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" undeformed radius K ' . s

“* . NOMBNCLATURE

»
hY

p;ramete'rs defined by (3\.24)
flgxturai rigidity .‘z‘f.:ha/_li(l - v

' éi_ssipatix're function -

'elenieht of undegpfmed- mer'idiar;
element of deformed meridian
stra.:in due to axial sho'r:tening -
Young's .modulus.: o

(/)8
“(/a) *u

shell thickness

Itxeight of po,t’ential barri‘er .
;}arameter = (Z/T:*\'oi'h)/(/f prc‘r;a‘;‘a)
parameter = ?—B:ir,"sz)"/(Zaaa’h")
parameter = (n—l-:z}—‘-z—) (K’h"):

length of panel

 normalizéd ~displaced\ volume

’volume displaced during deformation
[ §

. shap-throlgh displaced volume

parameters defined by (3.35)
mass of pangl),_ v

meridional moment resultant

';:&réuniferential moment resultant

meridional stress resultant

»

circunferential stress resultant

| first probability of buckling at time T

' external pressure

|
]
‘ »*




,X

'Y

. - '
. generali zed force : »

displacemé'nt of shell .

transverse shear ' ‘ ' ,

horizontal distance . from axis of symmeérykto point

.

on middle surface -

3

;‘adius}\ curvature o‘f deformed meridian
radius of cﬁrvatt‘.u':e of. déforméd surface in direction
tangent to circumferenc;e ‘ ’ .

reliability figure
defined By (.2.43) Ch. II
kinetic energy Ch. III o !
time interval for first probability of buckling
Ch. III & IV ' '
dimens:ionless~ displacement g
dimensionless displacemenkt
tangential displacement Fig. (2.3)
total potent;ial energy
bending strain energy
membrane st;.rain energy
work done by external pressure ™ . N ¢

normal displacements Fig. (2.3) - “"

meridional coordinate Co ' \ ' .

I .

differentiation with respect to x
(m/a)x
differentiation with respect to y

vertical distance from apex to point on middle surface

sustained angle .
, ,

‘.




« negative anl;le‘of" rotation of méridional tangent
N ' t

<

during deformation L. T
- o
viscaus damping-coefficient’ \ e
B,/m ~ , .

nondimensional damping .coefficient S
meridional and circumferential strain .

3 . . P . y
nondimensional displaeement = qi/h
3 - ‘ N

'y

angle of transformation

meridional and circumferentjal shange in- curvature

geometric parameter given by (2.38) Ch. II

static load pasameter = A\'/h.’ Ch, III & IV

static load parameter . -
‘Poi’.sson'sk ratio ) ‘
generalized for;é functio.n_
ér?s'sure plarameter = P/Pey
density of panel -
period of fundamental frequency
angle from edge to element ) 0

natural fréquency o{ pa@nel

-
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Chapter I

INTRODUCTION
3

. Recent interest in design.and fabrication of pressura
‘hulls for deep sea exploration, pressure vessels in nuclear
ap:;ﬁcation as well as special shell forms in aeronautical

application has led a great number of investigations to study

the behaviour of sHells under deterministic external pressure

loading. Only Sankar and Ariara;ﬂam [1 2, 3] tackled a simi-

B

lar problem from the stochastie point of view. ghey investi-
gated srmple structures such ‘s an, arch to calculate the pro-
babllity of thc time of the first snap-through of a structure
under randomly varying loads from a givgn initial state as

well as the probability of the first snap-through in a given

time. ) .

3 \

The puruose of this study.is to extend the existing
probabilistic analysis to, determine the stability of three-
dlmensional structures 11ke thln cylindrical panels and

spherical shells under random “loads. Only in the domain of

3

-t

4

]
aeronautics designers.make extensive use of such thegrles in
their designs. Application could vary from designing unpres-
surized airframe panels which exist on all girplanes, to

specifically designed domes carrying special research equip-

ments. Aircraft protrusions are extemsively used in afr

1

survey programs such as ice patrol, pollution control around

large cities, detection of oil fields, etc. .... These

-

structures, are subjected to large variation of .randomly-

*

. v
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¢
applied extérnal pressures consisting of aerodynamic, clear
air turhplance and air gusts pressures. Also, randomly

. . e . . )
distributed initial imperfections in the shells are known to

.contribute highly to the loﬁerinQ of the buckling stresses.

Deep- sea ﬁressure hulls, altitude test chambers, nuclear
pressure vessels, etc. ... are among other fields which could

make use of such an analysis in theig_design.
. o '

In order to make this presentation self-contained, a
historical survey on the large-displacement theory, the
energy method used for a buckling solution are given and are

Vs
followed by the Sankar Arlaratnam probability analysxs of

" first snap-through and snap buckllng applied to eyllndrical

panels -and spherical shells. . ’

THe development of the large dlsplacement theory started

prior to ‘the first World/War when Lorenz {4], Tlmoshenko [5) .

-and Sduthwell 6] developed the classxcal solutlon of the

linear equations governlng the neutral equlllbrlum of an
axially compresSed cyllndrlcal shell The experlmental work

® \
done on the- subJect in the earfly thirties showed that shells

k3

buckle under much smaller stresses than those predicted by

the\fla531cal theory. o e . o

In the early forties, von Karman (7} demonstrated that
the analysis of the buckllng of the. shells by means of the

small-displacement theory was not sufficient to establish

"the praqticelulimits‘of the load cefrying capacity of ‘thin

shells. Later, with the collaboration of Donnel [16],

PR

s
s
.
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into a corresponding element of the polyhedron. These solu-

. wide disagreement between the calculated critical loads and

S, oL |

- - Ny
. RS
LA
- PN
.

von Karman analysed. the problem by means of large disﬁjacement
equatiogs and was able then to find soluti6ns iqyolving
large-displacements coexistihg with small-displacemenfs under
smaller critical loads than those given by the classical
theory. In fact, for each pressure load condition, threé
displacements could be determined; a small displacement cor-
responding to a stéble unbuckie stéte: a large one correspon-

ding to a stable’buckle state, and a third in between the

other two mentioned above, but corresponding to 'an unstable

state. The physical reasoning behind .the multiple solution
of the largé displacement equation is the existence of poly- ‘
hedral surfaces into which the cylimdrical shell can be devel-

oped, such that every element of the shell is transforméd

tions were described by Yoshimura [8] and Kfrste ([9].

~

4

A shortcoming of the large displacement approacﬁ was in
the exberimentally observed ones. Also, the eXperimentdliy
obtained buckling stresses dacreased more rapidly with

‘s
increasing value of radius-to-wall thickness ratio than pre-

dicted by thé theory. This rapid decrease in the buckling

load was caused by.mangfacturing defects in the shell geometry.
- r) i

On the subject of shell imperfections; Fliigge [10i carried
out calculations as early as 1932, in brder to confirm whether
deviations -of certain maénitﬁdes'could account for the differ- ~

ences between experimental and theoretical buckling stresses.




o cewrempe

"curve could be positive, zero or negative. He showed that

His lack of success came from the restricted scope of his

'étudy.

Later ln 1945 K01ter [11] succeeded with a broader

" analysis on the general theory of the stability of thln shells

to show that the slope of the load versus end shortenlng

”
1

2

shells are extremely sensitive to initial imperfections and
that they do snap into a large-displacement state of equili-
brium associated with a sudden drop in load well before the

classical wvalue of the critical stress is reached.

In 1953, Keiter [12] modified the classical buckling
formula by intfoducing a correction factor implicitly defined
in Telation to foisson's ratio, the shell thickness, its
radius end the ratio of amplitude of initiak'deviations to
the wall’thickness This gave buckling stresses in agreement
with the experimental observatx@ﬂs prov1ded that the amplitude
of the deviations from spher1c1ty are proportional to the

radius of the shell.. :

Again von Karman with Tsien [13] in 1239 made the fi;s%
attempt at develop?ng a large-displacement theory, -for
sﬁherical shells, in order to explain the differences between
theoretieal‘and exﬁerimental criﬁical buckling stresses.
HaVing-observeF‘that thesize of buckles were felatively’small
compafed‘to the diameter .0of the shell, Karman and Tsien made

use of the large-displacement equations valid for shallow

£}

. shells together with corresponding energ& expression to study

[P SRR
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unbuckled state the theory fails to reveal that there are

the behaviour of shallow spherical caps-clamped around the

edge. It was conjunctured and later shown 'analytically by
means of, an example that the ldad-displacement curve for that

type of shell segment consisted of three parts, a stable °

. unbuckled .and a stable buckled state where the dieplacement

o

increases with an increment in the load, and ah unstable state

where the displacement increases with a decrease in the load,

as explained in figure (2.15. From here the problem of buck-

ling related to spherlcal shells took quite a dlfferent char -

-acter from that of the classical theory.

—Suppose the buckling pressure is deemed to have béen. .

reached when a small inward dimple occurs at the surface of
a petfect. spherical shell. . The.classicei theory is correct

in stating that up to the "classical buckling load", any

infinitesimal deviation from the spherical form involves an

- ] ,
increase in the potential energy of the shell. At this point,
the structure is said.-to be stable. However, along the
configurations with finite displacements involving a lower
potential energy  level than the classical maximum. In these

configurations the shell may snap-buckle and jump from the

umbuckled state of equlllbrlum to another buckled stable state

at the same or even at a lower 1oad level.

S ay

-

axisymmetrical deformation of thin shells. Two [of the moetl_

.
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complete studies on the buckling of shallow spherical shells

were by Budiansky [27], and by Weinitschke (23]. who made use
of two matched 1nf1n1te series to satlsfy Relssner s eQﬁatlons

They, found that most of the avallable experlmental results

1

-were far below the theoretlcal curves and attrlbuted this
discrepancy to the random 1mperfectlons in the shell shape.
The.difference in buckling stresses decreased significantly

when Krenzke and Kiernan [13] feported”téSQS on specimens

/
prepared with extreme care.

»

- The methods ugsed in the case of buckling of spherical

shells can be classified 'in the following -five types{
ul. The perturbation methdd [17, 18] where the non-dimeq-
sional radial deflegction at the centre of.the.shelllx !

N . .
is employed as a perturbation parameter.

2.. Thé'powq; series method [19 to 23],‘in whigh the solu--
tion of the load_dispiacemeﬁE equation is achigved-by -
reprgseﬁting the equatién és a po%er series and deter-
mining it; coefficients using Newton—RapHsoﬁyiteration
process. ’

3. The finité difference method [24,-25, 26] in which the

: load-disélééement‘equations for shallow 4hglls are

sglé;d by applying the finite'differeﬁie technique.
Bushnell [35, 35] solved the finite differenceyanélog/
of thefdiffgrential equations by using,variable%sgatic

spacing in order to obtain accurate predictions of

‘edge stresges and displacements.

e B g ke W e

oy
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i 3

The iterative numerical integration method [27 to 31] in

i

which' the load-displacement non-linear differential

4

equations are solved numerically by apptroximating them

by a sequence of linear variational(equatioms. The

¥

linearization is performed by expanding nom-linear

»

terms in the differential equation in a Taylor series.

* ‘and retaining‘only the linear terms.

The energy‘méthod'[32] is used to locate paints on the
unétébléhbrgnch of thé‘load-displacement curve, and to
determine the effect of imperféctions in the initial
shape of the spherical shell. It involves an evaluation

<

of the potential'expression in terms of the tangential

‘and normal displacements which are expressed as simple

\ -

trigonometric series. Once the non-linear algebraic’
equations resulting from the minimization of the/poten-
tial energy with respect to each of the undetermined

coefficients are,sélved, load-deflection curves can be

L . '
.plotted for various values of a geometric parameter

'‘of the shell for perfect shells.as well as for shells

with initial deviation from sphericity.

4
L

The problems of interest in the stochastic case are the

T

EE

R O R Rt 85 HBe W e

'

Mo 3L

3

determination ofrthe'probability of the time of the first -

snap-through of g structure stér;ipg from a given initial

state and of the probability of the first snap-through in a

given time. A shell type §£rucfure\ﬁhose initial rise is

small and loses its stability uncer a‘'single symmetric mode

of deformation, constitutes.a good example of snap-through.
v ' - T ¢ w
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In the late thirties Kramers (33],.in his study of
kinetics of chemlcal reactlon,wcalculated the probability éf
. escape of particles over a_potentlgl barrier through the
shuttling action of Brownian-forces causedfby ; égrrouﬁding
‘medium in tempefﬁture equlllbrlum In order to study the
probability of ‘snap- through of cyllndrlcal panels under
random preséure Goncharenko {34] adapted ;.gimplified Kramers
method. Latgr Ariaratnam and Sénkar [1] extended it tB derive
the probability of the fiyst symmetric snap-through in a
finite time using the locally staﬁionary’solution of the

-

Fokker-Planck equation for stdchaspicaliy loaded shallow arches.

In the snap-through process, the potential energy func-
tion has a sinéle loéal maximdﬁ correspdﬁding to anAunstgble
gguilibrium configuration. For gtruccgréé subjected to stocha-
stic load, the pFoblem involves the determinatidn of‘tﬁe d{f-|
fusion rate of the probability density across thé potential
hump (qaxiﬁum of the goéen%ial energy curve). Lﬁter,'Ariératnam
- and Sankar [2] extended their study to glell-typerstructupés
whose initial risg exceeded a certain spZLifiq valﬁe; these
types present a symmétric.and an antisymmetric mode of deﬁor:
mation and~display‘a snap—buckling type of inétabi}ity at a
criﬁical loading In thls case the potentlal energy surface
has a saddle poxnt and represents the unstable equlllbrlum ;

state of the structure. Under stochastic load, the probrlem

involves a discussion of the difflision of the probability

¢ -

density in a four-dimensional phase space. ¥Finally, Ariaratnam

and Sankar [3] extended the.above analysis to the practical

t -~

- -

et o o

[
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.. problem of ;symmetric dymamic instability of‘éﬁaquw arches:

- The purpose of this study is to extend Sankar and ,

Ariaratnam’'s (1, 2, 3] work on the probabllity of first snap .

buckling . of eyllndrxcal panels and-spherical caps under sto-. ., .~
chastic ioads In. the case of cyllndrical panels under‘random
surface loadlng Sankar 's [40] approach will’ be used as the
L ba31é for the discu551557 Th: equatlons of motion will be X

, written in terms of the potentlal energy u51ng Lagrange s

"equations of motion. , -Then the energy surface will be deflned '
and the. diffusion of-the probablllty denslty diseussed, leading
to the determlnation of the first probability of buckllng in
a given. time. The structural ana1y31s of fhe spherical caps

- will be developed using the energy meghod:and an extension to

the first probability of buckling for panels QilL be proposed: .
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Chapter II

Q\'\Amcs OF SHALLOW SPHERICAL CAPS

2.1 Introduction

. , Y ] .
* The purpose of this chapter is to derive possible expres-
sions for the poﬁeptial~energy of spirerical caps. These

\

expressions can be useu to extend the earlier work done by s

' CT et i :
Sankar and Ariaratnam bk?‘Z, 3] on the ‘stochastic analysis of

"the instability of sphefilal caps.

~

Reissner's (14] basic equilibrium approach and Bushnell's
‘[32] potential en;rgy apﬁtoach,‘to the dynamids. of shallow
sphérical caps, .was based on the strain—displacemen; and !
‘&curvgture-dispygcement relations. the energy gxﬁféssion '
developed By Bushne}l'[32] is a logical extension of the-
equilibrium approach (1l4] to the ﬂypamics of spherical c;ps,
‘and should be developed first in order to givéaa comprehensive

view of the matter. .

Bushnell [32] actually solved the simplified Reissner
. equations, plotting the stable branches of the load-deflection
curve and then used the potential energy to complete the

unstable part, as shown in figure (2.1).

% o <

L

The effect of imperfectionms, which-drastically reduces
the classically arrived buckling loads was also dealt with
by Bushnell [32] as an extended application of his potential

energy approach. These effects are shown in figures (2.1)

and (2.2). : ‘ %
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2.2 ' Strain-Displacement and Curvature DispMicement Relatjons *

t ) *
A

The first step in the formulation of either the R{asic

equilibrium relations of the potential energy expressions for
spherical _caps under external loads, is to determine the strain-

displacement and the curvature-displacement relatioms.

.

The undeformed spherical™shell shown.in figure (2.3) is

L 4

clamped along the edge. The independent variable

" H

Js the
spherical aﬁg.ke measured fron;n the centre of the cap. The

dependeht variables for the "equilibrium approéch" are the

"

horizontal ‘and vertical components of dlsplacement "ua and

"Wy, measured at a point on the maudle surface of the spherical .
cap. The symbol o denotes half the sustained spherlcal angle;

”ex" and ' e" denote the merldlonal and c1rcumferentia1 nmddle
. . ‘

ll,‘( "

surface strains respectively;.'k,

is the change/l.n the cutva-
ture of the metidian during deformatior and "c," is that of

the line of intersection of the middle surfacg of a plane

" e

_“normal to the undeformed meridian; "ds and "dsy'' -denote -the

undeformed and the deformed element r‘espectiinalyj.

't

The ‘meridional -strain is then defined as

*
~ 3
v @

estdq
x ds

which can further be written as 3

-

. 2 Y
- [(r’,x +u§4x) + (=z +wa,x)f
4 €x= ettt

(2.2)

[3

)
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In order to rewrite equation (2.2) in terms of the dependents

v

f\. ‘and indépendent variables, the expressions under the sguare
s / . -

root are éxpanded by Taylor Series and the second order terms

<

are approximated. Considefing that r ='a sin'x dnd
z = a (1 —\cos x) and using the dimensioriless values u = uz/a

and w = w_/a, it’can be shown that the meridional strain is
\ | l 7’ S

. 2 2 .
& u cos-.x‘-l- W o 31n'\x + Z(u,'x + W o ) (2.3)

X 1 X
+ .

the circumférential strain e, can be written as

» u. . - A ,-" ,
€ T rd, —-1l= sin X - : . (4-_-4) T

\‘. I L »

Al.so‘ from figure (3.4)" the c:_ur%rature, of the meridian after

defbrmation is defined by , , . - ] -t
. o . \ " ' .
s l - 'd - v dx . . .
R, asd““’,xagd e ; NN .
' > . (2.5‘) '\~",‘x' ‘
. “' S ‘ z\ + w '
= -1 Dy X a
where ¢ = tan | = 3 . )
. !x a,x . ' o R
| . ~ )
< . > A .
- 'Different‘igtion of ¢ wigh respect to x gives, '
- o (e +'u z + - ; ) (- .
L o _ = (r x alx)( -, XX wa,xx) (z o ¥ Wa,v‘;g) (', xk * s kx) |-
RN (x _+u )+ (z_ + z W
T x " a,x’ Z,x wa,x) ‘

i3
1 M:ifu-..\n S A A b e, 3

*

v“'

iaalualtihialny
4
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Furthér, as ds = adx, then equation (2.1) can be expressed in

the form,

dx _ 1 '
ds 4 a(l + ) ﬂ' ' (2‘.7>

’

The curvature of the meridian after deformation‘can‘be
expressed as given in equka{ion (2.§)t-*by combining equations

(2.5) and (2.6). ¢

-

1 (r,:x+ ua.x)(z;xx_’-wa,xx) - (z,x+wa,x) (?,xx+ua;_x5_)_\ (2.8)
- Ry as(l + t-:x)3 |
‘"K‘A", the change of curvature of the meridian during d:aformg-
. tion can be expressed as,,
~ <, = R‘lj -1 | (2.9)
Noting from figure (2.4} that '
(l+ex)éos¢=cosx+u’ | . .

(2.10)
(l+ex) sin ¢ = sin x + w

<

3

The middle surface strain' may be assumed to be small compared

to unity and therefore €, << 1. Hence, equations (2.3); (2,4) .

and (2.10) can be combined to express the change of curvature
as

a|<1 = (w.xx - u’x) cos ¢ - (u'xx + W’x) sin ¢ -(2.11)

Similarly, k, can be expressed as

1 1 : ' : '
K2R T a e 2.12)

bl

From figure (2.4) andequation (2.4), R, is given/as \

>

~

Aa i B s e e bt A < W

Lk e e ol e
|
'
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-
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1 _#ing _ _sin ¢ - v
Ry, 44 r(l+ e . (2.13)

Substictuting eq\iation (2.13) into (2.12) and using the
assump tion £g << 1,

w
X

K, "2 sinx ) | (218
Equations (2. 3) and (2.4) define the scrain ~displacement
‘ .relat:.ons and equations (2.11) and (2.14) the curvature-dis=
placement relations which .will be used in the derivation of

the equilibrium equations and the potential energy expression

fqr spherical shells,
- ’ ™~

2.3 E:guations of Equilibrium
) v ‘
‘In\‘the gquili’brium approach _[32] the force and moment
equil.ib'ridi’n were derived by taking a de'formed element of the
middle surfac? under an external pregsure "p" as shbwn in
figure (2.5) 7 . The equation of equillbrium in the vertical®

direction ié _‘gi@/\y‘ ;

(r(1+ee)(Q cos ¢+Nx sin ¢>) ' +a r(l+ee)(1+e ) p cos ¢)=0
h (2.15)

~

~and in the direction along the tangent to the deformed meridian’

is given by

(x(l + ee) Nx] x a(l + ex) Ng cos. ¢ -‘r(l + ee)cb . Q=0
‘ ‘ . (2.16)

~

The moment equation is expressed by " )

z;és 4- a 'i:(l+se)(1+e;c) Q=0
(2.17)

(x(l+ e W] _-a(l+e) Me

et

P e

~
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(a) Deformed Meridian with Forces and Moments

(bj, Deformed Eletent of Middle Surface with

Circumferential Moments and Stress -Resultants
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{

where N, is theﬂneztid’{oﬁal'stress‘ result'ant N, thé eircumfer-

ential stress’ r’esultant .Q: the transverse shear, Mx the meri-

f

dional moment, resultant: M the circumferential moment resul-

tant and p the externat pressure

A i

3 ' -

Derlved by Bushnell [32] ‘the above equatmns are valld

,

for sphetlcal shells of arbltrary depth with ldrge stralns, |

displac.ements and. rotatlons, e
~ .', ¢ . ) (I - - \"’ '
In order to solve the abover equations of equilibrium for"
o ) . - Il
strains "smaller than unity, ¢ x and' €q €an be neglected &ith

/;respeet to "1". Equatlon (2 15) is, then integrated to

¢ ' * B ' '
give ST '
L Y “ - _ , .. ‘o
N v - [ R
13 N *

r(qQ cos ¢+ Nx_s.'i‘n‘ ) = -a A}S J’4.r cos ¢ dx + ¢ , '(2.18)

.
&

In equation (2.18), the integral part can fufth_er,be reduced

_to a simplified form in th?foilowingu steps -

-»

H

S rcos ¢dx = [.(a’sin x.cosx+auxsﬁin x) dx ° -

[
.

. . - , u . PR
= 4 + X X T ,
= ua sinx / a sin cos ‘ (1 sin x) dx

S =y a"'si;i X + /'a sin x cos x (1 -. Eg) dx
». 1‘ .‘ J}n > ’ v 'v a . 2 1" l.
“f rceos¢drk = ua sin X+ 5 sin®x . -(2.19)

‘Wl‘nile ar‘r:’__ving ‘at équation (2.19), use h.a; be"er‘g, made
of‘ .,equat:i:or‘L (.2'. 10) and the’ integration by parts.
The constant "c" in equation (2.18) is equated to zero due to-
‘the symmetry condition. Thus, ecg’uet'ion (2.18) tec‘iuces’ to tﬁe

form .

:

P R T
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i

2
r(Q cos ¢ 4_-ng sin ¢)' = - E‘%—— sin?x (2.20)

L

Equation (2.16) dan be expressed by using relations (2.5 to

S 2.7)

.

a
rNx’xf-acos ¢(NX-N9)- rQ/ET/?‘v (2.21)

. and finally equation (2.17) can be expressed by

a
aQ==Mx’x +;cos tb(mx—Me) - (2.22)

' obtaining equations (2.20 to 2.22) Bushhell [32] compared
. " the oi:/;ler of magnitude of e,,a;:h term and‘ neglected those ’
comparatively very small. The tf’lre‘a equilibrium equations
. ) (2.20 to 2.22) have seven unknowns, namelthx, Ne, Mx’ Me, Q,
¢ and R; in order to solve these equations the following

rekations can be introduced. '

‘For an elastic shell Hooke's law gives

. N, = BB (e, + veg) and Ny = Eh

2™ T S (e + vey) (2.29)

L 4

where h is the shell thickness; E and v are the Young's

modulus and Poisson's ratio regpectively.

Also the moments can be expressed in terms of the change

in curvature «, and x, giving

Mx = - D(»«:1 + vk, and I"Ie = - D(k, + vk,) - (2.24)

where the flextural rigidity "D" is given by

.« v

D = Eh?/12(1 - v?) (2.25)

Now the number of unknowns is thirteen and is equal 'to

the number of equations which are the strain-displacement

- -

T T e

L iy e A IR, 3, %, e Oy




equations (2.3'ang:f 2.4), th} curvature-displacement equations

‘2.8, 2.9, 2.13 and 2.14)y the equilibrium equations (2.20

/

to 2.22) and the four‘stré\ss/-s.s:{ain relations (2.23 and 2.24) .

The solution for these unknowns ¢annot be completed without

" defining the béundary conditions for shells clamped along

the edge
u( 'ﬂ = w == = 0
X = x a (2.26)
(W cos x-u _.sin x)lx =40
Also from symmetry at x = {
ulx==0"w,x] O’:Q'an'O .
) | , lx‘ (2.27)
N =N
Xx=0 ® x=0

*

These general equations of equilibrium being -difficult to solve

were simplified by Bushnell [32].

2.4 *Simplified Equations of Equilibrium -

For shallow shells ’with'a sustained angle "a << 7', and.
J

for small rotation "¢'" equations (2.10 ) can be written as

4

cos ¢ = cos X = 1 and sin¢=¢»4=x+w . (2.28)'

, X
The horizontal displacement "u" can be neglected compared to

similar terms for the vertical displacement "'w'".

The simplified set of equations is according to Bushnell
[32): ‘ ‘

pa’
(xM), -Mg+taxN (x+w ) =-——x (2.29)

Sl

¥

bt

S




a

(x N}'{) x = N8 (2.30)
’ i

€y * U + X w,f-t\?%;\w,xz .
(2.3D

eg = U/x C

K, = w’xx/a and K, = w’x/_ax (2.32}

W oy =0 - (2.33)

D S |

where equation‘(2,29) is that of the vertical equilibrium of
forces from which ''Q" has been eliminated by means of the
moment equation (Z.22); and equatien (2.30) is that of the

\

equilibrium in the direction of the deformed meridian.

2.4.1 Method of Solution for the Simplified Equations of

Equilibrium

Introducing a parameter B to be the negative of the
angle of rotation of the undefoymed tangent during deforma-

tion, hence from equation (2.28)

Wt B | (2.34)

Also introducing the independent variable y and the dependent

variable, f and g such that

yEg¥ fs-;-e~; and g = (5) % (2.35)

el

 Bushnell [32] used the above relations in conjunction with

equatiofs (2.23) and (2.28 through 2.34) to express the

equilibrium equations in the vertical direction and a‘long

the tangent to the deformed meridian as follows

v e

Mo ¢ s e T

P o A el
-
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ad

. 13
s
<

+f -E4r 1

YRy 1-v2 - VE | 12 -
S gy Tyt T Y - (g P -vE + 5% =
. 2 ‘
] z%prz (2.36)
98,y tE,y - B @ - e - y?£ + 15YF2 4yEf =0 (2.37)
AN y T Ty :

-
where the geometric parameter A is given by

Al‘

i

and the pressure parameter p = p/pcr » Per being the clas-
sical buckling pressure for a complete sphere

2

. 2E

h
Pey = )
> - \) )

@ (2.39)

It should be noted here that Weinistchke [23], Budiansky [24]

Thurston [25] and others have used the same geometric. parameter

"A" in their works about the buckling of spherical caps.
& \ N

\ .

Equatgons (2.36) and (2.37) represent a no‘n—lineér'
boundary value problem which can be solved by expanding £(y)
and é(yj in finite trigonometric series while expanding
v, y?, y® and y* in a Fourier series in the intervla.l

=T <y < which corresponds to - a < x< a.

A computer program written by Ho_ff”and Al [37], to

obtain equations for the post-buckled equilibrium of an

_ axially compressed cylindrical shell, was adapted by Bushnell

[32) to the snap-through problem of a spherical cap.' The new -

set of developed équations contains the free parameter A and

0. o

¥ 2 ' .
[(12(1-v*) (§) «"] _ (2.38)°

e
§
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K

. be approximated as given below (22]:

. should also be noted'that this method-fails to give adequate

~ \
. 3 - o e - nhm e
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2 e
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2.4,2 Plotting of the Load-Deflection Curves

» For every assigned value .of the geometric para’&neﬁer A

and of the pressure parameter o, a load displacement curve

can be plotted against a normalized displaced volume "L"

such t'hat
\La '
_L MW m— ! N . [ (2.40)
I"O o ° .
where "La':\ is the volume of displacement during deformatiom
and "Lo“ the volume of displacement during snap through as

—

shown in figure (2.6).

-

For small strains and shallow shells these volumes can
¥

3.2
b L. = ________Zana .fTr wy dy
-0 (2.41)

-

Figure (2.7) shows a typical plot of the pressure parameter |

p versus the normalized displaced volume "L" using a Fourier

LY

‘ 3 '
expansion with 5 t?gs, a geometric parameter A2 = 45 and a
sustained spherical angle %'= 1.

'

As previou/ély mentioned, only the stable portions of

thé curve can be plotted by using the equilibrium method. It

v

.

e

results for large vdlues of the geometric parameter X2, /

- A

T heetbtnd 8 o e . b ooy b g bee
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2.5 Potential -Energy Apbroach

™

i
The potentlal energy approach can be used for determlning

the unsgable part of the load-displacement graph derived in
section (2.3). It can also be used for determinlng the . !
effect of imperfectipn dn the load—deflect}on curves and for
‘extending the solution Bf the load—displacemeng curvés to .
values of the geometric parameter A2 in excess of 100. The .
dépendent varid%ﬂes shown in figure (2. 3) ¢dan bé defined ‘

b byIJ the tangential dlsplacement and W the normal dlsplace441;mjl

ment, to the undeformed shell, hence:

., -

‘ .
U, = u_cos x +w_* X
. . Ug a s W, sin

‘ co - s
Wa LA s X ,ua sifh x

~ Bushnell also introduced the following identjfies: ’ ’
. L v .
. ‘ -1 .. $
| T=a gy =¥, -
‘ 1 : - (2.43) i
“ sz iw AAE 4 !
[y . —a a"x ,1
‘ A Then expressxons (2 3), (2 4), (2 ll) and (2.14) can be . i

written in terms of Ua’ a’ T and S as I o

ey = T+ (T @5 . SRR

X .

| , \ (2.44)
se-lw dot 2 y-W] )
aky = | (1+T)-ST]

{é\cot y '+ T]
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~

Defining the tapgential and normal displacements to the
undeformed meridian bf the spherical shell in a dimension-

less form: '

- 2 Va o m ' )
U = ﬂ“)v/if - ‘and W (a)_ - . (2.46)
and .using equations (2.35) and (2.46), relations (2.43) -ahd B

(2.44) can be written as:

)

\ ay? o o, 2
T =) U'y - (2 W ‘
, . . (2.47)
'S=(%3 My~ @ v '
= (i)zfu p + 1y 1+ l;("‘)“[ w . - W)'2 + 2W Ué?
€x T .'y :2 'y . 7 T ,y . :,y' .,
.~ s N , - . -
3@ Ut * : - (2.48)
i '\3 v 2,
g™ () Ucot2y- () W : 2, (2.49)

f a

The approximate burvécure-displacemént relations (2.325 can
y N :

-

also be written as

S a

' e o |
ak. = W . and ax, ,(") W;Y cot b 2 ‘2.50)

. "
-

".2.5.1 Total Potential Energy of the Shell

Ve Vgt V-V o~ (2.51)

\ :
where ‘the total potential energy "V" is the sum of 'Vy', the
-

membrane strain energy, "Vb"' the bending strain energy and
’ i 4

"Vp" the work done by the external pressure.

. .I‘/,
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Using the flextural rigidity "D" defined by relation

2
(2.25) and assuming that e_, e, << nb—a—z-(Kl, <,), Bushnell

X 8
[32] derived the following potential energy expressions,

.V

v

\
- Eh 32 o L7 2 2 . [
V-F‘ Tz é (e, +ep” +2ve_ £)) sin =y dy
, = Da’ ué"(Kxg +K,2 42y kx,) sin Sy dy > (2.52)
- al 7 o
= 3 -]
p " 2 pa P—gw'sm“ydy

And, for small displacements of shallow spherical caps where the
radial displacement W, is of the order of the shell "thickness h,

Bushnell [32] wrote the strain-displacement relatior{ (2.48) <

W+ iw

2
a
e, = () (U 5

2
D4 ¥ ]

as only the first term of equation (2.48) predominates.

Expressions (2.51) and (2.52) can be written in terms
of the displaceménts U and W, in order to arrive at a solu-

tion in the form of a load deflection gzaph, giving,

5
2l - »
K(E) \Y Ivm + Ivb - va . (2.548)
where @ _2/TT=VT h
4
/Jpcr a‘a
T w+ly ' 4 o Y
Ivm .(f)' [(U’y W+2W’y ) +("Uc0tny-‘-W)‘J
U -Weitw H(%ycotl
+ 2v[U’y W+7W’y )(;Ucot=y :
- W1T sin &y dy > (2.56)
( 2 Tl'“ T 2 a 2 2Q \’ 2
‘Ivb = (1 - v )Fi (ery + ('fr') cot®=y le
a o > m a
+2\’FC°tTTYW,yyw,’y)ESinFydy ﬂ
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Iv_ = - go E; (L -.v?) /"Wl sin $y dy (2.56)
P A o @ i cont'd.

2.5.2 ,Method of Solution of the Potential Energy Equation

In order to plot load-deflection curves similar to
those drawn for the/equilibrium approach, equation (2.54) ]
should be solved for p against the normalized displacement

volume L, for different values of the geometric parameter A?2.

#

By minimizing the potential energy in expression (2.54)
with respect to each of the undetermined coefficients, a

set of non-linear algebraic equations are obtained. These

algebraic. equations can be’ solved by numerical analysis. {
Hoff (37], Madsen [38] and Bushnell [32] used Newton-Raphson i
iteration process to solve the above-mentioned non-linear

equations.

Figures (2.7) through (2.1l) show plots of the load-
deflection curves for various values gf A%. They also show

the effect of imperfections of the type: :

W, = 6(cos y + 1) ’ (2.57)

* n e S e

where a positive "§" rgpresehts shells which are slightly

~flatter compared to perfeétl& spherical forms. Other cases

i oy

+ » of imperfections can be introduced and solved similarly
. . ,@ .

g w e

by using the potential energy approach.
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2.6 Conclusion

The problem of axisymmetric deformation of a shallow
elastic spherical shell subjected to external pressure has
been approa;hed from both the equilibrium and potential
energy point of views. The latter leads to-the determination
of the unstable portions of the load-displacement curve, and
alsq allows for the introduction of imperfections in the

spherical caps.

Actual external loads affecting the excitation experi-
enced by structures like spherical caps cannot be adequately
described in terms of deterministic functions of time.

These forces fluctuate in a random manner over a wide band
Bf frequencies which can only be defined as stochastic func-
tions of time in probabilistic terms. In the next chapter,
the potential energy functions in the neighborhood of tﬁe
stable and unstable states of the structure, will be used to

derive analytical expressions for the probability of snap-

buckling in a given time interval.
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Chapter III

PROBABILITY OF FIRST SNAP-BUCKLING .

3.1 Introduction

As explained previously, two problems are associated
with the equilibrium of shell-type structures when subjected
to an externét’stochastic pressure load, namely snap-ihrougn
and snap buckling. In the first case, the problem lies in
the determination of the rate of diffusion of the probability
density across the potential energy hump in a two-dimensional
phase space. Figure (3.1a) shows a load deflection curve -
and figure (3.1b) a cross section of the potential energy sur-
face. 1t may be noted that a single maximum corresponds
to the unstable point "B'". 1In the case of snap buckling,
the problem involves evaluation of the rate of diffusior of
the flux density along one of the principal directions in a
four-dimensional phase space. As shown in figure (3.2b),
the potential energy surface has a saddle point representing

thé unstable equilibrium state of the shell.'

Due to the complexity of the potential energy equation
(2.56), the analysis of the asymmetric dynamic instability
will be first developed for cylindrical panels and then

extended to spherical shells.

3.2 Potential Energy of Cylindrical Panels

Consider a cylindrical panel with radius a, thickness h,

and a sustained angle a. Let the edge be hinged and be

-

D U S o W L I R ol S A

-
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Taking the coefficient of viscous damping Bs
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4

immovable at q; = 0 and ¢ = a.
T

& w -
The; initial rise W is chosen such that along with a

. -~ . . ‘o, 5 ,
symmetric deformation an antisymmepggic one'is also excited

. . .
under the action of the loads. With the coordinate axis

2

s.ho‘wn in figure (3.3) the undeformed centreline of the panel
is defined by Wo(da). With the&r}’gl initiglly in a stable

equilibrium "state underh a symmetrically distri@‘u‘ted pressure
of uniform intensity p, let it’be subjected, at a time ™= 'O,

to a random load of intensity q(t) sin(%‘i) having a zero mean
+ B ' ‘ : e

value. ' , n -

&
The déformed shape of the’“centreline of the rib at any

time will be given by %J (¢5 t) and the deformat:.on, as

g
measured from’ fhe crown,)at any other arbitrary pomt 1s

’
-

£ =Wy (9) - W@, ©)

YAy,

W(9, 3.1)

.= q sin( ) qzsl’_m(g?:{i

s

* o (3.2)

s

to be the same

in bq@ q,-and q, modes of deformdtion, the equation of

" 9w -
~motion of the panel may be written using Lagrange's equation,
s . . . . ’ L]
' d,oT, , 3f T . v _ . .
(5) + == - ==+ 22 = Q. (3.3)
3? 3y 3q;  9qy  3qy i @

where, 4 =1, 2 reprgsents;>%e two 'degrees of freedom o% the
paﬁel T the kinetic energy of the sYstem D¢ the d’issipa&ive

furmtlcm of the system, the ‘total potentlal energy and Qg

LY

K

the generalized forces ccrrespondlng to the applled loading

oh the panel the quantities T, D¢, "and V are. eValuated as: -

S i At e B
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— a . N o
p T= %h Jf wz dx a d ¢ *
. /¢ 0o . o .
‘ R )
N - 20ak fa(qlsz.nﬂ - c';zsin-z-—:-qJ—) d¢ |
- d ) ! ;
- 2822 §+ a2 P

as m = phata

° s q

“ hence T= %; m(g, % + q,2) : (3. 4)
W where m is }.he mass and p the density of the panel, ' . ’0‘
R ‘ 4
R RO

e f 4 0 q1 qz ” -
R " S
l . ’ o ) ; F

4 \ bt %
. Qz = O (3 .\7) !

As in the case of spherical caps, the potential-energy V of a -
) cylindricaltpénel is determined from the strain energy V, due =~ *

A ‘ , to axial shortening, the strain energy Vb due to bending and

the work done Vp by the external load p sin-?
B I d - i )
A +, Vy Vp ) ] (3.8L) }

: v
the wvarious components of the potential energy are ]
. - I 'D 1 a 12 N . : .
- = %( . '
v_ sfo{of (7 e”) dx ads ) .
“ ) -
Df 12 %a ae? | , S {
.- T BT b " - -
0 . . ) ’ :
- 3r* D¢ & 1., . 2 haa? 2 2 ‘ ‘
K - —-—-—-—-—zag SER [(Iq, + 2¢;) - T q,(q, + &4q, ) ; 7
2 L - .
16a¢ a ) (3°9)

+ ""7:‘;‘112]

T s o S, P
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£

where e (40], the average strain due to axial shortening, is

gi‘ven by ) ~
) - TI’2 1 2 2 ‘
e FaT 3 (2-q1 + 2q2 ) - 379, . (3.10)
De 2 a1 32y
- \Vb = Tof Of -aT (W) dx a d(P
Df L o, 7?2 T 2 2
. == G q e B g, stn 24 g
|4
leadir{g to
‘ 3wt D & p? ‘
~ V= Sov o 5 *16g,) G.11),
2 oo . T
V_=[ f (p+ q(t)) sin =~ W dx a d¢
P oo o .

. .
=pfaf (q sin? ™ - g sin X gin re ) db + const.
0 1 i ] 2 o a

[

. which may be calculated as

. 4

L 3n De e @ o ph?
P 2a? ¢’ h? 3m® D¢

The total potential energy, equation (3.8), can now be written

3m' D 2 1

= 2 12 2 ba o? 2
\ 2a! o} h? [(qu + 2q2 ) - ql(ql + anZ) '
‘ !'-6-_8'_3_&“ E 2 _8_ 2 2 ' a“ aﬂ“ hz
-+ ( ’"-5 ‘+‘ 6) ql +3 h qz - "“_"“—P"“g 7S Df q1] + const.
(3.13)
' 3" De
Define astrength parameterK' = T Dg

27 a? B? and static load para-

o4 2
meter A' = a—B-TT%—ERtL in equation (3.13)
£
(] 1 2 2 2 2 hz
V=K'[(39, * +2q,%) (q,* +4q, )+( +5)a

+ %hzqzZ -A'q,] + const. . . | (3.14)

e b ke A ls

) q, + const. - B.12)

.




3.3 Lagrange's Equation of Motion

-

On substitution in each term of Lagrange's equation of

motion (3,3) with the corresponding terms in expressions

(3.4, 3.5, 3.6, 3.

arrive at
" B v 1 3
v% q; + ; ql
m . Bo -
74 * 74,

Introducing the viscous damping parameter B ~

generalized force

'yields

. = 2
q1+8ql+ﬁ

A + 7o +;2_
' © 9, ‘ B4, Tm

- where ) and ELAR

99, o 3q,
(3.14) given by-

7) and (3.14) for 1 = 1 and 2, one can

+
@
Y]
]
L

-
-

(3.15)

<

F)

+
q2

|

=0

Q>

0
- and the

function £(t) = 2ok in equation (3.15),

Te- = £() ‘ _ ‘
‘ . (3.16) ..
L= 0 .

are the partial derivatives of equation

vV = 3 2 -168. al , l2a ol 3232 at
PR . y
.+b3_q1 S AT . (3.17)
WV _ o s ¢ _32aa? 16h?
3q, K'(léq,’ + (4q, = ql‘+-3—-) Q.1 | (3.18)

“

3.4 The Load-Deflection :Curves

For any gilven value of the static parameter X' the equi-

-libritm configurations of the system are given by




l6ac? 12aq 2 3222 o' h2. -
q,° +4q1q22-—;—3— q,% -——5— q12'+ —r—*+73)4q, -2 =0
(3.20)
32aa? 16h? ' .
16 q23+(4q12-———%3—‘q1+_3_) q, =0 : (3.21)

The roots of equations (3.20) and (31.21) describe the lodd-
deflection curve of the panel shown in figure (3.4). The
pointé A, B, B and C correspond to the four equilibrium\
configurations of the panel. "A" is the initial stable
state, "B " thc; unstable state of equilibrium and "C" the
final stable buckled state of equilibrium associated with
the symetric deformation node q, only. The other unstable
state of ‘é;c;uilibrium of the str;gcture, configuration 'B",

is §ssociated with both the 'symmetric and the antisymmetric
modes of deformation. The equilibrium cénfigurations cor-
responding to A(q, = PN and ’;12 = 0) and C(q, = .q-xc q\?d

g, = 0) a¥e determined by the roots of equation (3.26)
after setging q, = 0 while the configuration of B(q1 =

q;‘% and q, ='qu) is given by a solution satisfying both

equations (3.20) and (3.21).

’

t

3.5 Probability of First Snap-Buckling

In order to determine the probability of the first snap-
buckling Sankar and Ariaratnam [2, 3] used the Fokker-Plank's

equation technique. The state of the panel at any instant
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;s defined by the phase variables (q,, q,., §,, §,, t) under
the applied stochastic load g£(t). When the first probability
density p(qx, q,: E[l, qz, t) of the vector random proces; is
known, the probability of first snap buckling is then

derived as [31:
3

} ) .
- I 2 v 1)A [k g -8H
PT = 71? cos a[:-@_—\——y—g] { [T - (V“)B] - 2‘5 exp [—b-f-} (322)

11

q
Introducing the non-dimensional '‘parameters Ci = -ﬁi—. expres-

sion (3. 14) becomes

2K 1
RACTRIIRIRS Bl 3 {(“2'?;12+2C22) - By (g 2+4g %)
(3.23)
+Cg ? + % z,? -x;l} + const.
2 2 N
where K = n_z_l;_ (K'h*) , B = %’g’ﬁ
o (3.24)
_l6a’a* L1 Y
C=%5r t¢ .x o
aV aV ' . . . .
setting T 0 and Y 0, the equilibrium configuration
: 1 2

Gpr B and Le of the panel are given by the roots of the

following equations,

z,*+ (g, - B) (45,%) - 3B 2 + 20z, -2 =0
(3.25)

4y 2+ («;12 - 2Bc}1 +%) =0

2

For the stable equilibrium configuration, positions A and
C of the panel, shown in figure (3.2) .the anti_éymmetric
deformation is given by £, = 0. Using this in the first

of equations (3.23), gives the solutionms.

~ g

e



where 6 is the angle of transformation giyen by

‘ 12
cos g = ZB(QE B) - 3 (3‘5‘1—37‘73)

The unstable configuration of B is given by a solution satis-

fying both equations (3.25). That is,

: 4 Jz‘
51B3+(CIB'B)(-C132 + 2;13-3-) - 3Bz;1B -}-2C4‘;lB -a=0 (3.27)
witrh solution
- QB -
S i a )
(3.28)

3
Z Lo 2 _ b
Zap " 2% - %" -

t,p = 0 determines the limits of the static load parameter

Amin and Amax‘
c1B - B ¥ BY - 3—
hence A A =ipy /B2 - (3.29)
min’ "max 3 . 3. ' )

[ -
For the roots to be real and distinct the mean static load para-

meter must be such thas
<

%‘-B-/Bz-%; 2A<%»B+/B‘—§ | (3.30

The natural frequency of the panel for a zero initial

curvature in its fundamental mode t,, after setting g, = 0, is
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= %
given by u, = ('EZPI:(I_) which when introduTed in the energy

equation (3.23) gives,

V(z,, &, M) =-wf[(%c12+2c22)2-Bc,(clz+4c2’)+

(3.3L)
Cg, 2 +%c22 - A\g ] +const
3.6 Probability of Snap-Buckling: General Case
v )‘ = 3V aluated - d -0
110A " 2)Clz‘eva uated at [, C, and g,
1 2 - ’
(Vidy = wlz(BCIA - 6B, , + 2C) ‘ (3.32)
32.\7 A — -— —
(VII)B = 'a"‘c'z—T evaluated at‘: C! = CIB and ;2 = CZB
® (v, )+ | ¢
T B 208 1 ' 2 2
(VU)B = 2 ) [(VIX)B - (V“)B] + 4(V1 2)3}
(3.33)

‘As computed by Sankar and Ariaratnam [3] using Mohr's circle

technique.

" Now each term of equation (3.33) can be evaluated:

3tV )
(Vidg =52 .

0,2 (20,37 - 4B, + 2C - )

(VZZ)B "\3;22 , y (3:34)-
mw 2(- 8.2+ 16 B o - 52)
1 1B 1B 77

. A2V | .
(VH)B 95,9%, . . v

ot



3 2 4,2
B+4BC IB-(4B +B+-§)C 1B

(VIZ)B "wlz{l"f“ Chl
: (3.34)
cont'd,

}
+ 2B(§+ B2)g 5 - %Bz] }

vV, D + V,,)
L = 1132 22/

2 2 .
w, 2(- 3¢% 5 + 6By 5 +

\
(V,)p - (V.05
M = 2
- wlz(sczlﬁ - 10Bg p + C + -134-) >(3.‘35)
N = (V,,)

/ ;o

4 2 [ + 4 3 2 } ' 2 ' 2 ' 2

Equation (3.33) can thég_be written in terms of equations

(3.35),
_ ' }
(V,)p = [L- O + 8] | (3.36)

the probability of first snapping of the panel in a time inter-

val T can now be written ﬁsing equations (3.22) and (3.36):

' . .) R 3 #
T 1174 B
p P, = cos? af 17 {{—+ - [L - (M +N?) 1}
T L+ e+t B 3
B -B 3.37) S
| ) - .82.} exp(_Ds_;I_) . .

where o is the angle of transformation given by




.V(CIB’ CZB) = w12h2(_
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.

i

'
i 11“B ¢ 22°B:

The height H of the potential barrier is calculated by Sankar

o’

and Ariaratnam [3] for similar problems to be . | e

P

”

Ho= V(s g Gyp) .- V(2. 0) (3.38)

‘ /
from equation (3.23), the expressions giving the height of the '

potential barrier for a cylindrical panel are written

SRNCE IRV IRE

~of

-

V(G,ar OO = wlz‘hz(% ghya T Bet, H G, - g

A 1A)

/
Further introduce a nondimensional damping coefficient » such ,

that ‘B = Zle. Then the probability of first ﬁnappiﬁé”of.ghe

panel in a given time is:

3

o T osly - 3%a - 6Bz, + 2¢°

[ ] {1y?

- v} exp(-——%é—ﬁ) \\,//'*~\~‘

L+ +NDY

where 1, is the period for the_fundamental osci

3.7 Symmetric Snap-Through ‘.

The deformed shape of the centreline of the panel can

be found by.éetging q, = 0 in expression (3.2):

w(s, &) = q sin(h) - : G




of Phase Points ‘(P'aéticles)o
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L}

b £
) i
«The kinetic and pqtential energy are from &quations - (3.4) .

and (3.14) CL
A
- . 2
T= %:mql ) A
. ' \3.42)
- ' 1 - 4a (12 16aia2 h?
Ve Kz e, - q,?+ (5 +7)q, % - 1q 1 +const

. VAR '
the equilibrium equations are from equation (3.25)

3

' - 3B, 2420z -a =0 (3.43)

\ . ., :
The stable equilibrium configuration A and C of the

panel and the unstable configuration B are given by the -
- - k4 . '

solution of equation (3.43): | ook

2 _ * W’ - H C
= B - Z(EET_ZQ) coa (X - i | )

3 5 ' .
} (3.44)
S .
= B 4 2(.3_3_2—-5_22) cos(%) , ’ -

4

IB 3

) 2 _ L ~
4 = B - 2 (g-g—-g-—.-_g_c.) cos(lr—-_i__e.)

Clc

/2 ’
_ 2B(C - B%) - 3
where cos 6 5 (332 = ZC) y,

R

the limits for A are given by setting cos ¢ = +1

2

3f2

© 1/ e
2B(C- - B?) + 2(B? - %C) > 1> 2B(C-B2) - 2(B?2 -%c)

. , ’, :
" From equation (3.31) the potential energy is: o

M " ‘ = 2 l - "
V@, A =w "Gz, Bg *+Cg * -2z ) +const - (3.46)

2 : - ' }
hence 3—f = u,? Gp,? - e, +20) (3.67) Yeulk
' 4




/ o, L oy ' 6
- : - 54 - \ o
. ’ '\.”@ ' ?
& N . .
. 3.8 Heiéﬁt of the "Potential Barrier . . o
y ~ S ‘ . . 1
voe H= V(gg) - V(qA) : . \ (3.48)[;#
R / ' ' '
: ?V.B . .
.- "ulV]A [aq]A :
y - , 'where Toa B
b ‘ B’ aV ’
P ) , o
3 % . \ R S B D yw
3 = o202 - Bg® + oot - At o ’
| Y 5 A

‘, T[QY_]A zhzt% 3 | By m z;lA |

- R
" ‘hence H = wlzhz[—'% Bz? + % g? - % x;]i FREEE §§(3.49)
iy - . -~ v -
AN '
‘ BPT' thé probability of first snap buckling of: the panel at
E . . a given time interval T is written from equations (3 22,
% 346, 3.47)and (3.49); - o :
. » i . ’
o Tw, 3t} - 6By, + 2} o . Co
| : %P1 = 77 (3c§ 7 6B, 7 20 [(v - 3tg.+ EBey - 2007 - vl
2 ' . N . - Z.Y , ‘ o .
' , exp(+3&—) o . ©(3.503
, o .
3.9 Conclusgion
f/:ff ) - -~ . » . s 3 . j
® . The probability of failure by instabiIity in a given time ;

-time interval has been evaluaggd for & given panel of kngyn

propegties and random 1bad’intensity“ The appllcability of
. £
7, " the results were extended to inclgde any genéral cyse of

buckling where both symmétricjand‘asyumeg;ic deformations

P T T




, o= 55 -

Al L ’
f . .

-“are’ invelved due to' the dégree of shallowness of tag panel
g ' y
T " curvature.

~ Numerical application and)results will be di&cussé!“
‘ in the next chﬁpter. Thi's will lead to determination of
the fields where this theory could be applied and extended
.- to the design stage in the form of charts éqg“plots.
Te N S \
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Chapter IV

. . APPLICATIONS

4.1 Introduction

The dynamic buckling of low cylindrical space panels of
known geometry and elastitity when subjected te distributed
"surface pressure was invesffgated in the previous chapters
where only tHe general theory was presented for deriving
"Pp'' the proEability of failure of cylindrical panels. Two
types'of snap-through buckling were discussed based on the
initial curvatugg of the p%;elc ‘Numerical results for)a

v

specimen panel of assuﬁed dimensions will be presented as

an applicéﬁion of the probability of #irst snap buckling to

¢ 11lustrate the soluti%p,of equations (3.90 and 3.50).

¥ .
The non-linear equations of motion of the panel can be

solved for a stationary wide band Gaussian random loading

through locaily stationary solutions of the associated Fokker-

Planck equations by approximating the reéponig to a Markov

process in the phase plane. 4

4.2 Application of theé Analysis

A cylindrical panel of a given geometry is considered
under an assumed random loading of intensity S in order to
illustréte the application of the analysis developed in the

previous, chapters. By defining a fundamental period t, of
hY

/' the panel vibrations the time for failure T is conveniently

r

DI RN VAT 4
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taken as a multiple of)rl. P, the failure probability'isb
computed for different values‘of the damping ratio y/yc, '
being the critical damping of the system, and for various
mean dead loads A which are expressed as ratio A X pax Qith
A pax Peing the maximum admissible static critical load on
thg panel surface.

Consider first the symmetric snap-through problem: (Figure
4.1) where g, = 0. For various damping.values of Y/YC the
variation of the logarithm oﬁ,?T, the probabiiity of first
failure given by equation (3.50) is plotted in figure (4.2) -
against the nondimensional lead ratio A/Amax’ To excite oniy
a symmetric displacement the panel under study has a value
h/a of 1/3000 which indicates the degree of shallowness of
the structure. It also has an initial deflection ratio h/yo‘
equal to unity. As for the random load intensity S is taken
to be 0.1 w,’h? and a time ratip of T/t, = 3600 is taken as
the basis for computing the pggﬁgbility of failure.

Figure (4.2) shows that the probability of failure
‘increaées at a rapid rate as the mean &;ad load "Ah approaches
A .y the critical load, and this probability de¢reases as
Y/Yc increases. Further, the probability of failure is
extgemely sensitive, for 4 given,structure, to the ratio of
the ‘height of the potential barrier to the iﬁpressed random ’

loading intensity H/S: Which means that the structiral

system‘may be in a stable-equilibrium under the mean dead

¥
load "A" applied, stever the possiblity of failure 'by buckling

~y




v

4.1  Panel ‘Geometry and Loading




Geometryﬁgpd Loading

h/y, = 1.0
h/a = 1/3000
S 0.1 w, *h?
T/t, 3600 -
. Cz O

.




is enhanced by the introduction of small random disturbances,
especially when A approaches Amax' due to the existence of
the exponential term “exp(:g—l—gl—g—)” in equation (3.50).

In laboratory and field testing where suc& structural systems
are involved the'previously_described random disturbances do
exist and hay be attributed to the reported scatter of buck-
ling loads [39]). These experimental critical loads are
always found to be much lower than the theoretical critical

loadsn

Figure (4.3) gives results of asymmetric buckling proba-
'bility for two;moge buckling of cylindrical panels. These
results are similar to the symmetric snap-through results
discussed earlier. In this case the panel is less shallow
compared go the previous case so that the modes of deformation
;%andc: are both real and distinct. Thepane} considefed has
3/?;‘* 1/3 and h/a = 1/1000 with all other conditions kept
identical as before. In this case, the pfﬁbability of failure
by buckling shows similar characteristics to that shown in

' s l‘/
figure (4.2). 1In addition, it may be noted that the proba-

bility of buckling decreases with an increase in the shallow- -

ness of the panel.

‘ For the same panel and using a reliability figure Rp in
lied of the probability of buckling PT a set of plots can be
drawn for design purposes. Figure (4.4) shows such a plot

for a symmetric snap through problem. Assuming a load condi-

tion A/%max of .75 it can be seen that for a damping of

-~
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Y/Yc = .2 the reliability of fhe panel is Ry = .44 and
a designer seeking a reliability figure of RT = 99 caﬂ only

achieve it by decreasing the load factor to A/A = .59 or

max
by changing thg damping ratio in his design to Y/Yc = 4. On
the other hand, if a reliability of RT = 9999 is needed,

'only a design change involving a decrease in load. combined
with an increase in damping ratio can be considered other
than a drastic change in the damping ratio, i.e. X/xmax =
with Y/Ymax = 4 or y/yc = .6.

e B T W, P

. In the case of asymmetric buckling a similar set of plots

4

is shown in figure (4.5). Again, for:a lbad,condition

A/Am = .75 a reliability factor R, = .99 is reached with a

ax
. damping ratio of Y/Yc = .21 while a damping ratio of Y/Yc =
.375 is required to achieve with the same load a reliability

-of Rp =,.9999. Showing clearly the effect of panel shallow-

ness on the reliability factor.

’

[

4,5 Conclusion

“Through this method, it is poésible to generate a large
family of plots such as in figures (4.2) through (4.5) giving
the failure probabilities and the reliability of cylindrical
panels for- similar shell type structur;s under -different
mean load ratios. Tﬁere curves can be effectively used as

design charts for specifying the reliability of space

enclosures’ for any given envirommental loading pattern.

-
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FIG. 4.5 Asymmetric Buckling Reliability "
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Actual designs in ships of all nature are based on
maximum loading condition and panels are normally over-
designed. With the Reliability approach using the first
uprobability of.buckling in a period of iime the designs will

more economical.

&

The difficulty of arriving at similar results in the

case of Spher{Eal shells lies in the complexity 95 the energy
g equation (2.54) derived in Chapter II. Althougﬁfdifficult,
it is possible to obtain a set of equetions of motion by
substituting equation (2.54) in the Lagrange's equations.
Numerical soldtion of tbese equations for particular cases
can be obtained using Newton-Raphson iteration process and
Bushnell [32] computer program. The probabillty of first
shap buckling as derived by Sankar and Ariaratnam (3] and
", ‘ shown in equation (3.22) can then be evaluated numerlcally

The length aﬁd complexity of this approach puts it beyond

the scope of this report and is left as possiblg future

investigation in this field.

become more effectivé‘and the structures will be lighter and .




CHAPTER V

.~ CONCLUSION .
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’

_In: this report, the energy method is employed in order

to extend the pro«bgﬁilistic analysis for evaluating the A
. ‘ A ) - i
stability of chi'ee-dimehsional space structures such as

* N 1'% B .
. ¢ylindrircal pa?els and spherical shells under loadind

. -~ ! > * 4
envirorimenss. .f * : , . Ae
© ! 2 ~

: Lo , , <

'Thq_prolllem of axisymmetric (defotrmatioryof a shallow #
élast%éheﬁé‘ical shell subjec:ted ‘to ran&om_ external pres-’
sure, hap lyaq approached from the equilibrium and the
pot:ntiai{:épergy point of views. "The potgent:iai -energy me thod
is mainly ﬁseg to detgmine the‘uns“table portj.op of ,the/

hlqad-di.;s;'lp1au:emen"t: curves andﬁ also allowp for the intro-

. duc'tio{x of imperfections in sphe‘gical’,caps\. -

P ALY

.
L x4 ‘ ) .

g’ W The probabidity of failure by instability in a given

/ T . ' .
t;ime‘intervai has been evaluated for a cylindrical panel of
< l(n%wn propergj,‘es and random load i.ntensj.ty. The e,a};p‘lication '
eV s : . > e '
" is then extended to include any general case of buckling

4

38 are involved

where symmetric and asymmetric deforiliie
. T e = ©

. , ! .3
with differefit digrees of .shallowness in the panel curvature.

e \ .g( j

¥ 4

v Applicationsg using, numérical results computed*for ’ \
. ' ) '

» n

speci,fic‘pan.e/]:s ate discussed for the asymmetriq and symme-

o
Sy, . yw \ . a { ¢ .
"ric snap-through. The effect of the panel geometry on EhW

P

'detg?ination' of .the mode of buckling is e‘mphasiz:ed,, illus- .

. N o
trating the important role the shallownes®of thé structure

¢

4




. ¥’ Y
plays on the ms(.abl.lity be%aviour‘of the structure when L.

| : \ T '
r . . ) B - 67 -
‘ ' v ‘ \ \% \ T T
| | |

* subjected to- stochastlc load of given intensity, .
. 7

A

-
PN
W

. The above ahalysis can be extended to other types of vl

shell structures, namely spherical caps and shells using o

- . Newton-Raphson iteration process and Bushnell [32] ‘comp’\ftx

e,

[4 ..
N prograw for solving the equilibrium equations. y ) J
' N

C .
The first probability of buckling under random lo'ading

v

Yonstitutes in itst a new approach in the design of érches, §
- 'ﬁarielé, ané shallo)w shells. Conventional design approach ’ | k
: to a random lo;diﬂg, is mainly a fatigue failure analysis

< coupled with a maximum s(:af:ic buckling load resistance of
,the‘ shell. this is in spite of the full awareness gj?th?
l "designers of the fact that the random lgaging is not neces-
r | \ sarily subjectijng' the s]:rdctg}'e to a constant maximum.ltiad o !
S at all times. : - ' ' >
. . o, / Ny {
By using the theo‘ry I;regentedfhere‘nfor t:t:g'first proba-

7

: , o i
. o glity of buckling in a given time span, not only any brief
eak load exposure is considered resulting in an increase in

the life\of fhe structure, but also resulting in an eventpal

\ decrease in the Welght and manufacturing costs. At the same

n e

- ) time tﬂev\xjeliability of the structure can be approximatély

‘ i specified. ‘ - b | .

1 . | _— P
| ' ' The first probabllity of bucklmg under random loading

- #

i \ can-jecome an effect::.ve design tool by generating -large &

families of plots and graphs along the types illustrated in
. / L

!

. N .
. . R ’ ;o
bl . + : ~ N * ‘
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t
this reportf'rhese sets of plots could reflect the relia- .
bility factors in terms of the first probability of buckling.
) . .
Using non-dimensional factdrs the same curves could also be

-

us’_’ed for a variety of materials having a similar range of

mechanical properties.

The approach itself can be extended to other types of
shell structures. In such cases, the thaeory behind the

analysis would be the same while the &ifference will be in

I3

the ero\yer numéric%alysis corresponding to each particu—‘
y : !

lar typerof structure. | g . .

-

In order to bring out the merits of such r:'éliability
approaqh't‘o design, it must be p’ointed out that it is ;i’ot
only enough to prpducer reliability design charts, but also
to recoénize as well, the types of lpédings"whiqh can be
considereq as random, like '°pre‘ssure waves, gust loading

»

due to winds,

-

etc, in order to epsure the useéglness of

the approach sta::istical data on sixc;h fandoixi loading experi- /
enced by structures have ‘to be ﬁainta,ined, Ehu's va‘i&idating
the results of simi—a\ designs.) The 'analysis reported here
for the probability of buck].iné'uses‘ —s't;at':ionary random

- N J ’ ' .?’
loading but could ‘eventually be.extended to non-stationary

random loading. _ ¥ <
< X . . -
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- - A ~
L] -
*.
” /“'""d/ R '
- . .\- \
AN




10. &

11.
i\

12,

" Evenwicht", H.J. Paris, Amsterdanm, Holland,

. REFERENCES N

P

e N 7 h

Ariaratnam, S.T. and Sankar, T.S., ""Dynamic snap-through
of shallow arches under stochastic loads", AIAA Jul.,
Vol. 6, No. 5, May 1968, pp. 798-802.

Sankar, T.5. and Ariaratnam, S.T., '""Snap- Buckling of shell-
type structures under stochastic loadlng Int. Jnl. of
Solids Structures, Vol. 7, 1971, pp. 655~ 666

Sankar, T.S. and Ariaratnam, S.T., "Instability of

: loaded shallow arches in non-symmetric
modes', Int. Jnl. of Solids Structures, Vol. 7, 1971, -°
PP. 1305 1316.

: I..orenrz\jé R., "AChsensymmet:rlsche verzerrungen in dunn

wandingen kohlzylindern'', Zeitschrift des Vereines
Deutcher Ingenieurs, Vol. 52, 1908, p. 1707.

Timoshenko, S., "Einige stabilititsprobleme der elast:.zl*—
titstheogrie', Zeitschrift fur Mathematik und Phy51k vol..
38, 1910, p. 337. , o ;

Southwell, R.V., ""On the general theory of elastic:

"stability", Philosophical Transactions of the Royal

Society of London, “Series A, Vol. 213, 1914, p. 187.
54 : . ;

Von Karman, T, and Tsien, H.-S.,, "The buckllng of thin
cylindrical shells under axial _compression', Jnl. of the
Aeronautical Sciences, Vol. 8, June 1941, p. 303.

Yoshimura, Y., "On the mechanish of buckling of a 5
circular cylindrical shell under axial compression",
Reports of Institute of Science and Technology of the
University of T/}okyo Vol.. 5, No. 5, Nov. 195%¥. (English
translation avallable in "Technlcal Memorandum No .- 1930

.of the National Advisory Committee for Aeronautlcs )

Washington, D.C. July 1955.)

Kirste, L., ""Abwickelbare Verformung diinn wondiger Kreiszy-

linder'', Desterreichisches Ingenieur -Archiv, Vol. 8,
May 1954, p. 149.

Flugge, W., '"'Die Stabilitit der Krelszyllnderschale
Ingenieur-Archiv, Vol. 3 1932, p. 463,

Koiter, W.T., "Over de Stabiliteit van het )elfastisch
1945 .

Koiter, W.T., "The effect of axisymmetric ‘imperfections
on the buckllng of cylindrical shells under axial.
compression'', Proceedings of the Royal Netherlands
Academy of Sciences, Amsterdam, Series B, Vol. 66
No. 5, 1963. \ e .

£
:

~p




¢ Sciences, Vol. 7, Dec. 1939, p. 43,

14 . Reissner, E., ''On axisymmetric deformations of thin
shells of revolution'', Proceeding of Symposia in Applied
Mathematics, American Mathematics Society, McGraw-Hill,
Vol. 3, 1950, p. 27.

———

l'S.V Krenzke, M.A. and Kiexrnan, T.J., "'Elastic stability of
near-perf ect shallow spherical shells, AIAA Jnl.,
Vol. 1, 1963, pp. 2855-2867.

16. Dormell, L.H., '"Shell theory", Illinois Inst. of Tech.,
. DOMIIT Ren., No. 2-1, 1959.

, - 70~ .
-
w
/ . ‘ 4
13. vdn Karman, T. and Tsien, H.-$., '"The buckling of spheri- <
cal shells by external pressure”, Jnl. of the Aeronautical
.. l7. Kaplan, A. and Fung, Y.-C. "Arnonlinear theory of
g bending and buckling of tth elastic shallow spherlcala.
shells", NACA TN-3212, 1954. .
18 . Archer, R R ""Stability limits for a clamped spherical g
shell segment under uniform pressure", Quarterly of
Applied Mathemata.cs Vol. 15, No. 4, 1958, p. 355, Y
£
19. Slmons, R.M., "A powe-r geries solution of the mnonlinear '
equations for axi- symmetrical bending of spherical |
shells", Jnl. of Mathemaths and Physics, Vb1. 35, No. 2,
1956, p. 164. ‘ ) g

- 20. Reis%, E.L., "On the nonlinear buckling of shalfow
spherical domes', Jnl. of the Aeronautical Sciences,
Vol. 23, No.’lO, 41956 p. 973. ;

-

" 21. Reiss, E.L., Greenberg, H.J. and Keller, H.B., "Nonlinear
déflectiores of shallow spher1cal shells", Jnl. of the
Aeronauticdl Sciences,, Vol. 24, No. 7, 1957, p. 533.

gommee Pt

22. Reiss, E.L., "Axially. symmetric buckling of shallow .
sphencal shells under external pressure', Jnl. of .
. Applied Mechanics, Vol. 25, No. 4, 1958, p. 566. .
- . 232 Welmstschke H:J., "On the stability problem for shallow .
spherical shells Jnl of Mathematlcs and Physics, Vol.
38, No. 4, 1960, p. 209. - ‘

' .
24, Keller, H.B. and Reiss, E.L. "Spherlcal cap snapping',
~ Jnl, 'of Aerospace 'KScience ,  Vol. 26, No. 10, 1959,

. 643, .
2“5. Keller, H.R.: and Reiss , E.L. "Some recent ro.=:s1_11t:3'L on the
buckllng mechanism of spherlcal caps", NASA TN-~1510, ' 7
1962, p. 503. T

/ _ ' »

L} . ‘¥ A




26.

ok 4

27.

28.

29.

30.

31.

32.

33.

‘Kramers, H.A.,” "Brownian motion in a field of force and
- the diffusion model of chemical reactions”, PHysica, - ;
Vol. 7, No. 4, 1940, pp. 284-304. s »

34,
‘ 35.

36,
. Madsen, W., Smith, L. and Hoff, N.J., "Automated deriva-

/' series with an application to the post-buckling behavior
. SUDAER report, No. 201, 1964 ‘.

. Madsen, W., "Doctoral dissertation on post buckled

- 71 -

Archer, R.R., '"'On the numerical solution of the non-
linear equation for shells of revolution"”, Jnl. of \
Mathematics and Physics, Vol, 41, 1962, p. 165, |
J
1

Budiansky, B., '"Buckling of clymped shallow spherical
shells", Proc. Symp. Theory of Thin Elastic Shells,
Delft, Aug. 1959, 1960, p. 69.

Murray, F.J. _and Mright, F_W., "The buckling of thin
spherical shells, Jnl. of Aerospace Science, Vol. 59,
No. 5, 1961, p. 223. :

Thurston, G.A., VA numerical solution of the nonlinear
equations for axisymmetri¢ bending of shallow spherical
shells", Jnl. of Applied Mechanics, Vol. 28, 1961,

p. 557. .

Thurston, G.A., "Comparison of experimental buékling
pressures for spherical caps'", NASA TN-D 1510, 1962,
p. 515, .

- -
Keller, H.B. and Wolfe, A.W.,/)/'On the non unique equili-
brium states and buckling mechanism of spherical shells"”, . |
Jnl. Soc. 1Ind. Appl. Mathematics, Vol. 13, No. 4, 1965, |
p. 674, . :

Bushnell, D., '"Some problems in the theory of thin

shells", Dissertation, Stanford University, Stanford,
California, Feb. 1965.

Goncharenko, V.M., "Study of the probability of snap- , ,
through of a long, cylindrical panel under random pres- \- §,
sure", P.M.M., Vol. 26, No. 4, 1962, pp. 1107-1113.

Bushnell, D., "Nonlinear axisymetric behavmr of shells
of revolutlon AIAA Jnl., Vol 5, No. 3, 1967, pp. 4312-
439, *%» ’ L

, Y .
Stratanovich, ‘R.L., '""Topics in the theory of random
noise, Vol. 1, Gordon and Breach, 1963.

tion and integersr®presentation of total potential and
dif ferential equation extension for assumed trigonometric

of circular cyllndrlcal shel1s", Stanford University,"

characteristics of circular cylindrical shells", Stanford
University, 1965.°

A T S e A o 2 X Tl e T Sk '



