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ABSTRACT

The identification problem, as defined in this thesis,
is the determination of unknown parameters of a dynamic system
from noisy input-output observations when the system topology
is assumed known. This thesis deals with the use of both con-
tinuous and discrete techniques for identification of linear
systems. Since numerous proposed techniques are available, the
scope of the study has been limited to the presentation of
selected methods covering a variety of approaches to the problem.

Methods involving both analog/digital and all-digital
computation are studied and applied to simulated system data.
The chosen application problem is a second-order, single-input,
single-output system. Comparisons are made with respect to
relative ease of use, accuracy of estimates and required com-
puting time. Proposals are made for possible improvements in
the a]gorithms used.

Methods are also extended to electric power systems
load modelling where large additional unknown periodic inputs
are introduced. Estimation results based on simulated load
data are presented for both a stochastic approximation technique
and the maximum likelihood approach using the Fletcher-Powell

method of minimization.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction to the Identification Problem

Generally speaking, the goal of parameter estimation
is to obtain knowledge about a physical system under normal
operating conditions. This can be achieved by either using
signals already present in the system, or by introducing test
signals of a special class with a sufficient level. A simple
representation of the problem is shown in Fig. 1.1, where the
system is called a "process". The output y is contaminated with
noise (for example, measurement errors). From measurements on
u and y, knowledge about the system has to be derived.

The importance of modelling, identification and para-
meter estimation in automatic control is an accepted fact. One
of the most pressing needs in control engineering is related to
the modelling issue, namely, how accurate should the model be?
how accurate should the model of uncertainties be? and how should
the performance index be defined to consolidate design specifica-
tions and model inaccuracy? The key role of the control engineer
is to understand the physics of the problem and to be able to
trans]atevit into accurate quantitative mathematical models.,

In order to apply linear stochastic control theory, the
process to be controlled should be described in terms of linear
differential or difference equations driven by the input signals

and disturbances. Samples of the process inputs and outputs can



u = process Y

Knowledge about process

FIG. 1.1 Basic representation of the process

parameter probiem.



be used for determining such models.

One might define general identification of a process
as the determination of the topology of the process, considering
it as a celebrated "black box", with the term "parameter estima-
tion" referring to the determination of the parameter values of
the process. However, from this point on in this study, the
terms "parameter identification" and "parameter estimation" will
be considered as synonymous.

In most engineering situations the black box approach
is not a very realistic one. The experimenter, in many cases,
has derived some a priori knowledge from physical insight into
the process under consideration. This may give information on
the topology of a conceptual model for that process, and perhaps
even an approximate knowledge on the values of the coefficients
(parameters) in that model. Thus one must consider the use of
all a priori information about the process in order to obtain
an optimum speed and best economical solution to the problem
[15].

The scheme for solving the parameter estimation
problem may use either a physical model or an explicit mathe-
matical relation (such as classical least-squares). Figs.
1.2(a) and (b) indicate the difference between an "implicit"
model and an "explicit" mathematical relation [16]. Vector
x(t) in this case is defined as the estimate of the process
parameters., The bloc denoted by "In" processes the available
information. 1In Fig. 1.2(a) estimates (x) for the parameters

are determined by successive adjustments of the model. These
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FIG. 1.2 (Adapted from Ref. [16]). Two basic

identification schemes.



adjustments are made using some quality criterion with reSpect
to process and model correspondence,.

Suppose, for example, the criterion in the scheme of
Fig. 1.2(a) was the minimization of some function or functional
of the error between the process outp&t y(t) and the model out-
put ym(t). The goal of parameter estimation in this case would
be defined as: adjustment of model parameters x in such a way

that the actual error ¢ is minimal in some pre-defined sense.
E=Y -y, (1.1)

Certain properties [14] of the estimates X are desired
for evaluating the performance of the identification technique.
These are that the estimate be unbiased, efficient and consistent.
If these properties exist, then X is considered to be a "good"

estimate.

1.2 Techniques for Solving the Identification Problem

One can distinguish between differént kinds of estimates
on the basis of the availability and use of certain a priori infor-
mation. The identification scheme provides numerical values of
the parameter estimates in terms of the available a priori know-

ledge and measured variables.

(a) Minimum Risk or Bayes Estimate [14]. 1In this situation

much a priori information must be available; the proba-

tility density functions of the noise e and the para-



(b)

(c)

meter values 8, the probability density of the measure-
ments y, and the cost of choosing the value x for the
estimate if the true value of the process parameters

is 8 (see Fig. 1.2).

Maximum Likelihood Estimate [3]. The a priori know-

ledge required consists of the joint probability density
functions of the samples y(o0),..... »¥(kt) in addition

to the covariance matrix of the noise. For indepen-
dent samples, each with a probability density function

p(y(it);8), the likelihood function becomes:

L{y(o),..... s¥(kt);8} =

u.‘.:l =

ply(it);8} (1.2)
i=1

This method uses as an estimate x of @ that vector

which makes L as large as possible.

If the noise sequence has a Gaussian (normal) dis-

tribution, the maximum likelihood solution can be shown

[14] to be identical to the generalized least-squares

solution.

Generalized Least Squares Estimation. If the co-

variance matrix of the noise e is known a priori, i.e.,
= T T _
N = E[ee’] where e' = [e(0),e(1),..... se(kt)]

then the Generalized Least Squares estimate [8] is

obtained by minimizing



(d)

(e)

(f) Stochastic Approximation Methods.

(1.3)

For N f I (identity matrix) the variance of this
estimate is smaller than that of the classical Teast
squares estimate [16].

Classical Least Squares Estimate. If no knowledge on

the covariance of the noise is available, it is best

to choose N as the identity matrix, and define the

error criterion as

J=ele (1.4)
From the minimization of J the so-called "normal
equation" for this estimate can be found.
It can be shown [9] that for "coloured" noise
or frequency-band-limited error samples, the estimates
obtained by classical-least-squares are biased and
remain biased even if the data increase without limit.

Optimum Linear Filtering [21]. Every problem in optimum

Tinear filtering or prediction of random processes can
be formulated as an exactly equivalent problem, yielding
jdentical solutions, of estimating a vector of constant
parameters by the method of least squares. As pointed
out by Swerling [34], this can be demonstrated by
choosing the appropriate quadratic function to be mini-

mized.

Consider, as an example,



the system shown in Fig. 1.2(a) where the error is
defined in eqn. (1.1). A quadratic function of the
error ¢ is chosen as cost function and it is desired
to find a parameter estimate x to minimize the cost

J
J = E[e?] (1.5)

A popular adjustment policy [35] can be obtained

by choosing

1) 2 (), () gy(H) (1.6)
where y(i) = a factor governing the speed of con-
vergence.
zg(i) = the gradient of J with respect to para-
meter estimate x at the ith sequence of
error samples.

The solution to this problem can be found by the
deterministic algorithm (1.6) only in the cases where
the probability density of the random variable y is
known a priori so that J can be evaluated. 1If this
is not the case, however, the optimal vector x* can be
found by applying the gradient method to samples of
82 rather than to the expected value. This, then, is

an example of one stochastic approximation method.

Another method would be to use a Newton-Raphson



algorithm in place of (1.6). In this case both the
gradient and partial derivatives of J need to be
estimated,

The crucial problem connected with equation
(1.6) is the determination of the gradient. Several
approaches [16] are available:

T. Use two models with parameters x and x + Ax,
2. Use one model with measurements taken before
and after a step change in X.
3. Use parameter influence coefficients or parameter
sensitivity functions (when applying the continuous

version of equation (1.6)).

1.3 Previous Development of the Identification Problem

The first major aha]ytica] approach to the problem of
eliminating unknown disturbances from measurements was developed
by Gauss in the early 1800's in connection with the analysis of
astronomical observations. He also showed the relevance of the
famous Gaussian distribution to the character1zat10n of measure-
ment errors and in fact his procedures are in wide use today
under the general title of Gauss Least-squares curve fitting.
The next major development came in the 1940's when Wiener and
KoTmogorov first discussed problems of linear least squares
estimation for stoéhastic processes, but by entirely different
methods, both deriving certain optimal filters for processing
the measurements. The next major development in the analytical

treatment of the problem occurred in the late 1950's when Kalman
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and Bucy [22] reformulated the problem in recursive form using
the state variable description of dynamic systems.

| The basic idea of stochastic approximation was intro-
duced by Robbins and Monro [30] who, in 1951, set up a scheme
for finding the root of a regression function. Kiefer and
Wolfowitz [23] extended this method to the problem of finding
the extremum of a regression function where the function was the
expected value of a random variable depending on several real
value parameters.

Sakrison [31] considered the Kiefer-Wolfowitz procedure
and the case where the random variable was an ergodic random
process. A continuous version of the procedure was developed for
this case. An advantage of this procedure lies in the fact that
it may be mechanized with simple analog computation components.

Indeed, Saridis and Richer [44] mechanized Sakrison's
method using an analog computer with digital sequencing logic.
Two a]gorithms were described: the first using sensitivity
functions to find the gradient of the error function, while the
second method found the gradient using a modified Kiefer-Wolfowitz
procedure. In both cases, the amount of analog equipment
required became excessive when searching for more than two or
three parameters.

E1Tiott and Sworder [13] studied the multidimensional
Kiefer-Wolfowitz stochastic approximation algorithm and discussed
a method of eliminating some of the restrictions required for
convergence. In order to accomplish this, an appropriate trans-

formation of the problem coordinate system was required to ensure
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that the criterion of performance be almost equally "sensitive"
to each component of the parameter vector. Although convergence
was then less restricted by the system parameter sensitivities,
it was obvious that the proposed algorithm was computationally
expensive.

A further modification of the multidimensional Kiefer-
Wolfowitz stochastic approximation algorithm was presented by
E1liott and Sworder [12] using a "variable metric" technique.
First an iterative method of evaluating the Hessian matrix of
a regression function was proposed. This method was then used
in conjunction with the Kiefer-Wolfowitz procedure to obtain a
stochastic analog of the Newton-Raphson gradient search method.
This algorithm is related to Davidon's [40] variable metric
method for minimizing a function of several variables. Both
of these methods by Elliott and Sworder have the limitation
that computation time and computer memory increase rapidly with
the dimension of the parameter vector.

A scalar-gain stochastic-approximation scheme involving
simple implementation and significant reduction of computer time
was described by Panuska [24]. Consistent parameter estimates
were obtained from a stochastic approximation algorithm with an
enlarged parameter space incorporating an adaptive filter. The
"built in" adaptive filter is used to remove the bias in estimates
caused by correlation between the noise and measured system out-
puts.

This scheme was later modified to recursive least squares

form by Young [39] and by Panuska [28]. The proposed algorithm
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is computationally more expensive than the corresponding scalar
gain stochastic approximation formula [24], but converges much
faster, and there are no problems with the choice of the gain
constant.

Astrdm [3] has applied the maximum likelihood procedure
to parameter identification of discrete-time systems from input/
output samples. A Newton-Raphson algorithm was used for recursive
parameter estimates to maximize the Tikelihood function. This
algorithm was also used by Gustavsson [18] who presented a
Program package for identification by maximum likelihood method.

Fletcher and Powell [41] in developing a rapidly
convergent method for minimization, eliminated the requirement
for computation of second partial derivatives while retaining
quadratic convergence properties, It was Jeft up to the user
to supply the gradient va]ués.

Bekey and Malony [43] used the Fletcher-Powell method
for least-squares estimation, implementing the scheme on a
hybrid computer. The gradient vector was calculated on the analog
computer using sensitivity equations, -

Many other approaches to the identification problem
have been taken, for example, Mehra [42] and Kailath [10]. How-
ever, it would be far beyond the scope of this thesis to investi-

gate all possible techniques.

1.4 Scope of the Thesis

The main objective of the work presented here is to

investigate a few methods for parameter identification of linear



systems, generally covering the approaches outlined in section
1.2. Comparisons are made with regard to such items as estima-
tion accuracy, ease and cost of implementation. In most cases,
a general (canonical) second-order model was used.

Chapter 2 presents the statement of the problem to be
solved in detail for both discrete and continuous-time cases.

A detailed discussion of identification schemes
selected for investigation is presented in Chapter 3. The
results of these techniques as applied to a second-order system
example are presented in Chapter 4.

Finally, as a practical application, the modelling of
an electrical power system load is discussed. The identification
techniques investigated in Chapter 3 are extended [11] for use
with system models containing an additional period component.
The extended methods are then applied to the problem of electric
power system load modelling from input-output data. Results of
mode] parameter estimation based on both simulated and real load

data are presented.
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CHAPTER 2

STATEMENT OF THE PROBLEM

2.1 Discrete Time Systems

Consider a discrete time single-input, single-output
dynamical system whose input-output relation can be described

by the equation
A( "] - -] ']
z )yn = B(z )un + oC(z )en (2.1)

where'{un}, {yn} are input and output sequences, {en} is a
sequence of independent random variables with zero mean and
unit variance, o is a positive constant. A, B, and C are poly-
nomials of degree k in the backward shift operator z'] defined

by

A(Z-]) =1 + alz'] LR + akz'k (2.3)
-1 -1 -k

B(Z ) - bO + b]Z + ..... + ka

C(z']) =1+ c]z'] S + ckz"k

The following assumptions are made:

a) The functions A(z']) and C(z']) have all their zeros



- 15 -

inside the unit circle.

b) There are no factors common to all three poly-.

nomials A(z), B(z) and C(z).

These two assumptions imply that the homogeneous
equation corresponding to (2.1) is asymptotically stable and
that every state of the systeﬁ is controllable either from u or
e.

There is no loss in generality to assume that the
leading coefficients of the polynomials A(z) and C(z) are unity.
We cannot, however, make this assumption for the polynomial
B(z).

Note that B(z'])/A(z']) has the interpretation of the
pulse transfer function from the input {un} to the output {yn}.
The initial conditions can be assumed zero.

The identification problem can now be formulated as

follows.
PROBLEM

Given the input {un, n=1,.....,N} and the observed
output {yn, n=1,..... oN}, find an estimate of the parameters

of the model (2.1).
Special cases of this problem are well known:
1) k = 0; regression analysis.
2) b0 = b]= ...... =bk Rl T P P =c, = 0; estimation
of parameter in autoregressive processes,
3) b0 = b]= ...... =bk =a; T a,=...... =a, = 0; estimation

of parameters in a moving average.
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4) bo = b]= ..... =bk = 0; parameter estimation of rational
power spectra.

5) Cy = Cp=.vnnn =Cy = 0; least squares model building.

6) a; = C.» 1= 12500000 ,k; identification of noise-free

process with measurement errors.

2.2 Continuous Time Systems

Consider a single-input, single-output system governed

by
A(p)y(t) = B(p)u(t) + C(ple(t) (2.4)

where u in the input, y(t) is the output, and e(t) is a zero

mean, stationary white noise with
E[e(t)e(t)] = o28(t-1) (2.5)

§(t-1) is the Dirac delta function,

§(t-T1) 1, 1=1

S(t-'l') 0 9 T # to
The symbol p denotes a differentiation operator

px = dx/dt

and A, B and C are polynomials



A(p) = p" + a]p"‘]+ ..... +a (2.6)

B(p)

n
o
(<]
o
=
+
o
-—
o

C(p)' p" + c1P R R e
where A(p) and C(p) have zeros only in the left half-plane.

PROBLEM

Given input u(t) and output y(t) for 0 <t <T, deter-

mine the parameters in eqns. (2.4) and (2.5).



CHAPTER 3

DESCRIPTION OF SELECTED METHODS

The parameter identification techniques presented
here can be divided into two categories; continuous-time methods,
and discrete-time methods.

Continuous methods shall be defined as those employing
continuous-time models of the system under study. (For example,
models constructed on analog computers). These models are con-
structed using updated estimates of the real system parameters,
given the system input-output data. Updating of parameter
estimates may be done by either continuous or discrete equations,

Discrete-time methods are those utilizing all-digital

identification techniques, given the system input-output data.

3.1 Continuous System Model: Application of Kiefer-Wolfowitz

Minimization

If M(x) is a regression function with maximum at un-
known point O, where M(x) itself is unknown to the experimenter,
and the following conditions [23] are satisfied:

(a) o

M(x) = J y dP(y/x) (3.7)
where P(y/x) is a family of distribution functions
which depend on parameter x. M(x) is thus defined

as the expected value of random variable y given x.



- 19 -

(b) °°

J (y-M(x))2dP(y/x) <S<w (3.2)

(c) M(x) strictly increasing for x < 0, and M(x) strictly
decreasing for x > 0,

(d) For {an},'{yn} infinite sequences of positive numbers;

a, > 0 (3.3a)

ZYn = o (3.3b)
Zanyn < o (3.3c)
1y %% < w (3.3d)

Then the recursive scheme

<

_ n
41 = %0 Y o (yZn'y2n-]) (3.4)

n

with X1 arbitrary, results in Xn converging stochasti-
cally to 8 (as n » =), as shown by Kiefer and Wolfo-
witz [23]. Random variables Yon» Yop-1» have distri-

bution functions
P(y/xn+an) and P(y/xn-an)

where P(y/xn) = P(y/xn,xn_], ..... Xp,X1) .
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Consider the system described in Laplace form by:
A(s)y(s) = B(s)u(s) + C(s)e(s) (3.5)
where: y(s) the Laplacian output of the system
u(s) system input (driving function)

e(s) the Laplacian of zero mean stationary

white noise e(t).

A(s) = s+ a]s"'] S ta, (3.6)
_ n n-1

B(s) = bos + b]s + ..., + bn

C(s) = s" + c]s"'] S tcp

A(s) and C(s) have zeros only in the left complex plane.

s in this case signifies the Laplace operator for

differentiation with zero initial conditions.

The system represented in this form may easily be
simulated on the analog computer along with desired models using
estimated parameters. Since all the necessary dynamic filtering
is done by the analog models, only the Kiefer-Wolfowitz algorithm
need be programmed on the digital part of the computer.

The error function to be minimized is formed as follows:

Consider the model of eqn. (3.5) with input-output

values u, y.
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A(s)y(s) = B(s)u(s) + C(s)e(s) (3.7)
where A(s), B(s) and C(s) include estimation of the true parameter
and €(s) is an estimate of e(s).

Solving for €(s),

e(s) = ¢ 1(s)[A(s)y(s) - B(s)u(s)] (3.8)

Since the expected value of e, E[e(t)] is assumed to
be zero, it is desirable to minimize the expected value of [e(t)]z.
This may be used as the error function in the Kiefer-

Wolfowitz algorithm:

X (1) = x;(n) - T [e?(x;(m)+a(n)) - e2(x,(n)-a(n))]

(3.9)
xi(n) is an estimate of the parameter xiE{a],az, ..... 3 bo’
bysenen. bs Cy2Cpaenen. cn}. (Let @ be parameter vector (a],
CPYNN cn)T

a(n) and y(n) are sequences of positive real numbers
chosen to guarantee convergence by satisfying eqns., (3.3).

Fig. 3.1 shows a general hybrid computer implementation
of this method. The transfer functions F](s), F2(s), F3(s) and
F4(s) are defined by:

Fi(s) = RS Fa(s) = &3 )
K n 3.10
Fa(s) = Bls) Fals) = &L8
C(s) 2 C(s)
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The notation F3(xi+) means that the estimate of the ith element
of the parameter vector 8 has a perturbation given by xgn) =
xgn) + a(n) and inserted into transfer function Fj.

u(t) and e(t) are both generated in the digital section
of the program. e is generated as a Gaussian disturbance with
zero mean while u is a pseudo-random binary sequence of ampli-
tude one. The sign of u is randomly chosen and satisfies a
uniform distribution.

A1l parameter estimates are done on the digital com-
puter and inserted into the F3 and F4 transfer functions in the
analog section.

Note that e(t) is not an instantaneous function of the
parameters, due to transient effects present in dynamic systems,
but rather it depends on the present and past history of both
the system and the parameters. Thus, even if it were possible to
obtain a nearly instantaneous adjustment of the parameters to
their correct values, the criterion function J = €2 would not
instantaneously decrease to its minimum value unless all tran-
sients have been dissipated [?]. Since J depends on the entire
time history of the parameters, it is no longer a function in the
sense of ordinary calculus but rather a functional, and an
instantaneous gradient cannot be mathematically defined. To cir-
cumvent this mathematical difficulty the parameters can be

allowed to remain fixed during the computation of the gradient.

For example, if the criterion function was defined as

T
J = J eldt (3.11)
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the gradient of J would be calculated while the parameters are
fixed during an interval of T seconds.

This approach is described in section 4.1 where a test
example of the Kiefer-Wolfowitz method is shown.

A useful means of approximating the gradient of an
unknown function is implied in the Kiefer-Wolfowitz algorithm.

As an example, consider the function y(x) whose nature
is unknown to the observer. The gradient at point X, can be
approximated by evaluating y at (xn+an) and (xn—an) and using
the average slope, as indicated in Fig. 3.2.

The methods discussed later in this chapter require the
calculation of the gradient of the function to be minimized.

In some cases, the second partial derivatives are also required,.
This can be difficult when the nature of the function to be
minimized is unknown to the experimenter.

When using analog computer techniques, it. is possible
to find the approximate gradients by the use of "sensitivity"
equations.[l]. However, it is necessary, in these cases, to
assume that the rate of adjustment of the parameters will be
sufficiently slow compared to the basic time constants of the
system being identified. When a rapid rate of parameter adjust-
ment is desired, the implementation of this method leads to
serious stability problems. Furthermore, the use of sensitivity
equations requires an excessive number of analog computing

components,
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Yplxpreg) T 7
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Average slope = L

2an

FIG. 3.2 Gradient approximation by parameter

perturbation.
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3.2 Computational Aspects of Methods Using Discrete Models

3.2.1 A stochastic approximation method using adaptive
filtering

Panuska [24] developed a stochastic approximation

algorithm with an enlarged parameter space incorporating
an adaptive filter.

The system to be identified is governed by the
linear difference equation:

A(z'])_yn = B(z'])un + AC(Z'])e (3.12)

n

where A, B, and C are polynomials of degree k in the backward

shift operator z~! defined by

Z Y, =Y (3.13)

A(z']) =1 + a]z']+ ..... akz-k (3.14)
-1y _ -1 -k

B(z ') = bO + b,z *oo..tby 2 (3.15)

R I R L T (3.16)

{un}, {yn} are input-output sequences and {en} is a
sequence of independent random variables with zero mean and
unit variance. A is a positive constant.

Panuska showed that for the standard stochastic
approximation technique, this model will produce biased

results since the moving average produced by the AC(z'])en
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terms in eqn. (3.12) is correlated with the system outputs
Yn-

The bias of the standard schemes is removed by using
an algorithm with a "built-in" adaptive filter, determined
by the current estimates of the parameters of egn. (3.12).

An enlarged parameter vector @ was formed:

ol

= (-a],.....,-ak, bospoo.obk, c], ----- Ck) (3-]7)

with the nth estimate of the vector denoted by Xpe

Then system (3.12) was rewritten as:

Y. =08V + )e (3.18)

beenere, ) (3.19)

At the end of the nth step of estimation procedure

the eqn. (3.18) reads

hey, =y - x ¥ (3.20)

~

!n is defined by eqn. (3.19) as the computed observa-

tion vector with L T being replaced by

€

NETPRPP ’en-k (outputs of the model).



The algorithm is then defined by

Xpe1 = Xp + Gplyp-x Vo)V (3.21)

where Gn = %, G being a positive gain constant.

This method can be tested using an all-digital pro-
gram by assuming that the system to be identified is
governed by the discrete difference eqn. (3.12). A1l input-
output observation would then be made from the digital
solution of (3.12). However, since many practical processes
are continuous, not discrete, it is desirable to achieve
conditions as realistic as possible by modelling the system
to be identified on the analog computer. Eqns. (3.20)
and (3.21) would then be solved on the digital portion of
the hybrid computer. Assuming that the analog model of the
unknown system is realistic, the identification scheme
becomes an’ on-line process.

In order to simulate the unknown system in the con-
tinuous form (analog computer), it is necessary to convert
eqn. (3.12) from the Z-transform to the Laplace transform

notation.

The resulting form would be
A'(s)y(s) = B'(s)u(s) + C'(s)e(s) (3.22)

where the coefficients of polynomials A'(s), B'(s) and C'(s)

are not necessarily the same as those of the polynomials
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A(z), B(z) and C(z).

Since B(z'])/C(z']) has in eqn. (3.12) the obvious
interpretation as the pulse transfer function from input {un}
to output {yn}, transforming B(z'])/A(z']) and C(Z'])/A(z'])
into Laplace form will yield the necessary continuous trans-
fer functions.

Panuska [24] shows that convergence of the estimation
algorithms in the mean square sense is obtained and both he

and Sacks [36] discuss resulting parameter variances.

3.2.2 An adaptive recursive least-squares identification
algorithm [28]

An adaptive recursive least-squares algorithm with
"on-line" structure was proposed by Panuska [28] where, as
in application of his scalar gain algorithm [24], the
bias effect of correlated noise was eliminated by introducing
the concept of an "enlarged" system parameter vector.

The general system equation as described by eqn. (2.1)

can be written in vector notation:
y(n) = 8Ty(n) + e(n) (3.23)

where 8, V are described by (3.17) and (3.19) res-
pectively.
Restating the identification problem: Given a sequence

of observed input-output pairs

{u(n),y(n)}, n

n
—t
"
N
-
.
-
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find an estimate X of the enlarged system parameter vector 8
in eqn. (3.23) and a variance estimate Az.
The algorithm can then be obtained by a formal applica-

tion of the least squares formula.
£(n1) = [x(n) + T(n)[VT ()T (n=-1)¥(n)+11 [y (n) -
-xT(n)¥(n)18(n) 0 (3.24)

I(n) = r(n-1) - T(n=1)¥(n)V(n)T(n-1)T(n)+11 T (n)T (n-1)
(3.25)
Eqns. (3.24) and (3.25) in effect describe a Kalman
filter [21] used for estimation of system parameters rather
than system state.
Convergence of the algorithm in the mean square has

been proven [21,28] as n+=. Initial conditions are:

x(1) = arbitrary€q

r'(o) diag [1,1,..... s1]

[-]Q means truncation to a bounded closed rectangular

set @ known to contain 8.

In eqn. (3.24), i(n) denotes a vector nbtained from
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V(n) defined in (3.17) by replacing the errors e(n-1),..... .
e(n-k), by "computed errors" e(n-1),.....,e(n-k), where
e(n) = y(n) - xT¥(n) (3.26)

with initial conditions

y(-k+1) = y(-k+2) = .,... = y(o) =0
u(~k+1) = u(-k+2) = ..... = u(o) = 0
e(-k+1) = g(-k+2) = ..... = e(o) = 0

3.2.3 Fletcher-Powell Minimization [41]

Fletcher and Powé]] developed an iterative descent
method for finding the local minimum of a function of several
variables.

Let x be the vector of adjustable model parameters.
Define the criterion J = sz(i;t)dt as in the previous
section. ’

The Fletcher-Powell algorithm is an iterative pro-
cedure in which the (i+1)st parameter vector is given by

£i+] - 51 _ YiHiVi(Li) (3.27)
H is a positive definite symmetric matrix which tends

to the inverted Hessian matrix for J at its minimum.
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The iteration procedure can be described in the

following steps.
1, 0
1. Choose an initial value for H of H' = ‘.
. . " 1
2. Set g‘ = -H1VQ. This establishes the direction of the

step modification to 5‘.

3. Obtain y‘ such that J(i'I + y1§1) is a minimum with
respect to p along 51 + p§1 and Y1 > 0.
4. Set AT = y's'.

i+ i i

5. Set x " '=x + A,
6. Evaluate J(ii+]) and Vi(xi+1).
7. set yi = w(x'tY - waxhy.
8. set Hit1 = 41 4+ al + g1 (3.28)
e
where matrix A" = T3
A
8; X
i 4 4T, 1
Loai . Hyy M
and matrix B = —
Yi HY

9, Set i = i+1 and repeat from step 2.

Stop the procedure when (_5_1.T51.)]/2 is less than a
prescribed amount, or when a specified number of iterations
is exceeded.

The gradient vi(ii) must be defined for each iteration
by the user of the method.

Bekey and Maloney [43] have used sensitivity equations
to compute VJ by analog computer and pointed out the dramatic

speed advantage of the hybrid technique over all digital



- 33 -

solutions. However, a simple second order system was studied
with no noise present in the system. As pointed out in
section 3.1, sensitivity function methods require large
amounts of analog computing equipment and can also present
stability problems.

To estimate the parameter Yi in step 3, Fletcher
and Powell used an algorithm employing the cubic inter-
polation technique suggested by Davidon [40]. The initial
step in the procedure is to choose a point gi on the vector
[x' + ps'] with o > 0.

Let J,, Vd,» 4,

u
function and gradient at points 51 and g‘. Then an estimate

, and vgu dencte the values of the

of y1 can be found by interpolating cubically, using the
function values Jx and Ju and the components of the gradient
along §i.

This is given by,

. T.i
i V. S  +w-r
i B o e o (3.29)
P vd 'S’ - vd.'S' + 2w
=u = X
L 2 o4 Tei Tei1/2
where w=(r°-vg s v, 's) (3.30)
_ 3.5 Tei Tei
and P S(,-9,) + Vst + vl s (3.31)

A suitable choice of the point g‘ is given by selecting

p from:

-2(d_-d )
p = minimum of '1, —X 0 ]

l vnggi J (3.32)
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where Jo is the predicted lower bound of J(x).

If J(ii + yisi) is not less than both J, and Ju,
then use a smaller value of p and repeat the interpolation.

Davidon suggests one should ensure that the mimimum
is located between Li and gi by testing the sign of vguTgi
and comparing Ju and Jy before interpolating.

If VQUTgi is negative or, if Ju < Jx’ then: before
interpolation, increase the size of step §i by modifying H,

Ho %S

jsk > ij (3.33)

Jk
where v is the squared length of S.

The process is then repeated starting from the new

position.

3.2.4 Astrém's technique for identification (Maximum
Likelihood Hethod)

In the report by Gustavsson [18], a digital program
package is used which produces a mathematical model of the
process and its disturbances from given input/output samples.
Identification is done by the Maximum Likelihood Method.

The problem can be stated as follows:

Given input/output samples {u(t),y(t);t=1,2,..... SN}
where u(t) is the input signal and y(t) is the output signal,

find an estimate of the parameters of the system model

Az Dy () = Bz ) u(e) + ac(z-ye(t) (3.34)
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Definitions for the various terms in (3.34) can be
found in eqns. (3.13) and (3.14).

A(z-]) and C(z']) have all their zeros inside the
unit circle. Furthermore, there are no factors common to
all the polynomials A(z']), B(z']) and C(z']).

It follows from (3.34) that the residuals {e(t),
t=1,2,..... ,N} defined by

c(z7Me(t) = A(z"N)y(t) - B(z"M)u(t) (3.35

are independent and normal (0,A). The logarithm of the

Tikelihood function becomes [45]

L= 21 ez(t) - N log A + constant (3.36)
A2t

1

ne~—m=2

N

Maximizing this function is equivalent to minimizing the

loss function

1 N
J(8) = 5 1 e°(t) (3.37)
t=1

where 8 is the column vector (a],.....

c],.....,ck).
X is found such that J(x) is minimal.

To minimize the function, an iterative combined Gauss-
Newton and Newton-Raphson algorithm is used.

K e k"  yLagg (a7 (x™) (3.38)
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where Jo = gradient vector of J(x)

Jgg = matrix of second partial derivatives
of J(x)
Y = scaling factor.

Differentiating (3.37) gives

N
od  _ oe(t)
o .Z e(t) T (3.39)
i i=1
2 N N 2
9°4d _ 2 ae(t) 3€(t) + z P €$t2
— = e(t) (3.40)

Eqn. (3.38) becomes a Gauss-Newton algorithm if only
the first term of (3.40) is used.

Near the minimum, a Newton-Raphson procedure is used
by considering both terms of the right-hand side of eqn. (3.40).

The minimizing algorithm becomes:
1. Put x" = 50 (starting value of x)
2. Evaluate Vg(én) and Vee(in)

3. Calculate §"+]

and repeat from 2.

Astrom [2,3] showed that for noise, e(t), Gaussian
zero mean, the estimates are asymptotically efficient. This
means 1in practice that one cannot expected to find an estimator
with a greater accuracy for long samples.

By choosing appropriate state variables for the compu-
tation. and by performing the computations recursively, the

gradient of the residuals and the second partial derivatives

of the residuals can be economically calculated.
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Differentiating (3.35) gives

5o [e(z7he()] = 279y (¢)

J
L c(z7h) 2elt) . pmdy(y) (3.41a)
J
. . -1y 9e _ -1
similarly: C(z" ") 35 = -2 u(t) (3.41b)
o

5%3 [c(z")e(t)] = 0
c(z7!) 38 = ¥y (3.41c)
J

Differentiating (3,30c) once more:

2 s s
C(Z-]) 3¢ _z"l J+] aE‘t!

aaiacj 9a,
2 .
- -i-j+
C(z77) g2t = p71m3* Belt) (3.42)
i 73 1
2 .
- ~i-j+
s - e g0
LR 1
Since 36 = p7i*1 2e(t) _ de(t-i+1) for i <t + 1.

To compute the residuals from eqn. (3.35), a state

variable representation is introduced:

x](t+1) = -c]X](t) + Xz(t) + a]y(t) - b]u(t) + y(t+1)
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X2(t+1) = -czx](t) + X3(t) + azy(t) - b2u(t)
(3.43)
Xk(t+1) = -ckX](t) + aky(t) - bku(t)
and e(t) = (1,0,..... »0)X(t)

Eqns. (3.41) complete derivatives as follows, again

using a state variable approach.

9E -

sy - Ni(t)

%%— = X;(t-1) = X,(t) etc. (see_Gustavsson
2 [18]1).

For computation of the exact second partial derivatives
of the loss function, the second partial derivatives of the

residuals are needed, that is

2
LEE -2,

ooooo ’n
axiaxj
From eqns. (3.42),
3e(t) _ 9%e(t-i-j+2)
= etc.

aaiacj aa]ac]

These relationships can be used to facilitate compu-

tation.
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NOTE: The second partial derivatives are zero if no
differentiating is made with respect to a "c"-
parameter.

After parameter estimates have been obtained, the
order of the model can be tested [3] to ensure that the
assumed order is not less than the order of the system. A
test of the residuals should indicate that {e(t),t=1,.....,N}
form a series of independent normal variables. One simple
test of independence would be to compute the covariance
function % tgl e(t) (t+t) for a few delays = 1,2,3,...

A quick method is to count the sign changes, the number of

which should be = % N for a sequence of independent

variables.
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CHAPTER 4

TEST EXAMPLES

4.1 An Algorithm Using Kiefer-Wolfowitz Minimization Method

The following example problem illustrates the use of a
continuous-time system model for parameter identification. The
minimization technique proposed by Kiefer and Wolfowitz is
implemented making use of hybrid computer techniques (EAI 690
hybrid computer). A1l system models are constructed on the
analog computer, Limitations on the size of the example problem
chosen were necessary due to the amount of analog and digital
equipment available.

Thus, a simple first-order single-input example has

been chosen.

Consider the first-order system written in Laplace form,

A(s)y(s) = B(s)u(s) + C(s)e(s) (4.1)
where A(s) = s + aj
B(s) = bos + b]
C(s) = s + q

The parameters to be identified are:

o o [<7]
1] ] ]
o ()] -
o o o



Let a = ay, b = b], c = Cq-
Using an analog model of eqn. (4.1) and solving for the

estimated error e, we get,

o>

e(s) = &2

y(s) - — u(s) (4.2)

s + c

0>

s +

Let parameter vector 5T = (a, b, c).

The problem now is to choose an error criterion J as a
function of e, then find X Which minimizes J using a Kiefer-
Wolfowitz minimization algorithm,

The vector notation for eqn. (3.9) would be,

<

x(n+1) = x(n) - 50 [g* - g7 (4.3)
n
where §* = [J(3+a(n),b,28), J(3,6+a(n),?), J(3,6,8+a(n)) 77
47 = [9(a-a(n),b,2), 3(a,6-a(n),8), 9(3,B,8-a(n))]"

(4.4)
The noise, e, is digitally generated as a series of
numbers random in amplitude with a Gaussian distribution (0,0.5).
That is, zero mean, variance of 0.5.
However, the input sequence, u, is a pseudo-random bij-
nary sequence whose sign is random with dependence on a uniform
distributed random variable (also generated on the digital computer).

Graphs illustrating the €,u sequences are shown in Fig. 4.1,
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FIG. 4.1 Sequences u(t) and e(t) generated by

digital computer.
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To satisfy convergence theorems [23], sequences y(n)
and a(n) must comply with restrictions (3.3). In this example

a and y are digitally generated from

Eq
a(n) = PE (4.5)
Ez'l'l + E3
(n) °1
yin) = PG
Gz-n + G3

where Eqs Eos Ej, PE, Gqs G,, G3 and PG are constant
for each identification process.
Two methods of evaluating the error, J, were considered:
a) J = ¢? (4.6)
In this case J is the instantaneous value of the
squared error estimate €.

Define

(4.7)
W(s) = ws)
s + C
Substituting (4.7) into (4.2),
e(s) = sR(s) + aR(s) - bW(s) (4.8)

Using eqn. (4.8), a significant reduction can be made
on the number of analog computer components required to solve
the problem. Only the terms R(s), sR(s) and W(s) are generated

on the analog computer. e(s) is a linear combination of these terms
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and can be calculated digitally, resulting in a saving on analog
equipment.
To make an approximation of the gradient vector required

for the Kiefer-Wolfowitz algorithm, define gf and g‘ such that

sR(s) + (3 + a(n))R(s) - bu(s)
J¥ = |sR(s) + aR(s) - (b + a(n))W(s) (4.9)
sRY(s) + aRY(s) - BuW'(s)

sR(s) +(a - a(n))R(s) - bu(s)
sR(s) + aR(s) - (b - a(n))W(s)
sR™(s) + aR™(s) - BW (s)

| &~

where R*(s) = T %(i )
w+(s) =35 ¥ g(i)a(n)
R™(s) = s + %(f)a(n)
w (s) = u(s)

The analog flow chart for the circuit required to cal-
culate W, R, sR, w*, R+, sR+, W™, RT, sR™ is shown in Fig. 4.2.

These variables were digitally sampled at the same
frequency (%) at which the inputs e(t) and u(t) were being up-
dated. Thus gf and J  are discrete variables rather than con-

tinuous, being evaluated every T seconds.

For the tests run, sequences a(n), y(n) were chosen
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FIG. 4.3 Analog model used for Kiefer-Wolfowitz
Algorithm (J = ez) (amplitude scaling

not shown).
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according to eqn. (4.5) as

E, 6,
a(n) = 575 vy (4.10)
n
G] in this case was used as a gain control in the

Kiefer-Wolfowitz algorithm (4.3).

Results of two estimates of "a" are shown in Fig. 4.4

one with noise source e(t), removed from the system.

Fig. 4.5 shows estimates of a, b with the estimate of
C set to a nominal value of 2.0. Here it was necessary to
increase the algorithm gain (G]) by a factor of 10 to obtain a
reasonable identification on parameter b. However, this tended

to decrease the stability of the estimation procedure for para-

meter a.

It was not possible to obtain a good estimate of the

parameter ¢ using this stochastic approximation method.

ty

b) J e2dt
)
As pointed out in section 3.1, & is not an instantaneous

function of the parameter, but depends on the present and past’
history of both the system and the parameters. Thus J, as defined
in eqn. (4.5), might introduce a certain amount of inaccuracy and
Tack of stability in the Kiefer-Wolfowitz algorithm.

It was decided to use the more reasonable criterion

function ts

J = 824
0
t = analog computer
time

t (4.11)
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nominal noise, E[ez(t)] = 0.5

Time scale: 25 seconds/division
E-l = ]0,‘G] = 10, N = 1000

True values: a = 1,0, b = 6.0, c = 2.0

FIG. 4.4 Estimate of "a" parameter only, b and ¢

fixed.
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b
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o
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G, = 100, Eqy = 10, N = 2000

¢ fixed at nominal value

Variance of noise = 0.5

True values: a = 1.0, b = 6.0, ¢ = 2.0

Time scale: 25 seconds per division

FIG, 4.5 Estimate of both "a" and "b", & fixed

at nominal value,
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In this case, tS is the time interval over which J
and its gradient are being evaluated. These values are then
used for one iteration of eqn. (4.3).

As in the previous case, inputs to the system are the

discrete random numbers

where i = 1,2,3,..... sN

e and u are generated by digital program every T seconds,
the value of T being chosen for proper excitation of the system
to be identified.

Note that the input sampling period T and the gradient
evaluation interval ts are independent. During the interval ts
there will occur tS/T discrete random inputs. At completion of
interval ts, required values of the criterion function are
samples ana the analog re-initiated for the next iterative
interval,

It is desirable to utilize the high-speed integration
capabilities of the analog computer by requiring all calculations,
excluding parameter update, to be performed on the 680 analog.
However, a limited number of analog components were available,
making a completely parallel analog calculation impossible for
each iteration step.

To overcome this difficulty, a method of "time-sharing"

analog equipment has been introduced. As shown in Figs. 4.6 and
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and 4.8, one analog circuit evaluates J for each parameter estij-
mation set (a+, b+, c+). At each iteration the desired vectors
gf and J° are obtained by integrating through the evaluation
interval (ts) six times, inserting the appropriate a*, b*, c*
each time according to eqn. (4.4). The FORTRAN digital program
is listed in the appendix under the name K.W.#4.

Estimation results for the "a" parameter, holding b
and ¢ constant, are shown in Fig. 4.9. Parameter estimates for
a and b, with ¢ fixed, are shown in Fig. 4.9. The results are
given for 200 iterations with the analog computer time-scaled for
a speed-up factor 10. This is the fastest speed possible without
exceeding digital program limits. Resulting time required for 200
iterations are quite large, 170 seconds in the case of the 2
parameter estimation (a,b). This is approximately five times
slower than the results obtained when using €2 as the error
criterion,

In addition, only 10 input samples were taken for each
integration interval when evaluating J. The sampling period was
0.01 seconds. Considering the random nature of the input signals,
this was a rather small number of samples. A more reasonable
selection might be 100 input samples per integration interval.
Consider, as an example, a relatively large number of iterations
(e.g. 1000) using 100 input samples per interval. For the two-
parameter problem the computing time required would be approxi-
mately 1-1/3 hours. This type of computing time places severe

restrictions on the experimentation with the method.

As in section (a), it was not possible to obtain estimates
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for the parameter c¢. This may have been partly due to diffi-
culties in analog amplitude scaling encountered during variations
in the estimate of c.

It should be noted that bounds were placed on the para-
meter estimates due to amplitude scaling and stability considera-

tions. The limits on "a" and "b" parameters were,

o, = 9.0
amin = 0.0
Brax = 9-0
Bmin = 0.0

¢ was held constant at 2.0.

The problems in choice of algorithm gain again appeared
in this section, for the two-parameter case. Gain, G] = 50, seemed
optimal for estimation of parameter "a", but this value was much
too small for reasonable estimates of "b". The maximum gain
possible, without causing estimates to be oversensitive, was
G] = 200, a velue still insufficiently large for successful results
with parameter b. This indicates the desirability of introducing
an "adaptive" gain based on the sensitivity of each parameter

estimate.
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( START)

|
CL1, CL2, on
CLO off

\
Analog PP

: 20,
Generate a(n), y(n) '
Transfer a(n) to D/A
EP(1) = a(n)
EP(2) = -EP(1)

-

Y
Generate e(i), u(i)

i=1,10

CL2 off

DAC = x(Jj) + EP(k)
Transfer DAC on D/A#j
CL1 off, CLO on.

FIG. 4.7a Digital flowchart, Kiefer-Wolfowitz
algorithm: J = Jezdt.
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Transfer e(i), u(i)
to analog (D/A's)

A

Read AJ(k) from analog
CL1 on, CLO off.

| k = 1,2 =Q€>
Transfer x(j) on D)A#j
DJ = (AJ(1)-AJ(2))/2

x(j) = x(3) - DI*y(n)/a(n)

1,3

Transfer x on D/A's

(&N
i

CLO on.

n-'I,NS @

\

( STOP )

FIG. 4.7b Digital flowchart, Kiefer-Wolfowitz
algorithm: J = Jezdt.
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FIG. 4.82 Analog model and logic circuit used for

Kiefer-Wolfowitz Implementation: J = Jezdt.
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No. of iterations, N = 200
a
1&’5{:‘ T
A WA
- ; :
e i
1.07
0.57 1
o1 >~ t
- ‘ |

B ‘ 170 seconds

P
>

6.0T | @ = v i
EEREETE
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True values: a = 1.0, b = 6.0

N = 200, G] = 200

FIG. 4.9 Estimation of "a" and "b" parameters.
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4,2 On-Line Stochastic Approximation Method (Scalar Gain)

Consider the following example process to be identified:

- ) = -
Yo = 1.8y * 0.7y, 1.0u, ; *+0.5u, ,+e - 1.0e .+

+ O.2en_2 (4.12a)

where e, is a sequence of independent random variables with zero

mean and unit variance.

Comparing with eqns. (3.12) and (3.14)

-1 -2 _ -1 -2
(1+a]z t a2z )yn = (bo+b]z + b,z )un +

+ (]+c]z'] + czz'z)en (4.12b)

a, = 0.7
b0 = 0.0
b] = 1.0
b, = 0.5
¢y = -1.0
Cy = 0.2

The algorithm for the estimate of the parameter vector §

is

x(n+1) = x(n) + &(n)[y(n) - x(n)T¥(n)I¥(n) (4.13)

with x(n) and V(n) defined by eqns. (3.17) and (3.19).
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The problem, then, is to identify the parameter vector

8, choosing an appropriate gain sequence Gn.

4.2.1 Analog Simulation of Process to be Identified

Since most practical processes are continuous in
nature, it is of interest to implement the algorithm by on-
Tine sampling of a continuous real-time process. In this
case, the process can be simulated by analog computer in
real time, if eqn. (4.12) is converted from a discrete to

a continuous process.

Eqn. (4.12) can be rewritten in Z-transform notation

as
y(z) = %%f% U(Z) + %%f}e(z) (4.14)
where A(z) = 22 - 1.5z + 0.7

_B(z) =z + 0.5
C(z)

22 - 1.0z + 0.2

Transforming B(z)/A(z) and C(z)/A(z) into Laplace form
will yield the necessary continuous transfer functions.

The equivalent transfer function in the analog system
involves a zero-order sample and hold network at the input
to the transfer function, while the output would also be
sampled. This configuration is shown in Fig. 4.10.

Note that u*(s) is defined as the instantaneous sampled

value of u(s) and that,

Z[u*(s)] = u(z)
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ur(s) TS
.._-_e.__ + (S) y*(s)
u(s) A s yis) X
T ] (s féb CT
| | | ]
| |
Zero Order | !
|
| Hold I |
] | I
e*(s) ]  o-15 ' |
e(s)" >4 s KZ(S) | |
T |
| |
| | | |
DIGITAL . D/A | ANALOG | A/D DIGITAL

FIG. 4.10 Continuous representation of the

discrete model.



- 62 -

Analog Computer

[ - - - - "
D/A A/D
2N + -
N R O
1
! |
' |
Ko(s)
. . - - - -
i" - - - - - - - - - 773
| |
l Gaussian |
— Noise ,
I Source
|
‘. |
| _ A T
€n T Yn " *p ip I
| A = 3 o y
[ Xpe1 = 20 * Bpeply el
' Generate U 41 1
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FIG. 4.11 Hybrid implementation of Panuska's

stochastic approximation method.




Z[y*(s)] = y(z)
Z[e*(s)] = e(z)

where z[ -] is the z-transform operator and T is the sampling

period in seconds.

The problem before implementing this method is, given
the discrete description of the system to be identified, find
the transfer functions K](s) and Kz(s).

From Fig. 4,11,

K;(s)
L— (1-e"T%) =L 18(2)] (4.15)
e~ Ts . 2”1
1-eT8 =7 . ;7]

Interchanging the Laplacian and Z-transform operators

in eqn. (4.15)

_ =1 z . B%zg
K, (s) -
similarly 25 = Z 1[;—%—7 . %{f&]

Thus the parameters in the analog system may be cal-

culated, given the discrete parameters.

Using residue theory,

x

P zNB( z
f,(nT) = Z] Res Y4l (4.17)

1
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~

P 2"c(z
fo(nT) = iZ Res > irs

1

evaluated at the kp poles where (z-1)-A(z) = 0.

The time domain functions f](t) and fz(t) can be

transformed using Laplace transform tables to give

d3s + d4
K](s) = SF](s) = (4.18)
s” + d,s + d
1 2
52 + d55 + d6
K2(s) = SFz(s) = =
s”™ + d.s + d
1 2
where d] = ,3567/T7
d, = .2427/T2
d3 = ,254/T
= 2
d4 1.812/7
d5 = ,9758/T
dg = .2427/72

and T is the sampling period.

Analog simulation of functions K], K2 is shown in
Fig. 4.13.

In order to facilitate analog programming, the

following transfer functions have been simulated,

o(s) _ &(s) . 1 (4.19a)
u(s) e(s) s2 4 d]s + d2
¥, (s)
STsT © dSS +d, (4.19b)
Yels) >

W = s + dss + d6 (4.19c)
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FIG. 4.12 Digital program flowchart: scalar

gain method.
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y(s) = y,(s) + yo(s) = Ky(s)u(s) + Ky(s)e(s)  (4.19d)
A sampling period of 0.1 seconds was chosen to
correspond to the maximum calculation speed of the digital
program. Gn = 1.0/n, n is the current number of samples.
Variations of parameter estimates over 200 samples are shown

in Fig. 4.14.

Final estimates after 1000 samples yielded:

a, = 1.2260 (1.5)
d, = -.4698 (-0.7)
b, = .0502  (0.0)
b, = .7984 (1.0)
b, = .6623  (0.5)
e, = -.1474 (-1.0)
¢, = .2554 (0.2)
Vo =1.02  (1.0)

where Ve is the variance of the noise, e. True values

are in parentheses.

Increasing the number of samples did not significantly
improve the parameter estimates. This is not surprising when
consideration is given to the size of variable gain Gn as n
increases, and to the restrictive 16 bit word size of the
EAI 640 digital computer.

Gain G was increased but unstable oscillations in para-
meter estimates occurred over the first few samples.

An attempt was made to improve the algorithm accuracy

of estimates by modifying gain sequence Gn such that
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6, =]'°/ (4.20)
[A, * 50(k =1)]

where An is set to the value 1.0 each time n =
K, *ANS.

Integer kn = 1,2,3,..... such that 1 < An < ANS,

ANS being a preselected number of samples.

The modified gain sequence resu]fed in drastic dis-
turbances in parameter estimates at each "jump" in value of
Gn' This was due to the particular value of noise dis-
turbance e, at time n = kn*ANS.

The minimum solution time for 1000 samples was 100
seconds. The main limitation in computer speed for this
problem is the digital program execution speed.

As can be observed in the estimation results, signi-
ficant deviations from the true parameter values were evident.
Part.of the inaccuracy of estimates could be due to accuracy
limits in analog computation (0.1%). The effect of computing
delays between input and output sampling of the analog system
was not determined. After the above considerations, plus the
fact that more sophisticated gain algorithms could not be
implemented due to an 8000 word core memory size restriction,
it was decided to continue the remaining portion of this
study on a digital-only program basis, using the more accurate

64-bit word size of a CDC 6400 computer.



4.2.2 Digital Computer Implementation

A FORTRAN program for testing the scalar gain sto-
chastic algorithm (4.13) was written for a CDC 6400 computer.
The program, called SCALAR GAIN, is listed in the appendix.
Eqn. (4.12a) s again used as a second-order example.

The estimates in Table 1 were obtained with variations
in gain sequence Gn. Estimates obtained after 1,000 samples
required 2 seconds of computer CPU time.

As can be seen from Table 1, best results were obtained
using a gain constant, G, of 1.0 for a large number of samples,
Parameter estimates can be seen to converge asymptotically
to the true parameter values. Increasing G to values greater
than 1.0 increased the variance of the estimates. (However,
the algorithm converges_irrespective of the choice of gain

constant). Another gain sequence was chosen such that:

6 = 1.0

n TR F5(k-T) (4.21)

with An’ kn defined as for eqn. (4.20).

Veriances of estimates for this gain sequence were
quite large but the estimates tended to converge to true
values over a large number of samples. Convergence was

expected since
I Gy I 62 <o (4.22)

satisfying the assumptions stated by Panuska [24].
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Truncation in the parameter space can be introduced
if some a priori knowledge is known about the parameters to
be estimated. Truncation of the gradient is desirable,
especially when estimate Xp differs substantially from true
value 8, to ensure steady, uniform corrections. For this
example, bounds on the coefficient estimates were + 5.0,
Truncation of the gradient was introduced by limiting the
estimated error sequences to + 10.0.

Table 2 contains estimation results when using several
runs through input-output records of fixed length. Values
of estimates after the first pass were used as starting
values for the second pPass and so forth. Starting values
for the first Pass were zero, as were the model initial con-
ditions.

Each set of results in Table 2 represents mean values
and standard deviation of estimates computed by Monte Carlo
method (from 20 different samples). These mean values of
estimate samples tended to give more reasonable results than
any one set of estimates. This is to be expected since
desired estimates, X, are random in nature with mean 8 and
covariance matrix tending toward the Tower bound given by
the Cramer-Rao theory [2].

One set of results was obtained by defining the input
sequence, Ugs to be a pseudo-random binary sequence (amplitude
1.0) rather than Gaussian N(0,1). Very little difference was
noted between estimates obtained using the two methods of in-

put generation. However, CPU computer time was reduced by 15%
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when using the binary sequence since its sign was set
according to a uniformly distributed (rather than Gaussian)
random variable.

It was noted that, during the 5 passes through the
data, the estimates showed a trend to change further even
on the fifth and final pass. One reason for this is that
repeated passes through the same data of finite length N
are equivalent to the case when the original sequence of
érrors, e , is periodic with period N [38].

The digital program for Table 2 results can be found

in the appendix under the name TESPAN,

4.3 Implementation of Adaptive Recursive-Least-Square

Algorithm (Matrix Gain)

Restating the example problem to be solved:

Given the process described by (4.12a),

Yo - 1.5yn_] + 0.7yn__2 = 1.0un_] + 0.5un_2 +

ten - 1.0e o+ 0.2 , (4.23)

where e, is a sequence of independent random variables

with zero mean and unit variance.

Given a sequence of observed input-output pairs, {u,y},
and using the identification scheme described by eqns. (3.24),

(3.25) and (3.26), find an estimate x of system parameter vector

8
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ol

= (1.5, -0.7, 1.0, 0.5, -1.0, 0.2) ©(4.24)

The problem was solved using the FORTRAN program "MATRIX
GAIN" listed in the appendix. Results are listed in Table 3.

For the example studied, the starting value for matrix I was set
.to the unit matrix. The sequence of inputs {un} was defined as
Gaussian distributed random variable with zero mean and unit
variance as was noise sequence {en}, noting the required indepen-
dence of the two random variables. Bounds on parameter estimates
were set at +5.0, while 1imits of +10.0 were chosen for the
calculated error, EH.

Runs were made for cases where the starting values for
parameter estimates were: (a) set to zero; (b) estimated from an
initial least-squares estimate (linear regression) on a block of
the first one hundred input-oﬁtput data pairs.

The second case was made possible by observing the fact
that the expected value of e, is defined as zero, and approximating

the system equation by thé mode]:
Z=nxXx (4.25)

assuming no noise sequence, e,» appearing in the model (for the

first 100 sample only).

T
_x_ = (a-l, 32, b]) b2) = (]-4, -0o7’ ].0, 0.5) (4.26&)

T

z = (z;, 22,.....,zn) | (4.26b)
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n = (V-I, Vz,.....,vn) (4.26C)

Observation vector vV, was defined by

T _
Vo = Wpoqs Yoo Upops U,o) (4.26d)

Then the initial estimate of parameters was

x=[m'1 'z (4.27)

which gave starting values for estimates of ays a,, b.l and b2.
Initial coefficient estimates for ¢, and ¢, were taken as zero.

During trial runs, it was noted that the value of the
initial parameter estimates did not significantly affect the
performance of the method, since, for each trial, the initial
value of matrix I used in the algorithm was set to the unit
matrix. Thus, several iterations were required for stabiliza-
tion of I regardless of choice of initial parameter estimates.
In theory [20], T tends to the covariance matrix of the parameter
estimates as the number of iterations increases. This implies
that an optimum choice of initial I (related to starting values
of parameter estimates) can be derived. Time limitations pre-
cluded further study of this aspect of the problem.

Referring to Table 3, it can be seen that within 500
iterations, reasonable parameter estimates were obtained on the a
and b parameters. The c parameters, more difficult to obtain

because the corresponding elements in the V (observation vector)
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can only be estimates of e,» required a large number of iterations
before reasonable estimates could be obtained.

During the first several hundred iterations, the
variance of ¢, the estimated error sequence, was much lower than
values obtained when using the SCALAR GAIN algorithm described in

section 4.2.2.

4.4 Astrom's Maximum Likelihood Technique

Again the system described in (4.12a) is used as a
test example. Astrom's [3] method was implemented using eqns.
(3.37) to (3.40) with residuals, e(t), defined by (3.35) and
with o taken as unity.
Runs were made for both cases where u was a pseudo-
random binary signal with amplitude (+1.0), sign being Gaussian
dependent in nature, and where u was generated as a sequence of
independent normal (0,1) random variables. Little difference
was observed in results when interchanging the two methods of
generating u.
The program package for these tests were set up the
following way:
PRO ~ controls the iteration procedure according to
eqn. (3.27)

VVIVZ - calculates J(8), J9 and Jgg according to above
formulas (3.39 to 3.42)

GJRV - inverts asymmetric matrices using a Gauss-
Jordan technique.

These programs are listed in the appendix under the
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the heading IDEN1. The user main program, (IDEN1), provides input-
output data pairs and gengrates the necessary calls to PRO.

A typical call to PRO is as follows:

CALL PRO(NO,NI,NP,LI,L2,IT,AC1,AC2,IPRINT)
where the arguments are described in the program listing.

For this example, convergence parameters ACl1 and AC2

5 and 1072 respectively.

were set to 10°
Some of the results are given in Tables 4 and 5 including
the parameter estimates, together with estimates of their un-
certainties, (o).
Notations: J loss function for 2nd order model.
ex exact second derivatives are used.
o; standard deviation of i coefficient
estimates.
The minimum values of the cost function, J, can be used
to estimate the variance of the noise sequence {e }.

By definition,

N
) e ? (4.28)

where N is the number of input-output pairs (data
samples).

For 1000 data samples, J was found to be 458.5.

min
E[e?] = % J . =0.922 (4.29)

min

This value corresponds accurately to the computer calcu-
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lated standard deviation of errors, A = 0,967.

From Table 4 it can be observed that the repeated use
of approximate second derivatives was sufficient for obtaining
maximum accuracy possible in the parameter estimates. Using
exact derivatives near the completion of the run did not signi-
ficantly modify the estimates although the gradient values became
quite small, indicating closeness to the minimum point. It may
have been possible to shorten the computing time required if exact
second derivatives were used at an earlier iteration count.

As shown in Table 5, parameter estimates improved w ith
increasing length of data record and the standard deviation of
estimates was observed to be inversely proportional to N.

A study by Gustavson [18] using Astrom's method
employed stability testing routines for the C polynomial and
required transformation routines to ensure that the data (to be
used for identification) had zero mean. However, for the example
shown here, these additional techniques were not necessary for
satisfactory results, In fact, the C polynomial was quite well-

behaved in all test cases.

4.5 Algorithm Using Fletcher-Powell Minimization

The example problem described earlier was solved using
the Fletcher-Powell minimization technique described in section

3.2.3, Restating the process to be identified:

) o 0.7y, = T.0u_ 4 + 0.5u. _, +

+ e +c.|e

n t coep , (4.30)

n-1
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with u and e defined previously.

Program IDEN4 was written to utilize the IBM mini-
mizing routine FMFP. 1IDEN4, in addition to generating input
output data pairs to be used for identification, supplied FMFP
with required values of cost function being minimized and
gradient of the cost function.

In addition to the previous example problem (4.30),
the case was considered where noise in system output, y, was
due to measurement errors only.

Yp = T8y, 4 ¥ 0.7y, 5 = 1.0u, _; +05u ,+e (4.31)

n

This is equivalent to setting the C polynomial in
eqn. (3.12) to unity.

For identification of the system described in (4.30),
the gradient calculations were set up as follows:

Consider the computed residuals {e(t), t = 1,2,....,N}
defined from (3.12) as

c(z™he(t) = A(z")y(t) - B(z"Nu(t) (4.32)
Since the function being minimized is defined as,

N
T oe?(t) (4.33)

it follows that the required gradient is
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Q
(<)

N
= 2 de(t)
= W tZ] E(t) gxi (4.34)

QL
x

where x is the vector of parameter estimates.

Differentiating (4.32) gives,

-]) at-:(t) 'jy(t)
J

c(z71) 2elt) o _pdy(e) (4.35)
J

-]) _e_(_t)_ Z-j (t)
J

Using a state variable representation of (4.35), the

following recursive equation can be easily implemented.

2
g, (t+1) = - iZ] c;x;(t) + y(t)
2
g3(t+1) = iZ] Cix2+i(t) - u(t) (4.36)
2
gg(t+1) = - iZ] CiXgui(t) - e(t)
gz(t) = g](t'1): 94(t) = 93(t’1)9 gﬁ(t) = gs(t'])

Components of the gradient vector can be defined as,

%’g (t) = e(t)g;(t) (4.37)

Results are shown in Table 6 for 1000 input-output
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data pairs for identification using both models (4.30).

It was found necessary to use starting values lying
within a restricted range around the true parameter values, since
the accuracy of estimates appeared to depend on the starting
values. For parameter starting values deviating more than 30%
from true values, very poor convergence was observed.

For starting values within approximately 30% of true
values, the maximum specified 50 iterations were reached. Ex-
tending the iteration 1imit was not of interest since the incre-
ments in parameter estimations were extremely small near the end
of the run.

For starting values within 20% of true values, the
run was terminated after 10 iterations due to an overflow con-
dition within subroutine FMFP, indicating a zero divisor. At
this point, the parameter estimates appeared to be converging
and had attained reasonable values.

Results obtained from these runs were obviously not as
accurate as the parameter estimates shown in Table 4 (Astrom's
method). Both the Fletcher-Powell and Astrdm methods employed
hill-climbing techniques for minimization. The Fletcher-Powell
technique employs an iterative algorithm for calculation of matrix
H where H tends to the inverse Hessian of the cost function at
its minimum. No matrix inversion routines are required. How-
ever, the Astrom method calculates the Hessian matrix on each
estimation iteration. Matrix inverses are required, but compu-
tations are rather easy when'estimating relatively few parameters.

Thus, accuracy of the Fletcher-Powell method depends
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somewhat on the speed of convergence of H to the Hessian matrix.

It was noted that, when using starting values at 20%
of the true parameters, the C polynomial became unstable during
one of the iterations. For the runs presented in Table 6, no
bounds were placed on the parameter estimates and no stability
tests on the A and C polynomials were made. A possible improve-
ment might be the detection of instability conditions with the
option of modifying the iteration step size.

In addition to the results presented in Table 6, trial
runs were made using approximate gradient equations. The

gradient of the loss function was approximated as follows:

N
3J(t 2 .
=< ) e(t)y(t-1i)
da; N i24
3d(t 2 N
) - 2T e(t)u(t-1) (4.38)
i i=1
3d(t p N
ac, - o L e(tle(ee])
i i=

The difference between (4.38) and (4.37) is that part
values of estimated error, e, are not included. In other words,
the C polynomial in eqn. (4.35) is set to unity. This approxi-
mation should be reasonable near the minimum J. Results obtained
showed no improvement over those shown in Table 6.

Since it was required to choose starting values within
some suitable range of true parameter values, it would seem
appropriate to use a combination of the Fletcher-Powell method

with other parameter identification methods. A method such as
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the "matrix gain" technique in section 4.3 could be used
initially to obtain reasonable starting values, followed by the

powerful search technique of Fletcher-Powell. This work remains

to be done.

4.6 Electric Power System Load Modelling

This section presents a practical application of para-
meter identification techniques for the development of a proba-
bility model for the load of an electric power system. Develop-
ment of such a model is useful for short-term load forecasting.

The model [29] assumes the power load is given by the
sum of a periodic discrete time series with a period of 24 hours
and a residual term. The latter is characterized by the output
of a discrete time dynamical linear system driven by a white
random process and a deterministic input, u, which is determined
by a non-linear function of the actual and normal temperatures,
The periodic component of the load depends on the time of day and
the day of the week.

The hypothesis is made that the load, q, at any hour
of the day is

a(t) =y (t) + y(¢) (4.39)

y(t) is defined as the residual component (including
meéasurement uncertainty and temperature effects) while yp is the
period component of the load. yp is assumed a deterministic pro-

cess so that its exact value is determinable from its model. The
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periodic component describes that part of the load which goes
through a 24 hour near-periodic cycle which rises in the morning,
peaks at mid-morning, drops until late afternoon, rises again
during the evening, and finally drops considerably at night.

The structure of the periodic component can be expressed

as a time series,
n
p

yp(t) = Xp, + iZ] {xpi sin[2wi/24]t + xp(qp+i) cos[2wi/24]t} (4.40)

which can be written in vector form as

yp(t) = QT(t)ap (4.41a)
where defining
Wy = 2m/24 (4.41b)
then,
gT(t) = [1,sinmot,.....,sinnpwot,coswot, ..... ,cosnpwot] (4.41¢)
5; = [xpo,xp],xpz, ..... ,xp(an)] (4.41d)

while t stands for the hour of the day.

Vector ép is assumed constant Monday through Friday over
a span of three weeks. Any longer span could introduce consider-
able error since normal load consumption does vary over the seasons.

Data for Saturdays and Sundays are not included (as would be expec-
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ted) since plant shutdowns, increases in power for privafe homes,
etc., cause redistribution of load consumption. Due to the short
span of time over which the model can be determined, the maximum
data record length possible is 288 data points.

The residual component of the load, y, is an uncertain
process, time varying and correlated with itself as well as with
certain weather effects described by u. The following relation-
ship is proposed between temperature effects u and inherent un-

certainty in load:

aiy(t-i) + ? bju(t-j) + e(t) (4.42)
j=o0

y(t) =

nes-1s
-

i

e(t) is assumed a zero-mean white process.

For the effect of temperature on load, the input to the
model will be defined by u(Te,?e), given by Fig. 4.15, taken from
ref. [29], where To is the actual temperature and ?e is the normal

temperature.

The model tested was of the form,
a(t) = yp(t) + y(t) (4.43)
yp(t) = 1500 + 100 sin(2nt/24) + 100 cos(2mwt/24) (4.44)
and

y(t) = 1.4 y(t-1) - 0.49 y(t-2) + 3 u(t) + y(t-1) + e(t) +
+ u(t-1) . (4.45)
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FIG. 4.15 Definition of u(T,?) in terms of actual

and normal temperatures.
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where e(t) is a white Gaussian process with mean value

and variance given by,
Efe(t)] = 0 (4.46)
E[e?(t)] = 25 (4.47)

The input u has been generated using weather data from
the Dorval Weather Bureau and using Fig. 4.15. Results were
obtained for the first three weeks of January, 1972. Values for
uare listed in Table 7.

q(t) is expressed in terms of KWH power.

The problem then is: given the measured output values
g(t) and temperature-dependent inputs u(t), find the value of
all the parameters describing eqns. (4.44) and (4.45).

Since the matrix gain technique described in section
3.2.2 showed promising results, for example problem (4.12), and
can be used for real-time on-line applications, it was chosen
for study in this section.

One of the difficulties encountered when setting up a
model for (4.43) 4is that the values of the residual y(t) are
not directly available from measurements. However, this diffi-

culty can be circumvented by using the relationship,
y(t) = q(t) - QT(t)ﬁp (4.48)

Substitution into (4.37) yields
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y(t) = a'o(t) + bTu(t) + aT¥(t)x, + e(t) (4.49)

where a = [aj,aps.....5a,]0 (4.50a)
b = [bysbyseenersb 17 (4.50b)
Q(t) = [q(t-1),a(t-2),.....,q(t-n)]1T (4.50c)
U(t) = [u(t) u(t-1),.....su(t-n)17 (4.50d)
v(t) = [2(t-1),0(t-2),..... ,(t-n)1" (4.50e)

In this manner y(t) can be eliminated from eqn. (4.38).

At this point, the identification algorithm described

by eqns. (3.24) to (3.26) can be applied. Rewriting eqn. (3.23),

the model becomes [11]

q(t) = 0TV(t) + e(t) (4.

For this example, observation vector V(t) is now

defined as follows,

y(t) = [y(t-l),y(‘c-Z),u(t),u(t-l),<I>1(t),<1>2(t),<I>3(‘C)]T
(4.
with y(t-1), y(t-2) made available through eqn. (4.48).
It is important to use the most recent estimates of x_ in eqn.

P
(4.43). For example, when eliminating y(t-2) from V(t), the

51)

52)
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values of x_ known at time t should be used to improve convergence

p
of the estimation algorithm.

It can be seen that the parameter vector 8 in eqn. (4.51)
will be unevenly “weighted" due to large differences in order of
magnitude between the xp elements and those elements corresponding
to the residual equations. Similarly an imbalance in weight of
the matrix elements used in the identification algorithm can be
expected. This could have a bearing on the accuracy of matrix
calcuiations. However, the parameters to be estimated can be
chosen to have similar orders of magnitude by making use of "a
priori" knowledge of the xp parameters., In general, these co-
efficients of the periodic load components can be approximated
using past information.

Approximate values for ip can also be obtained from

a "one shot" least squares estimation of the x_ vector only,

P
regarding y as zero-mean residual noise.

Defining the starting values for X, as Xprys @ new

set of output load measurement data can be generated from the

following relationship,

qa(t) = q(t) - xppyee(t) (4.53)
Now the periodic parameter to be identified becomes,
dXp = Xp - Xppy (4.54)

Results are listed in tabular form in Table 8 for the



~-N

1°eT 220 0°%1 I°91 S°%i
R*T  0°2 H°€  6°E L%
S 0°S L%  0°% G°%
now=  [°L= 8°S= £°G- G'H-
0°11- H*21- 1°S1- 8°61- L°1

L J
U AV 1\Y

PO N ITONNOIOMO

PRO~~mM~DOMNMO O

96

9o l-
y*g2-
9°0g=

¢
¢

€°8l-
802~
9°02-
9°g1~
6°vl-
A4 E)

/°0E=- L*62- 8°H2~ 9Y°ye~- 9°ge~
H°9Y2=_9°Ql= [°GZ2= )°Hl2= 1°'12=

n°gl- ¢*°gl- 9°61~- 2°02- 1°1<~
202~ 0°22-~ L*°12- %°02~ 0°61-
n*22= (*°€2~- 1°*°H2- 6°hHe¢~- B°GE-
£he2~- 0°€e- g°12~- 2°02- 861~
ML= H*°Y= 2°G= H°G= G°G=-

2*s
%°02
2* L1
2°s
Lot
1° 6=

vie 2§ %°9 9°q 8°9
A HeC g8 I*1r »°el
HeHT  1°02 H°12 S°12 (r°¢e
Z°v1 L*01 92T @°21 1°el
%1 9°1 8° 6° e’
9°d 2y I°€ nee L°1
124w~ yog= Q)= S°6= 2°8-

Anvnnyr

9°GY Hetl
9°9y LY
I°s aO°*n
g° M S
L°01- 6°01~-
6lE=_nel2E—-
E°4Ql- G*°nl-
0°%1- 0N°*9l-
0°¢ 91
0*h- (0°G-
9°dg~ 1°<ct-
1°g2=__12RZ=
YeLT=- 6°91~
G*02- 402~
Lolo= 2%¢é-
€52~ 4°2¢-
2*l1=- L°6~
1'%=__2°2
6°G Qe
0°61 weHl
g o1 Hehi
St wee
P A | 6°1
NeY= 20—
N 1Ndrl

103443 34N1V¥3dW3aLl °L 378Vl

A




97

*(5°t "uba) 000°0E= Y¥ ©SUOLIDBUAO0D [dX

‘88¢

= (sjurod e3ep) suanoy jo usquny
404 padnpoujut uteb aALjdepe [eUOLILPPY«

- 0°66 | 0°56 0°0S¥L| 000°2| 000°2! 000°L-| 000°2 Burjaess
0°sz | o°ooL| o°ooL| 0°00SL| 000°L| 000" €| 06 0-| OOV"1 anua ]
oLL 0°€2 | 0L°56 |29°26 b LOSL| oLO°L| €56°2| L6 0-| LOP°L | X 621
€61 G'L2]26°96 |tL°€6 | x2'660L| L66°0| ¥00°c| c6v°0-| €ob"1L X 8¢
€61l G°6E [ 56°96 | €1°¢6 2°29vL| 2v0°L| 200°€| 687°0- | L6E"L X 8¢
12 G°06 |0L°v6 | vE"€6 8- eSkL| 800°L| 6€6°2| 605°0-| 6L¥°L X b
- 9/, |SsL"€6 | L6°€6 G Lbbl| szL L | 929°2| €95°0- | SLb°L X L
(o) o™ [p R o =
o O = v QO
i 4 L 4 L -3l g I
age (9)dvA| €dX 2dX LdX q q ® e o33 8.
- .dM.? —_ x " —H
U. ﬂ
w0 ]
sanbLuyoa] [[8MO4-4dYd13d| 4 pPue uieg XLJAJeY
furaedwo) ‘wa|gqoud peo] UdMO{d 404 Sud33dWeded 40 uoLrjewrisiy g 3Jigvl




- 98 -

computer program PMXG listed in the appendix. Parameter estima-
tions are given for up to 38 passes through the simulated data
generated by eqns. (4.43) to (4.45) with data record length of

288 samples. Estimates for the residual parameters were good even
after only 4 passes through the data, but periodic parameter
estimates indicated a rather slow convergence to true values.

This implied that the introduction of additional adaptive gain
components into the parameter updating algorithm (3.24) might be
feasible. Experimental trials were run with the addition of

this new gain applied to estimation of periodic parameter x

p3’
with all other parameter estimates held at true values.,
The form of additional gain, GN, was as follows,
_ KA + n
e T (4.55)

where n is the number of iterations, KA an arbitrary
constant, VAR(EH) is the estimated variance
of the computed error.
Thus, the gain GN is reduced in size when large variances occur
(i.e. when parameter estimates differ from true values by large
amounts). As the number of iterations becomes large, the value
of GN tends to unity, leading back to the original matrix gain
algorithm,
As the number of iterations becomes very large (n»w),
gain GN will tend to unity. Thus the convergence properties of

the algorithm (3.24) are maintained [28].

Fig. 4.16 indicates the effect of GN in speeding up
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FIG. 4.16 Xp3 estimate error, all other parameters

held at true values.
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the convergence of parameter estimate xp3 to its true value. The

starting value for xp3 in this case was 5% higher than its true
value.

Table 8 indicates the effect of introducing the gain GN
into the parameter estimates for the xp coefficients. Estimates
for the residual parameters were unaffected, but xp1 showed a
marked improvement.

Also shown in this table are comparisons with results
obtained using a double precision Fletcher-Powell minimization
routine (DFMP). Parameter estimates compared favourably between
the two methods, with similar computing times required. However,
the Fletcher-Powell program was much larger in size and did not
have the real-time, on-line capabilities of the "Matrix-Gain"
method,

For the problem studied in this section, it may be
possible to use other identification techniques to obtain accurate
estimates jn a simpler manner. For instance, a method of sepa-
rating the periodic and residual components of z(t) is proposed
as follows [33]:

| Since the periodic terms have a period of 24 hours, the

following relationship is valid,

q(t) - q(t-24) = sq(t) = &y(t) (4.56)

from eqn. (4.37)

? biu(t-j) + se(t) (4.57)

n
sy(t) = } aidy(t-i) +
i=1 Jj=o
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where,

6y(t) = y(t) - y(t-24)
Su(t) = u(t) - u(t-24) (4.58)
se(t) = e(t) - e(t-24)

The noise term e(t) satisfies the original assumptions,
E[se(t)] = 0 (4.59)

However, the variance of the noise has, in effect, been

doubled,
E[se?(t)] = E[e?(t)] - 2E[e(t)IEfe(t-24)] + E[e2(t-24)]
. (4.60)
E[se?(t)] = 2E[e?(t)]

ez(t) and ez(t-24) have been defined as independent.
Thus se(t) is an independent white noise sequence.

Since y(t) can be obtained from measurement data,
q(t), the model described by (4.43) may easily be identified using
a technique such as recursive least squares. Once the parameters
ajs bi are known, determination of the xpi coefficients is quite
straightforward. Eqns. (4.49) and (4.43) can be expressed in

terms of 5p and the new observation vector formed by knowledge



- 102 -

of a, b, Q, u and ¥, After an ép estimate is obtained, an
iteration procedure can be established by repeating the estima-
tion of a, b and continuing the "two-part" estimation technique
until parameter convergence is achieved.

It should be noted that the power load problem studied
in this section can be solved using implementation of the tech-
niques discussed here on a "mini" computer with suitable communi-
cation channels established with a large-scale computing system

[26].
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CHAPTER 5

CONCLUSIONS

5.1 Summary

Chapter 4 presents the experimental work done when
using several identification methods for parameter identification
of known systems. For ease in comparison of methods, results
were obtained for simulated data only.

Section 4.1 discusses a relatively crude Kiefer-
Wolfowitz approach to minimization using analog and digital com-
bined capabilities. Size of the example problem was limited
to a first order system due to equipment restrictions on the
analog computer. Results were obtained for estimation of two
parameters. Results indicated the necessity of a more sophis-
ticated algorithm gain depending on the rate of change of para-
meter estimates.

Another proposed stochastic identification algorithm
was tested on a second order system in section 4.2. Here,
bounds were necessary on parameter estimates to ensure stability
conditions. The procedures used in this section can be considered
as "real-time on-line". This means that real data were sampled as
it was made available by the simulated process, resulting in
substantial savings in memory requirements. Only fair parameter
estimation accuracy was achieved on a 16-bit word digital-analog
hybrid computer. From this point on, a more powerful large general

purpose computer, with 64-bit word capability, was utilized.
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Results were generally successful, but good estimates of the
noise coefficient were obtained only after either using a large
number of data samples or recycling several times through a
shorter data record. It was decided to use this example test
problem to test and compare the remaining identification methods.

In section 4.3 the application of a matrix gain algo-
rithm was discussed (equivalent to the standard Kalman filter
applied to estimation of system parameters). Again this was an
example of an on-line real-time application. The results
obtained indicate faster convergence over the first few hundred
samples, as compared to the previous scalar gain algorithms. As
in the scalar gain algorithm of section 4.2, good estimates on
the "c" parameters required a large number of iterations. For
this method, computer calculation times become quite significant
over a large number of iterations.

Astrom [3] proposed the identification technique studied
in section 4.4. This technique was not applied in the same on-
Tine real-time sense as other methods presented up to this point,
but a minimization procedure was applied, utilizing a set of
observed input-output data obtained from a simulation of the
example system. Excellent results were obtained, with no bounds
being necessary on the parameter estimates. Computational times
were reasonable (re]ative]y short compared to the matrix gain
algorithm discussed earlier). It was found that approximate
second derivatives (for the Hessian matrix) were adequate.

In section 4.5 the identification of the example problem

via the Fletcher-Powel] minimization scheme is discussed Where
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simulated data are available. Estimation of the noise parameters,
<4 and Cos seemed to present some difficulty unless initial
estimates were chosen to within 20 or 30 per cent of true values.
This is not too serious a limitation when using the method since
some "a priori" information about the parameters is usually known.
Programming requirements for utilization 6f this method were not
quite as tedious as for Astrom's method, since only the cost
function and gradient of the cost function were required from the
programmer.

As a final example, a more difficult problem was studied
where large periodic components appear in the output data used
for identification. The proposed example problem was the model-
ling required for the load of a power system. The matrix gain
algorithm of section 4.3 was chosen as a promising approach to
this type of problem. This was chosen over Astrém's method
partly because of the complexity of supplying 2nd order partial
derivatives of the system model, and partly because of the
attractiveﬁess of on-line real-time implementation. Results
based on temperature records for a 3-week period compared favour-
ably to those obtained when using the Fletcher-Powell minimiza-
tion. It should be noted that the results were not obtained in
a true "real-time" sense, since recycling through a fixed length
input-output data record was necessary.

An effort was made to improve the estimates (speci-
fically for the parameter estimates of the periodic components)
by modifying the algorithm structure. The modification was made

in such a way as to make the algorithm more sensitive to the rate



- 106 -

of estimate changes at some convenient point in the iteration
procedure, but shifting back into the standard matrix gain algo-
rithm as the number of iterations grew large. Some success was
achieved with a few of the periodic parameters.

Other possible approaches to this example problem were
discussed, including the separation of periodic and residual

outputs by suitable transformation on output data.

5.2 Concluding Remarks

From the results of parameter identification methods
studied here, it can be seen that many factors come into con-
sideration when choosing identification procedures. Choice of
one particular identification scheme over another depends on the
a priori information available (for example information known
about the true values of parameters and characteristics of the
system noise), computing speed limitations, accuracy of the
parameter estimates required, desirability of real-time on-line
imp]ement&tion, complexity of the programming required and
computer memory available for use. Also to be considered are
the type of system studied and the structure of the required
model. Special characteristics of the model can somewhat deter-
mine the choice of method.

Consider, for example, the scalar gain algorithm
proposed by Panuska [24] where employment of an enlarged para-
meter space avoids the problem of biased estimates caused by
correlation between input noise sequence and system outputs. For

the problems tested, this method showed reasonable results for
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long term on-line sampling. The method is very simple to
implement and the relatively small size of program makes the
use of a small computer system feasible. However, for shorter
record lengths, recycling through data is necessary to achieve
reasonable results. Even then, the accuracy of estimates
obtained using Astrdm's method (for the same example) is not
achieved. Choice of suitable gain is required which can lead
to experimentation before the method can be applied to a parti-
cular problem.

On the other hand, Astrdm's technique can produce
excellent results for the canonical model discussed in section
4, even for relatively short record lengths. The success is
not surprising since Astrom [3] has shown that the maximum like-
1ihood method produces estimates that are in general consistent,
asymptotically normal and efficient for increasing sample length.
But part of the success is due to the powerful search technique
used for minimization, which depends on the availability of the
Hessian matrix of the function being minimized. The requirement
that the user supply this matrix of second partial derivatives
can be a serious programming limitation when identifying systems
using more complex models. Another consideration is the diffi-
culty of applying the method on a real-time on-line basis.

The matrix gain technique described in section 4.3
was again easy to implement (as was the scalar gain technique)
and indicated good performance in the on-line application to the
particular example problem chosen. One promising area of study

with respect to this method would be the improvement of the algo-
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rithm convergence by matrix gain modification at suitable times
during the iteration procedure,.

The second method employing a powerful search technique
(in addition to Astrom's method) for function minimization was
the Fletcher-Power procedure. It seems, from results obtained so
far, that to use this method for parameter estimation of stochastic
systems, estimation starting values suitably close to the true
parameter values are required. This suggests that other more
approximate techniques might be used in conjunction with the
Fletcher-Powell method. In fact, a useful area of study might be
the combining of several identification techniques for a parti-
cular problem (such as the power load estimation problem) switch-
ing from one method to another when certain pre-defined conditions
are satisfied.

The problems studied in this thesis did not include
discussion of identification of non-linear systems. However, the
linear models presented here are valid for application to non-
Tinear sysfem jdentification when considering the small signal
operation of a non-linear process about its normal operating
point.

It seems highly desirable, in the field of parameter
identification theory, that a general systematic modelling and
parameter identification approach be formulated. This would be
especially advantageous to control system designers. General
rules and guidelines would be outlined, based on the methods
studied here plus the utilization of other techniques presently

available.
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APPENDIX

PAGE 1 C ON-LINE IDENTIFICATION=~==K.W.#4-1,

C DeR+H JAN.16/72

C

C ONEZ ANALOG IMODEL TO CALCULATE THE GRADIENT OF INT, (Ex%2)
C THREE PARAMETER UMODEL ONLY (A,B,C)

c

DIMENS ION EA(IOO),UA(lOO),EP(Z),AJ(Z),X(S),XP(S),XN(S),ITX(S)
DIMENSION DAC(S)

LOGICAL LCL

CALL QSHYINCIERR,680)

DO 5 1=1,6

DaC(I)=0,0

CALL QW3DAR(DAC;0,6,I5RR)
CALL @s1TDA

CALL QWCLL(O,,FALSE., IZRR)
CALL QWCLL(l,+TRUE.,IERR)
CALL QUWCLL(2,,TRUE., IERR)
ACCEPT 100, E1,E2,E3,Gl,G2,G3
FORUMAT(EF10.5)

ACCEPT 105, AI,BI,CI,XP(I),XP(Z),XP(S),XN(&),XN(Z),XN(S)
FORMAT(9F8.5)

ACCEPT 110, ITRKCL) g ITXC2) , ITX(3), IX1,1IYI
FORMAT(311,213)

ACCEPT 115, PE,PG
FORMATC(2F10.5)

CALL QSPF{IERR)

ACCEPT 120, NS,NT
FTORMATCIS I3

N=0

SC=0,.5

AMli=0,0

SN20.0

IX=1X1

I1Y=1Y1

w(1)=4Al

%X(2)=B1

X¢3)=C1

DO 12 L=1,3

DACCLY=XC(L) /10,

CALL QWBDAR(DAC,3,3,1ERR)
CALL QSTDA

Mz i+l

SNZSN+1, .

CALL GAMMA(SN ,El,E2,E3,PE,EPS)
CALL GAMMA(SN,Gl,;G62,G3,PG,GA)
EP(1)=EPS

EP(2)=~EPS

AEPzEPS/10,

CALL QWJDARCAEP,2, IERR)

DO 20 I=1,NT

CALL RANGAUCIX,1Y,SC,AMN,E,U)
EAC(I)=E

UACID=U



20

30

35

40

25

45

50

200
201

- A2 -

CONTINUE

CALL QWCLL(Z,.FALSE.,IERR)
DO 25 J=1,3
%FgITX(J).LT.l) GO To 25
NC] = J)'Z

DA (X(+EPCK)) /10,

CALL QWJIDARCDA, HCH, IERR)
CALL ORSLLCO,LCL, IERR)
CALL QRSLLCO,LCL,IERR)
IF(NOT,LCL) GO TO 6

CALL QUWCLLC1,oFALSE., 1ERR)
CALL QWCLL(CO,TRUE., IERR)
DO 35 I=i,NT

DACC1)=UACT)

DAC(2)=EACD

CALL QWSDAR(DAC,0,2, IERR)
CALL QsSTDA

CALL QRSLL(O,LCL, IERR)
CALL QRSLLCO,LCL,IERR)
IFCNOTL.LCL) GO TO 4
CONTINUE

CALL GEBADR(AJC(KX),C, 1, IERR)
CALL QYWCLLC(0,4,FALSEs , IERR)
CALL QUCLLC!,, TRURE,, IERR)
IF(K.GT.1) GO TO 40

HEFC|

GO TO 30
DJ=(AJ(1)-AJ(2)) /2,

CALL QWJDARCXCJ) , HCH, IERR)
RCD =X (d)=DJI=CGA/EPS
IFCRCII 6 GTo XP L)) LAY =2XPCD
IFCXCD) o LTo XN ) K =XN DD
CONTINUE

DO 45 Jd=1,3

DACCJ2=X(J) /10,

CALL QW3DAR(DAC,3,3,IERR)
CALL QsSTDA

CALL QWCLL(2,,TRUE.,1ERR)
IFCH LT 5) GO TO 15

DO 50 iz1,6

DPAC(1)=0,0

CALL QY3BAR(DAC,0,6, IERR)
CALL Qs7Da

TYPE 200,N
FORMANTC//Z10%, 4Kl = ,15)
TYPE 201, X(1),%(2),%(3)

FORMATCIOX,3HA =,F744,4X,3HB =,F7.4,4X,3HC =,F7.4)

PAUSE 1
GO TO 10
END
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PAGE | C  RaANGAU

C  D,R,He AUGL12/71

C

C GENERATES RANDOM NO. E WITH NORNAL DISTRIBUTION,
c 4D PSEUDO-RANDOM SEQUENCE U (AMPLITUDE 0.5)

c

SUBROUTINE RANGAUCIX, IY,SC,AMN,E,U)
CALL GAUSSS(IX,1Y,SC,ANN,E)

CALL RRAMWDUCIX, IY,RN)

IFCRHU=0,5) 1,2,2

i U:-Oes
GO T0 3

2 U=0,5

3 CONTINUE
RETURN
END

J0B CORRECT

PAGE 1

SUBROUTINE GAMMACSAN,SGL,SG2,SG3,SPG, SGA)
AGAM=SG2%: (SAN%SPG)

SGA=SGl/(AGAM+5G3)

RETURN

END

J0B CORRECT
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PAGE 1 C ON LINE IDENTIFICATION OF PROCESS DYNAMICS

C NS IS NUMBER OF TESTS
C

DIMENSION XHCT) 4 VH(T) ,DAC(2) sREC(9)

ACCEPT 4, NS, IFIRST IdUM IADC

READ (0,8) Jl Jz, SJl 95d2

ACCEPT 5,R,SC, G

K=2

KH=K+1

KHH=22:x K+-2
C KM Is DIMENSION OF PARAMETER VECTOR

KM= 3xK+1

KML=KM=1

LLIN=3,

VLIM=10,

IX=1

S=1,

AilN=0,
C INITIALIZE

=0

VAR=0,

V=0,

DO 13 I=l,KM

XH¢i>=0,
3 VH{(I)=0,

SLECT CONSOLE CONFIGURATION
CALL QSHYIWN (IERR 680)
SELEZCT OP ANALOG MODEZ

CALL @SOP (IERR)

BEGIN Loop

100 D=t
CALL GAUSSS(IX, SC,AMN,E)
CALL SL3YNC (2, LADR)
DACC1) =V
DAC(2)=E
Ba C(S)nRuP(JI)/SJl
DAC(4)zREC(J2)/SJ2
CALL qVBDAR (DAC, IFIRST o INU{, IERR)
CALL QsiDpa
CALL QsDLY (1)
CALL QRBADR (RY, IADC, ], IERR)
CALL SLSYNC(3,LADR)
Y=RY/R

!
c
C
c
C
C
C
C
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C NOW C0 TO SA ALGORITINM
Erd=Y<PROCXH; VH, KM)
IF(ABS(ER) o GTo VLIMD EH=SIGNCVLIM,EH)
VAR=VAR+EH*EH
AN=i]
Gil=G/AN
DO 10 IW=],XNM
KHCIW = XHCIWI+GNREHRVHCI W) .
RECCIW) =XHC(IW)
IFCABSCXHCIW) ) o GTo XLIMD XH(IW):SIGN(XLIN,XH(IW))

10 CONTINUE
C NOW UPDATE VH

PAGE 2 C ON LINE IDENTIFICATION OF PROCESS DYNAMICS
DO 20 MM=1,KML
TUPz KM=

20 VIIUP+)zVHCIuR)
C INSERT CURRENT VALUES
VidClo =y
CALL GAUSSS(IX,S,AMN,YFL)
IFCYFL) 60,70,70

60 V:"a5
€O TO g0

70 V20,5

S VHUD =V
VHCRHID) =EX
VART=VAR/AY

RECCUM+1)zRY
REC(KM+2)=EH

F CH=NS) 100,200,200
SELECT IC ANALOG MODE

Qoo (9]

200 CALL QSIC (IERR)

TYPE 2,VART
TYPE 3, CKHCI), I=1, KM)

I FORUIAT(2X, THUSTART ,F8e4//)
TYPE 4, o
FORMAT(I5,312)
FORHAT(ZX, 11 HVARIANCE = ,E9.4)

3 FORMAT(2X,T(F8e4,2X))
FORFAT(3F5.1)
FORMAT(212,2F5,1)

END

v 0N &
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FUNCTION PROCR,S,X)
DIMERSION R(7),8(7)
P0=0,

DO 30 I=1,X
PO=PO+RCII*S(I)
PRO=PO

RETURN

END

SUSROUTINE GAUSSS(IX,5,AM,V)
Az0,0

DO 50 I=1,12

CALL RRAKDUCIX,1Y,Y)

iX=1y

AzA+Y

Uz (A=8,0)%S+AM

RETURN

END

1X

~

Al

vV

A

«50

I
RRANDU
1y

Y

SUBROUTINE SLSYNC(SENS,LADR)
LOGICAL LADR

CALL QRSLL(SENS,LADR,IERR)
CALL QRSLL(SENS,LADR,IERR)
IF (. NOT,LADR) GO TO |

RETURN

£ND
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PROGRAM

SGN

PROGRAM SGN{INPUT,O0UTPUT)
DIMENSION T(7),V(7) 43 XH(7),VH(Z)

RZAD 1060, NS,KNTEST
READ 101, (T(I),I=1,7)

COC 6600 FTN V3.0-P296 OPT=:

K=2

KH=3
KHH=6
KHH=6
KM=6
KML=KM=1

S=1.0

SU=1,9

6=1.0

AM=0.0
VAR=0,.,0
NTEST=KNTEST

14

BEH=10.0
BX=5.0

D0 10 I=1,7
XH(I)=0.0
V(I)=0.0
VH{TI)=0.0

51

PRINT 200
PRINT Z05, NS,S
PRINT 210, (T(I),I=1,KM)

- GALL GAUSSS(SU,AM,U)

V(KH) =U
VHIKH)=U _

00 60 M=1,NS

CALL GAUSSS(S,AM,E)
Y=PRO(T,V,KM) + £

EH = Y = PRO(XHyVH,KM)
EH=BOUND{EH,BEH)

VAR.= VAR _+_FH¥EH

20
22

GN = G/N

00 20 I=1,KM

XH{I) = XH{I) +GN*EH*VH(I)
DO 22 I=1,KM.

XHC(I) =EOUND(XH(I),BX)

DO 25 KK=1 ,KM{

. 25

IUP = KM=KK
VIIUP+1)=v(IUP)
VH(IUP+1) =VH(IUP)
VL) =Y

VH{1) =Y

CALL _GAUSSS({SU,AM,U)

VIKH) =y

VH{KHH)=EH

VH{KH)=U

VIKHH) =E

IF(NJLTANTEST) GO TO 60
VART=VAR/N _

PRINT 212, NTEST
PRINT 215, VART
PRINT 220y (XH(I),I=1,KM)
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PROGRAM SGN - CDC 6600 FTN V3.0~-P296 OPT

' NTEST = KNTEST#+NTEST
60 CONTINUE
130 FORMAT (215)
101 FORMAT (7F5,2)

60 200 FORMAT(1H1,//15X,#SCALAR GAIN STOCHASTIC ALGORITHMZz,///7)
206 FORMAT(13X,#NOs OF SAMPLES =#,I5,5X,2S =2,F542,777/)
210 FORMAT(10X,2TRUE PARAMETERSZ,5X,6F7.2,//77)
212 FORMAT(/10X,#2TESTS =#,1I5)
215 FORMAT(10X,#VAR =2E10.3)

65 220 FORMAT(10X,2XH =2,7(E1063,2X),7/)

END
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FUNCTION

PRO

FUNCTICN PRO(RyS)K)
DIMENSION R(1),S(1)
PO=0.0

DO 30 T=1,K

GOC 6600 FTN V3.0-P296 OPT=

30

PO=PO+R(IX*S(I)
PRO=PO

RETURN

END

Fax,m
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PROGRAM TFSPAN COC 6600 FTN v3,n=p296 op

PRORRAM TESPAN(INPUTQUTPUT) ,
DIMENSTON K(5)98(5)4C(5)EA(5),FB(5),EC(5),RAC(20,2h)
DIMENSTON  U(1010)9E(1010)9Y(1010)

DIMENSTON tHAC(10) sVHRAC(10)

1o

BE=100
RC=s,
NN=500
NNN=NN+1]0
N=p2

NE=~

15

PRINT 200

PRINT 2n1 9NN

REAN 1009AL1)9A(2) vl (1)9B(2)9C(1)9C(2)
ICYINT=8g

ALF=500

AM=nae()

N
s}

S=1.0

PRINT 2029 ALF

PRL:1T JoOsA (1) 9a(2) 9B (1) 9K (2)4C(1)0C(2)
Do &aU IptAsl,20

DO 10 ':11,NNN

CAal.l UGpN(Z)

25

lo

ully=2z

CALL GAIISSS(SeAMe7Z)
Flly=Z

CONTINUF

DO 1S I:]’_l() .
U(Iy=0,n

3n

lc

en

Y(Iy=0,0n

F(ly=0,0n

DO 25 K=1]19NNN

SMT A i)

DO 22U T=zlop

SM = SM « PlT)y#U(K=T1,« C(I)*E(K-I) - A(T)&Y{K-I)

35

L3

2%

Y(KY=E(K) *+ Sm
PRIMT 2039 LKEA
DO o1 I=1eNE
EA(T)=0,0
EB(1)=0,0
EC(1)=n.0

«5

DO 40 KK=191COUNT
E(l1)=0,0

Do 35 Ki=2ann

K=K1+1p

G = ALF/((RK=3)%NN+K])
SM=n,0

50

3n

Dp 30 I=1snE

SM = SM ¢ ;A(I)#Y(K=I) = EB(I)QU(KGI) - EC(I)*E(K-I,
FIK)Y=Y (k) +5M

E(KYSnUND R (KD g 15E)

G=o2E (k)

N0 31 I=1eftk

55

J=Ra|
FCUT)=EnUNUECIT) +L9E (J) 90()
EBCI)=ROUNL (ERT) +632U (J) s C)
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PROGRAM TFSPAN CDC 6600 FTN v3,n-p2as OPT

3 EA(T)=ROUNL(EA(T)=62Y (J) yKC)
35 CONTINUF
PRINT 2p6 KK :
PRINT ?059((EA‘I)91=19NE)1(EB(I)vI:l,NE),(EC(I),I=1,NE))
60 4n  CONTINyE
DO 4l I=1sNE

I1=7+NE

IZ:"Z“NE

RAC(IRFEA,Iy=EA(T,
bg RAC(IREAY L) =EB(])

41 RAC(IREAIZTEECTD)
60 ConrlnuE
ND=2aNE
DO Al T=19ND
70 SUM=0,
Do <0 J=lse0
Sn SUmM=SUMLBACTg, 1)
61  ERAA(I)=SUM/p0. .
PRIMT 206y (EBAC(1)y1=]4yND)
75 NO A2 I=19ohD
NO A2 J=legU
62 HAC(JyT)=BAC(Jr1)~ESBAC(I)
DO a3 I:l,M)
SUM=z0eqn
B0 DO A4 J=19£0
64 SUM=SUM + bAC(JIsyI)*g3AC(Us])
67 VHEAC({I)=SUM/20
PRILT 2075 (VHAC(I) 9 I=214n0)
10n  FORGAT (6FSe2)
HS5 190 FORGAT () qR92TRUE VALUES #46F74p4//)
200 FORaT(OVHIY///9 14X #TEST PANUSKA STOCHASTTC METHODZ.///7)
200 FORAT(18X1#NUMBER OF DATA PALRS = 2415,//)
20> FORUAT(10AY2ALFA =24FRre2s//)
203 FORMAT(/10X3#TUENTIFIGATION NOoZsI4/)
X el4  FOR-AT(10X9s#PASS NDZ13,)
205 FORCAT(J0X96E1264)
20  FORMAT(//71UXe2EXP S29GE1244)
207  FORMAT(/10A92VAR=£9E12,4)
END




- Al2 -

SUBROUTINE UGEN COC 6600 FTN V3.0-P296

SUBROUTINE UGEN(U)
YR=RANF{3)

U==-1,0
IF(YR.GE.1.5) U=1.0

RETURN
END
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FUNCTION

BOUND

FUNCTICN BOUND(X,8)
IF(ABS(X).LE.B) GO TO 1
IF(X) 2451,3

1 BOUND=X

COC 6600 FTN V3.0-P296

10

RETURN

2 BOUND=-8
RETURN

3 BOUND=E
RETURN
END
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PRUGRAN

TXG

PROGRAM MXG(INPUT,OQUTPUT)
DIMENSION XH(7),VH(7),

DIMENSION GN(7,7),COR(7)
COMMON VV(7),V(7,500)

CUL 8607 FTN V3. U=-P2Y

XLIM(T) 4 XMINC(7)
s VTH(7) yRR(7,7) yRRR(7,7)

s XINC7) ,T(7)

10

QOOOOC

JAN. 5773,

INITIALIZE

K

IS MODEL ORDER

i5

KIN=1TT
KNTEST=100
NTEST = KNTEST
NS=1000

RM=1.0

AMN=0.0

20

S=1.T
Si=1.0
KN=1
KCYC=1
NVAR=0
K=2

25

Ku=¢

KH=K+1

KHH = K#KB+1
KM = 2*K+KB
KML=KM=-1
Viiu=10.

36

10

15

U0 10 TI=1,KH
DO 1u J=1,KM
GN(I,J)=0.0
BO 15 I=1,KM
GNCI,I)=1.0
00 25 I=1,KM

35

40

20
25

DO 20 G=1,KIN
V(I,J)=0.0
VV{I)=0.0
VH{I)=0.0
PRINT 2400
PRINT 205,S

45

READ 100, (T(I;I=15,KM™)
READ 100,(XIN(I),I=1,KN)
READ
READ
CALL
D0 30 J=1,KM

1095,

165, CXLIMCI) yI=1,KM)
{(XMINC(I) ,I=1,KM)
INIT(KM,)KHyKHHy KIN,S,RM)

50

T VAtT)

30

35

= V({J,KINY

XH{J) =XIN(J)

DO 35 M=KHH,KM
VH{M)=0.48

PRINT 210,(T(I);I=1,KM)
VAR = (.0

55

44

CALL ARRAY(Zy KM, KM, 757 GN,y GN)

N=N+1
KN=KN+1
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PROGRANM

MXG

NVAR = NVAR+1

CALL GAUSSS(S,AM,E)
Y=pR0(1,VV7KM) + E

EH = Y - PRO(XH,VH’KM’

COC 6600 FTN V3,0-P2396 OP1

60

65

QOO

IFCABS(EH) oGT.VLIM) EH=SIGN(VLIN,EH)
VAR = VAR + EH*EH

UPDATE GAIN MATRIX

CALL GMPRD{(GN,VH,COR,KMyKM,1)

70

R=PRO{VH, COR y KM)

R=1+7 (R+RM)

CALL GMTRA(VH,VHT,KM,1)

CALL GMPRD{CORyVHTyRR,KMy1,KM)
CALL GMPRD(RR,GNyRRRy KMy KM ,KM)
KMKM=KM*KM

75

42

OO0

00 42 JW=1,KMKM
GNCJW) = GN(JHW) -RRR(JW)*R

NOW COMPUTE CORRECTION

CALL GMPRD(GN,VH,COR,KM,KM,1)

80

00 170 IH=1,KM

XHCIH) =XH(IH)+COR{IH) *EH*R
XH{2) ==XH(2)

XH(%) ==XH(5)

IFCABS (XHCIH)) oGTo XLIM(IH)) XH(IH)=SIGN
IFCXHCIH) o LT« XMINCIH)) XH(IH)=XMIN(IH)

(XLIMCIH) 4XH(IH))

85

170
c

XH(2)==XH(2)
XH{5)==XH(5)
CONTINUE

C UPDATE Vv, VH

c

94

85

45
c

.00 45 MM=1,KML

IUP = KM - MM
VY {IUuP+1) VY (IUP)
VH(IUP+1) VH(IUP)

C INSERT CURRENT COMPUTED VALUES

.00

c

VYV (1) =Y

VH(1) =Y .
CALL GAUSSS(S1,AM, W)
VV(KH) =U

VH(KH) =y

05

50

VV{KHH) =€

VH(KHH) =EH
IF(N-NTEST) 40,50,50
VART=VAR/NVAR

PRINT 215, NTEST
NTEST = NTEST +KNTEST

10

PRINT 220, VART
PRINT 225, (XH(I),I=1,KM)
IF(N=NS) 40,60,60
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PROGRAM MXG LUL BB U0 FTN V3.U=-FP2C
60 IF{KN=KCYC) 61,62,62
61 N=0
NTEST = KNTEST
_ PRINT 227, KN
115 GO T0 4O
62 CALL ARRAY(1,KM,KM,7,7,GN,GN)
PRINT 230
DO 65 I=1,KM
120 PRINT 235, (GN(I,J),J=1,KM)
b5 CUNTINUE
100 FORMAT(7FS542)
105 FORMAT(7F5.2)
200 FORMAT(L1H1,//15X,2MATRIX GAIN ALGORITHM2,//777)
125 205 FORMAT(L0Xs#S = 2,F5.2,///)
€10 FORMAT(/7X,2TRUE VAL#,6E12.3/)
de‘F'ORM’RI(/lUX,I]tbﬁ:,Ib)
220 FORMAT(10X,2VAR = #,E10.3)
225 FORMAT(10Xy#XH = #,6E12.3)
130 230 FORMAT(//10X,#GNz)

235 FORMAT(10X,6E12.3)
227 FORMAT{/10Xy2CYCLE#,13)

END
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SUBROUTINE INIT

COC 6600 FIN V3.0=-P29

SUBROUTINE INIT(KM,KH, KHH, KIN,S,RM)

DIMENSION HL(lU),NM(lD),X(?I,VT(SOO,?),RR(?.SUO)

DIMENSION GN(7,7)
DIMENSION Z(500)

10

COMMON VV(?)yV(?pSﬂQ),XIN(?),T(?)
AM=0.0

NV=KHH=-1

KML=KM=1

Si=1.0

JL=0

i5

15

JL=JL+1

CALL GAUSSS(SI;AM,U)
VIKH,JL)=U

VV(KH) =y

CALL GAUSSS(S,AN,E)
Y = PRO(T,VV,KH) + E

20

20

Z{JLr=y
IFtJL.GE.KIN) GO TO 25
00 20 MM=1,KML

J=KM=-MM

VVEJ+1)= vV ()
VIJ+1,J0L+l) = V{J,JL)

25

25

VI1,dL+1)=Y

VWi1)=y

VYV (KHH)=E

GO TO 15

CALL ARRAY(Z,NV,KIN,7,500,V,V)
CALL GMTRA(V,VT,NV,KIN)

30

30

CALL GMPRD(V,VT,GN,NV,KIN,NV)
CALL MINV(GN,NV,D,NL,NM)

CALL GMPRD(GN,V,RR,NV,NV,KIN)
CALL GHPRD(RR'Z,X,NV,KIN,l)
00 30 I=1,NV

XINTI) =X(I)

35

40

CALL ARRAY(i,NV,NV,?,?,GN,GN)
CALL ARRAY(i,NV,KIN:?;SDO,V,V)
PRINT 200

PRINT 201,KIN

PRINT 2g2, (T(I),I=1,KM)
PRINT 203, (XINUI) ,I=1,KM)

45

40

200
201

PRINT 210

00 40 I=1,NV

PRINT 204, (GN(I,K), K=1,NV)
PRINT 205

FORMAT(/15X, 2INITIAL LEAST SQUARES ESTINATER?)
FORMAT(//10X,#N0. OF DATA POINTS #514)

54

2u2
203
210
204
205

FORMAT (/10X, 2TRUE VAL #56E£12.3)
FORMAT(/10X, #X INITIAL#,6E12,3)

FORMAT (710X, 2GN#)

FORMAT(10X,6E12,3)

FORMAT(///15X y#BEGIN STOCH. ESTIMATIONZ,//)
RETURN

END
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PROGRANM MATINI

PROGRAM MAINL1C(INPUT,OUTPUT)

COMMON EE,V,Y,U(S),E(lO),C(100),EC(100),V1(100),VCC(ZOO),
ECCl208),v2( 60, 60) ,DAT(2500)

RZAD 1060, NO,NI,NP

10

ReAU 101, IPRINT

READ 101, N

READ 110, AC1,AC2

READ 115, KA4yKAS,KAG,KAS
READ 115, KB4,KB5,KB6,KB9
READ 115, KC4,KC5,KC6,KCY

15

COC 6800 FTN V3. U=-P295 OPY

CALT STSTIINU, NI NP, IPRINTI

PRINT 115, KA4,KAS,KA6,KAS

PRINT 115, KB4, KBS, KB6,KB9

PRINT 115, KC4,KC5,KC6,KC9

PRINT 120, AC1,AC2

CALL PRO(NO,NI,NP,KA#,KAS,KAB,ACI,ACZ,KAQ)

20

100
101
110
115

CALLAPRO(N01NI,NP,KBQ,KEb)KBb,ALl,ACC,KBg’
CALL PRO{NO, NI,NP,KCQ,KCS,KCG,A01pACZ +KC9)
FORMAT (3I5) *

FORMAT (I2)

FORMAT (2F 10,4 2)

FORMAT(4I5)

1dU

FURHAT(/lUX,#ACl,ACd *yEIT2, 7D
END
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TINE JSYo

LEY COC ©bUU FIN V3.U=Fc59b UVI=1

SUBROUTINE SYST1{NO,NI,NP,IPRINT)
INTEGER GMJ

COMMON EE,V,Y,U(8),E(10),C(100),EC(100),V1(100),VCC(200),

1 ECC{2060),v2( 60, 60),DAT(2500)

(37

100

DIMENSION COEF(30),A(5),BI5),,C1 (57, VINTIUU0) ,ERTZ,10UL),YLTIUTU)

READ 100, S

FORMAT (F5.1)

AM=0.

NQ=(NI+2) *NO

READ 102, (COEF(I),I=1,NQ)

10¢
103

214G

FORNATTGF52)

READ 103, ALAMBOD

FORMAT (F5.2)

PRINT 210, NO,NI,NP

FORMAT (1H1,103X,2(1252X) »14,/)
PRINT 250, S

251

211

FORMATI/1I0X, #S = #3F541y7)
PRINT 211

FORMAT (10X, 4HCOEF)

D0 10 I=1,NO

A{I)=COEF(I)

NQ=NO+TI

10

212

BUIY=COEFINQ)
NR=2*NO+1I
C(NR)=COEF(NR)

CL{I)=COEF(NR)

PRINT 212, A(1),A(2),B{(1),8(2),C01({1),C1(2)
FORMAT(LIX,)6 (FHe2y3X)»//)

C
c G
c

ENERATE U INPUT.

DO 20 I=1,NP
CALL GAUSSS(S,AM,RR)
IF{RRsGT+3,0) UIN(I)=1.0

20

25

IF(RRLLEVI. 07 UINTIIT==1.0
ERT{1,I3=UINCI)

CONTINUE

D0 25 K=1,NP

NQ=2*K=-1

DATIN@)=UIN(K)

c 6

DAT{1T)=U.U
DAT(3)=0.0

ENERATE NOISE INPUT

DO 30 J=3,NP

30

45

CALL GAUSSS{S)AMyRR)
ER{2yJ)=RR

DO 45 1I=1,NO
YG(I)=0.0
ER{2,1)=0.0
ER{1,I)=0.0

40

IFUIPRINT) &U0,35,;40
PRINT 200
PRINT 201,(ER{1,J),J=1,NP)
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SUBROUTINE SYST1

200
201

PRINT 202

PYINT 201, (ER(2,J) yJd=1,NP)
FORMAT (710X, SHINPUT)
FORMAT(20F642)

CDC 6600 FTN V3.0=-P2¢

60

65

C
c
c

202

35

FORMAT (710X, SHNOGISE)

OBTAIN SYSTEM OUTPUT

NO1=NO+1
DO 50 J=NO1i,NP

70

AB=0.,0

BC=0.0

CD=0.0
CDB=CD+ER(2,4)
00 55 I=1,NO
GMJU=J~1

75

55

50

AB=AB=A(I)*YG{(GMJ)
BGC=BC+E(IY*ER(L,GMJ)
CO=CD+C1(I)*ER(2,GMJ)
CO=CD*ALAMBD
YG(J)=AB#+BC+CD

DO 60 I=1,NP

8d

60
62

203

NQ=2*1

DAT (NQ)=YG(I)

IFCIPRINT) 62,63,462
PRINT 203

PRINT 204, (YG(I),I=1,NP)
FORMAT (/10X, 6HOUTPUT)

85

2uh
63

FORMAT(I0EL2, &)
CONTINUE
RETURN

END.

pzmmroy
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JBROUTINE PRO . CDC 6600 FTN Vv3,0-P296 OPT=1
SUBROUTINE PRO(NO,NI,NP,L1,L2,IT,ACCL,ACC2,IPRINT)

ROUTINE FOR IDENTIFICATION OF NI INPUTS ONE OUTPUT SYSTEM
NO= ORDER OF SYSTEM, MAX 190

NI= NUM3ER OF INPUTS, MAX 8

NP=  NUMBER OF MEASUREMENT POINTS

Li=-1 GIVES COMMON ESTIMATION FOR STARTING VALUES

L1=0 GIVES COMMON ESTIMATION

Li=1 GIVES LEAST SQUARE ESTIMATION FOR STARTING VALUES
L1=2 GIVES LEAST SQUARE ESTIMATION FROM SPEC. ERROR=COEFF

L2= NUM3ER OF ESTIMATIONS

L2=0 GIVES ESTIMATIONS UNTIL MAX+COEFF.CORReLE. 0.8001
IT=0 GIVES APPROXIMATIVE SECOND DERIVATES

IT=1 GIVES EXACT SECOND DERIVATES

C = COEFF. VECTOR

(OUTPUT COEFF,INPUT1 COEFFy eeeyINPUTNI COEFF, ERROR COEFF)
CC= COEFF. CORRs VECTOR
Vv LOSS FUNCTION
Vi= GRADIENT OF V
V2= SECOND DERIVATES OF vV
ALFA= REDUCTION FACTOR FOR COEFF,=-CORR.

USED WHEN THE LOSS FUNGCTION IS GREATER THAN
THE PREVIOUS LOSS FUNCTION

REQUIRE INPUT OUTPUT DATA IN THE ARRAY DAT,
INPUTL(1) IN DAT(L)), eae,INPUTNI(1) IN DATINI),OUTPUT(1) IN
DAT(NI#1) AND SO ON

SUBROUTINE REQUIRED
vVviv2
GJRV

COOOOOOOOOOOOO0000000O00O000O0Oo0D

COMMON EE,V,Y,U(8),EC10),C(100),ECC100),V1(100),VCC(200),

1 ECC(200),v2( 608, 60),0AT(2500)
DIMENSION CC1100)

MO=NO* (NI+2)
MM=MO-NO
IF{L1-1) 5,3,1

1 00 2 I=1,MM
2 C(I)=0.0
GO TO 5
3 DO 4 1I=1,MO
4 C(I)=0.0
c COEFF. ZERO

5 CONTINUE

c START LOOP L
IF(L2.EQ.0) GO TO 1001
00 1000 L=1,L2
1001 ALFA=1.D

IF‘Ll.GEolOOR.LiOLTOO) Vv=1.0E15
Vo=V
40 CALL VVIV2{(NO,ZNI,NP,IT)
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& 5 -

SUBROUTINE PRO

IF(V.LE.VO) GO TO 42
TK1i=0.0

D0 41 1I=1,MO
CC(I)=0.5*CC(I)

CDC 0600 FTIN V3. T-P23

ol

by
41

301

IF (ACS{CC{IT=TRI)) &1,41,4%
TK1=ABS(CC(I))
C(I)=C(I)-CcC(I)
ALFA=0,5*%ALFA

IF(IPRINT-1) 300,301,301
PRINT 111,V

70

360
45

42

PRINT 108, ACFR

PRINT 109, (C(I), I=1,M0)
IF(TK1-ACC1) 1002,1002,445
CONTINUE

GO TO 49

CONTINUE

75

IFILI-1) 9,06,56
M=MM+1

DO 8 I=M,MO
V1i{I)=0.0

B0 7 J=1,M0
V2(I,J)=0.0

890

F V2({J,17=U.0

8

9

VZ(I,I)=1.0
DERIVATES ZERO
CONTINUE

PRINT V,L8(EE),Vi,V2
SPR=SQRT(2.0*¥V/NP)

85

363
3i2
3409

PRINT 100,V,SPR
IFCIPRINT=-1) 302,303,303
PRINT 101, (Vi(I), I=1,MO)
IFCIPRINT-1) 308,308,309
IF{IT.EQ.U) PRINT 182
IF(IT.EQe1) PRINT 103

9U

395

10
308

11

DU 10 L=1, 10

PRINT 104, (V2(I,Jd), J=1,M0)
V2M=0.0

00 11 1I=1,MO

DO 11 J=I,MO

V2M=AMAXL1 (ABS(V2({I,J)),V2M)

100

is

CALL GJRV(V2,M0,1.0E~-08,IERR, 60)
IF(IERR+1) 20,19,20

PRINT 120

RETURN

PRINT V2-INVERS

105

20
305

21
304

IFUIPRINT=-17 30%4,30%,30%
PRINT 105

DO 21 1I=1,MO

PRINT 106y (V2(I,J), J=1,M0)
V2IH=0.0

00 12 1I=1,MO

110

12

b0 12 J=1,F0
V2IM=AMAXL1(ABS(V2(I,J)),Vv2IM)
V2COND=MO*V2M*V2IM
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SUBROUTINE PRO CDC 6600 FIN V3.0-P296 OPT=1

IFCIPRINT-1) 306,306,307
307 PRINT 107, V2COND
c CONPUTE COEFF.=CORR, FROM NEWTON=RAPHSON
306 TK=0.40
00 24 I=1,MO
CC(I)=0.0
DO 22 Jy=1,MO
22 CCIII=CC(I)=V2(I,J)*V1(J)
IF(ABSICC(IN)I-TK) 24,24,23
23 TK=ABS(CC(I))
24 CONTINUE
00 25 1I=1,MO
25 C{I)=C(I)+CC(D)

'PRINT COEFF., AND LB(COEFF.)

OO0

PRINT 109, (C(I), I=1,M0)
D0 28 I=1,MO
28 V2(I,I)=SQRT(ABS{SPR*SPR¥*V2(I,I)))

IF(IPRINT=1) 310,311,311

311 PRINT 1108, (V2(I,I), I=1,MO)

310 IF(L2) 1000,30,1000

S0 IF(TK.LE.ACCZ.AND.IT.EQ.0) GO T0 1003

IF(TK-ACC1) 1002,1002,1001

1000 CONTINUE
GO TO 1003

1002 PRINT 112,ACCt

1003 CONTINUE

c

100 FORMATU///////75X,15HLOSS FUNGTION =,E16.8/5X,
1 29HSTANDARD DEVIATION OF ERRORS=,E16.8)

1G1 FORMAT(/5X,S5HGRAD V/(8E15.7))

1062 FORMAT (/5X,30HAPPROXIMATIVE SECOND DERIVATES)

103 FORMAT (/5X,22HEXACT SECOND DERIVATES)

104 FORMAT(8E15,7)

105 FORMAT (/5X,6HINVERS)

166 FORMAT (8E1547)

167 FORMAT (5X,8HY2COND«=,E1648)

108 FORMAT(/5X,46HTHE PREVIOUS STEP HAS BEEN REDUCED WITH ALFA= ,
1 E16.8)

109 FORMAT(/5X,10HNEW COEFF./(3E15.7))

11G FORMAT(5X,28HSTANDARD DEVIATION OF COEFFa/(8E15.7))

111 FCRMAT(/5X,15HLOSS FUNCTION. =,E16.8) . .

112 FORMAT (/5X,2BHMAX4COEFFeCORRs IS LESS THAN,E16.8)

120 FORMAT(/5X,42HA PIVOT ELEMENT HAS BEEN LESS THAN 1.0E-08)
RETURN
END

e
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3UBROUTINE VVIVZ

CUU 6600 FIN V3.U-P29 UOPT=1

SUBROUTINE VV1V2(NO,NI,NP,IT)
CVV1ivV2 FOR SUBROUTINE PRO

VViv2 COMPUTES LOSS FUNCTION V, GRADIENT OF V AND SECOND

DERIVATES OF V, FOR SUBROUTINE PRO

NO= ORDER OF SYSTEM, MAX 10

NI= NUMBER OF INPUTS, MAX 8

NP= NUMBER OF MEASUREMENT POINTS

IT=80 GIVES APPROXIMATIVE SECOND DERIVATES
IT=T GIVES EXACT SECUND DERIVATES

c CCEFFe. VECTOR

OUTPUT COEFF,INPUTL COEFFy eeey INPUTNI COEFF,ERROR COEFF)

¢
U = INPUT DATA VECTOR
Y = OUTPUT DATA
EE= ERROR
£ = STATE VECTOR OF ERROR
EC= FIRST DERIVATES OF ERROR
ECC= SECOND DERIVATES OF ERROR
ED= HELP VECTOR FOR EC
EDD= HELP VECTOR FOR ECC
V = LG0SS FUNCTION
Vi= GRADIENT OF V
V2= SECOND DERIVATES OF V
VCC= VECTOR WITH TERMS FOR EXACT V2

REQUIRE INPUT OUTPUT DATA IN THE ARRAY DAT,

OO0OOOAOOOOOOOGOOOOOAdONOOOaOOOOOaO0O

INPUTI(LTIN DAT(I),

ve e s INPFUINITI) IN UATUNI),UOUTPUT(IT IN

DAT(NI+1) ANDO SO ON

SUBROUTINE REQUIRED

NONE

DINENSION EUTCIUY ,EDDTIU)

COMMON EE,V,

i ECC(200),val(

Y,U(8),EL10),C(100),EC(100),V1(10G6),VCC(200),
60, 60),DAT(25040)

INTEGER GM8IQ,GM8IQN2,GMMEI,GMNO,GMMO,GMMI  GMNOJy GMMEJ 5 GMMENT

INTEGER GMIP

»GMIQ,GMIV,GMIR,GMIQU s GMEJ

MO=ENO*¥ (NI#2)
MH=MO=-NO
M=2+%MO
MI=NI+2
MJ=NI+1
KK=NP=-NO+1

Y=UeU

EE=0.0

V=0.0

DO 1 I=1,NI
Ui{I)=0.0

DO 2 I=1,NO

ECII=0.0
E(2)=0.0
DO 3 I=1,M
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SUBROUTINE Vvive COC 6600 FTN V3.0-P29¢

VCC(I)=0.0

3 ECC(I)=0.0
D0 4 1I=1,MO
EC(I)=C.0

60 Vi(I)=0.0
00 & J=1i,MO
4L VZ(I,J)=000

c START LOOP K
65 D0 1003 K=1i,NP

00 5 J=1,MI
IQ=NO* (J-1)
EQO(J)=0.0
EDD(J)=0.0
70 D0 5 I=1,NO
IP=MM+T

GM3IQ=1Q+I
GMB8IQ2=2*IQ+I
EDC(I) =EDC(I)-C(IP)*EC(GMBIQ)
75 IF(IT.EQ.1) EDD(J)=EDD(J)-C(IP)*ECC(GMBIQ2)
S CONTINUE
IF(IT-1) 11,9,11

9 ME=M-1
DO 7 I=1,ME
80 GMMEI=ME-I
7 ECC(GMNMEI+2)=ECC(GMMEI+1)
ME=NI+1
DO 10 J=1,ME

GMNO=NO*(J=1)
85 16 ECC(2*GMNO #1)=EDD{(J)-EC(GMNO +1)
ECC(2*NMM+1l) =EDD(NI+2)=-2*¥EC(MM+1)
11 CONTINUE

ME=MO-1
DO 6 I=1,ME
90 . GMMO=MC-1

6 EC(GMMO+1)=ECI(GMMO)
EC(1)=ED(1) ¢+Y
EC(MM+1) =ED(NI+2)-EE
00 8 J=1,NI

95 GMNO=NO*J
8 EC{GMNO+1)=ED(J+1)=U(J)
c FIRST AND SECOND DERIVATES OF ERROR COMPUTED
c COMPUT STATE VECTOR E _  _ - e
EE=-C (MM+1) *E(1)+E£(2) +C (1) *Y
100 ME=NO=-1
D0 20 I=2,ME
GMMI= MM+

20 E(I)==C(GMMI)*E (1) +E(I+1)+C(I)*Y
E(NO)==C(MO) *E (1) ¢C(NO) *Y
105 E(1)=EE
DO 21 I=1,NO
D0 21 J=1,NI

GMNOJ=NO*J+I
21 E{I)=E (1) -CLGMNOJ) *U LN
110 c STATE VECTOR E COMPUTED
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SUBROUTINE VVIVZ ] CUC B06TU FIN V3. U-P29

C STEP TC NEXT MEASUREMENT POINT
ME=(NI+1) *(K=1)
D0 22 J=1,NI
GMEJ=ME+Y

115 ¢ UUJY=DATIGHED)
GMMENI=ME+NI+1
Y=DAT (GMMENTI)
E(1)=E(1) +Y
EE=E(1)

12¢0 c ERROR COMPUTED

V=V+EE*EE
IF(VeGT41.0E15) GO TO 55
C LOSS FUNCTION COMPUTED
00 23 J=1,MI
125 : IP=NO* (J-1)
00 23 1I=1,NO

1U=IP+]
23 V1(IQ)=Vi(IQ)+EE*EC(IQ)
GRAD V COMPUTED
130
START COMPUTATION OF v?2

OO0

Uu 31T 1J=1,0
D0 31 u=Iu,6
135 31 V2(IJ,J)=V2(IJ,J)+EC(IJ)*EC(J)

APP.V2 COMPUTED
2G0 CONTINUE ‘

IFUIT=D 43,%1,%3
140 41 DO 42 1I=1,M
42 VCC(I)=VCC(I)+EE*ECCKI)

c TERMS VCC FOR EX. V2 COMPUTED
43 CONTJINUE
c END LOOP K

145 . 1000 TUNTINUE

V=V¥/72.0
IF(IT-1) 53,51,53
c ADD TERMS VCC TO APP V2.
150 51 D0 52 JJ=1,MI

1PENU¥T1I3=17

IQ=2%1pP=-1

IR=MO~-NO

B0 52 J=1,NO
155 D0 52 1I=1,NO

GMIP=IP+I

GMIRZTIR+J
GMIQU=IQ+I+J
52 V2(GMIP,GMIR)=V2(GMIP:GNIR)+VCC(GMIQJ)
1606 c EXACT V2 COMPUTED
53 CONTINUE
D0 54 I=1,MO

007547 J=1, N0
54 VZ(J;I)=V2(I,J)
165 55 CONTINUE

Iy

T
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SUBROUTINE GJRV

COC 6600 FIN V3.Uu-P2S6 0P

SUBROUTINE GJRV(AyN,EPS,IERR,IA)

INVERTS ASYMMETRIC MATRICES, HAS EMERGENCY EXIT,
REQUIRES N**2+4*N WORDS OF ARRAY STORAGE

10

A IS THE NAME OF THE MATRIX TO BE INVERTED

N IS THE ORDER OF A

EPS IS A VALUE TO BE USED AS A TOLERANCE FOR
ACCEPTANCE OF THE SINGULARITY OF A GIVEN MATRIX
IERR IS AN INTEGER VARIABLE WHICH WILL CONTAIN ZERO

i5

UPON RETURN IF INVERSION IS COMPLETED OR =1 IF SOME
PIVOT ELEMENT HAS AN ABSOLUTE VALUE LESS THAN EPS

IA IS THE DIMENSION PARAMETER

MAXIMUM ORDER OF A=100

THE ORIGINAL MATRIX IS DESTROYED

IF IERR IS RETURNED ==-1 THEN THE INVERSION HAS FAILED

OO00O0O0OOOONOOOOOOO0O

OTHERWISE THE RESULTING INVERSE IS PLACED IN A

SUBROUTINE REQUIRED
NONE

DIMENSION A(60,60),8(100),C(1080),IP(180),1Q(100)
IERR=0

25

[

DO 140 K=1,N

PIVOT=0.0

DO 126 I=K,N

DO 2 J=K,yN
IF(ABS(ALI,J))=ABS(PIVOT)) 2,21
PIVOT=A(I,4J)

30

120

IP{K)=I

IQ{K)=J

CONTINUE

CONTINUE
IF(ABS(PIVOT)=-EPS)104,108,3
IF{IP{K)=K) 4,6,y4

35

L3

DO 5 J=1,N
IPX=IP(K)
Z=A(IPX,J)
ALIPXyJ)=A(K,yJ)
A(K’J)=Z
IF(IQ(KI=K) 74957

45

DO 8 I=1i,N

CIPX=IQ{K)

Z=A(I,1IPX)
A(I,IPX)=ALI,K)
A{I,K)=Z

D0 13 J=1,N »

50

19

11

IF(J‘K)jJ)iO,li
B(J)=1,.,0/PIVOT
C(J)=1.0

GO TO 12
B(J)==A(K,J)/PIVOT
C(J)=A(J;K?

55

1e

13

A(K,J)=0.0
A(J;K)=0.0
CONTINUE
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SUBRUUTINE

GJRV

14
140

DO 14 I=1,N

DO 14 J=1,yN
A(L,J)=A{I,J)+C(I)*B(J)
CONTINUE

COC 6600 FIN V3.0-PcY

Y

65

15

DU 20 KP=1,N
K=N+1-KP

IF(IP(K)=K) 15,17,15
D0 16 I=1,N

IPX=IP (K)

2=A(I,IPX)

70

16
17
i8

AL, IPXY=A(1,K)
A(I,K)=Z

IF(IQ(K)-K) 18,20,18
DO 19 J=1,N
IPX=IQ(K)

Z=A(IPXyJ)

75

i9
20

100
21

ACIPX; ST=ATK, J)
A(K,J) =Z
CONTINUE

GO TO 21
IERR==-1

RETURN

ENU
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'AM INENG CDC 6600 FTN V3,0=-P296 OPT=1 73,0

PROGRAM JDEN4 (INPUT,OUTPUT)
COM4ON (1U00)9T(7)9Y(1000) 9KHsKHHINS
COMMUN F(1000)
DIMENSTION N(49) 9 X(7) G (T)
EXTERNAL FUNCT
N$S=3000
NV=4g
KS=2
KB=p
KH=xS+]
KHH = KH + KB
AM=(ne 0
s=1,0
READ 1009 (T(I)yI=1eNv)
REAND 100y (X(I)sI=lyeNvV)
PRINT 200
PRIMT 2059 (T(I)sI=1enV)
PRINT 2509 (X(L)sI=1eNV)
CAL|. SYST(NV,SeAM)
EST=0e0
EPS=10,#%#(=15)
LIMIT=50
CALL FMFP(FUNCTyNVIX9F9GIESTIEPSILIMIT, IERYH)
PRINT 21091ER ‘
PRINT 2159 (X(I)sI=19NV)
PRINT 2209F
PRINT 270y LIMIT
PRIMT 2809 (G(L)eY=14sNV)
100 FORMAT(7F95.2)
200 FORMAT(1H1915X9#FLETCHERyPOWELL MINIMIZATION FOR IDENTIFICATION2/)
205 FOR“AT (/10X 9#TRUE #97F7.2) .
210 FORMAT (//1UX9#I1ER = #,13)
216 FORUZAT(/10R92X = #£97E13.9)
220 FORMAT(/1UX9y2FUNCTION = #F1043)
250 FORMAT(/10AR92 XKIN #97F7.2)
270 FORMAT(/10Xe2 KOUNT = #I3)
280 FORMAT(/10X9#GRAD = #,7E11.3)
END




SUBROUTINE

SYST

CDC 6600 FTN V3,A=P296 0P

SUBROUTINE SYST(NVsS,AM)

COMON L(1000)9T(7)9Y(1000) yKHyKHHINS
COMMON E(1000)

DIMENSION V(7)

Y

KML=NV=]
YS=ne0
ES=ne0
SU=140
SUMA=0,40
SUMn=90,0

15

VARC=0.0

DO 5 I=1yNS:

CALL. GAUSSS(SyAMyES)
SUMA=SUMA+ES
SUMnr=SUMB+ES#ES
F(I)=ES

20

200

EMEAN=SUMA/NS

VARE=SUMB/NS

PRIMT 2009 EMEAN, VARE

FORAAT (//5X9#MEAN E BEFORE CORRECTION, VARE, #92E12,4)
DO 7 I=1yNS

E(Iy=E(7)~EMEAN

25

219

1g

VARG=VARC*E (1) *E(I)
VARGC=VARC/NS

PRINT 2109 VARC

FORHAT(SX!#VARE AFTER CORRECTION*DEIZoéo//)
DO 10 I=1lsiNV

VIIy=0,0

30

D0 50 JU=19NS

CAL1I, GAUSSS(SUsAM, YY)
V(Ka) =Yy
YS=pRO(TsVINV)*+E(J)
DO 20 MM=lssKML

TUPZNY =M

35

40

20

Sa

VInP+1y=V(Iup)
V(1l)=YSs
V(KHH) =E (J)
UJy=YUu
Y(J)=YS
CONTINUE

. RETURN

END
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SUBROUTINE FUNCT

SUBROUTINE FUNCT(NV.X.VAL.GRAD)
COMMON 1)(1000) sT(7)9Y(1000) sKH9KHHOINS
COMHMON E(1000)

DIMENSION UD(1000)9EC(20) sED(10)Y

COC 4600 FTN V3, neP2

1o

DIMFNSION A(1) »GRAD(1)9oVH(T)
EH=q

VAR=0,0

DO 5 I=1eNV

VH(T)=0,0

EC(1)=0,0

15

GRAN(Iy = 0.0
KML = Nyw=]
VH(kH) = U(1)
LU=NS=]

DO 3 Ku=lebLU
UD(kU)=1j(KU+1)

20

20

uD(1000)=U(1)
N=0

N=N41

DO 25 J=193
I0=2%(J=1)
ED(1)=0,0

25

25

DO 25 I=192

IP=4+1

GMBTQ=]1qQ+I .
ED(.1)=EN(J) =X (IP) #EC(GMBIQ)
CONTINUF

DO 26 1=19D5

30

26

GMMN=6=1
EC(BaMMO+1)=EC(GMMO)
EC(1)=ED(1)=Y(N)
EC(3)=ED(2)=UD(N)
EC(])=ED(3)=EH

EH = Y(N) = PRO(XyVHyNV)

35

40

40

VAR=VAR + EH®EH
IF(NeGE.NS) GO TO 50
DO 40 MM=lsKML

IUP = Nv=MM
VH{IUP+1) = VH(IUP)
VH{1) =Y (N)

45

30

50

VH(xkH) =y (N*+]1)

VH{(kHH) =EH

DO 30 I=1sNV :
GRAN(I)=GRAD(I) +EH¥*EC(I)
60 710 20

CONTINUE

50

55

DO 55 I=1sNV

GRAD(I) = 2.#GRAD(I1)/N

VAL = VAR/N

PRINT 2009 (X(I1)sI=19NV)
PRIMNT 2109 (GRAD(I)eI=zlsNV)
PRINT 2209 VAL

55

200
210
220

FQRuAT(/#Xi’ = #9TELl244)
FORMAT(#GR{\UF = #yTEL12e4)
FORMAT (2VALF = #49El2.4/)
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tAM

PM

X6

CDC 6600 FTN V3,n=P296 OPT=l

PROGRAM PMAG(INPUT»OUTPUT)

DIMENSTON
DIMENSION
DIMENSTON

AH(T) s VH(T) s XTH{7) 9PHI(3) 4 XPI(T)
RR(T97)sRRR(T97)9COR(T) s VHT(T)
XLIM(7) ¢ X4IN(T)

73,0

OO0

DIMENSTION

DIMENSTON

DIMENSION
INITIALIZE

T(T)YsVVITYoU(30L) o XIN(7) 9GN(THT)
FSTI(342)
G(T)rAU(12)

K IS MODEL ORUER
READ 1619KP1,KP2

READ 162
READ 163
READ 1649
READ 165

KA KB ¢ NN
KADPT
ANTESTsKCYC
S

NTEST=KNTEST
U(2R9) =11(1)

(e NeNe]

RM=1.0
A=0,0

MOD31.

w
et

JAN 21/73,

T X Z XX

nzo
wznuio
N W -

wn Ui

NP=1

NP3=2#Nps+l

MV=NS+MS+NP3

KNP=NP3
KH=K+1

KHH=NS+MS+1

KM=NV
KML=KM=1

108

viLIm=20,

DO 105 1=11KM
DO 105 U=lrKM
GN(T9sJ)=0.0

DO 106 I=19KM

106

GN(IsI)=1lo

XPI (1) =040

0

REAND Sy,NDAY

NWK=3

NDAS=NWK#NDAY
NHOURS=NDAS#24
MCARDS=2#NUAS

13

DO 13 I=lshM
Vv(I1)=0,0
VH{I)=0.0

PRINT 7, NDASyNHOURS
PRINT 107sMODsSs;RM

OO OO0

T0 READ INITIAL ESTIMATE OF PARAMETER VALUES

FIRST NS ARE A VECTOR, SECOND MS ARE B VECTORy THIRD NP3 ARE XP




- A33 -

PROGRAM

PMXG

READ l6s (T(I)eI=1eNV)
READ l6y (XIN(I)9I=19NV)
REAND 12, (ALIM(I)sI=]oKM)

CDC 6600 FTN V3,0-P296

60

65

READ 124 (AMIN(I)eI=]4KM)
PRINT 140

KKN=0

DO A4 J=19NCARDS

READ 17, (AU(I)9I=)912)

DO 90 JyJ=1y12

70

90

84

KKM=KKN+1

U(KKN) =AU (VJ)

PRINT 150 (AU I)eI=1,12)
CONTINUE

PRINT 18 (T(I)eI=19KM)

DO 21 J=KHH¢KM

75

21

177

XPT (J)=XIN(J)

DO 177 JKX=1,KM

XH(JKX) =XIN(JKX)

PRINT 6y (XH(I)9pI=1sNV)
DO 22 J=KHHIKM

XH (J) =XH (J) =XPI (J)

80

8l
120

DO 81 I=1eKM
G(IH=1l,.0
VAR=0,0

N=0

NVAR=0
NC=N+1

B85

C
c GE
c

NERATE CONTROL U

ZYI:OQO
VH (KH) =0 (NC)
VV (KH) =11(NC)

90

95

CALL PHISUB(NPINCIPHI)
1=0

DO 71 J:KHH,KM

I=1+1

pSI(I!2)=000
PSI(1s1)=PHI(I)

100

71
c

C MAI
c

VV (J)=PHI(I)
VH(J)=PHI(])
CALL ARRAY(Z24KMyKMs 797 9GNyGN)

N LOOP

1ps

100

N=N+1

NVAR=NVAR®1

NC=N+1

CALL GALISSS(SsAWE)
Z = PRO(TrIVVyKM)+E
SUM:0.0

llo

SUM1=0,0
DO 11 I=KHHyKM
SUM1=SUMI*VV(I)@XPI (1)
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PROGRAM

PMXG

11 SUM=SUM+T(I)#yv (1)
2Z=7~Suml
YR=7=SuM
C__NOW GO TO ga ALGORITHM

CDC 4K00 FTN V3.0-P296 0PI

115

120

EH=2Z =PRU(XHsVHyKM)

IF (ABS(EH) 4GT,VLIM) EH=SIGN (VLIMyEH)

VAR=VAR+EH#EH

c UPDATE GAIN MATRIX
CALL GMPRD(GNuVH'CORuKM’KM’I)
R=PRO (VHs CUR, KM)

las

R=1,/ (R+RM)

CALL GMTRA (VHy VHT 9 KMy 1)

CALL GMPRD(COR’VHT!RR.KMQI.KM)
CALL GMPRO(RR,GN.RRR.KM'KMuKM)
KMKM=KM# KM

DO_42 jy=1 9 KMKM

139

42 GN(JW) = GN(JW)=RRR(Jw)#R
c
C  NOW COMPUTE CURRECTION
c
CALL GMPRD (GN,VHyCORyKMy KMy 1)

135

IF(KNeLT.KADPT) GO_TO 8>

NN=NN+]
DO 83 Jk=KF1,KP2

R3 G(JW) = (KA+NN)/((KB#vAR/NVAR)oNN)

82 COMNTINyg
DO 170 IH=1lsKM

l4o

__xHiIHL=xHJ1H¢¢C0R4lu¢u53ﬂagg4gg

XH(2)=exH({2)

e

IF(ABS(XH(IH))-GT.XLIM(IH)) XH(IH)=SIGN(XLIM(IH),XH(IH))
IF(XH(IH).LT.XMIN(IH)) XH(IH)=XMIN(IH)

- XH(2) ==xH(2)
170  CONTINUF
c NOW_ENTER KNOWN PARAMETERS

145

c NOw UPDATE VyVH
DO 20 MM=19KML
IUP:KM-MM
VV(TUP+1)=VV(IUP)
20 VH(IUP+1)=VH(]UP)
c INSERT CURRENT COMPUTED VALUES

155

I=0

SumM2=0,0

SuM3=0,0

DO 10 J=KHHyKM

I=1+1
A_SUM2;SUMZ!ESLLngJDuu+U

60

19 SUM3=SUM3+PST (141)#XH(J)
2Y2a27

VH(1)=7y2~SUM3
VH{2)=Zyl=5um2

VV(l)=yR

VVAKH) =y (NC)

o5

VH (KH) =y (NC)
ZY1=2Y2
CALL, PHISUb(NP,NC,PHI)
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PROGRAM

PMXG

1=0

DO 72 U=KHHyKM
I=l+l
PSI(I+2)=PSI(Iysl)

COC 6600 FTN V3,0=-P296 0OPT=1

L70

75

72
30n

PSI(ls1y=PHI(D)
VV{J)=PHI(]1)

VH(J) =PHI(I)

IF (N=NTEST) 100,300,100
VART=VAR/NVAR :
PRINT 1o NTEST

80

23

130

NTEST=NTEST+KNTEST

DO 23 J=1sK&M
XTH(J)=xH(J) +XPT (U)
PRINT 2,VART

PRINT 34 (XTH(I)sI=14KM)

CONTINUE

85

200

IF (N=NHQURS) 10002009200
CONTINyEg

IF (KNeGEWKCYC) GO To 337
KPCYC=gn+1

PRINT 3444KPCYC

N=Q

20

337

KN=KN+ |

NC=}

NTEST=KNTEST

GO TO 100

CONTINUE

PRINT 189 (T(I)9I=1yKM)

s

~NO U SN

12
16

PRINT 333

CALL ARHAY(I,KM’KM97!7IGN,GN)

DO 160 K=1lskM
FORMAT(/ZX;SHNTESToIlO)

FORMAT (2Xs 10HVARIANCE =9E1044)
EORMAI(2XL§ﬁXﬂllliEQL512£lJ

FORMAT (1H1 92Xy TE1244)
FORMAT (13)

FoRmAT(//ZXqEHKI,7(F8.4o2X)/’

FORMAT (1H1 95X, #NUMBER OF DAYS aND DATA POINTS S#91S0242915/)

FORMAT (7FS.2)
FORMAT (RF10,5)

17
18
107
149
150
160

FORMAT (12F5,1)

FORMAT (/92Xy2HT ' 7(F8,4,2X))

FORMAT (5X9#MOD =#,13,5X,#5 FEIFGe195X0#RM 24,F5,7, )

FORMAT (s/10X,2U INPUT2)
FORMAT (10X912F5,1)

161
162
163
164
165
33n

PR;N[}igoo(GN(IyKJoI=1’KM)

FORMAT (p12)
FORMAT (315)
FORMAT ( 15)

FORMAT (215)

FORMAT (F5.2)
FORMAT (/5X57€10,3)

333
344

FORMAT (//5A42HGN )
FoRMAT(/SXoSHKQYC v[2)
END
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SUBROUTINE PHISUB COC 6600 FTN V3,n=P29¢

SUBROUTINE PHISUB(NPyIT,PHI)

c
g THIS DEFINES PHI MATRIX AS FUNCTION OF HOUR OF DAY
DIMENSION PHI(15)
NP1=NP4]
NP2=NP4+2
NP3=2#NP+1
PI1=3.14159265359
c
C TO DEFINE PHI
(o}

PHI(1)=10»
DO 10 I=2sNP1

10 PHI(1)=SIN(2.*PI“FLOAT(IT*(I'l))/24.)
D0 20 I=NPZ2yNP3 )

20 pHI(1)=c05(2.#PI*FL0AT(ITo(I-NP1))/24.)
RETURN
END
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[ s anaachcn o diing

SUBROUTINE ;GAUSSS

SUBROUTINE GAUSSSI(S,AM,V)
A=0.0

D0 50 I=1,12

CALL RRANDU(Y)

LOC 6600 FTN V3.0-P2g

5 50 A=A+Y
V=(A~6.0) *S+AM
RETURN
END

SUBROUTINE RRANOU

SUBROUTINE RRANDUCYFL)
YFL=RANF (Q)

RETURN

ENOD

CDC 6600 FIN V3. G-P2c

SUBROUTINE SYST

SUBROUTINE SYST(TeVeKMyS92)
DIMENSTON T(7)sV(7)

AM=0,0

CALL GAUSSS(SyAMyW)

CDC 6600 FTN v3,0=P295

Z=PRO(TyVIKM) +W
RETURN
END






