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ABSTRACT

Isomorphism with a C(Y) of
the maximal ring of quotients of C(X)

Hoan Duong

Let C(X) denote the ring of all real-valued continuous
functions on a completely regular space X . Let Q(X) denote
the maximal ring of quotients of C(X) . Fine , Gillman , and
Lambek stated in [1] that Q(X) is the ring of all real~valued
continuous functions on the dense open sets in X (modulo the
equivalence relation : £ = g iff £ and g agree on a dense open
set) . Every dense set contains the set of all isolated points
of X - let us denote this by Is . We conclude : if Is is dense
, then Q(X) = C(Is) .

This thesis studies in detail the converse statement
which was established by Hager [4] . In his paper , C(X) and
Q(X) are considered as ¢-algebras . Then elements of Q(X) are
represented as real-valued continuous functions on dense open
sets in the space of maximal ideals of Q(X) . A ring
homomorphism of Q(X) into a C(Y) is a homomorphism of ¢-
algebras . By the properties of homomorphism of ¢-algebras ,
Q(X) is isomorphic to a C(Y) iff Q(X) is isomorphic to
C(R(Q(X))) , where R(Q(X)) is the subspace of all real maximal
ideals of Q(X) . This is true when the cardinality of X is
non-measurable , and R(Q(X)) is dense . In this case , R(Q(X))

is homeomorphic to Is , and Is is dense in X .
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1l
CHAPTER I. INTRODUCTION TO RINGS OF CONTINUOUS FUNCTIONS .
1.1. RINGS OF CONTINUOUS FUNCTIONS .
A is called a partially ordered ring if it is a ring with
a partial order relation 2 satisfying :
a2b implies a + x 2 b + x for all a,b,x € A , and
a20and b 2 0 implies ab 2 0 .
Note that to define a partial ordering , it is enough to
specify the elements 2 0 , subject to :
a20and -a 2 0 if and only if a = 0 , and
a20and b 2 0 implies a + b 2 0 and ab 2 0 ,
and then a 2 b if and only if a - b 2 0 .
A partially ordered ring A is said to be lattice-ordered
if for every a,b € A , there exists an element a V b € A
(called sup(a,b)) such that ,
a<aVb , b<aVb, and
ifc2aandc2b, thenc 2 aV b for all c e A .
We define a A b=~ ( -aV -b ) (called inf(a,b)) . This
element satisfies :
a2aAb , b2aAb, and

ifc<aand c <b, thenc < aAb for all c e€ A .

We also define |a] = a V -a . We can verify that |a| 2

0 for every a € A .
We denote the set of all continuous , real-valued
functions on a topological space X by C(X) or C . Define on

C pointwise operations :

Addition : (f + g)(x) = f(x) + g(x) ,
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Multiplication : (fg)(x) = f(x).g(x) ,
Partial »rdering : £ 2 g if f(x) 2 g(x) for all x € X.

With these definitions C kecomes a lattice-ordered ring.
The zero element and unat element are the constant functions
0 and 1 respectively . And (£ V g)(x) = (£f(x) V g(x)) .

The subset of all bounded functions of C is a subring and
a sublattice . It iz denoted by ¢ or c'(X) .

Every real-valied function on a discrete space is
continuous . In this cese C # ¢ . We call X pseudocompact
when C(X) = Cf(X) . Compact spaces are pseudocompact .

Each positive element in C coincides with a square .
Therefore , a ring homomorphism from a C(X) into a C(Y) is
order-preserving . Moreover ,

THEOREM 1. Every (ring) homomorphism from C(Y) or C'(Y)
into C(X) is a lattice homomorphism (preserving the lattice).

A proof is given in (2] 1.6 .

l.2. COMPLETELY REGULAR BPACES .
1.2.1. The zero-set cf f € C(X) is the set :
Z(f) = ( x e X : £(x) =0) .

A gero-set is a zero-set of some f ¢ C . We note that
Z(f) = 2(g) for g = (f V -1) A 1 € C. Let Z(X) denote the
family of all zero-sets on X .

Since z(f)= £ (0) and 0 is a G; (countable intersection
of open sets) , every zero-set is a closed G; . It is known
that there exists a topological space containing a closed G

set which is not a zero-set . However , any closed set in a
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metric space is the zero-set of the distance function to it.

And any subset of a discrete space is a zero-set .

f € C is a unit if and only *‘f Z(f) is empty . g € C" is
a unit if |g] 2 r > 0 . We can see that the fact that z(g) is
empty does not guarancee g € C is a unit .

Consequently , C(X) and c'(X) are semiprimitive (i.e.,the
intersection of all maximal ideals is 0) : for every 0 # f ¢
C (or C') , there exists g € C (or C') such that 2(1 - fqg) is
not empty (see [8] 2.1 prop. 7) . Hence they are semiprime
(i.e., the intersection of all prime ideals is 0) .

Remark : Every set of the form ({ x € X : f(x) 2 0 ) is
a zero-set (of g=f A0 ) , and so are the sets ( x € X :
f(x) £ 0 ) . We can replace O by any r € R .

The complement of a zero-set is called a cozero-set .
l1.2.2. Two subsets A and B of X are said to be completely
separated (fron c.e another) in X if there exists f € C such
that 0 < £ <1, and £(A) =0, £(B) = 1 .

If there exists g € C such that g(A) £ 0 and g(B) 2 1 ,
then A and B are completely separated because we can take f
= (0V g) A1l . We see that 0 and 1 can be replaced by any
real numbers r and s (r < s) .

When a zero-set Z is a neighborhood of a set A (i.e., the
interior of Z contains A) , we call Z a z-neighborhood .

THEOREM 2. Two sets are completely separated if and only
if they are contained in disjoint z-neighborhoods .

Proof : If f separates A and B , then (x € X : f(x) 2
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2/3) and (x € X : f(x) <1/3) are two disjoint z-neighborhoods.
If AC Z(f) and BC 2(g) , then h = |[f|/(|f| + |g|) separates
A and Be

DEFINITION. A Hausdorff srniace X is said to be completely
regular if for any closed set F and a point x € X\F , F and
{x) are completely separated .

Subspaces of a completely regular space are completely
regular . Metric spaces , discrete spaces , compact spaces are
completely regular .

A family B of closed sets is a base for the closed sets
if every closed set is an intersection of members of B - i.e.
, whenever F is closed and x € X\F , there exists a member of
B containing F but not x .

THEOREM 3. A Hausdorff space X is completely regular if
and only if the family of all zero-sets on X is a base for the
closed sets .

Proof: The necessity follows from the remark above . The
sufficiency follows from theorem 2 ¢

Note that every neighborhood U of a point x contains a
z-neighborhood of x : X\(int U) is completely separated from
X .

Given a set X and a family C' of real-valued functions,
the weak .opology induced by C' is the weakest topology such
that all functions in C' are continuous . K

In practice , we take all sets of the form £ ([r,x)) ,

f e C', re R, as a subbase of closed sets (finite unions
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of its members constitute a base) because the rays (r,) and
(=0,r] , r € R, form a subbase of closed sets of R .

THEOREN 4. let X be a topological space .

The families C(X) and C (X) induce the same weak topology
on X . A base for its closed sets is the family Z(X) .

If X is a Hausdorff space , then X is completely regular
if and only if its topology coincides with the weak topology
induced by C(X) (or C'(X)) -

Proof : By the remark in1.2.1 , each £ ([r,»)) is a zero
-set . Conversely , 2(g) = £ ([0,%)) , with £ = -|g] A 0 .Thus
the topologies induced by C and C” have 2(X) as a base for the
closed sets . The second assertion is a result of theorem 3@

One important property of a completely regular space is
that if f(x) = f(y) forevery f € C, thenx =Yy .

THEOREM 5. For every topological space X , there exists
a completely regular space Y and a continuous mapping 7 from
X onto Y , such that the mapping g -+ g°r is an isomorphism
of C(Y) onto C(X) .

Proof : Given in [2] 3.9 . Briefly :

Define an equivalence relation on X as : x = y if and
only if f(x) = f(y) for all f ¢ C(X) . Then Y is the space
of all equivalence classes . 7 is the canonical mapping . For
each f € C(X) , there exists a real-valued function g defined
on Y such that f = g°7r . The weak topology induced by these
functions g makes Y completely regqular .

Therefore from now on , we assume that every space is



conpletely regular .
1.3. THE BTONE - CECH COMPACTIFICATION .
1.3.1. T is a s-f4ilter on X if it is a family of zero-sets
on X and satisfies :
(1) ¥ does not contain the empty set ,
(ii) ifz, , 2, € F, thenZ, n 2, € F ,
(iii) if 2 epP , 2' € 2(X) , and 2 c 2' , then Z' ¢ F .

Note that X belongs to every z-filter .

If I is an ideal in C(X) (net €" (X)) , then the family
Z(I) = (Z(f) = fe€ I)is a z-filteron X . If P is a z-filter
on X , then the family Z2°[F)] = (£ : 2(f) ¢ F) is an ideal in
C(X) (see [2] 2.3.) .

A z-ultrafilter on X is a wmaximal z-filter -i.e., one
which is not contained in any other one . We easily see that
M jis a maximal ideal if and only if Z[M] is a z-ultrafilter.

DEFINITION. Let X be a subspace of T . A z~filter F on
X converges to a point p € T if every neighborhood (in T) of
p contains a member of F .

Example : Let T = X . The family of all z-neighborhoods
of p is a z-filter converging to p .

Since T is completely regular , no z-filter has two
distinct limit points .

(a) If p is a limit point of F , then p ¢ cl;Z2 for every
Z ¢ F .

An ideal I is said to be fixed if n Z[I] is nonempty

(otherwise it is called free) . If I is fixed (free) , then



Z2[I) is called fixed (free) .
In fact , the fixed maximal ideals in C(X) are precisely

the sets M, = (f € C: £(p) = 0) , which are distinct for

distinct p . Reason : M, is the kernel of the onto
homomerphism f -+ f£(p) from C(X) onto R ; because X is
completely regular |, M's are distinct ; if M is a fixed
maximal ideal , then M = M, for some p ¢ N Z([M] .

(b) For each p € X , the family A= Z[Mp] = (2 € Z(X) :
P € 2) is a z-ultrafilter converging top .

1.3.2. Here are some important properties of C(X) when X is
a compact space .

THEOREM 6. X is compact if and only if every ideal in
C(X) (i.e., every ideal in C'(X)) is fixed .

Proof : A 2-filter on X is a family of closed sets with.
the property that any finite subcollection has a nonempty
intersection (i.e., having the finite intersection property).
Hence if X is compact then each z-filter is fixed (see [9]
ch.9 prop. 1) . Conversely , let B denote a family of closed
subsets in X having the finite intersection property , and let
F denote the family of all zero-sets each containing an
intersection of finite subcollection of B We can easily
verify that F is a z-filter . Since 2(X) is a base for the
closed sets , each menber of B coincides with an intersection
of a subcollectior of F . Thus n B = nF is non2mpty . Hence
X is compact (see also [9] ch.9 prop. 1) e

-

Remark: When X is compact , the stone topology (see [8]
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2.5 or ref. 1.4) on M(X) , the space of all (fixed) maximal
ideals of C(X) , has the sets { Me M(X) : £ e M } , for all
f € C(X) , as a base for the closed sets . The relation : p
€ Z(f) if and only if f € M, shows that the one~one mapping
p — M isa honeomorphism of X onto M(X) . Therefore ,

THEOREM 7. Two compact spaces X and Y are homeomorphic
if and only if their rings c(X) and C(Y) are isomorphic .
1.3.3. DEFINITION. By a compactification of a space X , we
mean a compact space in which X is dense .

Example: X is a locally compact space if every point in
X has a compact neighborhood (R and infinite discrete spaces
are locally compact spaces but not compact) . Given a locally
compact , non compact space X , we construct a space X by
adding a new point to X (called the point at infinity , denoted
as o) , then taking a set in X' to be open if it is either an
open subset of X or the complement of a compact subset in X.
Then X° is a compact Hausdorff space and is called the one-
point compactification of X . Thus a locally compact space
is completely regular .

Our goal is to have a compactification BX of X such that
c”(X) = C(BX) by the restriction map - i.e. , every bounded
continuous function on X can be extended to a continuous
function on BX (wve say X is c'-embedded in BX) .

Remark: By theorem 6 , each z-ultrafilter on 8X converges
to aunique point in fX . Then the family of intersections of

menbers of this z-ultrafilter with X is a z-ultrafilter on X
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which converges to the same point . Note : each fixed z-
ultrafilter on X converges to a unique point in X .

We construct BX as following :

(a) X is considered as an index set for the fixed z-
ultrafilters .

(b) We enlarge this set in any convenient way to an index
set for the family of all z-ultrafilters . The points of 8X
are defined to be the elements of this enlarged index set .
The family of all z-ultrafilters on X is written

(AP) p € M
with the understanding that AP = A, forp € X .

(c) By the remark above , we have to define a topology
on PX such that each A’ converges to the point p ¢ fX . The
remark in 1.3.1(a) forces us to define

clgZ = {(p € BX : Z ¢ APy , for all zero-sets 2 in X
we take all of these sets as a base for the closed sets in gX.
X is a subspace since clgznX =2 . X is dense because X
belongs to every z-filter .

THEOREM 8., Every completely regular space X has a (8tone
—Eech) compactification BX , with the following equivalent
properties :

(i) (STONE) Every continuous mapping # from X into any
compact space Y has a continuous extension 7 from X into Y.

(ii) (STONE-CECH) Every function in C'(X) has an extension
to a function in C(g8X) .

(iii) If a compactification T of X satisfies either (i)
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or (ii) , then there exists a homeomorphism of B8X onto T that
leaves X pointwise fixed : X is unique .

Proof : see [2] 6.4, 6.5 .

Example : If X is the space of all ordinal numbers less
than w, , the first uncountable ordinal , then g8X is the space
of all ordinal numbers less than w, + 1 (see [2] 5.12) .

1.4. MAXIMAL IDEAL SPACES AND EXTENSIONS OF FUNCTIONS .

Let M(X) denote the set of all maximal ideals of C(X) .

We define on M(X) a (Stone) topology by taking all the sets
{ Me MX) : feM ) , for each f € C(X) ,
as a base for the closed sets .

(a) Since the sets { p ¢ fX : Z € AP ) form a base for
the closed sets in X (ref. 1.3.3(c)) , the one-one mapping
p -+ MP = 2°[(AP] of BX onto M(X) is a homeomorphism . The image
of X under this homeomorphism is the subspace of all fixed
maximal ideals (MP = M,) for p € X) , denoted by F(X).

We write M(f) for the residue class of £ modulo M .

For all M € M(X) , C/M is a totally ordered field with
the ordering relation being defined as :

M(f) 2 0 [resp. > 0] if and only if f is nonnegative
[resp. positive] on some zero-set of M (see [2] 5.4) .

C/M always contains R (see [2] 5.5) . When C/M =R , M
is called a real maximal ideal . All fixed maximal ideals are
real : M, (f) = f(p) (ref. 1.3.1) . Let R(X) denote this
subspace .

A totally ordered field is called archimedean if for
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every element a , there exists n € N such that n 2 a . Thus
a non-archimedean field is characterized (among totally
ordered fields) by the presence of infinitely large elements
, that is , elements a such that a > n for every n € N .
Similarly , if b > 0 and b < 1/n for every n ¢ N , then b is
called infinitely small . An element a is infinitely large if
and only if 1/a is infinitely small .

Every archimedean field is embeddable in R ([2] 0.21)
Thus C/M is archimedean if and only if M is real .

Each £ € C is a continuous mapping from X into the two-
point compactification R =R U {to) of R . By theorem 8 , f
has an extension f': BX -~ R .

THEOREM 9. Let f € C(X)

(a) £'(p) = + » if and only if |MP(f)]| is infinitely large.

(b) £ (p)

r ¢ R if and only if |MP(f) - r| is either zero
or infinitely small

The proof is similar to that given in [2] 7.6

By 1.4 (a) , F(X) is dense in R(X) . Then by the theorem
above , C(X) = C(F(X)) = C(R(X)) under the restriction map

(ref. 2.3.2) .
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CHAPTER II. INTRODUCTION TO RING8S OF QUOTIENTS
OF COMMUTATIVE RINGS .

In this chapter , every ring is assumed to be commutative
and to have an unit element .
2.1. RINGS OF QUOTIENTS .
2.1.1. Given a subset S in a ring A , the annihilator of S
in A is the set

S'=(aeA:aS=0).

DEFINITION. An ideal (subring) in a ring A is said to
be (rationally) dense if its only annihilator in A is 0 .

Example: (d) for a non-zero divisor 4@ is a dense ideal.

An ideal is said to be large if it has noun-zero
intersection with every non-zero ideal - i.e. , with every
non-zero principal ideal . Obviously , every dense ideal is
large : if a # 0 , then al #+ 0 (I is dense) , hence (a) n I
Sar+o0 .

LEMMA 1. A is semiprime if and only if every large ideal
in A is dense .

Proof : Assume A is semiprime , L is a large ideal , and
a $# 0. Since L is large , L n (a) § 0 . Then because A is
semiprime , (L n (a))? # 0 . Hence L is dense since (L n(a))?
C La .

Conversely , assume that every large ideal is dense , and
let I be an ideal such that I’ = 0 . Then I' is a large ideal

if (a) nI" =0, thenalIc (a) n I' = 0 (aII = 0) , then a

€ I', thena € (a) n I'= 0 . Thus I" is dense . Since II'= 0
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+ I =0 . Therefore A is semiprime ©
We observe that :
(a) A is dense .
(b) If D is dense and D € D', then D' is dense .
(c) If D and D' are dense , then so are DD'and D n D':
Let aDD' = 0 , then aD = 0 (D'is dense) , then a = 0 (D is
dense) . And DD'C D n D'.
(d) If A 4: 0 , then 0 is not dense .
2.1.2. Let B be a commutative ring containing A and having the
same unit element . For b € B, we define
b'A=(aehA:ba€ary).
We can verify that b’'A is an ideal in A .
DEFINITION. B ( DA) is a ring of quotients or rational
extension of A if b 'A is dense in B for every b ¢ B -that is,
(*) for O # b'e B, there exists a € A such that ba € A

and b'a=/= 0.

Note that the element a can be chosen such that b'a € A
: pick a, as above ; then since b'a, # 0 , pick a, such that
0 + b'aja, € A ; put a = a,a, .

A ring without : proper rational extension is called

rationally complete .

LEMMA 2. Iet AC B .

(1) B is a ring of quotients of A if and only if for each
non-zero b ¢ B , b 'A is dense in A and b(b"‘A) % 0o .

(2) If b(b'1A) % 0 for all non-zero b € B , then each

ideal b’'A is large in A .
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Proof :

(1) The necessity is trivial . Conversely , for every b € B
and1 0 ¥ b'e¢ B , pick a, € A such that 0 # b'a, ¢ A (b'(b' 'a)
# 0) . Pick a, € b"'A such that b'a,a, # 0 (b'A is dense in a).
We have a = a,a, € A satisfying ba ¢ A and b'a # 0 .

(2) Let 0+ a € A be given . If a ¢ b™'A, then (a) n b'A f
0 . If not then ba # 0 , so there exists a'e (ba) 'A such that
0 £ baa'. We have 0 # aa'e (a) n b'A e

As a consequence , we have .

THEOREM 10. Let Ac B . If A is semiprime , then B is a
ring of quotients of A if and only if b(b'a) + 0 for all non-
zero b € B - that is ,

(*) for 0 #+ b € B , there exists a € A such that 0 # ba
€ A .

Proof : This follows from lemma 1 and lemma 2 @

2.2. DIRECT LIMITS .

We observe that :

(a) Let I be an ideal in A . Then ¢ : I -+ A is called
an A-homomorphism if ¢ is a group homomorphism , and ¢(d.a)
= ¢(d).a , for all d ¢ I , a ¢ A . The set of all A-
homomorphisms f£rom I into A , denoted Hom (I,A) or Hom I , is
an A-module .

(b) If D'c D are ideals ., then the restriction map ¢ -
¢|D'(¢ € Hom D) is a homomorphism of the module Hom D into
Hom D'. If D and D' are dense , then this mapping is a

monomorphism : if ¢ (d) + O for some d €¢ D, ¢ € Hom D , then




15

there exists d'e D' such that 0 #+ ¢(d).d'= ¢(dd') since D' is
dense . We abuse notation to write Hom D € Hom D°‘.

(c) We identify each a ¢ A with the A-homomorphism x -
ax , denoted a .

A family D of dense ideals in A is said to be closed if
A € D and the product of any two members of D is a member of
P . The smallest closed family is (A) , and the largest one
is D ,(A) , the family of all dense ideals in A .

Iet D be a closed family of dense ideals . By a standard
family of A-modules , we shall mean a family (D")o «p Which
satisfies :

(1) D" is a submodule of Hom D ,

(ii) 1€ A",

(iii) if D> D' , then D'c D',

(iv) if ¢, , ¢, ¢ D" , then ¢, * @, € (DD)" .

Certainly, 1 ¢ Hom A. If DO D', then D"c Hom D'. Finally
, @,°¢, is indeed defined on DD since ¢,(dd') = d.¢,(d').

We can see that (i) to (iii) define a functor from P into
Mod () , the category of all A-modules . Therefore we can take
the direct limit (see [10] ch.13) :

Q(A) = lim_ o (D") .

This may be thought of as U, ,, D" , where we identify
¢, € D,h with ¢, € Dzh whenever they agree on D,D, (in fact, on
any dense ideal) . The module operations in Q, (A) then reduce
to the operations within each D'. We define ¢,-®, = ¢,°9, , then

Q,(2A) becomes a ring . The zero and unity element in this
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ring are the mappings 0 and 1 respectively .
REPRESENTATION THEOREM. Fach direct limit Q,(A) is a ring of
quotients of A . 1i B is a ring of quotients of A , then
B = 1lim _, oy (B N Hom D) .

Proof:

Let. ¢ € Q,(A) , O ¥ ¢'€ Q,(A) . Pick D such that ¢,¢' ¢
D" , taen pick d € D such that ¢'(d) % 0 . Since (¢ * a)(a)
= ¢(da) = ¢(d).a for all a € A , we have ¢.4d = ¢(d) € A ;
hence 4 € ¢ 'A and ¢'.d + o .

If b € B and b|D € Hom D (i.e., bDc A) , D € P, (A) ,
then the correspondence b--b|D is cne-one : if b # 0 , then
there exists a € A such that 0 # ba ¢ A , then there exists
d € D such that b(ad) = bad # 0 - that is b|D # 0 . Therefore
, B n Hom D has meaning . We easily verify that (B n Hom D),
¢poay 1S @ standard family . Since each b'A is dense and b ¢
Hom b'A (b(b'A) € A) , BE U, poay(B N Hom D) . The reverse
inclusion is trivial e

COROLLARY. Q(A) = lim _, ., Hom D is the largest ring
of quotients of A .

Proof : We observe that if (D")D ¢ p and (}E:")E ¢ g are
standard families such that bc E , and D" & ¥ for each D ¢
D, then Q (A)c Q,(A) . Therefore , Q(A) is the largest among
Q,(A) , i.e. , among rings of quotients of A @

If C is a rational extension of B , and B is a rational

extension of A , then C is a rational extension of A - Reason:

given c € C and O f# c'e C ; pick b € B such that cb € B and
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’

O £ c'b ¢ B ; pick a; € A such that cba, € A and c'ba, % 0 ;
pick a, € A such that ba, ¢ A and c'baja, ¥ 0 ; put a = ba,a,
, then ca € A (cba, € A) and c'a ¥ 0 . Therefore , Q(A) is
rationally complete . Q(A) is called the the maximal ring of
quotients or rational completion of A .
We. define the classical ring of quotients of a ring A as
Q. (A) = 1lim _, ( ooy HOM(d) .

It is easily seen that Q (A) = { a/b : a,b € A and b is
a non-zero divisor ) .

We have two equivalent definitions of rational extensions
of a commutative ring . The former formalizes elements of this
ring as pairs a/b satisfying the demand that denominators
never be zeroces . The latter is very useful when we study the
rational extensions of - ring of continuous functions .

2.3. MAXIMAL RING OF QUOTIENT8 OF A RING OF CONTINUOUS
FUNCTIONS.
2.3.1. For an ideal I in C(X) , we denote

cozI=0U, , coz £, withcoz £=(x¢€X: f(x) #0).

Then coz I is open . Conversely , if U is an open set ,
then U =coz I, for I = (£f ¢ C : coz fc U} ¢+t UC coz 1
because X is completely regular ; U 5 coz I is obvious .

THEOREM 11. An ideal D in C (or C') is (rationally) dense
if and only if coz D is (topologically) dense .

Proof: D is dense if and only if for all g € C , Z(9)
D coz D implies g = 0 . The latter is equivalent to coz D is

dense : if coz D is den=e , and if Z2(g) D coz D , then Z(qg)
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is dense , hence g = 0 ; conversely , if coz D s not dense
, then since X is completely regular , there exists g + (o]
such that 2Z,g) O <oz D

2.3.2. We denote the family of all dense open sets in X by
V(X) . If S is dense in X , then the homomorphism f — f£|S
from C(X) into C(S) is a monomorphism . We abuse notation and
write C(X) ¢ C(S) .

THEOREM 12. If V is a dense open st in X , then Cc(V) is
a ring of quotients of C(X) .

Proof : Consider 0 + h € C(V) . Take v €¢ coz hc V ,
there exists f € C'(X) that vanishes on a neighborhood of X\V
but not at v (X\V is closed and X is completely regular). Then
0 # h.f € C(X) . Since C(X) is semiprime , this proves that
C(V) is a ring of quotients of C(X) (theorem 10) e

In the proof , h.f € C(X) since h.f can be extended to
a function g € C(X) : g=0on X\Vand g = h.f onV .

Since members of V (X) are nonempty and V(X) is closed
under finite intersection (i.e., V, (X) is a filter base) , we
consider the direct limit

lim.y ¢ voy CV)
with respect to the restriction monomorphism £ -+ f|S' , when
Us ¢ C(S) and S O S'. This direct limit may be thought of as
v evooyC (V) , where we identify f e C(S) with f'e C(s') if f
and f' agree on S n S°'.
As a result of the theorem above , lim _,,y,x C(V) is a

ring of quotients of C(X) : if h € lim _,, yx C(V) , then h
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€ C(V) for some V € V,(X) , then h.(h''c(X)) + 0 .

2.3.3. We write Q(X) = Q(C(X))

From the remark above ,

Q(X) = 1im _, pcey HOM D D 1im _, , yoxy (V) -
then the

!

If Hom D € C(V) for some dense open set V

reverse is established .
, Hom D € C(coz D) .

LEMMA 3. For any ideal D in C(X)
Proof : Given ¢ € Hom D , we have to find g € C(coz D)

such that ¢(d) = g(d) = g.d for all 4 € D
For x € coz D , choose d ¢ D such that d(x) + 0 , and

define
¢(d) (x)
g(x) =
¢(d).d' , g is independent of d For

is continuous on a neighborhood of x

Since ¢(d').d

each x € coz D , ¢

; therefore g is continuous on coz D

(namely , coz d)

Certainly , ¢(d) = g.d for all d e D o
REPRESENTATION THEOREM.

Q(X) = lim_y v S(V)
The following is a result of lemma 3 and theorem

Proof :
11 .
Q(X) = limy pocy Hom D & lim g . pocey C(coz D) = lim , vy C(V)
cQ(x) o

Similarly, Q. (X) = Q. (C(X)) = lim, C(V) ,where V ranges

over the dense cozero sets in X (see [1] 2.6).
Let D be an uncountable discrete space and let

Example :
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Y be the one-point compactification of D . Then the smallest
dense open set in Y is D . Therefore Q(Y) = C(D) . Let (a,)
be a sequence of distinct points in D (then ®» is a limit point
of this sequence) . Let f(a,) = 1 , and let f(y) = 0 , fory
€ D\(a,) . Then f ¢ C(D)\C(Y) , hence Q(Y) # c(Y) .

Let G = n G, , where G, are open sets in Y . If G = ()
 then Y \ G, 's are finite sets (G, 's are open neighborhoods
of «) , then Y must be countable (Y = U (¥ \ G)) U G) . Hence
G n D is not empty . Therefore there is no g € C{¥) such that

Z2(g) = (o} . Hence no proper cozero set in X is dense . Thus

Q. (X) = C(X) .
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CHAPTER IXIXI. ISOMORPHISM WITH A C(Y) OF THE
MAXIMAL RING OF QUOTIENTS OF C(X) .

From the last chapter , Q(X) is the ring of all continuous
functions on dense open sets of X (modulo an equivalence
relation) . Every dense set has to contain the set of all
isolated points of X . If this set is dense , then cbviously
Q(X) is isomorphic with the ring of all continuous functions
on this set (a C(Y)) . Now we try to establish the converse.
3.1. ¢-ALGEBRA .

3.1.1. A is a lattice-ordered algebra if it is a lattice-
ordered ring and also a (real) vector lattice - that is , r
>0and a > 0 imply r.a >0, forae A , r ¢ R .

A lattice-ordered ring A is called archimedean if , for
each 0 + a € A, the set { na : n = #1,%2,... } has no upper
bound in A .

DEFINITION. A ¢-algebra A is an archimedean lattice-
ordered algebra over R (real) , with an identity element 1
which is a weak order unit - that is :

1>0, and be Aand 1A b =0 imply b = 0 .

A homomorphism of ¢-algebras is an algebra homomorphism
preserving the lattice operations .

Result 2 R , C(X) , Q(X) are ¢-algebras and a ring
honomorphism of ¢(X) to C(Y) which carries 1 to 1 is a
homomorphism of ¢-algebras (an analogue of theorem 1) .
3.1.2. Let K be a compact space , and let D(K) be the set of

continuous functions £ from K to R* = R U (% =) ,the two-point



compactification of the real field R, for which R(f) = £ (R)
is (open) dense . let f,g,h € D(K) , we say £f = g + h if f(x)
= g(x) + h(x) for all x € R(g) n R(h) . The product , inf and
sup of two functions in D(K) are similarly (pointwise) defined.
Since R(g) n R(h) is dense in K , these operations are
uniquely defined .

Note that D(K) is not necessary closed under addition and
multiplication : Let K denote the one-point compactification
of N (the discrete space of positive integers) ; let f(x) =
x +sinx , f'(x) = (1/x)sin x , f"(x) = -x if x € N, and let
f(o) = , f'(w) = 0 , f"(w) = —0 ; then £f,f',f" € D(K) , but
neither £ + f" nor f£'.f" is defined .

By a "¢-subalgebra of D(K)" we mean a subalgebra with
respect to the operations in D(K) discussed above .

3.1.3. An ideal I in a lattice-ordered ring A is said to be
sbsolutely convex if , whenever |[x| < |y| and y € I , then x
€I.

Given an ideal I in a ring A , we denote the residue
class of an element a modulo I by I(a) .

Remarks:

(a) If I is an absolutely convex ideal , then A/I is
ordered as : I(a) 2 0 if there exists x € A such that x 2 0
and a = x (mod I) (see [2] 5.2) . The canonical map is a
lattice homomorphism .

(b) If M is a maximal absolutely convex ideal , then M

is prime , A/M is totally ordered (see [6] 1.6(ii)) , and for
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0 <ae€eA, there is 0 £ b € A such that M(ab) 2 1 (see [6]
1.6(ii) and the proof of [6] 2.3 (3)) .
(c) The kernel of a homomorphism between two lattice-~
ordered rings is an absolutely convex ideal (see [6]) 1.4) .
For a ¢-algebra A , let M(A) denote the Stone space of

all maximal absolutely convex ring ideals of A (see [8] 2.5

or ref. 1.4) .
THEOREM 13. ([6] 2.3)

(i) M(A) is a Hausdorff compact space .

(ii) A is isomorphic to a ¢-subalgebra of D(M(A)) .

(iii) Disjoint closed subsets of M(A) are completely
separated (ref. 1.2.2) by this copy of A (hence by the copy
of the set of all bounded elements of A) .

The image of a € A under this isomorphism , denoted by
4 , is given as follows :

If a2 0, then &(M) = inf { r ¢ R : M(a) < r }
(where inf @ is understood to b= +w) .

If a € A is arbitrary , then &(M) = & (M) - & (M)
(where a* = aV 0 and a~ = (-a) V 0) . Since a°A a” = 0 ,
M(a’) A M(a’) = 0 , then either M(a’) = 0 or M(a’) = 0 . Thus
4 is well-defined .

To illustrate this theorem , take A = C(X) . Every
maximal ideal in C(X) is absolutely convex : if |g| < |f| ,
then Z(g) D 2(f) . If £f e M, then 2(g) € Z[M]) . Thus g € M.
Hence , M(A) = M(X) . And by 1.4 , A = C(X) is isomorphic to

D(M(X)) = D(M(A)) .
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From now on , we identify a ¢-algebra A with its copy in

D(M(A)) .

3.2. HOMOMORPHISMS OF ¢-ALGEBRAS .

3.2.1. Note that if M(a) = r + § > 0 with an infinitely small
element § , then M(a) = M(a’) , hence 4(M) = r . Similarly ,
if M(a) = r + § < 0 , then M(a) = - M(a') , hence &a(M) = r .
If |M(a)| = M(|a]) = M(a’) v M(a") is infinitely large , then
4(M) = o or - , Since the possibilities considered are
mutually exclusive and exhaustive , we can conclude : &(M) =
r ¢ R if and only if |M(a) - r| is either infinitely small or
zero (an analogue of theorem 9).

R(A) = n (R(f) : £ € A) is called the real ideal space
of A . M e R(A) if and only if A/M =R : if a > 0 and M(a) =
§ , § is infinitely small , then there exists 0 < b € A such
that M(ab) 2 1 (remark 3.1.3 (b)) ; thus M(b) is infinitely
large (‘g(M) =w ) . We can easily verify that &4(M) = M(a) for
M ¢ R(A) .

3.2.2. Let y, (or u) denote the homomorphism f -+ f|R(A) from
A into C(R(A)).

LEMMA 4. i is one-one if and only if R(A) is dense in
M(R) .

Proof : The sufficiency is obvious . By part (iii) of
theorem 13 , if R(A) is not dense , then there exists 0 ¢ f
€ A such that f|R(A) =0 ®

When R(A) is dense (i.e., n { M : M € R(A) } = (0}) , A

is called a ¢-algebra of real-valued functions .
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For a continuous map 7: Y — R(A) , we define r': C(R(A))
— C(Y) as 7'(f) = £°7r . Then 7'* u is a homomorphism of A
into C(Y) .

LEMMA 5. Let a: A -+ B be a homomorphism of ¢-algebras
A and B . Then there exists a continuous r:R(B) -+ R(A) for
which 1'° pu, = By ° @ .

Proof: For each M € R(B) , the map t, given by t,(f) =
a(f)(M) , for £ ¢ A , is a homomorphism from A into R . Since
ty(r) =r , for r ¢ R, the kernel of t, is a ™M € R(A) (remark
3.1.3 (c) and A/T™M = R) . Thus we have a map 7: R(B) -— R(A).

T'° Uy, = K @

For £ ¢ A, M e R(B) , ((7'°n,)(£))(M) = (7' (£|R(A)) (M) =
(E|R(A)°7) (M) = £(7M) ; and ((mg°a)(f))(M) = (a(£)|R(B)) (M)
= a(f) (M) ; and (#**) a(f) (M) = t,(f) = TM(f) (since TM is the
kernel) = £(TM) .

T is continuous :

The Stone topology on M(A) coincides with the weak topology
induced by bounde<d elements of A (by theorem 13 (iii) and
theorem 4) . And since f°7 = ax(f) ¢ B C C(R(B)) for all f e
A (from (##*%)) , 7 is continuous (see [2] 3.8) e

\ Since 7M is the kernel of t, , we have : f ¢ 7M if and
only if a(f)(M) = 0 , i.e. , a(f) € M since M is real . Hence
if a is an isomorphism , then there is 7' such that f € 7'M
if and only if a*(f) € M . Then we have : g € 7'(7M) if and
only if a”(g) € TM ,i.e., g € M . Thus 7' is the inverse of

7 . Then 7 is a homeomorphism . Therefore ,




LEMMA 6. The ¢-algebra A is isomorphic to some C(Y) if
and only if A is isomorphic to C(R(A)) (by k) -

Proof: By the remark at the end of 1.4 and the remark
above , pu, and r'are isomorphisms . We have a:A — C(Y) , 4,
:C(Y) — C(R(C(Y))) , r* ':c(R(C(Y))) — C(R(A)) . Hence A is
isomorphic to C(R(A)) by 1"1';1.8'& = uA @

LEMMA 7. Every maximal ideal of Q(X) is absolutely convex
: M(Q(X)) = M(Q(X)) .

Proof : Given a maximal ideal M of Q(X) . Suppose 0 < |f|
< |gl , and g e M. Let V= V'n V" where V' and V"' are the
(dense open) domains of £ and g . Define h on V as follows :
h(x) = fz(x)/g(x) for x ¢ Z(g) , and h(x) = 0 for x € 2(g) .
Since f/g is bounded on V\Z(g) , h is the product of a
continuous function and a bounded function on V . Hence h is
continuous on V . Since f? = h.gon V , £f2 ¢ M . Then because
M is prime , fe Mo

Result : Q(X) ( < D(M(Q(X))) ) 1is represented by
functions on the space of its maximal ideals . Q(X) is
isomorphic to some C(Y) if and only if the set of real maximal
ideals , R(Q(X)) , is dense , and the restriction map from
Q(X) to C(R(Q(X))) is onto .

3.3. ¢-ALGEBRA OF EXTREMALLY DISCONNECTED SPACES .

In this section we study D(K) when K is an extremally
disconnected space . This is done since M(Q(X)) has this
property (ref. 3.4) .

3.3.1. A ¢-algebra A is said to be uniformly closed if A is
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complete in the metric
o(f,g) = sup (|£f(x) - g(x)| A1 : x € R(f) n R(g)) .

If A is not uniformly closed , the completion in ¢ need
not be a ring (see [7] 1.8) .

Note that for § <1, |a - b| < § if and only if |&(M) -
b(M)| = |M(a) - M(b)| = M(la - b]) < § , for all M € R(a) n
R(b) : if and only if o(a,b) < § . Thus convergences in o and
in (6] are equivalent .

LEMMA 8. Let A and B be ¢-algebras with M(A) = M(B) . If
B is the completion of A in ¢ , then R(A) = R(B) .

Proof : Since A c B , R(A) D R(B) . For each f ¢ B ,

there exist f | € A converges uniformly to f on n R(f,) . Hence
R(A) ¢ R(B) @
3.3.2. A space X is said to be extremally disconnected if
every open set has an open closure . In an extremally disconnected
space , open subsets , and dense subsets are C'-embedded . (See
[2]) 1H and 6M) .

LEMMA 9. D(K) is an uniformly closed ¢~algebra and K =
M(D(K)) .

Proof : For £,9 € D(K) , R(f) n R(g) is dense , hence C -
embedded in K . By theorem 8 (iii) , K = B(R(£f) n R(g)) . By
theorem 8 (i) , f.a, £+ g € D(K) . Thus D(K) is a ¢-algebra.
Let D'(K) denote the set of all bounded elements of D(K)
Since C(K) = D'(K) , and C(K) is complete in sup norm ([9]
ch.9 ;emma 31 , note that a Cauchy sequence in C(X) is an

equicontinuous family) , D'(K) is uniformly closed . Hence
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D(K) is uniformly closed (see [6] 3.7) . Because D (K)
contains constant functions , and elements of D'(K) separated
the points of M(D(K)) (see theorem 13) ; by Stone-Weierstrass
theorem (see [9] ch.9 th.28) , D (K) is dense in C(M(D(K))).
Hence D'(K) = C(M(D(K))) , because D'(K) is uniformly closed.
Then by theorem 7 , K = M(D(K)) o
3.3.3. LEMMA 10. If the cardinal of K , or equivalently ,
the cardinal of D(K) , is non-measurable (see [2] ch. 12) ,
then R(D(K)) is the set of isolated points of K .
Proof : Each isolated point of K has to lie in every R(f)

, hence lies in R(D(K)) . Conversely , if p is not isolated
, then by [2] 12H 1-4 , there exists £ € C(K) with f(p) = 0
and f positive on a dense subset of K . Since 1/f ¢ D(K) , p
does not lie in R(D(K)) e

Remark : Non-measurable cardinality and extremally
disconnectedness are essential conditions for the theorem :

Let K = X where X is a discrete space of measurable
cardinal . X is extremally disconnected , and so is K (see [2]
6M.1) . The cardinals of K and R(D(K)) are larger than the
cardinal of X , thus are measurable . Since D(K) = C(X) (K =
BX) , by [2] 8.4 , R(D(K)) = R(C(X)) = VvX (Hewitt real-
compactification of X) . Then by [2] 12.2 , R(D(K)) is not
discrete . Then it cannot be a set of isolated points .

Let Y be the one-point compactification of an uncountable
discrete space of non-measurable cardinality . Y is not

extremally disconnected (if S is an countable set from the
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discrete space , then S | (») is the closure of S , but is not
open) . D(Y) = C(Y) : if £ € D(Y) and f(») =~ + ® , then there
exists g € C(Y) , defined as g = 1/(£ V 1) for x # = and g(w)
= 0 , which is impossible (see example 2.3.3) . So D(Y) is a
¢-algebra . R(D(Y)) = Y , and is not discrete .

3.3.4. LEMMA 11. D(K) is a ¢~algebra of real-valued functions
if and only if D(K) is isomorphic to some C(Y).

Proof : Consider the restriction map g : D(K) =--
C(R(D(K))) . If R(D(K)) is dense , it is C'-embedded in M(D(K)
,» then M(D(K)) = B(R(D(X))) , and this makes p onto (theorem
8) . p is one-one by lemma 4 . If D(X) = C(Y) , then D(K) =
C(R(D(K))) by lemma 6 . Hence R(D(K)) is dense @

3.3.5. Let Q(X) denote the completion of Q(X) in the metric
defined in 3.3.1. - which is equivalent to the metric defined
in [1) 4.1 (from [9] ch.7 problem 10 and mimicking the proof
of [1] 5.2) ; i.e. , the convergences of a sequence are the
same in two metrics ; hence Q(X) is isomorphic to the
completion of Q(X) in the metric [1]) 4.1 . Now we have ,

LEMMA 12. Q(X) = D(M(Q(X))) -

Proof : Q(X) = Q(C(M(Q(X)))) by [1] 4.8 , [1] 5.5 , and [1]
5.11 . Hence Q(X) = lim .y C(V) , where V ranges over dense
open sets of M(Q(X)) . If £ ¢ D(M(Q(X))) , then £ € C(R(f)).
Since R(f) is a dense open set of M(Q(X)) , £ € Q(X) . Note
that the equivalence relations on E(X) and D(M(Q(X))) are the
same . Thus Q(X) D D(M(Q(X))) . The converse is true because

Q(X) € D(M(Q(X))) and D(M(Q(X))) is complete (lemma 9) @




Remark: From lemma 9 and the lemma above , M(Q(X)) =
M(Q(X)) . Then from lemma 8 , R(Q(X)) = R(Q(X)) . Then from
lemma 10 , if the cardinal of X , or equivalently , the
cardinal of M(Q(X)) is non-measurable , the set of isolated
points in M(Q(X)) is R(Q(X)) . Then from lemma 11 , Q(X) is
isomorphic to some C(Y) if and only if this set of isolated
points is dense .

3.4. THE BET OF ISOLATED POINTS .

An open set is said to be regular if it is the interior
of its closure .

The set of all regular open sets of a topological space
X is a Boolean algebra (see [5] §4 theorem 1) , denoted by
B(X) .

Theorem [1] 11.15 states that M(Q(X)) = M(B(BX)) = an
extremally disconnected compact space .

The proof of [3] 3.2 points out that there is a
continuous map m from M(B(BX)) onto BAX which maps proper
closed subsets of M(B(8X)) onto proper subsets of X . (In the
proof : D(BX) is isomorphic to B(BX) by the map D - int D ,
D € D(BX) ; and the Stone representation space for B(SX) is
M(B(BX)) (see [8] 2.5 (Stone) corollary)) .

As a result ,

LEMMA 13. M(Q(X)) is extremally disconnected , and there
is a continuous map 7 of M(Q(X)) onto BX which maps proper
closed subsets of M(Q(X)) onto proper subsets of 8X (7 is said

to be "irreducible")
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LEMMA 14. L2t f be an irreducible closed continuous map
of K onto Z (T,-spaces) . Then , the isolated points of K are
in a one-to-one correspondence with the isolated points of 2
by £ , and one set is dense if and only if the other is .

Proof : If p is isolated in K , then K\(p) is closed , hence
f(K\{(p)) is a proper closed subset . And since f is onto ,
£f(p) = Z\f(K\{(p)) , thus f(p) is isolated . Let x be isolated
in 2 . Then f”(x) is open . If there are p,q € £'(x) with p
+ q , then there exists an open set U containing p but not g
such that f£(U) ¢ (x) (Z is T,-space and f is continuous) .
But f£f(K\U) = 2 , which contradicts irreducibility . If the
isolated points of K are dense , then so are the isolated
points of Z since f is continuous and onto . The converse is
true since £ is closed and irreducible ©

LEMMA 15. The isolated points of M(Q(X)) are in a one-
one correspondence with the isolated points of X . One set is
dense if and only if the other is .

Proof : An isolated point of BX is isolated in X since
X is dense in BX . Also by [2] 6.9(d) , an isolated point of
X is isolated in BX . The rest follows from the two lemmas
above @

Note that 7 is closed because M(Q(X)) is compact (see [2]
0.12) .

LEMMA 16. If the cardinal of X , or equivalently , the
cardinal of M(Q(X)) , 1is non-measurable (see [2] 12.5) , then

the restriction map p : Q(X) -- C(R(Q(X))) is onto .
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Proof : As a result of the lemma above , it suffices that
each funccion on the isolated points of X be extendible over
some dense open subset of X : 2 5ign the value 0 outside the
closure of the set of isolated points ¢

Rermark: We cannot generalize the lemma above to all dense
¢-subalgebras of D(K) , K extremally disconnected . Let X be
an uncountable discrete space , and K = 8X . Let A be the ¢-
subalgebra of functions f with f(X) countable . Since D(K) =
C(X) (K = BX) , and the set of all rational numbers is dense
in R , A is dense in D(K) . But u, is not onto because there
exists g € C(R(A)) such that g(X) uncountable (take g € Cf(X)
, then extend g over K = 8X) .

3.5. THE MAIN RESULT .
LEMMA. Let X have non-measurable cardinal . The following
are equivalent .
(1) Q(X) is a ¢-algebra of real-valued functions .
(2) E(X) is a ¢-algebra of real-valued functions .
(3) Q(X) is isomorphic to some C(Y) .
(4) 'B(X) is isomorphic to some C(Y) .
(5) The isolated points of M(Q(X)) are dense in M(Q(X)).
(6) The isolated points of X are dense in X .
Proof :
(1) < (2): by remark 3.3.5 . (2) <> (5): by remark 3.3.5 .
(1) <> (3): by the last lemma 16 and result 3.2 .

(2) < (4): by remark 3.3.5 . (5) <> (6): by lemma 15 @
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