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ABSTRACT
Interfacial 8lip of a Quartz Sensor in Liquid

Francesco Ferrante

The interfacial slip parameter is a complex-valued property of
the interface between the solid surface of a quartz sensor and
the 1liquid in contact with the sensor surface. It is
introduced in the theory of the quartz-ligquid system by
generalizing the no-slip boundary condition. The interfacial
slip parameter is defined as the displacement of a particle of
liquid in contact with the sensor surface divided by the

displacement of a particle on the surface of the sensor.

The theoretical expression for impedance of the sensor is
derived in terms of the interfacial slip parameter. The
impedance of the sensor is measured by the network analysis
method for hydrophilic and hydrophobic surfaces in water-
glycerol solutions. The experimental values of impedance are
fitted to the theory by non-linear regression analysis to find
the interfacial slip parameter. A mechanical model of
interfacial slip is devised which explains the variation of
the interfacial slip parameter with viscosity of the liquid.
The results indicate that there is considerable slip in low-
viscosity 1liquids, near the viscosity of water, and very
little slip in 1liquids of high viscosity, near that of

glycerol.
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CHAPTER 1

INTRODUCTION

A piezoelectric quartz sensor is used to detect the
presence of specific molecules in a gas or liquid. There arc¢
basically two types of quartz sensors, bulk acoustic wave
(BAW) and surface acoustic wave (SAW) sensors. In this work
only the BAW sensor is considered. The BAW sensor is
essentially a thin plate of quartz with a very thin metal
electrode on each surface of the quartz. This device is used
in the communications field to control frequency, where it is
called simply a quartz crystal. It is available commercially
in the frequency range from about 2 to 50 MHz. Cady (1964)
made major contributions to the development of quartz
crystals. Bottom (1982) gives an elementary treatment of the
theory of the quartz crystal.

The generic name for a device that is used for molecular
recognition is a chemical sensor or biosensor. The name,
biosensor, is used when the molecules to be detected are
biomolecules, that is, carbon-based molecules found in living
organisms. The BAW quartz sensor used for molecular
recognition is an AT-cut quartz crystal. This particular cut
of quartz operates in the transverse shear mode (TSM), meaning
that the direction of vibration of the atoms of the quartz is
transverse to the direction of propagation of the acoustic

wave. In this mode the displacement of the atoms of quartz is
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in the plane of the quartz plate and the wave travels in the
direction normal to the plane of the plate.

The principle of operation of a chemical sensor or
biosensor is simple. A molecule which reacts only with the
molecule to be sensed is bound to the surface of the sensor.
Then the sensor is immersed in a gas or 1liquid. If the
molecule to be sensed is present in the gas or liquid, it will
bind to the molecule on the surface of the sensor. As a
consequence, the mass on the surface increases and the
properties of the interface change. Electrical measurements
are made to detect the changes on the surface.

The network analysis method developed by Kipling and
Thompson (1990) is used to completely electrically
characterize the BAW quartz sensor. This method can be used
when the sensor is in a liquid of any viscosity. The network
analysis method replaces the oscillator method which only
partially characterizes a BAW quartz sensor and is limited to
operation in liquids of low viscosity. A review article by
Thompson, Kipling et al (1991) describes both the network
analysis method and the oscillator method. The oscillator
method is analyzed by Rajakovié et al (1991).

The operation of the BAW quartz sensor in the gas phase
is well understood. As mass is added to the surface of the
sensor, the resonant frequency of the sensor decreases. The
decrease of frequency is proportional to the increase of mass

on the surface which was first explained quantitatively by
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Sauerbrey (1959). When the sensor is in a gas, the acoustic
wave in the quartz is completely reflected at the surface of
the sensor and therefore all acoustic energy remains in the
quartz. The frequency decreases as mass is added because the
distance travelled by the acoustic wave from one face of the
sensor to the other increases due to the thickness of the
layer of added mass.

The operation of the sensor in the liquid phase is not
well understood. The resonant frequency change of a sensor in
a liquid is not due directly to the mass added to the surface
of the sensor. Rather it is due to the change of properties
of the interface between the surface of the sensor and the
liquid in contact with the sensor. The nature of the
interface changes when the molecule to be sensed is present in
the liquid because these molecules bind to the surface and
therefore this new layer of molecules is in contact with the
liquid. When the sensor is in a liquid, only part of the
acoustic wave which is incident on the solid-liquid interface
from within the quartz is reflected back into the quartz. The
rest of the wave is transmitted into the 1liquid and is
dissipated (changes into thermal energy in the liquid). The
phase and magnitude of the acoustic wave which is transmitted
into the 1liquid is very sensitive to the properties of the
solid-liquid interface. The acoustic wave carries energy and
therefore some of the acoustic energy flows out of the guartz

into the liquid. This energy is replaced by electrical energy
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supplied to the quartz crystal that is converted by the
piezoelectric effect into acoustic energy. The change of
electrical energy supplied to the sensor changes the
electrical characteristics measured at the terminals of the
sensor.

The interfacial properties are related to three
fundamental attributes of the interface: the type of molecule
on the surface of the sensor, the type of molecule in the
liquid which is in contact with the sensor surface and the
force of attraction between the two sets of molecules. If the
force of attraction is relatively strong, the surface is said
to be hydrophilic and if relatively weak, the surface is
hydrophobic. It is expected that there will be some slip
between the molecules on the surface of the sensor and the
molecules of the 1liquid in contact with the surface,
especially when the surface is hydrophobic.

The objective of this research is to study the slip at
the solid-liquid interface of a quartz sensor. A two-layer
model 1is used, the layers being quartz and the liquid, with
the interface characterized by a new property called the
interfacial slip parameter. This model allows relative motion
between the surface of the sensor and the liquid in contact
with the surface. Reed et al (1990) used a two-layer model
but with the no-slip boundary condition. Duncan-Hewitt and
Thompson (1992) used a four-layer model to account for

interfacial effects, where one layer is quartz and the other
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three layers are different phases of the 1liquid, as an
alternative to explicitly introducing slip at the interface.

A model of slip has been used for the case of the
interface between two elastic media which are imperfectly
bonded, Schoenberg (1980). The slip between the two solid
regions is postulated to be linearly related to the shear
stress at the interface, the slip parameter being the
proportionality factor with the dimension of length/stress.
In this thesis the interfacial slip parameter is defined
differently.

The interfacial slip parameter appears in the theory of
the two-layer model in one of the boundary conditions. The
theoretical expression for impedance was found, which is a
function of the interfacial slip parameter, Chapter 2.
Measurements of impedance were made by the network analysis
method and the experimental values of impedance were fitted to
the theoretical expression for impedance using non-linear
regression analysis to find the interfacial slip parameter,
Chapter 3. A mechanical model of interfacial slip was devised
whose predictions agree with the experimental results, Chapter
4. It is concluded that there is slip at the solid-liquid
boundary of a BAW quartz sensor, Chapter 5.

The application software used in the research and in the

preparation of this thesis is listed in Appendix 1.



CHAPTER 2

THEORY

Introduction

The theory of the two-layer model of a piezolectric
quartz sensor is derived in terms of a new property of the
interface called the interfacial slip parameter.

The two-layer model is a solid-liquid model which
neglects the thickness of two other layers of material between
the quartz and liquid: the metal electrode which is attached
to the quartz and the chemical coating which is attached to
the metal electrode. The theory also assumes that the liquid
in contact with surface of the solid has the same properties,
that is, it has the same structure, as the bulk liquid. The
theory focuses on the interaction between the surface of the
solid and the 1liquid in contact with the solid. The
interaction is represented by the interfacial slip parameter
which is introduced through one of the boundary conditions.

Three fields of physics are combined in this theory.
Elasticity, Section 2.1, and electromagnetism, Section 2.2,
constitute the theory of piezoelectricity, Section 2.3. The
fundamental equations of elasticity and electromagnetism are
coupled by the equations of the piezoelectric material. Fluid
mechanics, Section 2.4, is the theory of the liquid. The

boundary conditions, Section 2.5, of the solid-liquid
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interface connect the equations of the piezoelectric medium
and the liquid. The boundary value problem is solved, section
2.6, and then the theoretical expression for impedance is
derived, section 2.7.

Subscript notation is used throughout and is described in

Appendix 2.
2.1 Elasticity

There are three fundamental equations of elasticity and
one equation of a viscoelastic material, Eringen (1967) and
Eringen and Maugin (1990). The fundamental equations are
derived from Newton’s second law, conservation of angular
momentum and the definition of strain. The material equation
is a generalization of Hooke’s law. Newton’s second law and
the definition of strain are non-linear equations due to the
terms which are products of the variables. Two approximations
are made which remove these terms and make the equations
linear.

Newton’s second law for a viscoelastic solid of density,

pml 1s

(2-1)

D . B
DE (pmu/) N Tw + F(m)/

Equation (2-1) relates the particle displacement, u, to the

second-rank stress tensor, T,, and the external force F,,. The
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symbol, D/Dt, denotes the material derivative with respect to
the time, t.

The total change of particle velocity, § = Y (x,¥y,2,t),
is the total differential of §;, d§ = (d%/dx)dx + (34,/dy)dy
+ (d4,/dz)dz + (d4/dt)dt. Divide both sides by dt and use the
notation, DQ/Dt, instead of dy/dt, for the particle
acceleration. Since the components of the particle
displacement, u, are dx;, when the displacement is infinitely

small, dx/dt is §;,, the velocity of the particle.

pu, _du, Ay

DE JE 0%, " (2-2)

The term on the left, D§,/Dt, is the particle acceleration, the
first term on the right, d4,/dt, the local acceleration and the
last term, the convective acceleration. In the theory of
linear viscoelasticity, meaning for small deformations of the
viscoelastic medium, the magnitude of the deformation gradient
is much less than one, that is, |u;|<l1. Therefore from (2-2)

the convective term, 4, %, is much less than the non-convective

term, V

, (where v; = 0). Thus for a linear viscoelastic

theory, from (2-1), the equation of motion for a medium of

uniform mass density, p,, reduces to

pmﬁj =Tyi * Fimy, (2-3)

From the law of conservation of angular momentum, at each



point in the medium, T; satisfies the following equation.

T =T (2-4)

Equation (2-4) states that the stress tensor is symmetric.
This is a direct result of the conservation of angular
mementum at each point of the medium.

Equation (2-3) constitutes a system of three scalar
equations in the twelve dependent variables: u,, u,, u;, T,
Ti2r Tisr Tos Ty, T2, Ty, T3, and Ty, They are functions of the
independent variables: the spatial coordinates, x, y, z, and
the time, t. Due to the symmetry of T,, from (2-4), T, = Ty,
T3 = Ty, and T,y = T3;. Therefore from (2-4) there are six
distinct components of T, which are T,, Ty, T;, Ty, Ty, and
T3;3. Thus the above twelve dependent variables reduce to nine
dependent variables given by: u,, uw,, u;, Ty, Ty, Tn, Tn, Tn,
and T,;.

For a given deformation of a viscoelastic medium, the
general expression relating the second-rank strain tensor, S,,

to the particle displacement, u; is

S, =X (u, +u
3

y ij i T U yy) (2~5)

The symmetry of S; can be deduced from (2-5). Like the
second-rank stress tensor, the second-rank strain tensor is a

symmetric tensor, that is, S; = S For small deformations,

D] ne
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the magnitude of the product of two deformation gradients is
much less than the magnitude of the deformation gradient

alone, that is, |u.u,;|<|u; + u;|. Thus (2-5) reduces to

=1 -
Sy = 5 (uy +u,) (2-6)

Due to the symmetry of S;, (2-6) constitutes a system of six
scalar equations in the nine dependent variables given by: u,,
u,, Uy, S;;, Sps Sis, Su, Sy, and S;.  Equations. (2-3) and (2-
6), together constitute a system of nine scalar equations in
the fifteen dependent variables given by: u,, u,, u;, Ty, Ty,
Tiar Tnar Taar T3, Sitse Si2¢ Si3y Sps Sp. and S;;. The above system,
does not constitute a complete system of eguations. To
complete the above system, six additional scalar equations are
needed. The completion of the above system of equations is
accomplished by the material equation for the viscoelastic
medium. For an arbitrary viscoelastic medium, the material

equation that relates the stress and strain is

Ty = Cyusu + ﬂyusu (2-7)
Equation (2-7) is the generalized form of Hooke’s law for an
arbitrary viscoelastic medium, the first term on the right
being the elastic term of Hooke’s law and the second term, the
viscous term. The coefficients c, and 75, are respectively

the fourth-rank elastic coefficient tensor and the fourth-rank
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viscoelastic coefficient tensor. Equation (2-7) constitutes
a system of six scalar equations in no new dependent
variables. Thus, (2-3), (2-4), (2-6), and (2-7) constitute a
system of fifteen scalar equations in the fifteen dependent
variables: u;, 4, W3, Ty, Ti2v Tiss Tz T Tyye Sys Si, Sy Sy
Sy3, and S,;. Therefore (2-3), (2-4), (2-6), and (2-7)
constitutes a ccnplete system of equations.

For an arbitrary viscoelastic medium, from the symmetry
of both T, and S,, an inspection of (2-7) reveals that both

Cyq and 7, must satisfy the relations

(2-8)

It
Q
]

Cuu g = S T Cyy

and

My = Nyie = Mg = Muy (2-9)

The relations for ¢, and 5, given by (2-8) and (2-9) hold for
any viscoelastic medium.

The derivation of the viscoelastic wave equation for a
linear viscoelastic material, is obtained by the systematic
elimination of the components of the stress and strain from
(2-3), (2-6), (2-7), (2-8), and (2-9). The result is the

viscoelastic wave equation for u, given by

CyuUpy * nwuk'a + F{m;; = Pm iz‘j (2-10)

For the case of plane-wave propagation, (2-10) reduces to
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Christoffel’s equation.

2.2 Electromagnetism

There are four fundamental equations of electromagnetism
which are called Maxwell’s equations and in general, there .re
three equations of the material which are the equations for a
conductor, a dielectric, and a magnetic material, Lorrain et
al (1988).

For a stationary linear medium, Maxwell'’s four egquations

are

E, = é% (2-11)

B; =0 (2-12)

EnEy * B, =0 (2-13)

Eg Byy - -C%E"« = U,J; (2-14)

where ¢, is the levi-civita symbol defined in Appendix 2, E
is the electric firld, B, is the magnetic field, p is the total
charge density, J, is the total current density, €, is the

permittivity of free space, €, = 8.854x10'? F/m, pu, is the
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permeability of free space, u, = 47x107 H/m and c is the speed
of light, ¢ = 2.998x1¢! m/s.

Equation (2-11) expresses Gauss’s law in differential
form. Gauss’s law, in turn is a consequence of Coulomb’s law.
Fguation (2-12) states the absence of magnetic monopoles.
Equation (2-13) is the differential form of Faraday’s law for
time-dependent magnetic fields. Equation (2-14) 1is the
differential form of Ampére’s law for time-dependent electric
fields. Maxwell’s equations are relations between the fields,
E, and B;, and the sources of the fields, p and J,. The sources
p, and J,, are expressed in terms of thi2 field quantities, E
and B, by the equations of the material.

Maxwell’s equations constitutes a system of eight scalar
equations in the six dependent variables: E,, E,, E,, B,, B,
and B;. As a result there is some redundancy in the set of
equations since there are more equations then unknowns. It is
shown in Lorrain et al (1988) that equations (2-11) and (2-12)
can be derived from (2-13) and (2-14). The independent
variables are the time, t, and the spatial coordinates, x, Yy
and z.

The total charge density, p, and the total current
density, J, in (2-11) and (2-14) are defined by the two

following equations.

p=p tp, (2=-15)
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Ji= T 4Ty + Ty (2-16)

The total charge density, p, is divided into two parts: the
free charge density, p, and the bound charge density, p,. The
total current density, J,, is divided into three parts: The
free charge current density, J;, the bound charge current
density, J,, and the equivalent current density due to the
magnetic material, J,,, which is due to the motion and spin of
charge inside the atom.

The bound charge density in (2-15), p,, and the current
density of bound charge in (2-16), J,, are expressed in terms
of the polarization, P,. The vector, P, is the dipole moment
per unit volume. The dipole moment is due to the displacement
of positive and negative bound charges, and is defined as
|ald, where d is the distance between a positive charge of
magnitude, |q|, and a negative charge of the same magnitude,
-lal.

The equivalent current density due to a magnetic
material, Jy, in (2-16) 1is expressed in terms of the
magnetization, M,. The vector, M,, is the magnetic moment per
unit volume. The magnetic moment is due to circulating
currents inside an atom or molecule making up the material,
and is defined as IA where I is the current flowing around a
loop of area A. Equations (2-15) and (2-16) in terms of P, and

M, are
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p = p;- P, (2-17)

J, =Js + P+ g, M (2-18)

In general, there are three equations of the material,
one each, for the behaviour of the free charge, the bound
charge, and the motion of the charge inside the atom.

(1) Free Charge - Conducting Materials
The material equation for a conducting material of electrical

conductivity, o, is

It

J,; = 0 E, (2-19)

which is called Ohm’s law. The electric field, E, induces the
current of free charge, J,, and this current is proportional
tc E,, if E, is not too large. For an insulator, o = 0, and
therefore J, = 0. Also for an insulator, since there are no
free charges, p;, = 0.

(2) Bound Charge - Dielectric Materials

The material equation for a dielectric material of electrical

susceptibility, x., is

Pl = eﬂx(El (2-20)

The electric field exerts a force on a positive charge in the

direction of the field and a force on a negative charge in the
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opposite direction. Therefore the electric field displaces
positive and negative charges contained in atoms and
molecules. If the electric field is not too large, then the
displacement of the charges is proportional to the magnitude
of the applied electric field. Therefore, the polarization,
P,, is proportional to the electric field, E. For all
materials, x, # O.

(3) Atomic Charge - Magnetic Materials
The material equation for a magnetic material of magnetic
susceptibility, x,, is

X
= ____2m B (2-21)
b, (x, +1)

The magnetic field, B,, orients current loops in the same
direction, that is, the electron orbits and spins inside atoms
and molecules are aligned with the magnetic field. The
magnetization, M, is proportional to the magnetic field if the
magnetic field is not too large, as given by (2-21). For non-
magnetic materials, x, = 0.

The general expressions for p and J;, (2-17) and (2-18),

in terms of E, and B, are, from (2-19) to (2-21)
p=p - €XE, (2~22)

Xm

N AT D (2-23)

J, =0E + €,X,E + &
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The material equations for a piezoelectric material are
expressed in terms of the electric displacement, D,, which is

defined as

D, = €,E;, + P, (2-24)
The physical significance of D, is seen by substituting (2-17)
into (2-11); the result is (€,E+P), = p;. Therefore the
divergence of D,, D,,, is equal to the free charge density, jp,,
that is, the free charge is the source of the field, D,. For
an insulator such as quartz, p, = 0, and therefore as a result
D,; = 0.

For a nonconducting (¢ = 0 and p; = 0), nonmagnetic (x,
= 0) material such as quartz, Maxwell’s equations, (2-11) to
(2-14), combined with the source equations (2-17) and (2-18)

are expressed in terms of the field quantities E, B, and D,

where P; is eliminated using (2-24).

D,=0 (2-25)
B, =0 (2-26)
e, B, = B, (2-27)

€48 = D, (2-28)
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The relation, c? = 1/(u.,) has been used to obtain (2-28).

Maxwell’s equations in the form of (2-25) to (2-28) are used

in the derivation of the dynamical equations of motion of a
viscoelastic piezoelectric material.

The material equation for a dielectric material in terms

of D, is obtained by combining (2-20) and the definition of Dj,

(2-24) .

D, =¢€,(1+x,)E (2-29)

Maxwell’s equations, (2-11) to (2-14) can be combined, to
yield an equation for E, and an equation for B, both of which
are wave equations. For the case of a nonmagnetic insulator,
substitute (2-22) and (2-23) into (2-11) and (2-14) with p; =
0, 6 = 0, and x, = 0. The elimination of B; from (2-13) and
(2-14), using (2-11) results in the wave equation for E, given

by

B (2=30)

Equation (2-30) constitutes a set of three scalar equations in
the three variables: E,, E,, and E;. By the same token, the

elimination of E, from (2-13) and (2-14), using (2-12) yields
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B (2~31)

As in (2-30), (2-31) constitutes a set of three scalar

equations in the three variables: B,, B,, and B,.

2.3 Piezoelectricity

The equations of motion describing the dynamics of a
piezoelectric material such as quartz are obtained by
combining the fundamental equations of elasticity with the
fundamental equations of electromagnetism together with the
material equations of elasticity and electromagnetism
generalized for a piezoelectric material, Auld, Volumes I and
IT (1973), Kinsler et al (1982), and Tiersten (1969). The
complete set of equations contains three approximations. Two
have already been made when writing the equations of
elasticity and one more approximation is made in this section.

One fundamental equation of elasticity is

T,, = pni; (2-32)

Equation (2-32) is equation (2-3) with F,, = 0 which is
Newton’s second law for an arbitrary viscoelastic material.
From (2-4), T, is symmetric. The second fundamental equation

is given by (2-6). From (2-6), S, is symmetric.
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There is one material equation of elasticity, for a
piezoelectric material; it is a generalization of (2-7). For
a piezoelectric material with piezoelectric stress

coefficient, e,, the material equation is

T, = -e,E, + cf;,su + N5y Sy (2-33)
The fundamental equations of electromagnetism for a
nonmagnetic insulating material are Maxwell’s equations given
by (2-25) to (2-28). There is one material equation of
electromaghetism for a piezoelectric material. It is a
generalization of (2-29). For a material with dielectric

strain coefficient, €%, and piezoelectric stress coefficient,

e,, the eguation is

D, = €3E, + €45, (2-34)
For a piezoelectric material the two material equations, (2-
33) and (2-34), connect (or couple) the fundamental equations
of elasticity and electromagnetism, since in both (2-34) and
(2-44) there are elastic and electromagnetic variables.

For a nonconducting, nonmagnetic, viscoelastic,
piezoelectric material in the absence of external forces, the
relevant equations of motion which describe the dynamics of
the medium are given by (2-6), (2-25) to (2-28), and (2-32) to
(2-34) . The above system of equations constitutes a system of

twenty-six scalar equations in the twenty-four variables: u,,
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Yy, W3, Ty Tz Tise Tne Taar Tue Sus S Sies Sy Sy Sy Eyy By
E,, B, B,, By, Dy, D,, and D;. The number of equations exceeds
the number of variables by two, due to the redundancy of
Maxwell’s equations, Lorrain et al (1988); (2-25) and (2-26)
can be derived from (2-27) and (2-28). Thus upon the
exclusion of (2-25) and (2-26), the above set of equations
constitutes a set of twenty-four scalar equations and twenty-
four variables. Since the number of equations equals the
number of variables, then the system is complete. The system
of coupled wave equations interrelating u, to E, is derived
from this complete set of equations, by eliminating all other
variables.

The complete set of the equations of piezoelectricity are
given in Table 2.1. The physical quantities of
piezoelectricity are given in Table 2.2. The material
properties in the equations of piezoelectricity are given in

Table 2.3.
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Table 2.1 Equations of Piezoelectricity
Type Category Name Equation Number
Fundamental | TeWton's Tyi = Pul 3
second law
) Definition s =Y + u.
Elastic of strain y 2( w t ) 6
Material H(;:\l:,e S T, e E, + Cl]il Su * ’751:1 Su 6
Fundamental Gauss’s b,=0 1
law
No )
magnetic B,=0 1
monopoles
Electromagnetic Far;c‘l;ly’s € Ekj = -B, 3
An;g::e $ € Dy /"oD.' 3
Material Dielectric D, = E;iEk * ey Sy 3

equation




Table 2.2 Physical Quantities of Piezoelectricity

[ O]

-18

Type Name Symbol | Components | Units
i . . 3
Elastic particle displacement u, m
2
stress T; 6 N/m
strain S, 6 m/m
Electromagnetic electric field E, 3 N/C
magnetic field B, 3 Vesfm®
?
electric displacement D, 3 C/m
Table 2.3 Material Properties of Piczoclectricity
Type Name Symbol Units
. . k)
Elastic density oo kg/m
?
elastic coefficient [ N/m
e ofrm?
viscoelastic coefficient 7" N-s/m
Electromagnetic dielectric strain r C/V.m
coefficient «
Piezoelectric piezoelectric stress C/m?
. e'k
coefficient '
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In (2-34), €5,, denotes the second-rank dielectric strain
coefficient tensor. The superscript ’S’ refers to the
measurement of €5, under conditions of constant strain. Also
in (2-34), e,, denotes the third-rank piezoelectric stress
coefficient tensor. The piezoelectric stress coefficient
tensor, e,,, and the second-rank dielectric strain coefficient
tensor, €%, satisfy the following symmetry relations as a

consequence of the symmetry of S,; S, = S,.

€y = €y (2-35)
& - 6 (2-36)

From (2-35), e,, is symmetric with respect to the indices 1
and k, while, €5, is symmetric with respect to the indices i
and k.

The form of the material equations for a piezoelectric
material, (2-33) and (2-34), are derived as follows. For an
anisotropic material, the electric susceptibility of the
medium, x,, dgeneralizes to the second-rank electric
susceptibility coefficient tensor, x“’ij. Physically the tensor
character of x, is due to the fact that in an anisotropic
medium, x, has different values for different directions.
From (2-20), the material equation relating P, to E;,, in an

anisotropic medium generalizes to, Auld, Volume I (1973),

P =¢, x;')Ej +d,T, 2-37)



where d; is the third-rank strain coefficient tensor.

In (2-37) the first term on the right, €x“E, is the
only term in (2-20). It is the part of the polarization, P,
that is produced by the electric field, E,. The second ternm,
4Ty, represents the other part of the polarization that is
produced under the action of an applied stress, T,.

The material equation relating the strain, S to the

1y

electric field, E, and the stress, T,, is a generalization of

(2-7) Auld, Volume I (1973).
= d E, + 55T, (2-38)

In (2-38), the first term, 4 E, represents part of the
strain that 1is produced under the action of an applied
electric field, E,. The second term, s%,T,, represents the
other part of the strain that is produced under the action of
an applied stress, T,. The coefficient, s",,, is the fourth-
rank compliance coefficient tensor, a property of the
material, which 1is a measure of the deformation of the
material materials under the action of an applied stress, T,.
The superscript, E on s®,, indicates that the measurement of
s is made under conditions of constant electric field, E,.

Using (2-24) and (2-37), the expression for the electric

displacement, D,, in terms of E and T, is

D, = ¢,E +d,T, (2-39)

where
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T _ e (5, + X(C)) (2-40)

where §, is the kronecker delta defined in Appendix 2.
Equation (2-40) is the definition of the second-rank
dielectric stress coefficient tensor, €';. The superscript,
T, denotes that €', is measured under conditions of constant
stress. From (2-38) and (2-39) the expressions relating T,

and D, to E and S; are

T, = —eyE + Cou Sy (2-41)

D, = GE, +e,S, (2-42)

where cf, is the reciprocal of s%,, that is, %, = (s%,,)",
and

€y = Coudy (2-43)

& =& - dychidy (2-44)

ey = d,Ciy (2-45)

Equations (2-43) and (2~-45), are the defining equations for
the third-rank piezcelectric stress coefficient tensor, e.
Equation (2-44) expresses the relationship between €T, and ¢S,.
Equation (2-41) 1is true for an elastic material and is
generalized for a viscoelastic material by adding a viscous
term to give the viscoelastic equation, (2-33). Equation (2-

42) is one of the two piezoelectric material equations stated
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earlier, (2-34). From this point forward, the superscripts 'E’
and ‘s’ on c%, and €%, respectively will be dropped, so as to
simplify the notation.

In the following discussion, the system of coupled wave
equations for a linear viscoelastic piezoelectric material,
relating u, to E;,, will be derived from the complete set of
equations for a linear viscoelastic piezoelectric material:
(2-6), (2-25) to (2-28) and (2-32) to (2-34). In addition the
symmetry equations (2-8) and (2-9) are required. From (2-6),

(2-8), (2-9), and (2-33), (2-32) reduces to

_eijk Ek.l M Cykl uk.h + nu.tl uk,h = pm uj (2—46)

From (2-27) and (2-28), after elimination of B,

E, - E, = -u,D, (2-47)

Ly

From (2-6) and (2-34), (2-47) reduces to

: 1 N , .
EJ.u “E,; = u, [Euz Ek M 3 e (b, + “u):l (2-48)

Equations (2-46) and (2-48) constitute a system of
coupled wave equations for a linear viscoelastic piezoelectric
material which interrelates u, to E. The above system
constitutes a complete system of six scalar equations in the
six variables (unknowns): u,, uw,, u,;, E;, E,, and E;. For the
case of a non-piezoelectric viscoelastic medium, e, = 0, thus

(2-46) and (2-48) reduce to
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Corlles * Mty = Pn ¥ (2-49)
E,-E,="u, e, E, (2-50)

In the absence of external forces, (2-49) is identical to (2-
10). Since e, = 0, then from (2-43) and (2-45), du = 0. Thus
from (2-44), €% = €'y = €, (83 + x©). Since the viscoelastic

material is non-piezoelectric, then by necessity, the material

must be isotropic. Thus for an isotropic viscoelastic
material, §, = 1, x“ - x., and €% - ¢ (1 + x.), and hence (2-
50) reduces to (2-30). Therefore, for an 1isotropic

viscoelastic material, u, and E, decouple and the resulting
equations reduce to those of an isotropic viscoelastic
material.

The vector potential, A, is defined by the following

equation.

A 2-51)

kg

B =¢

i yk
In vector notation, (2-51) is B = VxA. Equation (2-12), V+B
= 0, implies that B = VxA since V- (VxA) = 0. 1In general the
electric field, E, is expressed as the sum of two potentials:
one scalar, and the other wvector. In terms of the scalar
potential, ¢, and the vector potential, A, the expressior for
E 1is

E =-p, - /i‘ (2-52)

The general form of E, given by (2-52) is a consequence of (2-

13).
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For an anisotropic viscoelastic material such as quartz,

the frequency of elastic vibrations 1is many orders of
magnitude greater than the corresponding frequency of pure
electromagnetic vibrations. Due to the 1low value of
piezoelectric coupling in quartz, the electromagnetic field is
essentially decoupled from the elastic field. Thus the
magnitude of the second term in (2-52) is much less than the
magnitude of the first term in (2-52). The inequality [A] <
”<p.i" is called the quasi-static approximation. Equation (2-

52) becomes

E = -, (2-53)

In the quasi-static approximation, the equations of
motion relating u, to ¢, are derived from the following
equations: (2-35), (2-46), (2-48), and (2-53). From (2-53),

(2-46) reduces to
C P * Corg Uy * Ny Uy = Pl (2-54)

Differentiating (2-48) with respect to the spatial coordinate,

%X,, (2-48) reduces to

.. i ) i
€k, * 5 €y (i, * dy) =0 (2-55)

From (2-35) and (2-53), (2-55) reduces to
Cully, —€®, =0 (2-56)

From (2-6), (2-25), (2-34), (2-35), and (2-53), (2-25) reduces
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eyl = €@y = 0 (2-57)

From an inspection of (2-56) and (2-57), (2-56) is simply (2-
57) differentiated twice with respect to the time, t. Thus in
the quasi-static approximation, (2-54) and (2-57) are the
dynamical equations of motion for a linear viscoelastic
piezoelectric material interrelating u; and e¢. The above
system of equations constitutes a complete system of four
scalar equations in the four variables: u,, u, u,, and e.

An AT-cut quartz crystal, is a rotated Y~-cut quartz
crystal, which has been rotated through an angle of § = 35.25°
about the X-axis. It operates in the transverse shear mode,
as will be explained. The XYZ-coordinate system refers to the
crystal axis coordinate system.

The rotation of the XYZ-coordinate system into the xyz-
coordinate system through an angle @, about the X-axis is
given by the following rotation matrix, a;,

1 0 0
a = |0 cosf sind (2-58)

y
0 -sinf cosf

In the following the prime refers to the XYZ-coordinate
system. The components of the elastic coefficient tensor,
c’,, With respect to the XYZ-coordinate system are related to

the components of c,;, with respect to the xyz-coordinate system



by the following transformation.

= / -5
Cors = G @,y G, Q) Cony 2-59

By the same token, the components of %’,, are related to the

components of 71, by

Nt = Gy @y By G M (2-60)

m " n

The components of the piezoelectric stress coefficient tensor,
e’,, with respect to the XYZ-coordinate system are related to
the components of e;, with respect to the xyz-coordinate system

: oW i“g tranSformation.
€ a,.a a, ( ! -
yk m “yn Yko T mno (2 6])

The components of the dielectric tensor, €’,, with respect to
the XYZ-coordinate system are related to the components of ¢,

with respect to the xyz-coordinate system by the following

transformation.

e =a_a e,',,,, (2-62)

y un " n
For an AT-cut quartz crystal, the values for: c,, e,

and €; with respect to the xyz-coordinate system are given in

Table 2.4, Tiersten (1969).
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Table 2.4 Properties of Quartz

Cyii € €ix
Elastic Piezoelectric Stress Dielectric Strain
Coefficient Coefficiert Coefficient
Components Values Components M alues Components Values
10° (N/m?) C/m? C/V+.m

Cin

Chn

Cin

Criz2

Cns -3.66 €123 0.067 €23 0.68

Ci113 27.15 €11 -0.0187 €3 40.42

Ciaz 29.01 e 0.0

Criz 2.53 (o -0.095

Chn 68.81 € 0.108

Ca 0.0 " €m 0.0

Con 0.0 " €3 0.0

Com 129.77 'l [ 0.0

Cont 5.7 " e 0.0

Con -7.42 " €12 0.067

Con 0.0 ]I € -0.0761

Chin 0.0 ]l €12 0.0

Cm 38.61 “ € 0.0

(P 0.0 " €133 0.0

Can 0.0 ]

Cun 9.92 ]

Con 102,83 |




From (2-59) to (2-62), using Table 2.4, the equations of
motion for the thickness shear wave solution of an AT-cut

quartz material are

d%u, d’u,_ 3? 3%u,
Cia12 ayz + 7)|2|2m + &, —a_ilg; = p"ET (2-63)
a’u 3*u 3%u 3u 3%u
C. — %+ 2 4 c Y 4+ 7 R y (2-64)
2322 3y’ N2 ERLET, 20 3y’ 222 3707 pq—EFT
d%u, d’u 3%u o’u 02u
- 4 Y o= : 2-65
Coans 3y * M 3773 * O 3y? + ")zmm pq—a_ﬂ- (2-65)
2
€2 o4 - 52222—«’ =0 (2-66)
dy? dy?

where cj;, is a component of the elastic coefficient tensor,
e;; is a component of the piezoelectric stress coefficient
tensor, 7,3;, is a component of the viscoelastic coefficient
tensor, and ¢€,; is a component of the dielectric strain
coefficient tensor, all given in Table 2.4.

In (2-63) to (2-66), u,, w, and u, are the x,y and 2z
components of the particle displacement in the quartz material
of mass density, Py, and ¢ is the potential. The four scalar
equations (2-63) to (2-66) relate the four variables u,, u,
u,, and ¢. The quantities u, and ¢ appear only in (2-63) and

(2-66), while the quantities u, and u, appear only in (2-64)
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and (2-65). Therefore u, and u, are decoupled from ¢, while u,
is coupled to ¢. Furthermore the dependent variables u, u,

u,, and ¢ are functions of the independent variables y and t

2
only. From (2-66) if ¢ = 0, then from (2-63) and (2-66) u, =
0, after some mathematical reasoning. If ¢ # O, then u, # O
and so ¢ causes the displacement, u,, which is a function of
y and t only. Therefore the wave propagates in the y-
direction, with the associated particle displacement in the x-
direction and so the wave is a transverse wave. The AT-cut
quartz is also called transverse-shear-mode (TSM) quartz for
this reason. Since u, and u, are decoupled from ¢, then if u,
and u, are zero at some time, then they will be zero for all
time.

Let ¢ = Cyiay 1 = My © = €3,, and € = €,,, and denote
partial differentiation with respect to y by a prime and with

respect to t by a dot. Then (2-63) and (2-66) become.

cu +qu’ +eg” =pi, 2-67)

eu! -e¢’ =0 (2-68)

Equations (2-67) and (2-68) are the coupled linear partial
differential equations for the thickness shear-wave solution
relating the particle displacement, u,, to the potential, ¢,
in the quartz.

The thickness shear-wave viscoelastic wave equation for

the particle displacement, u,, is obtained by eliminating the
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potential, ¢, from (2-67) and (2-68). The thickness shear-

wave viscoelastic wave equation is
cu, +qu, =p,l (2-69)

where € is called the stiffened elastic constant of quartz ,

and is defined as

c=c+ @2-70)
€

From (2-6), (2-8), (2-9), (2-33), (2-34), (2-35), (2-36)

and from Table 2.1, the components of T, and D, in quartz are

T, =cu +ni +eg @-71)

T, = Ciypplly * Myt *+ € ¢ (2-72)
T.=T,=T. T, -0 (2-73)
D, =0 (2-74)

D, =eu -e¢ (2-75)

D, =e,, ux/ - 60 (2-76)

2.4 Fluid Mechanics

There are two furndamental equations of fluid mechanics,
the equation of continuity and Newton’s second law applied to

a liquid, Hughes and Brighton (1967), Landau and Lifshitz
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(1987), and Yuan (1967). There is one equation of the

material which gives the general linear relationship between

the stress in the 1liquid medium and the corresponding

deformation of the liquid medium arising from the action of
the stress.

The equation of continuity for a liquid medium of mass

density, p, is.
b[ * (plvm,‘)'; =0 (2"77)

In (2-77), v,, denotes the i-th component of the particle
velocity in the liquid medium. The general linear expression
for the relation between the stress components of the liquid
medium, T, and the components of the 1liquid particle

velocity, v,, for a liquid medium is

Tpy = PO * u(Viy * Vo %6,.]. Vore) * 0, Vore 2-78)
In (2-78) , p, denotes the liquid pressure at a point in the
liquid medium, u, denotes the dynamic viscosity of the liquid
medium, and {, denotes the second coefficient of viscosity of
the liquid medium. The second coefficient of viscosity, {, is
a measure of the viscosity of the liquid medium that arises
when turbulent effects are present. From Newton’s second law,

the equation of motion for a liquid medium is

T

odi ¥ Foj =0 Op; * Vi Ve,a) 2-79)

For an incompressible 1liquid medium, the liquid mass

density, p, is considered to be constant, that is, the same at
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all points. For an incompressible liquid medium, (2-77)

reduces to

Vo = O (2-80)

From (2-80), vith liguid pressure neglected, (2-78) reduces to
T(M' = ‘u(v(l)ij + v([),,() (2-81)

In an incompressible liquid medium, physical effects due
to turbulence, such as convection, are negligible in
comparison to the translatory motion of the 1liquid medium.
Thus the convective term in (2-79), VvV, 1S negligible in
comparison to the non-convective term V. Thus for an
incompressible liquid medium with constant dynamic viscosity,
ik, and mass density, p,, in the absence of all external forces,

from (2-80) and (2-81), (2-79) reduces to

= v (2-82)

v v(lu'u‘ V(I)J

where v is called the kinematic viscosity and is defined as

y = B (2-83)

Equation (2-82) constitutes a complete system of three scalar
equations in the three variables: v,, v,, and v,. Equation (2-
82) is the Navier-Stokes equation for an incompressible liquid
medium.

Let the surface of the liquid be in contact with the
plane surface of a solid material undergoing transverse

oscillations in a direction parallel to the surface of the
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liquid. The transverse vibratory motion of the solid will be
transmitted to the surface of the liquid in contact with the
solid, via contact forces, which are attractive forces between
surface liquid particles and surface solid particles. A
cartesian coordinate system is chosen, such that, the surface
of the liquid lies in the xz-plane, with the y-axis directed
into the liguid medium. The transverse motion of the solid
surface in the x-direction, will produce a transverse motion
of the liquid in the x-direction, with each component of the
particle displacement of the liquid being a function of the
spatial coordinate, y, and the time, t, only. That is: y,, =
u,(y,t), v, =0 and u,, = 0. The x-component of the particle
displacement of the liquid, ug,,, is the only non-vanishing
component. Since v, = §,, then: v, = v, (y,t), vy = 0 and v,
= 0. Therefore (2-82) reduces to one scalar equation in the

variable, v,,.

PV = Vi, (2-84)

There is also only one non-vanishing stress component of the
liquid medium, T,,, from (2-81) and as a result (2-81) reduces

to one scalar equation, given by

T(nyx L v(ll)x (2-85)



2.5 Boundary Conditions of Solid-Liquid Model

There are five boundary conditions for the solid-liquid
two-layer system shown in Figure 2.1. Two of the boundary
conditions are applied at the solid-air interface, and the
other three are applied at the solid-liquid interface. Fiqure
2.1 depicts a liquid-loaded sensor with quantities at the two
interfaces, y = 0 and y = h, which appear in the following

five boundary conditions.

Aty
LIQUID (p,.v)
A
¢(h’t) ’
P uy (h,t) Tyx ()
SOLID (pm.c.n.t,¢)
9 Tyx(O,t) = 0
+x
¢(0.1) —I

AIR

Figure 2.1  Solid-liquid model showing quantities used to express the five
boundary conditions, and showing in brackets the five properties
of the solid, the two properties of the liquid and the one property
of the interface.
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(1) Shear Stress At y = 0 (Stress-free boundary condition at

solid-air interface interface)
T,(0,8) =0 (2-86)

Equation (2-86) states that at the solid-air interface, the
air 1in contact with the surface of the sensor at y = 0
produces a negligible shear stress on the solid surface.

(2) Shear Stress At y = h (Continuity of stress boundary

condition at solid-liquid interface)
T, (h,t) = T, (h,t) (2-87)

Equation (2-87) is the stress-continuity boundary condition at
the solid-liquid interface. Physically the stress must be
continuous at all points along the solid-liguid interface,
'that is, there can only be one value of stress at each point
along the solid-liquid interface.

(3) Particle Displacement At y = h (Slip boundary condition

at solid-liquid interface)
Uy, (hyt) = au(h,t) (2-88)

The boundary condition, (2-88), defines the interfacial slip
parameter, a. The interfacial slip parameter, a, is a measure
of the relative displacement between two points, P in the
solid at the interface and P’ in the liquid at the interface.
In general a is a complex-valued quantity, which accounts for
the phase difference between the displacements, u,, and u,.
The relative displacement between P and P/, is a measure of

the strength of the interaction that arises between P and P’.
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Thus a, may be viewed as that parameter which is a measure of
the strength of the interaction between P and P’. Figure 2.1
shows points P and P’, and their respective displacements.
(4) Potential At y = 0 (Potential boundary condition at

solid-air interface)
¢(0,1) = - e (2-89)

Equation (2-89) specifies the value of the potential at the
bottom electrode of the sensor.
(5) Potential At y = h (Potential boundary condition at

solid=-liquid interface)
‘P(ha’) = +sooel‘“ (2"9())

Equation (2-90) specifies the values of the potential at the

top electrode of the sensor.

2.6 Solution Of Solid-Liquid Model

The following is a list of the equations needed for the
solution of the boundary value problem. There are three
equations of quartz: (2-67), (2-68) and (2-71) . There are two
equations of the liquid: (2-84) and (2-85). The gquartz and
ligquid equations are combined with the five boundary
condicions: (2-86), (2-87), (2-88), (2-89), and (2-90). In
particular, two of the boundary conditions connect the quartz
equations with the liquid equations: the continuity of stress

boundary condition, (2-87), and the slip boundary condition,
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From (2-69), the general plane-wave solution to the

viscoelastic wave equation is

u = (‘11 e.ik.)’ + aze'jk,)') eiet (2-91)
where
12
ko=ow | (2-92)
! c+rwnj
In (2-91), a, and a, are complex-valued constants. The

guantity, k, in (2-92) is complex-valued and is called the

ql
wave number for quartz.

The general plane-wave solution to (2-84) is

Ve = (a;€757 + g el el 2-93)
where
in
P (2-94)
i _jV

In (2-93) a; and a, denote complex-valued constants. The
quantity, k,, in (2-94) is the complex-valued wave number of
the liquid medium. From (2-93) as y -+ o, exp(-jky) - 0, and
exp (jky) - o, Since exp(jky) - o, then, v, = .
Physically this is not possible, since for all y, v, must be
finite. Therefore in order for v, to be finite, a; = 0.

Hence (2-93) reduces to
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v

- -2k y wt - 5
e = ds€7 € (2-95)

From (2-68) and (2-91), the expression for the potential, ¢,
is

o = fux + (a,y + a))e (2-96)
€

In (2-96), a; and a, are complex-valued constants.

The boundary value problem to be solved consists of the
five boundary conditions which relate the five unknowns: a,,
a,, a;, a4, and a;.
(1) Stress-free boundary condition: (2-86)

Using (2-71), (2-91), and (2-96), the first algebraic
equation is

a,e - (a, - a,)8k, =0 (2-97)

(2) Continuity of stress boundary condition: (2-87)
Using (2-71), (2-85), (2-91), (2-95), and (2-96), the

second algebraic equation is

_B(az'yf - al)kq - asey, ask,vwp, (2-98)
" 0!

(3) Slip houndary condition: (2-88)
Using v, = 4, and v, = U4, with (2-91) and (2-95), the

third algebraic equation is
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9s M (2-99)
T2 7

(4) Potential boundary condition: (2-89)

Using (2-91) and (2-96), the fourth algebraic equation is

£(a, +a) +a, = -p, (2-100)
€
(5) Poteantial boundary condition: (2-90)

Using (2-91) and (2-96), the fifth and final algebraic

equation is

(’(al + a, 'yf) + ey, (h a, + a,) - (2-101)
€7, °

In (2-100) and (2-101), ¢,, is the amplitude of the applied
source voltage. From (2-97) to (2-101), the complex-valued

quantities y,, ¥,, and § are defined as

v, = eibk (2-102)
=nw -jc (2-104)

The algebraic solution to (2-37) to (2-101), is found by
the Macsyma program, ZIN.WP. The Macsyma program ZIN.WP is
given in Appendix 3. The solution to the above system of

algebraic equations follows.
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a = + by (2-105)
l aby, + b, )

by + b
a = o2 " On (2-106)
aby + by

- (a by, + by) e,

4 - (2-107)
? a by + b
b b
a, = 2 " n (2-108)
aby, + b,
b b
a, = 202 " % (2-109)
@by, + by,
where
by, = -28ee(y, - 1)y, k, e, (2-110)
b, = 2eeyikvwe,p, 2-111)
by, =08(y, - Dk, (de(y, + 1)hk, +2e%(y,-1)) (2-112)
b, = k,(&e('yf + l)hkq rel(y, - 1)(y, * 1)rup, (2-113)
by =2bee(y, - Dk, o, (2-114)
b, =2eekvwp,ep, (2-115)
by, = by (2-116)



2-41

by = by, 2-117)

by = 28%(y, = 1) (v, + 1)k; (2-118)
by, =28e(yi + Dkk oo (2-119)
by, = by (2-120)

by, = by, (2-121)

by = =87€(y, - D) (v, + Dhk e, (2-122)

by = -k (Be(yl + Dhk, = e(y, = Dy, * Mvpop, 2123

by = by (2-124)
by = b, (2-125)
by, = 0 (2-126)
by = 28ee(y, - 1)’ 1k e, (2-127)
by, = b, (2-128)
bs, = by (2-129)

2.7 Impedance

The theoretical complex-valued expression for the
impedance, Z, will be used in the analysis of the experimental

results which is presented in Chapter 3. The impedance of the
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sensor is defined as the voltage across the sensor, v, divided
by the current through the sensor, i, shown in Figure 2.2.

The current through the sensor, i, is the time rate of
change of total free charge on an electrode of the sensor.
Let the total free charge on one electrode be Q;. Then the
current, i, through the sensor is, by definition

i - 99 (2-130)
dr

The free charge density, p,, is found by combining equation (2-
11), E, = p/e,, equation (2-17), p = p; - P, and the
definition of the electric displacement, equation (2-24), D,

= ¢,E, + P,, The result is

D, = s (2-131)

The total free charge, Q;, is obtained by integrating (2-131)
over the volume, V, of the dashed region shown in Figqure 2.2.
This region is a very thin box that encloses the interface
between the gquartz and the metal electrode. All of the free
charge on the metal electrode is at the interface side of the
electrode, the row of plus signs for the polarity of v which

is indicated.
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i AtY
" P $ (h.t)
/S Q¢
v_;"l"'-i'"i"i"'&"l’"i"l‘ '-F»'"47"4'»"'+£'3"'+'"70-"'-i'”‘:;——NIETAL
Y T L > AR
U,
+Z
¢ (0,1)

Figure 2.2 Total free charge, Q,, found by surface integration of the electric
displacement, D,

The result of the integration of (2-131) is

I D, dv = [ o dV (2-132)

where the right side of (2~132) is the total free charge on
the electrode, Q,. The left side of (2-132) is converted to
a surface integral over the area, A, of the region in Figure
2.2 by the application of the divergence theorem. The total

free charge, Q;, from (2-132) is

0 = [, Dinaa (2-133)

From (2-74) to (2-76), D, lies in the yz-plane as shown in
Figure 2.2. Furthermore there is only a flux of D; through the
bottom surface of the region, the surface which is in the

quartz. There is no D, in the metal electrode. The unit
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normal, n, of the bottom surface points downward since the the
unit normal points outward from the region. Therefore the
components of n; are n, = 0, n=-1and n, = 0. From (2-75),

(2-91), and (2-96), (2-133) reduces to
Q = EA a} ej“" (2“34)

From (2-130) and (2-134), the current, i, flowing through the

quartz sensor is

i = _dd__Qf =jweAae*! (2-135)
!

The voltage across the sensor, v, is the potential at the
top electrode minus the potential at the bottom electrode,

Figure 2.2. Using (2-89) and (2-90),
v=eh,t) - e0,1) =2¢,e" (2-136)

The impedance of the sensor, 2, is defined as

z=12 (2-137)
1

Substitute for i from (2-135) and v from (2-136).

7o 2% (2-138)
JweAa,

Using (2-107), (2-138) reduces to the final form for the

impedance, Z, given by
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Z = - 2j ab, + by (2-139)
Awe | aby, + by

The impedance is a function of five properties of quartz,
(pye € m, €, e), two properties of the liquid (p,, »), one
property of the interface (a), two geometrical properties (A
and h) and the angular frequency (w). In the next chapter the
interfacial slip parameter, a, will be determined by fitting
the theoretical complex-valued expression for the impedance,

2, to the corresponding experimental values of 2.



CHAPTER 3

EXPERIMENT

Introduction

The interfacial slip parameter is found for sensors with
hydrophilic and hydrophobic coatings in water-glycerol
solutions This is done by fitting the experimental values of
impedance measured by the network analysis method to the
theoretical expression for the impedance derived in the last
chapter.

The experimental method, Section 3.1, is the network
analysis method developed by Kipling and Thompson (1990). A
piezoelectric quartz sensor is completely characterized by
this method by repeatedly measuring the magnitude and phase of
the impedance over the resonant region of the sensor. Non-
linear regression analysis, Section 3.2, is used to fit the
complex-valued experimental values of impedance to the
theoretical expression for impedance. The experimental data
for the sensors in air are fitted to theory, Section 3.3, and
the piezoelectric cofficient, e, the viscoelastic coefficient,
7, thickness of the sensor, h, and effective area of the
sensor, A, are found. Then the experimental data for the
sensors in water-glycerol solutions are fitted to theory,
Section 3.4, and the interfacial slip parameter, a, is found

as well as the effective area of the sensor, A. The
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interfacial slip parameter is presented and discussed in terms
of the kinematic viscosity and mole fraction of the water-

glycerol solutions, Section 3.5.

3.1 Experimental Method

3.1.1 Sensors and Liquia
Hydrophilic Bensor

The hydrophilic sensor, consists of a silver (Ag) plated
AT-cut 9-MHz quartz crystal unit coated with a hydrophilic
(water-loving) chemical coating whose chemical formula is
COOH (CH,),(SH and name is 1l-mercapto undecanoic acid. This
molecule is a chain, COOH-CH,-...-CH,-SH, with the SH strongly
bonded to the silver surface and the COOH end in contact with
the 1liquid. The COOH is polar and therefore attracts the
water molecules which are also polar. Figure 3.1(a) shows the
sensor with the hydrophilic coating. This sensor is
designated 9AgLic.
Hydrophobic Sensor

The hydrophobic sensor, consists of a silver (Ag) plated
AT-cut 9-MHz quartz crystal unit coated with a hydrophobic
(water-fearing) chemical coating whose chemical formula is
CH,(CH;) s<SH and name is n-hexadecane thiol (or 1-mercapto
hexadecane). This molecule is a chain, CH,-CH,-...-CH,-SH,
with the SH strongly bonded to the silver surface and CH; in

contact with the liquid. Unlike the hydrophilic molecule, the
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CH, is non-polar and therefore interacts weakly with the water
molecules. Figure 3.1(b) shows the sensor with the
hydrophobic coating. This sensor is designated 9AgBic.
Liquiad
The liquid used in the experiment consists of water-glycerol
solutions of varying concentrations ranging from pure water to
pure glycerol in steps of 0.1 mole fraction of glycerol in
water.
3.1.2 Experimental Arrangement
The following equipment, was used in the measurement of
the magnitude and phase of the impedance, Z, for both the
hydrophilic and hydrophobic sensors. Figure 3.2(a) shows the
structure of the piezoelectric quartz sensor, not drawn to
scale. The sensor is a thin disk of quartz with a very thin
metal electrode on each surface in the shape shown in the
figure. Figure 3.2(b) shows the sensor with a chemical
coating attached to one of the electrodes and a liquid in
contact with the coating. The network analysis system
consists of the following equipment:
HP-4195A Network Spectrum Analyzer
HP-41951A Impedance Test Kit
HP-16092A Spring Clip Fixture
The sensors are installed in an assembly not shown in Figure
3.2(b) and the assembly is connected to the Spring Clip

Fixture.
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<+— LIQUID

COOH COOH COOH COOH COOH
CH, CH, CHy CH, Ciy
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CH, CH, CH, Cif Cil
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+— LIQUID
CHy CH; CHs CHy CHy
CH CHp, CH, CHy CHy
15 CHys | . <+— HYDROPHOBIC
, , , , , COATING

Figure 3.1  Sensor in liquid with (a) hydrophilic coating and (b)
hydrophobic coating.
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Figure 3.2  Experimental arrangement showing (a) the top and side
views of the piezoelectric quartz sensor and (b) the sensor
in liquid connected to the network analysis system.
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The experimental measurement process consists of two
parts: measurement in air and measurement in liquid.
Air

The magnitude, |2|, and phase, 0,, of the impedance, 2,
for both 9AgLic and 9AgBic were measured in air. The
measurement of |Z| and §,, was carried o. over the closed
frequency interval I = [f,, £]. The closed interval, I,
consists of N = 401 equally spaced frequency points, in the
ctepsize of, Af = (f - £)/N. The nominal resonant
frequency, f,, is midway between f, and f,. The difference
between f, and f, is called the freque cy span. The nominal
resonant frequency is f, = 9 MHz and the typical frequency
span is 80 kHz.
Liquid

The magnitude, |Z|, and the phase, #,, of the impedance
were measured for both sensors in water-~glycerol solutions of
varying concentrations, ranging from pure water to pure
glycerol in steps of 0.1 mole fraction. At each
concentration, the closed interval I was modified, that is,
the frequency span was either increased or decreased so as to
ensure that measurements were made over the complete resonant
region.

The preparation of the water-glycerol solutions was done
24 hours in advance so as to ensure that the solution would be
in its equilbrium state. The water-,lycerol solution is said

to be in equilibrium when there is no diffusitory action
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between water and glycerol. The 1liquid solution may be
considered to a very good approximation to be in its
equilibrium state, that is, the water-glycerol solution is

homogenous throughout.

3.2 Non-Linear Regression Analysis

3.2.1 Statement of the Non~Linear Regression Analysis
Problem
Given a complex-valued function F(p,,...,p,,w) of n

complex-valued parameters, p,,...,p, and angular frequency, «,
determine p,,...,p, such that the function F(p,,...,p,,w) is a
good fit to the experimental data.
3.2.2 Definition of Sum Of Squares Of Errors, SSE

The optimization of F(p,,...,pP,,w), With respect to the
experimental data, {e,y,} (i = 1,...,N, N = the number of
experimental data points), is achieved by minimizing the "sum

0f Squares Of Errors", SSE(p,,...,p,) defined by

N
SSE(pI' o0 lpn) = %ZIY. - F(plr e ,P,.,w,)]? (3-1)
1=1]

In general, the experimental data is considered to be
complex-valued, that is, y, € C (where Cdenotes the field of
complex numbers) for each i = 1,...,N. Physically the

quantity, |y, = F(pi,.-+,P.w) |? represents the square of the
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distance between the two complex numbers y, and F(pPy ¢+« , Py )
in the complex plane C for each i = 1,...,N. Thus the
function, SSE, is simply the sum of the squares of the
distances between y, and F(p,,...,P,w) (i =1,...,N). Since
SSE(Py, «++:P,) 2 0 for all p, € C*®, where, p, = (Pjs+++,Py)-
Then SSE(p,,...,p,) has an absolute minimum at some point, p,,
¢ C". The point, p, = (Pgs+--sPm) 1S called the "best-fit

point". The n coordinates , p,,...,Po. @re called the "n best-

fit parameters". Thus at p, = Py SSE( Pw) = SSE(Psis s+« + +1Pon)
= 0.
3.2.3 Condition for SSE to be a Minimum

At p, = P, SSE(p,) as an absolute minimum. To determine

the best fit point p, = p,,, take the total differential of

SSE(p,) -

Y ASSE(Pys -~ D,)

dSSE(Pys «++1D,) = %Z 7 dp, (3-2)
i1=] t

The condition for SSE(p,,...,p,) to be a minimum is given by

dSSE(Dy, +-+4,,P,) =0 (3-3)

3.2.4 Definition of Normal Equations
Using condition (3-3), and the fact that the dp, for each
i=1,...,n are all independent of each c.ner, the normal

equations from condition (3-3) are given by
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O0SSE(Pys+ev1r 4+ P,)

=0, i=1,...,n (3-4)
ap,

The above system of normal equations, constitutes a
system of n non-linear algabraic equations in the n unknowns,
Pir++++Ps- The numerical solution to the above non-linear
algebraic system, yields the desired best fit point p, = p..,

that is

O0SSE( D1yt v+ 1 Poy)

=0, i=1,...,n (3-5)
ap,

3.2.5 Exanmple

In Appendix 4, Mathcad program DOC1.MCD demonstrates non-
linear regression analysis. A simple example is used to show
how Mathcad’s Minerr function is used to perform a non-linear
curve-fitting procedure to a non-linear multi-valued complex-
valued function denoted by 2. The function Z models the
electrical impedance of a series RLC circuit. Thus the
function, 2 = Z(R,L,C,w), depends on three parameters, R, L,
and C, which, denote respectively the resistance, inductance
and the capacitance of the series RLC circuit, and the angqular
frequency, «w, which is defined as w = 27nf where f is the

frequency. The impedance, Z, is given by

. 1
= - 3-6
Z=R +j(wlL wC) ( )
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The resonant frequency, f, is defined as the frequency at
which Z is real, or equivalently, the frequency at which the

phase of Z is zero. The resonant frequency, £, is given by

f = (3-7)

Lt
T e

The function 2 = Z(R,L,C,w), is fitted to the complex-
valued data consisting of 2, = Z(R,L,C,w), where R and L are
given arbitrary values of 10.0 ko and 10.0 mH respectively.
The value for C was computed from equation (3-7) using f = 9.0
MHz. Given that L = 10.0 mH, the value of C is, C = 0.031 pF.
The function 2 is computed over the closed frequency interval,
I = [8.0 MHz, 10.0 MHz] and then randomized using Mathcad’s
rnd function. The exact data for 2 is randomized so as to
simulate an experimental data set. The interval I, is chosen,
so that the centre frequency of I, corresponds to the resonant
frequency of the series RLC circuit.

The non-linear curve-fitting procedure, implemented by
Mathcad’s Minerr function, implements the Levenberg-Marquardt
method. The Levenberg-Marquardt method, a quasi-Newton
method, is a variation of the gradient method. In Newton’s
method, each entry of the jacobian is computed via a numerical
dif ferentiation procedure. 1In contrast, in the quasi-Newton
method, each entry of the jacobian is replaced by an

appropriate finite-difference approximation. The Levenberg-
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Marquardt algorithm uses a down-hill search method (gradient
method) to obtain an initial estimate of the parameters in
guestion. Once an initial estimate of the parameters have
been made, the algorithm then uses the quasi-Newton method to
refine the initial estimates of the parameters to the desired
accuracy.

Mathcad’s non-linear <curve-fitting procedure is
effectuated by providing both the function SSL(L) and the
appropriate guess value L denoted by Lguess. Once the
appropriate guess value for L as been given, the best fit
value for L denoted by Lfit is obtained by minimizing SSE(L)
via Mathcad’s Minerr function. The value of Lfit is 10.002
mH.

From Figure 3.3, SSE(L) has only one absolute minimum in
the interval {1.0 mH, 20.0 mH]. The absolute minimum of
SSE(L) ocurrs at L = 10.0 mH. Since SSE has only one absolute
minimun in the interval {1.0 mH, 20.0 mH], then any value for
L within the above mentioned interval can serve as an
appropriate guess value for L.

Figures 3.4 and 3.5 give the magnitude and phase,
respectively, of the impedance of the RLC series circuit, and
show the simulated experimental data produced by the Mathcad

rnd function and the fitted curve.
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3.3 Fitting of Theory to Experiment in Air

In Section 2.6 of Chapter 2, the expression for the

impedance, Z, of the coated sensor in air is given by

$
= 248 (3-8
Zd A )
where
I
f.,:f'a(e:ﬂ:h:w) =2_7— (3"'9)
by,
with
by, = 8§ (v, - 1)kq(66 (v, *+ 1)hkq + 2e2('y,-1)) (3-10)
and

by =268% (v, - 1) (7, + 1) kg (3-11)

where vy, = exp(jhk)) and § = n0 - jc¢

with

7
- = [ Pq (3-12)
kq kq(elnlw) ch(e) +jw7’:l]

and



From an examination of (3-9) to (3-13), ¢{, is a complex-valued
function which is independent of the effective surface area,
A. {, in terms of rectangular coordinates in the complex plane

is expressed as

g‘a = g‘Re + j g‘lm (3-14)

From (3-9) the magnitude of 2, |Z|, is

1
12| = S5+ Sim (3-15)

and the phase of 2, 0,, is

6, = arctan

Tk

g‘lm ] (3—16)

Note that |2Z| is inversely proportional to A and @, is
independent of A.

Appendix 5 is Mathcad program DOC2.MCD which fits theory
to experiment in air. The theoretical complex-valued
expression for the impedance, Z, oi the hydrophilic and
hydrophobic coated sensor in air 1is fitted to the

corresponding experimental data for the impedance, 2, via a
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three-step process. The three steps are:
(1) The Fitting Of §, To Experiment In Air
(2) The Fitting Of |Z| To ~xperiment In Air
(3) The Fitting Of Z To Experiment In Air
In air the theoretical complex-valued expression for the

impedance, 2, is given by

Z,,=Z,,(c,e,e,17,pq,h,A,w) (3-17)

The values for the elastic constant of quartz, ¢, the
dielectric stress constant of quartz, €, and the mass density
of quartz, p, are, from Tiersten (1969),
c = 29.01 10° N/m?
€ = 39.82 10" ¢/v m
Py = 2649 kg/m’

The fitting of (3-17) to the experimental data is
achieved by varying four parameters: the piezoelectric stress
constant of quartz, e, the visco-elastic constant of quartz,
n, the thickness of the coated sensor, h, and the effective
surface area of the sensor, A. The variation of the
parameters e, 7, h, and A is achieved by the implementation of
Mathcad’s Minerr function, via Mathcad’s Solve Block facility.
Below is the outline of the three-step process.

In step 1, the appropriate gquess values for the
piezoelectric stress constant, e, the visco-elastic constant,
1, and the thickness, h, denoted respectively by eguess,

nguess, and hguess are chosen. Then the starting values for
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e, 7, and h, denoted respectively by estart, qstart, and
hstart, are determined by minimizing the Sum Of Squares Of
Errors, SSEl(e,n,h), via Mathcad’s Minerxr function.

The wvalues for estart, 7nstart, hstart, and the quess
value for the effective surface area A, denoted by Aguess are
used in step 2 to determine the starting value for A, denoted
by Astart. The determination of Astart is achieved by
minimizing the Sum Of Squares Of Errors, SSE2(A), via
Mathcad’s Minerr function.

Finally in step 3, using the val' 's estart, gpstart,
hstart, and Astart, best-fit values for e, 75, h, and A denoted
respectively by efit, xnfit, hfit, and Afit, are determined by
minimizing the Sum Of Squares 0f Errors, SSE3(e,n,h,A), via
Mathcad’s Minerr function.

For the hydrophilic coated sensor in air, the best-fit
values for e, 7, h, and A, are denoted respectively by elfit,
nlfit, hifit, and Alfit. For the hydrophobic coated sensor in
air, the best~-fit values for e, 9, h, and A, are denoted
respectively by, e2fit, n2fit, h2fit, and A2fit. Table 3.1
summarizes the final results for e, 7, h, and A.

The piezoelectric stress coefficient, e, 1is found
experimentally because if the value of e from the literature
is used, it is not possible to fit the theoretical expression
for 0, to the experimental data. From Tiersten (1969), page
60, the piezoelectric stress coefficient is e,, = -0.095 C/m’

and from Table 3.1 the best-fit value of e is -0.0798 C/m’.
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It is presumed that the value of e in the literature is

incorrect. The value of the viscoeleastic coefficient, , was

not found in the literature and therefore it was necessary to

measure 1it.

Table 3.1 Summary of Results for e, 5, h, and A

Physical Hydrophilic Surface (Air) Hydrophobic Surface (Air)
Properties
guess starting fitted l guess starting fitted
values values values values values values
¢ (C/m?) ll -0.079 -0.07979 | -0.07980 1 -0.079 -0.07979 | -0.07980
7 (Nm/s?) 0.011 0.01187 | 0.008376 0.24 0.2438 0.2344
Geometrical
Propertics
h (um) 183.87 183.878 183.879 J 183.98 183.986 183.979
A (em’) 0.28 0.2698 0.2984 JI 0.25 0.2533 0.2575

Figures 3.6 through 3.9 are the plots of the experimental

and fitted curves for |z| and 6, for both the hydrophilic and

hydrophobic coated sensors in air.

From Figures 3.6 through 3.9 the curves for the phase and

magnitude of 2Z for the hydrophilic sensor in air,

damped than

the

corresponding curves of the

phase

are less

and
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magnitude of Z for the hydrophobic sensor in air. The greater
damping of the phase and magnitude of Z in the case of the
hydrophobic sensor, is consistent with the results in Table
3.1. In Table 3.1 the value of 7 for the hydrophobic sensor
in air is greater than the corresponding value of 5 for the
hydrophilic sensor in air. The greater value of 75 for the
case of the hydrophobic sensor in air, results in the damping
effect of both the phase and magnitude of 2. Also the
molecular weight of CH,;(CH,),SH (258 g/mol), the hydrophobic
coating, is greater than the molecular weight of COOH(CH,) ,SH
(218 g/mol). Thus a sensor coated with CH,(CH,) ,SH is expected
to exhibit greater damping than a similar sensor coated with
COOH(CH,) (SH. However, the viscoelastic coefficient of the
sensors were not measured before they were coated and so it is
possible that the higher 75 for the hydrophobic sensor, Table
3.1, 1is due, in part or in total, to the mechanical

characteristics of the sensor.
3.4 Fitting of Theory and Experiment in Liquid

In Section 2.6 of Chapter 2, the expression for the

impedance, Z, of the 1liquid-loaded sensor is given by

z, = S (3-18)



3-18
For a liquid-loaded sensor, the expression for {,, equation (3-

9), generalizes to

= P S 3-19
1= 27 aby, + by ( )

where a denotes the interfacial slip parameter which is a
complex~-valued property of the solid-~liquid interface. The
interfacial slip parameter, a, expressed in rectangular

coordinates of the complex plane, is
a =, +ja, (3-20)
It is also instructive to express a in terms of the polar

coordinates in the complex plane, |a| and #,, which are called

the magnitude and phase of «a, respectively.

o = |a| L (3-21)

The polar coordinates, |a| and §,, expressed in terms of the

rectangular coordinates, ai and «,,, are

la| = yoi + aj, (3-22)

and

a
. = arctan|_™ (3-23)
QAge
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The expressions for by;; and b;, are given by (3-10) and (3-11)

respectively. The quantities b,, and b, are

by,=268€ (v +1) kk,vpw (3-24)

and

) (3-25)
by, =k (6§€ (v *+ 1) hk, +e2('y, “1) (vt 1)) vwp,

where

12
k, =k (v, ) =[_,°L (3-26)
F v

The expressions for |2| and 0, are given by equations which
correspond to (3-15) and (3-16), respectively.
Appendix 6 is Mathcad program DOC3.MCD which fits
theory to experiment in liquid. Using the values for e, %, h,
and A found in air, the theoretical complex-valued expression
for the impedance, Z, of the hydrophilic and hydrophobic
coated sensor immersed in water-glycerol solutions of varying
concentrations ranging from pure water to pure glycerol in
steps of 0.1 mole fraction, is fitted to the corresponding
experimental data for the impedance, Z.
In liquid, the theoretical complex-valued expression for

the impedance, 2Z, is given by
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Z,=Z,(c,e,e,n,pq,p,u,a,h,A,w) (3-27)

In (3-27) the same values are used for ¢, €, and p, as used
in 2z,, (3-17). In addition the values of the kinematic
viscosity, v, and mass density, p,, for each solution of water-
glycerol which were used, are from the CRC Handbook of
Chemistry and Physics, Lide (1990-91). Table 3.2 shows the

values of v and p,, for each mole fraction, M;, used inr the

experiments.

Table 3.2 Values for M,, », and p, of Water-glycerol Solutions

Mole Fraction, M; Kinematic Viscosity Mass Density
of Glycerol in Water v (¢S) py (kg/L)
Ji
0.0 (Water) | 1.002 0.9980
0.1 2.867 1.088
0.2 | 7.365 1.142
0.3 “ 16.97 1.177
0.4 39.06 1.201
0.5 I 67.43 1.218
0.6 142.1 1.231
| 0.7 330.9 1.241
0.8 572.1 1.249
0.9 986.5 1.256
1.0 (Glycerol) 1398. 1.261

The parameters that are varied in the fitting of (3-27)
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to the experimental data are the interfacial slip factor, «a,
and the effective surface area, A. The above fitting is done
for both the hydrophilic and hydrophobic coated sensors
immersed in the water-glycerol solution.

For the hydrophilic coated sensor immersed in a water-
glycerol solution, the guess and fitted values for o and A are
summarized by the following two expressions, (aguess,,,
Aguess,, ) and (afit,,, Afit,, ), for each klic =1,...,11. The
subscripted variable, klic, takes on integral values from 1 to
11 inclusive, with klic = 1 representing pure water and klic
= 11 representing pure glycerol. For the hydronhobic coated
sensor immersed in a water-glycerol solution, the guess and
fitted values for a and A are summarized by the following two
expressions, (aaguess,, , AAgquess,, ) and (cafit,, , AAfit,,)
for each kbic =1,...,7. The subscripted variable kbic, takes
on integral values from 1 to 7 inclusive, with kbic = 1
representing pure water and kbic = 7 representing pure
glycerol. For the case of the hydrophobic coated sensor
immersed in the water-glycerol solution, four of the eleven
data files for the magnitude and phase of Z, were corruptced,
likely due to a poor electrical connection during the
measurement process.

For the hydrophilic sensor immersed in the water-glycerol
solution, for each, klic =1,...,11, the determination of the
best-fit values for « and A denoted by (afit, , Afit, ), is

achieved by minimizing the Sum Of Squares O0f Errors,
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SSElic (@, Aucs klic) via Mathcad’s Minerr function. For the
hydrophobic sensor immersed in the water-glycerol solution,
for each, kbic = 1,...,7, the determination of the best-fit
values for a and A denoted by (aafit,, 6 AAfit,, ), is achieved
by minimizing the Sum Of Squares Of Errors, SSEbic(ey,., Auwir
kbic) via Mathcad’s Minerr function. Tables 3.3 through 3.6
summarize the results for the guess :nd fitted values of a and
A for both the hydrophilic and hydrophobic coated sensors in
water-glycerol solutions.

Table 3.3 Interfacial Slip Parameter, «, for Hydrophilic Sensor

l Interfacial Slip Parameter, o
Hydrophilic Sensor
I guess fitted values
values
i Mole Fraction, M; ‘" Oge . ™ 6,

of Glycerol in Water (deg)
0.0 (Water) b 3.76+2.30] | 3.774 2.299 4.419 31.35
0.1 2.6+1.3 2.631 1.246 2.911 25.34
0.2 I 1.940.6 1.914 0.6510 2.022 18.79
0.3 l 1.6+0.4j 1.680 0.4000 1.727 13.39
0.4 1.440.2j 1.432 0.2130 1.447 8.461
0.5 1.34+0.1j 1.316 0.1180 1.321 5.110
0.6 || 1.1+40.07) 1.172 0.06900 1.174 3.393
0.7 l 0.92+40.01; | 0.9370 | 0.0160G | 0.9370 | 1.000
0.8 I 0.8-0.003; | 0.8930 | -0.004000 | 0.8930 | -0.2850
0.9 I 0.8-0.04j 0.8420 | -0.04800 | 0.8440 | -3.234
1.0 (Glycerol) 0.8-0.06; 0.8300 | -0.06600 | 0.8320 | -4.556




Table 3.4 Effective Surface Arca, A, for Hydrophilic Sensor

Mole Fraction, M "

Effective Surface Area, A (cm?)

Hydrophilic Sensor

of Glycerol in Water ’I guess values fitted values

0.0 (Water) “ 0.4 0.4115
0.1 0.39 0.3911

0.2 <“ 0.34 0.3494

0.3 “ 0.34 0.3509

0.4 0.34 0.3433

0.5 ]I 0.33 0.3316

0.6 0.32 0.3271

0.7 0.33 0.3255

0.8 I 0.32 0.3242

0.9 0.32 0.3236

1.0 (Glycerol) ll 0.32 0.3221
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Table 3.5 Interfacial Slip Parameter, «, for Hydrophobic Sensor
Interfacial Slip Parameter, «
Hydrophobic Sensor
guess fitted values
values
Mole Fraction, M; " Ope oy, |a| 6,
of Glycerol in Water (deg)
0.0 (Water) 4.9+2.3j 5.003 2.290 5.503 24.60
0.1 3.2+1.2j 3.268 1.256 3.501 21.03
0.2 2.340.7j 2.346 0.6910 2.446 16.42
I 0.4 1.3+0.1j 1.368 0.1490 1.405 6.086
0.6 1.1+0.00093j | 1.176 | 0.003000 1.176 | 0.1420
0.8 0.8-0.05; 0.8670 | -0.04300 | 0.8680 | -2.855
1.0 (Glycerol) 0.7-0.11j 0.8150 [ -0.1170 0.8230 | -8.202

Table 3.6 Effective Surface Area, A, for Hydrophobic Sensor

Mole Fraction, M,
of Glycerol in Water

Effective Surface Area, A (cm?)
Hvdrophobic Sensor

guess values

fitted values

0.0 (Water) 0.36 0.3681
0.1 II 0.37 0.3731

0.2 ’I 0.35 0.3584

0.4 ll 0.34 0.3409

0.6 0.35 0.3526

0.8 " 0.33 0.3346

1.0 (Glycerot) II 0.32 0.3399
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Figures 3.10 to 3.17 are plots of the experimental and fitted

curves for 6, and |Z| versus frequency, f.

3.5 Interfacial Slip Parameter, a

3.5.1 Plots of «

Figures 3.18 to 3.25 plot the variation of the real part
of a, a;, the imaginary part of a, «,, the magnitude of a,
|a|, and the phase of a, 0, versus kinematic viscosity, v,
and mole fraction, M,. In Appendix 7, Mathcad program DOC4.MCD
performs a non-linear curve-fitting procedure to the
experimental data consisting of a,, «,,, |a|, and 0,, versus
v and M; by fitting the experimental data to the power law
model, F(a,b,c,x) = ax” + ¢, for the case of a,, a,, |a|, 0,
versus » and to the exponential law model, G(a,b,c,x) = ae™
+ ¢, for the case of o, «a, |a}, 0, versus M,.
3.5.2 Numerical Computation of the Real Part of u,, and u,

Appendix 8 is Mathcad program DOC5.MCD which numerically
computes the real part of u; and u,. Using the values for p,,
c, e, €, 7, h, and A for the hydrophilic and hydrophobic
sensor in air and the values for a and A corresponding to the
different mole fractions of glycerol in water for the
hydrophilic and hydrophobic sensor in the water-glycerol
solution, the real part of u, and uy, is computed over the time

interval (t,, t;] in time steps of At for each klic =1,...,11

for the case of the nydrophilic sensor and for each kbic =
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1,...,7 for the case of the hydrophobic sensor. The maximum
displacement of the real part of u, and u;, for the case of the
hydrophilic and hydrophobic sensor was computed by Mathcad’s
max function. The resulting data for the maximum displacement
of the real part of u, and u;, versus v was then fitted to the
power law model F(a,b,c,x) by Mathcad’s Minerr function for
both the hydrophilic and hydrophobic sensor.

3.5.3 Discussion of the variation of a versus Low Values

of v

In the plots shown in Figures 3.18 and 3.20 at 1low
viscosity values, for the case of the hydrophilic coated
sensor immersed in pure water, both a, and |a| are
approximately equal to 3.8 and 4.4, respectively. For the
case of the hydrophobic coated sensor immersed in pure water,
both a, and |a| are approximately equal to 5.0 and 5.5,
respectively.

The results at low viscosities for the hydrophilic and
hydrophobic surfaces can be interpreted in terms of the
greater strength of electrical attraction between a water
molecule and a hydrophilic molecule than between a water
molecule and a hydrophobic molecule. As the force between the
water molecule and the surface molecule increases, the motion
of the water molecule will more closely follow the motion of
the molecule on the surface, that is, |a| will approach 1.
From Figure 3.20, this is indeed the case; |a| for the

hydrophilic sensor is closer to 1 than |a| for the hydrophobic
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sensor. From Figure 3.21 the sign of the phase, f_,, for both
the hydrophilic and hydrophobic sensors means that the liquid
particle displacement u,;,, leads the quartz particle
displacement u,, at the interface. Because u, leads u,, u,,
will achieve its maximum displacement at an earlier time than
u,. Figure 3.26 depicts the time variation of the real part
of u, and u;, both for the hydrophilic and hydrophobic sensor
immersed in pure water. Notice that for both the hydrophilic
and hydrophobic sensor, the real part of u,, leads the real
part of u,. Also from Figure 3.26 the maximum displacement of
the real part of uy, for the case of the hydrophilic sensor is
greater than the maximum displacement of the real part of ug,
for the case of the hydrophobic sensor. By the same token the
maximum displa~ement of the real part of u, for the case of
the hydrophilic sensor is dgreater than the maximum
displacement of the real part of u, for the case of the
hydrophobic sensor. This result is to be expected, since for
the case of the hydrophobic sensor, the molecular weight of
the hydrophobic coating is greater than the molecular weight
of the hydrophilic coating in the case of the hydrophilic
sensor. The greater molecular weight of the hydrophobic
coating induces a greater mass~loading effect than that
induced by the hydrophilic coating. A greater mass-loadirnqgy
effect in the case of the hydrophobic sensor, means that for
a given input voltage drop across the sensor, the electric

field generated, will produce a transverse particle
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displacement inversely proportional to the mass of the coating
in question. Thus in the case of the hydrophobic sensor the
maximum displacement of the real part of the transverse
particle displacement, u, will be less than the corresponding
maximum displacement of the real part of u, for the case of
the hydrophilic sensor.

Also from Figures 3.18 and 3.20, at low viscosity values,
the fact that |ug,,| # |u] at the solid-liquid interface,
implies that there is slip between the top surface of the
coating in contact with the bottom surface of the 1liquid.
Thus at low viscosity values, the interfacial slip parameter,

a, satisfies the slip condition given by

a #1 (3~-28)

Figure 3.27 depicts the plots of the maximum displacement
of the real part of v, «a~d u,, versus v for both the
hydrophilic and hydrophobi~ - as0r. Vrom Figure 3.27, for low
values of viscosity v, the maximum displacement of the real
part of u,, for the case of the hydrophilic sensor is greater
than the maximum displacement of the real part of ug for the
case of the hydrophobic sensor. Again this result is
expected, since for the case of pure water, the hydrophilic
interaction that occurs at the solid-liquid interface is
greater than the corresponding hydrophobic interaction. The

traction force between the wheels of a car and a dry road



produces a greater displacement of the car, than the
displacement that would occur if the wheels of the same car
were in contact with an icy road. 1In much the same way, the
greater strength of the hydrophilic interaction between the
hydrophilic surface and the water molecules at the solid-
liquid interface will produce a greater displacement of the
water molecules in the vicinity of the interface than the
displacement that would occur if the interaction at the solid-
ligquid intertface were hydrophobic in character. Thus the
displacement of the water molecules in the vicinity of a
hydrophobic interface is less than the displacement of the
water molecules in the vicinity of a hydrophilic interface.
3.5.4 Discussion of the Variation of a versus High Values
of v

From Figures 3.18 and 3.20, as the kinematic viscosity,
v, increases towards higher values of viscosity, both «, and
|a| approach unity for both the hydrophilic and hydrophobic
coated surfaces. However from Figure 3.19 as » increases
towards higher values of viscosity, «,, approaches zero. This
is to be expected, since the strength of the interaction at
the solid-liquid interface between water molecules 1n contact
with the coating molecules at the interface, increases as v
increases towards higher values of viscosity. For values of
v > 1, from Figures 3.18, 3.19, and 3.20, a, = 1, a, = 0, and
|a| = 1 respectively. From Figure 3-21 as » increases towards

higher values of viscosity, 60, decreases until, at some

n
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critical value for kinematic viscosity, v» = v, 8, = 0. From

(3-23) 0, = 0 when a, = 0. As noted above, from Figure 3.20,

for high values of kinematic viscosity, », the |a]| =1, which
implies that |ug| = |u,|, which in turn implies that v,;, = u,.
The condition, u, = u, implies that at the solid-liquid

interface, there is no slip. The no slip condition is given

by

a =1 (3-29)

From Figure 3.27 over the entire viscosity range from pure
water to pure glycerol the maximum displacement of the real
part of u,, for the case of the hydrophilic sensor is greater
than the maximum displacement of the real part of uj for the
case of the hydrophobic sensor. The same holds true for the
maximum displacement of the real part of u,. This is to be
expected since the strength of the interaction of a
hydrophilic surface in contact with a water-glycerol solution
at the interface, on the average will be greater than the
strength of the interaction between a hydrophobic surface and
the water-glycerol solution in question.
3.5.5 Variation of a with Mole Fraction, M

The results for ap, @, |a], and @, versus mole fraction,
M;, plotted in Figures 3.22 through 3.25 are the same as the
results for ag, a,,, |a|, and §, versus kinematic viscosity, v,

as plotted in Figures 3.18 through 3.21. The fact that the
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above two results are the same can be seen from Figure 3.28.
From Figure 3.28, low values of mole fraction correspond to
low values of kinematic viscosity, whereas high values of mole
fraction correspond to high viscosity values. From Figure

3.28, M; = 0 corresponds to pure water with a viscosity value

Il

of » = 1.00 cS, and K; 1 corresponds to pure glycerol with
a viscosity value of v = 1400 cS. Thus the variation between
v and M; as plotted in Figure 3.28, is such that the variation

of @, o, |a|, and 6, versus M; and v are similar.
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Figure 3.20 Magnitude of interfacial slip parameter versus kinematic viscosiry

for the hydrophilic and hydrophobic sensor in liquid.
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CHAPTER 4

MODEL

Introduction

A mechanical model of slip at the solid-liquid interface
of a quartz sensor has been devised. A parameter of the model
corresponds to the interfacial slip parameter which was found
by fitting experiment and theory in the last chapter.

The mechanical model of interfacial slip is defined and
the equation of motion of the system is found by writing the
Lagrangian of the system, Section 4.1. The equation of motion
of the system cannot be solved analytically since it is
nonlinear. Therefore it is necessary to solve the equation

by a numerical procedure, Section 4.2.

4.1 Interfacial Slip Model

4.1.1 Description of Model
The interfacial slip is modeled by a spring-mass system
consisting of two masses m and m, and a spring of force
constant, k, connecting the two masses as shown in Figqure 4.1.
The two masses m, and m, are constrained to move along the x-
direction, which lies in the plane of the spring-mass system.
In the interfacial slip model, mass, m,, represents the

mass of a liquid particle, in contact with the top surface of
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the sensor, while mass, m,, represents the mass of a solid
particle on the surface of the sensor. The motion of the
masses in the x-direction corresponds to the transverse shear
mode (TSM) of AT-cut quartz. The spring connecting masses n,
and m, represents the force of interaction that occurs between
the 1liquid molecules and the solid molecules which are in
contact at the top surface of the sensor. The quantity, Kk,
represents the strength of the force of interaction that
occurs at the solid-liquid interface. The interaction that
occurs at the solid-liquid interface arises primarily due to
electromagnetic forces that occur between liquid molecules in
contact with solid molecules at the top surface of the sensor
coating. This model is the first step in the understanding of
the experimental variation of a, a,, |¢| and e, versus
kinematic viscosity, v, and mole fraction, M.

The relation between the elements of the mechanical model

and the solid-liquid interface is summarized in Table 4.1.
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Table 4.1 Model and Interface

Mechanical Model Solid-liquid Interface
m, mass of liquid particle
m, mass of solid particle
k force of attraction between

solid and liquid particles

motion in x-direction transverse shear mode (TSM)
4.1.2 Statement of Problem
The displacement of mass, m,, is X%, = X,(t) = Acos(wt +

¢), with A, w, and ¢ denoting respectively the amplitude, the
angular frequency, and the phase angle of the displacement.
It is required to find the displacement of mass m;, given by,
X, = ¥x,(t), at any time, t. The quantities x,(t) and x,(t) are
shown in Figure 4.1.

In Figure 4.1, 1 and 1° denote respectively the
nonextended length of the spring at time = 0, and the extended
length of the spring at time = t. At time = 0 the motion of
masses m and m, start from rest, at their respective

equilibrium positions.
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x1(0) x1(t) Xo(t) +X

(a) (b)

Figure 4.1  Mechanical model of interfacial slip showing masses m, and m,

connected by a spring of force constant, k, at (a) time = 0 and (h)
time = I.
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4.1.3 Derivation of the Equations of Motion for the
Interfacial Slip Model

The equation of motion for mass, m;, is obtained from the

Lagrangian, ¥, of the spring-mass system at time = t. From

Figure 4.1, the elongation, s = 1/ - 1, of the spring at time

= t, is given by

s = ﬁz + (%, - x)? -1 (4-1)

The potential energy, V, and the kinetic energy, T, of the

spring~mass system at time = t, are given by

1 1 2 -
I I Er IR

T = % (m %2 + mx,2) (4-3)

The spring in the model, has zero mass since it represents the
electrical force between masses m, and m,. The Lagrangian, [/,

of the spring mass system is given by

$=r-Vv-= % (m %2 + m,x,0)
(4-4)

2
- %k(‘[ﬂ + (%, - x)? - 1)
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Given that x, = x,(t) = Acos(wt + @), equation (4-4) reduces to

g = % (m %2 + mA%w'sin? (wt + ¢))
(4-5)

- %k(\/ﬂ + (Acos(wt +¢) - x,)? - 1)

Lagrange’s equation of motion for mass, m,, is given by

d

dt (4-6)

s
b

From equations (4-5) and (4-6), the equation of motion for
mass m; is given in terms of v which is defined as y = x, - x,

= Acos (wt+e) - Xx,.

%, =k (IPvq? - 1)y (4-7)
l "12 + ,Y

Note that (4-7) is a second-order differential equation which

is highly non-linear.
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4.2 Numerical Solution of the Equations of Motion

4.2.1 Description of Runge-Kutta’s Method
The fourth-order Runge-Kutta method, is used to solve

equation (4-7) numerically for x; as a function of the time,

t. A system of n first-order differential equations in n
unknowns u,,...,4, is given by
u, = F,(u,,t) (4-8)

For each j = 0,1,...,N - 1 where N, is the number of time
steps, the following four functions K,, K;, K;, and K; implement

the fourth-order Runge-Kutta method of stepsize, h. 1In the

four equations below, u, = u/(t).
K,u =h1~",(t].,u,j) (4-9)
K, = hF,(u, + _;.K,U,, t, + g) (4-10)
K, = hF,(u, + 2K, ,t, + g) (4-11)
K, = hF.(u, + K , t.) (4-12)
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For each i = 0,1,...,n and j = 0,1,...,N - 1 the

following recursive procedure, performs a weighted average.

= 1 -
U = u; t 3 (K,ij + 2K2‘j + 2K3u‘ + K4ij) (4-13)

Equation (4-7), may be rewritten as a first-order systenm

consisting of two equations in the two unknowns u,, uy,. Let

u, = X, (4-14)
u, = x, (4-15)
u, = %, (4-16)

The following set of two equations will be solved by
Mathcad. The first equation is obtained by substituting (4-
14) into (4-15). The second equation is (4-7) written using

(4-14) and (4-16).
u, = u,

ul=£(\f12+')’2—1)7

(4-17)

The system of two equations, (4-17), are solved numerically by
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the Mathcad program described in the next subsection.
4.2.2 Numerical Solution of Interfacial Slip Model
In Appendix 9, Mathcad document DOC6.MCD implements the
fourth~-order Runge-Kutta method for the numerical solution of
the equation of motion of mass, m,. The displacement, x,, of
mass, m;, is computed over five periods of the motion, that
is, the closed time interval I = [0, 5/f], for several values
of the ratio, k/m;, starting with a numerical value of 1 and
ending with a numerical value of 10° metric units. In the
interval, I, the frequency, f = 9.0 MHz, is the oscillating
frequency of mass, m,. Mass, m, starts its motion from rest,
with an amplitude, A, of one metric unit, and a phase angle,
¢, of -m/2 radians. The motion of masses m, and m, both start
at time t = 0. The displacement, x,, of mass, m;, was computed
over the closed interval, I, in time steps of, At = 0.001 us.
The total number of points computed was N = 555, At each
value of k/m;, the maximum displacement, x,,,, was computed
over the closed interval, I, using Mathcad’s max function.
The maximum displacement, x,,,, 1s defined as the greatest
displacement of mass, m;, over the closed interval, I. A two-
dimensional data vector of data pairs, with each pair
consisting of the log(k/m,) versus X,,, was created in a semi-
interactive manner using Mathcad’s WRITEPRN and APPENDPRN
functions. The data file X1MAX.PRN, which is a result of
applying the functions WRITEPRN and APPENDPRN, contains the

data pairs consisting of log(k/m,) versus x,,,. Figure 4.2
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shows the variation of the maximum displacement of mass m,
versus the log(k/m;). From Figure 4.2 at a certain critical
value of k/m;, the maximum displacement of mass m, achieves its
maximum value, therefore the spring-mass system is in

resonance at this value.
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CHAPTER 5

CONCLUSIONS

A new property of the interface called the interfacial
slip parameter was introduced in the theory of the sensor in
order to account for the slip between the surface of a sensor
vibrating in the transverse shear mode and a liquid which is
in contact with the surface of the sensor. The theoretical
expression for the impedance was derived which is a function
of the interfacial slip parameter. The impedance of sensors
with hydrophilic and hydrophobic coatings was measured in
water-glycerol solutions using the network analysis method.
Then the interfacial slip parameter was found by fitting the
experimental values of impedance to the theoretical expression
for impedance using non-linear regression analysis.

The interfacial slip parameter, a, is defined as a =
uy,/u,, where u,, is the displacement of a liquid particle in
contact with the solid surface of the sensor and u, is the
displacement of a solid particle on the surface of the sensor.
If the force between the liquid particle and solid particle is
very strong, their displacements will be the same and so a =
1. In this case there is no slip at the interface between the
solid and liquid. At the other extreme, if the force between
the liquid and solid is zero, then there is no connection
between the solid and liquid. In this case when the solid

particles on the surface of the sensor move, the 1liquid
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particles do not move, that is, a = 0. Intuitively, one
expects that the magnitude of o should be between 0 and 1.

The measurements of impedance were made for the sensors
in both air and 1liquid, and the experimental values of
impedance were fitted to the theoretical expression for
impedance using nonlinear regression analysis. In air, a was
set equal to zero since the connection between the molecules
on the surface of the solid and the molecules in air is very
weak. Two properties of the quartz were found by fitting
theory and experiment in air: the piezoelectric stress
coefficient, e, and the viscoelastic coefficient, 7. The
value of e found for both the hydrophilic and hydrophobic
sensors is the same: e = -0.0798 C/m?, from Table 3.1. This
is significantly different than the value of e in the
literature: e = =0.095 C/mi. Since 401 measurements of
impedance, each at a different frequency, were used to find e,
and the value of e was the same for both sensors, it is
speculated that the value of e in the literature is incorrent.
The value of 7 for quartz was also found by fitting theory and
experiment in air since n was not found in the literature.
The value of 3 was not the same for both sensors.

The interfacial slip parameter, a, was found by fitting
the experimental values of impedance found in water-glycerol
solutions with the theoretical expression for impedance. The
magnitude of a, |a|, is plotted versus kinematic viscosity of

water-glycerol solutions in Figure 3.20 for hydrophilic and
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hydrophobic sensors. At high viscosities, where the
interaction between the solid surface and the 1liquid is
strong, |a| is near 1, as expected. At low viscosities,
however, the magnitude of a is larger than 1, not less than 1
as expected when the interaction at the interface is weak.
Furthermore, at low viscosities, |[a| for the hydrophobic
surface is greater than |a| for the hydrophilic surface, as
seen from the left side of Fiqgure 3.20. This means that the
amplitude of the 1liquid particle 1is dgreater when the
interaction between the liquid particle and solid particle is
smaller.

This behaviour is explained by a mechanical model which
was invented to represent the interaction between particles on
the surface cof the sensor and particles of the liquid in
contact with the surface. The model is drawn in Figure 4.1.
Two masses connected by a spring are constrained to move
transversely. One mass, m,, represents a solid particle on
the sensor surface which moves sinusoidally with time at a
constant frequency and at constant amplitude, which is choosen
as unity. The other mass, m, represents a liquid particle in
contact with the solid particle. The spring, with spring
constant, k, represents the force of attraction between the
two particles. The system was analyzed to find the
displacement of the liquid particle in terms of its mass, m,
and the spring constant, k.

The variation of maximum displacement (the amplitude) of
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the liquid particle in the model as a function of the log of
the (spring constant)/(mass of liquid particle) is given in
Ficure 4.2. As expected, as the spring constant approaches
zero, the amplitude of the liquid particle approaches zero.
At this extreme, the liquid particle and solid particle are
diconnected. As the spring constant becomes very large, the
amplitude of the liquid particle becomes 1, the same as the
solid particle. This is the other extreme where the liquid
and solid particles are rigidly connected together. In
between the two extremes there is a resonant region of the
spring-mass system. The amplitude of the liquid-particle mass
is a maximum at a particular value of the ratio of the spring
constant, k, and the mass of the liquid particle, m,. In
Figure 4.2 the frequency is 9.0 MHz and k/m, is expressed in
metric units. The mass of the solid particle, m,, does not
influence the motion of m, in this model because it is driven
(forced to oscillate) at a constant unit amplitude.

The amplitude of the liquid-particle in Figure 4.2 is
numerically equal to the magnitude of the interfacial slip
parameter in Figure 3.20, since the amplitude of the solid-
narticle is unity. The spring constant, k, in Fiqure 4.2
corresponds to the kinematic viscosity of the 1liquid in
contact with the surface of the sensor in Figqure 3.20. The
mass, m,, in Figure 2 corresponds to the mass of the liquid
particle in contact with the sensor surface. In Figure 4.2

the log of k/m, is plotted and in Figure 3.20 the Kkinematic



viscosity is plotted on a log scale.

It is clear from the results of the analysis of the
mechanical model given in Figure 3.20 that an increase of k,
say by a factor of two, has exactly the same effect as a
decrease of m, by the same factor of two. In the experiments,
various water-glycerol solutions were in contact with the
sensor surface, starting with pure water and ending with pure
glycerol. The viscosity of water is 1 cS and the viscosity of
glycerol is 1400 cS which corresponds to the spring constant,
k, in the model. But as the water is replaced by the
glycerol, the mass of the liquid molecules in contact with the
sensor surface also increases, corresponding to the mass, m,|,
in the model. The molecular weight of water, H,0, is 18 and
the molecular weight of glycerol, CH0,, is 92. As the
solution changes from water to glycerol, the viscosity
increases by a factor of 1400 whereas the molecular weight
increases by only a factor of about 5. So the increase of
viscosity is offset somewhat by the mass of the 1liquid
molecules. However, when comparing Figure 3.20 and Figure
4.2, the mass of the liquid particles can be regarded as
constant.

The shape of the curve to the right of the resonant peak
of the model in Figure 4.2 is the same as the shape of the
curve of the experimental results in Figure 3.20. In Figure
3.20, |a| = 5 for kinematic viscosity = 1 and |a| = 1 for

kinematic viscosity = 10°. In Figure 4.2, x1_,, (which is
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numerically the same as |a|) has the value of 5 at k/m, = 10¢,
and x1,, drops to about 1 at k/m, = 10’. So very roughly, a
kinematic viscosity of 1 corresponds to a k/m; of 10 and the
two quantities are roughly proportional to each other.

The separation of the curves for the hydrophilic and
hydrophobic sensors in Figure 3.20 can also be interpreted in
terms of the model of Figure 4.2. At low viscosity |a| for
the hydrophobic sensor is larger than |a| for the hydrophilic
sensor. At a given viscosity, that is, for a given water-
glycerol solution in the experiments, the force of interaction
between the liquid and a hydrophobic surface is less than
between the same liquid and a hydrophilic surface. Therefore
the value of k in Figure 4.2 is lower and so the value of x1,,,
(which equals |a|) is larger, which is in agreement with the
larger |a| in Figure 3.20. Effectively, the hydrophobic
sensor surface corresponds to a region of Figure 4.2 which is
to the left of the region for the hydrophilic sensor surface.

In summary, there is good qualitative agrecment between
the experimental results and the predictions of the
mechanical model of interfacial slip. For both the
hydrophilic and hydrophobic sensors, there is considerable
slip when the liquid in contact with the surface is water (low
viscosity) and very little slip when the liquid is glycerol

(high viscosity).




APPENDIX 1 Application Software

The application software that was used to do the research
and prepare the thesis is listed below. IBM-compatible 386
and 486 computers were used to run the software. The computer
used in the Physics research laboratory is an IBM-compatible
486DX, 33 MHz with 32 MB of RAM. It is connected to a
Hewlett-Packard LaserJet III printer which was used to print
the thesis. The application software is the following.

}) Windows 3.1

) WordPerfect 5.1 for Windows
) CoreDraw 2.0 for Windows

) EasyPlot for DOS

) Mathcad 3.1 for Windows

) Macsyma 417.125 for Windows

o
[e I~ G I PO N By

Windows 3.1 is the operating systemn.

WordPerfect 5.1 is a word processing program. The text
was typed, and the equations and tables were made with
WordPerfect. WordPerfect was also used as described below.

CorelDraw 2.0 is a graphics (or drawing) program. The
diagrams were made with CorelDraw and then the .cdr files were
exported to .tif files using File/Export in CorelDraw. A
WordPerfect macro was used to add the diagrams to WordPerfect
files by using Graphics/Figure/Retrieve and then formatting
the diagrams by Graphics/Figure/Position and then setting,
Anchor to: Character and Size: Auto Both.

EasyPlot 1is a plotting (or presentation) program. The
graphs were made by EasyPlot from text files of the data from
the network analyzer. The graphs were plotted by EasyPlot.
Then the captions and page numbers were printed on the graphs
by WordPerfect.

Mathcad 3.1 is a numerical mathematics program. The
Mathcad programs were printed by Mathcad. Then the titles and
page numbers were printed on the Mathcad pages by WordPerfect.

Macsyma 417.125 is a symbolic mathematics program. The
source code and the output of the Macsyma program are text
files which were printed by WordPerfect.



APPENDIX 2 Subscript Notation

Subscript (also called tensor) notation is used instead
of symbolic (also <called vector) notation because the
equations of piezoelectricity include tensor quantities of
rank two and greater. Although symbolic notation can be used
to state the equations, the equations cannot be easily
manipulated using this notation.

The conventions of the notation for cartesian tensors are
stated, the Kkronecker delta and levi-civita symbol are
defined, and examples of tensor quantities and notation are
given.

Conventions

The numbers 1, 2 and 3 label the x, y and z directions,
respectively. The coordinates of a point (x,y,z) are written

(X1, %y, %) The components of a vector, the particle
displacement for example, (u,u,u,) are written (uy,u,,u,). The
indices i,j,k . . . are used to represent the x, y and =z

directions and they take the values 1, 2 and 3.

(1) Range Convention: single subscript
Subscript i that occurs once in a term takes all three
values of 1,2,3. For example,

u.

1

means u,, U,, U

(2) Summation Convention: repeated subscript
Subscript i that occurs twice (or more) in a term is
summed over 1,2,3. For example,

3
ajju; means Y. a;;u;

(3) Partial derivative convention: subscript comma
Subscript ,i denotes partial differentiation with respect
to the ith coordinate, x,. For example,

du;
u;,; means ——

3
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Kronecker Delta, ¢

The kronecker delta by definition is

s _{1 if 1=3
y T lo if iz

For example, §6,, =1 and §,, = 0.
Levi-civita Symbol, ¢,

The levi-civita symbol, also called the permutation
symbol, by defintion is
1 1if (ijk) is an even permutation of (123)
-1 1if (ijk) is an odd permutation of (123)
0 if any two indices are equal

Ep =

For example, 8]2‘; = l, 82” = =1 and 8“3 = 0,

The levi-civita symbol is related to the kronecker delta
by the following identity.
Epnlpg = 6p6hy ~ 658
The following two relations are a consequence of the identity
above.

€,€

i = 26,

€y = 31
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Examples
The examples of tensors in Table A2.1 are from the
equations of piezoelectricity. The rank of a tensor quantity

is equal to the number of subscripts on the quantity.

Table A2.1 Exanples of Tensors

Tensor Quantity
Rank Name Symbol I Name
0 scalar © scalar potential
1 vector E, electric field
u, particle displacement
2 T, stress
S, strain
€ dielectric strain coefficient
3 e, piezoelectric stress coefficient
4 C i elastic coefficient

The examples of notation in Table A2.2 are from the
equations of piezoelectricity. In the symbolic notation, a
single dot indicates summation over a single subscript and a
double dot, summation over two subscripts. The symbolic
notation does not indicate the rank of the tensor. This is
the symbolic notation used by Auld, Volume I (1973).

Table 2a2.2 Examples of Notation

Name Symbolic Notation Subscript Notation
gradient Ve @,
divergence V-E E,
curl VxE £yE
Vu u,,
V' T T'JA'
e-E e, F,
e:s e, 5,




APPENDIX 3 Solution of Boundary Value Problem,
Macsyma Program ZIN.WP

MACSYMA SBOURCE CODE
(clearscreen() ,kill (all),fancy_display:false)$

/* Determine the electrical input. impedance Zin for
the liquid loaded AT-Cut

gquartz sensor... */
/* establish dependencies for ugq,ul, and vl. */

(ratfac:true,

depends ([{uq,ul,vl.phi], [y,t]),
depends ((f1,£f2,f3],y),

assume (nu>0, omega>0))$

/* The equation of motion for the transverse particle
displacement ug in the quartz sensor
is
given by...*/

eql:cbar*diff (uq,y,2) + eta*diff (uq,y.2,t,1) -
rhog*diff(uq,t,2) = 0;

/* The potential phi and the transverse particle
displacement ugq are related to each
other by the following relation...*/

eq2:e*diff(uq,y,2) — epsilon*diff (phi,y,2) = 0;

/* Let ugq = f1(y)*exp(%i*omega*t) and ohi =
f2(y)*exp(%i*omega*t), equation eql
reduces to...*/

(exprl:ev(eql,uq =

fl*exp(%i*omega*t) ,diff,ratsimp) /exp(%$i*omega*t),
exprl:ratsimp(exprl,diff(f1,y,2)),
disp(exprl))s$

/* Let f1 = exp(%i*r#*y), the general solution to
equation eqgl is given by...*/

(exprl:factor (ev(exprl,fl =
exp($i*r*y) ,diff,ratsimp) /exp(Si*r*y)),
soll:solve(expril,r),
disp("The christoffel equation to equation eql is
given by...",
exprl,
"The solution to the above christoffel equation



is given by...",
so0ll))$

/* Let kg denote the complex wave number for the quartz
sensor, kq is defined as
follows...*/

cewg:kgq = rhs(solif2]);

/* The general solution to equation eqgl is given
byl . .*/

(soll:subst (kq,rhs(soll[2]),s0ll),
gen_soll:uq =
sum(concat (a,i) *exp(%i*rhs(soll[i])*y),i,1,2)*exp(%i*omega*t
)
' disp(gen_soll))S$

/* From equation eqg2 the potential phi is given by...*/
(expr2:expand(ev(eq2, {phi =

f2*exp(%¥i*omega*t),gen_soll],diff,ratsimp)/exp(%i*omega*t)),
expr2:ode(expr2,f2,y),
expr2:subst (a3, %k2,expr2),
expr2:rhs(expand(subst (a4, %kl,expr2))),
gen_sol2:ev(phi = expr2*exp(%i*omega*t),sol2),
disp(gen_sol2))$

/* Perform a check to determine if gen_soll and gen_sol2
satisfy equations eqgl and
eq2...*/

(checkl:ev([egl,eq2],[gen_soll,gen_sol2),diff,ratsimp),

checkl:ev(checkl,cwq,ratsimp),
map (disp,checkl))$

/* The equation of motion for the transverse particle
velocity vl in the liquid medium is
given by...*/

eq3:mu*diff(vl,y,2) - rhol*diff(vl,t,1) = 0;

/* With mu = nu#*rhol and vl = diff(ul,t,1), then
equation eq3 reduces to...*/

eq3:expand(ev(eq3,[mu = nu*rhol,vl =
diff(ul,t,1)],diff) /rhol);

/* Let ul = f3(y)*exp(%i*omega*t), then equation eqg3




reduces to...#*/

expr3:factor(ev(eq3,ul =
f3*xexp(%i*omega*t),diff,ratsimp)/exp(%i*omega*t));

/* Let £3 = exp(%i*r*y), then the general solution to
equation eq3 is given by...*/

(expr3: factor(ev(expr3,f3 =
exp(%i*r+*y) ,diff,ratsimp)/exp(¥i*r*y)),
sol3:sclve(expr3,r),
disp("The christoffel equation to equation eg3 is
given by...",
expr3,
"The solution to the above christoffel eqguation
is given by...",
sol3))$

/* Let k1l denote the complex wave number for the
liquid~medium, k1l is defined as
follows...*/

cwl:kl = rhs(sol3{2]);
/* The general solution equation eqg3 is given by...*/

(sol3:subst(kl,rhs(sol3[2]),s013),
gen_sol3:ul =
sum(concat(a,i+4)*exp(%i*rhs(sol3(i])*y),1i,1,2)*exp(%i*omega
*t)
' disp(gen_sol3l))$

/* Perform a check to determine if gen_sol3 satisfies
equation eq3...*/

(check3:ev(eql,gen_sol3,diff,ratsimp),
check3:ev(check3,cwl,ratsimp),
disp(check3))$

/* Physically as y => infinity, ul ~> 0, therefore
consider the limit as y -> infinity of
each of the two terms exp(%i*kl*y) and exp(—%i*kl*y)
seperately...*/

(terml:exp ($i*k1l*y),
terml:ev(terml,cwl,ratsimp),
terml: factor(rectform(terml)),



disp(terml))$

/* take the limit of the magnitude of the above
expression as y =-> infinity...*/

(terml:trigsimp (cabs(terml)),
limitl:’limit(terml,y,inf) = limit(terml,y,inf));

(term2:exp (-%i*k1l*y),
term2:ev(term2, cwl,ratsimp),
term2:factor(rectform(term2)),
disp(term2))$

/* take the limit of the magnitude of the above
expression as y -> infinity...*/

(term2:trigsimp (cabs(term2)),
limit2:/limit(term2,y,inf) = limit(term2,y,inf));

/* As y =-> infinity exp(%i*kl*y) -> infinity while
exp (-%¥i*kl*y) -> 0.
Therefore in order for ul to remain finite for all
a6 must be set to zero.
Thus for finite ul, a6=0. */

gen_sol3:ev(gen_sol3, a6=0,ratsimp) ;
/* The shear stresses Tqg and Tl are given by... */

(Tqg:c*diff (uq,y,1)teta*diff (uq,y,1,t,1)+e*diff(phi,y,1),
Tl:mu*diff(vl,y,1),
Tl:ev(Tl,([vl = diff(ul,t,1),mu = nu*rhol],diff),
display(Tq,T1))$

/* Substituting gen_soll,gen_sol2, and gen_sol3 into
the expression for Tq and T1.
Tqg and T1 reduce down to...*/
(Tqg:ev(Tq, ([gen_soll,gen_sol2],diff,ratsimp),

Tq: factorsum(ratsinp (ratsubst(cbar,c+e“2/epsilon,Tq))),
Tl:factorsum(ev(Tl,gen_sol3,diff,ratsimp)),
display(Tq,T1))$
/* Implement the boundary conditions...*/

/* Stress free boundary condition: Tyg(0,t) = O */

Y
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BCl:ratsimp(ev (Tq=0,y=0,ratsimp) /exp(%¥i*omega*t),al,a2,a3,as
»a5,kq,kl);

/* continuity of stress across interface: Tq(h,t) =
T1l(h,t) */

BC2:ratsimp(ev(Tq =
T1,y=h, ratsimp) /exp (%¥i*omega*t) ,al,a2,a3,a4,a5,kq,kl);

/* Potential at bottom surface of quartz sensor:
phi(0,t) = -phioO*exp(%i*omega*t) */

(phi:rhs (gen_sol2),
BC3:ratsimp(ev(phi =

-phi0*exp(%i*omega*t),y=0,ratsimp)/exp (%i*omega*t)  al,a2,a3s,
a4d,a5,kq,kl));

/* Potential at top surface of quartz sensor: phi(h,t)
= phiO*exp(%i*omega*t) */

BC4:ratsimp(ev(phi =

phio*exp(%i*omega*t),y=h, ratsimp) /exp(%itomega*t) ,al,a2,a3,a
4,a5,kq,kl);

/* slip boundary condition: ul(h,t) = alpha*uq(h,t) */

(uqg:rhs(gen_soll),

ul:rhs(gen_sol3),

BC5:ratsimp(ev(ul = alpha*uq, y=h,
ratsimp) /exp(%i*omega*t),al,a2,a3,a4,as5,kq,kl));

(pause() ,

clearscreen(),

disp("Let',gammal = exp(%$i*h*kq), gammaz =
exp(%¥i*h*kl), delta =

eta*omega-%i*cbar),

pause() ,

clearscreen())$

(BC:expand ([BC1,BC2,BC3,BC4,BC5]) ,
BC:ratsubst(gammal, exp(%i*h*kq) ,BC),

BC:ratsubst (gamma2, exp($i*h+kl), BC),
BC:ratsimp(ratsubst (delta, eta*omega-%i*cbar,BC)),
map(disp,BC),

pause() ,
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clearscreen())$

/* The solution to the above boundary value problem is
given by...¥*/

(solBC:linsolve(BC, [al,a2,a3,a4,a5]),
solBCl:rhs(solBC[1]),
solBC2:rhs(solBC[2]),
solBC3:rhs(so0lBC[3]),
solBC4:rhs(solBC[{4]),
solBC5:rhs(solBC[5]),
solBClnum:num(solBC1l),
solBCldenom:denom(solBCl),
solBC2num: num(solBC2),
solBC2denom:denom(solBC2),
solBC3num: num(solBC3),
solBC3denom:denom(solBC3),
solBC4num: num(solBC4),
solBC4denom:denom(solBC4),
sSo1BC5num: num(solBC5},
solBC5denom:denom(solBC5),

pause(),

clearscreen(),

disp("Let",
bll = factorsum(ratcoef(solBClnum,alpha,0)),
bl2 = factorsum(ratcoef(solBClnum,alpha,l)),
b13 = factorsum(ratcoef (solBCldenom,alpha,0)),
bl4 = factorsum(ratcoef(solBCldenom,alpha,l)),

"Therefore...",
al = (bl1l + alpha*bl2)/(bl3 + alpha*bl4)),

pause(),

clearscreen(),

disp("Let",
b21 = factorsum(ratcoef(solBC2num,alpha,0)),
b22 = factorsum(ratcoef(solBC2num,alpha,l)),
b23 = factorsum(ratcoef(solBC2denom,alpha,0)),
b24 = factorsum(ratcoef(solBC2denom,alpha,l)),

"Therefore...",
a2 = (b21 + alpha*b22)/(b23 + alpha*b24)),
pause(),
clearscreen(),
disp("Let",
b3l =
factorsum(ratcoef (ratcoef (s0l8C3num,alpha, 0),phio)),
b32 =
factorsum(ratcoef (ratcoef (solBC3num,alpha,l),phio0)),
b33 = factorsum(ratcoef(solBC3denom,alpha,0)),
b34 = factorsum(ratcoef (solBC3denom,alpha,l)),
"Therefore...",
a3 = ((b31 + alpha*b32)#*phiO)/ (b33 + alpha*b34)),
pause(),
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clearscreen{(),
disp("Let",

b4l factorsum(ratcoef (solBC4num,alpha,0)),

b42 = factorsum(ratcoef (solBC4num,alpha,l)),
b43 = factorsum(ratcoef (solBC4denom,alpha,0)),
b44 = factorsum(ratcoef (solBC4denom,alpha,l)),

"Therefore...",
a4 = (b4l + alpha*b42)/(b43 + alpha*bdi4)),

pause(),

clearscreen(),

disp("Let",
b51 = factorsum(ratcoef (solBC5num,alpha,0)),
b52 = factorsum(ratcoef (solBCSnum,alpha,l)),
b53 = factorsum(ratcoef (solBC5denom,alpha,0)),
b54 = factorsum(ratcoef (solBCSdenom,alpha,l)),

"Therefore...",
a5 = (b51 + alpha*b52)/(b53 + alpha*b54)))$

/* The electric displacement D in the quartz sensor is
given by... */

(D:e*diff(’uq,y,1l) - epsilon*diff(’phi,y,1),
display(D))$

/* Substituting ug and phi into D we get... #*/

(D:ev(D,diff,ratsimp),
display(D))$

/* The total surface charge Q of the quartz sensor is
given by... */

Q:D*A;
/* The instataneous current i is given by... */
itdiff(Q,t,1);

/* The electrical input impedance of the liquid-loaded
AT-cut quartz sensor is given by...

*/

(2in: (-phiO*exp(%i*omega*t) - phiO*exp(%¥i*omega*t))/i,
al3: ((b31 + alpha*b32)*phiO)/ (b33 + alpha*b34),
Zin:ratsimp(ev(2in)),

display(2in))$
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MACSYMA OUTPUT

>> Executing: D:\MACSYMA\MACSYMA.EXE D:\MACSYMA\MACSYMA.CLO
This is Macsyma 417.125 for Intel 80386/486 Series
Computers.

Copyright (c) 1982 - 1992 Macsyma Inc. All rights reserved.
Portions copyright (c) 1982 Massachusetts Institute of
Technology.

All rights reserved.

Type "DESCRIBE(TRADE_SECRET) ;" to see important legal
notices.

Type "HELP() ;" for more information.

D:\macsyma\system\init.lsp being lcaded.
~!SLABEL(-1,15,Times New Roman,)Batching the file
D:\macsyma\mac-init.mac

Batchload done.

(cl) display2d:false$

(c2) batch("D:\\MACSYMA\\ZIN.TXT");

(c3) (clearscreen(),kill(all),fancy_display:false)$

(cl) /* Determine the electrical input impedance Zin for
the liquid loaded AT-Cut

quartz sensor... ¥*/
/* establish dependencies for uq,ul, and vl. */

(ratfac:true,
depends((uq,ul,vl,phi], (y,t]),
depends([f1,f2,£3],Y),
assume (nu>0, omega>0))$

(c2) /* The equation of motion for the transverse particle
displacement uq in the quartz sensor is
given by...*/

eql:cbar*diff(uq,y,2) + eta*diff(uq,y,2,t,1) -
rhog*diff(uq,t,2) = 0;

(D2)
cbar*/DIFF(uq,y,2)-rhog*’DIFF (uq,t,2)+eta*’/DIFF(uq,t,1,y,2)
=0

(c3) /* The potential phi and the transverse particle
displacement ug are related to each
other by the following relation...*/

eq2:e*diff (uq,y,2) - epsilon*diff(phi,y,2) = 0;

{

(D3) e*’DIFF(uq,y,2)-epsilon*’/DIFF(phi,y,2) = 0
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(c4) /* Let uqg = fl(y)*exp(%i*omega*t) and phi =
f2(y)*exp(¥i*omega*t), equation eql reduces to...*/

(exprl:ev(egl,uq =
fl*exp(%i*omega*t),diff,ratsimp) /exp(%i*omega*t),
exprl:ratsimp(exprl,diff(f1,y,2)),

disp(expril))$

fl*omega“~2*rhog+/DIFF(fl,y,2)*(%¥i*eta*omega+cbar) = 0

(c5) /* Let f1 = exp(%i*r+*y), the general solution to
equation eql is given by...*/

(exprl:factor (ev(exprl,fl =
exp(%¥i*r*y),diff,ratsimp) /exp(%i*r*y)),
soll:solve(exprl,r),

disp("The christoffel equation to equation egl is given
by...",
expril,

"The solution to the above christoffel equation is
given by...",
soll))$

"The christoffel equation to equation egl is given by..."
omega“~2*rhog-%i*eta*omega*r+2-cbar*r~2 = 0

"The solution to the above christoffel equation is given
by..."

[r = -omega*sqrt(rhog/(%i*eta*omega+cbar)),r =
omega*sqrt(rhoq/ (%¥i*eta*omega
+cbar) ) ]

(c6) /* Let kq denote the complex wave number for the quartz
sensor, kq is defined as follows...*/

cwqg:kqg = rhs(soll[2]);
(D6) kg = omega*sqrt(rhoq/(%i*eta*omega+char))

(c7) /* The general solution to equation eql is given
by...*/

(soll:subst(kg,rhs(soll[2]),s0l1ll),
gen_soll:ug =
sum(concat(a, i) *exp(%i*rhs(sol1{i])*y),i,1,2)*exp(%¥i*omeya*t
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)
disp(gen_soll))$

ugq = %e~(%i*omega*t) *(a2*%e~ ($i*xkg*ry)+al*ie”—(3i*kq+ry))

(c8) /* From equation eq2 the potential phi is given by...*/

(expr2:expand(ev(eq2, [phi =
f2*exp (%i*omega*t),gen soll],diff,ratsimp)/exp(¥i*omega*t)),
expr2:ode(expr2,£f2,y),
expr2:subst (a3, $k2, expr2),
expr2:rhs(expand(subst (a4, ¥k1,expr2))),
gen_sol2:ev(phi = expr2*exp(¥i*omega*t),sol2),
disp(gen_sol2))S$
D:\macsyma\ode\ode.fas being loaded.
D:\macsyma\ode\odeaux.fas being loaded.
D:\macsyma\ode\ode2.fas being loaded.

phi =

%e” (%i*omega*t) * (a2*e*%e” ($1i*kg*y) /epsilontal*e*x%e”— (L i*xkqry
) /epsilon

+a3*y+ad)

(c9) /* Perform a check to determine if gen_soll and
gen_sol2 satisfy equations eql and eq2...*/

(checkl:ev([eql,eq2],[gen_soll,gen_sol2],diff,ratsimp),
checkl:ev(checkl,cwq,ratsimp),
map (disp,checkl))$

0=20

(c10) /* The equation of motion for the transverse particle
velocity vl in the liquid medium is
given by...*/

eq3:mu*diff(vl,y,2) - rhol*diff(vl,t,1l) = 0;
(D10) mu*’DIFF(vl,y,2)-rhol*’'DIFF(vl,t,1) = O

(c11) /* With mu = nu*rhol and vl = diff(ul,t,1), then
equation eq3 reduces to...*/

eq3:expand(ev(eq3, [mu = nu*rhol,vl =
diff(ul,t,1)],diff) /rhol);
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(D11) nu*’DIFF(ul,t,l,y,2)='DIFF(ul,t,2) = 0

(c12) /* Let ul = f£3(y)*exp(%i*omega*t), then equation eq3
reduces to...*/

expr3:factor (ev(eq3,ul =
f3*exp(%i*omega*t) ,diff,ratsimp)/exp(%i*omega*t)) ;

(D12) omega* (f3*omega+%i*’/DIFF(£f3,y,2)*nu) = 0

(c13) /* Let f3 = exp(%i*r*y), then the general solution to
equation eg3 is given by...*/

(expr3:factor (ev(expr3, £f3 =

exp(%i*r*y),diff,ratsimp) /exp(%i*r*y)),
sol3:solve(expr3,r),

disp("The christoffel equation to equation eq3 is given

by...",
expr3l,
"The solution to the above christoffel equation is
given by...",

sol3))$

"The christoffel equation to equation eq3 is given by..."
-omega* (%i*nu*r~2-omega) = 0

"The solution to the above christoffel equation is given
by..."

[r = -sqrt(-%1i) *sqrt(omega) /sgrt(nu) ,r =
sqrt(-%1i) *sqrt (omega) /sqrt(nu) ]

(c14) ,* Let k1l denote the complex wave number for the
ligquid~medium, k1 is defined as follows...?#*/

cwl:kl = rhs(sol3{2]);

(D14) k1l = sqrt(-%i)*sqrt (omega) /sqrt(nu)

(c15) /* The general solution equation eqg3 is given by...*/

(sol3:subst(kl,rhs(sol3[2]),s013),

gen_sol3:ul =
sum(concat(a,i+4)*exp(%i*rhs(sol3[i])*y),i,1,2)*exp(%i*omega
*t),
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disp(gen_sol3))$

ul = %e~(%i*omega*t)*(a6*%e” (%i*kl*ry)+as5*te~—($ir*klx*y))

(cl6) /* Perform a check to determine if gen_sol3 satisfies
equation eq3...*/

(check3:ev(eq3,gen_sol3,diff,ratsimp),
~heck3:ev(check3,cwl,ratsimp),
disp(check3))$

0=20

(c17) /* Physically as y => infinity, ul -> 0, therefore
consider the limit as y -> infinity of

each of the two terms exp(%i*kl*y) and exp(-%i*kl*y)
seperately...*/

(terml:exp(%$i*kl*y),
ternl:ev(terml,cwl,ratsimp),
terml: factor(rectform(terml)},
disp(terml))$

%e” (sqrt (omega) *y/ (sqrt(2) *sqgrt(nu)))* (%i*sin(sqrt (omega) *y/
(sqrt(2) *sqrt(nu
)))tcos (sqrt (omega) *y/ (sqrt(2)*sqrt(nu))))

(c18) /* take the limit of the magnitude of the above
expression as y -> infinity...*/

(terml:trigsimp(cabs(terml)),
limitl:’limit(terml,y,inf) = limit(terml,y,inf));
D:\macsyma\share\trigsimp.fas being loaded.

(D18) ‘limit(%e~(sqrt(omega)*y/(sqrt(2)*sqrt(nu))),y,inf) =
inf

(c19) (term2:exp(-%i*kl*y),
term2:ev(term2,cwl,ratsimp),
term2: factor (rectform(term2)),
disp(term2))$

-%e~~-(sgrt(omega)*y/ (sqrt(2) *sgrt(nu)) ) *(%i*sin(sqrt(omega)*
y/ (sgrt (2) *sqrt
(nu)))-cos(sqrt (omega) *y/ (sqrt(2) *sqrt (nu))))

(c20) /* take the limit of the magnitude of the above
expression as ° -> infinity...*/

-
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(term2:trigsimp(cabs(term2)),
limit2:/limit(term2,y,inf) = limit(term2,y,inf));

(D20) ’limit(%e~-(sqrt(omega)*y/(sqrt(2)*sgrt(nu))),y.inf) =
0]

(c21) /* As y => infinity exp(%i*kl*y) -> infinity while
exp(-%i*kl*y) -> O.
Therefore in order for ul to remain finite for all y aé

must be set to zero.
Thus for finite ul, a6=0. */

gen_sol3:ev(gen_sol3,a6=0,ratsimp);

(D21) ul = aS5*%e” (%i*omega*t-%i*kl*y)

(c22) [/* The shear stresses Tqg and Tl are given by... */
(Tq:c*diff (uq,y,1)+eta*diff(uq,y,1i,t,1)+e*diff (phi,y,1),
Tl:mu*diff(vl,y,1),

Tl:ev(Tl,[vl = diff(ul,t,1),mu = nu*rhol],diff),
display(Tq,T1))$
c*’DIVF(uq,y,l)+eta*’DIFF(uq,t,1,y,1)+e*’DIFF(phi,y,1)

I

tg

tl nu*rhol*’'DIFF(ul,t,1,y,1)

(c23) /* Substituting gen_soll,gen_sol2, and gen_sol3 into
the expression for Tq and Tl.
Tq and Tl reduce down to...*/

(Tq:ev(Tq, [gen_soll,gen_sol2],diff,ratsimp),

Tqg: factorsum(ratsimp(ratsubst(cbar,c+e~“2/epsilon,Tq))),
Tl:factorsum(ev(Tl,gen_sol3,diff,ratsimp)),
display(Tq,Tl))$

tg =

- (kg* (eta*omega-%i*cbar) * (a2*%e” (2*3i*kg*y)~al) —al3*e*xe” (%i*
kg*y) ) *%e”

(%i*omega*t-%i*kqg*y)

tl = aS5*kl*nu*omega*rhol*%e” (%i*omega*t-%i*kl*y)

(c24) /* Implement the boundary conditions...#*/
/* Stress free boundary condition: Tg(0,t) = 0 */

BCl:ratsimp(ev(Tg=0,y=0,ratsimp) /exp(¥i*omega*t) ,al,a2,a3, a4



A3-14
ra5,kq,kl) ;

(D24)
a3*e—-kq*(a2* (eta*omega—-%$i*cbar)+al* (%i*cbar-eta*omega))

il
o

(c25) /* continuity of stress across interface: Tq(h,t)
Tl(h,t) */

BC2:ratsimp(ev(Tq =
Tl,y=h,ratsimp)/exp(%¥i*omega*t),hal,az2,a3,a4,a5,kq, kl);

(D25)
-%e~=(%i*h*kq) *(kg*(a2* (eta*%e” (2*%1i%h*kq) *omega-%i*cbar*se~
(2%%i*h*kq) )+al*

(%i*cbar-eta*omega))-a3*e*%e” (%¥i*h*kq)) =
a5*kl*%e*-(%i*h*k1l)*nu*omega*rhol

(c26) /* Potential at bottom surface of quartz sensor:
phi(0,t) = -phiO*exp(%i*omega*t) */

(phi:rhs(gen_sol2),

BC3:ratsimp(ev(phi =

-phiO*exp(%i*omega*t),y=0,ratsimp) /exp(%¥i*omega*t),al,a2,a3,
a4,a5,kq,kl));

(D26) (ad*epsilon+a2*e+al*e)/epsilon = -phi0

(c27) /* Potential at top surface of quartz sensor: phi(h,t)
= phi0O*exp (%i*omega*t) */

BC4:ratsimp(ev(phi =
phiO*exp(%i*omega*t),y=h,ratsimp)/exp(%i*omega*t),al,a2,al3,a
4,a5,kq,kl);

(D27)
%e~—(%i*h*kq)*(a2*e*%e~ (2*%i*h*kqg) +a3*epsilon*h*%e” (%i*h*kq)
+a4*epsilon*%e”

(%i*h*kqg)+al*e) /epsilon = phioO

(c28) /* slip boundary condition: ul(h,t) = alpha*ugq(h,t)
*/

(ug:rhs(gen soll),

ul:rhs(gen_sol3),

BC5:ratsimp(ev(ul = alpha*ugq, y=h,
ratsimp)/exp(%i*omega*t),al,a2,a3,a4,as,kq,kl}));

(D28) a5*%e~~(%¥i*h*kl) =
alpha*%e~— (%i*h*kq) * (a2*%e” (2*%i*h*kq)+al)
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(c29) (pause(),

clearscreen(),

disp(“’Let",gammal = exp(%¥i*h*kq), gamma2 = exp(%i*h#*kl),
delta = eta*omega-%i*cbar),

pause(),

clearscreen())$

Pausing. Press Enter to continue.

" Let"
gammal = %e~(%i*h*kq)
gamma2 = %e” (%i*h*kl)

delta = eta*omega-%i*cbar

Pausing. Press Enter to continue.

(c30) (BC:expand(([BC1,BC2,BC3,BC4,BC5]),
BC:ratsubst (gammal,exp(%$i*h*kq) ,BC),

BC:ratsubst (gamma2,exp(%$i*h*kl) ,BC),
BC:ratsimp(ratsubst(delta, eta*omega-%i*cbar,BC)),
map(disp,BC),

pause(),

clearscreen())$

alj*e-(a2-al)*delta*kqg = O
-((a2*delta*gammal”2-al*delta)*kg-a3*e*gammal) /gammal =

abS*kl*nu*omega
*rhol/gamma2

(ad*epsilon+(a2+al)*e) /epsilon = -phio0

(a3*epsilon*gammal*h+a2*e*gammal~2+ad*epsilon*gammal+al*e)/ (
epsilon*gammal)

= phi0

a5/gamma2 = alpha*(a2*gammal“2+al)/gammal

Pausing. Press Enter to continue.
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(c31) /* The solution to the above boundary value problem is
given by...*/

(solBC:linsolve(BC,[al,a2,a3,a4,a5]),
So0lBCl:rhs(solBC[1]),
solBC2:rhs(solBC[2]),
solBC3:rhs(solBC[3]),
S0lBC4:rhs(s0olBC([4]),
S01BC5:rhs(solBC[5]),
solBClnum:num(solBCl),
solBCldenom:denom(solBCl),
solBC2num:num(solBC2),
solBC2denom:denom(solBC2),
solBC3num:num(solBC3),
solBC3denom:denom{solBC3),
solBC4num:num(solBC4),
solBC4denom:denom(solBC4),
solBC5num:num(solBC5),
solBCSdenom:denom(so0lBCS),

pause(),

clearscreen(),

disp("Let",
bll = factorsum(ratcoef(solBClnum,alpha,0)),
bl12 = factorsum(ratcoef (solBClnum,alpha,l)),
bi3 = factorsum(ratcoef (solBCldenom,alpha,0)),
bl4 = factorsum(ratcoef (solBCldenom,alpha,l)),
"Therefore...",
al = (bl1l + alpha*bl2)/(bl3 + alpha*bilqg)),

pause(),

clearscreen(),

disp("Let",
b21 = factorsum(ratcoef (solBC2num,alpha,0)),
b22 = factorsum(ratcoef(solBC2num,alpha,l)),
b23 = factorsum(ratcoef (solBC2denom,alpha,0)),
b24 = factorsum(ratcoef (solBC2denom,alpha,l)),

"Therefore...",
a2 = (b21 + alpha*b22)/(b23 + alpha*b24)),
pause(),
clearscreen(),
disp("Let",
b31 =
factorsum(ratcoef (ratcoef (solBC3num,alpha,0),phiO)),
b32 =
factorsum(ratcoef (ratcoef (solBC3num,alpha,l),phio)),
b33 = factorsum(ratcoef (solBC3denom,alpha,0)),
b34 = factorsum(ratcoef (solBC3denom,alpha,l)),
"Therefore...",
a3 = ((b31 + alpha*b32)*phiO) /(b33 + alpha*b34)),
pause() ,
clearscreen(),
disp("Let",
b41 = factorsum(ratcoef (solBC4num,alpha,0)),
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b42 = factorsum(ratcoef (solBC4num,alpha,l)),
b43 = factorsum(ratcoef (solBC4denom,alpha,0)),
b44 = factorsum(raccoef (solBC4denom,alpha,l)),

"Therefore...",
a4 = (b4l + alpha*b42)/(b43 + alpha*bid)),
pause(),
clearscreen(),
disp("Let",
b51 = factorsum(ratcoef (solBCS5num,alpha,0)),
b52 factorsum(ratcoef (solBC5num,alpha,l)),
b53 factorsum(ratcoef (solBC5denom,alpha,0)),
b54 = factorsum(ratcoef (solBCSdenom,alpha,l)),
“"Therefore...",
a5 = (b51 + alpha*b52)/(b53 + alpha*b54)))$
Pausing. Press Enter to continue.

o

"Let"

bll = -2*delta*e*epsilon*(gammal-1)*gammal*kg*phio0

bl12 = -2*e*epsilon*gammal”2*kl*nu*omega*phiO*rhol

bl3 =
delta* (gammal-1) *kq* (delta*epsilon* (gammal+1l) *h*kq+2*e~2*(ga
mmal-1))

bl4 =

kl* (delta*epsilon*(gammal~2+1) *h*kg+e~2* (gammal-1)* (gammal+1
)) *nu*omega

*rhol

"Therefore..."

al = (alpha*bl2+bl1l)/(alpha*bl4+b13)

Pausing. Press Enter to continue.

L] Let"
b21 = 2*delta*e*epsilon*(gammal-1) *kq*phio
b22 = 2*e*epsilon*kl*nu*omega*phiO*rhol
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b23 =
delta*(gammal-1) *kq* (delta*epsilon* (gammal+1l)*h*kq+2*e~2*(ga
mmal-1))

b24 =

kl*(delta*epsilon*(gammal~2+1)*h*kq+e~2* (gammal-1)*(gammal+1
) ) *nu*omega

*rhol

"Therefore..."

az = (alpha*b22+b21)/(alpha*b24+b23)

Pausing. Press Enter to continue.

" Let "

b31 = 2*delta”2*epsilon*(gammal-1)* (gammal+l)*kq"2

b32 = 2*delta*epsilon*(gammal~2+1)*kl*kg*nu*omega*rhol

b33 =
delta* (gammal-1l) *kg* (delta*epsilon* (gammal+1l)*h*kqg+2*e~2* (ga
mmal-1))

b34 =
kl*(delta*epsilon*(gammal~2+1)*h*kg+e~2*(gammal-1)*(gammal+1
) ) *nu*omega

*rhol

"Therefore..."

a3l = (alpha*b32+b31)*phi0O/(alpha*b34+b33)

Pausing. Press Enter to continue.

" Letll

b4l = -delta~2*epsilon* (gammal-1)* (gammal+l)*h*kq~2*phi0
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b42 =
-kl*(delta*epsilon*(gammal~2+1) *h*kg-e~2#* (gammal-1)* (gammal+
1)) *nu

*omega*phiO*rhol

b43 =
delta*(gammal-1) *kg* (delta*epsilon* (gammal+l) *h*kqg+2*e~2*(ga
mmal-1))

b44 =

kl* (delta*epsilon* (gammal”2+1)*h*kg+e~2* (gammal-1l)* (gammal+1l
) ) *nu*omega

*rhol

"Therefore..."

a4 = (alpha*b42+b41l)/(alpha*b44+b43)

Pausing. Press Enter to continue.

[1] Let"
b51 = 0
b52 = 2*delta*e*epsilon*(gammal=-1)“*2*gamma2*kq*phio

b53 =
delta*(gammal-1) *kq* (delta*epsilon* (gammal+l) *h*kq+2*e~2* (ga
mmal-1))

b54 =

kl*(delta*epsilon* (gammal~2+1)*h*kg+e~2* (gammal-1)* (gammal+1l
} ) *nu*omega

*rhol

"Therefore..."

a5 = (alpha#*b52+b51)/(alpha*b54+b53)
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(c32) /* The electric displacement D in the quartz sensor is
given by... */

(D:e*diff(’uq,y,1l) - epsilon*diff(’phi,y,1),
display(D))$

d = e*'DIFF(uq,y,1)=-epsilon*’DIFF(phi,y,1)

(c33) /* Substituting ug and phi into D we get... */

(D:ev(D,diff,ratsimp),
display(D))$

d = -a3*epsilon*%e”(%i*omega*t)

(c34) /* The total surface charge Q of the quartz sensor is
given by... */

Q:D*A;

(D34) —-a*a3*epsilon*%e~(%i*omega*t)

(c35) /* The instataneous current i is given by... */
i:diff(Q,t,1);

(D35) -%i*a*a3*epsilon*omega*%e” (%i*omega*t)

(c36) /* The electrical input impedance of the liquid-loaded
AT-cut quartz sensor is given by... */

(Zin: (-phiO*exp(%i*omega*t) - phiO*exp(%i*omega*t))/.,
a3:((b31 + alpha*b32)*phioO)/ (b33 + alpha*b34),
Zin:ratsimp(ev(Zin)),

display(Zin))$

zin =
-2*%i* (alpha*b34+b33)/(a*(alpha*b32+b31) *epsilon*omega)

(c37) [/* 6:25PM 1/9/93 */




APPENDIT 4 Non-linear Regression Analysis Example of a
Series RLC circuit, Mathcad program DOC1.MCD

Non-linear regression analysis of the theoretical complex-valued
expression of the impedance for a series RLC-circuit.

Introduction

The following is a demonstration of how Mathcad's Minerr function
can be used to perform a non-linear regression analysis procedure on a
nulti-valued non-linear complex-valued function, 2. Mathcad's Minerr
function implements a modified version of the Levenberg-Marquardt method
The the Levenberg-Marquardt method, a quasi-Newton method, is a
variation of the gradient method.

Given a system of n non-linear algebraic equations in n unknows, at
each step in the i1terative procedure Newton's method computes the
jacobian of the non-linear system. Each component of the jacobian is
computed by a numerical differentiation procedure. On the other hand,
in the quasi-Newton method, each component of the jacobian is replaced
by an appropriate finite-difference approximation.

Mathcad's Levenberg-Marquardt algorithm was obtained from the
public-domain MINPACK algorithms developed and published by the Argcnne
National Laboratory in Argonne, Illinois
Complex-Valued Function

The impedance, 2, of a series RLC circuit is chosen as the
nulti-valued non-linear complex-valued function. The expression for

the impedance, 2, in terms of the resistance, R, the inductance, L, the
capacitance, C, and the angular frequency,®, is

(1) Z(R,L,C,0) -R+j- co-L——l—
o-C

The resonant frequency, f, of the series RLC circuit, is given by

Let the resonant frequency, f, be 9.0 MHz. f = 9.0-MHz

Let the inductance, L, be 10.0 mH. Lexact = 10.0-mH
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From equation (2), the numerical value for the capacitance, C, 1s.

{3) Cexact = !

2
4 Lexact £

Cexact =0031 -pF

Let the numerical value of the resistance, Rexact, Rexact = 100 KQ2
be 10.0 kQ.

Procedure

A simulated set of N experimental data points of the form (w,, Zexp,

) is generated from (1) via Mathcad's rnd function. The best fit value
for L denoted by Lfit, is determined by fitting the theoretical
complex-valued expression for the impedance, 2 = Z(R,L,C,m) to the
simulated experimental data, Zexpj. The fitting of Z to Zexp, is

achieved by minimizing the Sum Of Squares Of Errors, SSE(L) via
Mathcad's Minerr function.

Enter number of experimental data points N =401

Enter the closed interval, I = [fg,f]

Enter numerical value for fg fs = 8.0 Mllz
Enter numerical value for f¢ ft =10.0Milz
-0

Compute step size Af  Af Af=4988:kllz  f, =fs 1+ 1 N

L,y Gl M=,

Using Mathcad's rnd function generate a set of N experimental data
points using the theoretical complex-valued expression for Z. The
experimental data Zexpj is generated by perturbing the value of Lexzact
at each of the N = 401 data points. The perturbation of Lexact is done
by Mathcad's rnd function. Mathcad's random function,, rnd(z),
generates uniformly distributed random numbers between 0 and »x
inclusive.

The perturbation of Lexact 1s accomplished by the expression below.

(4) L_perturbed, - (Lexact + md(1)-mli) ; (Iexact - md(1) mH)




Using values for Rexact, Lexact, and Cexact, compute the exact values
for the impedance, 2, for each of the N = 401 data points.

{5) ZcxactI =Z(chact,Lexact,chnct,Z-n'fi)

Using the perturbed values for Lexact, and the values for Rexact and
Cexact, compute the simulated experimental data for the impedance Z.

(6) Zexp, - Z(chact.L_pcrturbcdi,Cexacl,Z 1tfl)

From equations (5) and (6) compute the magnitude and phase of both
Zeract and Zexp versus frequency f.

(7) MZexact, = lZexacti‘
(8)  MZexp, - |Zcxpl|
(9)  OZexact = arg(ZcxactJu

(10)  OZexp, = arg(Zcxpi)

t'lot the magnitude and phase of both Z2 and Zexp versus frequency f.

1000 T T T

M\M\ | "

b L

Y

9.5 10

T77 |Zexact] versus f
— |Zexp| versus f
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AN
T
or -

-100 | L 1
8 8s 9 95 10

|Zexact| versus T
T |Zexp| versus {

Generate data files of the magnitude and phase of both Zexact and Zexp
versus frequency f.

-The
the
~The
the
-The
the
-The
the

data
data
data
data
data
data
data
data

for the magnitude of Zexact versus frequency f 1s stored 1n
file MZEXACT.PRN.

for the megnitude of Zexp versus frequency f 1s stored 1n
file MZEXP.PRN.

for the phase of Zexact versus frequency f 1s stored in
fi1le THEXACT.PRN.

for the phase of Zexp versus frequency f 1s stored 1in

file THEXP.PRN.

MZexact)
(11) WRITEPRN(MZEXACT) =uugmcnt( e :‘ o
k€2
Zexn
(12)  WRITEPRN(MZEXP)  augment[- - ™ “"
Mil’" kO
fr Oﬁk&wl
(13) VﬂUILPRN(THFXACF)-augnmﬂ(-— haaie
Mil, dcb
, [ 07exp
(14)  WRITEPRN(THEXP) = augment , )
\MHz " deg




The Lum O

Ccmpute O

AL = 0.1
Enter num
Enter num
Enter num

From the
1nterval

The value

The varia
10 luave

Ferressio

A4-5

f Squres Of Errors,SSE(L) 1s given by

Zexp, Z(chact,L,Cexact,2'1|:-fl>

1
{15) SSE(I, _z:( N
N | k2 LQ
1

OE(L) over the closed interval [1.0 mH, '0.0 mH] 1n steps of
mH

eerical value for AL AL =01 mll
erical value for Lainitial  Limtial = 1.0 mll
cvrical value for Lterminal Lterminal : 200 mH

values for AL, Linitial, and Lterminal, compute the number of
subdivisions, NL. The expression for NL is

,/Ltcnm'nal - Lxmllal\|

(16 NL = floor
\ AL
of NL 1s NL =190
tl'le k takes on integral values from 1 to NL A=1 190

(17) L, = Limtal

(18) 1, , =l +AL LI, =1,

n (18) generates NL equally spaced subintersval for the above

cloved 1tnterval.

For each

k =1,...,NL, compute SSE(L) for each Ly. The data for SSE(L)

1% stored in the one dimensional array, SSE_expy.

(19) SSE_exp, = SSE(L;)
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Plot the data for SSE(L) versus L

QO

TTOSSE(L) versus L
Store the data for SSE(L) versus L in the data file SOEL.PFN

LL '
(20)  WRITEPRN(SSEL) = nugmcnl( i-l,SSli__cxp)
n

From the above plot of SSE(L) versus L, SSE as an absolute minimum
in the closed 1inerval {1.0 mH, 20.0 mH]). The absolute minimum of O0ER(OL
occurs when L = 10.0 mH. Since SSE(L; has only one absolute minimum 1n
the above closed interval, then any value 1n the above closcd 1nterval
may be used as a guess value for L. In fact, any valuo outside the
above closed interval will serve as a guess value for L.
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In view of the above, to implement MathCAD's Minerr function via
MathChlL's Solve Block facility, enter any positive guess value fcor L.

Enter numerical value for Lguess.  Lguess = 15.0-mll

——————————————————————————————— Mathcad Solve Block ~--=-=w-me-ercceca——ca—
(hven

{21) SSE(lguess)=0
(22) Lfit = Minerr(lguess)

The result of the Solve Block, Lfit is given by
Lit=1002 -mH

Compute the residual error, ERR, given by ERR = SSE(Lfit)
ERR =135.515

Uning the values tor Rexact, Lfit, and Cexact, compute the best fat
values for @ denoted by Zfat.

(23) 7w, Z{Rexact,Lfit,Cexact,2 7 )
From equation (23) compute the magnitude and phase of Z2fait.
(24) MZfit, = [Zfit |
(25) 67t - arg(Zﬁll\)

Plot the magnitude and phase of Zexp,Zexact, and Zfit versus frequency
f.
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Plot the magnitude and phase of Zexp,ZeXact, and Zfit versus frequency

f.

1000

100

100

50

0

-50

-100

|Z.exp| versus f
|Zexact] versus
|Z.fit] versus £

JY|
..w-/"fu‘ W
B L | |
8 85 9 25 10

— |Zexp| versus
|Zexact] versus f
|Z.fit] versus




APPENDIX 5 Non-linear Regression Analysis of Sensor in
Air, Mathcad Program DOC2.MCD

Non-linear Regression Analysis of the Theoretical Complex-Valued
Expression of the Impedance for the Hydrophilic and Hydrophobic Sensor

in Air.

The best-fit wvalues for e,n,h, and A will be determined by fitting the
theoretical complex-valued expression of the impedance, 2, to the
corresponding experimental data for the hydrophilic and hydrophobic
sensor 1n air. The fitting is done by using the THREE STEP PROCEDURE,

which 1s outlined below.

In step 1 the starting values for e, n, and h are determined by fitting
the theoretical expression of the phase of Z, 05, to the corresponding

experimental data.

In step 2 the starting values for e, n, and h found in step 1 will be
used to the determine the starting value for the effective surface
area, A, by faittinec the theoretical expression of the magnitude of 2,
|21, to the corresponding experimental data.

In step 3 the starting values for e, n, h and A found in steps 1 and 2

will be used to determine the best-fit values of e, n, h and A by
fitting the theoretical complex-valued expressicn of Z to the
corresponding experimental data.

The impedance, 2, of an AT-cut quartz sensor in air 1is given in terms
of the following nine expressions.

c2
cbhar(e) - ¢ + —
€

8(e,n,0) = n o - jcbar(e)

ky(e,n,0) = o R
cbar(e) + j-o 7
vi(e.n h,0) = exp(j hkq(e,n,0))

Al(e,n,h,0) = yl(e,n,h,0)- 1
A2(e,n.h,0) =yl(e,n,h,0)+1

b3l(e.n,h,0) = 28(e,n .m)z-c Al(e,n,h,0) A2(e,n,h,®) kq(e,n ,m)2
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b33(e.n.h,0) = 8(e.n.0) Ale.n,h,0)kq(e,n,0) [S(e,n,0) £ X2(e,n.h.0) hige,n.w) \)

+2-¢:2 Al(e.n.h,m)

j b33 '
ta(e,n,h,0) = .23 b33e.n h.0)
ot bil(e.n.h,0)

The expression of the impedance, 2Za, 1s
Za(e.,n,h A 0) = %-én(c,n,h,m)
The expression of the magnitude of Za, |2al, 1s
MZa(e,n,h,A,0) - ’Z;I(c,n,h./\,m\)

The expression of the phase of 2Za, 03;, 1s

0Za(e,n h,0) = atan (llﬂ(—g—a—(—‘f"]—"-"mn)
Re(Ea(e,n,h, o))

Enter the number of experimental data points N. N 401
The range variable, i, iterates through the N experimental data points.
1 I N

To start the three-step procedure, read in the experimental data for
121 and 07 1n air for the hydrophilic and hydrophobic sensors.

Experimental Data for Hydrophilic Sensor in Air

Read in data array flicAir for frequency, f, an array of 401 values of
f.

ficAir = READPRN(FLICAIR) Mll,

Read i1n data array M2licAir for the magnitude of 2, |Z!}, an array of
401 values of 1Z}.

MZlicAir = READPRN(ZLICAIR) k{2
Read 1n data array 02zlicAir for the phase of 2, 0y, an array of 40l
values of Q5.

0ZlicAir - READPRN(THLICAIR)
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Experimental Data for Hydrophobic Sensor in Air

Fead 1n data array fbicAir for frequency, f, an array of 401 values of
1.

fhicAir - READPRN(FBICAIR)-MHz

Fead 1n data array MZbicAir for the magnitude of Z, |Z2|, an array of
401 values of |2}.

MZbicAir = READPRN(ZBICAIR)-kQ

Fead 1n data array 0OZbicAir for the phase of Z, OZ, an array of 401

values of OZ .

0ZbicAir = READPRN(THBICAIR)

Using the above frequency data flicAir and fbicAir, compute the
corresponding angular frequency data wlicAir and wbicAir.

ohcAir = 2-mflicAir

wbicAir = 2-m fbicAir

Using the experimental data for {2} and 0y, for each i = 1,...,N compute
the corresponding experimental data for ZlicAir and 2bicAi, using the
exponential form for the complex number Zz = |Zlexp(j0z).

ZlicAxr, - MthAir;cxp(j OlecAir‘-dcg>

ZbieAir; = MZbicAir, cxp(j'OZbicAiri-deg)

The above experimental data for }Z| and OZ consists of 401 points

measured at 401 equally spaced frequencies. The resonant region of the
quartz sensor 1s chosen as the frequency interval.

Enter numerical value for the mass density of quartz.

pq- 2649 l%

m

Enter numerical value for the elastic constant of quartz.

c:29 0.1 2EMOn

m

Enter numerical value for the dielectric constant of quartz.



Non-Linear Regression Analysis of Hydrophilic Sensor in Air.

Step 1. Determine starting values for e, 1 and h using the
experimental data for 0j.

To perform Step 1, define the Sum Of Squares Of Errors, SSE1 l{e,n, h).

0Za <c n.h, mhc/\lr‘\ 2

| . '
SSE1_1(e,n,h) = N Z(GZ]!CAIT' - ———-—-—d.cgﬂ. -
1

To start the non-linear curve-fitting procedure,, enter guess values
for e, n and h.
coul
el_guess =-0079 -5
m

sec
nl_guess = 001] newton - 5
m

hl_guess - 183 87 pm

Use Mathcad's Minerr function to perform the non-lanear curve fitting
procedure.

Given

SSEI_1(el_guess,nl_guess hi_gucss)=0
=]
=]

el_start |
nl_start | = Mierr(el_guess,ni_guess hl_guess)

hl_start

In the above Mathcad Solve Block, Mathcad needs two dummy equations, |

= 1, to form a complete system of three non-linear algebrain coquations
in the three unknowns e, 1 and h.
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The result of the Solve Block, el start, nl_start and hl_start is.
coul
el_start=-0 0798 —
m

nl_start =0.0119 «newton E;
m

h1_start =183 578 um

Compute the residual error, ERR, given by ERR = SSEl_1 (el_start,n
1 _start,hl_start).

ERR = 1.945
Step 2. Use el_start, nl_start, hl_start and the experimental data
for |%2| to determine the starting value for the effective surface area,

A.

To perform Step 2, define the Sum 0f Squares Of Errors, SSEl_2(A).

|
SSEL_2(A) - o Z
1

To start the non-linear curve~fitting procedure, enter the guess value
for A.

MZ“CAIT‘ MZa(c]_slart,T]l_swn,hl_slan.A,(ohcAiri> 2
KQ kQ

Al _puess = 0.28-cm?

Use tfath rad’'s Minerr function to perform the non-linear curve-fitting
procedire.

—————————————————————————— Mathcad Solve Block —=----——--wecmm—mmece e
Gitven

SSE1_2(A1_guess)=0

Al_start = Minerr(Al_guess)

The result of the Solve Block, Al_start, ais.

A1 _start =0.2701 -cm®

Compute the residual error, ERR, given by SSE1_2(Al_start).

ERR=110 993



Step 3. Use el_start, ml_start, hl_start, Al_start and the

experimental data for Z to compute best-fait values for e, 11, h and A.

A5

To perform Step 3, define the Sum 0f Squares Of Errors,SSEl_3(e,h,h,A).

The quantity summed, is the product of a complex number and 1ts
conjugate.
)2

ZheAar, Za(c .n.hA ,mhcAnrJ

k2 kQ

1
SSE1 3(e,n,h,A) = —
_I(e.m N

1

Use Mathcad's Minerr function to perform the non-linear curve-fitting

procedure.

Given

anlslcd solve bloﬂd SSE1_3(cl_start,nl_start, hl_start | Al_start)=0
=]
=]
1= ]

el_fit
n1_fit
hl_fit
| A1 _fit

= Minerr(el_start,nl_start [ hl_start | Al _stant)

The result of the Solve Block, el fit, nl_fit, hl_fit and Al_fit 1s.

| coul
el fit=-00798 5
m
see
nl1_fit = 0 0084 ‘newton "
m

hl_fit = 183 879-pm
2
Al_fit = 0 2985-cm

Compute the residual error, ERR, given by ERR = SSE1_3 (el _start,
1 start, hl_start, Al_start).

ERR =60.727
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Non-Linear Regression Analysis of Hydrophobic Sensor in Air.

For the hydrophilic sensor the value for e is the same as the value
that 1is used for the hydrophobic sensor. On physical grounds , the
value of e 1s expected to be independent of the type of chemical
coating that is placed on the surface of the sensor. Therefore the
value of e for the hydrophilic and hydrophobic sensor is the same.

Step 1. Determine starting values for n and h using the experimental
data for 0z.

To perform Step 1, define the following Sum Of Squares Of Errors SSE2_1(
n.hy.

0Za(el_fit,n.h, wbicAir)\’

< 1 .
SSE2_1(n.h) - o > (ozmcmr, - =

1

To start the non-linear curve-fitting procedure, enter guess values for

n and h.

n2_guess = 0.24~nc“10n..s_%
m

h2_guess = 183 98 um

Use Mathcad's Minerr function to perform the non-linear curve-fitting
procedure.

Given
SSE2_I(n2_guess,h2_guess)=0

=]

(n 2_start

) = Minerr(n2_guess,h2_guess)
h2_start

The result of the Solve Block, n2_start and h2_start is.

n2_start =0.2439 'neMon'ic—;:
m

h2_start = [83.986 *um

Compute the residual error, givea by ERR = SSE2_l(el_fit,n
C_start,hl_start).

ERR =5.351
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Step 2. Ise n2_start, h2_start and the experimental data for {Z] to
determine the starting value for the effective surface area, A.

To perform Step 2, define the Sum Of Squares Of Errors, SSEZ_CZ(A).

1
5 i z —
SSE2_2(A) E

MZbicAir, MZa (e 1_fit,n2_start,h2_start A ,mlncAlrI\ \ ?

kQ kQ /

To start the non-linear curve-fitting procedure, enter the guess value
for A.

A2 _guess =025 cm’

Use Mathcad's Minerr function to perform the non-linear curve-fitting
procedure.

SSE2_2(A2_guess)=()

A2_start = Minerr(A2_guess)

The result of the Solve Block, A2 start, is.
A2_start =0 2533 cem?
Compute the residual error, ERR, given by SSE2_2(AZ_start).

ERR =0 311



Step 3. Use h2_start, n2_start, A2_start and the experimental data
for 2 to compute best-fit values for n, h and A.

To perform Step 2, define the Sum Of Squares Of Errors,SSE2_3(n,h,A).
The quantity summed, 1s the product of a complex number and its
conjugate.

ZbicAir;  Za(el_fit,n.h,A,obicAu) l)’
kQ xQ

I

SSE2_3(1,h,A —Z
_3(n ) N2
1

Use Mathcad's Minerr function to perform the non-linear curve-fitting
procedure.

Giver

wn

SE2_3(n2_start h2_start, A2_start)=0
lm]
T

n2_fit
h2_fit | = Minerr(n2_start,h2_start, A2 start)

The result of the Solve Block, n2_fit, h2_fit and A2_fit is.

n2_fit =0 2345 ‘newton Q—C;Z
m

h2_fit = 183 979 +um

A2_fit =0.2575 -cm?

Compute the residual error, ERR, gaven by ERR = SSE2_3(el_fit,n2
_start, h.?__start,AZ_start) .

ERR =0.057

A5-9
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Compute {2| and 03 for the hydrophilic sensor in air.

MZal_fit, = MZa(el_fit.n1_fit,hI_fit, Al_fit, olicAr,)

02Zal_fit, = 0Za (cl_ﬁt.r] 1_fit,h1_fit ,leAir)

Compute |Z! and @5 for the hydrophobic sensor in air.

MZa2_fit, = MZa(el_fit,n2_fit,h2_fit, A2_fit wbicAr,)

0Za2_fit, - 0Za (cl_ﬁl‘ n2_it. h2_fit,ebicAir,)

Plot of 0y versus f for the hydrophilic and hydrophobic sensor 1n uai

100 T T T T
r~ Y
]
L) b
50 ,r/ s —
] \
1
3
y
: '
0 ; '
2 .
/ !
:1 .
-850 ',I i \ -
., .
',/
- -t _/l L";—.__,__:‘“
-100 i | | 1
896 89R 9 902 904 92 06

" Hydrophilic Sensor (Fitted Curve)
Hydrophilic Sensor (Experimental Curve)
Hydrophobic Sensor (Iitted Curve)
Hydrophobic Sensor (Experimental Curve)
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Flet of |21 wersus f for the hydrophilic and hydrnphobic sensor in air.

1000 T T I L
i
100 |~ -
|
10 |- — ‘
,I
--u...__‘_“‘\. ,J f _
) N ond ‘1‘\“\,"/
01 |,’ —
6ol ! B! L |
896 98 9 902 904 9 06

Hydrophilic Sensor (Fitted Curve)
Hydrophilic Sensor (Experimental Curve)
Hvdrophobic Sensor (Fitted Curve)
Hydrophobic Sensor (Experimental Curve)

Summary of results for hydrophilic sensor

coul
T 00798 .
R

m”

¢l

. . see
1o - 00084 spewton X
m

hl Nt =183 K79
. < 2
AT it - 0 J0RS e

Summary of results for hydrophobic sensor

} con!
el fit= 00798 -
m*
. . see
N2 it = 02335 newton o
m’

h2 it = 18Y 979 qum

.
A2 it 028373’



Store data for the hydrophilic and hydrophobic sensor in air.

sec
SENSORI = (nc\won ;;)

!
I

SENSOR2 -

Store fitted and experimental data of 2] and 0; for the hydropnali

el_fit
T

feoul
o
m

nl_fit

hl_fit
pm

A1_fit

2
cm

SCC
newton ——y
m /!

h2_fut

pim

I

-0 08

SENSOR! = WRITEPRN(SENSOR Y SENSOR|
183 879
0298
008 ]

SENSOR2 = WRITEPRN(SENSOR2)  SIENSOR?2
183 979

o257

and

hydrophobic sensor in air.

i 0741 fit V)
WRITEPRN(TZLICAIR) - augment (ﬂloc—/-\l—r,augmcnt/ﬁ—“i - ‘0/,I1cA1r\x!
MiL \ " deg /]
A MZal fit MZhcAir
WRITEPRN(MZLICAIR) = augment /&c---—lz,augmcnt/ bt , - ter )
\ Mz | kO L2

WRITEPRN(TZBICAIR) - augmentt ~-— - augment{ -
\ MH/ L deg

[ fbicA
WRITEPRN(MZBICAIR) = augment| @%’f , augment
174

\

[0742_fit
a2 fi '()Zhlc/\n/)

/ﬂ)lc/\lr

[MZa2_fit MZbichir

L Ml NG ke /}




APPENDIX 6 Non-linear Regression Analysis of Sensor
Liquid, Mathcad Program DOC3.MCD

Non-Linear regression analysis of the theoretical complex-valued
expression of the impedance for the hydrophilic and hydrophobic sensor
in water-glycerol solution.

The hest-f1t values for the interfacial slip parameter, ¢, and the
effective surface area, A, will be determined by fitting the
theoretical complex-valued expression of Z to the experimental data
for the hydrophilic and hydrophobic sensors in water-glycerol solutions
nof varying concentrations ranging from pure water to pure glycerol in
steps of 0.1 mole fraction. The fitting of theory to experiment will
be done by minmimizing the appropriate Sum of Squares Of Errors, SSE, by
using Mathcad's Minerr function.

The theorctical complex-valued expression of the impedance, 2, for the
liquid loaded AT-cut quartz sensor in terms of the sixteen expressions
1.
c2
char = ¢+ —
€

S(M,w) = jchar

e
| Pq

hqy. o) = -
Jchur +)]0T

()
K(v,0) = |—
Jv

1M, h,0) = exp(1 h kq(n, )
2(v,h,w) - exp(rrh kl(v,m))
AT(W,h,m) - y1(M,h,w) - 1
A2(n.h,®) = y1(M,h,©) + ]
A3(.h,0) = yiMho + ]
bl h,w) 28(M ,m)z eAl(M.h,®) A2(n,h, kq(’ﬂ.m)2

B3lIM,h,0) = @ eb3I(M,h,w)
DI2OLVpLb @) - 2 8(n,0) € A3(0,h,0) kI(v,0) kq(1,0) v pl ©

B2m,v.pl.h,w) = 0web32(m,v,pl.h,0)



-
b33(M,h,0) < {3, Al(M.h,w) kg, o) (8(1}.(0) € A2, b h kqy.w \ A6-2

+2¢2 Al

b34(N,v,pl.h.w) = K(v,0) (3(n,®) £ A3(0.h,0) h hq(n.m \ v pl
+¢? AL(M,h, o) A2( L, @)

fob34(M,v.plh, ) + bITOL L@
Ci(n,v,pl,ah ) = -2 & 234A,Y.PL A0 2 b0
a B32(m,v.pl,h,0) + B31(,h, o)

The expression of the impedance, Z1, 1is
1
Zin,v,pl,a,h A,0) - A Ll .v.pl, o h, )

The expression of the magritude of 21, 21|, 1s

MZI(m . v.pluh AL w) 210 v phoa b Ao

The expression of the phase of 21, 057, 1s

821, v,pl,o,h )  atan|-—=" -

Im(LIM.v.pl,w.h,m) ))
Re( i, v.pl,u b, m))

Enter the number of experimental data points N. N 40l
The range variable, 1, 1iterates through the N experimental data point..

1 -1 N

Experimental Data for Hydrophilic Sensor in Water-Glycerol Solution

Read 1n data array flichAir for frequency, f, an array of 40} wvalue« of
f.

flic = READPRN(FIL.IC) MH,
Read 1n data array MZlicAir for the magnitude of 2, {21, an array of
401 values of {Z}.

MZlic - READPRN(ZLIC) Q2

Read 1n data array 9Zlichar for the pliase of Z, 0;, an array of 40|

values of 0g.

8Zhic - READPRNCTHLIC)




Experimental Data for Hydrophobic Sensor in Water-Glycerol Solution A6-3

Frad 1n data array flichir for frequency, £, an array of 40l values of
f.

fbic = READPRN(FBIC) MHz
Pead 1n data array MZlicAir for the magnitude of 2, |2, an array of
101 values of |2].

MZbic = READPRN(ZBIC) k2

read 1n data array 0zlicAir for the phase of 2, 8z, an array of 401

values of 0.

8Zbic - READPRN(THBIC)

Usinr the above frequency data flic and fbic, compute the corresponding
angular frequency data wlic and wbic.

ohe - 2w flic

wbic = 2 n-fbic
For each 1 = 1,...,401 and klic = 1,...,11 compute the experimental
data of the impedance, Z, using the exponential form for the complex
number 4 - |14]exp(30z) for the hydrophilic sensor in water-glycerol
solution.

Kic =1 11

B / ’
Zhe e MZhe o e.»:p'\_l-()l,hcl'mIC dcg>

For each 1 = 1,...,401 and kbic = 1,...,7 compute the experimental data

of the impedance, Z, using the exponential form for the complex number

% = |Zlexp(30;) for the hydrophobic sensor in water-glycerol solution.
kbic = 1..7

Zhic, . < Mthcl‘mc'c,\'p(j ez‘bici.kbic dcg)

For each water-glycerol concentration, the above experimental data for
%1 and ; consists of 401 points measured at 401 equally spaced
frequencies. At each concentration level, the resonant region of the
quartz sensor was modified so as to achive a full characterization of
the quarts sensor.
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Data for Hydrophilic and Hydrophobic Sensor

Enter numerical value for the mass density of quartcz.

k
pq=2649-%
m

Enter numerical value for the elastic coefficient of quartz.

Pt
¢:2901-10° B0

m

Enter numerical value for the best-fit piezoelectric stress coefticient
of quartz.

coul

e 00798007 - R
m"

Enter numerical values for the best-fit viscoeldstic cocfficient of
quartz.

Alic_fit - 00083762 newton .sc;:
m

see
Nbic_fit = 0 2344606 newton X
m

Enter numerical values for the best-fit thickness.

hlic_fit 183 8790101 ym

hbic_fit - 183 9794329 pm
Enter numerical value for the dielectric constant of quartz.
coul

£:3982 10 1%.-
volt m

Water-Glycerol Solution for Hydrophilic Sensor

Read 1n data array vlic for kinematic viscosity, V, an array of eleuen
values of V.

vlic READPRN(NULIC) ¢S

Read 1in data array plic for kinematic viscosity, P, an array of +leuen
values of p.

kl
plic READPRN(RHOLIC) "¢

ier
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Water-Glycerol Solution for Hydrophobic Sensor

Peard 1n data array vbic for kinematic viscosity, v, an array of eleven
values of v.

vbic = READPRN(NUBIC) ¢S

Read 1n data array pbic for kinematic viscosity, p, an array of eleven
values of p.

pbic - READPRN(RHOBIC)-I—%—Q'—
ier

Hydrophilic Sensor

For each 1 = 1,...,401 and klic = 1,...,11 compute the four
complex-valued functions B31l, B32, b33 and b34. The two-dimensional
arrays B31 lic, B32 lic, b33_lic and b34_lic store the 401x11 values of
the complex-valued functions B31, B32, b33 and b34 respectively.

B3 _lie, . - B3l [ Ahic_fit,hlic_fit, (lic e >>. ]
i ; . . <klic>
B32_lie, . - B32| nhe_fit, vlic,, . plic, ;. hlic_fit, (wlic H
b33__hcl'“m = b33 nhc__ﬁt,hhc—ﬁl,((j)l]c<khc>)']

<l\hc>).J?l

!
h”J'cn,khc bN]l nhc_ﬁt,vhckhc,phckhc,hhc_ﬁl, (wlic ;

a b34_hic . + b33 _lic
Cheta, k) - -2 -k L

a B32_he;  + B3I lic, |

From the above expression for {lic, the expression for the
mmpedance, f2lac, 1s.

Zhe(a, A k1) = %'Clic(a,k,i)

The expressions for the magniutude of fZlac, [fZlic|, and the phase of
filic, {fOzlic, are.

MIZhe(a, A ki) = |Zlic(o, A k,i)]

f0Zlic(a,k,1) = atan
Re(Llic(a,k. 1))

Im({lic(a,k,n)))
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Hydrophobic “ensor

For each 1 = 1,...,401 and kbic = 1,...,7 compute the four
complex~valued functions B3l, B32, b33 and b34. The two-dimensional
arrays B31 bic, B3Z_bic, b33_bic and b34_bic stcre the 401x7 values ot
the complex-valued functions B31, B32, b33 and b34 respectively.

hlt))

B31_bic, ,,c © B3I [ nbuc_fit hbic_fit . (wbie™

~hbi *3
'|

B32_bic, . - B32[ nbic_fit,vbic, | pbic, hbie_fit, ('.nlm

b33 _bic, . :b33[ﬂbk_ﬁljﬂnc_ﬁ(,anw<k““>)

b34_bic, i * bi%-il‘l‘|hic_ﬁl,vlm:.M“c,pbu‘.“m.hblc_ﬁl,(u)lm;q‘hlL 3) '

[a b34_bie | b33 _bie, k\

Chic(o, k) = -2 [ = e T
o-B32 _bic + B3 bie
-1k B

From the above expression for [bic, the expression for the
impedance, fZ2bic, 1<.

1
Zbic(a,A k1) - /( Chic(u, k1)
The expressions for the magnitude of fZbic, |[fZbicl|, and the phase of
fZbic, fOZbic, are.
MiZbic(o, A k1) [Zbic(a, ALK )|

OZbic(e k1) - at [Im(Cbie(a,k.1)!
LOIC ko) - atany - - - A
\l<U(Chlc(u,k‘,))

\

Hydrophilic Sensor

The following Sum Of Squares Of Errors, SSElic(u,A, k), will be used in
the fitting of the experimental data to the theoretical complex-valued
expression of the impedance, 2, given by the funclaion f2Zlic. The
results from the fitting procedure will consist of eleven best-fit
values for ® and A, one vaiue of  and A for each concentration of
glycercl 1in water.

| 12
<k >
SSElc(o,A k) - '2! ||(Z{'° T M_'_‘_““""'k"), ‘
o |1 kQ ko
1
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Hydrophobic Sensor

The following Sum Of Squares Of Errors, SSEbic(o,A, k), will be used in
the fitting of the experimental data to the theoretical complex-valued
expression of the impedance, Z, given by the function f2bic. The
results from the fitting procedure will consist of seven values
best-fit for « and A, one value of a and A for each concentration of
glycerol 1n water.

. <k> 2
(wa ).- Zbic(a, Ak, 1)

kQ kQ

L
SSEbe(, ALk) = Z

Hydrophilic Sensor

Determination of 0 in pure water.
Enter guess values for @ and A.

ol _guess 376+ 230

Al_guess 04 em?

Given

SSElc(at]_guess,Al_guess, 1)=0

l=}

/al_ﬁt\

! = Minerr(atl_guess,Al_guess)
A NI

The result of the solve block, ol _fit and Al_fit, is.

al_fit=3.774 +2.299
Al_fit =0.4115 -cm’
Compute the residual error, ERR, given by ERR=SSElic(al_fit,Al fit,1).

ERR =0.131



AG-8
Hydrophilic Sensor

Determination of ® in 0.1 molar water-glycerol solution.
Enter guess values for o and A.

o2 _guess = 2.6+ 1.3

A2_guess = 0.39 cm?

Given

SSElc(02_guess ,A2_guess,2)=(

1wl
(uz_ﬁt

= Minerr(02_guess ,A2_guess)
A2_ﬁt) -& -£

The result of the solve block, a2 fit and A2 fit, as.

o2 _fit =2631 +1 246
A2_fit=0 3911 cm?
Compute the residual error, ERR, given by ERR=SSElac(u2_fit,AZ_tit,6 2).

ERR =0 088
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Hydrophilic Sensor

Determination of ¢ in 0.2 molar water-glycerol solution.
Enter guess values for « and A.

uld_guess - 19+06

A3_guess - 034 cm?

(nven

SSElic(03_guess,A3_guess, 3)=0
=]

al3_fit
B = Minerr(a3_guess, A3_guess)

A3_fit

The result of the solve block, a3_fit and A3_fit, is.

ald_fit=19145+0.65131
A3_fit =0.3494 -cm”
Compute the residual error, ERR, given by ERR=SSElac(o3_fit,A3 fit,3).

ERR =0043
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Hydrophilic Sensor

Determination of a in 0.3 molar water-glycerol solution.
Enter guess values for « and A.

od_guess =16+04

Ad_gucss = 034 cm’

SSEhc(04_guess,Ad_guess,4)=0
j=]

od_fit .
- = Minerr(od_guess , Ad_guess)

A4_fit

The result of the solve block, a4_fat and Ad4_fit, 1is.
od_fit =168 +0 2999
A4_fit =0 3509 «cm’
Compute the residual error, ERR, given by ERR=SSElic{ad4_fit,Ad_f1t, 4).

ERR =0036




Hydrophilic Sensor A6-11

Determination of ¢ 1n 0.4 molar water-glycerol solution.
Enter guees values for ¢ and A.

S _guess - 14+02

AS_guess 0134 cni?

(hven
SSEhc(a5_guess,AS_guess,5)=0
Im]

o5 fit
AS_fit

) = Minerr(a5_guess,AS_guess)

The result of the solve block, a5_fit and AS_fat, 1is.
o5_fit=1432+021%
AS_fit =0 3433 «cm?
Compute the residual error, ERR, given by ERR=SSElic(a5_fit,A5_ fit,5).

ERR =0012



Hydrophilic Sensor

Determination of ® in 0.5 molar water-glycerol solution.
Enter guess values for « and A.

a6 _guess = 13+01

A6_guess = 033 cm?

SSElic(06_guess ,AG_guess,6)m0
1=

o6 fit
- = Mimerr(t6_guess , AG_guess)

AG_fit

The result of the solve block, ®6_fit and A6_fit, 1s.
o6 _fit =1316 +0 118

AG_fit =0 3316-cm®

AG-12

Compute the residual error, ERR, given by ERR=SSElic(u6_fit,nh6 1t e},

ERR =0003
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Hydrophilic Sensor

Determination of & i1n 0.6 molar water-glycerol solutien.
Enter guess values for « and A.

o7 _guess = 11+007,

A7_guess = 032 em

SSEhc(0r7_guess A7 _guess, 7y =0

1=l
/ o7_fit \
\A7_fit)

= Muerr(7_guess , A7 _puess)

The result of the solve block, 07_fit and A7_fit, as.
al_fit=1172 +006%
AT_fit =07327] cem?
Compute the residual error, ERR, given by ERR=SSElic(a7 {1t , Al _f1t,7).

ERR =000}
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Hydrophilic Sensor

Determination of 0 an 0.7 molar water-glycerol solution.
Fnter guess values for o and A.

UX puess 092 0001

AR guess 033 L.m2

(iiven

SSEhe(08_guess,A8_guess,8)m=0
1=}

u8_fut
( B = Minerr (08 _guess . A8_guess)

AS_fit

The result of the solve block, o8_fat and A8_fit, 1s.
a8_fit =0937 +0 0161
AR_fit =0 3255 cm?
Compute the residual error, ERR, given by ERR=SSElic(uf_fit,A8_fit,8).

ERR =0002



A6-15H

Hydrophilic Sensor

Determination of & 1n 0.8 molar water-glycerol solution.
Enter guess values for a and A.

o9_guess = 08- 0003

n
A9 guess = 032 cm”

Given

SSEhe(09_guess,A9_guess,9)=0

1=
a9 _fit

- Mimnerr(09_guess ,AY_guess)
AO_fit

The result of the solve block, a?_fit and A9_fait, 1s.
a9 fit=08935 00044
2
A9 _fit=03242-cm
Compute the residual error, ERR, given by ERR=SSElic(u9_ f1t,A% [1t,9).

ERR =0 002




A6-16
Hydrophilic Sensor

Letermination of o 1n .9 molar water-glycerol soluticon.
Enter gquess values for « and A.

ul0 guess 0K 004

AlO puess 032 em?

Gven

SSEhc(oi0_guess, A1G_guess, 10)=0

jm]
(alo_ﬁt
Al0_fit

) = Minerr(a10_guess , Al0_guess)

The result of the solve block, «al0_fit and AlO_fuit, 1s.
al0_fit =0 842 - 0048
A10_fit =0 3236 «cm?

Compute the residual error, ERR, given by ERR=SSElic(al0
{1t,n10 fat,10).

ERR =0 003



AG-17

Hydrophilic Sensor

Determination of o in pure glycerol.
Enter guess values for « and A.

oll_guess -08-006)

All _guess - 032 em’

SSElic(all_guess , All_guess, 11)=0
jm]
all_fi!
- ) s Mmerr( ol 1_guess , ATl _guess)
AlL_fit

The result of the solve block, «all_fit and All_fat, 1s.
all_fit=083 0066
- 2
Al fit=03221-cm

Compute the residual error, ERR, given by ERR=SSElic(uil
_fat,All _fat,11).

ERR =0 001




A6-18
Hydrophobic Sensox

Drtermination of 4 1n pure water.
Enter nue<s values for ¢ and A.

ol guess 494213

AAT puess 036 em’

(hven
SSEbic( o]l _guess , AA1_guess, 1)=0

=]
((l(ll_ﬁl

) = Mmen (0ol _guess, AA]_guess)
AAL_fit

The result of the solve block, ol _fit and AAl _fit, 1s.

aal_fit=3 02 +1 446
AA1_fit =0 368 -cm’
Compute the residual error, ERR, gaven by ERR=SSEbic (wl

f1t,ARD fat,1).
ERR =0 056



Hydrophobic Sensor

Determination of & in 0.1 molar water-glycerol solution.
Enter guess values for o and A.

oo guess =32+ 12

AA2 guess - 037 cm?

——————————————————————————— Mathcad Solve Block --------------- -~

Given
SSEbic( oo2_guess , AA2_guess, 2)=0
=]
oo _fil
= Mmerr(ao2_guess , AA2_guess)
\AA2_fit)

The result of the solve block, au2_fit and AA2_fit, 1s.

oo _fit=2192 +0 795

AA2_fit =0 3728 -cm?

Compute the residual error, ERR, given by ERR=SSEbic(ou
_fat,AR2 fat,2

ERR =0 048

A6G-19
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Hydrophobic Sensor

Letermination of ¢ in 0.2 molar water-glycerol solution.
L.nter guesc values for « and A.

vl _guess 23407

AASY_guess 035 cm?

Cirven

SSEbic(oa3_guess , AA3_guess,3)=0
=]

oul_fit
AA3_in

) = Minerr(003_guess, AA3_guess)

The result of the solve block, au3_fit and AA3_fit, 1is.

aa3_fit =1707 +0 417
AA3_fit =0 3581 cm”

Compute the residual error, ERR, given by ERR=SSEbic (0a3
_f1t,AA3 fat,3).

ERR =0 026



AG-21
Hydrophobic Sensor

Determination of & 1n 0.4 molar water-glycerol solution.
Enter guess values for a and A.

ood_guess = 13401

AA4_guess = 034 cm’

Given

SSEbic(ood_guess , AAd_guess, 4 =0
=]

((1014_1'1(

= Minerr(ouxd_guess , AA4_guess)
AA4_ﬁl) -

The result of the solve block, oud_fit and AR4_f1it, 1s.

aud_fit=1135+0037
AA4 it =0.34) ccm?

Compute the residual error, ERR, given by ERR=SSEbic (w4
_fit,ARd_fat,4).

FRR =0005



Hydrophobic Sensor

A6-22

Determination of ¢ in 0.6 molar water-glycerol solution.

Lriter quess values for o and A.

oas guess F1+2 9310 4J

AAS puess, 015 ng

(hiven

SSEbic(ouS_gmess, AAS_guess,5)=0

/ oS fit
\AAS fit/

T=]

\ = Minerr(tS_guess ,AAS_guess)

The result of the solve block, ao5_fit and AAR5_fit, is.

Compute the residual error,
_fat, AnS fat, 5) .

aas_fit=1043 - 0.053

AAS _fit =0 3529 «cm’

ERR,

given by ERR=SSEbic(aab

ERR =001t



AG-23
Hydrophobic Sensox

Determination of @ in 0.8 molar water-glycerol solution.
Enter guess values for @ and A.

ao6_gress = 0R - 005

AAG_gusss = 033 em?

SSEbic( 0at6_guess , AAG_guess [ 6)=0

jm]

/ aaG_fit
B = Minerr( 06 _guess , AAG_gucess)
\AAG_fit

The result of the solve block, aué_fit and ARG _fit, 1s.

au6_fit=0801 007%
AAG_fit =0.3345 -’

Compute the residual error, ERR, given by ERR=SSEbic(uu6
_fat, ARG fit,6).

ERR =0013




Hydrophobic Sensorx A6-24

Letermination of U 1n pure glycerol.

Enter quens values for o and A.

vyl puess 07 011

AAT puess 132 em®

Gnven

SSEbic{ aat7_guess,AA7T_guess,7)=0
Im]

oo fit |
- ) = Minerr(007_guess, AA7_guess)
AAT_fit

The result of the solve block, aal_fit and AA7T_fit, ais.

aa?_fit =07703 - 0 13441
AA7_fit =0.3399 -cm”

Compute the residual error, ERR, given by ERR=SSEbic(an’
Cfit, ART fat, 7).

ERR =0.03

Data for Hydrophilic and Hydrophobic Sensor

[ ul_fit
Al_fit

[ al (it
A2_fit
o _fit A3_fit
(14_{1[ Ad fit
| as_fit AS_fit
a_bhvdrophihe - | a6_fit A_hydrophihe =] A6_fit
u7_fit A7_fit
a8 _fit A8_fit
af_fit A9_fi
) A10_fit

alo_fit -

Al _fit

wll_fut




AG=-25H
Store the data for «_hydrophilic and A_hydrophilic in the data tiles
ALPLIC.PRN and ALIC.PRN.

WRITEPRN(ALPLICY  a vdrophihe

A hvdrophilic
WRITEPRN(ALICY - T opie

cm
For each 1 = 1,...,401 and klac = 1,...,11 compute the magnitude and
phase of 2.
. <« R
MZhe_fit, 40 - MZI[nhc_ﬁt Vhey | phey ,(I_h\'dmphlhc““ Jlie_tit, A vdiophiliey ol
. . DL
()7.11c_ﬁtl'“lc : 9/,1[11110_('11.\'hckhc,pllckm,(!_h\'droplnhckl“.I\hc it lohe “I
Store the data for MZlic_fit and 82lic_fit in the data file«
MZLICFIT.PRN and TZLICFIT.PRN
M/Zhe_ Tt
WRITEPRN(MZLICFIT) ==
IN?
R - - 0/hc it
WRITEPRN(TZLICFIT) -7
deg
(un_ht] AAL_fit
P2 i AA2 (it
aud_fit AA3_fit
o_hydrophobie " aud_fit A_hydrophobic { AA4_fit
aus_fit | AAS_fit
au6_fit ANG_fit
70
au7_fit | AAT_fit
Store the data for ¢_hydrophobic and A _hydrophobic in the data file
ALPBIC.PRN and ABIC.PRN.
e . A hvdrophobic
WRITEPRN(ALPBIC) = a_hydrophobic WRITEPRN(ABIC)
i
For each 1 = 1,...,401 and kbic = 1,...,7 compute the magnitnude and
phase of Z.
< bhi -

f
Wl"c—"’ln,kl\nc : MZlinhic_ﬁl,vblckhlc.pbsc“,lc,u_hydruphuhxc“m,hblc_ﬁl,/\_lwdmplmrm”m_ mhi

“khye -

9'/,blc_ﬁll‘k . Bll{nbw_ﬁl,vb:c ,pb)ckh'c,u_hydmphnhu.km,hhlc_ fit, b

b kbic




APPENDIX 7 Plots of Interfacial Slip Parameter,
Mathcad Program DOC4.MCD

Data Analysis of Interfacial Slip Parameter, O, Versus Kinematic

Viscosity, Vv, and Mole Fraction, Mg.

The power law model given by F(a,b,c,x)=axP+c will be fitted to the
experimental data consisting of the real part of o, Oge, 1maginary part

of U, Uy, the magnitude of a, |ul, and the phase of a, 8y versus

kKinematic viscos:ity, V.

The exponential law model given by G(a,b,c,x)=aebx+c will be fitted to
the experimental data consisting of the real part of 0O, Oge, imaginary

part of «, Oy, the magnitude of «, |&}, and the phase of «, 8y Vversus

mole {raction, M.

Hydrophilic Sensor

Read i1n data array olic for anterfacial slip parameter, o, an array of

cleven values of «a.,

ulic  READPRN(ALPLIC)

1> <>
abe  ahe v tthe

Fead an data array vlic for kinematic viscosity, V, an array of eleven
values of v,

vhe  READPRN(NULIC) ¢S

Read an data array MFlic for mole fraction, Mg, an array of eleven

values of Mg,

Mb e RFADPRN(MOLLICY



A7~

Hydrophobic Sensor

Read 1n data array abic for interfacial slip parameter, «, an artay ot
seven values of .

abic = READPRN(ALPBIC)

L <1> <2>
obic = abic + ) abic

Read in data array vbic for kinematic viscosity, Vv, an array of seven
values of v.

vbic = READPRN(NURBIC)-c8

Read in data array MFbic for mole fraction, Mg, an array of seven
values of Mg.

MFic = READPRN(MOLBIC)

Hydrophilic Sensor

The arrays ORelic, uImlic, oMaglic and Oulic store respectively .,
im: @l and 8;. Compute Uga, U1n, lU] and 8.
oRelic Re(uhe)

almlbic - Im(uhe)

»

uMaghe f(lhc

I/(l.lm]u:
\\ uRelic)

deg

bulic

The subscrapt klic takes on integral values from 1 through 11
inclusive. Each value of klic corresponds to a different concentration
of glycerol 1in water.

to




A7-3

Hydrophilic Sensor

klirs = 1 corresponds to pure water.

klic = 2 corresponds to 0.1 molar water-glycerol solution.
klic = 3 corresponds to 0.2 molar water-glycerol sclution.
¥Ylic = 4 corresponds to 0.3 molar water-glycerol solution.
¥lic = 5 corresponds to 0.4 molar water-glycerol soluticn.
klic = 6 corresponds to 0.5 molar water-glycerol solution.
klic = 7 corresponds to 0.6 molar water-glycerol solution.
k¥lic = 8 corresponds to 0.7 molar water-glycerol solution.
klie = 9 corresponds to 0.8 molar water-glycerol solution.

klic = 10 corresponds to 0.9 molar water-glycerol solution.
¥lic = 1] corresponds to pure glycerol.

Nlir corresponds to the number of experimental data points given by

Nhie =11

klic = 1 Nhe

Hydrophobic Sensor

The arrays ORelic, almbic, oMagbic and Oobic store respectively Oge, @

ime 1@l and 8. Compute wre, 01y, |0 and 0.

tRebic - Re(abic)

almbic = Im(abic)

—_—
aMaghbic = |(1b|c|
_———
olmbic
amn( R b')
a .
babic = or
deg

The subscript kbic takes on integral values from 1 through 7 inclusive.
Each value of kbic corresponds to a different concentration of glycerol
in water.



A7-4
Hydrophobic Sensor

kbic = 1 corresponds to pure water.

kbic = 2 corresponds to 0.1 molar water-glycerol solution.
kbic = 3 corresponds to 0.2 molar water-glycerol solution.
kbic = 4 corresponds to 0.4 molar water-glycerol solution.
kbic = 5 corresponds to 0.6 molar water-glycerol solution.
kbic = 6 corresponds to 0.8 molar water-glycerol solution.
klic = 7 corresponds to pure glycerol.

Nbic corresponds to the number of experimental data points given by

Nbhic = 7

Abic = 1 Nhic

For the hydrophilic and hydrophobic sensors, the mathematical model

Fla,b,c,x) = axP+c will be used to fit the experimental data consiasting
of Oge, Oyp, (@] and Ga versus kinematic wviscosity, V. For the

experimental data consisting of Oge, Oyp, |@] and 6, versus mole

fraction, Mg, the mathematical model G(a,b,c,x) = aeP¥ie will be uned.

The following Sum Of Squares Of Errors will be used in the non-linear
curve-fitting process SSElliec{a,b,c),...,S85E8lic(a,b,c) and
SSElbic(a,b,c),...,S85E8bic(a,b,c)

Power Law Model

. ]
F(a,b,c,x) —ax +c

Exponential Law Model

< b x
G(a,b,c,x) =ae “ve




A7~-5
Hydrophilic Sensor

Non-Linear Regression Analysis of Ogpe VS V

1 [ vhey i
SSklhc(a,b,e) = m% (aRchckhc~F a,b,c, <
1c

Enter guess values for a,b and c.
alhe_guess 1
bllc guess 01

clhe_guess |

Given

SSElhc(alhic_guess,bllic_guess,cllic_guess)=0
=]

lm=]

[alhe_fit}
1
{\hlllc_ﬁl ¢ - Minerr(alhic_guess,blhe_guess, cllic_guess)

clhe_fit /
"""""""""""""""""""""""""" aho_fi-1028
bllic_fit =-0.4182
clhe_fit=0.7142

Compute the residual error, ERR, given by ERR =
SSEllic(allic_fat,bllaic_fit,cllac_fit).

ERR =0.0036



A7-6
Hydrophilic Sensor

Non-Linear Regression Analysis of Oy, Vs V

v

SSElic(a,b,c) = — (fﬂnm Fla,b |
SSE2he(a,b,c) = —— 6. Flabe, - -
Niie " e s /!
hic

Enter guess values for a,b and c.

1

i

allic_guess

b2hic_guess = -0 1

"

c2he_guess = 1

Given

SSE2he(alic_guess,b2lic_guess, c2lic_guess) =)
=]
=]

[a2lic_fit
|
ih.’lhc_ﬁl - Minerr(a2lic_guess, b2he guess e2he guess)

we2lhic_fit

a2lic_fit =2 3904
b2lic_fit=-05718
c2he_fit = 0 083R

Compute the residual error, ERR, given by ERR =
SSE2lic(a2lic_fat,b2lic_fit,c2lic_fat).

ERR =2 4244-10""




Hydrophilic Sensor

Non-Linear Regression Analysis of || vs v

viiey i

SSE3lic(a,b,c) = Ni—-Z (uMaglicklic - F(a,b,c,
1c

|

A7-7

klic
Enter guess values for a,b and c.
s3he_guess - 1
bihc_guess 0
¢ic_guess ]
—————————————————————————— Mathcad Solve BlocCk ----==--———cmmcm e

Ghiven

SSE3lic(a3lic_guess,b3lic_guess,c3lic_guess)=0
=]
1=]

fa3lic_fit

bilic_fit | = Minerr(adlic_guess,b3lic_guess,c3lic_guess)

e3lic_fit

a3lic_fit =3.6292
blic_fit =-0.484
c3lic_fit =0.7619

Compute the residual error, ERR, given by ERR =
S§SE3lic(a3lic_fat,b3lic_fit,c3lic_fit).

ERR =0.0041



Hydrophilic Sensor

Non-Linear Regression Analysis of Oy vs v

1

SSEd4lic(a,b,c) = —~-
ic(a,b,c) Nlicz
klic

Enter guess values for a,b and c.

"
—

adlic_guess

bdlic_guess = -0 01

"
—

cdlic_guess

Oalic, | -deg - F(

vie
(NI
abe,~ -—

cS

SSE4lic(adlic_guess,bdlic_guess, cdlic_guess)=0

[
jm)

adlic_fit)

bdhic_fit | = Minerr(adhe_guess, bdlic_guess,cdlic_guess)

cihc_fit

|

Y

!

A7-8

adlhc_fit=08113

bdlic_fit =-0 2101

cdhe_fit= 02303

Compute the residual error, ERR, given by ERR

SSE4lic(adlic_fit,b4lic_fit,cdlic_fat).

ERR =3 5861-10 *




A7-9
Hydrophobic Sensor

Non-Linear Regression Analysis of Ope VS V

SSElbic(a,b,c) = — Z oRebi,. - Flab,c o kbi
onLibic(a,n,C) = — - s Uy by ™

Nbic & kbic cS

kbic

Enter guess values for a,b and c.
allue_guess -1
blbie_guess 01
clbic_guess ]
—————————————————————————— Mathcad Solve BloCk ~—-=—=cwecommmm e

Ciiven
SSElbic(albic_guess, blbic_guess,clbic_guess)=0
l=]
1=1
/a 1bic_fit

blbic_fit ) = Minerr(albic_guess, bloic_guess,clbic_guess)
\clie_fit /I

albic_fit =2.3621
blbic_fit =-0.4143
clbic_fit =0.663

Compute the resaidual error, EFR, given by ERR =
S3Elbic (albic_fat,blbic_fit,clbic_fit).

ERR =0.0013



A7-10
Hydrophobic Sensorx

Non-Linear Regression Analysis of Qip Vs V

*

1 vblcklm
SSE2bic(a,b,c) = ——- almbic,, - Fia,b,¢, - -
Nbic hbie cS
kbic Y
Enter guess values for a,b and c.
a2bic_guess = |

b2bic_guess = -0 1

cbic_guess = 1

Given

SSE2bic{a2bic_guess , blbic_guess, c2bic_guess)m()
1m]
1=

aZbic_fit
b2bic_fit | = Minerr(a2bic_guess,b2bic_guess,c2bic_guess)
c2bic_fit |

aZbic_fit =1.6247
h2bic_fit = 05201
c2bic_fit =-0 1664

Compute the residual error, ERR, given by ERR =
SSE2bic(a2bic_fit, b2bic_fit,c2bic_fit).

ERR =49071-107*




Hydrophobic Sensor

Non-Linear Regression Analysis of jal vs v

SSE3bic(a,b,c) ! E (aM bic,, - Fia.b,c Vblc"”i")
Salishic(a,b, T —— agol = »0,06,
Nbic e ke \ cS
L 0I1C

Enter guess values for a,b and c.
albic_guess 1
bi3bic_guess 0]

cIbhie_guess - ]

Giiven

SSE3bic(u3bic_guess,b3bic_guess,c3bic_guess)=0

=]

=]
/:13lnc_ﬁl \
[b3bic fit] - Munerr(a3bic_guess,b3bic_guess,c3bic_guess)
\c?blc_ﬁt

a3bic_fit =2 6548
bibic_fit =-0 4648
c3bic_fit =0.6995

Compute the residual error, ERR, given by ERR =
SS5E3bic(a3bic _fat,b3bic_fit,c3bic_fit).

ERR =0.0014

A7-11



A7-12
Hydrophobic Sensor

Non-Linear Regression Analysis of 0y vs v

1 thkl\w\
Nbic'Z Babie, , deg - Fla,b,c, - 65 |

5

SSEdbic(a,b,c) -

kbic
Enter guess values for a,b and c.
adbic_guess = |
bdbic_gucess =-0.1
cdbic_guess = |
-------------------------- Mathcad Solve Block --=-=-coomoeceon oo

Given

SSEdbic(adbic_guess, bdbic_guess, cdbic_guess =0
Im]
=1

adbic_fit\
bdbic_fit | = Minerr(adbic_guess, bdbic_guess, cdbic guess)
cdbic_fit

adbic_fit =0 8075
babic_fit = 02057
cdbic_fit =-03292

Compute the residual error, ERR, given by ERR =
SSE4bic(adbic_fit,bdbic_fit,cdbic_fit).

ERR =6272-10



Hydrophilic Sensor

Non-Linear Regression Analysis of Ope Vs Mf

SSEShe(a,b,c) = fq‘]ﬂéz (uRehicy, - G(“""C’Mﬂlcm.c))z

klic
Enter guess values for a,b and c.
aShe_guess 1
bShe_guess - 2
oShe_gueas ]
————————————————————————— Mathcad Solve Block -~-=m=-m-m—==——ceoe-

Cinven

SSEShe(aSlic_guess, bSlic_guess, cSlic_guess)=0
1m]
1=]

/(lSllC_ﬁl
bShc_fit | - Minerr(aShc_guess, bSlic_guess,c5he_guess)

4
\cSllc_ﬁt /

aShe_fit =2 8631
bShe_fit =-4.2491
cSlic_fit =0 8387

Compute the residual error, ERR, given by ERR =
SSES511c(ablac_fit,b511ic_fit,cblic_fit}.

ERR =0 0073

A7-13



A7-14
Hydrcophilic Sensor

Non-Linear Regression Analysis of oy, vs Mg

TS P ] Y e :
SSEGlic(a,b,c) = i\q‘;z ((Ilmhc“w (x(.n,h,c.Ml lIL“lL\\

khic
Enter guess values for a,b and c.
ablic_guess = |
bohic_guess = -0 ]

c6lic_guess = 1

Given

SSEGLc(ablic_guess, bolir auess, cOhic_guess) =0

|m]
! -0
fabhc_fit
‘h(»hc fit' Mmerr(aGhe guess,b6he guess, cOGhic guess)
| b6he_ e ¢

\c()lxc_ﬁl

ablic_fit=213159
bohe_fit =-5 7621
c6he_fit = 00354

Compute the residual error, ERR, given by ERP =
SSE€lic(aélic_fit,bélic_fat,c6lic_fit).

ERR =67774-10



A7-15

Hydrcphilic Sensor

Non-Linear Regression Analysis of [o vs Mg

. | / y W
SSL7he(a.b,c) = I:JEZ {0Maghe,, - (r\\a,h,c.Mic“w/\/,
khe
Enter guess values for a,b and c.
a7he_guess
b7hie _guess G
e guess
—————————————————————————— Mathcad Solve BloCk —--=~-=remcmccm e
Cinven
SSE7he(aTlic_guess,b?lic_guess,c7lic_guess)=0
=]
=]
I/a?hc_ﬁl \
! -
-h7th1r] - Mimmerr(a7lic_guess, b7lic_guess, c7he_guess)
The_fit

a7he_fit=3 473
b7hic_fit =-4 8874
cThe_fit=0 8714

Compute the residual error, ERR, given by ERR =
SOE7lic(a7lac_fat,b71lac_fit,c7lic_fit).

ERR =0 0089



A7-16

Hydrophilic Sensor

Non-Linear Regression Analysis of 0y vs Mg

5

1 2
SSE8&lc(a.b,c) - ﬁllz (Oallckhc deg (i\u,h_c,?\1l-'lu-uh\\

khic
Enter guess values for a,b and c.

aBlic_guess = |

b8lLic_guess = -01

c8lic_guess - |

SSE8hc(afhic_guess, b8lic_guess , cRlic_guess)=0

=1

=]
'/uh‘hc_ﬁl \\
'thlc_ﬁll Munerr(a8lic_guess, b8lic guess e8lic puess)

‘cRhe_fit}

allic_fit=10236
bRhic_fit = 0 9586
cBlic_fit= 05074

Compute the residual errcr, ERR, given by ERR =
SSEB8lic(a8lic_fit,bB8lic_fit,cB8lic_fit).

ERR =70692:10 °



Hydrophobic Sensor

Non-Linear Regression Analysis of ORpe VS Mg

ad l \ 2
SSl:5bic(a,b,c) = mz (aRcbxckblc- G(a,b,c,MFblckblc))

kbic
Enter guess values for a,b and c.
aShic_guess |
bhSthic_guess - 2
¢Sbhie_guess |
—————————————————————————— Mathcad Solve Block =-------—momccemma——

Gitven

SSEShic(aSbic_guess,bSbic_guess,cSbic_guess)=0

1=]

Im]
/nSblc_ﬁ(
| bStic_fit | - Minerr{aShic_guess, bSbic_guess,c5bic_guess)
\c5hxc_ﬁl

aSbic_fit =2.2309
bSbic_fit =-4.378
cSbic_fit =0 7751

Compute the residual error, ERR, given by ERR =
S8EbSbic(adbic_fit,bSbic_fit,cSbac_fit).

ERR =0.0022

A7-17
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Hydrophobic Sensor

Non-lLinear Regression Analysis of dpny, vs Mg

-
-

1
SSE6bic(a,b,¢) = ——- almbic
ybic(a ) None ( I "

kbic

e - G (a boe ,T\ﬂ"lucmm\)

Enter guess values for a,b and c.

abbic_guess = |

1"

b6bic_guess = -01

cObic_guess = |

(hiven

SSEGhic(atbic_guess . bGbic_guess  cObic_guess)=0
Im|
=]

aGbic_fit
bobie_fit Minerr(aGhic_guess  bohic_guess, cobic puess)
chxc__ﬁt/

abbic_fit =1 5698

bobic_fit =-5 2243

cObic_fit = 01297

Compute the residual error, ERR, given by ERR =
SSE6bic(a6bic_fit,bébic_fit,cébic_fit}.

ERR =3 1137107



A7-19

Hydrophobic Sensor

Non-Linear Regression Analysis of |a] vs Mg

" ) . . 2
SSEThic(a,b,c) = ﬁ;zz (oMagbicy ;- G(a,b,c,MFbicyy, )

kbic
Enter guess values for a,b and c.
allic_guess |
b7bic_guess 2
cThie_guess 1
—————————————————————————— Mathcad Solve BloCk -===----—-eemmcm e o
Criven

SSE7bic(a7ic_guess,b7bic_guess,c7bic_guess )=0
l=]
=]

/a?blc_fll
b7bic_fit ] - Minerr(a7bic_guess, b7bic_guess, c7bic_guess)
\c?hlc_ﬁl

aTbic_fit =2 5396
b7bic_fit =-4.8354
c7bic_fit =0 793

Compute the residual error, ERR, given by ERR =
S8E7bac{a7bic_fit,b7bic_fat,cTbac_fait).

ERR =0.0024



A7-20

Hydrophobic Sensor

Non-Linear Regression RAnalysis of Oy vs Mg

1 2
SSE8bic(a,b,c) = m (9“‘“%,.:""'8 - (‘:(u,h,c .T\’l]:lucum_\\
kbic

Enter guess values for a,b and c.

a8bic_guess = |

"
t2

bRbic_guess

"
—

c8bic_guess

—————————————————————————— Mathcad Solve Block ---~----vvomono o oo - -
Given

SSE&bic(a8hic_guess,b8nc_guess, c8hic_guess)mi)
=]
|=]

a8bic_fit

b8bic_fit | = Mmerr(a8bic_guess, b8bic_guess, cBhic puiess)
cRbic_fit

aBbic_fit =0 7646
b8bic_fit =-1.7386
c8hic_fit = 03113

Compute the residual error, ERR, given by ERR =
SSE8bic(aBbic_fit,b8bic_fit,c8bic fat).
4
ERR =4 1297-10

Plot the fitted and experimental data for Upe, Qip, ¢} and 8, verou. v
and Mg.




Plot Upg, (g, 10] amd 8, versus v and Mg for the hydrophilic and

hydrophobic sensor.

v 10c8,20cS 1400 cS

MIf 0,001 1

Hydrophilic and Hydrophobic Sensor

Plot of Ope versus VvV (Hydrophilic and Hydrophobic Sensor)

4 T T T
\
\
1:_'\\ —
\
X
\\
+ N
2 x\ e
+~\)(\
X x
1+ + %W —
0 | 1 1 J

1 10 100 1000 1-10°

X Hydrophilic Sensor (Experimental Curve)

7~ Hydraphilic Sensor (Fitted Curve)

+ Hydrophobic Sensor (Experimental Curve)
Hydrophobic Sensor (Fitted Curve)
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Plot of oy, versus v (Hydrophilic and Hydrophobic Sensor)
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Plot of O, versus v (Hydrophilic and Hydrophobic Sensor)
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Plot of dp, versus Mg (Hydrophilic and Hydrophobic Sensor)
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Plot of 8, versus Mg (Hydrophilic and Hydrophobic Sensor)
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APPENDIX 8 Particle Displacement of Sensor in Liquiad,
Mathcad Program DOCS.MCD

Numerical Solution of the Maximum Values of the Real Part of uy and u

(i) x Versus Kinematic Viscosity, v, for the Hydrophilic and Hydrophobic
Sensor in Water-Glycerol Solution

The maximum value of the real part of the liquid particle displacement,
U(1)x, and the quartz particle displacement, uy, will be computed at

the interface over the time interval, I=[0,5/f,] for the hydrophilic
and hydrophobic sensor.

The following seventeen complex-valued expressions constitute the
expression for the particle displacement, uy, of the quartz sensor.

2
¢
char = ¢+ —
[5

8(M,®) =10-jcbar

kq(n.0) = @ ’— Pa_.
char + j w1

kl(v,w) JE

IRY

Y(M,h,0) = exp(j-h kq(n,m))

Y2(v,h,w) =exp(y h kl(v,0))
Al(n,h, @) =91(M,h,@)- 1
A2(n,h,) =y1(M,h,0)+ 1]
A3(M.h,m) :yl(n,h,m)2< 1
bl1(n,h,0) = -2.8(n,w) e e Al(n,h,w) 71 (M,h,0) kq(n,m) &)
b12(n,v,pl,h,w) :-2c€'yl(T],h,0))2 kl(v,m) v o 60 pl

b13(n,h,w) = §(M,w) Al(M,h,0) kq(M,0) (8(11,0)) £A2(M.h,m) h kq(n,m)
+2 cz-ll(n,h,m)

bl4(m,v,pl.h,w) = ki(v,0) (B(n,m)-e A3Mm.h.o)yhkgm,m) | vopl
e AL h,w) A2 ,h,w)
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b21(M,h,®) = 2-83(n,w)-e €Al(n,h,0) kq(n,w) 60

b22(7m,v,pl,h,w) = 2 eeki(v,u)v-opl-&0

abl2(n,v,pl,h,w) + bl l(n,h,m))

al(m,v,pl,a,h,w) =
obl4(n,v,pl,h,0) + bl3(n,h,®)

ob22(0,v,pl,h,0) + b21(n ,h,m))

a2(n,v,pl,o,h,w) =
" (a'bm(n,v,pl,h,m) +bl13(n,h,0)

The particle displacement, uy, of the quartz sensor at the solid-liquid

interface is.

ux(n,v,pl,o,h,w,t) = fal(m,v,pl,a,h,0)exp(-jkq(n,o)h) ...)-exp(j-u)l)
+a2(n,v,pl,a,h, 0)-exp(j-kq(n,w) h)

From the slip boundary condition, the liquid particle displacement, u
(1)xr At the solid-liquid anterface is.

ulx(n,v,pl,o,h,0,t) = cux(n,v,pl,a,h,0,0)

Data for Hydrophilic and Hydrophobic Sensor

Enter numerical value for the mass density of quartz.

pq52649-5%

m

Enter numerical value for the elastic coefficient of quartz.

¢- 290 100 2eWon

m

Enter numerical value for the best-fit piezoelectric stress coefficient
of quartz.

¢=-0 07980073‘2’—l

m

Enter numerical values for the best-fit viscoelastic coefficient of
quartz.

nlic_fit - 0.0083762 newton S—°2°
m

nbic_fit - 0 2344606 newton ff;
m



Enter numerical values fcr the best-fit thickne:s.

hhe_fit - 183 8790101 pum

hbic_fit = 183 9794329 um
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Enter numerical value for the dielectric constant of quartr.

Water-Glycerol Solution for Hydrophilic Sensor

Read 1n data array vlic for kinematic viscosity, Vv, an array of eleven

values of v.

viic = READPRN(NULIC) ¢S

Read 1n data array plic for kinematic viscosity, p, an array ot eleven

values of p.

plic - READPRN(RHOLIC) ME

hter

Read 1n data array tlic for interfacial slip parameter,
eleven values of .

alic  READPRN(ALPLIC)

-

<} LA
alic  «hic vy ahe

Water-Glycerol Solution for Hydrophobic Sensor

o,

an array of

Read in data array vbic for kinematic viscosity, Vv, an array ol eleven

values of v.
vbic  READPRN(NUBIC) ¢S

Read 1n data array pbic for kinematic viscosity, P, an array of rleven

values of p.

kg

Ister

pbic  READPRN(RHOBIC)

Read 1n data array abic for interfacial slip parameter,
seven values of d.

abic - READPRN(ALPRBIC)

<] > 2.
ubic - ubie ¢« 3 tubic

u,

ain array of
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Using the nominal resonant frequency, f,, of the quartz sensor, compute
U, th,t) and u(l)x(h,t) over the taime interval [0, 5/f,].

Enter numerical value for nominal resonant frequency, f,. fo = 90 MHz
The corresponding angular frequency, ©,, is given by. wo =2 nfo
Enter starting value for the time t, tg. ts = 0sec

5
Enter terminal value for the time t, tg. tf=;— 1f =0.556 -sec

0
Enter numerical value for the time step At. At = 0001 psee

tf-ts

The number of data points, N, 1s. N = floor A N =555

t

In the above expression for N, Mathcad's floor function, converts a
real number into the smallest integer corresponding to that real number.

The range variable, 1, takes on integral values from 1 to N inclusave.

At
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Hydrophilic Sensor

Compute the real part of uy and u(1)x over the time interval [0, 5/f0])
for each 1=1,...,N and klac=l,...,11.

khe =1 11

uxRe_hydrophilic, ;. = Re (\1.\' (ﬂhc_ﬁl.\'llc“lc,phc“w.ﬂhc hthi!,(m,('\\)

N[

ulxRe_hydrophilic, ;. = Re (ulx <n he_fit, thkhc pheyy (!lick o hlic_fit, wo, tl) )

Using Mathcad's max function, compute the maximum values of the real
parts of uy and u(j)y over the tame interval [0, 5/f{ ] for each

klic=l,...,11.
uxmax_hckhc = max (UXRc_hV(kOphll|c<”'c >}

ulxmax_hie . = max(ulch_h_\,'dmphll|c<H“ >)

Store the one-dimansional arrays uxmax_lic and ulxmax_lic in the
respective data files UXMAXLIC.PRN and ULMAXLIC.PRN.

\rl - TN .
WRITEPRN(UXMAXLIC) - augmcm(- l'b‘ll\ln I\_lIL)
¢S angstrom

viie ulumax i
WRITEPRN(ULMAXLIC) < augmcn(( 16 whamas ")

o
¢S angstrom
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Hydrophobic Sensor

Compute the real part of u, and u(jyy over the time interval [0,5/fo]
for each 1=1,...,N and kbic=1,...,7.

hwe 1.7
uxRe_hydrophobic, o - = Rc(ux (T]bic_ﬁl,Vbxckbic,pbickbic,abickblc,hbic_ﬁt,a)o,ti)>

ulch_hydmphobnc"khic = Re ( ulx (nbic_ﬁt 'Vblckbic’ pbickbic,abickbic,hbic_ﬁt . coo,ti)>

Using Mathcad's max function, compute the maximum values of the real
parts of u, and u(j)y over the time interval [0,5/f,] for each

kbic=1,...,7.

uxrmax_bicy,, . = max{uch_hydrophobic«bip)

UIxmux_bickhlc = max (ulxRe-hydrophobiCQ(biC >)

Store the one-dimensional arrays uxmax_bic and ulxmax_bic in the
respective data files UXMAXBIC.PRN and ULMAXBIC.PRN.

vbi ¢ b
WRITEPRN(UXMAXBIC) = augmcm(_.w,“"m‘”‘- e
cS  angstrom

vbic ulxmax b
WRITEPRN(ULMAXBIC) - augmcm( ic ulmax_bic
cS  angstrom

For the case of the hydrophilic and hydrophobic sensors immersed in
pure water, store the data for the real part of ux and u{l)x versus the
time t 1in the respectaive data files UXRELIC.PRN, UXREBIC.PRN,
ULRELIC.PRN and ULREBIC.PRN.

. <1 >
tt  uxRe_hydrophil
WRITEPRN(UXRELIC) = augmcm( b ydrophilic )

usec angstrom )

t , bi <] >
WRITEPRN(UXREBIC) = augmcnt( tt_ uxRe_hydrophobic

Hsec ' angstrom

e <I>
IR !
WRITEPRN(ULRELIC) = augmcnt( t _ ulRe_hydrophilic )

usce angstrom

IxR b <]>
WRITEPRN(ULREBIC) = augmcnl( tt_ ulxRe_hydrophobic
Hsec angstrom
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Use the power law model E’(a,b,c,x)=axb+c to fit the data consisting ot
uxmax_lic, uxmax_bic, ulxmax_lic and ulxmax_baic.

F(a,b,c,x) - a xh + e

The following Sum Of Squares Of Errors, SSEUXLIC({(a,b,c),
SSEULXLIC(a,b,c), SSEUXBIC(a,b,c) and SSEULXBIC(a,b,c) will be used 1in
the following non-linear curve-fitting procedure.

2
uxmax_licy ;. ( thklw))

1
SSEUXLIC(a,b,c) = —) ( M Flabe- -
i angstrom cS
klic
2
] ulxmax_hey ) Vllc”“
SSEULXLIC(a,b,e) - — ———— - Fla,b,c, - -
1] £ angstrom cS
klic
V2
uxmax_bic vhic
— e LN
SSEUXBIC(a,b,c) = 2 (— ke 1-'(u,b,c, A '\)
7 angstrom ¢S
Abic
2
ulxmax_bi vhice
— e e
SSEULXBIC(a,b,c) :—‘Z (_-m- LS I"(u,h,c. . "))
7 angstrom oh

kbic
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To start the non-linear curve~fitting procedure, enter guess values for
a,b and c.

Enter guess value for a. aguessux_lic = 14
Enter guess value for b. bguessux_lic =-0.2
Enter guess value for c. cguessux_lic = -1.4

————————————————————————— Mathcad Solve BlocKk ----=---morommmmccme oo
Chiven
SSEUXLIC (aguessux_tic, bguessux_lic,cguessux_lic)=0
I=]

Im]

afitux_lic |
bfitux_lic | = Minerr(aguessux_lic, bguessux_lic,cguessux_lic)

cfitux_lic

The result of the Solve Block, afitux_lic, bfitux_lic and cfitux_lic is.

afitux_lic =14.523
bfitux_hc =-0 246
cfitux_lic =-1.529

Compute the residual error, ERR, given by ERR =
SSEUXLIC (afitux_lac,bfitux_lic,cfitux lic).

ERR =0.057
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To start the non-linear curve-fitting procedure, enter guess values for
a,b and c.

Enter guess value for a. aguessulx_lic = 56
Enter guess value for b. bguessulx_lic = -0 6
Enter guess value for c. cguessulx_lic =05

SSEULXLIC (aguessulx_lic, bguessulx_lic, cguessulx_lic)m()
=]

m]
fafitulx_lic
bfitulx_lic | = Minerr(aguessulx_lic, bguessuls_he, cguessulx_lic)
cfitulx_lic

The result of the Solve Block, afitulx_ lac, bfitulx lic and cfitulx hie
1s.

afitulx_lic = 56 032
bfitulx_he = 0 649
cfitulx_lic =0 577

Compute the residual error, ERR, given by ERR =
SSEULALIC (afitulx_lic,bfitulx lic,cfitulx_lic).

ERR =0 036
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To start the non-linear curve-fitting procedure, enter guess values for
a,b and c.

Enter guess value for a. aguessux_bic = 18
Enter guess value for b. bguessux_bic = -0.04
Enter guess value for c. cguessux_bic = -11

————————————————————————— Mathcad Solve Block -----=---——mecmmmmmeme e
Given

SSEUXBIC (aguessux_bic, bguessux_bic, cguessux_bic)=0
=]

=]

afitux_bic
bfitux_bic | = Minerr(aguessux_bic,bguessux_bic, cguessux_bic)

cfitux_bic

The result of the Solve Block, afitux_bic, bfitux _bic and cfitux_bic is.

afitux_bic =19 311
bfitux_bic =-0 081
cfitux_bic =-10 043

Compute the residual error, ERR, given by ERR =
SSEUNBIC(afitux_bic,bfitux_bic,cfitux_bic).

ERR =0 051
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To start the non-linear curve-fitting procedure, enter guess values f{ot
a,b and c.

Enter guess value for a. aguessulx_bic = 34

Enter guess value for b. bguessulx_bic = -05

Enter guess value for c. cguessulx_bic = 03

————————————————————————— Mathcad Solve Block -r==mmmecmmme e o
Given

SSEULXBIC(aguessulx_bic,bguessula_bic, cguessulx_bic Ym0
m

im]

afitulx_bic
bfitulx_bic | - Minerr(aguessulx_bic, bguessulx_tie, cguessulx_bie)

chitulx_bic

The result of the Solve Block, afitulx _bic, bfitulx bic and cfitulx bie
1s.

afitulx_bic =31 284
bfitulx_bic = 0 536
cfitulx_bic =0 308

Compute the residual error, ERR, gaiven by ERR =
SSEULXBIC(afitulx bic,bfitulx bic,cfitulx bic).

ERR=00]
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Flot of the maximum displacement of the real part of u, and U(1)x
versus n for the hydrophilic ard hydrophobic sensor.
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APPENDIX 9 Numerical Solution of Interfacial Slip Model,
Mathcad Program DOC6.MCD

Numerical Solution of the Equation of Motion of Mass m; using
Runge-Kutta's Fourth Order Method.

The numerical computation of the displacement, xj, of mass m; will be

performed by using a fourth-order Runge-Kutta method. Using a semi-
interactive method, the displacement xj, will be computed over the time

interval [0,5/f], for several values of the ratio of spring constant
and mass of liquad particle, k/mj;, starting with 102 and ending with

109. Using the above data for x;, the maximum displacement of xlp.,,

w1ll be computed for each value of k/m;. The maximum displacement
Ximax 1S defined as the largest displacement of mass m; in the taime

interval [0,5/f).

Implementation of Runge-Kutta's Method Using Mathcad

Let xj(t) denote the displacement of the liquid particle of mass m; from
1ts equlibrium position at time t.

Let x5(t) denote the displacement of the solid particle of mass m» [rom
its equlibrium position at time t.

Let v (t) denote the velocity of mass mj at time t.

Let vy (t) denote the velocity of mass m, at time t.

Let 1 denote the length of the spring connecting masses m; and m,.
Let k denote the force constant of the spring.

Let A denote the amplitude of the displacement of mass m,.

Let ¢ denote the phase angle of the displacement of mass m,.
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STATEMENT OF PROBLEM

Given that %y = xp(t) = Acos{wt+d), determine xj; = Xj(t) numerically
over the closed time interval [ti,tg].

»1 = x1(t) satisfies the following non-linear second-order differential
equation.
2
42 1 k (J(A cos(t+ @) - xI(1)) + ?-1 (A c::os(u)t+¢:)—xl(t))'J
—- x -
2 ml

dt J(A cos(w-t + 0) —xl(t))2 +12

To determine x1 = x1(t) numerically, a Runge-Kutta method of stepsize At
will be used.

Euter numerical value for the amplitude A of the displacement
of mass my.

A=

Enter numerical value for the phase angle ¢of the displacement
of mass m,.

©
5
iR

Enter numerical value for the driving frequency f of mass my.
f-9

The corresponding angluar frequency @ of mass mp is given by.

w=2nf
Enter 1initial value for the time t. ti =0
5
Enter terminal value for the time t. t(‘=?
Enter time aincrement dt. dt = 0.00]
, tf-
The number of time increments N 1s given by. N = floor " N =555

Enter 1nitial values for the displacement and velocity of mass mj.

...Initial velocity of mass mj.

o\ ---Initial displacement of mass mj.
0)

<0>
Initial values... u 0> . (
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The deravative vector F(t,u} 1s given by.

lll

Fu = ¢ lj(A»cos((nt«» ) u0>2 P ll(

Acos(wt+ Q) u“\

!

f(/\ cos(t+ Q) - “0)2 t l2

ml

The four functions K;,Kjp,K3, and K4 implement the Runge-Kutta method.
Ki(t,u,F,dt) :F(t,u)
dt dt
K2(l,u,F,dt)=I-‘(t + —‘;,u+5 KI(t,u‘F,dl))

d dt
K3(t,u,F,d) :I"(l + —;,u + —5 K2(l.u,l~",dl))

K4(t,u,F,dtysF(t+ dt,u + dt K3(tu, I, di)

The function RK computes the weighted average of the above four
functions.

dt
RK(t,u,F.dn) ( (KI¢t,u,F,dt) » 2 K2(t,u,F,d « 2 K3, u, FLody) - Kactu b deyy
)

For each » = 1,...,N compute the displacement, x;, and velocity, vy, of
mass mj at each time t, using the recurrence relation given below.

’ =t1+ (i~ 1)dt

u<i> R P <g - 1>

=u 1 RK(l'_ 1»u ,F,dl)
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From the above recurrence relation, u(o,1) and Uy, g) correspond to

#1 = %j(ty) and vy = vy{t,;) respectively.

The displacement of mass m; at each t = t; is given by.
Xl, = Y ;
Compute the displacement of mass mp at each t = t,.
X2, = A-cas(u) ¢ Q)
To 1nitiate the numerical computation of x;(t;), enter appropriate

numerical values 7or the mass mj, the length of the spring 1 and the

force constant, k, of the sprang.

Fnter numerical value for mass my. ml=1
Enter numerical value for the length 1 of the spring. I=1
Enter numerical value for the force constant k of the spring. kzl()4

Plot the displacements of masses m) and m; versus the time t.

{ | | | |
0 01 02 03 04 0s 06

-6

— displacement of mass m1 versus time
displacement of mass m2 versus time
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Numerical Computation Of xXjmay

The above mentioned semi-interactive method i1s described kelow.

Mathcad's max function will be used to compute Xjmax fo. each value of

k in the interval [102,10°]. For k/m; = 10% Mathcad’'s WRITEPRN
function will store the fairst pair (logl(k/mjy),Xjpax) 10 the data file

X1IMAX.PRN. Disabling the function WRITEPRN, Mathcad's function
APPENDPRN w1l]l then append succeeding pairs (log{(k/mj), X pax) to the

data fileX1MAX.PRN for each value of k/m;.

L T
logt E )
\1

\
WRITEPRN(XTMAX) ul/ | o
!

max(zl),

(-3

\
1
APPENDPRN(X IMAX) \ Eomt/

man(xt);
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