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ABSTRACT

Theoretical and experimental investigations of an
unconventional concept utilizing the vortex principle for
measuring flow rates were carried out. An experimental model
was made to study the factors affecting the performance of such
a device. This apparatus consisted of a confined cylindrical
vortex chamber with tangential inlets apd a central outlet. A
free ball was contained within the vortéx chamber so that when
the fluid flowed in, a vortex was generated and the ball was
carried along a circular track inside the chamber. A light-
emitting diode and a phototransistor were used to pick up the
rotation rate of the ball. Thus, the frequency of rotation of
the ball could be calibrated and used to indicate different flow
rates.

Two theoretical models with different approaches were
formulated. The first approach used the superposition of two
derived linear expressions for the drag and the moment on the
ball. The second approach assumed that the momentum of the fluid
was imparted to the ball. The two theoretical results show almost
similar Tinear relationships between the frequency of rotation of
the ball and the volume flow rate. In order to include the effect
of the initial static friction in the above-mentioned mathematical
solutions, a correction term was added to the theoretical volume
flow rate. This term was defined as the minimum volume flow rate
required to start the motion of the ball. Experimental investi-
gations were carried out to substantiate the theoretical mode

of the flow meter.



ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his
advisor, Dr. C.K. Kwok, for his invaluable suggestions,

advice and encouragement during this investigation.

The author also wishes to thank Dr. E.A. Farag for

his neipful comments and co-operation.

Finally, the author is indebted to the National
Research Council of Canada for financial support under

Grant No. A7435,.



TABLE OF CONTENTS

NOMENCLATURE . . « . « v « v o v o« « o v o o o o o
CHAPTER I
INTRODUCTION
1.1 Flow Meters . e e e e e e

1.2 Scope of the Present Work e 0 e e e e
CHAPTER II
EXPERIMENTAL MODEL

2.1 Historical Review .
2.2 0Objective of the Present Exper1menta] Work
2.3 The Experimental Model . . e e e e e

CHAPTER III

THEORETICAL MODEL

Introduction . .

Scope of the Present Ana]yt1ca] WOrk
Simplification of the Problem
Irrotational Flow Past a Stat1onary
Sphere . . .

Rotating Sphere 1n a Stat1onary
Incompressible Fluid

w W wWwWwww
. ¢« o s =
()] ol SN -

of the Sphere and the Volume Flow Rate
3.7 Application of the Theory to the
Experimental Model .

CHAPTER 1V
EXPERIMENTAL RESULTS

-—

4, Introduction . .

4.2 The Effect of Chang1ng the Track Mean
Radius

4,

4

S

The Effect of Changing the Diameter of the
Ball and the Vortex Chamber Height

4.5 Experimental Investigation of Pressure Drep'

4.5.1 The Effect of the Ball on the
Pressure Drop . .

4.,5.2 The Effect of Chang1ng the Outlet
Diameter .

Relation Between the Frequency of Rotat1on

The Effect of Chang1ng the Mass of the Ba11'

)

oo~

10
12
16
19
22

24

24
25

26
27
27
28



CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

5.1 e e e e e e e e e
5.2 Recommendations for Further Work .

REFERENCES

APPENDIX




10
11
12

13
14
15
16

17

LIST OF FiGURES

Kearsley's device

Jonsson's device

Experimental model

The electronic circuit for digital signals
The electronic circuit for analogue signals

Geometric configuration of the experimental
mode] e e e s aTe e e s

Coordinate system for the case of irrotational
flow past a sphere . . . . . « « « « ¢« + o .

Coordinate system for the case of rotating
sphere in a stationary fluid .

Theoretical results . . . . . . .
Experimental arrangement
Variation of frequency with track mean radius

Variation of frequency with density of the
ball e e e e e .. . .

Variation of frequency with ball diameter
Variation of pressure drop due to the ball
Variation of pressure drop due to the ball

Variation of frequency with outlet diameter

APPENDIX

Coordinate system for the Appendix

33
33
34
35

35

36

37

37
38
39
40

41
42
43
44
45



iv

NOMENCLATURE

outlet radius

area of inlet port
constant

track width

constant

constant

constant

diameter of the inlet port
drag

suffix relating to fluid
half chamber height

distance of centre of sphere from instantaneous
axis of rotation

mass flow rate

moment

unit vector normal to surface of sphere
frequency of rotation of sphere
pressure

fluid velocity vector

components of fluid velocity in spherical polar
coordinates

volume flow rate

minimum volume flow rate required to start motion
of sphere

distance from outlet of vortex chamber

radius of sphere
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vortex chamber radius

track mean radius

suffix related to sphere
stream velocity relative to sphere
tangential velocity of fluid
radial velocity of fluid
velocity of centre of sphere
rate of energy dissipation
Cartesian coordinate system
Cartesian unit vectors
spherical polar coordinates

spherical polar unit vectors

viscosity

kinematic viscosity

velocity of surface of sphere

fluid density

shear stress

potential function

angular velocity of sphere around its centre
angular velocity of fluid

circulation constant



CHAPTER 1

INTRODUCTION

1.1 Flow Meters

Measuring of volume flow rate is very important in
sany phases of engineering practice and research and there are
many ways of making this measurement,. Seferences [1] and [2]
present an extensive review of common typeé of flow meters.
Examples of direct methods for measuring the flow are: the
positive-displacement meters that have pistons or partitions
which are displaced by the flowing fluid and a counting mecha-
nism that records the number of displacements in any convenient
unit. These meters are used in many domestic water-distribution
systems to count the total flow consumption. Turbine flow
meters utilize the fact that the change of momentum in a flow
through a set of curved vanes causes a torque on these vanes
and consequently rotates them. The frequency of rotation is
calibrated for the flow rate. Turbine flow meters are usually
used for fluid flows in ducts and pipes subjected to widely
varying temperatures. Another type is the rotameter which
consists of a vertical transparent tube and a measuring float
heavier than the fluid. The upward displacement of the float
inside the transparent tube is calibrated versus the volume
flow rate. The most precise direct methods are the gravimetric
or volumetric determinations in which the weight or volume is

measured by weighing scales or by a calibrated tank for an



interval measured by a timer.

Indirect methods for measuring the volume flow rate
require the determination of the head difference in static
pressure or the velocity at several points in a cross section.
Examples of indirect methods are the venturi-meter and the
orifice meter in which the static pressure drop between the
inlet section of the device and the throat or vena-contracta,
respectively, is used to calculate the Yo]ume flow rate.

Usually, these last two meters are used for the flow in pipes.
Other indirect methods require determination of the average

flow velocity at a section of the flow. These velocity measure-
ments may be made by a pitot-tube, hot wire anemometer, or flow
visualization techniques.

A11 the above-mentioned methods, excepf the gravimetric
and the volumetric, have considerable accuracy limitations 1in
addition to their cost and complexity. The aim of the present
investigation is to provide an jmproved flow meter which measures
flow accurately, has Tow potential manufacturing cost, and is
distinguished by substantially 1inear measuring characteristics.
Moreover, it must also provide easy computer interfacing for

most industrial control applications.

1.2 Scope of the Present Work

The objective of this thesis is to present a study on
a rather unconventional concept for measuring flow rates. The
flow meter consists of a confined cylindrical vortex chamber with

tangential inlets and a central outlet. A ball is contained within



the vortex chamber so that when the fluid flows in, a vortex will
be generated and the ball will be carried along the swirling
fluid. The frequency of the rotation of the ball may be cali-
brated to indicate the volume flow rate. The results of this
investigation are presented in the next four chapters.

Chapter II introduces an historical review of the
vortex flow meter. The geémetric configuration of the experi-
mental model is also presented.

Chapter III provides an approiiméte analytical solution
for the basic concept of the device.

In Chapter IV, the experimental procedure is described
and the results are compared with those of the approximate theory.

Another approximate analytical model, using a different
approach with almost identical final results, is presented in the
appendix.

Discussions of both the analytical and experimental
results are included in Chapter V. Recommendations are made for

further work on the device.



CHAPTER I1

EXPERIMENTAL MODEL

2.1 Historical Review

The idea of the flow meter under investigation was
conceived independently at Sir George Williams University, and
subsequent patent and literature searchgs revealed that devices
employing the basic concept had been 1nven£ed.

In 1950, Kearsley [3] invented the device shown in
Fig. 1. This consists of a confined cylindrical vortex chamber
with a tangential inlet and a central outlet. A free steel ball
is contained within the vortex chamber so that when fluid flows
in, a vortex will be generated and the ball will be carried
along with the swirling fluid. Due to the difference in density
between the ball and the fluid, centrifugal force will make
the ball travel along the periphery of the chamber. A permanent
magnet and a pick-up coil arrangement were used to sense the
motion of the ball. When the ball approaches the magnet, it
reduces the reluctance of the magnetic circuit, and as the ball
moves away from the magnet, magnetic reluctance is increased.
The resulting variation in magnetic flux through the coil induces
an alternating voltage which can be amplified. The frequency of
the alternating voltage changes are in direct correspondence to
the revolution of the ball. As a result, it may be calibrated
and used to indicate different flow rates.

One of the disadvantages of Kearsley's device is the



magnetic force between the steel ball and the magnet which results
in acceleration and deceleration of the ball as it approaches and
moves away from the magnetic field respectively.

Jonsson [4] overcame this disadvantage by using a photo-
electric cell instead of a magnet. The improved device, in which
a light source and a photoelectric cell combination is fixed
across the path of the ball, is shown in Fig. 2. For each rota-
tion of the ball, the light beam betweeq the light source and the
photoelectric cell is interrupted once and}the photoelectric cell
produces corresponding pulses. Again, the pulses are amplified
and their frequency is calibrated for different flow rates.

It is rather unfortunate that the above ideas were not
investigated extensively and applied in practice. Preliminary
studies of these two devices raised considerable doubts regarding
their performance characteristics and practicability. For example,
when the ball travels along the periphery of the chamber, inter-
ruptions of the tangential inlet flow occur when the ball passes
in front of the inlet port. Sometimes, the movement of the ball
is completely upset due to its interaction with the inlet flow.

Another disadvantage was the use of one tangential inlet
which disregarded the condition of symmetry and may result in
unstable operation.

The aforementioned drawbacks were eliminated in the
design of the experimental model by running the ball on an inter-
mediate circular track inside the vortex chamber and by using a

multiple tangential inlet configuration.



2.2 Objective of the Present Experimental Work

It is intended to study the factors that may affect the
performance of the device. The factors examined are those which
govern the geometrical configurations, namely:

1. the radius of the track on which the ball travels;
. the outlet diameter of the vortex chamber;

. the effect of the ball itself on the pressure drop;

HOOwWw N

the mass of the ball;
5. the diameter of the ball and the height'of the chamber.
It is hoped that the result of the investigation will provide

useful information for engineering purposes.

2.3 The Experimental Model

A plexiglass vortex chamber consisting of a hollow cir-
cular cylinder with a top plate and a central outlet was con-
structed, as shown in Fig. 3.

The circular cylinder, 7.62 cm internal diameter, has
four tangential circumferential inlets, and a rectangular track,
0.64 cm wide and 0.16 cm deep, at a mean radius of 2.86 cm. In
order to investigate the effect of changing the mean radius of the
track, another similar piece is made having a track of the same
width and depth at a mean radius of 2.22 cm. Also, to study the
effect of changing the diameter of the ball, another two pieces
are made identical to the above pieces except that the tracks are
0.32 cm wide and 0.08 cm deep. Hence, these four cylindrical
pieces enable the investigation of two different balls of 0.64 cm

and 0.32 cm diameter at two different track radii.



The top plate is made to fit inside the cylindrical
pieces providing an internal vortex chamber height of 0.56 cm
for the case when the 0.64 cm diameter ball is contained, and
a height of 0.28 cm for the case when the 0.32 cm diameter ball
is contained. An O-ring is used between the top plate and the
cylindrical piece to prevent leakage.

Two outlet pieces of 1.27.cm and 0.65 cm exit diameter
are made to fit in the openings of the cylindrical pieces with
an 0-ring between, thus allowing the investigation of the effects
of changing the outlet diameter.

Provision is made for mounting a light-emitting diode
and a phototransistor, as shown in Fig. 3, to pick up the
rotation rate of the ball. An electronic circuit was designed
and made, as shown in Fig. 4, to amplify and shape the pulses
resulting from the interruptioh of the 1light beam by the ball.
During the course of experimentation, the output of this elec-
tronic circuit was connected to a storage oscilloscope in order
to measure the output waveforms and frequency. For practical
applications, the circuit shown in Fig. 5 can be connected to
convert the rate of the digital signals to analogue signals

which can be read on a voltmeter.



CHAPTER ITI1I

THEORETICAL MODEL

3.1 Introduction

Confined vortex flow in a short cylindrical chamber
is highly complex in nature. Formulation of such flow pheno-
mena usually lead to highly non-linear differential equations.
As a result, reasonable approximations Qere made neglecting the
higher order terms to attain a practical solution of the problem.
References [5] and [6] attempted to solve the laminar boundary-
layer momentum integrai equations considering the axial symmetry
and neglecting the axial pressure gradient. References [7] and
[8] presented different solutions using the momentum integral
analysis for turbulent vortex flow. Again, the axial pressure
gradient and second order terms were neglected while the shear
laws adopted were either the shear stress data obtained from the
pipe flow experiments or the use of Prandtl's study of turbulent
flow over a flat plate. Reference [9] split the confined vortex
flow into two parts, the first for the flow in the annular outer
region where the axial velocity was neglected and the second for
the inner part of the vortex where the radial velocity was neg-
lTected. The two parts were matched at an appropriate radijus by
assuming that the tangential velocity, the tangential shear stress
and the static pressure are continuous. Reference [10] presented
an inviscid solution of the vortex flow assuming an ideal fluid.

The basic assumptions of this inviscid theory are considered in



the present analytical solution.

3.2 Scope of the Present Analytical Work

The object of the present analytical work is to
derive a relationship between the frequency of rotation of the
sphere inside the vortex flow meter, described in section 2.3,
and the volume flow rate through this device. Solution of the
problem requires knowledge of the following:

i) a complete solution of the eqdations of motion in
order to determine the velocity distribution of the
flow;

ii) complete data of the kinetic and rolling friction
coefficients of the sphere on plexiglass in the

fluid medium;

iii) the determination of the pressure and velocity
gradients on the surface of the sphere for the
determination of the drag;

iv) the dynamic response characteristics of the sphere

on the fluid flow.

Undoubtedly complete understanding of the above presents
a formidable task. It is therefore proposed to formulate an
approximate solution in the preliminary investigation, and sub-
stantiate the results by means of subsequent experimental data.
Comparison between the theoretical and experimental results will

Justify the assumptions made for the approximate solution.
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3.3 Simplification of the Problem

An ideal fluid of density p is assumed to enter a
confined vortex chamber of radius RO and height 2h as shown in
Fig. 6. Four tangential inlet ports each of area ap are arranged
at right angles to each other along the periphery of the chamber.
A ball of radius R is travelling freely on a rectangular track of
width b and depth t on the bottom plate of the vortex chamber.
The mean radius of the track is Rt and the radius of the outlet
of the chamber is a,- |

Simplifying assumptions and approximations of the
problem may be summarized as follows:

i) the tangential velocity distribution inside the chamber
corresponds to that of an jdeal steady free vortex
given by

o 0f

t

Ve -

where Vf is the velocity of the fluid, 2 is the
circulation constant,rtis the radius and we is the
angular velocity of the fluid at the inlet radius.

Since the rate of change of this tangential velocity with
respect to the radius is at its maximum near the centre
of the chambef, and the diameter of the sphere is much
smaller than the mean diameter of the track which is

away from the centre, therefore the assumption of uniform
tangential velocity distribution on the track is justi-

fied. This velocity may be calculated using equation (1)



- 11 -

where rtis equal to Rt’ the mean radius of the track;

ii) since all the inlet flows are introduced tangentially,
the effects on the sphere due to the tangential velo-
city component are much greater than those of the

radial component. As a result, only the predominant

effects due to the tangential velocity are considered;

ii1) centrifugal force will keep the ball moving along the
outer periphery of the track revolving about the axis,
as shown in Fig. 7. It is assuméd that there exists

no slipping between the ball and the points of contact.

iv) the fluid flowing through the flow meter is considered
to be Taminar and incompressible.

As mentioned in section 3.2, the basic flow phenomenon
involving a rotating sphere moving inside a swirling fluid is
highly complex. An approach was adopted to consider first the
case of a stationary sphere inside a moving irrotational and in-
compressible fluid for determining the velocity distribution around
the sphere. The velocity distribution is used in the energy dis-
sipation equation for approximate evaluation of the drag. A
similar approach for calculating drag was used in referen e [11].
Then the case of a rotating sphere in a stationary fluid was
formulated, in order to determine the moment acting on the sphere.
From a physical standpoint, the solutions of the above cases repre-
sent real systems with linear characteristics and therefore the

application of the principle of superposition is considered jus-

tified,



3.4 Irrotational Flow Past a Stationary Sphere

For an irrotational fluid, the vorticity vector is

zero, thus
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where q is the velocity vector. Considering the potential

function ¢, then

(3)
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The continuity equation for steady incompressible fluid

flow is given by
Veq =0 (4)
Combining equations (3) and (4), the Laplace equation is obtained:
Ve = 0 (5)

In this case, according to assumption (ii), the flow may be con-
sidered symmetrical about the z-axis which passes through the

centre of the sphere in the direction of flow. Thus, the poten-
tial function ¢ is also symmetrical about the z-axis. This means

that

¢ = ¢(r,0) (6)



where r is the position vector of the point measured from the
centre of the sphere, and @ is the angle between r and the z-
axis. It should be noted that, on the surface of the sphere,

the potential function ¢ should satisfy the following boundary

condition:

9¢
q S - — = 0 (7)
" =R
and the stream velocity is given by
[ 2 211/2
- 3¢] + [1 3¢] =
= |5z - == =V 8
q 3y r 56 | e (8)

The Laplace equation in spherical polar coordinates

(r,9,¥) can be expressed as

.3 [ 290 o [ . . 3¢ 1 (s%¢) _ .-
sin@ W[Y‘ -5?] + 'a—g'lS'an 3_§] + S—,l-ﬁé-{a—wz-] =0 (9)

Since ¢ is independent of ¥, equation (9) simplifies to
cg 9 |2 3% 3 lcing 89| -
sing 3r[r ar] + ag(sm@ 89] =0 (10)

Two special solutions of the above equation are given by:

¢, = cos8 (11a)
and

b, = co0s8 (11b)

2 2
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Since equation (10) is a linear differential equation, a rather
general solution to it is obtained by the following Tinear com-

bination of the two solutions:

6 = Aoy + B¢, = (Ar + i—z—)cosg (12)

Thus, the radial and tangential components of velocity become,

respectively

Q. = - 57 = -(A - ;g)cose (13)
= _ 123 _ Bl
4 = - ¥ 59 [A + r3]s1n9 (14)

Applying the boundary condition, qr' = 0 on the surface of the
r=R

sphere to equation (13), one obtains

A =28 (14a)

=

and equations (13) and (14) become

] . _ .
q. = -2B(—5 - —5)cos8 (15)
r R3 r3
Qg = 28(1§ + —lg)sing (16)
R 2r

The resultant stream velocity, V, away from the centre

of the sphere is obtained as follows:
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V=al. - [qﬁ * qg}]/z -5 (17)

>
roe Y'->o

=

The velocity components, at r > R, are given by:

R

9, = -VcosB {1 - =3
r)
R3]

9 = Vsing |1 + —3 (18)
2r~

=0
Ny

The rate of energy dissipation w for irrotational and

incompressible fluid flow is given in reference [11] in the form:

W= -p J(qu)-ﬁds (19)
r=R
where p is the viscosity of the fluid and n is the unit area
vector normal to the elemental surface area ds,
Substituting the velocity distribution given by equa-
tion (18) into equation (19), the following expression for the
energy dissipation is obtained:

W = -~12muRV2

(20)

If D represents the total drag on the sphere, then the
rate of energy dissipation w may be equated to the product of the
drag D and velocity V by w = -DV. An expression for the drag, D,

on the sphere becomes
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D = 12mpRV (21)

3.5 Rotating Sphere in a Stationary Incompressible Fluid

Referring to assumption (iii) of section 3.3, the sphere
is considered to roll with no slippage about an axis z, as shown
in Fig. 8. In order to simplify the problem, an approximate
evaluation of the torque can be obtained by considering the case
of a rotating sphere in a stationary incompressible fluid.
According to the no-slip condition between'the fluid and the
sphere, the fluid particles will move in concentric circles about
the z-axis of rotation. Using the spherical polar coordinates
(r,0,y) with unit vectors Fo’ 50 and $o respectively, then the

fluid velocity distribution will be given by

qw = |
and (22)

9y

where mfis the angular velocity of rotation of the fluid.

The equations of motion for steady incompressible fluid
flow in vector form are:
1

(@TT = -2Tp+w

%3 (23)

Utilizing the following two vector ijdentities,

(3:¥)q = V(59°) - 9 x (V x q) (24)
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and
veq = V(V.q) - V x (Vxq) (25)

then the equations of motion can be presented in the following

form
STx(Txq) =-LT - Wx (Txq  (26)
since the flow in this case is axisymmetric, then the terms of the

above equation can be explained in spherical polar coordinates as

follows:

Tt - st T d gk, (27)
qx (Vxag)s= [qw% & (rqw):]?o *

+ [F?ﬁ_g Ss(sine-q,)]g, (28)
Tx (T x @) = gEr]- 7 ra))]] -

- Yol Htsinea] ], (29
o=y .2 g (30)

Substituting equations (27) to (30) into equation (26) and then

equating the coefficients of the unit vector io on the left-hand



side with the corresponding coefficients on the right-hand side,

one obtains:

9 _[3 o |1 __ 3 _ (43 =
5?[5? (rqwi] * =5|¥sTno 56 (51n9qw{] =0 (31)

Substituting equation (22) into the above equation, it becomes

2
dw dw
f 4 f _
v oar —’0 (32)

and equation (22) can therefore be expressed as

C 2 . .
q = q * ricy - ;? sin@ (34)

In order to evaluate the constants C1 and C2, the following boun-

dary conditions are used,

I
8

at r » qg=2=0
and (35)

wRsing

at r = R, q

where w is the angular velocity of rotation of the sphere. Hence,

(36)
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Substituting the values of C, and Co into equation (34), we

get

w

= 33 singp_ = R(u x r) (37)
qw r2 w l‘bo r3 w

Then the shear stress on the surface of the sphere becomes

aq q
- 1 %9 8_1]
Ory u[rsine 59 " ar[n }r=R

ar 7 |
= -3uwsind (38)

Hence, the total moment on the sphere is given by

2

m
Mf = J orszinG 21R“sinBde

0]

~gmuRSw (39)

3.6 The Relation Between the Frequency of Rotation of the

Sphere and the Volume Flow Rate

The forces and moments acting on the sphere may be
summarized as follows:
i) the drag, D, given by equation (21) in the tangential
direction of motion acting along the z-axis of Fig. 8

which is passing through the centre of the sphere;
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ii) the mechanical friction, F, opposite to the direction
of motion and acting at the two points of contact of
the sphere and the track;

iii) the moment of mechanical friction about the z-axis of

rolling which is given by

M, = 2eF (40)
where ¢ is the distance betweén the point of contact
and the rolling axis of the sphere as shown in Fig. 8;

iv) the moment,Mf, given by equation (39) about the rolling
axis of the sphere expressed in terms of the radius R,
the fluid viscosity u and rotational angular velocity
w.
Under steady state conditions, the above forces and

moments are balanced by the following relationships:

%.F - 8muR3w = 0 (41)
and

127uRY - F = 0 (42)

Combining equations (41) and (42), we get

2
wR
- (43)

-
"
wiro

Noting that V is the relative velocity of the fluid with respect

to the sphere, i.e.:



V = Vf -V (44)
where

V. = wl - (45)

V. = — (46)

Thus, the frequency of rotation of the sphere, N, about the axis

of the chamber is given by

=
1]

2

2mR [ 1 + %(%) ]

R0 .
- — 0 (47)

2202 2R
2nfdSRE0T + £() ]

An entirely different approach was attempted in the
development of the theoretical relationship between the flow rate
and the ball rotation frequency. It was assumed that the swirl-
ing fluids, after impacting with the sphere, are moving at the
same velocity as the surface of the sphere. Results show that

R

N = —— 0 (48)
2n2dZR2[1 + (7)1

A detailed derivation of this relationship is presented in the

appendix.
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3.7 Application of the Theory to the Experimental Model

Equations (47) and (48) for the frequency of rotation
of the ball are now applied to the device described in section

2.3. The parameters substituted in these equations are:

Ro = 3.81 cm
Rt = 2.86 cm
d0 = 0.28 cm
R = 0.16 cm

2 = 0.86R cm
Hence, the two equations (47) and (48) are reduced to the following

two relations respectively:

=
I}

0.16 Q (49)

and

=
n

0.15 Q (50)

The results of the above equations are presented graphically in
Fig. 9 for the two quantities N and Q. It is seen that the
frequency is directly proportional to the volume flow rate and
that this frequency is zero at zero volume flow rate. In the
actual case, however, the ball does not start moving inside the
chamber unless a certain amount of flow is fed in so that the
static friction between the ball and the chamber wall can be over-
come. This static friction is very difficult to evaluate in the
presence of a moving fluid and was not considered in the formu-
lation of the theory. Since the difference between static and

kinetic friction at low velocities is relatively small, to all
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intents and purposes, it appears quite practical to apply a
single constant correction factor for frictional effects. Equa-

tions (49) and (50) may be written as

=
]

0.16 (Q - ¢) (51)

and

=
n

0.15 (Q - Q) (52)

[

where Q0 is the minimum volume flow rate required to overcome
the friction and start the motion of the ball inside the vortex
chamber. The value of QO is determined from the experimental

data, as will be indicated in the subsequent chapters.
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CHAPTER IV

EXPERIMENTAL RESULTS

4.1 Introduction

The device described in section 2.3 was used for
carrying out the experimental work where the frequency of the
ball rotation was recorded at differentlvo1ume flow rates. The
fluid tested was water. The supply flow is fed through a
settling chamber connected to four inlets of the vortex chamber
as shown in Fig. 10. The pressure drop, AP, across the device
is measured by a differential U-tube mercury manometer. The
two ends of the manometer are connected to pizometers arranged
as shown in Fig. 10. The volume flow rate is measured by rota-
meter. The rotation rate of the ball is accurately read of f
from the output signal appearing on the storage oscilloscope.

The range of experiments covered the values of volume
flow rates from zero to 30 cm3/sec. The results are presented
graphically in the form of the parameters Q and N, namely the
volume flow rate and the number of cycles per second for dif-

ferent geometric parameters of the flow meter.

4.2 The Effect of Changing the Track Mean Radius

The two cylindrical pieces with the two different track
mean radii, 2.86 cm and 2.22 cm, were tested using the 1.27 cm
diameter outlet and the 0.32 cm diameter aluminum ball, maintain-

ing a height of the vortex chamber of 0.28 cm. The results are
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shown graphically in Fig. 11, together with the corresponding
theoretical results using equation (51). The experimental results
show linear characteristics between the frequency and the volume
flow rate and show that the frequency of rotation is slightly
increased when the mean radius of the track is reduced. The
theory shows the same trend of variation except that the increase
in frequency is considerable when the mean radius of the track

is reduced. This is due to the increase of the tangential velo-
city at smaller mean radii due to the férmation of a free vortex
within the chamber. Also, it should be noted that the theory
assumed an inviscid tangential velocity distribution given by
equation (1), which depends only on the radius, disregarding the
shear stresses. Consequently, the theory will be much more
sensitive to the variation of the track mean radius than the

actual case.

4.3 The Effect of Changing the Mass of the Ball

A steel ball of the same diameter as the aluminum ball
(0.32 cm) was tested at a 2.86 cm track mean radius. Sample
results for the steel ball are presented in Fig. 12 along with
those of the aluminum ball and equation (51). The experimental
and theoretical results indicate that the frequency of rotation
is slightly reduced when a steel ball is used. From the fluid
dynamics standpoint, two balls with identical geometrical con-
figuration subject to the same flow conditions would have iden-
tical drag force acting on them. It is therefore quite natural

to expect that a higher velocity would be associated with the
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lighter ball. It is also important to note that a significant
difference in density between steel and aluminum results in only
a 12% maximum variation in frequency. This can be explained by
the fact that the ball is totally submerged in the fluid medium
which provides not only the desirable Tubricating effect, similar
to that of air, but also the buoyancy opposing the weight of the
ball.

4.4 The Effect of Changing the Diameter of the Ball and the

Vortex Chamber Height

The cylindrical piece with large track of 2.86 cm mean
radius was then tested using a large aluminum ball of 0.64 cm
diameter contained in a vortex chamber of 0.56 cm height. The
results are shown in Fig. 13 for the 0.64 cm diameter outlet,
together with the corresponding results of the 0.32 cm diameter
aluminum ball, and a vortex chamber of 0.28 cm height; In
addition, the corresponding theoretical results, using equation
(51), are presented in the same figure. The experimental results
show that the frequency is reduced when the large ball is used.
This may be explained by the increase in the size of the ball
(the drag force is a linear function of the radius, while the
mass increases as the cube of the radius).

By coincidence, the changes of ball size and track dimen-
sion were made so that the ratio (R/%) remained constant. Theore-
tically, tests in both cases should yield identical results,
except for the correction term Qo’ the minimum flow required to

start the ball in motion as shown in Fig. 13. The discrepancies
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observed, though very small, can be explained by the fact that
the reduction in chamber height increases the radial velocity

component which is given by

where 2h is the height of the chamber. Since the original
formulation of the theory neglected the radial velocity component,

an increase in this velocity can definitely be expected to create

additional discrepancies in the approximate theory.

4.5 Experimental Investigation of Pressure Drop

One of the most important parameters in determining
the usefulness of a flow meter is its pressure drop relative to
the flow rate. Ideally, it is desirable to have as little
pressure drop as possible. The following tests were conducted
to investigate the effects of the ball, and the change of the

flow meter outlet diameter, on the pressure drop characteristics.

4,5.1 The Effect of the Ball on the Pressure Drop

In order to study the effect of the ball on the pres-
sure drop, tests were carried out with and without the ball
in the chamber. The results are shown in Figs. 14 and 15
for the 0.64 and 1.27 cm diameter outlets, respectively;
these figures show that the ball has a negligible effect on
pressure drop. As a matter of fact, there is a slight

indication that there is less pressure drop when the ball
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is present. This may be explained by the fact that the
motion of the ball serves as a guide-vane, helping the

flow to exhaust.

4.5.2 The Effect of Changing the Outlet Diameter

The results of a 0.32 cm diameter aluminum ball
running on a track with mean radius 2.86 cm'using two
different outlet diamgters of 0.64'cm and 1.27 cm are
presented in Fig. 16 together with thé corresponding
theoretical results using equation (51). The large out-
let shows less pressure drop than the small one, as
expected, due to less flow restriction. Also, it is
noted that the frequency characteristics are not affected
by changing the outlet diameter. This is because, at the
same flow rate, the circulation constant will be the same
and consequently the tangential velocity of the Water will
have the same value at the same radius. Except for the
pressure drop, the output characteristics of the device

are independent of the downstream loading conditiaons.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

A study of an unconventional concept utilizing the vor-
tex principle for measuring flow rates was carried out. An
experimental model was made to investigate the factors that might
affect the performance of such a devicei The apparatus consists
of a confined cylindrical vortex chamber with tangential inlets
and a central outlet. A free ball is contained within the vortex
chamber so that when the fluid flows in, a vortex will be gene-
rated and the ball will be carried é]ong a circular track inside
the chamber. A light emitting dfode and a phototransistor are
used to pick up the rotation rate of the ball.

A theoretical model has been formulated using the super-
position of two derived linear expressions for the drag and the
moment on the ball. The results of this analytical solution show
linear characteristics between the volume flow rate and the
frequency of rotation of the ball. A different mathematical
approach, which assumes that the momentum of the fluid is imparted
to the ball, shows almost the same relationship as in the first
case. In order to include the effect of initial static friction
in the above-mentioned mathematical solutions, a correction term
was added to the theoretical volume flow rate. This term is de-
fined as the minimum volume flow rate required to start the motion

of the ball, which can be determined either experimentally or by
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extrapolating the experimental data on the frequency/flow rate
plot.

The results obtained in the experimental investigation
are used to substantiate the theoretically predicted results.
Generally good agreement between the theoretical and experimental
results is achieved. The examination of the governing parameters
shows the following:

i) the frequency of rotation of Fhe ball is directly
proportional to the volume flow fate;

ii) the frequency of rotation is slightly increased when
the mean radius of the track is reduced;

iii) the frequency of rotation is reduced when a heavier
ball is used;l

iv) higher values of frequency are obtained for smaller
balls;

v) the pressure drop through the device has no‘direct
effect on the frequency of rotation and this pressure
drop is dependent mainly on the outlet diameter. Also,
a slight reduction in the pressure drop is observed due

to the ball which serves as a guide-vane to facilitate

exhaust flow.

5.2 Recommendations for Further Work

The approximate analytical solutions presented in this
dissertation were based on some approximations and assumptions.
For example, the velocity distribution inside the vortex chamber

was considered similar to an inviscid swirling fluid flow. Also,
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the velocity profile around the sphere was evaluated based on
the assumption that the flow is steady and irrotational. Al-
though this similar approach for calculating approximate drag

on a sphere was used by Landau [11] and Dryden [Ref. 12, p.157],
it must be emphasized that the pressure drag on the sphere was
not taken into consideration. This may be partially responsible
for the discrepancies observed between the experimental results
and the theoretically predicted va1ues,|espec1a11y at high

flow rate.

It should also be noted that the mechanical friction
between the ball and the vortex chamber wall was not evaluated
and, consequently, was not considered in these mathematical
solutions. This resulted in a solution which is not capable of
predicting the effects due to changing the mass of the ball.

The obvious extension of the present work would be
the use of a more realistic velocity distribution for the fluid
flow and consideration of the mechanical friction in deriving a

more exact solution.
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APPENDIX

A second solution to the problem using the same basic
considerations of the first, together with the added assumption
that the fluid particles, after colliding with the sphere,
continue moving with the same velocity as the surface of the
sphere, is outlined in this appendix.

In this solution, the Cartesi§n coordinate system
shown in Fig. 17 is considered. The equatidn of the surface of

the sphere is given by
+ 22 = g2 (1)

Also, the equation of the unit vector normal to the surface of

the sphere will be

(x7 + (y-2)J + zk (2)

=1
I
0| —

The velocity vector of the surface of the sphere, which is also
the velocity vector of the fluid particles after hitting the

sphere, is given by

E=wXxr=-owyitwx] (3)

where w is the angular velocity of the sphere with respect to the

instantaneous axis of rotation z.

Hence the change in the velocity of the fluid, Au, is



>
=

"
Yt

- Ve = (Ve-uy)T +wxJ (4)

The mass flow rate, m, of the fluid particles is given by the

following relation,

=
]

pAu-nds
= ol(Vemuy) + wly-2)1gds (5)

Noting that %ds = dydz, then the time rate of change of momentum

is obtained by the following expression,
dF = p(Ve-wt)[(Ve-wy)T + w x Jldydz (6)

where dF is the force of the fluid on the surface element ds of

the sphere.

The moment of this force about the instantaneous z-axis

of rotation will be

dM, = (F x dF) K = o(Ve-ut)[w(x%+y?) - V.yldydz (7)
Substituting equation (1) into the above equation, we get
- 2 ,2 2
dMZ = p(Vf—wR)[w(R -2°) - wz® + (2£w-Vf)y]dydz (8)

Integrating equation (8), one gets the total moment about the

instantaneous axis of rotation, thus



A-3

(R+2)( [RZ-(y-2)211/2

2

Mz = p(Vf-ml) [w(Rz-Rz) - wz" +
~(R-2) | -[R%-(y-2)211/2

+ (22w-Vf)y]dydz = p(Vf-wR)[wﬂRz(Rz-lz) -

R4 2
- wng (ZZw—Vf)ﬂR 2] (9)

At steady state, the moment Mz ijs equal to zero. Hence, the

following two equations are obtained

Vf = wl =0 (10)

4
wWRZ(RZ-lz) - wﬂBZ-+ (22w-Vf)nR22 =0 (11)

Noting that the velocity at the centre of the sphere

is VS = wt, then equation (11) will give the following relation
between Vs and Vf

L (12
1+ 7(3)

Blw| <

Hence the relation between the frequency of rotation of the sphere

and the volume flow rate will be:

R
N = 0 Q (13).
2.2,2 3,R,2
2m°d RELT + Z(z) ]
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