrc AttraibuteSource;
BodyType FromBodyType; /* The true body type of a from body */

/* Local variable descriptor. Local variables include parameters,
result, self, and declared local variables. */

struct {
HashIndex LocName;
AST LocType;

} Local;

struct {
HashIndex Id;
IdenType IdenKind;
int LocDisp;
AST IdenType;

} Iden;

/*
/*

/*
/*

Local varaable name */
Type node giving type of variable */

Stack displacement 1f a local +/
type of this 1d filled in by the AST +/

/* The next group of nodes represent statements. */

/* Assignment statement: LHS
variable or self instance var */

struct {
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AST AssignVar; /* LHS Identifier node */
AST AssignExpr; /* RHS expression subtree */
} Assign;

/+ 1If statement */

struct {

AST IfPairlist; /* List of IfPair nodes */

AST IfElse; /* List of statements in the else part */
} If;

/* A pair consisting of an expression E and a list of statements S,
corresponding to "if E then S' or "elsif E then S". %/
struct {

AST PairExpr; /* Bool expression */
AST PairStmts; /* List of statements */
} IfPair;

/* A controlled loop:
“"from S until E while E do S od". */

struct {
AST FromStmts; /* List of initialization statements */
AST Unti1lCond; /* Bool expression */
AST WhileCond; /* Boolean expression */
AST LoopStmts; /* List of loop statements */
} Loop;

/% Attempt statement:
attempt S handlers end */

struct {
AST AttStmtList; /* List of statements to be attempted */
AST AttHandlerList; /* List of Handler exception handlers */
} Attempt;

/* An exception handler: var:type statements. */

struct {
AST HandlerVar; /* Local node for handler variable */
AST HandlerStmtList; /* List of statements for handler */
} Handler;

/¥ Signal statement */
struct {
AST SignalExpr; /* Expression node for exception object */

} Signal;

7
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/* An application node can occur either as a statement or an expr. */

struct {
AST Receiver;
HashIndex AttrName;
IdenType AttrKind;
AST AttrType;
AST ApplyList;

} Apply;

/*
/*
/*
/*
/*

Either an Apply node or an Iden node
Name of the method in the application
can only be InstVar, Method or Cons
static class of the attribute

List of expressions: the arguments

/* The following nodes represent expressions. */

/* The expression "undefined Expr". */

struct {
AST UndefExpr;
} Undef;

/* Expression node */

/* A boolean literal: either TRUE or FALSE. %/

struct {
Boolean BoolVal;
} Bool;

/* A numeric literal which may be an Int or a Float. */

struct {
NumberType NumKind;
int IntVal;
double DoubleVal;
unsigned char ByteVal;
StringPtr NumVal;

} Num;

/* A string literal */
struct {
StringPtr StrVal;
} String;
} Tag;

}; /* ASTNode */

#endif

/*
/*
/*

/*

an i1nt or a float */
if int, here’s the real value */
if float, " */
String representation of value */

+/
+/
v/
+/
v/



Appendix B

Class Int Implementation

The Dee source the the class Int.
class Int

-- The basic class whose instances are integers.
inherits Ring Order Index

public method get
~-- temp way to read an int from the keyboard (does not create the int first)

special

public method prant
-- temp way to print an int
special

public method show : Strang
~-- temp way tc print an int
special

public method maxint: Int
-- Return the largest integer that can be represented.
begin
result := 2147483647
end

public method = (other: Int): Bool
-- Return true iff the receiver is integer equal to the argument.

special

public method zero: Int

v /]
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-- Return the integer value 0.
begin
result := 0
end

public method one: Int
-- Return the integer value 1.
begin
result := 1
end

public method + (other: Int): Int
-~ Return the integer sum of the receiver and the argument.
special

public method - (other: Int): Int
-- Return the integer difference of the receiver and the argument.
special

public method * (other: Int): Int
-- Return the integer product of the receiver and the argument.
special

public method / (other: Int): Int
-- Return the integer quotient of the receiver and the argument. System
-~ exception if the argument is zero.

special

public method mod (other: Int): Int
-- Return the integer modulus of the receiver and the argument. System
-~ exception if the argument is zero.

special

public method < (other: Int): Bool
-- Return true iff the receiver is integer less than the argument.
special

public method float: Float
-- Return a floating point number with the same value as the receiver.

special

public method char: Scring
-- Return a one-character string consisting of the ASCII character whose
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-- code is the receiver. Exception 1f the receiver 1s outside the range
-- [0..255].
special

public method abs: Int
-~ Return the absolute value of the receiver.

begin
if self >= 0
then result := self
else result := 0 - self
fi
end

public method gcd (y: Int): Int
-- Return the greatest common divisor of the receiver and the argument.
-- Exception 101 if either argument is zero.
var x: Int
rem: Int
begin
if (self = 0) or (y = 0)
then signal 101
fi
x := self.abs
y := y.abs
from until y = 0 do
rem = x mod y
X 1=y
y := rem
od
result := x
end

The implentation of the special methods of class Int.

/*
Special Dee instructions for class Int

*/

#include "CeeGlob.h"

extern int _ClassTablelIndex_Int;
extern int _ClassTablelndex_Float;



void Int_print(osp)
int osp;

{
printf( "%d\n", (os[osp+1] -> Tag.Int) );

}

void Int_get(osp)
int osp;
{
scanf( "%d", &(oslosp+1] -> Tag.Int) );
os[osp] = oslosp+1];

}

void Int__eq( osp )
int osp,

{
1f ( os[osp+1] -> Tag.Int == os[osp+2] -> Tag.Int )
os[osp] = true_object;
else
os[osp] = false_object;

void Int_char( osp )
int osp;
{
char s[2] =" v,
*s = (char) os[osp+1] -> Tag.Int;
osfosp] = create_string( s, hwm );

¥

void Int_show( osp )
int osp;

{
char buf[20];
sprintf( buf, "%1d", oslosp+1]->Tag.Int );

os[osp] = create_string( buf, hwm );

}

< ~
T



void Int__plus( osp )
int osp;
{

os[osp] = CreatelInstance( _ClassTableIndex_Int, hwm );:

os[osp] -> Tag.Int = os[osp+i] -> Tag.Int + os[osp+2] -> Tag.Int;
¥

void Int__minus( osp )
int osp;
{

os[osp] = Createlnstance( _ClassTableIndex_Int, hwm );

os[osp] -> Tag.Int = os[osp+1] ~> Tag.Int - os[osp+2] -> Tag.Int;
}

void Int__mul( osp )
int osp;
{

os[osp] = Createlnstance( _ClassTablelIndex_Int, hwm );

os[osp] -> Tag.Int = oslosp+1i] -> Tag.Int * os[osp+2] -> Tag.Int;
}

void Int__dav( osp )
int osp;
{

os[osp] = Createlnstance( _ClassTablelIndex_Int, hwm );

osfosp] -> Tag.Int = os[osp+1] -> Tag.Int / oslosp+2] -> Tag.Int;
}

void Int__mod( osp )
int osp;

{

os[osp] = CreateInstance( _ClassTablelndex_Int, hwm );
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os[osp] -> Tag.Int = os[osp+1] -> Tag.Int % os[osp+2] -> Tag.Int;
}

void Int__ne( osp )
int osp;
{
1f ( osfosp+1] -> Tag.Int '= os[osp+2] -> Tag.Int )
os[osp] = true_object;
else
os[osp] = false_object;

}

void Int__1t( osp )
int osp;

{
1f ( osfosp+1] -> Tag.Int < os[osp+2] -> Tag.Int )

os[osp] = true_object;
else

os[osp] = false_object;
}

void Int__gt( osp )
int osp;
{
1f ( os[osp+1] -> Tag.Int > os[osp+2] -> Tag.Int )
os[osp] = true_object;
else
os[osp] = false_object;
}

voad Int__ge( osp )
int osp;
{
1f ( os[osp+1] -> Tag.Int >= os[osp+2] -> Tag.Int )
os[osp] = true_object;
else
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os[osp] = false_object;

void Int__le( osp )
int osp;
{
1f ( oslosp+1] -> Tag.Int <= os{osp+2] -> Tag.Int )
os[osp] = true_object;
else
os[osp] = false_object;

void Int_float( osp )
int osp;

{
os[osp] = CreateInstance( _ClassTableIndex_Float, hum );
os{osp] -> Tag.Float = (double) os[osp+1] -> Tag.Int;

}
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