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Abstract

Inverse Gaussian Distribution and Analysis

of Factorial Experiments.

Nagalakshmi Tarikere

This thesis deals with the analysis of nested factorial experiments under Inverse
Gaussian Distribution. A reciprocal linear model for the factor effects is motivated
from the context of the underlying Weiner process. Maximum likelihood estimates
from the likelihood equations are derived and important properties such as strong
consistency and limiting normality are stated.

A least squares approach and a weighted least squares approach using the recipro-
cals of the sample cell means are studied and compared with the maximum likelihood
method.

Likelihood ratio tests and analysis of reciprocals analogous to the usual normal
analysis of variance have been carried out.

Application of these procedures is illustrated with the help of two numerical ex-

amples.
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Chapter 1

Inverse Gaussian Distribution

1.1 Introduction

This thesis provides a short review of some basic properties of the inverse Gaussian
(IG) distribution and formulates the analysis of factorial experiments using inverse
Gaussian distribution as the model. As a specific case, we consider the nested classi-
fication using the 1G model.

Chapter 1 outlines the development of the inverse Gaussian distribution as a
probability model and describes the important properties of this distribution. Also
a few applications are considered. Many references are provided in the Bibliography
which deal exhaustively with this distribution.

Chapter 2 provides a bricf description of a linear model and the various methods
of estimnation of the parameters in such a model.

Chapter 3 describes the work done with regard to regression and factorial experi-

ments using the IG distribution as a model by various researchers. And, in particular



the papers by Tweedie [43], Shuster and Miura [41], and Fries and Bhattacharyya [5]
are discussed.

Chapter 4 follows the paper by Fries and Bhattacharyya [5] for nested classifi-
cation. They have considered the crossed classification. lere as a specific case, the
nested classification is used, but their paper has been followed to a large extent.

Chapter 5 deals with two numerical examples to illustrate the method of estima-

tion and test of hypotheses discussed in Chapter 4.

1.2 Background of the Inverse Gaussian Distri-

bution

The earliest knowii reference to inverse Gaussian distribution ~as made by Schrodinger
[39]. He gave the probability distribution function of the first passage time in Brown-
ian motion. No one else is known to have referred to it until the paper by Tweedic [13].
Tweedie proposed the name inverse Gaussian distribution to the first passage time
distribution, since he found an inverse relationship between the cumulant generating
function of this distribution and that of the normal distribution. The distribution
was next given by Wald [44] who derived it as a limiting form for the distribution of
the sample size in a sequential probability ratio test. Because of this derivation, the
distribution is also called Wald’s distribution, particularly in the Russian literature.
The other names for this distribution are Gaussian first passage lime distribu-
tion [34] and the r.rst passage time distribution for Brownian motion with positive
drift [47). However from the viewpoint of statistics it might more appropriately be
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called Tweedie ’s distribution. It had remained virtually unnoticed until Tweedie
[43] investigated its characteristics, established some important statistical properties
and depicted certain analogies between its statistical analysis and that of the normal
distribution.

A characterization of the inverse Gaussian distribution by Khatri [30] paralleled
the usual characterisation of the normal distribution by the independence of the sam-
ple mean and variance further reflecting the analogy. Wasan and his associates [46, 45]
investigated some analytical and characteristic properties of this class of distributions
particularly for the limiting forms. More recently Chhikara [17] and Chhikara and
Folks {12, 13, 14, 15, 16] have developed further its statistical theory illuminating
the analogy that Tweedic set in his paper [43] and have provided statistical methods
based upon the inverse Gaussian particularly in the ficld of reliability. Useful appli-
cations of the inverse Gaussian distributions have been demonstrated in the works
of Bannerjee and Bhattacharya [3], Lancaster [31], Hasofer [27], Shepperd [40] and
Whitmore [19, 52, 53). Ahmad, Chaubey and Sinha [1} have analysed the important
problem of combining different estimators in the context of IG populations. Reference
can here be made to the recent book by Chhikara and Folks [10] for various properties

and applications of the inverse Gaussian distribution.

1.3 The PDF of the IG and its Properties:

The probability density function (pdf) of a random variable X distributed as inverse

Gaussian with parameters p and A, denoted by X ~ IG(u, A) in Tweedie’s notation



is given by

f(@,A) = (M 2r2®) 2exp(— Mz — 1)?)/(212r) &> 0. (1.1)

The inverse Gaussian is a two parameter family of distributions. The probability
density function can be represented in several different forms, cach of which would be
convenient or suggestive for some purpose. Another important form can be obtained
by supposing W (t) as a Weiner process in one dimension with positive drift v and
W(0) = 0. Then T, the time required for W(t) the Weiner process to reach the value

a, an arbitrary real value, in unit time, is a random variable with density function
f(t) =a/oV2nt3 exp{~(a — v1)?/(20%*t)} t>0, v>0. (1.2)

This is a reparametrization of the density function given in (1.1) obtained by
letting ¢ = a/v and A = a?/0? where a is specified. vt and o/+/1 are in the distance
scale and g and A are in the time scale. The inverse relationship between g and v
can be viewed in the simple context of speed which can be mcasured in miles/hour
or hours/mile.

There are various other reparametrizations of the density function, but we will
denote the /G(u, A) as follows through out the thesis: A random variable X is dis-

tributed as inverse Gaussian, i.e. X ~ IG(u,A) if Y has the pdf given by
flz;pA) = (A 2rn2®) 2exp(—Az — p)?)/(2u%z) = > 0. (1.3)

The mean and variance of this distribution are g and p3/A respectively.

The density function which can be seen to be a member of the exponential family




is unimodal and positively skewed, with its mode given as

3
Tmode = p{(1+ 2-35)1/2 - QE (1.4)

where ¢ = A/ p.

The cumulant generating function (cgf) can be easily found. The logarithm of the
Laplace transform E(e*?) of the probability density of the variate is in a sense, the
cumulant generating function. We denote the relevant function operator by L with

the variate symbol as a subscript and the other variables in parenthesis. Thus from

the density function 1.1 we get
Lx(tp, X)) = ln[e’\(m)l/2 -[)oo e=(ett/NAa=M22g 0 1) 19523} 1/2] (1.5)
= M2a)V2 = X2Y%(a + t/A)/? + ln/ooo filz;a+ /A, N)dz (1.6)
where fy(z;a + t/A,)) is the IG density function with with & 4 t/A and A as its

parameters. If ¢ is imaginary, or if real or complex, if its real part exceeds —aA, the

integral in the above expression is unity. Hence

L(t;p,2) = M(20)"/? = 2/%(a +1/0)"?} (1.7)
= Ap{l — (1 +2u%/2)Y?} (1.8)
= ¢{1- (1 +2pt/9)"/?} (1.9)
= {1 - (1 +2xt/¢*)/?} (1.10)

The cgf (1.11) is unique to the density fun~tion 1.1. The cumulants can be ob-

tained from the power series expansion of L, (t; ¢, A). The first two cumulants are

ky

p=Ag"1 = AN p= ! (1.11)
ky = p?A=1=22¢"? (1.12)
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The characteristic {function is

Cx(t) = eap{glt - (1 - 2y (1.13)

All the positive and negative moments exist. The moments can be found from either
the characteristic function or directly by integration.

The mean and variance are given by

E(X) = (i

Var(X) = p®/A. (1.15)

Thus p and A are only partially interpretable as location and scale parameters.
There is a remarkably simple relationship between positive and negative moments

given by
E[XT+]

Il'21+l

E[X™) = (1.16)

It is possible to express the distribution function of X , F(x) in terms of the

standard Normal distribution &
F(z) = ®((A /)2 (=1 + z/p)) + 20N [z) V(1 + 2 /pn)) (1.17)

This result was obtained independently by Zigangirov [57] and Shuster [42]. Be-
cause of the many analogies between the Normal and the inverse Gaussian, it is
natural to tabulate some “standard” inverse Gaussian distribution. H Z = AX/p?
then Z ~ IG(¢,¢?%) where ¢ = A/u. Moreover E(Z) = ¢ and var[Z] = ¢. This
transformation gives a single parameter family of distribution and Wasan and Roy

[45] have tabulated the percentage points of Z for various values of ¢.



The inverse Gaussian distribution shares with the gamma, and log normal and
other skewed distributions, asymptotic convergence to normality. As A/u — oo, the
distribution of X is asymtotically normal with mean g and variance p®/) as shown
by Wald [44].

The inverse Gaussian distribution has striking similarities with and provocative
departures from a normal distribution. By the help of the characteristic function, it
can be shown that if X ~ IG(g, A) , then ¢X ~ IG(cp,c)) for ¢ > 0. However unlike
in the normal case, a linear combination of inverse Gaussian variates would not be
inverse Gaussian. But they have a certain additive property. Tweedie showed that if
X;, i =1,2,...n arc independent inverseGaussian variables with parameters y; and
X, such that A, /u? = € for all 4, then ¥ X, ~ IG(3 pi, €(X pi)?). The constancy of
i/t was shown also to be a necessary condition for the sum to be IG. (see Chhikara
[11) and Shuster and Miura [41]). Thus in order for the linear combination 3° ¢; X; of
independent inverse Gaussian variables where X; ~ IG(ui,A,) @ = 1,2,....,,n) to be
inverse Gaussian, A;/c;it? must be a constant fori = 1,2, ... n.

For a random sample X, Xs....., X, where X; ~ IG(, A) Schrodinger [39] showed
that the maximum likelihood estimates of y and X are given by & = X and A =
n/ SR (1/X; — 1/X) where X = Y1, X; /n.

Tweedic proved that X ~ IG(p,n)) and that A" (1/X; — 1/X) ~ x2_, distri-
bution. However the chief and most important result he proved was that the maximum
likelihood estimators of x4 and A have stochastically independent distributions and are

of a nature that permits the construction of the analogue of the analysis of variance

for nested classification.



Independence of X and ) is fairly easily established by finding the conditional
moment generating function of A%, (1/X, — 1/X) given X = #. It is that of a \?
variable with (n — 1) degrees of frecdom for all z. Therefore independence follows.

The statistics X and 3%, (1/X; —1/X) jointly form a complete suflicient statistic
for (u, A).

The uniformly minimum variance unbiased estimators (UMVUE) of p and \™!

are

i = X and (1.18)

A= f:(_l_/_\_‘ﬂ (1.19)

= n-1

The UMVUE of the variance p3/) has also recently been obtained which is of a
very complicated form.

Thus summarising the properties if X ~ IG(u,A) where p = E(X) and p*/A =
var(X), and X;,X;...X,, are iid ~ X then X and U where X = ¥, X,/n and
U=3%m"~,(1/X; —1/X), are jointly minimal sufficient for g and X and complete, and
are also independent. Moreover, X ~ IG(p,A) and AU ~ x2_,. These resulls are
analogous to those for a normal distribution. However, unlike in the normal case, in
general an arbitrary linear combination ¥ ¢, X, does not follow an 1G distribution,
and while ¢ and A admit UMVUE’s which are easily found, the UMVUE of the
variance p3/) is complicated. This is a point of departure from the normal model.
For some other similarities and departures from the normal case, the reader may sce

Ahmad etal [1] Letac, Seshadri and Whitmore [32], Pandey and Malik [38], Bravo

and MacGibbon [9], Pal and Sinha [37], and Hsich, Korwar and Rukhin [28).




Tweedie [43] also considered the distribution of the reciprocal of the IG variable,
i.c., the distribution of 1/X and studied several interesting properties of the variate.

The pdf of ¥ =1/ X is [43]
J(y) = (M27y) Peap{—Ay/2+ M p = M2pPy} 0 <y<oo.  (1.20)
The mode of Y is [43]

Ymode = 1/20[=14 (1 4 44%)/?3] (1.21)

= 1/u{(1 +1/4¢%)"* - 1/2¢}. (1.22)

The expressions for the mean and variance of 1/X are [43]

E(1/X) = 1l/u+1/A\ (1.23)

var(1/X) = 1/Au+2/X2. (1.24)

1.4 Applications

Although the inverse Gaussian distribution was long known in the literature of
stochastic processes, its potential in statistical applications is increasingly recog-
nised in recent years, especially in the area of engineering reliability. In choosing
a stochastic model, one looks for such features as a sound theoretical basis, flexibility
of empirical fit, and amenability to statistical inferences and model diagnostics. In
addition to having a variety of shapes of the pdf and several convenient sampling
distributions, the inverse Gaussian distribution derives from a stochastic formulation

that is sufficiently general to allow wide applicability.



The physical aspect of Brownian motion which gives rise to inverse Gaussian as
the first passage time distribution suggests its potential applications in modeling
such phenemena as survival period, service duration and usage times. Morcover, a
wide variety of shapes generated by the pdf makes it a prospective competitor to the
Gamma, Weibull and Log-Normal models.

Inverse Gaussian distribution may be considered appropriate in any situation in-
volving skewed positive data. It has the advantage over some other skewed distribu-
tions, like Weibull, and log-normal, that exact small sample theory is tractable and
in some cases it parallels that of the normal distribution.

The inverse Gaussian distribution has found application in describing duration
and failure phenomenon in the natural and social sciences. Arcas of application have
included lengths of strikes (Lancaster [31]), hospital stays (Eaton and Whitmore [23]),
employee service times by (Whitmore [49]), equipment lives (Chhikara and Folks {15]),
noise intensity (Marcus {33]), and tracer dilution curves (Wise [56]) to name a few.

In short, whenever a Brownian motion or random walk drift towards a threshold
is a plausible mechanism, the first passage time can arise. It has been suggested
by some authors that the analytical tractability of the inverse Gaussian is sufficient
reason to use it for curve fitting, but probably is of limited scientific interest. In scveral
applications, the simple Brownian motion model is only a starting point. It describes
only the base line behavior and when the drift and the barrier have physical meaning,
they can be manipulated in the attempt to replicate more comnplicated behavior.

Since the hazard function for the inverse Gaussian increases and then decreases, it

serves as a good model for accelerated life tests. Some applications in marketing are
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treated by Bannerjee and Bhattacharya [3] and Nadas [35], and Chhikara and Folks
{14] consider applications of 1G in life testing. Padgett [36] gives confidence bounds
for the reliability function. Bhattacharya and Fries [8] argue that inverse Gaussian
is more appropriate than the Birbaum Saunders fatigue distribution and Chhikara
and Guttman [18] give sequential and Bayseian prediction limits. Thus the inverse
Gaussian is becoming a widely used tool in reliability theory.

Many physiological processes evolve according %o a diffusion process (in fact that
is how Tweedic started his investigations). For instance, Gerstein and Mandelbred
(26] modelled a neuron’s membrane potential as a single number which moves towards
or away from a threshold according to whether it receives an excitatory or inhibitory
signal, respectively. If the signals arc of roughly equal magnitude and come at high
rates, then a Brownian motion approximation is appropriate. They showed that
this model provides a good fit for the spontaneous activity of several neurons in the
auditory cortex of a cat. They could interpret the parameters: the drift is a measure
of the difference between the excitatory and inhibitory rates, and the barrier is a
firing threshold. They also showed that, by introducing a time varying drift for the
Brownian motion, they could replicate the observed behavior of one of the neurons
subjected to periodic stimuli of various frequencies.

Other more sophisticated diffusion models are described in Fienberg [24]. An-
other important physiological application is the modelling of tracer dilution curves
in cardiology (Wise [56]). A review of the various types of random walk models for
physical systems and an extensive bibliography is given in Weiss [48].

One of the earliest applications of Brownian motion is due to Bachelier [2], who

11



modelled stock prices. Since then, investigators have applied it to a wide variety
of phenemona (among others) in finance, marketing and labor. Recent examples in
which the inverse Gaussian arises are the work of Bannerjee and Bhattacharya (7], who
model interpurchase times as a renewal process with inverse Gaussian components,
and Whitmore {49], who models labor turnover with this model. Whitmore has found
that some of his data is very long-tailed, so he also uses a drift away from the barrier:
thus, if T is the hitting time, then P(T' = o0) is positive: this idea is similar to
that of terminating renewal processes and gives rise to censored observations, which
Whitmore [54] has studied in a regression context.

The maximum likelihood estimates of j and A the mean and the other parame-
ter respectively of the inverse Gaussian distribution have stockastically independent
distributions and are of a nature which permits the analysis of variance for nested
and crossed classifications. This property was first investigated by Tweedie and this

application to the analysis of variance is concentrated upon in this thesis.

1.5 IG Distribution as a Model for Failure Times

In this thesis we consider the inverse Gaussian distribution as a model for failure
times. We are interested in the inverse Gaussian distribution as a model for failure
times because of its several appealing features:

(i) : It accomodates a variety of shapes analogous to the Weibull and Lognormal
distribution.

(i1) : It has the structure of an exponential family and many convenient propertics

12



for the associated sampling distributions.

(iii) : Its derivation from a plausibie stochastic formulation of the failure process
often provides a physical support to its empirical fit.

The derivation of the inverse Gaussian distribution can be cast in the context
of failure growth or accumulation of damage in a material over a period of time.
Specifically if fatigue grows according to a Weiner process with drift % and diffusion
constant 6% and if the material fails as soon as its accumulated fatigue exceeds a

critical level w > 0, then the time for failure follows IG(8, o) distribution with

6 = w/y, and (1.25)
62
g = ; . (126)

The derivation is provided below. Some of the notations used in this derivation
are

g(£;0, ) : pdf of the inverse Gaussian distribution.

G/(t) : cdf of the inverse Gaussian distribution.

w @ critical level of failure.

B(t): accumulated fatigue in time [0, ¢].

B*(t) : supsepo.qB(s).

n: diffusion parameter of the Weiner process.

6%: diffusion constant of Weiner process

Nla, b]: standard normal distribution with mean a and variance b.

®(*) : cdf of standard Gaussian distribution.

We regard the accumulated fatigue in time [0,¢] to be governed by a Weiner

13



process [B(t) : 0 < t < oo] with drift n > 0 and a diffusion constant &2 . Thus for
any 0 < s < ¢ the distribution of B(t) — B(s) is N {3t — s, 8%t — s]}
Considering that the material fails as soon as B(t) exceeds w, the time to failure
T is a random variable. T = inf{t: B(t) > w}. Now define
B*(t) = supB(s)seqon) (1.27)

The genesis of the distribution of T is founded upon the basic event relations

{T > t}

{B*(t) < w}

(B(t)Sw) = (B*(t) <) J(B(t) Sw and B*(1) > w) (1.28)
which leads to the distribution function of 7'.
G(t) = &6~/ — w6171 4
exp(2nwé=?) t> 0.

Taking the derivative of G(t) as can be seen in Cox and Miller [19] we obtain the

density function of the inverse Gaussian distribution. Using the parameters

0 = w/y (1.29)

A= W62 (1.30)

we get

(10! —1)2

g(t;0,)) = (2w A3) Y 2exp[— A 5

] (1.31)

t>0, 0>0 A>0.

In this thesis we consider a reciprocal linear model fer the mean of the inverse

Gaussian distribution. We consider the following situation. Suppose that n similar

14



objects are subject to stress levels x4, 29, ..., Ty, until they break. Each object has
a characteristic break threshold, which we take to be the same. The different stress
levels however imply that the accumnulation of fatigue proceeds at different objects
at different levels. If the accumulation follows a Brownian motion, we may then
model the drift function of the covariate z: and when this drift is linear in z, the
time to break for the :** object follows an inverse Gaussian with mean 6, and the
reciprocal of the mean linear in the factor effects. We assume a constant o because
the breaking threshold is the same for all objects. This appropriate generalisation of
the ‘reciprocal linear model’ has several advantages. As stated earlier it arises out of
a possible physical model. The hitting time distribution acquires a wide variety of
shapes and the relevant sampling theory is in large part tractable.

The inverse Gaussian is thus a competitor to other well-known parametric fam-
ilies, such as the Gamma or the Weibull. However it does not suppliant either; for
cxample, it does not adequately fit data from the Exponential distribution, and the
theory for the inverse Gaussian with censoring is not well developed. Further more
the strong resemblance between the inverse Gaussian and the Gaussian theories be-
come somewhat weaker in the regression context. For example, in the Gaussian linear
model, maximum likelihood estimates of parameters coincide with the least squares
cstimates. However in the inverse Gaussian reciprocal model, the two are not the
same, and whercas (finite sample) sampling properties of the least squares estimates
are casier to obtain than the maximum likelihood estimates, the former are less effi-

cient for large samples.
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Chapter 2

Some Preliminaries of Estimation

in Linear Models

2.1 Introduction

One of the aims of science is to find, to describe and to predict relationships among
the events in the world in which we live. One way of accomplishing it would be by
finding a formula or equation that relates quantities in the real world. For example we
may be interested in the relationship between temperature and pressure in a chemical
process, or in the relationship between the number of apples in trees in an orchard
and the amount of fertilizers the trees receive. Or we could be interested in the
relationship of supply, demand and price of certain commodities, or in how a certain
vaccine affects a disease or in the rclationship of rainfall, temperature and humidity,
or in the yields of various varities of wheat.

To study these types of problems, we investigate different kinds of relationships



throngh formulation of models. For example it could be a linear model or a quadratic
model etc. In particular in this thesis we are interested in the linear model where we

assume a lincar relationship between different variables.

2.2 Linear Models

A general linear (statistical) model that is to be used to determine the value of a

variable y from a knowledge of another variable z is usually written in the form

y=p(z)te (2.1)

where y and ¢ are random variables, p(z) is a function of z defined in some domain D
and r is a non-random variable. The function g(z) is defined to be the deterministic
portion of the model. e is the random or stochastic portion. Also y is referred to as the
dependent or response variable and z is referred to as the independent or predictor
variable. If y represents say the blood pressure of an individual, and = represents
the age of an individual, then p(z) is the predicted value of the individual’s blood
pressure, except for a random error e from a knowledge of his age z. The random
variable ¢ is not observable, but something about the distribution of e is often stated
as part of the model. In general the “functional form” of p(z) is known, but it contains
unknown parameters. The word “linear” indicates that u(z) is a linear function of
the independent variables.. The first step in our analysis would be to estimate the

unknown parametcrs .
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2.2.1 General Linear Model

: Consider the n equations

Y = i x:,6, + €. (2.2)
j=1
E(€) =0; 1=1,2,3, ... ,n;
where
1. the Y; are observable independent variables;
2. the z;, are observable random variables from the domain D;
3. the §; are unknown parameters defined in a parameter space 5 ;
4. the ¢, are unobservable random variables such that Covl¢;,e] =0 @ # 4

These specifications define a general linear model.

In matrix notation the equation would be
Y=XB+e (2.3)

where Y = [, Y3, Y;,--+, 1,

ﬂ = [ﬂla ,BZ’ ﬂ37 v 7:3p]”

—_— !
€= [51a52a63) Tty En])
Tl Ti2 -t Typ
T21 T2 - Tp
X =
Int Tn2 *** Tpp

Y is thus (nx 1) observable random vector, X is (n X p) matrix of fixed observable
numbers, fis (px 1) vector of unknown parameters with £(¢) = 0 and Covc = (a,,) =

3, Cov denoting the Covariance matrix. In many cases further assumptions about
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the distributional properties of € or Y or further assumptions about the structure of

5~ will he stated as part of the model.

2.2.2 An Example of a General Linear Model

Suppose that the distance s that a mass-particle moves from a point of reference in
time ¢ is given by the formula

s= Py + Pat. (2.4)
In this problem ¢ is a nonrandom variable and we assume it can be observed without
crror. However, suppose that s cannot be measured accurately, but instead of observ-
ing s, one can observe values of Y, where Y = s + €. That is, the observable variable

y is equal to the true distance s plus a measurement error e. If we substitute, we get
Y=8+Pt+e El=0 varle=07" (2.5)

Suppose that this model is assumed to hold only for ¢ in the interval 0 < ¢ < 100.
This is a functional relationship model with measurement error in the dependent vari-
able. To obtain sample values, the investigator would preselect n values of time, say
Lty e .t and observe the corresponding distances y1,¥2,...,¥n. Thus the sample

model is

Yi= i+ Bati + €
Ele]=0 i=1,2,....n (2.6)
This, in vector notation, fits the equation of the general linear model (2.3) with p = 2.
Our analysis would consist of first estimating the unknown parameter 3,for which

three methods are available in general, namely
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1. the maximum likelihood method,
2. the method of least squares,
3. the method of weighted least squares.

These three methods are briefly described below.

2.3 Method of Maximum Likelihood

The method of maximum likelihood is one of the oldest and most important in esti-
mation theory. It was used by Gauss in developing the theory of Least squarces, which
subsequently overshadowed maximum likelihood method until it was reintroduced by
Fisher in 1912. This method, intimately connected with sufficiency and applicable to

almost all problems of estimation has great practical appeal.

2.3.1 The Method

Let 1,2, ....-. , 7, be observed random variables from a population with probability
distribution indexed by 6. The likelihood function L is defined, in this case where the

; come from a continuous sample space with probability density f(z;0) , by

L(0; aq, ..... yza) =[] f(zi;0) (2.7)

L(0; zy, ..... ,zn) = [[ P(z,;0) (2.8

where P(z;,0) is the probability mass function. We should note that the likelihood
function is a function of # given z;, ... ,z,. The method of maximum likelihood
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consists of finding a value of 0 which maximises the likelihood function. Assuming
that the likelihood is a positive differentiable function of # and the maximum does
not occur on the boundary of the sct of all admissible 8, we attempt to find a solution
to the likelihood equation

%% = 0 or to the equivalent , but usually simpler, equation ﬂggﬁ = (. since loga-

rithm is a monotone function. We usually ignore any solution which is independent

of the observations; i.e, any constant solutions.

2.3.2 Some Optimum Properties of the Estimates

Let f(z,?) be the probability density function of the population from which a
sample of size n, (Z1,....., Zn), is observed. We shall denote the density f(z,0) by fi
and the product by L. The following assumptions are made.

. 52 . . .
1. The derivates of Ql_ggé and a—g(‘,’-,q—li exist and are continuous for every & in a

range R, including the true value, and for almost all z. For every ¢ in R, -al—gg-l—‘ <

Fi(z) and %’—‘;—3—9 < Fy(z) where Fi(z) and Fy(x) are integrable functions over

(—o0, +00).

2.The derivative Z1%L < M(z) and E[M(z)] < K ( a positive quuntity).

3. For every 0 in R,

T Ldz = I(8) (2.9)

/+°° 9*logL
is finite and non-zero.

4. The range of integration is independent of 6.

Under these conditions the following theorems hold good.



Theorem 2.1. With probability approaching unity as n — oo, the likelihood equa-
tion -E%’-gﬁ = 0 has a solution which converges in probability to the true value 0,.
(Dugue, 1937) [22].

Theorem 2.2. Any consistent solution of the likelihood equation provides a maxi-
mum of the likelihood with.probability tending to unity as the sample size tends to
infinity. (Huzurbazar, 1948) [29].

Theorem 2.3. A consistent solution of the likelihood equation is asymptotically

normally distributed about the true value 8. (Cramer, 1946) [20].

2.4 Method of Least Squares.

The method of Least Squares goes back to Gauss, who first developed this technique
of estimation. Generally it is used for the estimation of parameters in a linear model.

Let Y3,Y3, ..., Y, be independent random variables such that E(Y;) = A + A..X,,
where X, is a known constant and A\; and A; are unknown constants. Let us consider

the quadratic function
WY, Y2, oo Yo, A he) = (Y = A = A2 X,)? (2.10)
1=1

Let Xl and ):2 be the estimates of A; and A, respectively, which minimize the
above equation. Then X; and ), are called the least squares estimates of A; and A,.

They can be obtained by solving the so called normal equations.

oW, Yy ... Y, A Ao
oM

) = -—22(}/, - /\1 - /\Q.X;) =0
i=1

or zn:)/, =n)\1 +/\224¥,.

1=1
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and

IW Yoo s T 28] 93 X, (Vo= A = 2aXo) =10
2 1=1

or VX =0T X+ 03 X2
=1

(2.11)

. By solving these equations one can obtain

Sz (¥, - V)(Xi - X)
.- 1(Xi - X)2 .

/\AQ———

A

/\1 = )_/—):QX.

Consider the general linear model we defined earlier which in matrix notation is

represented as

Y=XB+e (2.12)

So now, the parameter estimates that minimize the sum of the squared deviations
S(B) =Y — XB)(Y — XP) (2.13)

arc called the Least Squares estimates.

We have
ce = (Y-XB)(Y —XB)
= YY' -28'X'R+ /X' XB.
Using the fact that
(BXY) =Y'Xp. (2.14)
and differentiating S(3) wrt B, we have

0508 _ 0o —2x'Y +2X'X8 = 0

ap
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= X'Xg= XY

= 8= (X'X)'X'Y. (2.15)

Here we assume that X is of full rank and hence (X'X)~! exists.

It can very easily be shown that any other value of g will lcad to a larger value of
5(8) .

A few lemmas and definitions with respect to the least squares principle of esti-
mation are stated below:

1. An estimator is called a least-squares estimate if and only if it satisfies the set
of normal equations.

Definition: Any linear function 8 = b’y of the unknown parameters [y, ¥2, ..., T}
with known constant coefficients [y, by, ..., b] will be called a parametric function.
If there exists an unbiased linear estimate of 4, then 8 will be called an estimable
parametric function.

2. A parametric function § = b’y is estimable if and only if ¥ = o' X, that is if
and only if ¥’ is a linear combination of the columns of X.

3. Let U be the space spanned by the columns of X. Then, if /7 is estimable,
there exists a unique unbiased linear estimator of 8, say oY, where o™ is in U.
Furthermore, a* is the projection of @ on U, where @'Y is any other unbiased estimate
of S.

Gauss-Markoff theorem: Let E(Y) = X5 and Y_ = o2/ . Then there exists a

unique unbiased linear estimator f for every estimable function # = by, Furthermore,

B has minimum variance in the class of all unhiased estimates. It may be obtained
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from f by replacing the [y1, 72, .-, 7&] by any least squares estimators [71,%2, .-, Jk]-
In estimating 8 in the gencral linear model, our two principal assumptions, in the
method of Least squares, about the error terms e; were that

1. the errors are uncorrelated, and

2. the errors have equal variance, i.e. we assume the covariance matrix ) of € to
he o?l.

Sometimes it so happens that all the observations do not have equal variance. In
this case, the least squares method is not appropriate. We can resort to the weighted

least squares method of estimation in this situation. This method is briefly described

helow.

2.5 Method of Weighted Least Squares

. The method of weighted least squares (which involves transforming the dependent
variable by adding weights in order to stabilise the variance) is appropriate when we

have the model 2.3 with

Cov(e) = a?[f) (2.16)
where  is the matrix
wiy 0 00 0 "
0 w2 00 --- 0
N=W-1= (2.17)
0 0 00 -+ wiy ]
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We have assumed the covariance matrix as a diagonal matrix in which the diagonal
elements (variances) are not equal.
The next step is to transform this model into a model in which the variances are

equal. This can be achieved by multiplying the model

Y =X8+ec (2.18)

W2 = (2.19)

which leads to

Wy = W\2XB + ¢ (2.20)

where ex = W1/2¢. The error in the transformed model satisfics the usual assumptions

Cov(e’) = Cov(W'%)
= AWPW-IWw/?
= (1)

The least squares estimates in the transformed model can now be obtained by

minimizing the weighted sum of squares.

5(8) (Y - XBYW(Y - XB).

= YWY =28 X'WY + B(X'WX)B. (2.21)
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Differentiating wrt 8 and equating to zero, we get
(X'WX)8 = X'WY. (2.22)

The solution of the equation 2.22 is called the weighted least squares estimate of 3

denoted as [;,,,

By = (X'WX) ' X'WY. (2.23)

Since these estimates minimise the weighted sum of squares,

S(B) = (Y -XBYW(Y — XpB).

= Y (wi(Ye =Y z,B,)°

they are called the weighted least squares estimates. In this sum of squares, the
obscrvations are weighted in proportion to the reciprocal of their variances.

Further, since the weighted least squares is nothing but least squares on the trans-
formed observations, analytical properties of B., can be studied similar to those of B
If the elements of W can be estimated consistently resulting in W, the asymptotic

distribution of 3, and J; are same.
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Chapter 3

Testing Equality of Factor Effects

in the context of IG Model

3.1 Introduction

A most frequent problem that occurs in statistical work is that of testing whether
two samples differ significantly with respect to a characteristic. For example the
population mean or the population variance. We may be interested in testing if the
two population distributions are identical.

The reason this type of problem occurs so frequently is that experimentalists
often design an experiment to compare a new technique or process with a standard
one. For example an educator may believe that he has discovered a better way of
teaching foreign languages than that being used in the institution; or a chemist may
have discovered a new plastic that he believes may be superior to the one being

manufactured in his plant, etc.



llowever situations often occur in which there are several methods or products
rather than just two that are competing against each other. For example a manu-
facturer of cake mixes may vary the amount of a cake ingredient to obtain different
mixes that he would like to compare for quality, or a business firm may use differnt
calculating machines that it would like to compare with respect to performance.

It is very inefficient to compare several samples by comparing them two at a
time, especially so in the case of agricultural experiments that are concerned with
testing different types and amounts of fertilizers and different sced varieties. One
of the methods that has been designed to solve problems of this type for continuous
variables is known as analysis of variancc. As the name indicates the method consists
of decomposing the variability of the sample data into various components since it
gives a measure of the effective variability.

The analysis of variance is essentiaily a method of separating the total variance
of a response variable into its various components, corresponding to the sources of
variations which can be identified. The data must clearly contain information on
any given source of variation before its contribution can be estimated, and as a rule
the components are best estimated from the experiments which have been designed
for this purpose. The procedure to be used in the application of the analysis will
depend on the number and the nature of the independent causes of variation which
can be identified. It is possible to classify the data with respect to each such source
of variation, and a complete classification is a necessary first step in the analysis.

There are two basic types of classifications:

1. Crossed classification, and
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2. Nested or Hierarchal classification.

We will discuss these in more detail in the next chapter.

3.2 Fixed and Random Effects Model:

It is important to distiguish the kind of model we have chosen before we start analysing
it. There are three kinds of models in the previous context:

1. model 1, the fixed effect or the systematic component model;

2. model 2, the random effects or the random-component model, and

3. the mixed effects model.

We will consider an example to explain the three different cases. Le . be the
mean tensile strength of items produced on a large group of machines. Consider the

model

Yoj = My + €5 (3.1)

where y,, is the measurment of the tensile strength of the j** item produced by the
it* machine,

m; is the mean tensile strength produced by the i** machinc and

e,; is the deviation (error) due to the j** item within the i** machinc.

If the group is relatively large, we may choose a random sample of say s machines
out of the total and measure the tensile strength y;, of n items from cach chosen
machine. In this case we may write m; = m +; where |, and ¢,, are random variables
with variances o7 and o? respectively. The variance of is a measure of the effect of

variability among the machines in a group of machines on the tensile strength of items
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produced on the machine, and 02 measures the variability within machines, i.e to say
the cffect on the tensile strength of items from an individual machine resulting from
individual-machine variation.

The total variance of the observations y,; equals V(y,;) = o7 + o2. Consequently,
we have decomposed the variance into two components. The quantities affecting y,;
arc the overall mean m, [, and ¢,,. Here m is a constant, while /, and e;;, because of
the method of sampling, are random variables. This is an example of model 2 or the
random components model.

Consider the situation where there are a limited number s of machines which are of
interest. We may measure the tensile strengths of n items produced on each machine
of interest. Again the measurement of the j** item on machine 7 is denoted by y;,
and can be expressed as

Yy = m + li -+ €. (3.2)

In this case our interest is in making inferences about the machines in particular.
(In the previous case, we were interested in the characteristics of the population of
machines, as reflected by the sample of s machines). Here I}, 15,3, ...I, are not random
variables, but systematic components, each peculiar to a given machine. The e;; are
however random variables. This is an example of systematic- component model or
the fixed effects model, also knowm as Model 1.

Similarly in the case of two factor experiments, when one of the two factors consists
of random components and the other one consists of fixed or systematic components,

it is called a mixed model.
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3.3 Review of analysis of Factorial Experiments

The literature on the analysis of variance in factorial experiments under the Gaussian
model (normal distribution) is extensive. But literature on such analyses under the
inverse Gaussian model is limited, though there have been recent developments. A

brief review of the work done in this field will be outlined in this chapter.

3.3.1 Tweedie’s Work

The earliest work can be dated back to Tweedie [43] who developed a onc way analysis
of variance for different means g; and constant o. He gave an analoguc of the analysis
of variance for nested classification. Suppose that we have random samples from
each of k classes denoted by Y;,,7 = 1,2, ... ;& and j = 1,2, ... ;n,. Denoting
sample averages by dots in the proper positions, we can obtain the following algcbraic

identity:

1 u N
LU -y) =L -yt - ) (3.3)

-<

Thus the total sum of residuals of reciprocals is partitioned into two components,
a between class component and a within class component. Tweedic proved that if
all the observations are from the same inverse Gaussian distribution, the three terms
in the above equation are distributed as 1/ times x? variables with ¥ n, — 1,k —
1, and " n, — k degrees of freedom respectively. le also proved that the two terms
on the right are independent. This gives an F' iest for testing the hypothesis of
equal means.We simply divide the between mean reciprocal sum by the within mean

reciprocal sum.
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3.3.2 Work of Shuster and Miura

In 1972 Shuster and Miura [41] succeeded in giving tests for the two-way analy-
sis of variance with equal cell sizes. Tests for main effects are obtained by apply-
ing the F-test for nested classifications to the totals obtained by summing over
rows (or columns). A test for interaction was also devised. They considered the
one-way modified analysis of reciprocals and also the randomised two-way lay out.
Under the one-way modified analysis of variance they consider the following setup.
Let Yiy,Yia,....,Yin (6 = 1,2,...,k) be k independently drawn random samples from
{G ~ (p,, A) respectively. They consider the test of H, : gy = pa... = pi against
the alternative that H, is false, at the significance level p. The proposed rejection

criterion, which coincides with that of Tweedie [43] is: reject H, if

( f:l()_/i.-l - }_/—l))

T= =
Zf:l z;‘=1(Y;J_l - }/l 1)

> C, (3.4)

where ¥, is the it* sample mean, Y. is the grand mean and

C,= zn&:,—l,),;p(k-l,(n—l)kn)-

Under 1, the nk observations Y;, all have the same inverse Gaussian distribution.

In the case of the randomised two way layout, they consider a model wherein
tLe incan of the G distribution is linear in the factor effects. They consider Y;jx ~
[G(p, + B, + ay;, A) to be independent random variables, (i = 1, ..., [;j = 1,....., K)
with min(/,J,K)> 1l and ey + ..., +aiy=an + ..., oy =0

This is the model that they assume and then test for the main effects and also for
the interactions. Futher details can be obtained in their paper [41]. They illustrate the
test with the help of a numerical example. However Fries and Bhattacharya [5] suggest
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that their assumption that the mean is linear in the factor effects is inappropriate
and that the tests they propose have the serious drawback that they involve arbitrary
pairings of the observations from one cell to another.

Several regression models for the inverse Gaussian distribution have been studied
by Davies [21], Whitmore and Yalovsky [55], Bhattacharya and Frics [4] and Whit-
more [51]. The work of Davies concerns a single covariate r and is mainly confined
to a zero intercept model § = Bz with o or 0z? constant. The model 0 = 3, + ¢ is
also considered but only some adhoc unbiased estimators are constructed. Whitmore
and Yalovsky [55] use the formulation § = exp(z'f), o' = ¢ exp(r'f) where &
denotes a column p-vector of covariates. However because they make a log-normal
approximation by assuming that c is large, their procedure does not really provide a
treatment of the inverse Gaussian regression problem. Whitmore [50, 51] considered
the reciprocal linear structure of the mean for an 1G multiple regression, and obtained
solutions of the corresponding likelihood cquations. In the setting of a simple regres-
sion, Bhattacharyya and Fries [4] investigated the conditions on the design points

under which strong consistency and limiting normality of the estimators hold.

3.4 Work of Bhattacharya and Fries

Bhattacharya and Fries [6] considered the following regression problem. Suppose
that at each design point z, € RP,i = 1,2, ... k, there are independent observations

Y, : 4 = 1,2...,n;] and suppose that Y;, is an IG(p,, o) variate with 1/, = z!f8 or
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p~' = Xf. Assume also that & > p+ 1. With the following notations

n=Zn‘. K:nFIZK‘J, }_’:n_lzZY;J (3.5)
1 7 t 7

R=n7'3"3 ¥, v=Y3(V'-vih), =0 n. (3.6)
T g i 7 i

C =diag(ny,....,ng), D =diag(Ys, ... i), X'= (z1,.....z). (3.7)

The likelihood is proportional to
o~ 2exp(~Q(B)/20) .
where Q(8) = X, 0z, ¥ [Vi,ziB ~ 1)2

The cquations defining the maximum likelihood estimates are then
Sf=X'CL
né = Q(f) (38)

which is similar to the Gaussian theory normal equations. When X has full rank,
then S is non-singular and the above equation has unique roots ( which provide a

maximum of the likelihood) giving
f=nS"'i6=R- §'z. (3.9)

These roots, need not be the maximum likelihood estimates since [;'m,- may be
negative. However, unless n is very small, this is not a serious problem, because of
the asymptotic results, sketched below.

Let 7 — oo so that n;/n — h; > 0. Define diagonal matrices M and H with
my, = g, and by, = h,, fori =1,2, ...,k And let A = X’HM X, then they show that

the estimates 3 and ¢ are strongly consistent. Bhattacharya and Fries also show that

V(B = B) = n,(0,6A7)/n(é/o — 1) = ny(0,2). (3.10)

35



T WA

and that f and & are asymptotically independent.

Thus, appropriate testing procedures and confidence sets for parameters of this
regression model are available for large n.

When there is a replicated design and the model includes a constant term, so that
ni 2 2 for all i, X = (1,X,) and 8 = (B,, ), an analysis of reciprocals is again

developed by Bhattacharya and Fries {6] who use the identity
Y -V = (@ - Y+ (VT = 2p) + (0 - VT, (3.11)

Summing over ¢ and j we get the following equation which decomposes the sum
of deviations from the grand mean into three components;

Qreg, due to the regression of 3, (given 3,),

@, due to lack of fit of the model,

and @Q., due to the error.

A,Z = Y7") = Qreg + Q1 + Q.. (3.12)

where

Qrcg - n(i’é" )‘f—l)
k
Q= Zn:(?f’ - (zp
ZZ — ¥ (3.13)

-1 =1
The hypothesis of interest are
(i) Oy : p; unrestricted,

(ii) @y : ! = z!B, reciprocal linear model, and
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(iii) @3 : u' = f3,, lack of regression.
Bhattacharya and Fries [6] show that the likelihood test for ©; rejects for large
values of

B Qc/(n — k)

and that Fy has an approximate I distribution with (X — p) and (n — k) degrees of
freedom. And for testing ©,, they justify a clever modification of the likelihood ratio

test to get the the test statistic

a Qreg/(p — 1)
Freg = ——Qc/(n y (3.15)

which has an approximate F' distribution with (p — 1) and (n — k) degrees of free-
dom. Finally they provide inverse Gaussian regression diagnostics for checking model
assumptions. By studying the one- sample case, they suggest the construction of
a half-normal plot of the estimated standardised inverse Gaussian residuals. If the

model is appropriate, then this plot will be approximately linear with slope one.

3.4.1 Factorial Experiments

Fries and Bhattacharya [5] have considered in detail the analysis of two factor exper-
iments. They have considered the two way crossed classification whereas this thesis
follows their paper for nested classification.

In their article, they develop inference procedures for balanced two factor exper-
iment with the inverse Gaussian model. Their assumptions entail a linear model for
the reciprocal mean 0~ 'and a constant o for all levels of the factor.

They consider I levels of row factor A and J levels of the column factor B. At
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each cell (¢, j), n items are tested and failure times y, 0, k = 1,2, ....., n are recorded.
The observations are assumed to be independent with y,x ~ {G(0,,,0).

L

They consider the following lincar model for the reciprocal mean
(0,)"' =p+a +8, (3.16)

i ai = 0; :;l=l B, =0

where p is the general or the mean effect, a; represents the the effect of the i*h
level of the row factor A, 3, represents the effect of the j* level of the colummn factor
(B).

They find both the maximum likelihood and the least squares estimates of 0,, and

They differentiate the loglikelihood of the density function of the /(7 distribution

J n
I= '—(1/2)1‘]"’1”(0) - (20)_1 ZZ Z(yuk)—l[yigk(/‘ + o, + ﬂu) - 112 (3-17)

1=1 =1 k=1
with respect to g, ,, 8, and ¢ and solve the equations in matrix notations to ob-
tain the maximum likeiithood estimates of ® and o where @ is defined as @ =
{n, 1,0z, ....a1-1, 51, B2y ... Br-1}.

They show that, for every (7, j) there exists an (I +.J — 1) veclor x5 consisting of
-1’s, 0’s and 1’s such that

p+a,+6; =%z, (1 <i<I)and (1l <j<J).

They define matrices X and M as

X' = (z11,Z12y -y T1J)

M=X'DX
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of order fJ x (I +J—=1) and (I +J - 1) x (I + J — 1) respectively where

D = diag(,iiu,gn, """ 7g1J)

They give the maximum likelihood estimate of @ as
&= M5 (3.18)

where 6 = 1J(1,0,.....0) = [Ju.
And that of ¢ as

& = (1Jn)"'[R - né'M~16). (3.19)

where R=3,%, 3% 3/.;;1;

They find that the estimators & and & are strongly consistent and their limiting
distributions are asymptotically normal.

They also consider the following hypotheses;

2 : 0],s unrestricted (general model),

Q:0;' =p+a,+pj. Yo=Y =0(additive model ),

Q:0;' = p+ai, La, =0 (no B effects),

Qu:0' = p+8,, ©B =0 (no A effects),

Q, : 0" =y ( no factor effects ).

The maximum likelihood estimates of ¢ , &, under the model Q,,s = 0,1,2,3,4

respectively are found as

IJney = R—nZZgg‘
IJnés = R-n)Y_Y 05! =R~ IJnj

IJnéy = R-nJd y
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I1Jn6é, = R—nl}:g;‘
IJnéy = R-nlJyg' (3.20)

With the following quantities called sums of reciprocals, they test the diflerent

hypotheses:

Ry = 1Jn(61~63)=nY. S(0;" —43").
Rp = I[Jn(é2-63)=nY_ > (07" —y:").
Rap = [Jn(63—64)=nY_ S (55" - 07h).
Rg = IJnéy=R-nd > 5" (3.21)
They show that the hypothesis Q3 or the test for additivity ( or no interaction)

rejects for large values of

oo - Ras/I=DU = 1)
AB = T Re/(n 1)

(3.22)
where F4p has approximate F' distribution with [(1 — 1)(J — 1), 1J(n = 1)] degrees
of freedom.

Similarly, with some additional clever adjustments, they have devised I tests for
testing the null hypotheses 2, (no B effects) and 2 (no A cffects).

They also give the analysis of reciprocals, (ANOR) table very siimilar to the anal-
ysis of variance table (ANOVA). They also develop confidence intervals for the con-
trasts.

They discuss the least squares approach based on the initial reduction of the data

by sufficiency. So given the model

0 ' =p+a +5 (3.23)
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where it a,, f, have the same meaning as before and assuming yi;x ~ IG(0;;,0),

the moment results given by Tweedie [43] states that

E(5;') = p+ i + Bi + (o/n)

Var(g;!) = (g + ai + Bij)o/n + 2(a/n)>. (3.24)

Let ;' = r,;. Then we have

E(ry;) =07 + o/n. (3.25)
Lelting
pr=p+o/n (3.26)
the expected value of i is
E(ry) =" + ai + B, (3.27)

Now we may consider the linear model

R=XV"+e (3.28)
where R = (ry1,712, ... 714)', X is the matrix of appropriate constants,
U = (u*,a", B, e = (e, €12,-... €17), the error vector such that E(e) = 0.

The standard results for the two-way layout provide the simple linear (in recipro-

cals) unbiased estimators for i*, ay, 8, as

pur = r
o; = T —T
B, = T;—T



Furthermore the parameters o and p are estimated as

a_ — R-Zzgu
IJn—1)"
i = 7. -§&/n.

Bhattacharyya and Fries [5] show that the least squares estimates are in general
not efficient, but that they are consistent. By using the consistent estimators of the
variances given in equation 3.24, as the weights, one can get cflicient estimates using
the weighted least squares method of estimation. It is casy to see that if we consider
weights by estimating 3.24 upto the order 1/n, the weighted least squares estimates
coincides with that of maximum likelihood estimates.

In the next chapter, analogous results are obtained for the case of nested classifi-

cation.
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Chapter 4

Nested Classification und¢r IG

Model

4.1 Introduction

In this chapter we develop the analysis of nested factor experiments under the inverse
Gaussian model. From equation 1.1 substituting 4 = 6 and o = 1/ we get the pdf

of the 1G distribution as

((y/0)—1)2] (4.1)

exp — | %07

1
Jlyi0,0) = ————
Vo) = Jarer

fory>0: 0>0;, o>0.

The derivation of the IG distribution can be cast in the context of fatigue growth
or accumulation of fatigue or damage over a period of time according to a Weiner
process as shown in Chapter 1.

In this chapter. we develop inference procedures for a nested two factor experiment



with the IG model. We assume that the critical level w and the diffusion paramecter
8% of the underlying Weiner processes are constants, while the drift 5 (the drift y
measures the mean fatigue growth per unit time) is linear in its factor effects. So the
two important assumptions here are

(i) w, the critical level after which point the object fails and 62, the diffusion
parameter are both constants,

(i1) drift 5 is linear in factor effects.

But

0 = w/n. and (1.2)

c = [§/w]’ (1.3)

These lead us to a linear model for the reciprocal mean 6! and a constant ¢ for
all levels of the factor. The constancy of o parallels the homoscedasticity assumption

in the normal theory analysis of variance.

4.2 Nested Classification

In certain multifactor experiments the levels of one factor (for e.g., say factor B )
are similar but not identical for different levels of another factor (c.g., A ). Such
an arrangement is called a nested or hierarchial design, with the levels of factor 3
nested under the levels of factor A. For example, consider a company that purchases
its raw material from three different suppliers. The company wishes to determine if

the purity of the raw material is the same from each supplier. There are four batches
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of raw material available from each supplier, and three determinations of purity are
to be taken from each batch.

This is a two-stage nested or hierarchial design, with batches nested within sup-
pliers. One may think as to why the two factors suppliers and batches are not crossed.
If the factors are crossed, then batch 1 would always refer to the same batch, batch 2
would always refer to the same batch and so on. This is clearly not the case, as the
batches from each supplier are unique for that particular supplier. That is batch 1
from supplier 1 has no connection with batch 1 from any other supplier, batch 2 from
supplier 1 has no connection with batch 2 from any other supplier, etc. To emphasize
the fact that batches from each supplier are different batches, we may remember the
batches as 1,2,3 and 4 from supplier 1, then 5,6,7 8 from supplier 2, and finally 9,10,11
and 12 from supplier 3.

Sometimes we may be uncertain as to whether a factor is crossed or nested. If the
levels of the factor can be renumbered arbitrarily as stated, then the factor is nested.
In nested classification, the subordinate classification is nested within the higher level
of classification where as in crossed classification, the two sources of variation are of

cqual rank.

4.3 The Model

We now consider a two factor nested life test with J levels of the secondary or the
column factor B nested within I levels of the primary or row factor A.

We consider the fixed effects or the systematic components model.
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At each factor setting or cell (Z, ), n items are tested and their failure times y, 1,
k =1,2.....n are recorded.

These observations are assumed to be independent with y;jx distributed as inverse
Gaussian with mean 0;; and the other parameter being o, ie yi;x ~ 1G(0;,, ).

We have assumed that the drift 7 is linear in the nested factor effects. But since
the mean life time is inversely proportional to the drift, we now assume a linear model
for the reciprocal of the mean i.e. the reparametrisation of the nested factor effects

suggests the model

(0,)7"' = p+ai+ B, (4.4)

i=12,..0,j=1,2..J,T_,0i=0, and¥_, B,=0

where u is the general or the mean effect, a; represents the the cffect of the i'h
level of the primary factor A, and f;; represents the effect of the j** level of the
secondary factor (B) nested in the i** level of the primary factor (A).

The assumptions of " a, = 0, ¥ fBi; = 0 assures that there are 1J unknowns.
For the IG distribution we must have (8;;)~! > 0 for all (¢,5) and o > 0

Thus the parameters are

By & = (ay,az,....a1), B = (Bi1, P12, oo Bray P21y P22y coevennnnn. B1s) and o. And
they lie in the set Q = {u,o/, 8,0} with ¥, s =0 %L, 3’=,ﬂ.~, = 0; and

p+o+Bi; >0  Vij, o>0;
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4.3.1 An Illustration

If we assume 2 levels for the primary factor A and 3 levels for the secondary factor

B, we would have the following model with I = 2; J = 3;
(0,)7' = p+ai + By (4.5)

i=1,2 and j=123.

We would have the following system of equations:

07 = ptoa+ Pu
07 = p+ar+ fi
0n = ptar+Bis
05 = p+oz+ Pa
02 = ptozt fBn

077 = p+az+ B

But since we have 3%, o, = 0;a2 = —a; and

?:, B,=0= bia=—(Pu1 + B1z) and Poz = —(fn + P2).

So the new set of equations is:

0 = p+ar+Pn
0 = p+ar+pbe
0 = w+ o~ (B + bu)
0 = p—ai+Pn

g — ay + Bz

)
~Ny
~ o
Il
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2-31 = pt—a;—(Ba+ P2)

and the parameters to be estimated are {u, 1. 311, B12. B2, 22}, We will discuss

this example in more detail in the next section.

4.3.2 Basic Notations

We now introduce some basic notations for the totals and the means:

1. y,, is the total of the obscrvations y,, in the (¢, ) cell summed over k from

1ton,ie
Yy = Zyuk (1.6)
k=1
_ k=1 Yisk .
g, = ————Z",‘l o (1.7)

the mean ot the (z,)* cell.

2. y.. is the total of the observations y,, summed over ;.

J
Y. = Zyua (48)
=1
J .
U, = _Z_iﬂ (1.9)
nJ

3. y..is the grand total of all the observations summed over 1, j, k

1 J

y. = zzylﬂ (410)
i=1)=1

= _ &xz}’nyu

= 4.11
g. 17 (4.11)
4. y,, is the total of the observations y,, suinmed over 2 from 1 to /.
1
Y, = Zyu, (4.12)
i=1
- zlzl le .
= === 413

48



5. D is a matrix with its diagonal elements as the mean of the observations y,;x

summed over k. D = diag(y11, 12, ----§14)-

0 G200 -+ 0
D= ” (4.14)

Lo 0 00 - g

6.1 represents the grand sum of the reciprocals of the observations y,;; summed
over i, andk

ic R = Z!:x }l=1 k=1 yt;llc

The unit vector (1,0 0 0....0 0 0) will be denoted by u' and its dimensionality
would be indicated and clear from the context. The symbols Ny(,X) denotes a p
variate normal distribution with mean g and covariance matrix I, and x? denotes a
chi squared distribution with v degrees of freedom.

Some important properties of the inverse Gaussian distribution proved in Chapter
1 will be used here, some of which are:

(i) y,, and Ezzl(y,‘],{. - _17,’;1) are independent

(it) 9., ~ 1G(0,,,0/n) and

(i) That(yk — ¥5") ~ oy

Morcover

E(y,™) = 05! +0o/n. (4.15)

Var(y,™") = 0Gla/n+2(a/n)2. (4.16)



4.4 Maximum Likelihood Estimation

We have y;,x ~ IG{Y,,,0). From cquation 4.1 the loglikelihood function is given by

1 J n
b= In{ILIT TLICme) P2y ="
= J =
exp[—(20y,6) " (yii0;;' — 13}

I J n
= (=1/2)Jnn2r — (1/2)1Jno — (3/2)Y 3" In yu

1=1 =1 k=1
J n
~(20)7" ZZ () " yw(0,) 7 — 1) (4.17)
1=1 = k=1
Substituting for 8;;' as p+a,+f,, and ignoring the first and the third terms which

do not involve any parameters, the loglikelihood apart from an additive constant is

J n

1
I=—(1/2)1Jnln (o) = (20)7" YN (wow) Myl + au + 8,) — 12 (4.18)

1=1 =1 k=1

We now obtain a set of linear equations by finding the partial derivatives of this
loglikelihood function with respect to s, a,, f,, and ¢ and equating them to zero.

Differentiating the above equation with respect to g we obtain

v+ Y Gy + .5 Buy., = [Jn. (4.19)
1 t 7

Differentiating wrt a, gives

Y+ Gy + Y By, = Ju. (4.20)
27

Differentiating wrt 3, gives

yﬂ)ﬁ + dtyu + ﬁ:]?/i] =n. (421)

And finally differentiating wrt o gives
rJ

= 1‘]")_1 ZZ zn:(yuk)ul[yuk(/i + a, + ﬂ:]) - ]]2 (4.22)

1=1)=1 k=1
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We can observe here that these equations are linear in the parameters just like
the likelihood equations under the usual normal model (analysis of variance setting).
However there is a remarkable difference in the positions of the random and constant
cocffients. Their positions are reversed here. The right sides of these equations are
constantis where as in the normal case they are random variables. And the coefficients
in the left sides are random variables whereas in the normal case they are constants.

Using the constraints 3, a; = ¥; f;, = 0 we can reduce the problem to a system
ol IJ equations in IJ unknowns.

We now try to use a matrix representation of these equations and use it to prove
that the root is unique and that it maximises the likelihood.

We delete the last component of a, i.e. a; and I components from § using the
conditions ¥, o = ¥, Bi, = 0 and hence the parameters to be estimated are

{nyan,00, a1, i1, Brzy oee Bru-1, Bary Bazy - Bauety-ee Bri-1}-

Let @ = {p, ar, a2y .ccap1, a1y Pray oo Prica, Bary Bazy oo Pry-tyene Bri-a}

and ¥ = (®', o)

Now for every (7, j) we can identify the JJ vector x;; consisting of -1 0 and 1 such
that

pta,+p, =0z, (1<i<Nand (1 <5< J)

For example in the previous section we considered an illustration where we as-

sumed [ =2 and J = 3. Our equations were

0y = p+aon+pbn. (4.23)

0 = n+on+ b (4.24)
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073 pt+ oy = (B + b))
0' = n—a;+ 8.

0;; = p—ay+ B

0 = p+ar— (B + Ba).

So

® = (p, a, P, B2, B2y, P22)
0-1'=X¢

where

1 -1 0 0 0 1

\ 1 -1 0 0 -1 -1 )
O~ = (651,05, 055, 031, 032, 035 )’

® = (i1, a1, Pi1, Brz, B, P22)'

In this case xjj or 293 =[1 -1 00 -1 -1] since

02_31 = ¢'x23 =

52
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H

o
P
P2
P

P22
L J
We now define the (/J x IJ) and (IJ x IJ) matrices X and M as

[1-100-1-1] =03 =p—o01 — (B + B22).

X'=(an 12 T13y... T1J);

M = X'DX where D = diag(§11, 12, ----J1J)-

yin 0 0 0 --- O

0 4200 --- 0
D= (4.30)

0 0 00 - g
We define X1 =1J(1 0 0 0 ..0 0)=IJu=34.

For example in the previous case

111 1 1 1]]1 6
11 1 =1 =1 =1]]1 0
10-1 0 0 o0}]1 0
X' = - (4.31)
01 -1 0 0 0f]1 0
600 0 1 0 -1[]1 0
00 0 0 1 -1]]1 0

=6[1 00 0 0 0'=1IJ]1 0 0 0 0 0]=/Ju which we defineas é
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To see that the matrix Al is positive definite, we can observe that the diagonal
matrix D is positive definite, since the y; s are positive. Also the standard results
for the two way layout entail that rank(X’) = rank (X’X) = IJ. So the only vector
w satisfying (Xw) = 0 is the null vector. Consequently, for an arbitrary w # 0, we
have w'Mw = (Xw)' D'(Xw) > 0. Hence M is positive definite.

We now try to change the form of the loglikelihood cquation into the aforemen-
tioned notation.

We have the loglikelihood function derived previously as

I J n
—(1/2)(I1Jn) In (o lzz (yi,6)~ I/,JA(/[-}-(Y,-{-/)’,, —1J* (1.32)
t=1)=1 k=1
Now substituting for
t+a, +p, =o'r, (4.33)
we have
1 J n '
{ = —(1/2)(IJn)In (o) - IZZ (Yk) " Hyupu(®'y,) = 1) (4.31)
1=1y=1k=1
I J n
= —(1/2)[Jnin (o) = (20)"" YD Y (yu)”
1=1)=1k=1
[y‘jk(d)'z,,)z’ ¢ +1-2y,,'z,). (1.35)
I J n
= —~(1/2)IJnin (o ’ZZ Z[J.Jk ('), ,9+ '/.J;, 20'r,,11.36)
1=13=1 k=1
But we have denoted o7, Y7, or_, Yk = R so we have
Il = —(1/2)lJnln(c) - (20) ‘[(D'ZZT,J Y
1=1 =1 k=1
Yk ® + R—2n¢'ZZr.,]. (4.37)

1=1 )=1

I J
= —(1/2)1Jnin(o) — (20)7'[®' D)z, d,zi, + R - 2n9'6).  (4.3)

1=1)=1
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Since iy jz,, =1J=1J[1 0 0..0 0 0]=/7Ju in vector notation.
So
| = —(1/2)IJnin (0) - (20)7'[|R~2nd'6 + nd’' M Q).
= —(1/2)[Jnln (o) — (20) 'R - 2n®'§ + n®' X' DX D).

= —(1/2)1Jn In (o) - (20)7'[R - 2n®'§ + nd'M ®). (4.39)

The unknown parameters to be estimated here are ® and o. So differentiating the

above equation wrt ® we obtain

aa—; = g-[a ~ M®). (4.40)

And differentiating wrt o we obtain

al _ IJn 2 ) /
oy = 5y T 1/20°[R ~ 205 + nd®' M) (4.41)

Since M is positive definite, the likelihood equations corresponding to the above
equations have unique solution, i.e.
¥ = (¢ 5)

From (4.40) equating it to 0 we obtain

i
o

216 — M9
n
§—M® = 0=6=M®

or & = M§ (4.42)

From (4.11) we obtain

—%+1/202[R—2n¢’6+n®'M¢] =0
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1/0[R - 2n®'6 + n@'M®] = IJ.

& = 1Jn"'[R - 2nd'6 + nd'M ] (1.13)
Substituting for & = M ~1§, we have

& = IJn"'[R—2n9'6+ nd'MM"6)
= IJn"'[R - 2nd'8 + nd'6)
= IJn"'[R—nd'6] Since &' = &M
= IJn"'[R—né' M6 (4.11)

So the Maximum likelihood estimators in vector notations for ® and & are

d = M6

6 = IJn7'[R—né'M16)

Taking the second partial derivatives of | with respect to ¢ and o we have

U a/0d [91)0%)
G
= J/00[n/a(8' - ®'M)]
= (nfo)M. (1.45)
Similarly
a9l IJn

_ _ v 2 _ 1 1A,
5y = d/ 00| 5 T 1/20%[R ~ 2n®'6 + nd’'M ¢
= 8/00[R— n&'M~"§]

= 1/2[Jo~?) (4.46)

9l _ 92 __
And 556 =0, 55m5; =0
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Therelore
821 92
il 200%' 0009 (4.47)
v ow! oy o
8¢'dc0 J2¢0
oM 0
b= —n (4 .48)

0 1/2{1J57?

This matrix is positive definite since M is positive definite and & > 0 and hence
¥ indeed maximises the likelihood.

To claim that W is the maximum likelihood estimator, we need to show that it
obtains within the restricted parameter space (1 ie 0:;1 = <i>’a:,~1 > 0 for all 7, 5. This
result holds for the special case I = J = 2, which has been proved for by Fries
[25]. But it has not been proved generally. However the theorem proved by Fries
and Bhattacharya [5] given below shows that ¥ serves the primary goal of maximum
likelihood estimation, which is to provide an efficient likelihood estimator.

Theorem 1. The estimators ® and & are strongly consistent. and the limiting
distributions of n'/2(¢ — &) and n'/%(& — o) are Ny;(0,0T—,) and N(0,20%(1J)7")

respectively where
I'= ‘\’/O.X’, 0= diag(ou, 012, ceeny 0[.]) (449)

Morcover, @ and & are asymptotically independent.

For proof sce Fries and Bhattacharyya [5].
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4.5 Test of Hypotheses

In the precceding section, we have estimated the parameters using the maximum
likelihood method of estimation. We now use these estimates and other results to
develop likelihood ratio tests and tests of hypotheses. lnstead of resorting entively to
the asymptotic results for the likelihood ratio statistics some variants of these tests
will be constructed by intermixing the asymptotic and exact sampling distribution
properties of the component statistics.

We now consider the following rclevant models for testing the hypotheses.

1. @, : 0;, ’s unrestricted. (general model)

Under this general model we have the estimate of 0,, = y,,. This can also he
shown from the equations we obtained by differentiating the loglikelihood function.

Consider the equation we obtained by differentiating | wrt g,
Yuubt + auyyy + Buy, = n. (4.50)

From this equation we obtain

.'/tJ[/A‘ +a + ﬂu} = n,

eyl = n
s | _
0, = u (151)

We would like an estimate of & for the various models. From the previous section

we have

J n
& = (IIn) Y33 (y) we(05') — 1)

1=1 =1 k=1
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N

[Jne =

i
M~
M-
NE

-
1t
—

[
L}
—
o

I
M~
M=
M=

.-
I
-

-
]
—-
»

I
™M~
M-

-
1}

—-
[
i

—

I . -1
Substituting for 0,,

we get

lJnod, =

ii

.,

il

Eod
>

—

s

-

(yaok) 2 (057) + 1 — 20 yise]

lyi(05%) + yik — 263;']

I J n I J n
k(052 + 200 2wk — 232 > 03]
1=13=1 k=1 i=1j=1k=1
1 J
ny;jk(o,-“]z) +R-2n Z Z 0;;‘]
i=1j=1
é._Jl = y_-’fl

Z ‘2 ny,~' + R — 2n Z Zy‘u"‘

1=1 j= i=13=1

—nZZy'u“-

1=1 =1

2. Consider the nested model Q; : 05! = p + i + Bi;

Z{:] a' = 0;

_‘]Izl IBIJ = 0

(4.52)

(4.53)

. -1
Here in this case we have obtained the maximum likelihood estimate of 8,, as

¢'r,,. So we have

[Jnao,

lJno°2

3. Consider the hypothesis

Q:07' =p+a,

- SR Y-

I J

ny, > 63}

1=1)=1k=1 i=1 j=1

= R—nZZ&)':c,J

= R—nlJj

(4.54)

Here again s is the general mean, a, the effect on 07 due to the ith level of

the primary factor and the secondary factor is absent. This is equivalent to one-way
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classification. The loglikelihood equation in this case is

I J n
(1/2)1.]71 ln( ‘ZZ’; ytﬂ. [yuk ;)l) ]
I J n
—(1/2)Inin (o) = (20) 7 DD (wisk) Hyur(p + i) — 1)?
t=1j=1k=1

Equating to zero the first partial derivatives wrt g and a, of this equation respec-

tively, we obtain

I
iy +Y ey = ln.

=1

ﬂyi. +oy; = Jn (4.55)
From (4.55) we obtain

vilt +ail = Jn

pta = Jnfy=Jnyt =5t (4.56)

ol e St N .
Substituting for §;; in the equation

Linds = R—nY. 320,
i
I1Jnos = R-—nZZy‘,,‘l

- _ng (1.57)

4, Consider the following hypothesis {34 where we consider the model

Q“:o:jl:/—t"*'ﬂi]
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Here again p is the general effect or the general mean, 8,; is the effect due to the
i level of the sccondary factor nested in the i** level of the primary factor. The

loglikelihood equation in this case is

I J =n
L= =(1/2)(1Jn) In (o) = (20)7" 3230 3 (yur) " {yee(051) = 17 (4.58)

i=1)=1k=1

1 J n
-(1/2)(1Jn) In (o) — IZZZ(U'J* k(e + Biy) -1)? (4.59)

1=1 =1 k=1

Equating to zero the first partial derivatives wrt p and 3, we obtain the following

cquations

ﬁyl] + 5:;.7/:; =n (460)

.+ 323 By = 1Jn (4.61)
i

From (4.60) we obtain

i+ ,BA.,y.J = n
[ +/3Au = ny;—Jl = y_u_l
or
0;' = p+ B,y = vi;! (4.62)

We should here note that the estimate of é;l under this model is the same as
that under the model ;. Thus the parameters of the models 2, and Q4 cannot be
distinguished. In practice it is thus of importance to test €y first. If 3 is accepted,
we can use one way approach for testing the main factor effects; otherwise analysis

of individual cell means is of interest.
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Thus we will consider testing Q; and Q3 only. Let 4 denote the MLE of o and
[maz(f2s), the maximised loglikelihood under the model §2, where s = 1,2,3.

In general it has been proved that for large n, —2log\ has a \? distribution. Here
A is the likelihood ratio statistic for testing a null hy pothesis Q, nested within a model
Q..

Let 1,,.-(€2,) represent the likelihood function under the hypothesis Q,, and let

[maz(€) represent the likelihood function in the unrestricted case €),.

We have
l‘ J n '
lmaz(f2s) = _(]/9) IJn)n(d,) — 203)_1 ZZ Z(.’/uk)—llyuk(/‘ +a, +43,) - ”2
1=1=1 k=1
(1.63)
Substituting for g,
I J n
({1Jdn) ’ZZZ Yur)~ Nyou(t + 6, 4 [iu -1} (1.61)
1=13=1k=1
we obtain
l-— [ [ 0: -1 ¢
Inas(Qs) = —(1/2)Jnin(é,) — -1/2(1Jn)2'l~‘ =1 i () 0 ) ],
=1 Z 1 2kt (Yuk) yor(0, ) = 1]
Imaz(s) = —(1/2)Jnlogd, — (1/2)1Jn.
= —I1Jn/2(logd, + 1). {1.65)

Thus the maximised loglikelihood under each model €1, has the value
—(1/2)1Jn(logd, + 1).

So we have

—2109)\ = “Q(Imar(ﬂs)"["mz(nt))
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—2 —[(1/2)1Jn[logd, + 1) — (1/2) In(logé, + 1)]

2 x 1/2[IJn(logds + 1 - logdy — 1]

= IJnlogZ. (4.66)
gy

As calculated before we have the cxpressions for d, for s = 1,2,3, under the
relevant model hypotheses 2 22, (13, as

1 J

1Jnd, = R-n)_ Y "

i=1)=1

1 J
liné, = R-n3.320," = R—IJnj.

1=1 j=1

1
1Jnés = R-nd Y g

=1

where 0:1 and y are the efficient likelihood estimaiors developed in the previous sec-
tion. When n is large one can perform the likelihood ratio test using the asymptotic
distribution of the test statistic —2logA. The rejection region of a level a test would
be set as —2logh > \2 where x2 is the upper a point of x? with degrees of freedom
equating the number of parametric constants imposed on Q,. The results of the lem-
mas along with some exact sampling distributions stated at the end of the chapter
establish the limiting \? distribution of the LR statistic.

Now instead of resorting entirely to the asymptotic distribution of the test statistic,
we can consider an alternate representation of the statistic. This would lead us
to an analogue of the usual normal theory analysis of variance table. Also some
modifications would provide a better approximation of the nominal significance level

for moderate sample sizes.



Consider a new test statistic which we define as

Ty =1Jn

Is o (1.67)

gy

We now represent 2log\ = A, in terms of Ty

Ty = lJn[ 22 - 1].
oy

Taking log on both sides

lOgT_,,

Tt
lJnlog[[Jn]
Lnlog|-124]

Nrim

I Jnlog|

T.!t
1
J +1]

IJn
Ast

(4.68)
Iog[Jn[({—" - 1]
a0y
Ts
Iinlog((IJn/1dn)[= — 1))
of
IJnlog[gr;i - 1])
oy
Js
lJnlog[o_Tl-]
Iinlog|l + T4/ 1Jn]. (1.69)

We can observe that A is a strictly increasing function of 7y, Consequently the

LR statistic can be equivalently based on the test statistic Ty, with large value in the
rejection region. We will try to examine the individual test statistic by introducing

some basic quantities which will be referred to as sum of reciprocals.

To construct an analogue of the usual analysis of variance like in the normal case,

reciprocals.

we now introduce certain basic quantitics that will henceforth be referred as sum of

In order to test the effect of the j** level of factor 3 or B nested within the 1t jevel

of the primary factor A We consider the null hypothesis /1, that f3,, is not significant
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against the alternative H 4 that it is. To this end we define Rp(a)

Rpay = IJnés— Lind,
= R-nJ35 - R+n220:,"
;
= nZZo:J“ —JZ !
= nZZ(a",," 7.7 (4.70)

Rg = 1Jnd,

R-n)Y 47" (4.71)

Rp(a) = "ZZ 6, -5
Rg = "nz:zyjj_l

So we have
|

FFrom the form of l,,4.(,) it is clear that ¢, > d; for s < t. So the statistics given
above are all non-negative.

We devise an approximate F test for the problem of testing the effect due to the
nested factor 4, i.c. the effect of the secondary factor j nested within the ith level
of the primary factor a,. Consider the test statistic T3; based on the likelihood ratio

statistic 132. We define

Fon = (Reay/1J = 1)
W= (Re/1J(n - 1))

(4.72)

We have the following results on the null distribution of Fp(4.
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(a) Rg/o has x? distribution with IJ(n — 1) degrees of freedom ie is \ T -1y

(b) Re and R(B(A)) are independent,

(c) Rp(a)/o is asymptotically distributed as \%_,.

The first property follows from the basic sampling property of the 1G distribution
stated in Chapter 1. However we need an additional adjustment to attain the exact

independence of the components, stated in (b). Referring to Ty2 we define

(Rpon/1J—1) _ _n—1
(Re/1J(n—=1))  n(ld -1

FB(,\) = '1:52((}2/&1) (17-‘)

The lemma proved by Fries and Bhattacharyya [5] stated below shows that the
adjustment factor 6;/4, rapidly approaches | in the sense that 7 (6,/6y — 1) — 0 in
probability for any r < 1. Thus the use of this adjustment factor assures that I'yy,
has properties (a)-(c).

Lemma 1. Under the nested model Q,, the asymptotic distribution of /Jn(éy —
4)/o is x{IJ — I). For proof sce Fries and Bhattacharyya (5]

As stated earlier, the effect of the primary factor or factor A cannot be separated
out in our model. This is because the models g + o, + A, and u + f3,, cannot be
identified to be distinct. Hence we test for the effect due to the secondary factor 4,
and if it is found insignificant, then test for the primary factor effect a, through the
one way analysis of variance.

The following table presents the sums of reciprocals components associated with
the various factor effects and the approximate F' tests discussed earlier. The mean
sum of reciprocals MR is defined as a sum of reciprocals divided by the corresponding

degrees of freedom. The ANOR table has a striking resemnblance with the normal
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theory ANOVA table with the sum of reciprocals playing the role of sums of squares.

ANOR TABLE

source sums of reciprcls | degrees of {dm MR appr F ratio
Factor Bin A RB(A) 1J-1 MRB(A) MRB(A)/JWRE
residual Re IJ(n-1) MRg

4.6 Least Squares Estimation.

In the maximum likelihood method of estimation, we were not able to investigate
the biases and the exact variances of the estimators since it involves the inverse of a

random matrix. So here we try to develop the least squares approach. Our model is
0, =pu+ai+h; (4.74)

where g ,a,, f,, have the same interpretations as before.
0,, is the mecan of the observations y,,x and we assume that y,,x ~ IG(8,;,0)

The moment results stated in the beginning of the chapter give

E(y,) = p+ a;i + Bi; + (a/n).

Var(si,) = (i + 0 + By)o/n + 2(a/n)2. (4.75)
Let y! =7y, then we have
E(ry)=6;' +o/n. (4.76)
Letting

pr=p+o/n (4.77)
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we have
E(ru) = /“ +a, + .dt_)-
The following linear model results:

R=XV"+e¢

where R = (ry1,7112, .. 714)

X is the matrix of appropriate constants, ¥* = (p*, o/, g')/,

e = (en,e12,.... e1y) istheerror vector, u* = p+o/n, o = (), ay,....

ﬂl = (/3117 ﬂl’z» ﬂ[c’—l)'

Given the model

Ty, =#‘+a| +ﬁ|] +C!]

the sum of squares of the errors: e;, =r, — pu* — a, — 3, i.c.
ZZ 612] = ZZ(TU - /L. -y — /Ht_y)z
1 t g
Differentiating with respect to p* we have
- 22 Z(r” —pn"—a,-p,)=0.
t
Differentiating with respect to a; we have
- QZ(T,J -y —-a,-p,)=0.
3

Differentiating with respect to 8, we have

=2(ry—p - - B,;) = 0.
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where E(e,;) = 0, we find the least squares estimators of pu*, o, 3,,.

(4.78)

(1.79)

aj_y) and

(1.80)

. First we form

(1.81)

(1.82)

(4.83)

(4.84)



From (4.82) we have

W +JS e+ Y8, =r.. (4.85)

But since in our model we have assumed

doai=)_ ) B, =0, (4.86)

we have

W= r [lJ=rF. (4.87)
From (4.83) we have

Juw'+Jag = 1y,
Q = T‘,‘/J—[l-,

= f, —T. (4.88)
From (1.84) we have

l" +a, + ﬁ:] = Ty,

,B:] = Ty—o, — I‘.,
Bl] = Ty— r.—r.+71T.,
= (rl] - Ft.)- (489)

So we have the least squares estimates of p*, a,, Bij respectively as

>
Il
=3
-
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& is obtained from the previous section as M Ry i.c.

Zl ZJ Zk yn_]i —n Z: Z) !Iu-l
IJn-1) |

(1.90)

o=

So we obtain

p=r. —(c/n). (1.91)

Theorem 2. The asympototic distributions of n!/2(® — &) and n*/%(& — o) under

least squares estimation are Ny (0,0l-1) and Ny(0,20%(1J)7") respectively where
Lh=ve'lv, V=XX)'X. (4.92)

Also & and & are asymptotically independent.

The lcast squares estimates cannot be used for testing the effect of the various
factors and this is where the simplicity of the least squares ends. This approach is
based on initial reduction of the data by sufficiency. It provides unbiased estimators
as well as exact expressions for their variances and covariances. The weighted least
squares with estimated weights offers a convenicent and useful modification. (see see

4.7)

4.6.1 Estimation of Variances and Covariances

Since the r},s arcindependent of each other and o, the exact variances and covariances

of these estimators are readily calculated.
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1. Variance of /.

Var(i)

But we know that Var(r,;)

Var(r, — a/n),
Var(r.) + Var(o/n),

szj i 2 A
Var ] + (1/n*)Vars,

] 1 .
ENE Vard Y rij+ §Vara,
)

(4.93)

= (¢ + a; + Bi;)o/n + 2(a/n)?, Therefore we can write

Var(i) = 1 Z Z[(u +a, + B;,)(0/n) + 2(a/n)?] + 1/n*(0*/1J (n - 1)),

12J?

12J2

1o

= [(IJg + JO+0)o/n+ 21J(a/n)?] + 1/n*(a?/1J(n — 1)).

= +2/1J(a/n)? + 1/n?(a?/1J(n — 1)),

IJn

+ ya+2a

IJn  n?lJ

[o 202

(n=-14+1)/n-1,

IJn + n2lJ(n-1)’

= o(lJn) N u+20/n - 1]. (4.94)

2. Variance of q,

Var(a;) =

Var(

—2Cov(

Thus Var(p) = o/ IJIn[p + 20/n - 1].

Var(r; —r.),

. LT i, Ty

),

Zi z:j Ty
1J

(J iJ

_2_:]7':1 ) = Var(

Z] T'ij Zi z:] Ty )
J 1J '
20

2IJ+ /J2[Z u+a.+ﬂ,1)(a/n

)

+
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2uc 20,0 lo?
IJn  IJn  1Jn?®
woe 20 po a0

= Tttt e

2

+2(o/n)’]

202 2uo 20,0 o?

+Jn2 T IJn Idn 1Jn?
_ Mo oo 20 po
T Jn  Jn  Jn? LJn’

20,0  d0?

T 1Jn 1Jn?
o

= Z - ~ Na, + (I - . 1.95
e (I =y + (1 Ya, + (I = 1o/n] (1.90)

3. Variance of ¢

Zt Z] zk y.;llc —-n Et Z_; yl.l—l

Var(o) = Var| 1= 1)

] (4.96)

Multiply and divide by o.

o ZxZ]Zkyx_]ll:_nZ|szlJ—l
IJ(n-1)o

Var(¢) = Var

02 I d
= Z%(n wVar(‘\) where X ~ \'?J("_,)

We know that Var(X) =2/J(n-1). Hence

. o’
Var(a) = m?[J(H—]),

207
= —. 1.9
[J(n-1) (1.97)

Thus the variance of ¢ is 20%/1J(n — 1).

4. Covariance between i and &

Cov(ft,6) = Cov(r.—é/n)(6)

= —1/nVar(s)
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Since r,, and o are independent. From the property proved above we know that

2
Var(6) = ————”(n i

Substituting we have

Cov(j1,6) = —1/n] (4.98)

1J(n - 1)]
Thus we have

Cov(i,6) [lJu(n-l)]

5. Covariance between i and a;

Cov(ji,a,) = Cov|(r,—a/n)(r. —7.)]

= —=Var(r.) + Cov[(F.)(F.)],

= [12J2 IJu)a/n+ 5(o/n) 2|+ Cov[d Y rii/ 14, Zr,,/J],
_ no 20? 202

T Idn 1Jn? Tin?’

- a9

1w’

= ao(lJn). (4.99)

Thus the covariance between i and @, is a;o(/Jn)™!
6. Covariance between a, and ay
Cov(dn dx’) = COU[(T-,’_ - f:'_), (7‘::_ - 7‘—)]

Cov|(F..)(Fw.)] + Var(r.) — Cov|(7.)(F.)]

—Cov[(7ir.)(7.)]

The first term vanishes since it is zero. Hence

o 20° o
IJn * IJn2 [IJn

Cov(d,, d)

73



a,0 202 po  ago  20°

" IJn “IJn IJn IJn lJn

c
- . 42
IJn[u+a.+a. + 20 /n)

Thus covariance between &, and d, is 15z [p + o, + av + 20/n].

7. Variance of BA,j

Var(f,) = Var(r, -+.),

= Varry, + Var(f.) -2 {Cavrgjzzr.,/”] )
i g
po | 207

Iin =~ n?lJ

= ( +al+ﬂt])a/n+202/n + 7

—l[( + ai + B )a/n+g—2]
ikt eit Py i b

= [(IJ—- D+ (1] = 2o+ (1J =28, — (14 = 1)

Thus variance of ,BA,-, is =5 [(1J =D+ (1 =2)a, + (1J -2

4.7 'Weighted Least Squares

are not constants, especially if a, and f;, arc significant, since

Var(y,)) = (1 + & + By,)o/n + 2(a/n)".

(-1.100)

2”](4.101)
n

—(1J = 1)),

We have the model (4.79) where the elements of R are independent, but the variances

(4.102)

Hence we can apply the weighted least squares method of estimation in this situ-

ation. Here we assume the weights w;;' as

wj! = é,’;l + 26 /n.
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where (),J and ¢ are the estimated values from either the maximum likelihood or

the least squares method of estimation.

Thus applying the weighted least squares method dicussed carlier in section(2.5)

of chapter(2) to the equation

R=XV+ec. (4.104)

with the weights (4.103) we obtain the weighted least squares estimate of W as
¥, = (X'WX)'X'WR. (4.105)

We can observe here that if we use weights only upto the order 1/n ie.
w,, =0,
we get the same estimate of W as that in the case of maximum likelihood estima-

tion. This will be illustrated in the numerical examples solved in the next chapter.



Chapter 5

Numerical Examples

5.1 Example 1

As an example of nested classification, we consider a study of three different sprays
used on trees. Each of the three sprays was applied to four trees. After one week the
concentration of nitrogen was measured in cach of six leaves picked in a random way
from each tree. llcre the experimental units are the four trees; we consider them to
have been chosen at random from a large (0c0) population of trees. The leaves thus
form four subsamples, each consisting of six leaves from a large (oc) population of
leaves on the particular tree. The following table gives the dawa . Each measurement

of nitrogen concentration is denoted by y,«



TREE 1 | TREE 2 | TREE 3 | TREE 4
4.50 5.78 13.32 11.59
15.32 14.53 10.89 15.12
7.18 6.70 5.94 4.00
SPRAY ! 7.04 7.69 15.05 8.96
14.97 14.51 10.27 13.79
7.98 8.28 3.78 5.46
4.98 12.68 12.67 10.95
14.81 12.61 12.21 15.32
5.51 6.99 7.59 5.40
SPRAY 2 5.43 5.89 12.42 a.87
14.26 16.13 12.77 11.95
7.48 6.40 7.21 6.85
6.54 4.07 10.03 10.48
15.58 13.65 10.45 12.56
7.55 4.96 6.12 7.74
SPRAY 3 7.20 4.08 13.50 12.79
16.01 14.78 11.44 15.31
5.64 7.03 7.13 6.81

The cell means g, are given in the following table:




tree 1 tree 2 tree 3 tree
sprayl | 5.956672 | 6.698328 | 12.831701 | 10.773310
spray 2 | 15.208433 | 14.368437 | 11.338383 | 14.008350
spray 3 | 6.889995 | 6.726668 | 6.628355 | 6.05667Y

where 2 is the number of the treatment and runs from 1 to L or 1 to 3 here.
J is the number of the experimental unit within the ith treatment and runs from
l1toJor1 to4 in this case.

th coll, which

k is the sample number of the unit (leaf number) within the (¢, J)
runs from 1 to n or 1 to 6 in this case.
We assume that y,;x ~ 1G(0,,,0) and with the reciprocal lincar model for the

mean as

0._11 =ﬂ+0’:+ﬁu- (.1)

where: = 1,2,3 and 57 = 1,2,3,4 ic I=3 and J=4 In the next section we estimate the

parameters 0;; and & perform the analysis using the three methods of estimation.

5.1.1 Estimates of the Paranieters

The computer program developed to estimate the parameters attached to the ap-
pendix was used for the purpose. The algorithm is simple and involves multiplication
of matrices and finding their inverses. The estimates of p, a, 8 using maximnum like-
lihood estimation was found to be

£ =0.116053

a; = 0.005928, &, = —0.042319
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A = 0.015898, B15 = 0.027310, 13 = —0.044049

Ay = ~0.007980, B2, = —0.004136, 353 = 0.014463

By = —0.007306, B3 = —0.003782, Ba3 = —0.001576

The estimates of 0,’;' was found to be

07! = 0.167879, 05} = 0.14929107) = 0.0779320;;} = 0.092822

03! = 0.065753,05 = 0.069597, 03 = 0.0881960;; = 0.071386

63! = 0.145138,05 = 0.148662, 03 = 0.150867, 05, = 0.165107.
The estimate of 6 is found to be (6.004979

Least squares method of estimation gives us the following estimates for fi, &, 8
fi = 0.116053

&, = 0.005928, 4, = —0.012319, 45 == 0.036391

By = 0.045898, Bz = 0.027310, 813 = —0.044049, B;, = —0.029159.
Bar = —0.007980, Ba3 = —0.004136, B2z = 0.014463, B4 = —0.002347,
By = —0.007306, B3; = —0.003782, B33 = —0.001576, B34 = 0.012664.
The estimates of 0,"]’ was found to be

07! =0.167049, 07} = 0.148461, 0 = 0.077102,0;! = 0.091992

05,' = 0.064924, 0, =" 0.068768, 651 = 0.087367, 65} = 0.070556.
031 = 0.144308, 03} = 0.147832, 05 = 0.150038, 05} = 0.164277.

In the weighted least squares we use weights

(i) wi) = 0,, =g,

(2) wij=' =0;' 4+ 2a/n

In the first casec we get exactly the same estimates as in the case of maximum

likelihood. In the second case, they differ slightly. The estimates of p, a, 8 using
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weighted least squares method of estimation was found to be
i = 0.116052
&1 = 0.005929, &, = —0.042320
By = 0.045898, A1z = 0.027310, iz = —0.014019
By = —0.007980, fpp = —0.004136, 3p3 = 0.011463
Bay = ~0.007306, B3 = —0.003781, 33 = —0.001576
The estimates of 0,']1 was found to be
05 =0.1679,05;) = 0.1493, 05 =0.0779, 05} = 0.0923
05! = 0.0658, 05, = 0.06956, 07 = 0.0882, 05 = 0.0714

03! = 0.1451,03) = 0.1487,05 = 0.1509, 05 = 0.1651.
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5.1.2 MLE, LSE and WLSE of the mean

MLE

LSE

WLSEI

WLSE2

5.956667

6.698335

12.831668

10.773335

15.208334

14.368334

11.338334

14.008333

6.890000

6.726666

6.628334

6.056666

5.9862575

6.7357757

12.969832

10.87051

15.402625

14.541647

11.445969

14.173139

6.9296228

6.7644353

6.6649782

6.0872794

5.596667

6.698335

12.831668

10.773335

15.208334

14.368334

11.338334

14.008333

6.890000

6.726666

6.628334

6.056666

5.9559261

6.6889632

12.83697

10.775962

15.197568

14.376078

11.337868

14.005602

6.68917988

6.7249496

6.6269052

6.60569352

It can be observed above that WLSE1 for which weights are w;, = 0;,, the esti-

mates are the same as that of the MLE's.

5.1.3 Test of Hypotheses

The analysis of reciprocals using maximum likelihood estimation is summarised in

the following table:

ANOR TABLE
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source of variation

sums of reciprels

deg of fdm

MR

-
appr I ratio

var of sprays within trees

0.309

Y

0.0313333

6.8956

residual

0.298740

60

0.004979

F=6.89 > 17,05(9‘50) = 3.01

t can be scen from the above table that since

we reject the hypothesis I, : (3, =0 « = 1,2,3 j = 1,2,3,1) that the effect of

the j** level of the secondary factor nested within the % level of primary factor 3,

is insignificant. ie. there is a significant effect on the mean nitrogen concentration in

the leaves due to the variation among the trees within the sprays.

5.2 Example 2

The next example we consider to illustrate the above method is an experiment that

was conducted to compare three varieties of wheat. In each of three villages AJ3 and

C, three plots were sown with the same variety. The following table gives the yield

per acre y,,; of wheat in appropriate units.
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VILLAGE 1 | VILLAGE 2 | VILLAGE 3

16 41 35

WHEAT 1 19 11 31
23 17 27
37 49 45
18 35 66

WHEAT 2 18 35 61
20 43 75
32 65 34
43 67 66

WHEAT 3 32 58 58
18 74 67

The cell means g,, is given in the following table
1 2 3

1130.75 | 23.5| 28.5

212325 41 | 61.5

3131.25] 66 | 56.25

We assume that y,x ~ IG(0;;,0) and analyse the data for nested factors. The
three different varieties of wheat form the primary factor or the primary effect. And
the secondary factor (village factor) is nested within each level of the primary factor.
So here we have

1 from 1 to 3,

Jfrom1to3d, kiroml tod
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and n the number of plots sown in each village is 4. 1 =3, J =3

5.2.1 Parameter Estimation

Again in this case also the data has been run on the programs listed in the appendix
to get the following results. The estimates of y, a, g using maximum likelihood esti-
mation was found to be

£ = 0..028750

é; = 0.007970, &, = —0.000863

Bu = —0.004200, By, = 0.005833,

B = 0.015124, By = —0.003497

Bz = 0.010357, B3, = —0.006192

The estimates of 4;' was found to be

07} = 0.032520, 05} = 0.042553, 05 = 0.035088

05! = 0.043011, 05 = 0.024390, 03 =0.016260

051 = 0.03200, 63! = 0.015152, 07 =0.017778

The estimate of & is found to be 0.00

Least squares method of estimation gives us the following estimates for g, a,f3

mu = 0.028750

a; = 0.07970, &, = —0.000863, a3 = —0.007107

A = —0.00420, J;; = 0.005833, fi3 = —0.001633

By1 = 0.015124, B3 = —0.003497, Fy3 = —0.010357

o1 = 0.010357, sy = —0.006492, Bz = —0.003865

The estimates of 0,-’1-1 was found to be
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07} = 0.031690, 0;} =0.041723, 6,3 = 0.031250

07 = 0.042181, 03 = 0.023560, 07 = 0.015430

05! = 0.031170, 03 =0.014322, 07! = 0.016948

The estimates of y, a, 8 using weighted Least squares method of estimation was
found to be

ji = 0.028750

&, = 0.007970, 4, = —0.000863

A = —0.00420, £, = 0.005833

B2 = 0.015124, By = —0.003497

Ba1 = 0.010357, B = —0.006491

The estimates of 0,-']1 was found to be

07! = 00.0325, 05} =.0426, 05 = 0.0351

05! = 0.0430, 07} =0.0244, 05 = 0.0163

05 =0.0320, 05 =0.0152, 65! = 0.0178

5.2.2 Comparison of MLE, LSE and WLSE of the mean

The MLE, LSE and WLSE of the mean 8,, is given in the following table.

85



4, MLE LSE WLSE1 WLSE2

011 | 30.749998 | 31.55569 | 30.749998 | 30.769230
012 | 2349999 | 23.96759 | 23.19999 | 23.4741784
0,3 | 28.50000 | 29.19708 | 28.5000 | 28.1900219
02, | 23.250002 |23.707356 | 23.250002 | 23.255813
027 | 40.9999992 | 42.44482 | 40.9999992 | 10.9836063
023 | 61.499999 | 64.806814 | 61.499999 | 61.31969325
03 | 31.24999 | 32.08213 | 31.24999 31.25

03 | 65.99998 | 69.82265 | 65.99998 | 65.78947368
633 | 56.249999 | 59.00401 | 56.249999 | 56.1797752

5.2.3 Test of Hypotheses

The analysis of reciprocals using maximum likelihood estimation is summarised in

the following table:

ANOR TABLE.

source of variation | sums of reciprcls | deg of fdm MR appr F ratio
nested village factor 0.169161 6 0.0281935 { 7.190385
residual 0.105867 27 0.003921

]

F - 719 > E05(6,24) = 410

t can be seen from the above table that since

we reject the hypothesis H, : (8;;, =0 2 =1,2,3 j = 1,2,3,4) that the cffect

of the j** level of the secondary factor nested within the i** level of primary factor

Bi; is insignificant. ie. there is a significant effect on the mean yield of wheat/acre
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heacause of the village the variety of wheat is grown in.
The Appendix gives the program code using C for estimating the parameters using

the three methods of estimation.
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APPENDIX

/* PROGRAM TO FIND MAXIMUM LIKELIHOOD ESTIMATE */

#include <math.h>
#include </home/f1/murali/laks/nrutil.h>
#include </home/f1/murali/laks/nrutil.c>

main() {

int I1,7J,1J,1,j;
float **x, *¥m, **minv, **mm, **d, **xp, **phi, **delta, **xpd, **t1);
void prt(),mul(),gaussj();

printf("Enter I , J : \n");
scanf ("%d %d",&I,&J);
IJ = I*J;

printf("I: %d , J: %d \n\n",I,J);

x = matrix(1,1J,1,1J);
xp = matrix(1,1J,1,1J);

printf("Enter matrix x : \n");
for(i=1;i<= 1J;i++) {
for(j=1;j<=1J;j++) {
scanf ("4f",&x[1] [j]);
xplj10i] = x[11[3];

}

printf("\nMatrix x : \n");
prt(x,IJ,13);

printf(“\nMatrix xp : \n");
prt(xp,I1J,1J);

d = matrix(1,I1J,1,1J);
for(i=1;i<= IJ;i++) {
for(j=1;j<=IJ;j++) {
alil{j] = 0.0;
}
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¥
printf("Enter diagonal elements of d : \n");

for(i=1;i<= 1J;i++) {
scanf ("Y%£",&d[i] [i]);
}

printf("\nMatrix d : \n");
prt(d,1J,1J);

xpd = matrix(1,1J,1,1J);
mul(xp,IJ,1J,d,IJ,xpd);

printf("\nMatrix xpd : \n");
prt(xpd,I1J,1J);

m = matrix(1,I1J,1,1J);
mul(xpd,IJ,IJ,x,IJ,m);
printf("Matrix m: \n");
prt(m,I1J,13);

minv = matrix(1,1J,1,1J);
for(i=1;i<=1J;i++) {
for(j=1;j<=1J;j++) {
minv[i] [j1=m[i] [j];
}

delta = matrix(i,I1J,1,1);
for(i=1;i<=IJ;i++) {
for(j=1;j<=1;j++) {
deltali]l [j] = 0.0;
}

}
deltal1][1] = 1J;

gaussj(minv,IJ,delta,l);
printf("\nMatrix minv: \n");

prt(minv,1J,1J);

mm = matrix(1,IJ,1,1J);
mul(m,IJ,IJ,minv,IJ,mm);
printf("\nMatrix mm: \n");
prt(mm,IJ,I1J);
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phi = matrix(1,1J,1,1);
for(i=1;i<=IJ;i++) {
for(i=1;j<=1;j++) {
phi[i]l [j] = deltali] [j];
}
}

tij = matrix(1,1J,1,1);
mul(x,IJ,IJ,phi,1,tij);

printf("\n\n");
for(i=1;i<=1J;i++)

printf("tij(%d]: %f 1/tij: %f phil%d]:
}
void prt(a,m,n)
float *x*a;
int m,n;
{ int i,j;
for(i=1;i<= m;i++) {
for(j=1;j<=n;j++) {
printf("%6.4f ",alil[j1);

}
printf("\n");
}
}

void mul(a,m,n,b,k,c)

“f \n",i,tij[1101],1.0/tijla

float **a; /* first matrix */

int m,n; /* dimension of a */

float *xb; /* second matrix */

int k; /* no. of coulumns in b */
float *x*c; /* product matrix */

{ int i,j,1;

for(i=1;i<=m;i++) {
for(j=1;j<=k;j++) {
clil[j] = 0.0;
for(l=1;1<=n;1++) {
cl[il[j] += alil[1] * b[1][j];
}
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#defire SWAP(a,b) {float temp=(a);(a)=(b);(b)=temp;}

void gaussj(a n,p,m)

float **a, *x*xb;

int n,m;

{

int *indxc,*indxr,*ipiv;

int i,icol,irow,j,k,1,11,*ivector();
float big,dum,pivinv;

void nrerror(),free_ivector();

indxc=ivector(i,n);

indxr=ivector(1i,n);

ipiv=ivector(1i,n);

for (j=1;j<=n;j++) ipiv[jl=0;

for (i=1;i<=n;i++) {

big=0.0;

for (j=1;j<=n;j++)

if (ipiv[jl !'= 1)

for (k=1;k<=n;k++) {

if (apivlk] == 0) {

if (fabs(al[jl[k]) >= big) {

big=fabs(aljl[k]);

irow=j;

icol=k;

}

} else if (ipiv[k] > 1) nrerror("GAUSSJ: Singular Matrix-1");
}

++(ipiv[icoll);

if (irow !'= icol) {

for (1=1;1<=n;1++) SWAP(a[irow] [1],alicol][1])
for (1=1;1<=m;1++) SWAP(b[irow] [1],b[icoll[1])
}

indxr(il=irow;

indxc[i]=icol;

if (alicol]l[icol] == 0.0) nrerror{"GAUSSJ: Singular Matrix-2");
pivinv=1.0/alicol] [icol];

alicoll [icoll=1.0;

for (1=1;1<=n;1++) alicolj[1] *= pivinv;

for (1=1;1<=m;1++) blicol]l [1] *= pivinv;

for (11=1;11<=n;11++)
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if (11 !'= icol) {

dum=a[11] [icol];

af11] [icol]=0.0;

for (1=1;1<=n;1++) a[11][1] -= alicol][1]*dum;
for (1=1;1<=m;1++) b[11][1] -= blicol] [1]*dum;
}

}

for (1=n;1>=1;1--) {

if (indxr[1] !'= indxc[1])

for (k=1;k<=n;k++)

SWAP(a[k] [indxr[1]],a[k] [indxc[1]]);

}

free_ivector(ipiv,1,n);
free_ivector(indxr,1,n);
free_ivector(indxc,1,n);

¥

#fundef SWAP
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/* PROGRAM TO ESTIMATE SIGMA */

#include <math.h>
#include </home/f1/murali/laks/nrutil.h>
#include </home/fi/murali/laks/nrutil.c>

main ()

{

int i,j,k,m,n;
float yij[250],rij[250],sum,mu,**ybar,sum2,signa;

sum = sum2= 0.0;

printf ("enter m,n,k\n");

scanf ("Yd %d %d", &m,&n,&k);

for (i=1; i<= mxnxk; i++)

{

scanf ("ff", &yij[il);

rijli] = 1/yij[i];

printf ("rij[id] is: %f \n", i, rijlil);
sum = sum + rij[i];

}

printf ("The sum of the reciprocals over i,j,k is: %f \n", sum);
ybar=matrix(1,m,1,n);

for (i =1; i<=m; i++)

{
for (j=1; j<=n; j++)
{
scanf ("%f", &ybar[il[j]1);
sum2 = sum2 + (1/( ybar[i][j1));
}
}

sigma = (sum -( k*sum2))/(m*n*(k~1));
printf ("The vaue of sigma is: %f \n", sigma);
}
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/* PROGRAM FOR LEAST SQUARES ESTIMATION */

#include <math.h>
#include </home/f1/murali/laks/nrutil.h>
#include </home/f1/murali/laks/nrutil.c>

main ()

{

int i,j,k a,n;

float **yij,k*rij,**bij,sum,ail10],sum1[10],sum2[10],mu,a,**tij,**eij;
float suma,sumb;

printf ("enter m,n : \n");
scanf ("%d %d",&m,&n);

yij=matrix(i,m,1,n);
rij=matrix(i,m,1,n);
tij=matrix(i,m,1,n);
eij=matrix(i,m,1,n);

bij=matrix(i,m,1,n);

sum = suma = sumb = 0.0;
for(i=1;i<=m;i++) sum2[i]=0.0;
for(j=1;j<=n;j++) sumi[j]1=0.0;

printf ("enter matrix yij: \n");

for (i=1; i<=m; i++) {
for (j=1; j<=n; j++) {
scanf ("%f", &yijl[il[j1);
rijlil[j1= i/yij (i1 [§3;
sum = sam + rij[i] [j];
sum2[i] += rij(il1[j];
sumi[j] += rij[i][j];

}
mu = sum/ (m*n);
printf ("The overall mean, mu is: %f \n", mu);
printf ("The mean summed over j is: \n");
for(i=1;i<=m;i++)
{
a = sum2[il/n;
ail[i] = a - nu;
suma = suma + ail[il;
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printf ("sum2[%d]: Yf, ail¥d]: %f\n", i,a,i, ailil);
}
printf ("The value of the R(A) is: %4f \n", m * suma);
printf ("The value of the nested factors bij is: \n");
for (i= 1; i<=m; i++)
{
for (j= 1; j<= n; j++)
{
bij[il (3] = (rij[il(j] - (sum2{il/n));
printf ("bij[%dl{%d]: %f\n", i,j, bij[i1(j1);
sumb = sumb + bij[i][j];
}
}
printf ("The value of the R(B(A)) is: %f \n ", n * sumb);
for (i = 1; i<= m; i++)

{
for (j=1; j <= n; j++)
{
tij[i1[j] = mu - ((0.004979)/6) + ail[il + bij[il[jl;
eij[i][j] = rij[il1[;] - tij[i1[j];
printf ("tij[%d][%4d]: %f\n\n", i,j, tij[il[j]1);
printf ("eij[%d][%dl: %f\n\n", i,j, eij[il[jl);
}
}
}
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/* PROGRAM TO FIND WEIGHTED LEAST SQUARES ESTIMATE */

#include <math.L>
#include </home/f1/murali/laks/nrutil.h>
#include </home/f1/murali/laks/nrutil.c>

main() {

int I,J,1J,i,j;
float **x, **m, **minv, **mm, **d, **xp, **phi, **delta;
float **xpd, **tij, ¥*s,**w, kxthe;

void prt(),mul(),gaussj();

printf("Enter I , J : \n");
scanf ("id 4d",&I,&J);
I1J = I*xJ;

printf("I: %d , J: %d \n\n",I,J);

x = matrix(1,1J,1,1J);
xp = matrix(1,IJ,1,1J);

printf("Enter matrix x : \n");
for(i=1;i<= IJ;i++) {
for(j=1;3j<=1J;j++) {
scanf ("f",&x[i1[j]1);
xp[j1[i] = x[i1[j];
}
}

printf("\nMatrix x : \n");
prt(x,1J,1J);

printf("\nMatrix xp : \n");
prt(xp,1J,1J);

d = matrix(1,1J,1,1J);
for(i=1;i<= IJ;i++) {
for(j=1;j<=1J;j++) {
dlij [j] = 0.0;
}
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}

printf("Enter diagonal elements of d : \n");
for(i=1;i<= IJ;i++) {

scanf ("Y%f",&d[i) [i]);
}

printf("\nMatrix 4 : \n");
prt(d,1J,1J);

xpd = matrix(1,1J,1,1J);
mul(xp,1J,1J,d,IJ,xpd);

printf("\nMatrix xpd : \n");
prt(xpd,I1J,1J);

m = matrix(1,IJ,1,1J);
mul (xpd,IJ,1J,x,IJ,m);
printf("Matrix m: \n");
prt(m,I1J,IJ);

minv = matrix(1,1J,1,1J);
for(i=1;i<=1J;i++) {
for(j=1;j<=1J;j++) {
ninv[i) [§1=m[i1[j];
}
}

delta = matrix(1,1J,1,1);
for(i=1;i<=1J;i++) {
for(j=1;j<=1;j++) {
delta[il[j] = 0.0;
}
}
delta[1][1] = IJ;

gaussj(minv,IJ,delta,l);
printf("\nMatrix minv: \n");

prt(ninv,IJ,1J);

mm = matrix(1,I1J,1,1J);
mul(m,IJ,IJ,minv,IJ,mm);
printf("\nMatrix mm: \n");
prt(mm,IJ,IJ);
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phi = matrix(1,1J,1,1);
for(i=1;i<= IJ;i++) {

scanf ("%f",&phi[i] [1]);
}
printf("\n,Matrix phi:\n");
prt (phi,IJ,1);
s = matrix(1,IJ,1,1);

w = matrix(1,1J,1,1);

mul(d,IJ,IJ,phi,1,w);
printf ("\nMatrix w: \n");
prt (w,1J,1);

mul(xp,1J,1J,w,1,s);
printf ("\nMatrix s: \n");
prt (s,1J,1);

tij = matrix(1,1J,1,1);
mul(minv,IJ,1J,s,1,tij);

printf("\n\n");
for(i=1;i<=I1J;i++)
{
printf("tij[%dl: %f \n",i,tij[i1(1]);
}

the = matrix(1,1J,1,1);
mul (x,IJ,IJ,tij,1,the);
printf ("\nMatrix the:\n");
prt(the,1J,1);

}

void prt(a,m,n)
float **a;
int m,n;

{ int i,3;

for(i=1;i<= m;i++) {
for(j=1;j<=n;j++) {
printf("%6.4f *,alil[j1);
}
printf("\n");
}
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void mul(a,m,n,b,k,c)
float **a;
int m,n;
float *xb;
int k;
float *xc;
{ int 1,j,1;

for(i=1;i<=m;i++) {
for(j=1;j<=k;j++) {
clil[j] = 0.0;

/*
/*
I *
/*
/%

for(1=1;1<=n;1++) {
c[i][j1 += alil[1] * b[1]1[j];

}

first matrix */
dimeusion of a */
second matrix */

no. of coulumns in b */
product matrix x*/

#define SWAP(a,b) {float temp=(a);(a)=(b);(b)=temp;}

void gaussj(a,n,b,m)
float **a, *xb;

int n,m;

{

int *indxc,*indxr,*ipiv;

int i,icol,irow,j,k,1,11,*ivector();

float big,dum,pivinv;

void nrerror() ,free_ivector();

indxc=ivector(1i,n);
indxr=ivector(1i,n);
ipiv=ivector(i,n);

for (j=1;j<=n;j++) ipiv[j]=0;

for (i=1;i<=n;i++) {
big=0.0;

for (j=1;j<=n;j++)
if (ipiv([j] '= 1)
for (k=1;k<=n;k++) {
if (ipivik] == 0) {

if (fabs(a[jl[k]) >= big) {

big=fabs(aljl(k]);
irow=j;
icol=k;
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}

} else if (ipiv{k] > 1) nrerror("GAUSSJ: Singular Matrix-1");
}

++(ipiv([icoll);

if (irow != icol) {

for (1=1;1<=n;1++) SWAP(alirow]l[1],alicol][1])
for (1=1;1<=m;1++) SWAP(b[irow][1],b[icol][1])
}

indxr[i]=irow;

indxc[i]=icol;

if (alicoll[icol] == 0.0) nrerror("GAUSSJ: Singular Matrix-2");
pivinv=1.0/alicol] [icol];

alicol] [icoll=1.0;

for (1=1;1<=n;1++) alicol][1] #*= pivinv;

for (1=1;1<=m;1++) b[icol]l[1] *= pivinv;

for (11=1;11<=n;11++)

if (11 != icol) {

dum=a[11] [icol];

alll1]l[icol]=0.0;

for (1=1;1<=n;1++) a[11][1] -= alicol] [1]*dum;
for (1=1;1<=m;1++) b[11][1] -= blicol] [1]*dum;
}

}

for (1l=n;1>=1;1--) {

if (indxr([l1] '= indxc[1])

for (k=1;k<=n;k++)

SWAP (a[k] [indxr[1]],alk] [indxc[1]1]);

}

free_ivector(ipiv,1,n);
free_ivector(indxr,1,n);
free_ivector(indxc,1,n);

}

#undef SWAP
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/* PROGRAM TO FIND SUM OF RECIPROCALS */

#include <math.h>
#include </home/f1/murali/laks/nrutil.h>
#include </home/f1/murali/laks/nrutil.c>

main()

{

int i,j,k,m,n,l;

float **yij,**rij, **tij,**ti, rba, rbaa,mea[30],mu[30],**rm;

scanf ("%d %d", &m,&n);

yij=matrix(1i,m,1,n);
rij=matrix(1i,m,1,n);
tij=matrix(1l,m,1,n);
ti=matrix(i,m,1,n);
rm=matrix(1,m,1,n);
for(i=1;i<=m;i++) meal[i]=0.0;

for (i=1; i<=m; i++)
{
for (j=1; j<=n; j++)
{

scanf ("%£", &yijl[i1(j1);
meali] = meali] + yij[i]l[j];
scanf ("Yf", &til[i][j1);
tij[i1[3] = 1/Gtil41(5]);

}
mu[i] = n/meali];
}
rba=0.0;
for (i=1; i<=m; i++)
{
for (j=1; j<=n; j++)
{
rm[i] (3] = tij[i][j] - mulil;
rba = rba + rm[i] [j];
}
}
rbaa = 6 * rba;
printf ("The value of rbaa is %f \n", rbaa);
}
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/* NRUTIL.C */

#include <malloc.h>
#include <stdio.h>

void nrerror (error_text)
char error_text(];

{

void exit();

fprintf(stderr,"Numerical Recipes run-time error...\n");
fprintf(stderr,"’s\n" ,error_text);
fprintf(stderr,"...now exiting to system...\n");
exit(1);

}

float *vector(nl,nh)
int nl,nh;
{

float *v;

v=(float *)malloc((unsigned) (nh-nl+1)*sizeof(float));
if ('v) nrerror("allocation failure in vector()");
return v-nl;

}

int *ivector(nl,nh)
int nl,nh;
{

int *v;

v=(int *)malloc((unsigned) (nh-nl+1)*sizeof(int));
if (!v) nrerror("allocation failure in ivector()");
return v-nl;

}

double *dvector(nl,nh)
int nl,nh;
{

double *v;

v=(double *)malloc((unsigned) (nh-nl+1)*sizeof(double));
if ('v) nrerror("allocation failure in dvector()");
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return v-nl;

}

float **matrix(mrl,nrh,ncl,nch)
int nrl,narh,ncl,nch;

{

int i;

float **m;

m=(float **) malloc((unsigned) (nrh-nrl+i)*sizeof(float*));
if ('m) nrerror("allocation failure 1 in matrix()");
m -= nrl;

for(i=nrl;i<=nrh;i++) {

m[i]=(float *) malloc((unsigned) (nch-ncl+l)*sizeof(float)) ;
if (!m[i]) nrerror("allocation failure 2 in matrix()');

m[i] -= ncl;

}

return m;

}

double **dmatrix (arl,nrh,ncl,nch)
int nrl,nrh,ncl, nch;

{

int i;

double **n;

m=(double **) malloc((unsigned) (nrh-nrl+i)*sizeof(double*));
if ('m) nrerror("allocation failure 1 in dmatxrix(}");
m -= nrl;

for(i=nrl;i<=nrh;i++) {

m[il=(double *) malloc((unsigned) (nch-ncl+1)*sizeof(double));
if ('m[i]) nrerror("allocation failure 2 in dmatrix()");

m[i] -= ncl;

}

return m;

}

int **imatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;
{

int i,**m;
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m=(int **)malloc((unsigned) (nrh-nrl+1)*sizeof (int*));
if (!'m) nrerror("allocation failure 1 in imatrix()");

m -= nrl;

for(i=nrl;i<=nrh;i++) {

m[iJ=(int *)malloc ((unsigned) (nch-ncl+1)*sizeof(int));
if ('m[i]) nrerror("allocation failure 2 in imatrix()");

m[i] -= ncl;
}

return m;

}

float **submatrix(a,oldrl,oldrh,oldcl,oldch,newrl,newcl)

float **a;

int oldrl,oldrh,oldcl,oldch,newrl,newcl;

{
int i,j;
float **m;

m=(float **) malloc((unsigned) (oldrh-oldrl+1l)*sizeof(float*));
if ('m) nrerror("allocation failure in submatrix()");

m -= newrl;

for(i=oldrl,j=newrl;i<=oldrh;i++,j++) m[jl=alil+oldcl-newcl;

return m;

}

void free_vector(v,nl,nh)
float *v;

int nl,nh;

{

free((charx) (v+nl));

}

void free_ivector(v,nl,nh)
int *v,nl,nh;

{

free((charx) (v+nl));

}
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void free_dvector(v,nl,nh)
double *v;

int nl,nh;

{

free((char*) (v+nl));

}

void free_matrix(m,nrl,nrh,ncl,nch)
float **m;

int nrl,nrh,ncl,nch;

{

int 1i;

for(i=nrh;i>=nrl;i--) free((char*) (m[iJ+ncl));
free((char*) (m+nrl));

}

void free_dmatrix(m,nrl,nrh,ncl,nch)
double *x*m;
int nrl,nrh,ncl,nch;

{

int 1i;

for(i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl));
free((char*) (m+nrl));
}

void free_imatrix(m,nrl,nrh,ncl,nch)
int **m;
int nrl,nrh,ncl,nch;

{

int i;

for(i=nrh;id>=nrl;i--) free((char*) (m[i]+ncl));
free((char*) (m+nrl));
}

void free_submatrix(b,nrl,nrh,ncl,nch)
float *x%b;
int nrl,nrh,ncl,nch;
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{
free((char*) (b+nrl));
}

float **convert_matrix(a,nrl,nrh,ncl,nch)
float *a;

int nrl,nrh,ncl,nch;

{

int i,j,nrow,ncol;

float **m;

nrow=nrh-nrl+i;

ncol=nch-ncl+i;

m = (float **) malloc((unsigned) (nrow)*sizeof(float*));
if ('m) nrerror("allocation failure in convert_matrix()");
m ~= nrl;

for(i=0,j=nrl;i<=nrow-1;i++,j++) m[jl=a+ncol*i-ncl;

return m;

}

void free_convert_matrix(b,nrl,nrh,ncl,nch)
float *x*b;
int nrl,nrh,ncl,nch;

{
free((char*) (b+nrl));

}
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/* NRUTIL.H */

float *vector();

float **matrix();

float **convert_matrix();
double *dvector();
double **dmatrix();

int *ivector();

int **imatrix();

float **submatrix();

void
void
void
void
void
void
void
void
void

free_vector();
free_dvector();
free_ivector();
free_matrix();
free_dmatrix();
free_imatrix();
free_submatrix();
free_convert_matrix();
nrerroxr();
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