‘ T, ' -"'";'3".‘ BER . M
i+] National Library - "Blbliotho uenanonme s 3
of Candda “du Canada- !+ Lo S . .
Canadian Theses Service Sq_r#nc_:o doslhf:sus’ c:ma’dllonr)us o

o

Oltaawa, Canada
K1A ON4

NOTICE ¢

The quality of this rnlcrolorm is heawlydependent upon the
g uality of the-original thesis submitted for microlilming.

very effort has been made o ensure the highest quality of
reproduction possible.

Ifp dqes are missing, contact the university which granted
the degree. ' - .

So'me ages may have indistinct print esp-ecmllg if the
ongma pages were typed wilh a poor typewriter ribbon or
' if the university sentus an inferior photocopy.

Previously copyrighted materials (journal amcles pub-
lished tests, elc.) are not himed

Reproduction in full or in pant of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c¢. C-30.

e

NL-339 (1. BB/O4) g v

"'“E\\:,‘

-

AVIS

La qualil¢ de cette microtorme dépend gmndmnvnl de b
qualité de 1a thése sounnse au microfilmage. Nous avons
toul fail pour assurer une qualité supdricure.de reproduc-
hon

Sl manque des pages, veuilicz communiquer aved
l'universiteé qui a conterd le grade.

~La.qualité d'impression de certaines pages pueul laisser 3

désirer, surtout si les pages originales ont ¢1¢ daclylogra-
phi¢es & I'aide d'un ruban us¢ ou si Futiversite nous a tat
parvenir une pholocopie de qualité inféneure.

Les documents qui font déja l'objet d'un droit d'auteur
{(articles de revue, tesls publiés, elc) ne sont pas
microfilimes. :

La reproduction, meme pamplle dc' celle microforme o5t
soumise a la Loi canadienne sur le droit d'auteur, SHC
1970, ¢. C-30. :

Canad"'

. Issues in .
the Design and Implementation
of a Portable Natural Language Intérface System

Philip J. Vincent .

,//TH\\\ ' A Thesis

in
The Department
of R

Computer Science
> s

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University)
Montreal, Québec, Canada

(-

February, 1988 .

(:) Philip 'J. Vincent, 1988

»

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
coples of the film.

The-authOr-(cobyright owner)

has reserved bther
publi‘cation rights, and
neither the thesis nor
extensive extracts
may be* printed or otherwise
reproduced
written permission.

from it

without his/her

.

‘L'autorisation a &té acco:d&e

a4 la. Bibliothdque nationale
du Canada de microfilmer
cette thése et de prater ou
de vendra des exemplaires du
film. ‘

L'auteur (titulaire ‘du droit
d'auteury” se réserve les
autres droits de publication;
ni 1la thése ni de
extraits de caelle-cl ne
doivent ‘dtre {imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-41599-1

¢

longs:

" ny

ABSTRACT _ -)
Igsues in

the™Design and Implementation
of a Portable tural Language Interface, System

Philip J. Vincent T e
A natural language interface (NLI) is a computer program
which allows\ interaction with computers via a language that

is easy and natural for people to use.

A portable..interface
s .

—

is one which can be moved frdm-ohe computer application to
qnother.yith a minimum of effort. This thesis studies the
igsues involved in designing and implemenging A' portable
NLI. A system 1is presented which di&ides the task of
understanding questions on a database into three separate
tasks. A "Heuriétic Parser".is presented which parsés
natural language questions' determinis;ically: a Worid
Kn;wledge Base deveiops a domain-iﬁdependent méaning
representation of the user's que;y, and a Domain—specific
Knowledge Base matches the objects and relationships of the
domain with the concepts found in the world model. A
prototype has been implemented on a microcomputer, qé& has
been transported to two domains other than the one uséd in
the desién process. The'capabilities aﬁa implémén;gtion-

details are discussed, and key issues identified.

Introduction

Table of Contents

Chapter 1:

Chapter 2: L
Survey of Current\T;anSqutable ﬁatufal Language
o Interfaces |

2.1 EUFID
2.2 CO-OP
2.3 INTELLECT: A Commercial NL Interface ,
2.4 Datalo% ‘ ‘
2.5 TQA -
2.6 PRE
2.7 Ginsparg's System
2.8 ASK
2.9 TEAM '
2.10 Guida and Tasso's System "
2.11 LADDER |
2.12 Using Semantic Primitives .
2.13 KID
2.14 Summary

Components of a Natural Language Understanding System 9

18
19
22

23

25

26

27

28
30
30
31
3
32
33
38

Chapter i
Parsing
K
3.2

3-3

3.9
3.10,
3.11
3.12
¢ 3.
‘3.1

3.1

Chapter 4
Knowléd
4.1

- 4.2

Basic Linguistics
Syntactic Theories of Language
Transition Network Grammars
Augmehted franﬁitio \Networks
The Workings of aHﬁCTN. ‘

The Chart'Pir;éf | -
The Marcus Parser F

Case Grammar

Semantic Grammar

éonceptual Dependency Theory
Procedural Parseré |

QNL: The Heuristic Parser

2.1 First Attempts. .

2.2 Development of a Grammar

2.3 Design Criteria of the Heuristic Parser

Qe Representation _
What éind of Knowledge is Needed?
Conceptual Modelling Tools:

.1 The Entity-Relationship Model
.2 The Semantic Data Model

.3 TAXIS |

—— -

.4 Summary of the Conceptual Désign Toolxd

~

40
40
44
47
52
55
62
70
77
80

82

86
87
92

93

95,

98

102
103
105
108

110

Chapter 4 (cont'd) .

4.3 The AI Approach to Knowledge Representation
4.3.1 Logic - ' '
4.3.2 Procedural Representation of_&néqledge

4.3.3 Frames

4.3.4 Semantic Primitives

i

4.3,5 Semantic Neltworks

4.4 Summary _ -

‘Chapter 5:
Implementation of a Prototype
5.1, The Lexicon
5.2 Parsing
5.3 Syntactic Ambiguity
.5.4 Doméin-lndependentASEman;ic Analysis
-5,5 Pronouns |
5.5.1 Referéntial Pronéuns
5,5.2 Relative Pronouns and Re%atiQe Clauses
5.6 fcbnjhnctidns and Dis?unctions’
5.7 Negation
5.8 Verbs -
5.9 Anaphora
5.10 The Domain-Specific Knowledge Base
5.11 .Linking the DKB to the WKB
5.12 Database éalues

5.13 Transporting to a New Application

-

112
112
114
115
116
118

121

123
126
129

132

' 137

145
145
149

153

155

156
158
155
162
166

167

Chapter 5 (cont'd)

5.14 Desligning thp Domain-Specific Knowledge Base ‘168

i 5.15 Capturing the Semantics of the New Domain 169
5,16 Implementation and Testing 176
5.17 Summary _ 182

Chapter 6:

3Concludlng Remarks ' o .185
. 6.1 Contlusion . 185
6.2 Futuée work - 189
References g “ - 192
Appendix A: The Suppliers-Parts—-Projects Database 208

Y .
Appendix B: The University Domain ‘ 212
' Appendix C: The Airline Domain : ' ' 216
Appendix D: Sample Queries Handled by QNL 220

o
\
-~

s

List of Figures

2,1 DefTETb{SE of SUPPLIER in KID's Knowledge Basa.
2.2 Definltion of suppllier number.

2.3 Deéinition of Clty.

2.4 Definition of Spg. T

3.1 Syntax.Tree for the senténce
"Dhe boy hit the ball."

3.2 Chomsky's Hierarchy of Langhages.

3.3 A Finite State Transition Network for
a noun phrase of a reqular grammar.

3.4 Production Rules for a Context-Free Grammar
~ of English. :

3.5 Recursive Transition Networks for
Embedded Noun Phrases
and Prepositional Phrases.

3.6 Syntax Tree for the Sentence J
"Is the boy sleeping?"

3.7 Syntax Tree for the Sentence
"The boy will sleep.”

3;E Ph:ase Structure Rules for én ATN. .
3.9 An ATN for a Simple Grammar of English.
3.10 Ambiguoﬁs Sentences.
3.11 Tﬂe same set of Phrase Structure Rules
as Listed in
Figure 3.8, Numbered for Convenience.
3.12 Initial Chart of the Chart Parser.
3.13 After a First Pass over the Initial Chart. .
5.14 Final Chart for our Sample Senéence.

3.15 Production Rules for a Case Grammar.

3.16 Performance Comparison: Chart Parser vs.
Heuristic Chart Parser.

35
35
36
37

43
45
47

49

49
51

51,
56
58

59

65
64
66

69

77

91

M
, =
=

i.n
- .14

Entity-Relationship Diagram for the
Suppliers-Parte-Projects Database

Architecture of !a Portable
Natural Language Interface.

Sample Entries from the Lexicon.

The Parsing Rules Used by QNL.

A Sample Set of Heurlstics. '

A Sample Parse Tree as Produced by QNL.
A Small Part of the World Knowledge Base

Domain-Ihdependent Meaning Representation
passed to the DKB. ‘

Nuances of Elliptic Reference with
Conjunctions and Disjunctions ™

Domain-specific Meaning Representation
Mapping of Lexical Items to WKB Concepts,

and WKB Concepts to DKB
Concepts and Objects.

.-Entity-Relationship Diagram for

a Simple University Database
Relationship between Number of occurrences

of Entities, and the Number of -
Different Names. :

Sample Queries)in Imperative Form.

Resulfs of Teést Queries,.

103

124
/

128

131
134
137

138

144

154

160
165

170

173
'178

181

Introductlion

: (/

Peoﬁle communicate using language which has'evolvad into an

easy and effective way f%; us to share knbwledgerand ideas. -

If we could interact with a computer in plain‘language, Just

explaining what we would like it tb do rather than telling

it how to agcomplish EQe task in some rigid command
language, we would‘attain what many réfef to as an "ideal"
method of man-machine interaction: -cémbutefs would have to
adapt to our way of thinking and of doing things, rather’

~ than the other wJ; around. Cuirrently, user iﬁterfaces to
éomputer systems are biased in favour of-the computer, and
most of .the ledrning and adapting is done by‘the human. If
this burden could be shifted onto the computer, more peopie-

| would have easier access to information. -

Usually, the .more complex the computer'systeh, the more
difficult it is for a person to use it, not just because the
command sequences are coéplex, but also because the stored
;information may not have the same strucéﬁre.as_ the user
perceives. People are distracted from the task at hand by
having t& understand these sfructures and express their

‘requirements in an artificial, formal language the computer

-.can understand.

t

There are several obstacles to natural "lanqyaqc;

communication with machines: - the' extra proéannlng to
translate the wuser's expression into an expression the
software understands lncurs extenslve memory and tfﬁe
overhead. Natural language 15 ambiguoué. and‘capitalizg? on
things that humans do well, such as the sharing of common
perceptions and experiences. Finally, undegstanding the

intricacies of how language works is not a trivial task,

Within a narrow context, a computer can handle 4dWbiguity if
the amount of common knowledge is sufficiently small that it
may be explicitly imparted to the machine's memory. A
small gubsét of language is not difficult to implement on a
machine. As we narrow the domain of discourse, we also move
;rom//a.natural langﬁage to one which is a restricféd, bﬁE
st}il nétural one, containing fewer words and fewer possible
/ﬁﬁganingéﬁper word or group of words. Although the language
handled by such .a restricted gystem is not completely
natural and free-form, it cén serve to make man-—-computer
interaction easier. Two examples of this are the command

language of dBase I1I+, which uses common English words
(Castro, Hanson and Rettig, 1985),. and HAL, a natural

language interface .to Lotus 1-2-3 (Miller, ‘1987).

A Natural Language Interface (NLI).is a computer program -
deaigned to bridge the gap between a formal éomputep
language, aﬁd one which is relatively 'unconstralned and
natural to th;‘ Human. It receives a natural language
expression and transforms it into an expression the computer

can use, _ N

An intelligent natural language interface to a database acts

as a mediator between how the user thinks about data and how

y ’

it is stored within the .database. To accomplish this it

should épé;ge-in a conce@tually natural dialogué to free the

user from having knoﬁledge of an artificial language, and to

avoid having to learn about the data model(s) and data

organization. . By conceptually natural, we mean it should

~ know the wvocabulary inhereq; to the domain, be able to
)

handle ambiguity in a manner accéptable to the user, and

tolerate minor errors. d

Many existing INLI systems refer to a ‘"professionally-
oriented language" {Pavlov, Angelova, Paskaleva, 1985). The
work environment, the habits of workers, and the natufe of
their :information rgquirements naturally constrain the
language they wuse to access a q5tabase‘ through a NLI

(Carbonell et al., 1983). This may meén it is possiblé to

build a fairly .robugt NLI without incorporating a
substantial subset of natural language vocabulary, grammar

and semantics.

A transportable NLI is one that is capable of beini‘ moved
to a new database other than the one for which it was
designed, without major modifications. The-design of such a
system requires'that the language processing technpiques be
general enough‘to apply to all domains, and not ;pecifically

. /
tailored to the application environment.

This thesis.studies some of the issues involved inrqesidning
a transportable natural language interface . to a éatabase,
and presents a prototype implementation called "Queries 1in
Natural Language" (QNL). ONL is a guestion-answering (Q-A)
_system, as are many existing operational NLI. The

implementation of a Q-A system was chosen for several

‘reasons.

First, the linguistic knowledge requifed for a Q-A syé;em 1s
more easily modelled than for other types of discourse; the
‘semantic interptetabions of questions are limited by the
knowledge a system has about the objecﬁs and relationships

of a domain, and the ways it has of recognizing them.

[.

Second, .3§§;;ion-answering'situations are the most frequent

with respeat databases. In general, users spend more

o

time extracting information than storing new informati@n,

although there are obvious exceptions 1like trannactiPh—

_processing systems.

' ’

The structure of questions the user may ask should not be so
restricted that an inexperienced user would require
extensive training in hgﬁ to use the system. For instance,
a set of s&ﬁple gquestions and an explanation of the type‘ of
informa%ion generally needed by a seé of workers should

suffice.

.

A7)

In a situation wheré;mhe user 1s "non-hostile", that is,
genuinely cooperating ‘with the system in an effort to
extract needed infbrmation, " the semantic and syntactic
structure of the discourse is reasonably predictable (Tufig
and Cristea, 1983). Experiments have shown that lusgrs
frequently restrict the dialogue to a small number of terms
when extracting inforﬁb§ion-'from a computer system
(Thompson, 1980). They €£ind pétterns which result in
successful retrieval, they minimize the number of keystrokes

and they try to ‘reduce the mental effort required to

" formulate new, and perhaps complex, questions.

t

A transgs;table NLI is one that is independqqgf\o: the
application environment, and of the data base management
system’ (DBMS). This means tﬁe sysﬁgm ;hOuld exhibit "low
structural gsemantic content" (Frosg, 1985) 8o that it is ngt
tied to the data organization of theﬁunderlying databaseg_or

N

their query languages.

To be considered transpo?table, the amount of effort
required to trénsport the system from one environment to
another should be minimal. The degree of portapility is

reflected in the amount of effort required to transport it

to a domain other than the one for which it was designed. . 1

The NLI develop é ;s part of this-thesis is meant to be run
on a single—use; workstation. A parger written in Lisp has
'been‘ implemented %o run on an IBM PC/XT with 640 K RAM. TLC
Lisp, the implementation ianguage, is an interpreted Lisp
for ;microgomputers. Test ';sghlts are encouraging "and

indicate this could be a viable NLI on a slightly larger and

faster workstation. ’ '

The system was originally designed to handle the Supplie:s--
Parts-Projects database of Date (Date, 1982, pg. 114)
(Appendix A). To determine the degree of portability, two

new applications were introduced: A university database

!

/’__}-—

(Appehdix B), and the Alrline databaﬁe'of Ullman - (Ullman,

1982, pg. 19) }Appendix C)." The Date database has been used

by several researchers. as an aid to developing a NLI
{Boguraev ;nd Sparck-Jones, 1982; Ginspargy 1983). Tpe
university database was chosen because it " is semantically
different from the Date database, yet still possesses
suitable ambiguities’ to test the natural language
understanding abilities of the system. The airline databage
is more complex tha; Eithr of the first two, and coping

with the problems encountered with this domain demonstrated

some interesting problemg:gith the design of the NLI. ' :

Chapter 1 of this theéis describes the components of natural
language processing systems in general. Chapter 2 presents
a survey of current NL;, including a brief discussion' of
their parsing mechanisms .and knoﬁledge representation
schemes. Chapter 3 is a discussion of the theoretical
agspects of parsing as may Se applied to natural langgage.
aqq presents some of the formalisms used in NLI. The parser
used in QNL is also introduced. Chapﬁer 4 studies the

Y

knowledgelrgpresentation neéds‘of a NLI and suggests the use
of semantié networks as. a suitable formalism. Chapter 5
preéents the dévelopment and'impiementation of a prototype
gystem, and includes a | discussion of the design of a

suitable parsing formalism; handling syntactic and semantic

AT

”~

ambiguity, conjunctions, 'pronouns, anaphora, etc. It
concludes with a description of the.proceas of moving the

interface to a new domain, the problems encountered, and the

solutions employed. Chapter 6 1is the conclusion .which

.discusses the:results of this experiment and future work.

The . Appendices include the conceptual schemas of the data~
bases used in the study, and a list of the types of

guestions and sample dialogue which the system is capable of

handling.

Chapter 1

Components of A Natural Language System

4

A computer system "understands" a sentence or quéstion i€ it
purposefully performs the apbrdpriatqiactions to indicate
that it has understood,. ‘This involves transforming the
'original expression into some internal representatioﬁ which
other components of the .computer system can uée. For,
instanée,' an English-lanquage request may be transformed
into a Lisp program which can be execdted.\By a VLisp
interpreter. o “
|]

If a user asks-g NLI “which suppliers sell red parts?", and
the NLI display; a lis£ of those suppliers, then the system
may be said to “ﬁnderstand". However, if all the system is
capable of doing is displaying that one -"list, then no
understanding has occurred. There afe degrees of
understanding, and so a NLI must be judged on how broad a
range of questiéns it can "understand;. This is analogous
to the case if you ask a person, "Parlez-vous francais?",
and he responds "Mais, oui!", it does not necessarily mean
that he understaﬂés the language, but perhaps only that he

has issued a programmed response.

The understanding proceﬁs can bé broken into three broad
components: recognizihg the words and térmarin the input
gtfeam and their structural relationéhips (syntax),
~understanding how the terms relate to’ each other |
(semantics), -and finally some sort of "meta-knowledge" which
would include knowledge about the way things normally happen
within a specific context.. Most NL systems rely more

heavily on one of these aspects than the others.

Early work in NL understanding focused on templates, keyword
matching, and ad hoc diéambiguation rules. This approach
assumed words are the basic unit of meaning, and that there

b
could. be a one-to-one mapping between the words in a

v :
sentence or question and the meaning repregentation. Later,

as syntactic theories of language developed (Chomsky, 1957,
1965), parsers were developed to apply. theories 1like
Transformational Grammar (TG). Researchers! were under the
mistaken impression th#t an abstract machine to manipulate
syntax rules as a means éf hndérstgnding ianguage'would be

relatively easy to construct (Barr and Feigenbaum, 1981,

Vol. 1, pg. 281).

Early natural language systems incl9de (Simmons et al.,
1962; Craiq et al., 1966; Weizenbaum, 1965; Bobrow, 1968.)
These early systems were closely coupled to the database

schema, and limited to narroQGdoméins. Typically they had

10

’

low conceptual coverage; that ls they did not understand the
relhtionahips between language and the contants gﬁ' the
domain, but raﬂher provided a way of mapping the tokens of
the natural language, expression to concepts explicitl}
stored. They were generally not portable, and made no
attempt at real understanding of language. See (Tennant,
1981) for a comﬁrehensiQa review of a representative set of

systems from that pericod.

As more research was done in the area of language
comprehension, it became apparent that human language
processing makes use of a "world model" of knowledge which
acts as a framework for understanding, and so there
developed an increased awareness of the differences between
syntax and semantics. | The functional role of a word is not
necessarily indicative*of the speaker's intent in using it
(Katz and Fodor,‘ 1964), and so some methods had to be
developgd to represent not just functional relationships
between words; but semantic relationships between the
concepts -~ they 'fepresent. Two such formaliSm; are case
frames (Fillmore, 1968) which represent relationships
between verbs and their subjects and objectﬁ, and semantic

networks (Quillian, 1968), which 1link concepts into

11

]

hlerarchies. Both’ tﬁ¥se methods have demonstrated that a
finite get of relationshbps can describe A world
sufficiently to differentiate between sgimilar sentence

constructions.

fhe 1970's saw an increased interest in natural ‘language
front ends for'databaseé (Woods,. 1970; Waltz, 1978.) This
was partly due to increased funding of _Artificial
Infelligence from the U.S. military and partly to the

ifcreased use of computerised databases by business.

The systems of the era developed what has been referred to
as the "classical, two-stage architecture" (Hafner and
Godden, 1985): syntébtic . processing followed by the

application of semantic knowledge. 1t was thought at the

time that it was more efficient to refrain from applying

semantics until all parsing was complete, since many -

ambiguous expressions’ could be sleed by syntactic analysis
alone (Woods, 1970; Earley, 1970):.in any given sentence,
there - could be a large ﬂuhbefléf local ambiguities which
would be magnified by the too;éarly épplication of semantic
knowkedge. For instance, a word may have multiple meanings,
but many of thesé may be eliminated by the phrdase or
sentence structure; Tyéical of the two-stage method is
parsing]byt'an ATN parser or Chart parser, ‘Followed by

domain-specific semantic processing (Waltz, 1982). .

12

3
\-

The prbblem wggh the two-stage approach is that the purely
syntactic parsing module could generate multiple parse trees
which would have to be processed by the semantic analyzer.
If the syntactic analysis module has no aEcéss to semantic
knoﬁledge, then it could genedrate a large number of
meaningleqs interpretations which wogigungye to be studied

and rejected by the semantic processing component .

For instance, without access to semantic knowledge, a parser

would develop two parse trees for each of these sentences:

/

I hit the boy with the hammerg;
I hit the boy with the mousta .

To improve efficieﬁcy, there was a move to employ a
"pragmatic gréﬁﬁar“, which in effect quided the syntactic
analysis with domain-specific semantic knowledge (Winogre¥,
1972; Hendrix et al., lQ?é):"Semantic markers are stored
with eacﬁ word aﬁd are involved with the parsing process in
place of syntactic i&formation‘ such as noun and verb
indicators. The success of such systems deménstrated the
importance of domain-specific knowledée to understanding,
but to transport such a system to a new domain requiréd
considerable programmer effort because the pragmatic

knowledge was so closely tied to the domain.
2

13

5 , :
Another school of' thought advocated the elimination of

syntactic processing and the exclusive use of semantic
knowledge. The use of "preference semantics" (Wilks, 197%)
and> Conceptual Dépendency Theory (CD) (Schank and Colby,
1973; Schank and Abelson, 1937;) are based on the premise
that humans ignore syntax and derive the meaning of a
sentence by building a representation of the sem#ntics of
the concepts and th relationships in a sentence,;- CD has

formed the basis for related work to include »stéroéypical

knowledge about frequently occurring situations, the
intensions of speakezs and hearers, etc. Proponents of CD
claim ‘that syntactic understanding is completeiy
unneccesary. Howéver, as part of their wunderstanding

‘process, they must take into account the syntactic roles of
at least some of the tokens in a sentence, specifically the

nouns, proper names, pronouns and verbs.

¥

All ﬁL systems use the morpheme or word element as a basis
. [

for understanding, and either use an existing linguistic

theory or develop one for sentence analysis. It is clear

that syntactic knowledge is useful in some instances, and

not in others.‘ The same can be true for semantic knowledgea

The question in designing a natural language system 1s when

and how should these various types of knowledge be applied?

14

Syntax and semantics are not two different approaches to
language understanding: they both attempt to relate a
sﬁeciric sentence pattern to the meaning of the words in the
sentence, A system blased toward syntax analysis has

certaln advantages, such as recognizing the role of a word

it has never seen before:

X broke the Y
X sells ¥ to 2

But a syntax-biased system could have trouble with sequences

of ill-formed sentences:

Which suppliers sell red parts to projects in London?
Paris?

This demonstrates that syntax and semantics-based systems
are not completely interchangeable, - but rather each has a

role to play in language understanding.

There has been considerable work done in syntax analysis of
language, Eut semantic processing is still a new and
controversial area because it demands a formal st}ucture for
representing human knowledge. There is no one "right" way
to achieve language understanding, and so this makes it an

interesting topic for study.

15

Thero‘arp many real-world computer appllca‘tlons which could
benefit trém the use of natdial language processing, and the
one chosen for study here is a"Franaportable natural
language ihterface to a\aatabase. We have seen that the ldea

of designing a natural language ‘interface based on 'a two-
stage architecture was abandonned in £favour o§ the
computational efficiencies of systems employing 4 pragmatic
or domainéspeéiflc grammar. But such systems are not
portable. Is. there a methed- of combining syntactic
knowledge and semantic knowledée théi//y'll allow an
efficient, transportable naturgl language interface? When
should the various types of ﬁnowledge be brought to bear on
the analysis? How do we represent this knowledge, and how

will it be applied to the understanding process?

If we have two modules for understanding'a sentence, syntax
and semantics, it would be safe to assume the syntax module
could remain relatively stable while the semantic module
would change with each application. | The structural
relationships between words are more likely to remain
constant than the semantic relationships. But how different
is each application? | There are .concepts employed in
database systems which are not unigque, but apply to many
environments; concepts like operations on data (counting,
sorting, printing, and so on), and a'large number of
"closed-class" words (prepositions, numbers, and so on). In

.
r

16

“

databases; ‘we typlcally deal with objects, their attributes
or attribute-values, and relationshlips. It is possible:to
codify' this general knowledge about databases so that it
need not be recreatéd each time . a " new applicatiap is
introduced, So what will emerge is a two-tiered samantic‘
knowledge base, consisting of a general knowledge module
contaiﬁing "world-knowledge", a domain-specifi?‘ knowledge
module, and a means of merging the two. Finally, there must
be a strategy of how and when to apply seméntic knowledge,

and gyntactic knowledge to the understanding process.

17

Chapter 2
Survey of Existing Portable Natural Language Interfaces

Early NLI “ere experiments in developing formalisms for the
understanding of language, but recently effdrf'has shifted
to the design of 'portable NLI which can be used for
different subject areas and different DBMS. In all oflghe/
recent portable NLI, modularity %s viewed as a Jkayﬁ’to
portability, 80 that the domain-specific and /'domain—
independent portions may be extended separately.
’ | |

By domain-specific, ;e mean that part of the interface which
has in-depth knowledge of Ehe‘objects and relétionships of
the application environment;/ The domain-independent portion

has knowledge about language in general.

One approach to 'transportabiiity is to isolate domain-
independent knowledge from the domain-specific part so th?t
the .introduction of a new application will have little
‘impact on the overall systém. Another strategy is to employ
a sophisticated computer program to interact with a database
designer or DBA to integrate the knowledge base for a !néw

application with an existing system. Some systems combine

both methods. This chapter describes recent NLI. /

18

-

v\
A balanced interaction between syntactic and semantic
processing can lead to an efflcient implementation, but.to
achieve a degree of portability there must be a degree of
" domain-independence in these modules (Konolige, 1979;
Ginsparg, 1983; Boguraev and Sparck-Jones, 1983; Hafﬁgr and
Godden, 1985). If the syntactic procesaigg is guided by
‘aemantic kndwledge, 1he generat}on of partial parsés which
cannot contribute to understanding can be limited, therefore
}educing the time and the amount of memory that must be used
to store and manipulate multiple data structures. However,
if the semantic knowledge is specific to the domain, then

extensive effort will be required to transport the system.

A rather simplistic approach to designing an interface-is to
-use the database schema as the knowledge base. This
essentially results in a program which maps Qordsv and
'synonyms to file object§ and thefr attributes, Two recent
systems . which have employed this. technique are EUFID
(Templeton and Burger, 1983) and CO-OP (Kaplan, 1984).

]

21 EUFID

A major :ﬁrueinig this project is that general methods of

language processing will not work in real-world

s

applications, and so the 'goal is to discover how to
successfully acquire and integrate large amounts of

—

database-specific knowledge.

19

The EUFID system employs a semantic\grammar that is specific
tp each appiication, tailored to the database schema and the

trelétional opgrations to bhe performed on the Hatabase. The

semantic categories' of terms in the dictionary are either

, ¢

closed-clags words, or terms which correspond to the
' 5 .

objects, attributes and relationships in the database. The

database itself is represented as a relational schema, even

]
if it is n based on the relational data model.

..The dictionary of application-spécific words has pointers to
‘the: database concepts. - Each concept is linked to others
through case frames. A case frame describeé a relationship,
the allowed or expected participants in the relationship,
and the roles they play. Case frames can be wused té
explicitly describe the relationship:iof the database and
their associated objects. Also stored with each concept are
one or mo;é functions which map the concept to the files and

fields of the database.
\

In EUFID, a natural bfnguage question is parsed accordxng to
the semantic grammar\\\uith syntactic information used only
in the case of semantic ambiguity. A typical strategy would
be to identify the main verb of a sentence, ahd look-up the
case frames aséociated'with that verb. The case frame could
then be used to guide the parser to generate a parse tgee (a

hierarchy repreéenting the structure of the question). The

20 .

“

terminal nodes of the ﬁarge tree are ﬁhe database concepts,
and the mapping process matches these concepts Qith the
gemantic graph: The functions stored with the concepts ;n
the graph then acceass a table of database-specific
ingormation such as file and field names, and the query

translator generates the formal query.

-
b

EUFID attempts- to achieve processing efficiency by using
,semantﬂi information as early as possible in the
understanding process. The problem with this as in‘ other
systems based on a pragmatic grammar is that port&bility is
difficuit to achieve since the entire grammar and most of
the knowledge about tﬁe database must be. re—acQuired for
every application. They try to attain. portability by

building tables to hold information about the database

access, and about groupings of database-~specific concepts.

The range of grammatical structures which EUFID can handle
is limited, and the conceptual coverage depends largely on
the efforts and expe;tise of the people involved in
transporting the system to a new application or DBMS.
introduciﬁg é new appiication takes sevetairmonths of efforg

(Grosz et al., 1987).

»

21

. _ B
2.2 CO-0P A E

‘ i
CO-OP 1is designed specifically to be a transportable Nuﬁ
that handles‘ambldﬁity (more than one valid interpretation), .
vagueness (miasing 'lnformatlon in the question), and can
recognize database values that are not explicitly stored “in
the 1lexicon, The system keeps domain-specific knowledge
independent from the processes involved in transforming a
natural language query into a database Qquery. These
processes (syntactic parsing and some heuristics to handle
semantic ambigquity) access the lexicon and database schéma,

but treat these modules as declarative knowledge. Then, if

the content of the declarative portions ‘“fhange, the

functions.of the procedures are not affected.

Three Sources of declarative -knowledge --Are used: the

database schema, the database

itself, a the user lexicon.

Kaplan uses _the lexicon to record a small set of closed-
class words, and the content words of a new applicatlon are
merged with this. A parser generates syntax trees
representing the reratioﬁships between tﬁe cbjects in the
query. In the case of semantic ambiguity some simple
heuristics are brought to bear which draw on semantic fules
regarding .verbs and their objects and the predictive
capabilities of prepositions. One set of heurigﬁics

evaluates the .relative positions of objects or attributes in

22

a sentence to their positions in the database schema, and
assigns a measure of their semantic relatedness. For such
an approach to work, it is crucial that the {atabase schema

accurately reflects the semantics of the domain.

Database values are not stored in the lexicon since this
could render the lexicon obsolete as the values cﬁange.
Instead, values are recognized by the form of the query,
using heuristics similar to the ones already mentionned,
which rely Heavily on the database schema,

The separation of progedural from declarative knowledge has
resulted in a much more transportable system than EUFID.
Exﬁéfiments with moving COjOP to a new domain required only

\\\\kﬁ matter of hours rather than moqths (Kaplan,1984).

2.3 | INTELLECT: A Commercial NL Interface %

One of the few successful -commercial NLI systems 1is,
INTELLECT (Harris, 1978; 1979) (also known by 1its other
cbmmércial names such as OnLine English from Cullinet
Software, ELI from Management Decision Systems and GRS EXEC.
from InSéi, and other obsolete names such as ROBOT) which
provides a limited range of natural language structh}es, and
has successfully interfaced with several large databases.

This system is relatively easy to customize by a DBA without

R

intrinsic knowledge of the workings of the system, although
the successful operation of thé 'system‘ depends on the
éoodneaq .of‘ the user-defined lexicon (Martin, 1985,' pPg.
219). ‘Other sources of knowledge are the database itself

and the database schema.

\INTELLECf can be conceived of as a mappling between a user-
defined lexicon and a collection of "processes” which expect
certain parameters. Some of these processes access the
database files, while others invok; graphics or report-
formatting (The FOCUS language is the utility subset of
INTELLECT wused £for these purposes). The user-defined

lexicon contains a base collection of closed-class words and

expressions ("how many", "between", "in", etc.) and

iHentifiers‘ for various processes, which is augmented 'by
labels \referring to the file ‘structures, synonyms, and

keywords (Martin, 1986, pp. 215-245).

INTELLECT expects the user to be familiar Qith the file
structure to help solve ambiguities and handle database
values and other words unknown to the system. To assist the
user in this respect, it 1is able to show the file
structures,, thus giving both the program and the user a
common knowledge base to work with. When it detects
syntactic ambiguities, it invokes a menu-driven interactive
session to remove the confusion. This may appear to be a

-

24

deviation from natural language, but if ambiguity arises in
a c¢conversation between two people, tpey'might engage in a
brief question-and-answer diversion to clear up the

ambiguity. Using the menu approach is just an expedientfﬂ
2.4 Datalog

Datalog (Hafner and Godden, 1985) is a database query system
which uses a "cascaded ATN grammar" allowing paraliel
syntactic and domain-independent semantic processing, rather
than the twolstébe approach described in chapter 1. The
main objective of their study is semantic interpretation,
and so they have only developed a simple grammar for
questidn forﬁs, which does not handle conjunctions and other

difficult structures.

The domain-independent semantic processing is hierarchically
arranged. Once a_ grammatical structure 1is recognized,
procedures are called which recognize the semantic content

of the pgrase based on a domain-independent world model.

In Datalog, domain-independent knowledge is represented in
the form of a semantic network and is connected to a base
vocabulary. The terms in the lexicon are mapped to concepts
in the world model, or the doﬁéin model. The domain-

dependent knowledge base is a semantic network describing

25

the entities and relationships 6f the domain, and their
attributes. The 1links 1in thé domain semantic net are
restricted so that lhe ganeral'semantic procedures, whiEh
can operate on the world knowledge basel and the domain
semantic net, can process. the domain knowledge according to
- a pre-determined, domain-independent set of rules. The
rules are designed to manipulate concepts like entity and
éttribute{ and 8o the domain objects must be specified in
these terms. This means that the introducti%n of a new

domain must conform to a structure expected by the NLI.

Transporting to a new domain requires a person familiar with
the structure of the interface, and so far their experiments

have only been with simple file structures.

2.5 TQA

The Transformational Question Answering System (TQA)
(Damereau, 1985}, isTan SQL-oriented NLI. Damereau claims
éhe grammar is a domain-independent semantic grammar, but it
requires the terms of the domain-specific vocabulary to be
defined as references to file attributes or synonyms
thereof. Rather than being domain;independent, it includes

a very simple set of domain~-independent phrase-structure

rules, but then resorts to matching entries in a table.

26

/o A

There is no semantic model of the domaln, nor of the domain-
independent knowledge, |Tha system consists of a set of
transformational rules which map English words to file
names and attributes, so linguistic and conceptual coverage

of thls system is not extensive.

TQA uses an interactive program to.acquire domain-specific
knowledge for each new application. The program accesses
inférmation about the database structgre and then regquests a
'DBA or other knowledgeable individual to define the synonyms
for the entities and relationships. It also requires th

the SQL programs to accomplish various tasks be specified at
this stage. What in effect happens during the processiﬁg of
a query is that entities qnd relationships are reéognized in
the user input and a table lookup procedure determines which

SQL procedures will answer the query.
2.6 PRE

Purpoéefully Restricted English (PRE)} (Epstein, 1985) is a
transportable -NLI which restricts the range of natural
language queries. Such restriction alleviates the need for
sophisticated parsing and semantic processing, and allows a
'simple mapping from the tokens in an English language

' . N
expression to the file names and attributes of the database.

27

\

PRE requires the user to be famlllar with the astructure of A
the database and the limited range of grammatical

structures, The range of iinguistic‘abllity is not so

restricted as cause \sers to require a significant amount

of training. In fact,/the grammar accepts simple sentences

with relative clauseg and conjunctions, and a large set of

pre~determined phra structures.

Epstein describes PRE as being a "minimalist" approach to

naturai language processing ,. the goal of which is an
easy-to-use interface that is also easily transportable. It
has been tested on several largé databases, and moving from
one application to another has been achieved without much

difficulty. Perhaps most importantly, transporting to a new

T

application does ot require system specialists or

interactive programs, and can be accomplished in a matter of

hours.
2.7 Ginsparg's System

Semantic networks are employed by (Ginsparg 1983), and
combined with a case grammar in a system that.is meant to be
tfansportable to different domains, DBMS, and is also
transportable linguistically. Conceptual kﬁowledge is

- stored in a taxonomic hieggrchy. The word phrases normally

occuring within the domain are clustered based on similarity

/
28

co-efficients between ‘terms. Domain—gg§hific concepts are
generalizations of termsigkich occur within the domain, and
these are linked to domain-independent concepts. In this
implementation, parsing is mainly kept separate f€from the
domain, although some cu;s from the domain-specific
knowledge base are used to quide the process. The
linguistic coverage of this system is quite extensgive,

including noun-noun modification, -fgyé;;ification,

conjunctions and disjunctions.

Transportability is achieved by persons knowledgeable in the
wprkings of the system who compile the information needed by
a‘anew domain. This new information, including case
information about file attributes, how to handle ’'virtual
relations, details of database concepts, and so on, is
built 1into a semantic net and linked to an existing world
model which is also a semantic net. Mapping to a new DBMS
is achieved by writing a translator program beﬁween the
relational -algebra expression output by the system and the

query language of the new DBMS,

Experiments have demonstrated the Cinsparg system may be-
hd
transported to a new application in a matter of hours or
days, depending on the semantic closeness of the new domain
A

to existing domains.

29

2.8 ASK ./

The‘ ASK ’systeh {Thompson and Thompson, 1983, 1985) |is
loosely designed 'on the E-R model and appears to be
appropriate to databases with relatively simple conceptudal
schemas. Physically, a semantic net is used to store a
taxonomic hierarchy'of objects, events, and attributes of
objects and events. A user-specific vocabulary holds the
knowledge bertaining to user views necessary for accessing
data, mainly in the f&?m‘of scripts. A script will describe

the typé of information normally required, and the names of

the procedures to obtain that information.

The linguistic covqﬂage of ASK 1is extremely limited, and the
system is basically a mapping of words to the contents of
the -database. The only verbs permitted in this system are

forms of "to be".

2.9 TEAM

A taxonomic hierarchy depicting rélationships between
objects, . constraints on arguments to predicates, and
information about relationships is used by TEAM (Grosz,
1582, 1983, 1987). Parsing uses a general grammar as
opposed to a semantic é?ammar, and transforms the input

into a database-independent semantic meaning. This is then

30

applied against a dictionary of what the general terms mean
with respect to the current database. Then the_té;ma of the
user input are mapped directly to the conceptual schema.
There are separate rule sets for domain-independent

syntactic analysis and domain-specific inferencing.
2.10 Guida and Tasso's System

An interface tg an information retrieval system (Guida' and
Tasso, 1983) uses a hierarchy of concepts drawn from the
databases's " hierarchy of concepts.’ It has a set of rules
about hoﬁ to complete a search for information, and a
métching process between the rules and the input is used to

understand the user's intent.
2.11 LADDER

The LADDER sgystem (Hendrix, Sacerdoti, Sagalowicz and
Slocum, 1978), uses the functional data model (see for
instance, Orman, 19é4), and a semantic grammar. The
functions are domain-specific and are used to £111

templates.

A- case grammar can 1itself be a form of knowledge
representation which may contain either domain-independent

or domain-specific knowledge (Hendrix and Lewis, 1981).

2 ' - 31

Thelir implementation, similar to the LADDER system edploys a
"pragmatich grammar describing concepts that'occut within
any database, and a seé of rules about how to access
ﬁn——;;tzbases in geéneral. Then fhe schema of the target
database is mapped to these concepts, Thus, there is no

‘meaning representation as such.
2,12 Using Semantic Primitives

Semantic primitiveé form the basis of a system .by (Scha,
1982), wherein the concepts of the database are Eﬁ;* most
primitive concepts ({(i.e. filenames, attributes and data
items) and all other concep;s,are defined in terms éf Ehese

primitives, Scha's system uses translation rules to ~map

directly between English words and the primitives.

Conceptual Dependency Theory is an extension of the idéa of
case grammars, which' can themselves be thought of as
primitive knowledge representations. A case grammar is
procedural in nature: verbs have sets of expectaticns, so
verbs occurring in a question invoke certain functions to be’
applied to the words and terms. A change of domains will
require a change of the semantic grammar. It is possible,
howéver, to use non-domain gpecific semantics in a front-end
if those semantics represent semantic primitives. Then

these primitives would be used to map to the database.

32.

'

(Boguraev and Sparck-Jones, *19é3):comméﬁt on this approach,
and emphasiié that the semantic pfocessing should take place
as eafly as.poséible, although this.is a trade-off with
regspect to‘keeping domain-specific information separate frém
world knowledée.

~K- script-based system by (Pazzani and Engleman, 1983) uses
the‘.primitives of Conceptual Dependency Theory,‘ and -a
dictionary of'scripts. ?hese'scripts are domain-specific.
Transportability is achieved by supplying a new set of

scripts for each new domain.
2.13 KID

"KID (Ishikawa et él;; 1986), is a Japanese-language NLI
which uses an objéct—oriented approach and a ta:c:oncamig:'i
hiefarchy. Encoded in the knowledge base are explicit
functions on how to access the database, and how data . is

stored. A case grammar is employed with cases gpecific to

the database.

It will be useful to demonstrate the knowledge
representation schema of KID, since it 1is specifically
designed for a transportable NLI, and is one of the more

recent developments.

i

33

f ’

A taxonomy is achieved by ﬁietarchical arrangement of sub-
classes and super-classes. Clagses or objécté’ have sub-~-
structures called attributes which implement properties of
and relaﬁionéhips'between objects. Attributes have facets
which describe all aspects of the attribute)

In KID, properties of objects are allowed to change over
time. For instance, access information knowledge ~is
explicit in the knowlédge base. If the access routine must
change, as long as the name remains the same, there is no

effect on the knowledge base.

The knowledge base of KID is divided into two modules. The
lexicon consists of definitions of terms and the relations
between them, A case-grammar is used,i with spécific
information about the database. For instance, the verb "to

sell" would invoke the case frame
(SUPPLIEEi, PART, RECIPIENT; QUANTITY)

The parser would then be guided to look for terms in the

input stream matching these concepts.

'Figure 2.1 is the definition of Supplier in the Suppliers-

Parts-Projects database in the language of KID:

34

SUPPLIER

Super value ENTITY
Class valua Non-primitive
Level value GClasslevel
Attribute value s#, sname, status,city
Key value s8#
Return . value s#,sname,status,city
s# class suppllier_number
storage supplier_number_mapping
mandatory yes
status class status_number
storage status mapping
city class city_class
storage city mapping
Definition of SUPPLIER in KID's Knowledge Base

Figure 2.1

The entity "SUPPLIER" of figure 2.1 has the attributes s#,

sname, status and city, which are defined later. The

identifier 1is specified as s#. The access path to the

supplier relation is via a procedure called supplier-number-

mapping, and the s# must be given as a parameter to this
procedure since it is the key. The other attributes also
have specific procedures for accessing the relation. The

user view is established by the RETURN value. The entities

PARTS and PROJECTS are defined in a similar manner.’

supplier number

Super value s#

storage supplier number mapping
class value primitive

level value classlevel

Inverse class SUPPLIER

get_value_method s#_get_value

o
Definition of supplier_numb§>\

Figure 2.2:

-

"

)
) |

The attribute supplier number of Figure 2.2 is described as
subordinate to SUPPLIER, and is a primitive object. (The
term “primitive" in this model describes low-level éﬁjecta
which cannot have any attrisutes.) Note that the access

method is specified as well as a method for determining how

to access the S# attribute.
The*dcity. attribute, = shown in Figure 2.3 is slightly

different because it is an attribute of SUPPLIER, PART and
PROJECT.

city
super value > s#,i#
storage city mapping
class value primitive
level . ’ classlevel
Inverse " supplier,projects
get_value_method city get_value

normalize_value_method «city normalize

Figure 2.3: Definition of City

The normalize_value_method is a procedure for adjusﬁing for
abbreviations, codes, etc., depending on the type of
attribute. For instance, cities may be stored by code

number, but displayed by name.

Finally, the SPJ relation is defined in Figure 2.4 as a

relation that joins other relations based on a commonality.

-

36

SPJ

Super value Entity
class value non-primitive
level value classlevel
attribute value s# p# 1# quantity
key value sk pk ¥
return s# p# Jj# quantity
s# class supplier
storage supplier_mapping
Inverse class supplier
p# class parts
storage parts mapping
- Inverse class parts
i# class projects

storage projects mapping
Inverse c¢lass projects
quantity class integer
get_value_method quantity get_value
normalize value method quantity normalize

Figure 2.4: Definition of SPJ

The preceding description of KID demonstrates the varigty
and detail of information that must be held at each node of
a knowledge representation scheme. In addition, there is the

abilty to describe derived data, define multiple views, etc.

KID collapses the database mapping and semantic¢ model into
one module, rather than maintaining two separate ones.
Also, the lexicon incorporates database-specific cases, thus
tailoring it to one database at a time. There is no
information available at this time pertaining to how
successful efforts to transport KID to a new domain have
been, although the au€;ors claim this has been accomplished

for several different domain, and that the process was

"easy" (Ishikawa et al., 1986).

37

2.14 Summary

This brief overview has demonstrated the current trends in
the development of transportable natural language
interfaces. The basic idea is to find some indirect me;ns of
liqking natural language expressions to application-specific
concepts, such that acquiring new domain knowledge requires
a minimum of effort, A direct mapping between language and
domain concépts is not portable, although it may be an
improvement for the human in that it alleviates the need to
learn the access language of the DBMS. To bridge the gap
between how the user thinks about the objects and
relationships of the domain, and how the information is
actually stored, some higher-level intermediary is required.
The record schema of the database is inappropriate because
it reflects the needs of the DBMS and is too biased toward
the domain, with not enough knowledge about language, the
user, a world model, and so on. Alternatively, it may be
necessary to modify the record structure to accomodate
natural language, but this is impractical with large

existing databases.

There are several higher-level conceptual models available,
including case frames, Conceptual Dependency diagrams,
scripts, and semantic networks. The more general the

formalism employed, the less direct is the language-domain

38

transformation, and the more (potentially) portabla the
system becomes. However, these knowledge-representation
models can become large and difficult to manipulate.
Further, . there 1s no one "right" way to process sgemantic
knowledge, 80 the procedures involved are often tailored to
research needs and implementation issues. Systems like ASK

~and TQA place artificial restrictions on the language, and

80 try to reduce the task of the semantic processor.

It is a goal of this thesis to investigate the
implementation of a transportable NLI wusing a general
knowledge representation .formalism to free the user from
having to know how the database ig organized, and to find a
means of significantly reducing the restgictions placed on
the user's language. The approach to be empléyed is to
reduce the work that has to be done in the semantic analysis
process, and this will be achieved by designing a parser
which does not pass inefficencies to subsequent modules, but
makes '"good", early decisions based on all syntactic and

semantic information available to it.

39

Chapter i

Parsing

In this chapter we briefly discuss the theoretical
foundations of parsing,. and how they are applied to
understanding natural language. Then we survey some of the
predominant. parsing methods and grammars used by natural
language understanding systems, beginning with syntax-only
parsers and moving #hrough the spectrum to semantics-only
methods. The chapter ends with a brief overview of the

parser used in QNL, and explains how it developed.

3.1 Basic Linguistics

A language is defined in terms of an alphabet and a grammar.
The alphabet 1is a finite set of symbols or tokens which
appear in the language, such as "a, b, ¢, d, e, ...2", Or

"the, boy, hit, ball."” The grammar describes how these

symbols may be combined and it enforigg a structure on the

language.

40

}

A grammar may be formally defined as a four-tuple"

. /
G = (A,N,B,S) /

where

A = The set of gymbols which may appear in the sentences of

the language {(the terminal symbols.)

N = A set of nonEerminallsymbols which make-up partially
derived sentences but may not themselves appear in the

gentences of the language.

n 0’("
S = A start’ symb which is a specified member of the

nonterminal alphabet.

P = A finite set of rules which describes how the
nonterminals may be converted to terminals (production

rules).
A production rule has the general form

X -=>y

where x and y are strings in the terminal and nonterminal
sets of the grammar, and x is not an empty string. Such
rules allow us to derive one string from. another, and so
convert the input string into a form that may be manipulated

by a machine,. ¢

41

Phrase structure rules for natural language which describe
the constituent structure 6E a phrase can be s8seen as
production' rules, The production rule for a noun phrase

could be:

NP --> det + adj + noun

where NP means "noun phrase", "det"” means a determiner such
a; "the", "a", "an", and "adj" means an adjective. (It is
assumed the\reader is familiar with the basic syntax rules
of English, and so these will not be explained in this

paper. Where complex rules are involved, explanationsg will

be given).

Parsing is a process which uses various forms of knowledge
to transform an expression into a data structure from which
the meaning of the expression may be determined. A parser 1is
a formal procedure for sentence ahalysis with no experience
of the real world, so it relies on a set of rules (the

grammar), and restrictions on how to apply those rules. .

Suppose we have a grammar

G = ({the, boy, hit, ball},
S, NP, VPB},
s}, .
S =-> NP VP,
NP --> the boy,
NP --> the ball,
VP --> hit NP})

42

and the input string
sl. "the boy hit the ball" s
By applying the productioh rules of the grammar to the input

- string, we can derive a representation of the sentence which

hay'be depicted as a tree:

S .
/\
NP VP
/\ /\
det noun transitive NP
veib /////f\\\\\\\\
the boy hit - det noun
| |
the ball

Figure 3.1: Syntax tree for the sentence
"The boy hit the ball.”

The terminal nodes of the tree are the tokens of the
language, and the nonterminal nodes are the partially
derived sentences. Such a structure, called a parse tree or
syntax tree, 1is useful as a notation because it expresses
the relationships between the words in a sentence (the

terminal symﬁ%ls) hierarchically arranged as constituents of

non-terminal aymbols like noun phrases (NP) and verb phrases
(VP). A structure such as thls allows the sentence to be

re-examined once it has been syntactically processed.
3.2 Syntactic Theories of Language

We say that a grammar "accepts” a sentence in a language if
it is possible to begin at some initial state, apply the
rules of the grammar to the input string, and arrive at one
of the end states of the grammar at precisely the same time
as all of the terminal symbols of the sentence have been

treated by production rules.

Grammarians have proposed many theories and grammars
concerned with ways of describing natural‘language (Chomsky,
1957,' 1965; Katz and Fodor, 1964; Fillmore, 1968). Some of
the most important work on modern Ehéoriés of ianguage is
based on éhe work of (Chomsky, 1965), who described a
hierarchy - of four classes of grammar which place
restrictions . on thé forms the production rules may takef
Each level- of the hierarchy is a proper subset of the
level(s) above it. A language fits a description in the
hierarchy corresponding to the most restricted set of

production rules which is adequate to describe it.

44

Type 0 languages
recursively enumerable languages) .
This i3 an \unrestricted language in which there are no
restrictions on production rules; production rules are not
appropriate for describing this type of language.

Type 1 languages
{context-sensitive languages}
The length of left-hand side of each production must not be
greater than the length of the right-hand side

Type 2 languages
{context-free languages)
The left-hand side of each production has exactly one
nonterminal symbol

Type 3 languages
{regular languages)

Each production has only a single nonterminal symbol on its
left-hand side, and either a single terminal or a single
terminal followed by a non-terminal symbol on its

- right-hand side.

Figure 3.2: Chomsky's hierarchy of languages (Chomsky, 1965}
: 14

Type 0 languages are arbitrarily‘complex and so building a
computer model to parse such a grammar could be an
'intractable problem. There are computer models which will
efficiently parse regqular grammars and context-free grammars
(Hopcroft and Ullman, 1969, Earley, 1970, Aho and Ullﬁan,
1972), and much work in the translation of computer

languages has focused on context-free languages.

45

t

However, Chomsky determined that natural language is neither

tontext-free nor regular. Consider the expression:
a2, ' Time flies like an arrow

whigh has several possible interpretations, depending on the
context.r It could impétative or declarative; it could
be a command to time'the flight of flies as one would time
the flight of an arrqﬁ, or it could be a command to assume
the role of am arrow, and in this manner, time the flies as
they do something, or it could mean that time moves swiftly,
or that a certain breed of flies called "time flies" are
somehow attracted to an arrow, or...

More work has been done on context-free parsing algorithms
than context-sensitive parsing algorithms, and if exception
cases like "time flies..." are ignored, context-frele parsing
algorithms can be adapted to natural language parsing. For

a discussion of context-sensitive parsing, see (Woods,

19790).

3.3 Transltion Network Grammars

Consider the following production rules of a reqular grammar.
which allows a noun phrase of the form "determiner

adjective* noun":

)

NP -~> det + REST
REST --> adj* + NOUN
NOUN --> noun
det --> the
adj ~-> long, wooden, heavy...
g noun --> hockey, stick... -
e

‘(the symbol "*" is the Kleene-star operator indicating
repetition) o

The path a parsing mechanism follows to apply the proauction
rules may de described by a directed graph where the nodes
represent states, and the arcs show how one state may change
into another. The graph for a reqular grammar may be
modeled as a Finite State Machine, with one state marked as
the start state, and transitions occurring from one stafe to

another. The number of end states may be greater than one.

det adj noun

start G”’f——___—_“0”’—_—__-‘\ﬁo’/’Tﬂ——___‘\\\‘ﬁ finish

Figure 3.3: A Finite State Transistion Network
for a noun phrase of a regular grammar

47

The Flnite State network of Figure 3.3 will acdept the noun
ph_ pes .
* /’Z

but it will not accept

the long stick
the long heavy wooden stick
the heavy hockey

the hockey stick
heavy stick
long heavy wooden hockey stick

s

To represent a natural language as a Finite State Machine
would require a separéte‘path through’the network for every
possible combination of constituents. This is .mpractical
since tﬁe range of possibilities is infinite. Although a
range of language expressions could be represented by a
finite state network, such a language would not be
"natural". A regular grammar does not allow embedding, so
such natural language constructs as relative clauses,
subordinate clauses, prepositional phrases, etc¢c., would

require a very large and complex network. -

We can 'expand the capabilites of our grammar by allowing
some states to be ignbred, and by allowing some of the arcs
of the Finite State Transition Network to be named as
states, thus introducing the capability of recursion. Such
a network is a Recursive Transistion Network (RTN), and it

has the power to recognize a context-free grammar {Chomsky,

1965).

48

S -~> NP
NP -~> (det) + (adj*) + noun* + (PP*)
PP ~-~> prep + NP

* det ~--> the...
adj --> long, heavy, wooden...
noun --> hockey, stick, cabinet...
prep --> in, with, for...

Figure 3.4: Ptoduction rules
for a context-free grammar of English.

-

An RTN that will accept relative clauses, embedded phrases,

. and so on i5 shown in Figure 3.5.

v

NP

start o/—\"o finish

det adj nounQ PP
_ — //”____-“\‘ ' o

jump jump jump

prep NP

e Re finish

Figure 3.5: Recursive Transition Networks
for embedded noun phrases and prepositional phrases

The following phrases are accepted by the context-free

grammar of Pigure 3.4:

. A

the hockey stick in the wooden cabinet

long wooden hockey stick cabinet

the stick for hockey in the long wooden cabinet with...
heavy stick in the wooden hockey with the long cabinet...

49

Although these phrases are accepted by the grammar, the RTN
only accepts or rejects a sentence based on a given grammar;
it doés not build an internal representation. Also, it is
only sufficient to process a grammar based on phrase-

structure rules, and natural language is much more complex.

The meaning of a sentence is npt necessarily obvicus from
the words and the word order in a sentence. Chomsky, among
others {Katz and Fodor, 1964), extended his early work on
the theory of syntax to attack this problem, and the result

was Transformational Grammar (TG) (Chomsky, 1965).

The thrust of TG is that the tokens actually appearing in a
sentence represent a "surface structure", and that this
surface structure may be manipulated by syntactic rules to
achieve a meaning representation called a "deep structure”.
Two sentences which have the same meaning should have thé

same deep structure even if their surface structures differ.

v
So, the sentences:

s3 Is the boy sleeping
ya

s4 The boy will sleep

will have the same deep structure, with markers explaining

. the differences in their surface structures.

(interogative)
/\
NP VP
/\
déE’/’,\::;n aux verb
| |
the boy (present) (present)

(singular) (participle)

is sleep

Figure 3.6: Syntax tree for sentence s3: "Is the.boy sleeping?"”

(declarative)
NP VP
/,/”’\\\\ /////’\\“‘\\\
det noun aux verb
’ {future) (present)
the | boy will sleep 2

Figure 3.7: Syntax tree for sentence s4: "The boy will sleep.”

We need the ability to remember those intermediate
structures which have already been recognized, to recognize
"features" of the sentence (such as the mood: interogative,

imperative, declarative; tense, noun-number, verb-number,

51

etc.) We need tesls for noun-verb agreement, and elaborate
rules for adding and deleting constituents (eg., implied
"you" in imperative statements), inverting word order, etc.
To accomplish this, we must add to oux RTN the ability to
perform these operations, store intermediate structures, and
group them together in an appropriate fashion to produce a

meaning representation.
3.4 Augmented Transition Networks

An Augmented Transition Network (ATN) (Woods, 1970) is an
extension of an RTN that has a set of registers which hold
parts of the sentence as it is being built. An ATN allows
the ,contents of the registers to be swapped, transformed,
and- so on, aﬁd is able to accomodate the principles of
Chomsky's Transformational Grammar, An ATN is a parsing
formalism which 1is cépable of transforming the surface
structure of a sentence (the words as they aétually appear}

into a deep structure (a "meaning” represéntation).

The ATN is a "top-down" or "hypothesis-driven"” parser; that
is, it arranges its production rules q?sed upon some a
priori knowledge, then blindly hypothesizes that-each rule

in succession will succeed.

52

It is also a nondeterministic machine. At arbitrary points
in any sub-network, there can be a choice as to which
possible gtates the parser may move to next; whereas a
deterministic parser would have a unique choice at each
state, The "jump" arcs shown in Figure 3.5 are in effect
empty moves which are made without scanning the next token.
These jumps can be invoked when the entire sentence has been
scanned, but the pafser is not at a halt state. For
instaqpe, the production rules of Figure 3.4 allow an
optional prepositional phrase as part of a noun phrase, and
an optional noun phrase embedded in a noun phrase if the
first noun phrase contains a pronoun (eg. "his red book“).
I1f the optional phrase does not exist, the jugp arcs allow
the NP subnet to move to the next state to examine the

current token.

The justification for nondegz?hinism is'tqﬁt decisiong may
7/be made based on very limited data. An ATN uses only what
has been parsed so far, and a hypothesis about the next word
or phrase. A deterministic parser, on the other hand, would
make use of more information, requiring more processing at
each node in the network, but with a goal of choosing lonly
« one path through the system. An ATN will have to generate
several candidates if- ambiguity is encountered, . and so can

produce all possibde syntax trees for a given input;

53

P

One of two techniques are commonly used in a
nondeterministic parser: backtracking and parallelism (or
pseudo-parallelism). A backtracking strategyﬁbhllds on one‘,J
rule as far as possible in a éepth-first manner, then backs-
up to each alternative, and follows that in a depth-first
manner, until all possibilitieé have 5een scanned,
Parallelism implies a breadth-first search through the
. subnets. In this manner, all possible alternative
interpretations are discovered more or less simultaneously..
So if the choice at a given state is not unique, the parser

L

will pursue all alternatives in parallel.

ATN's have become one of the standard natural language
parsers in North America due to their conceptual cilarity,
efficiency, and success (Nenova, 1985). The grammar used by
an ATN consists of rules detailing the allowgble ordering of
:okens in a sentence, and procedures which may execute when
the rules succeed. These grammar rules?can be separate from
the processes which scan and manipulaté the rules, so the
graamar is independent of the parser (Friedman et al., 1971;
Ritchie and Thompson, 1984). This allows the grammar to be
tailored to meet .the needs of a specific theory or
application. The ATN formalism has been used extensively in
NL systems, including LUNAR (Woods, 1970), PLANES (Waltz,
1976, 1978), INTEL&ECT (Harris, 1977, 1978), TEAM, (Grosz et

al.,l982, 1983, 1987), DATALOG {Hafner and Godden, 1985).

54

In addition to the basic structure of the RTN, an ATN has a
set of registers to hold conktituents. .The arcs of the
nétﬁork may be labeled with either sﬁecific words, '"pushes”
to other sub-networks, procedures to perform tests on the
current token and the conséituents already stored in
registers, procedyres to build structures, or any.
combination‘ of these tests, It is this ability to define
arbitrary tests on the arcs and so control its own flow that
gives the ATN the power of a Turing machine {(Rich, 1983, pg.

315).
3.5 The Workings of an ATN Parser

An ATN parser is an "all-paths parser" that produces all
possible interpretations of a sentence.
Consider the question:

s5. Which suppliers sell parts to the project in London?

Using the production rules of Figure 3.8, depicted
graphically 1in the RTNs of Figure 3.9, parsing of sentence
s5 begins as the first rule in the grammar, "S --> NP + VP"
is tried. The subnet to build a noun phéase is activated,
and the first word 1in the sentence is subjected té a
seQuence of tests to see 1f it is either a déterminer, an

-

adjective, a noun or a pronoun.

55

S ==> NP + VP
. 8§ ==> VP
VP —-=~> Verb* + (Adv)
VP ==> {Aux) + Verb* + (NP}
NP =--> (Det) + (Adj*) + noun* + (PP*)
NP --> (Adj*) + Pronoun. + {noun*) + (PPB*%)
PP --> Prep + NP*
Det --> the, a, an,...
Aux ~--> can | must |...
Adv --> slowly, quickly,...
Verb --> supply, sell,...
Ad{ --> big,. ced, blue,...
Prep --> in, of, to, with,...
Pronoun --> she, it, which,... *
Noun --> supplier,London, part, project,...

,’/

Figure 3.8: Phrase-structure rules for an ATN

The pronoun test succeeds so the next set of tests in the
. f ~

subnet is tried: first the presence of a noun is

hypothesized, and this succeeds. A second test for a noun

fails, and so the presence of a prepositional phrase is

hypothesized..

For the PP test, we push to the PP subnet and test to see if
the next token, "sell", is a preposition. It isn't, so thel
subnet fails, and control is returned to the NP subnet. The
last jump arc is followed to exit the NP subnet. At this
point, the contents of the noun phrase would be inserted

into a temporary register.

At the termination of the current NP, the subnet is popped
to return control to the previous subnet, which is popped to

return to the $--> NP + VP rule.

56

Since we arehusing a depth—flra; strategy, the next subnet
to be encountered will be the VP network according to the
§--> NP + VP rule. A pseudo-parallel machine would evaluate
the next S rule in the grammar, S --> VP, until all of the S
rules were exhausted, then it would return to the first 3§
rule which partially succeeded, and begin evaluating the as-

yet unresolved subnets.

The next stage of the S --> NP + VP rule is tried. Again, a
sequence of subnets is calleq\jn an attempt to build the

phrase structure defined by each Wubnet. The first VP rule

calls another VP rule, which looks or an auxilliary. If

the current token is not an auxilliarywthen we jump to the
next node of the subnet.to test for a v "Sell" is a
verb so it is stored in a verb register, and the next token
is subjected to the next test in the VP network, which is a

test for a NP.

The NP will succeed with the token "parts", and the PP
subnet will be called. The PP subnet's first rule succeeds
when the preposition "to" is found, and then another NP

subnet is pushed. Processing continueSas above.

Ny
S

57

S

start e _ Einish

S NP . VP

Start o/_\\,c/_\o finigh
jump

NP /7
-start ¢ finish
PP prep NP -
start /\m finigh
VP Verb adv
finish

start ‘ /
Verb

Au

jump
£ig 3.9 An ATN for a simple grammar of English

-58

Ambiguity is introduced with the start of the second

prepositional phrase because there are two rules which could

apply:

PP --> Prep + NP*
NP --> (Det) + (Adj*) + noun* + (PP*)

According to these rules, the phrase "in London" of sentence
85 could be attached as a modifier of the PP "to the

project”", or as a modifier of the NP headed by "parts".

The ambiéuity inherent in natural language causes some input
strings to have more than one syntactic interpretation, and
thus it may be necessary for a parser to produce more than
one parse tree so that subsequent semantic processing may
resolve the ambiguities. Such a difficulty arises with
nested relative clauses and prepositiogal phrases,

conjunctions and disjunctions, pronoun references, etc. For

example:

List parts available in Halifax or Toronto and Montreal.

Get me all suppliers and projects in London and their
status. :

Which projects use .red parts which are not wused by
projects which wuse green parts or blue parts parts
which.are sold by supplier sl?

Figure 3.10: ambiguous sentences

59

In a grammar moré complete than the phrase structure rules
of fig 3.8, there may be several levels of nesting of the
subnets, and so the top-down approach of an ATN could waste
a lot of time trying to build stfuctqres which are not
present, For instance, in sentences which contain some
lexical or syntactic ambiguity, the ATN will not only have
to test many possibilities, it may also build incorrect

intermediate structures.
Consider the garden-path sentence:
s6. Cén the old man the boats?

The word "can" could be mistaken for a noun, the word "old"
could be mistaken for an adjective, ” "man" could be mistaken
for a noun. But these mistakes are not noticed until the
ATN parser has already built a temporary structure for part
of the sentence. When one hypothesis fails, a backtrackiﬁg

parser dismantles and discards the incorrect structures.

To achieve a reasonable level of efficiency, ATN's typically
build a table of well-formed substrings to minimize the
amount of backtracking. The idea is that the parser should

not back up more than necessary if a subnet fails.

60

I .
The arbitrary tests on the arcs of an ATN may include some
p
semantic checks, but these are often related only to noun-
verb number agreement, gender agreement, etc (Tanimoto,

1987, pg 349).

The |justification for non-determinism is that it allows
decisiong__to be made based on very limited data. An ATN
uses only what has been parsed so far and a hypothesis about
the next word or phrase. If a parser finds multiple
interpretations of a sentence, then the semantic analyzer
must manipulate these multiple interpretations. Therefore,
an all-paths parser not only can waste time generating
several‘incorrect parses, but the semantic component is made
less efficient because it must' manipulate these wrong

interpretations.

An ATN parser can be very expensive to operate if a large
amount of backtracking or.,pseudoparrallelism }s required.
If extensive semantic checks are incorporated into the tests
on the ares, then the grammar can become very complex, and
the cost of processing those semantic checks may be
comparable to that of backtracking withogt the semantic
checks. Woods objected to semantic constraints too early,
since it was inefficient (Woods, 1973). Ginsparg says most

of the semantic choices can be eliminated more efficiently

61

[]
A

by syntactic rules, and at less cost since there s 1less
information involved in making the decislon (Glnsparg,

1978).

There is no way to use heuristic functions in an ATN unless
the grammar is itself a heuristic grammar. So the flow of

control is blind and not flexible.

Finally, as with any transition network grammar, the parser
must find an exact path through the network from the start
state to a halt state. If any of the words or grammatical
structures are unknown to the grammar or parser, as may
happen for instance in the case of user errors, the parse
will fail. There is no possibility for partial matching.

4

3.6 The Chart Parser

The Chart Parser is a bottom-up, non-deterministic parser
which finds all possiblé parses of a sentence based on -a
given grammar. This is an extension of the work of (Earley,
1970), and it is Kay (Kay, 1973) who is credited with its
'original implementation. More recently, (Thompson, 1981)
has. contributed to the c?ncept. The Hafner and Goddard
.system uses the Chart.as a Qre-proéessor, followed by a
backtfacking parser (Hafner and Goddara, 1985). The EUFID-

system also uses the Chart Parser (Templeton and

62

Burger, 1983). Their chart parser only implements a simple
set of phrase structure rules, because their research

concentrated on gemantic understanding.

The Chart is a variatlon of a syntax tree which is able to
represent multiple interpretations at once.‘ as well as
partially~-built structures. It is a graph with the arcs
representigh both the terminal and non-terminal symbols, and -

the nodes representing the points between the tokens.

The bottom-up approach 1is akin to backward chaining,
generating candidate structures based on the words and
expressions present in the sentence. With such a method,
the prepositional phrase "in London" will cause all rules,
and only those rules, ending in a prepositional phrase, to
fire. A top-down parser would blindly hypothesize the

existence of, © say a noun phrase or relative clause,

depending on an a priori ordering of ttﬁ/;u&es.

A sentence 1s parsed by constructing arcs that span
increasingly larger sections of the graph. As the arc
advances through the chart, production rules are applied to
the symbols encountered. If an ambiquity occurs, i.e. more

than one production rule may be applied, then all poésible

63

interpretations are constructed., If scome of these arcs are

later found to be incorrect, they are not destroyed, only

abandonned.

When a sentence is input, a preprocessor matches the ihbut
tokens with a lexicon, or dictionary, and an initial chart

is built. Figure 3.12 shows the initial chart for sentence

s5.

1. § --> NP + VP

2. § --»> VP

3. VP --> VP + (Adv)

4. VP --> (Aux) + Verb* + (NP)

5. NP --> (Det} + (Adj*) + noun* + (PP*)
6. NP --> (Adj*) + Pronoun + (noun*) + (PP*)
7. PP --> Prep + NP*

8. Det --> the, a, an,...

9. Aux --> can | must |...

10. Adv --> slowly, quickly,...

11. Verb --> supply., sell,

12. Adj --> big, red, blue,...

13. Prep --> in, of, to, with,...

l14. Pronoun --> she, it, which,

15. Noun --> supplier,London, part, project,...

Figqure 3.11: The same set of phrase structure rules as listed
in Figure 3.8, numbered for convenlence.

[prn /[__]\4 (prep] [det] (] n

Which suppliers sup ly parts to the project in London

Figure 3.12: In;tlal chart of the Chart Parser.
All arcs are inactive at the start

64

The arcs between the nodes are either active or inactive.
An 1inactive arc |is Jhe which is not looking for more
constituents in the chart; it is complete., Terminal symbols
are represented by inactive arcs. The token "supply" has
been recognized as potentially playing the role of either a
verb or a noun, 80 an arc for both possibilities has been

constructed.

In our diagrams, we will adopt the convention of indicating
found constituents 1inside square bﬂifSets, -and missing
congstituents before the brackets. In the initial Chart

there are no missing constituents.

Once the 1initial chart is constructed, the parser begins
constructing active arcs. An arc is created if, at any
given node, there exists an inactive arc which could

possibly allow a newly constructed arc to succeed.

So, each rule in the grammar is tried against the first

token, "which", and any rule of the form
X -=> () +...pronoun

will cause an arc tp be built. The rule states that either
a pronoun is the first constituent of the phrase, or there
are optional constituents which could precede the pronoun.

We expect this to be a NP rule. The next node will have a

65

NP arc¢ built, the third node a NP and a VP node, etc. Note
that if several NP rules exist, one active arc for each rule
will be constructed. The parser has no way of knowing 1If
the current node is the start of a phrase, or the middle.

Rather than gquessing, it assumes a worst case, and bullds

the structures accordingly.

which suppliers supply parts to the project in London

Figure 3.13. After a first pass over the initial chart, a
set of active, empty edges is built. The numbers refer to
the rule numbers in the sample grammar of fig 3.1l1.

Each active arc will attempt to stretch across the nodes to
its right until it becomes inactive; that is, until it has

found all of 1its constituent parts. It does this by

66

comparlﬁg those constituents in the rule remalning to be
‘ °

completed with the category of the ilnactive arcs starting at

the current node. There could be many inactive arcs at each

node, so the checking could become a large task.

For instance, the rule NP --> (Det) + (Adj*) + noun* + (PP*)
will test the nodes at its immediate right for optional
determiner and adjective arcs which are inactive, and for a
compulsory inactive noun arc. If the noun arc is found,
then it will continue looking for an optional PP arc.' If a
compulsory inactive arc is not found, then the rule fails
and the active arc is abandonned. Inactive arcs {in other
words, those for which all compulsory constituents were

found), are added to an agenda as they are built.

Manipulating this agenda as a LIFO queue produces a depth-
first searching process; the most recently added inactive
arc is the first that will be tested by the next active arc.
If the agenda is used as a FIFO queue, the search strategy
is breadth-first. The Chart parser is designed to find all
possible parses, so the choice of depth-first vs breadth-
first searching on the final outcome only matters if the
Chart is to be modified, say, to produce only a small number

of parses.

67

The heart of the Chart Parser is the Fundamental ‘Rule

(Thompson and Ritchie, 1984, p. 248), which is as follows:

Whenever the far end of an active arc A, and the near end of
an 1inactive arc I meet for the first time, 1f I satisfies

A's conditions for extension then a new arc is bullt as
follows:

Its near end is the near end of A.

Its far end is the far end of I.

Its category is the category of A.
Its contents are a function (dependent
on the grammar) of the contents of A
and the contents of I.

It is inactive or active depending on
whether its extension completes A.

i

Algorithm 1: The fundamental Rule of the Chart Parser.
RN

The grammar rules supplied to the Chart Parser are
independent of the parsing mechanisﬁ, so this is a useful
tool for developing a grammar. Since -arcs are never
destroyed, the parser can always come back to incomplete
arcs to determine if recené actions will now allow them to
be completed. It guarantees to find all possible parses
with respect to a given grammar.

Even very ambiguous sentences such as "garden path
sentences" may be correctly parsed. The success of the
linguistic coverage of such a parser is totally dependent on
the grammar rules, so to extend or alter the grammar, a

" linguist is required rather than a computer programmer.

68

ey

The concept is simple, and the code to manipulate the graph
structure 1is neither complex nor large. However, it |is
computationally \ expensive to operafe. It builds all
possible partial parses, even those which are redundant or
which cannot contribute to an eventual solution, Since it
never destroys any of the arcs, it tends €o use a lot of
memory. As the number of inactive arcs increases, the
number of tests required at each node also increases.
Further, as the size of the grammhr increases, the running
time increases exponentially. More intermediate structures
are built, and so the number of tests increases, and the

number of partial successes also increases.

which suppliers supply parts to the project in London

fig. 3.14 Final chart for our sample sentence

69

1.7 The Marcus Parser

An LR parser is a type of parsing machine developed for
context—free languages like programming languages. It
is a table-driven parser which operates according to a set
of rules which determine thé unique action to be taken at
any stage in the process. LR parsers have not often been
used for natural languages because of the ambigui;ies. of
natural language which make it context-sensitive. Two
approaches have been used to employ LR parsers in natural
language understanding: one that allows multiple options and
the production of more than one parse tree (Tomita, 1984),

and the other which uses an attention-shifting strategy to

determine a unique option at any given time (Marcus, 1980).

An LR(k) parser is one which processes a LR(k) grammar. A
grammar, G, is LR(k)} if, when examining a parse tree for G,
we know which production rule is used at any interior node
after seeing the boundary to the left of that node, what is

‘ ’
derived from that node, and the next k terminal symbols (Aho

and Ullman, 1972, pg. 379).

The Marcus Parser is a left-to right, bottom-up
deterministic machine for parsing the syntax of a natural
language. Marcus' theory was that any natural language

could be parsed by a system which operates ‘“strictly

70

deterministically”, as opposed to a pseudo-parallel or a
backtracking machine. The Marcus Parser never bacoktracks,
and produces a single Interpretation for any given input

string.

It extends the concepts of a LR(k) parser in that it uses a
lookahead buffér which can handle not only single words but
also entire phrases. It is not as general as a LR(k) barser
beéause it’ places restrictions on the way grammatical
information is represented in state descriptions (Berwick,

1985, pg. 113).

An LR(k,t) parser is one which is LR(k) aﬁd where the
lookahead string is allowed to contain non-terminals as well
as terminal symbols; that is, incomplete sub-strings. The
maximum size of the lookahead buffer in the Marcus parser is
3 elements (less 1 for the current token), 8o it is an
LR{2,2) parser (Berwick, 1985,— Pg. 325). It is
deterministic in that once a decision is made the machine
remains committed to the decision. Also, at any point in

the parsing process, at most one parsing rule may apply.

The output of the Marcus Parser 1is an annotated tree
structure as proposed by Chomsky, but each node has a set of
features associated with it, describing the function of that

node with respect to other nodes.

71

The parser relies on three elements: a stack and a buffer
which make up the interpreter, and the grammar. The grammar
rules are independent of the interpreter. They are
constructed as a set of lf-then rules which ;re grouped into
packets to control whether entire sets of grammar rules
should be made avallable for matching against items In the
buffer. The packets are in l-to-1l correspondance to the
non-terminal phrase structure rules. For now, we will use
the same set of phrase structure rules as in the previous

examples (see Figure. 3.11).

Rules in a packet are heuristically ordered according to
expectations of the type of éhrase structures which would
normally occur given the current state. The selection of
these rules may be based on statistical information, or more
general "rules of thumb". Since this is a bottom-up parser,
packets are.invoked depending on the constituents found 1in

the input string, rather than following a strategy of blind

hypothesis.

The words in the input string are transferred one at a time
to the buffer. Each rule contains a pattern and an action.
If the patcern matches any item in the buffer, then the

corresponding action is performed. These actions can create

72

new nodes and push them onto the stack, remove elements from
the buffer and attach them to the stack, and pop the top of

stack into the buffer.

The stack contains structural nodes in . search of
descendanté, for instance a S node waiting for a VP, or a NP
waiting for a noun. The stack will also contain those rule
p;ckets which are pushed when processing is suspended
(attention is ghifted to another part of the sentence). The
packets at the @%p of the stack are ‘actiye, while those

lower in the stack are temporarily inactive.

A parse proceeds from left. to right through the input

sentence with the interpreter executing any grammar rule

which matches the current environment of the parse. The

environment is determined by features of the current tokens,
portions of the already built tree, and the information from

the lookahead buffer.

This lookahead facility is used to determine which rules

within ,pagkets should he attempted first. In the event

there is potential ambiguity, the parser moves to some other .

part of the sentence, builds other structures, then returns
to the ambiguous point to choose a single path. This
"attention-shifting” continues until sufficient information

igs available to make an irrevocable decision.

73

The decision is based on what Marcus calls "predictlon". A
top-~down parser blindly guesses about the structure of the
sentence, but the Marcus parser gathers information £from

several sources before committing itself to a decislon.
Consider the following question:
87. "Which suppliers sell red parts?”

A Marcus Pargser would process sentence s7 as follows: The
stack and buffer start empty. An initial set of rules 1is

active to recognize the first elements of the input.

stack buffer

top ——> S

The token "which" is recognized and brought into the buffer.
"Which" is a special form indicating an .intercgative
gstatement, and it 1is the first element of a noun phrase.

The NP node is pushed onto the stack, and the S rule 1is

stack /f/‘buffer

top --> NP "which"

deactivated.

74

=

The Marcus Parger deviates from the standard concept of
bottom-up parsers in several respects. In a bottom-up
parser, all constituents of a phrase structure rule must be

satisfied before the top level rules can be attached.
For instance, for the rule
§ --> NP + VP

both the NP and VP rules must be satisfied before the &S
rule is activated. The Marcus Parser predicts what will

b
happen, based on the current state and the lookahead buff;y.

If a top-down parser like the ATN were to use a lookahead

facility, it would be necessary to scan ahead through an

arbitrary number of subnets,. For each subnet, several
levels of hypothesis may have to be constructed, (li.e.
gseveral subnets invoked) and later rescinded. There would

not be any gain over backtracking.

If the loockahead operations were not restricted, then the
Marcus Parser would be as non-deterministic as an ATN. The
lookahead facility acts as a filter for the determinism
hypothesis. Given the presence of certain words and
phrases, a set of candidate ruleé is generated. The
lookahead scans other words and phrases to determine which

of the candidates should have prioricy.

75

o

The Marcus parser attempts to gain arficrencymovor the ATN
and Chart by being sensitive to all the information
available to it. It avoids bulldirng the arbitrary levels of
hypotheéis of an ATN parser, and only builds the structures

which it predicts will succeed.

The concept of prediction is foreign to a strict bottom-up
parser which would wait until a structure is built before

recognizing it.

Like .the ATN. parser, the Marcus Parser cannot handle
phenomena requiring extensive semantic processing, such as

conjunction, disjunctions, etc. .

Up to this point we have been aésuming the same set of
phrase structure rules is used by all naturall language
parsers, but such 1is not the case. In fact, many NL
systems, including the one explained in this thesis, develop
a unique set of production rules and transformational rules,
chosen for reasons of efficiency, applicability to the
domain and the purpose of the system. These sets of parsing
rules may or may not incorporate semantic knowledge.

"Any parser based upon the determinism hypothesis must uge

semantic analysis to aid in decision-making to diagnose

alternative structural possibilities” (Marcus, 1980, pg.

76 \

229). Marcus used a form of case grammar as originally

proposed by (Fillmore, 1968) to assist ln disambiguation.
3.8 Case Grammar

Cagse grammar is an attempt at developing a gramm#r which
recognizes not only the structural relationships betwgen
words in a sentence, but the functional relationships as
well. The idea 1is to make the relationships between a
predicate and its aréuments explicit, and so this approach

is used to guide the parsing process.

A case grammar may be defined by the production rules:

S -——->M+ P

M --> tense, aspect, form, mood,
time, essence, modal, manner,

P-->V +Cl +...+ Cn

vV --> sell, supply, use,...

Ci --> K + NP

K --> null | prep L

prep --> to, with, in, of,...

NP --> {det) + (adj)* + noun + (S | NP)*

Figure 3.15: Production rules for a Case Grammar
source : (Harris, 1985, pg. 184)

‘A sentence consists of a series of terms making up the

modality M describing the aspect of the sentence, and a

proposition P. The proposition consists of a verb and an

associated set of cases\each of which would include the

4

agent and object(s) of the verb. Each proposition has a

Kausus K which may be either null or a preposition, followad

by a noun phrase.

The treatment of verbs is the real heart af case grammar as
applied to computer-based parsing systems. Each verb has an
associated list of case frames which describe the subject,
object(s), - etc, that may be associated with the verb. Any
verb may have more than one associated case frame, and each

case frame may be used by several verbs.

Marcus used the following set of cases (Marcus, 1981, pp

310-322):

Agent : instigator of an action

Instrumental : thing used to perform the action
Locative : location of the action

Dative : recipient of the action

Neutral : object being acted upon

This is by no means a definitive set; other not dissimilar

sets include those of (Fillmore, 1968, Simmons, 1973;

Stockwell, Schacter and Partee, 1973, and Bruce, 1975).
e

These cases are grouped together into a case frame. Each

case frame has obligatory cases, optional cases, and

78

disallowed cases. For example the verb "sell"” may have the
case frame
sell (agent -required- seller
(ingstrumental -not allowed-
{locative -optional- place of transactlion

{dative -optional- buyer
{(neutral ~required- object being sold)

The implementation of::a Case Grammar involves the parser
identifying the main verb, and then mapping the cases to
their appropriate roles in the case frame associated with
the verb. One set of syntactic rules to accomplish this,
mapping has been developed by (Stockwell, Schachter and

Partee, 1973) and is used by Marcus.

Case grammar is not without its flaws, the most serious of
which is that many of the "rules" are intuitive, and do not
hold for all instances. Fdrther, attempting to acqﬁire
semantic knowledge using only syntactic rules cannot

possibly succeed in all instances.

Filimore relied heavily on prepositions to provide clues as
to the semantics of noun phrases. The words "in", "under",
"on" 1indicate the locative case, "by" indicates an agent,
"to" indicates a recipient, etc. But we cannot reiy on such

simplistic rules. "To" can also be wused to indicate

79

»

location (to Toronto), "in" can be used for all kinds of
abstract concepts (in trouble, in case, in the future,

etc.), as can "on", (on time).

There are a large number of "content-empty" words in English
which provide no semantic clues as to the case of their
asgociated phrases, like "from" and "of". Finally, 1if we
associate a number of case frames with each verb, how many
do we associate with "to be", and "have"? ‘These words occur
so frequently in database access that they are the only

verbs allowed by ASK (Thompson and Thompson, 1985).

Despite theﬁe objections, Case grammafs hqge been used by
several natural language interface systems, including KID
(Ishikawa et al., 1986), TEAM (combined with an ATN (Grosz et
al., 1987), DYPAR II (Carbonnell et al., 1983}, and TQA

(Damereau; 1985).

3.9 Semantic Grammar

"Syntax is that aspect of language that is so general and so
basic as to reflect the most universal relational features
of the kind of world it is designed to talk about" (Siklossy
and Simon, 1972, pg. 49}. To reduce the problem of
syntactic ambiguity, some natural language interfaces have

included semantics in the lexicon to build-in various

80

elements of meaning, i.e. constralnts on agreement,
expectations, etc. As a grammar becomes richer it becomes
more ﬁsemantic" because as general rules become exhausted
the semantics asgpciated with the “lexical entries
incorporate more and more markers which describe what the
term is about. This ié what Cése Grammar accomplishes.
L4
A semantic grammar 1is a way of performing syntax and

semantic analysis at the same time.

Formally, there is no difference between a semantic grammar
and a context-free grammar. But in actuality, the non-
terminal symbols of a semantic grammar represent more
specific categories of words tHan those of an ordinary
context-free grammar for natural language. Instead of
having a general symbol "noun", a semantic grammar might
have a more explicit symbol, 1like "tool",? ;pump", "screw",
etc., and verbs like "tighten", "grasp", etc.

The parse of a sentence with a semantic grammar contains the
information necessary to build a semantic representatién of
tbe sentence. A semantic g:ammar is useful for accessing a
database, .because the non-terminal symbols can be used to
represent the objects, attributes and relationships within

the domain.

8l

There are several potential problems: The number of phrase
structure rules could become du;te large and therefore
compromise the efficiency of the iﬁterface. More
importantly, a system built on a semantic grammar may be
completely non-portable: to move to a new domain would
require a redefinition of the lexicon, the phrase structure
rules, and the semantic analysis module, as well as the DB
mapping.

Semantic grammar has been used by several natural language
systems, including LADDER (Hendrix et al., 1978), EUFID

(Templeton and Burger, 1983), and PLANES (Waltz, 1977,
1978).

3.10 Conceptual Dependancy Theory

The other extreme of the syntax—-semantics continuum 1is
represented by Conceptual Dependency Theory (CD) (Schank,
1973, Schank and Abeison, 1977, Schank and Colby, 1973), and
other relafed theories (Wilks, 1975). The basic idea is
that syntactic knowledge is unnecessary to the understanding
of language. This would mean that grammatical
inconsistencies in a statement can be ignored by the system,
as opposed to the approach taken by syntactic parsers which

must build a means of handling them.

CD was designed to model the way pecople understand natural
language, and is'based on "semantic primitives", a small set
of meaningful elements into which the mganings of words and
phrases can be broken down. It is highly intuitive, but has

achieved a high degree of success in certain restricted

domains, including question-answering.

Semantic primitives have meanings defined by their function
within a language, and are combined to form higher-level
concepts. Typical primitives as described by (Schank 1973}
include "propel”, “speak", "ptrans" (movement of a physical
object}, etc., but there 1is no one set of correct
primitives. Understanding real-world situations requires a
huge amount of knowledge, and to represent this as
primitives requires a very large memory and excegsive
processing time. To get around this problem, the idea of
"geripts” is introduced (Schank and Abelson, 1977). These
data structures formalize stereotypical knowleége about a
situation to control inferencing and to guide the building
of conceptual structures. This approach must of necessity

be restricted to a narrow domain.

Scripts can be a useful way of modelling user views in a
database environment, since they prowjde a means of defining

what the user is expected to ask qﬁestions about. This

83

basic approach ls used in (Cullingford and Selfrlidge, 1983y
Scha, 1982). The Wilks parser, also based on semantic
primitives, has been employed by Boguraev and Sparck-Jones,
(in addition to the Chart Parser for some pre-processing)

(Boguraev and Sparck-Jones, 1982},
’-"-\‘

S

3.11 Procedural Parsers

The choice of a parsing formalism depends on'many tactors:
the purpose of the system (linguistics research, man-machine
dialogue or the implementation of a real-world system); the
resources available to the developers (hardware and software
resources, manpower, time, financial limitations), and other
constraints. It 1is possible to write a procedural parser
for a relatively narrow domain that will accept a suitable
range of grammar for that narrow domain. Several natural
language systems have combined the philosophies of the
formalisms above to create unique, workable parsers. For
instance, the LADDER system (Hendrix et al., 1978) has a
‘language processing package called LIFER which is designed

to build special-purpose natural language front ends.

Natural language interfaces often cannot afford the luxury
of a theoretically sound parser because such formalisms
often require considerable computer resources (a sizavle

knowledge base, a large amount of list processing, and so

84

!

on). It s unlikely an organization would want its computer
tied up trying to correctly parse natural language
utterances {(nstead of, and perhaps interfering with other
information processing activities; it would be more
efficient to have the parser on a microcomputer or
workstation, where the parsing process only delays one user
rather .than all. But to run on a personal computer, the

program and data must be relatively compact and efficient.

Any system based on a finite grammar will run into trouble
with people who cannot or will not use expressions which
conform go the grammar. In a real-world environment, users
may Be frustrated and dissatisfied with a system if they

deem it uncooperative or unintelligent (Jarke et al., 1985).

For these reasong, several of the systems noted above have
used a combination of approaches. Often these are combined
with heuristics to éuide the parsing érocess, to compensate
for failings in the grammar, and so on. Such hybrid parsers
may include combinations of top-down and bottom-up parsing,
depth-first and breadth-first search, determinism and non-
determinism, single parse or all-paths parsing, gquided by
semantics or totally ignoring semantics, etc. The challenge
then in developing a natural language interface is to find

an appropriate mix of these techniques.

85

3.12 QNL: A Heuristlc Parser

The choice of a parsing mechanism and grammar is cruciai to

an implementation of a NLI. If the paféér is not robust,
then it lg-impossible for complé; concepts to be passed to
the knowledge base for processing. . An inefficient parser
holds up all processing, and its inefficiencies can ripple

through the entire system.

A simple set of phrase structure rules is not a sufficient
grammarv to expréss complex concepts, but a complex set of
phrase structure rules may coﬁtain subtle inconsistencies.
A complete grammar of English is a complex affair (Sager,
1981) which requires a specific parsing mechanism. Often
such parsers and grammars are designed to develop and
demonstrate theories, are the results of years of effort,
and are impractical for implementation on a perscnal

workstation.

Several parsers were implemented and tested as part of this
thesis. Eventually, the Heuristic Parser emerged as a

suitable vehicle for a transportable NLI. What follows is a

Y

description of the other paréers, and the evolution of the
Heuristic Parser.

-\

86

©3.12.1 First Attempts .

rt

The first parser was a variation of an 'ATN usiﬁg a semantic
grammar which mapped directly to the file names’ and
attributes. Thig was a top~down parser which acéepted the
first successful path through tﬁe network. This was deemed
an acceptable compromise to finding all pgfses because it is
generally conce%ed that ambiquity is not a severe pfoblem in
database access (Gtishman; 19845. However, such an approach
limits the conceptuai coverage of the s?stem: use?s can only"
use specific phrase structures and there 'is a 1imited-number
of ways of referring to the database. If a questioéf‘ib
asked' which .does not conform-to the phrase structure rules,
the parse'fails,' and the question has to be re-asked. If
the parser.were extgnékd to become_an all-paths parser, .we

would encounter the problem of multiple syntactic

interpreﬁations to be handled by the semantic analyzer.

The next approach tried was a parser operating on a caée
grammar. Thel rationale was that it would inEorporate into
the parsing'stage, some semantic analysis to constrgin the
.number of possible interpretations. Using a case grémmarg
the meaning of a sentence is determined by analysing the
case relationships between the terms in a sentence. This
was also a top-down, non-deterministic parser, able to

parse many queries very quickly. However, there are certain

87

-~ gevere problems. with_rcgsalqrammars as described earlier
which make it unsuitable Eor use in a d&tabase front end 1if
it is the only grammar. As the range of acceptable 1anguage'
grew, the problems caused by ambiguity and especially
content-empty prépgpitions also 1ncreased;

The next~formalismﬁétudied'was the Chart parser (Thompsoh,
1981, 1982, Thompson and Ritchie; 1983). A majo: probiem
with the Chart Parser is that as the size of the grammar.
grows, the execution time increases exponehtially. 7 Even
with relatively simple'sqntencés,V the number of arcs in. the

graph could grow to more than\a hundred. However, " it was
appealing_ gecause . the grammar could be separaté from the
pérser, Vaﬂd the coding for the Chart parser 1is not too
difficult, |
y

In order to improve the'performance of the Chart parsér,
several heuristics were implemented to reduce the number of
arcs generated. These included reduc%hg~the number of rules
by specifying. the grammar in terms of optionsé and repeat
factors, as in Figure 3.11. The.ingctive arcs at each node
must be exémiﬁed by every rule, and the more rules there
are, the more successful matches there will be. For
instance, the start of a noun phrase ((Det} f Iﬁdj);u) may

occur in several noun phrase rules, and so a large number of

88

- -

rules could fire on a.phrase like "the red.." or ‘"red.,..",

- The abproach used here allowed “these structures to be bullt

. . .. ;
only once. -

. ~
The problem of left recursion must .be faced wﬁénever
' producti;n rules are'rgEutsively defined, or if their ‘sub-
rules refer back, perhaps very indirectly, to the calling
P rule. Again, the amouﬁt of.cheqﬁing necessary at each node
grows expdnentially with the number of inactive ‘;rcs, so
methods‘.bf réduci&g the neceésary checking were devised;

These included hierarchically ordering the inactive arcs at

each node, and maintaining a "shortlist" of active rules.
. — . '

ﬂﬁcorporating some semantic knowledge into the grammar

allowed the clustering of some rules so that when there was

no possibility of them succeeding, .hey could not fire.
~ This was employed.gﬁith relative clauses which can only
foilow ﬁoun phrases} and with other, .less frequent phrase
Qtructures. All rules were prohibited frdm firing unless
-all of their required sub-rules had been . previdusly

gsatisfied.

Tests comparing the Heuristic Chart Parser with the Chart
Parser demonstrated reductions in the number of arcs built
of betwéen 8.3% and 80.2%, as shown in Figure 3.16, but the

performance was still unacceptably slow due to the ®verhead

.89

e

of checking so many hierarchies at ea¢h-ﬂode in the graph._
The Chart pafser‘ﬁaé eventually abandonned as a parser for

an interactive system.

]

NN

90

i

e
AL i

-

Y S

Ua om-

I A A

A4 tw mam =w ss *e sm 4w oam =

G mw A o

Vel)
D W
O~
s
nd
~

o
g
0
-9
&

£°"L rAl -1 N
n'gs, 578
f-ag a-0¢L
VA ¥4 7 €L
S /LE voEY
797 (92
A T°62
7z°'€s 7°99
AT 8 LE
=2 = T "1
7°%7. 9 8f
02t 1-9z
LR ¢ VA > ¢
00 9°G1-
£ 9 L 0T~
S (2 rA &
0°0 LA £
n-a s ot~
00 20T~
% %
'gad@pa SuTl

ucmam>0haiww

-gpubo8s UT pI.Inseou 8T ONTl , : : |
- Jesgeg 3JeyD OTIISTINSH BNBISBA , o
Jo81ed uhmno :uosTIed®O) IOULWIOIIDd 9IT'E 21gy

LET 12T | €69 E”TT gated enyq TTe®8
. - ' oym sixatiddne Aue 8JI3Yl BIY
EPT LTT 06S 006 JUOpUOT UT ITQe[TeAe 3Je siged paJ UdTuM
A AN TeT 6EY 12s -¢83ded pax T[98 oyn .
‘ ‘ataed uy siarTddne Aue 813Uyl B8IV
LA S -2 4 ¢ gee NBY gaged anfg (198 pue:
uopuo1 utr aixe siatTddns yoaTUM
ZL 89 0RT £6€ . . ¢siged paa Aue 318Ul BJIV
69 85 o/ SLE i8Taed ur siatrddne Aue B3JI3Yl IIV
STT . 66 (9T REE ‘p21 8ie yotym Bixed 1Te 1817
144 LS 167 £17 c1d 1128 J217ddng uopuo] Aue 830Q
oz1 ag s8aiaed msan J0 pax sgattddns

76T 7ZST -

91 .

) L

1 L}

1]

[}]

! . ! oym J217ddne ¢ 3asyl 8]

NS A act :] . cpax aae siged YodTUM
»0T. 56 7 €T 470 QI . ,Td ST InOTOD 2EUM

']

] L

' Ve

: ;

. ,

! :

) 1

[]]

o1t L6
6T OfT o:oucoq ur ale saatrddns yoIUM .
96 6L LET L7 ‘gaged anTq I8N YITUAM g31o9foad T7e 1817
68 €L STT Se . -gaged ‘paa TT25 oum suarrddne (7 16817
69 6> 16 fal-] ! ¢sixed antq 1198 grat17ddns yoTyM .
€L 1S 68 69 1d maawm oYM UOpUOT ‘ur Jattddns Aue 139 *
wo oY TS5 - IS -2qed yosea anoqe sw TT3L
SS A SS z€ ‘gjJed antq 0 palz TIe 38T
42 i€ 8% 8z -qao9foad stIERd 2yl Inoqe Iaw TT3L
LE 1z 19, LT ¢pda 1d 81)
LE Lz . LE €z ‘giaed pead TT® 31817
L7 1z {7 6T .cou:04 ut sJa21tddne jo sniels 218D
sz 6T ST at ‘gaiged 1Te I6TT ¢
gs3ps oumrl! g28pa Smra! , .7
Jagaed 3Jeyd. Jasaed ! suoTiganmn ardmeg

DTASTINSH 11'Yd

-

3.12.2 Developling a Grammar

The Chart Parser did prove useful inhdeveloping and fine-

tuning a set of phrase-structure rules that would proc SB_*,//

the -type of interaction which is expected to occur in a
database _ environmenét gspecifically inéerrogatives,

imperatives and declaratives.

Three distinct sets of phrase structure rules were examined:

The first was Chomsky's set of ruled (Chomsky, 1965), which
b * '

was eventually rejeéted because it did not éover the full
range’ of sentence ﬁragﬁénts which occﬁr Tkéequenfly. The
second set of phrase strucﬁure rules was a merger of those
defined by Naomi Sager in the Linguistic String . Project
(LSP) ‘(Sag'er,l"981)’, and a set put forth by Hér;is
(Harris, 1985). This was altered.to compensate for the fact
that the LSP relies very heavily on syntax analysis, and to

include relative clauses, pronoun-deletions, substitutions,

adjectival subordinate clauses, and other structures.

_ . .
The grammar is a modification of the second set of rules to
conform mecre closely with the needs of a database

environment, and it can be considered a "domain-independent

‘semantic grammar". Although the words in the lexicon are.

-

described in terms like "noun", "verb", etc., they also have

semantic definitiofNs which are closely tied to their

SR 92

-

syntactic roles. Once it was .determined.what kind Qﬁ*pﬁraae
structure rules would be ngeded, and what semantic analysls
could be‘intefmixed éiﬁh ;ﬁe'parsLng proceés. the-Heurlstid{

Parser was created to igplement this érammar. ,

- W . . 7

+.3.12.3 Design Criteria of the Helristic Parser

-
L]

Any. mulﬁi—path parser }must follow some false paths and
éenerate“ unreasonable parses ifA it ‘relies solely on
syntactic analysis. As-;oted earlier, several researchers
have stated that the sooner semantic knowledge is brohgnf to
bear,. the fewer ‘the ambiguiéies.' Fewer ambiguities means
faster syntactié éhd semanticlprocessing, and tﬁerefore more
efficiént implementation;" an important factor when

considering implementation on a workstation. A single parse

is easier to maintain and faster to produce.

’
“w

—

Bottom-up parsing builds fewer intermediate structures than
top-down parsing, ‘and constrains‘the search space to the
likelf solutions.) A deterministic machine can b; modified
to deal with ambiguities by shifting attention to "another
paft of the input string, and later incorpgrating more
knowledge to be used in disamb;guat{on} Finally, it is
desirable to model a parsing mechanism on an existing
formalism so that it is not too closely allied with the

-

application.

\

93

3 Lt . AY

The syntactic processing’ of the _Heurispic . Parser

incorporates mdny of tﬂe ideas of Marcus (Marcus,1980), but

. also uses a domain~independent case grammar to assiat in'the_
semantlic proceéging of a sentence. The syntacfic'rulee are
procedufally encoded at this time to eése the development of
the grammar -and . the parse}, but the case grammar is
declarative. ;Ehis is a one-path, deterministic parser which
uses éyntactic and semantic knowledge to determine the
functional roles of words and ‘their semantic attachments.

Once a decision is made go éssign a role to a word or

phrase, the.decision is not Feveréed. If;' at any stage,

there ﬁ is * insufficient information to make a certain
decision, the decision is postponed until more information
can be accuhulated. Therefore, only totally unambiguous
attéchments are made during synta&tic processing, and others
are left to a combination of syntactic anq semantic rules.

]

The implementation details of the Heuristic Parser are

described ‘at ength in Chapter 5.

94

Chapter 4
Knowledge Representation

ThiFF aré many knowledge representation schemes that have
begp employed by Al researchers. Each formalism hés‘certaih
féatuées which make it approqriate for certéin applications,
and inappropriate for others, The most important
consideraﬁion when examining and comparing the wvarious
formatisms is the eventual use of tpe knowledge (Barr and

Feigenbaum, Vol I, Pg, 145, 198l1).

From a philosophical standpoint, knowlédge~has been defined
to be "justifiable trué-ﬁelief" +but’ there'has been no well-
formed and precise theory of knowledge (Addis, 1985, pg.
24). Philosophers have been concerned with developing and
providing the criteria that éstablishes ce%tainty.and what
could be true. Attempts have been made to define absolute

primifives that exist and behave according to well-defined

laws, and although é‘degreé“ﬁf success is achievable, no
claim may be made that these formalisms approach a complete

‘and sound tHeory of khoﬁledgem Few of these concepts have

been demonstrated to be useful to computers, partly because

computers require specifics, and philosophical definitions

are often too fuzzy to implement.

95

Iy

» h
[
-

.“-

R

: 'lf knowledge is considered to be the logical closure of a
éét' ef axloms, an approiEB//;;kan by philosophers, a -
féé;gsentation formallg;T\Based on an arbBitrary set may be
‘neither. correct’ nbr useful. ” Determining all of the
';pghenlial impllcations is exceedingly difficult, and so a:
l computer :representation of knowledge should be_'bqsed on

[e

pragmatic rather théh_philoSOphical concepts (Frost, 1985).

A ‘computer 'séiénbé_theo;y'bf knowlédée representation- is

explalned by Newell where he defiﬁes knowledge to be

"whatever can be qscribed to an agent, such that ' its

behaviour can be computéd gccordlng to the principle of
rationality" (Newell, 1982), a principle that governs the

system and predicts its behaviour. If a sfstem has a goal,

and.‘haé " the means~to achieve that goal, and knéws which
actions will achieve the goal, then it will 1invoke those

actions, .

This definition concedes that knowledge is-'a very abstract
entity . that has no physical form. But-knowledge must be
cﬁéracterized by .what it does, no® how it is structuted.

Therefore WNewell divides knowledge as used _b; computer
systems-into two components: the "knowledge level", and the

"program level", The knowledge level is declarative: the

96

facts that axist within a closed world. The program level,
sometimes called the symbol level, 1is the data structures

which arrange and’allow access to the knowledge.

. ®
With respect to natural language processing, the term

"knowledge representation” has a specific meaning. An input
string iy mapped gyom a surface structure of knowledge to an

internal form. There is normally no "meaning" output from

the syntax analysis stage. Rather, the output ‘'of the

semantic analysis module is to be considered. an internal

representation of knowledge (Harris, 1985, pg. 283). The

knowledge representation formalism is something that |is

- applied - to the output of the parser to discover the meaning

of the user input.

To achieve independence from particular environments, we
must use robust and general methods which.do not rely on
individual applications. The NLI should accept the
structure of existing databasés, be able to encode knowledge
_about a new environment in a systematic way, and then
manipulate that knowledge “correctly. Such independence can
be achievéd by modularizing the knowledge so that there
exists a clear division between onld knowledge, applicatioﬁ
knowledge, and DBMS knowledge (Hendrix and Lewis, 1981).

The representation formalism established for the database-

specific part of the interface must be. such that the form is

87

-

‘applicable to all databases, and that the semantllﬂ\content b

4

of all databases 1is readily acquirable. Then a set of

generalized procedures ﬁay operate on the domain-specific
knowledge fn + standard ways independent of the knowledge

contained therein.

4.1 What Kind of Knowledge is Needed?

r

A natural language interface must of course have knowledge

R
o

about laﬁguage, and this must include domain-specific
knowledge'and "real-world" knoyledge. There must be a means
of both syﬁtactic and semantic disambiguaticon, understaﬁding
anaphora and éllipsis, as well as a means of understanding

user intent.

Ff

A problem introduced by a running dialogue 1is that the
dialeogue itself may be;ome a subiject of the- conversation,
requiring- the interface to refer back to the _rpsults of
previous queries., -

We need t¢ know about what is in the database. Rather than
have information only about the file names and attributes,
we want to have knowledge about the entities and .

relationships within the domain so we can recognize them by

their form and their roles in relationships. We need to

98

know how they felate to one another, and how the user
perceives of them. We need to know how to do things within'
the domain, like computing derived data or employing
intermediate relations to achieve required results.

Finally, we need khowledge about what " is known ({meta-

knowledge).

An intermediary between the language knowlegge and the
domain-specific knowledge is pragmatic "real-world"
knleedge, which 1is applied to the natural language
utterance to determine i;s-meaning with respect to a world
model. This semantic meaning will then be mapped to thé
database. We might think of the world model as "that which

could be", and the domain-specific knowledge as "that which-

exists at this time".

Entities .may be defined in terms of other entities, and
‘relationships also may be defined in terms of entities and
other relationships. There must be a facility to represent

these hierarchies of relationships, such as «c¢lass, sub-

class, and super-class relationships.

What roles do entities play ia a relationship? Sowa notes

that these roles should be explict enough that they may be
»

directly transcribable into a natural language (Sowa, 1980).

. -

99 <

fhere should be a set of default roles for each entity and
concept in the database. This is a description over and
above the type description, and érovides background
information about how . entities function within

relationships.

’

There must be a means of aggregation and generaliiation such
that entitie§ may be -appropriately clustered, and so thgz
entityes méy be recognized by their attributes. There mG;I‘
be a means of accomodaging different views of data, so that
requests for ‘speqific fnformatign result in precisely the
same 'fesponse, " no ﬁatter how-the request 'is originélly_
pﬁraséd. Different views of the data should be represeﬁted
internally 1in .a single fashion.*® This will réquire the

definition of some low-level entities, which may be combined

in various fashions to form higher-level abstractions.

Some knowledge about how to do things within the domain must
be included. This may include functions~to coﬁputé derived
data, and must include séme meta-knowledge about when and
how to invoke variéus functions. User views may not have a
one-to-one relationship with the'relations in the -éatabase,

so there must be knowledge about thig extra level of

mapping.

100

An inference engine is a crucial part of the ﬂomain—speci!ic
component, allowing it to determine how to respond to
requests for information that are not explicit in the
database, where to look for intermediate information that
can be used to determine other information, etc. Uaers‘méy
have varied views of the domain and it may be necessary to
do aﬁ érbitrary amount of inferencing to connect the wuser's
question : with the database.. For instance, multiple
relations may have to be accessed to accomodate a request,
but the user need not be aware of this.ll

Rules of inferencé elevate the sysfeﬁ from being a passive
retrieval language to that of an expert assistant. These
rules will manipulate kndwledge to detgpmine the
implications of data within the database, and can be used to

enforce semantic constraints.

Knowledge ‘ about éemantic constraints 1s necessary to
"capture the kﬁowledge and reasoning strategies: ocf a
designer, programmer, or database analyst” (King, 1980).
The database analyst 1is especially important for vour
purposes as someone wﬁo‘mediates between a user with a
problem to solve, and the database thch_has the data to be

used in the solution.

101

4.2 Conceptual Modeling Tools

There has beeﬁ consliderable effort directed at capturing the
gsemantic content of databases. The cdnceptua% gchema of a
‘database is gerierally inappropriate as :a knowledge
_representationmi-ﬁormaiisﬁ because of 1its low . semantic
cqntenﬁ. It is too closely tied to a data model and reduces

the real world to that model.

Although‘.fbrmalisms which seek to extend the 5emantic
content of the relational model are principally design
tools, they must be coﬁsideréd here becausé‘they do provide
a high-level representation of the contents of a da;abase.
We will provide an overview of three systems: the Semantic
. Data Model of Hammer and McLeod (Hammer and McLeod, 1981),
which claims to be the basis of a robust user ipterface, the
Entity-Relationship Model (Chen, 1976, 1977), because it is
such an easy to understand formalism and TAXIS (Mylopoulo;,
Bernstein and Wong, 1980), because it specifically organizes
knowledge using a formalism called a semantic network, which
will be studied in-depth later in this chapter. For the

4

purposes of this discussion, we will use Date's Suppliers-
'S

Parts-Projects database (Date, 1982, pg. 114).

102

4.2.1 The Entity-Relationship Model

One. of the eariiest'attgmpts at overcoming some of the
limitations of record-based data models is the Entity-
Relationship (E-R} model '(Chen, . 1976, 1977). The E-R model
is 'independent. of the. cqnstraints introduced by ’data
structures énd.storage an?';écess coqsidérations, “and s
thus a more natural view of the gpplication enviéonment. 1t
is wused to aefine ~how users perceive the ‘data and the .
relationships that exist within the organization. It is
possible to map from the E-R model to thelthreé classical ’
models: the ‘hierarchical, the network andlthe‘ relational
models.h, Changes. in the underlying Dé or DEMS will not
necessarily affect the model, and vice-versa:

\

jnum)

project -

supplier ' SPJ - part’

- . ((snum pnum
DESD | Camd) @eishd) (Eotous)

Figure 4.1: Entity-Relationship Diagram for the
- Suppliers-Parts-Projects Database
_ o .

103

-

In- the E-R model, the procedure for the selection of -

Fl

entities and relationk can not be precisely defihed, and
this i8 a drawback. What one uéé; perceives as a relation
-may‘ be gseen by another as an entity. quther, attributes
. {like "city") may also be perceiﬁed as entities. Chen has
ﬁrovided mechanismé by‘which entities, relations, and even
attributes may change over time, but this‘does'nbphing to
improve the exp?essive power of the model.

It is not possible for ény "thing" to be Both an en;ity ~and
~a’ relation at the same time. The decision is an arbitrary

one made by the designer.

A user wanting to queétion the database shown in Figure 4,1
will perceive of' events th;t normally occﬁr within the
domain. _'Suppliers sell parts, project§ use parts, and so
on. :The E-R modei can not specifically reérésent each of.
"these events ég-distinct. The only way to represent them
" would be to embed in the lingyistic knowledge of the system,
"seméntic_ciues as to how to map the user's pérception of the

-event to the schema at the E-R level.
For instance, given the queries

s8. " "Who . sells part numbér 2"

-~

s9. "Who uses part number 2"

104 _ : S

/
both will access the SPJ reiation&hig to determine .the
answer. The~E~R model has only one internal representatlion
for two events, 8o either the lexicon muat have the
relationship explicit, or there must be‘somé‘ intermediate
mapping. Since we are attemp;ing to find a éormalism that
will be the .intermedidte mapping-.as well as capture the
_sgmant}cs of the database, we must reject the E-R model as a

knowledge-representation formalism for a natural language

interface.

4.2.2 The Semantic Data Model

The Semantic ' Data _Model .(SDM)“is basically a semantic
network th;t is specific to a narrow domain. Oné of the .
priﬂbiples of its desfgn is . that iigiﬁ distinctions between
concepts such as entity, relationship'and éttrébute should
not be made, since these may change over tidéi or different
users may.have differenf'perceptions. |

.

-

SDM is a more powerful conceptuél”ﬁga}gn tool than the E-R
model. First, it suppoéts. a relativist view of the
database: alternative ways bf looking at the same
information. Other features are. tha it is logically

redundant, and integrated.

By.logically redﬁndant, we mean that/ﬁg; ved information is

105

expiicitlyl embedded in thé schema. This is an important
_ point which is noted as being vital for a natural langdage
interface in order to control infgrencing (Ginsparg, 1983).
It is basically an enchlng of procedural kno&ledge ih the

: {
knowledge base.

L
v 1) -

By integrated, we- mean that rélationships between multiple
ways of viewing the same data are explicit. Such

integration is needed to control redundancy.

'Entities are hierarchically.arranged in.terms of classes,

which ‘are homogeneous—collections of entitj-types.' The
~model is defined in-terms of two kinds, of classes: " Base
classes are defined independent of -all other ‘classes, and
a}e mutually disjoint. Every entity is a member of exactly
one base class. Non-base classes/may be cpllections of

entities or other classes.

Inter-relationships between classes a&d-members of classes
are explicit, and so the’concepts-of generalization and
aggregatién are sUpported. Each class has a collection of
attribuytes descriging either the class as a whole, or the
members of the class. Member atttributes describe a member

by linking the member to one ‘or more related entities in its

4._' 106

-

own class, or another class. Class attributes describe the:
properties of the class as a whole. Sub~classes and

groupings inherit the properties.of their Buper-classes.

It 1is possible to expgnd the semanéics of the database by
defining some classes which do not maﬁ 1:1 té the relations
in the databé;e. For instance, Supplieré (S#, Nsme, Status,
City) can be grouped by the City attribute. -
SDM was designed as a conceptual modelling tool of a narrow
domain, and the only world knowledge which it has is either
procedurally encoded, sueh as the concept of "size" or the
calculation of quantity, or is expliciély defined as the
class of Supplier-City. There 1is no means- of defining
entities or relationships other than thoée of the database,
so- the frame of reference for the user is a‘very. restricted
world. If objects are referrea to which a;e not explicit in
. the representation, they éahnot be derived. Finally, some
words may refer to.an object dr cbjects which may belong t6
more than one class, and this cannot be handled. For these
reasons, SDM is - not appropriate as ' the knowledge

répresentation formalism for a transportable NLI.

-~ 107

4.2.3 TAXIS .

[

>

- TAXIS .is a database design language for highly interactive

-

transaction-oriented applications that is based on semantic
netyorks. It .is meant to be customized to each domain by
programmers who will write procedures specific to the
application,. and so does not have a high degree of f

portability by our definition. It is also specificallly for

narrow, well-defined problems.

'In TAXIS, the semantic net is used for its generaliza&ion'

_and abstraction ability. By building a language around this

-

formalism, the user will cqnceptually maniéulate hierarchies
rather than individual files and records. A semantic net is
used so that a nierarchy can be extracted from the concepts
of the network, débeéding on the user's needs. This means
two different.operations can manipulaﬁe the same Eoncepts,
but in“different manners, using the same data structure.
3 :

TAXIS does more than use the semantic net as a declarative
store of knowledge, it also encodes domain—spec}fic

functional knowledge so that procedures can be written which

reflect the semantics of the domain.

There are three kinds of object in TAXIS: tokens (or

constants), glasses, and meta-classes. Tokens having common

108

properties are grouped into classes, which are grouped into

meta-classes. A meta-class is simlilar to a class, except

its members are classes rdther than tokens. Classes and
tokens have properties which relate them to other classes
and tokens. Token properties represent specific facts,
whereas class properties-are detemined by abstract rules.
So, SUPPLIER-is a.class, described by a collectien of tokens
as follows: Eac@ SUPPLIER has a unique supplier number, a

name, a status, and is locatdd in a city.

The individual occurrences of SUPPLIER aré the tokens, and

-

each of the éroperties of the token is represented as a

triplet:
SUPPLIER s# supplier.s#
SUPPLIER sname supplier.sname

SUPPLIER status supplier.status
SUPPLIER city supplier.city

SUPPLIER could be grouped into a meta-class SPJ, with a
common property sS#. This would allow access to SUPPLIER

through SPJ, and vice-versa.
' 1]

Also embedded in the semantic network are the relationhips

and ope;atioﬁs which are associated with the tokens ,and

classes. So the relationship SELL will be a procedur;\kéggﬁ\

parameters SUPPLIER, PART, PROJECT, and the method of

‘determining these sub-class values will be created by the

programmers.

109 .

N
.

.
4

. One of the major design goals of TAXIS is to be éasy to
customize to new domains by agpplications programmers, but
this is not true portability. To achieve their goal, they
blend procedural knodledge with factual knowledge, and this
rendérs the formalism too specific to each domaih for our
purposes. There must be a clear separation between
procedural and declarative knowledgé so that the
peculiarities of 6ne domain are not acciaéntly transported

to others. :

A

4.2.4 Summary of the Conceptual Design Tools

Each of the database modelling tools described above

attempts to capture the semantic meaning of stored data by

organizing the objects and relationships hierarchically.

While the E-R model only provides a single way of viewing
data, the other two use a'network structure and allow
extensive relationships between the objects and
relationships as a meéns of gupportfng aggregation and-
generalization. Functional_ dependencies and domain roles
are also explicit. SDM allows muI%iple;ways of viewing
data, but such is not the case for the E-R model, and in
TAXIS the different ways of manipulating information must be

- .

specically encoded by programmers ‘beforehand.

110 -

SDM and TAXIS encode procedural knowledge into the model,
primarily for efficiency considerations. Inferencing in all
of- the mod&ls 1s achieved by following 1links 1in the

graphical representations.

The main problem ;ith all of these approaches is that they
build a large amount of dgmain—specifiq'knowledge into the
system, .ﬁuch of it procedural, Although they puréqrt to
support useful user interfaces, such an inéerfaée cannot be
a natural language interface because there is no facility.

-

for representiﬁé'knowledge about natural language. . This is
not to say that a separate linguistic knowledge base and a
mabping mgchaﬁism could not be added _as a front end, but the
purpose . of this study is to determine a knowledge
representation formalism for the entire interface, not jusf

the database part. =

There is also no way of representing information which 1is
not present. Sﬁppose a user asks about the price of an
object, but the database does not store price data. Does
the system know that it does not have this information?
Does it know anything about price? Could it be ‘Ebmputed?
The advantage pa of having a higher-level world model 1in
addition to a domain model is that there is a framework in

which to represent knowledge cutside of the domain. This

& 111

-world model can be used to explain to the user the
dlscrepency between the user's perception, and what actually
exists within the domain.

A
What is needed then is a formalism that can be wused' to
capture the semantic content of any database, no matter what
the design model. The knowledge repreéentation formalism
chosen by this thesis must be independgnt of the underlying

DB, DBMS, and the design model,

- P

4.3 The Al Approach to Knowledge Representation

The Artificial Intelligence approach to knowledge
representation in a natural language front end has focused
on the following forﬁalisms:

Logic

1)

2) Procéddural Repreésentations
3) Frames
4)

5).

Semantic Primitives ({including scripts)
Semantic Networks.

4.3.1 Logic

The logic most frequeﬁtly used in AI is mathematical logic
or the predicate calculus (Barr and Feigenbaum, Vol I, 1981,
pp 160-172), although other logics including non-monotonic
reasoning, fuzzy logic, and statisticl reasoning.have been

employed (Rich, 1983, pp. 173-198).

112

The chief advantage of mathematical logic 'is that it is =
: sounq_and complete; and has a well-defined set of'inference
rules guaranteed to produce corfect deductions. It is also a
natural way to express many concepts, and often corresponas
to intultive understanding of a ddmain. Logic 1is also
precise, and is subject to well-understbod rules.

Logic determines the validity of situations by syntactic
manipulgtioﬁ,_ and gleans nothing from semantic information
which may be useful in confining the search space. Another
basic problem with the predicate calculus is that there is
no proof procedure; only a disproof procedure. That is, the
validity of a conclusiPn is determined by deriving a

contradiction to a contradiction of the conclusion. The

standard methcd of deduction is the resolution method,

" . (Charniak and McDermott, 1985, pg. 382) and a major pkoblem

with this technigue is that it is slow, subject to
combinatorial expleosion and even heuristics to restrain it

are not very helpful. : -

Another disadvantage is that translation from natural
lanquage is a tedious process, and a logic representation of
an utterance often Dbears no resemblance to the natural
language expression. Fihally, only entire sentjnces can be

negated, not just individual terms in a senE;nE;.
| /

[

' /
113 |

-

4.3.2 Procedural Representation of Knowledge

Rather than répresenting facts asﬂéyntactic atructufés of
formal logic, procedural knowledge -takes aanntage of‘ the
domain to guide searching and determine “which rules to
apply., and when. Thig' approach, ploneered in . SHRDLU
(Winograd, 1972) makes no claims to soundness nor
completeness, 'but rather relies on heuristics to limit thg

generation of inferences to those which may plausibly

contribute to acceptable decisions. This permits efficient

"execution at the price.of the possible introduction of

inconsistencies. It relies on the user to help compensate
for those inconsistencies through an interactive dialogue.
. \
In a procedural representation, data is stored in a
database, and a set of functions and procedures is built to
ope;ate on the data in an "intelligent" manner. Inferencing
is coRtrolled by the ways fhe facts are stated, or by
interacﬁing with the user. Although blind reasoning is
eliminated, the embedding of knowledge in the code results
in a loss of modularity.'
f } N

Procedural knowledge E} useful in directing the search for
solutions, but there 1is no generally acéepted means of
implémenting it (Barr and Feigenbaum, Veol. I, pg. 179,

1981).

——

4.3.3 Frames

Combining declarative and procedural knowledge into one data
structure, ’a xframe typically contains know;edge about
stereotypical situations. That is, a frame will hold
expectéd values, default valueﬁ, and procedures. about what
to do if certain conditions hold (Minsky, 1975).

Humans don't élways solve problems by reasoning from first
principles. Frames encapsulate "chunks" of knowledge which
are called into use 1in certain situatiops; This is
appealing when we consider the routine work that is often
associ?ted with ‘databases, such as thé géngration of
periodic reports. ‘Framés are a ugeful way of partitioning
the. knowledge base into chunks that will be useful for a
given problem; and thus may improve performance over
semantic nets and logic, with respect to seérching and the
depth of inferencing needed (Charniak, 1981). However,
frames are also réstrictive in that new ways of looking . at

data must be made explicit to the system. Also, much of the

knowledge in a frame is procedural, and this is contrary to

our idea of separatiAg declarative knowledge from procedural.

—r

115 -

-
4.3.4 Semantic Primitives) :
Semantic primitives are data items which are got much
different from natural language words. These primiiives are
" combined according to a, set of rules’ to form
conceptualizations, of which there are two basic types:

objects and events.

Each ' semantic , primitive .has its meaning defined by its
funcéion within the overall language, and does not refer to
any specific "thing": A natural ianguage guestion is
translated into a network of primitives and relationships
between the primitives. Although there is\no single correct
vocabulary; two sets of primitives have emefgedaas dominant

in the field,

The first set of eighty (80) primitibgs was developed for a
natural language translation project -(Wilks,1975). These
were derived in a rather ad—hoé manner, but 4did achieve a
fair degree of success.

The second set of 14 primitives forms the basis of

Conceptual Dependency (CD) Theory (Schank and Colby, 1973).

The basic axiom of this theory is that if two sentences have

116

'

the same”mQQning, their internal represengation should be
the same. - This 'implies that'implicit information should be

made expliclt in the internal form.

CD Theory has a strict set of allowable relationships that
may connect the primitives, and syntgc;ic and semantic rules
determining how conceptualizations may J built. - CD {s in
fact, an extension of case grammers, and the clalm is made
that syntactic'pﬁfsing.is almost completely eliminated. | By
having suéh a small set of rules and primiéives, all higher

»

level concepts may be represented in a canonical form.

The major drawbacks” of the use - of semantié primitives
inclhde- the tremendous complexity of the parsing érocess'
the large memofy requifeménts, and the fact that everything
must be regfesented at . a primitive level, from first

-

principles,. as it were.

LY

Extensions to CD include Ehe_conceptlof scripts (Schank and
Abelson, 1977). These afe sets of expectations built of CD
primitives, and are similar -to the declarative knowledge
stored -in frames. One major difference is _in the
inferencing ability. Using scripts, inferred information is
explicit before the script is invoked. For instance, 1if a

person enters a restaurant, an appropriate script 1is

-

117

triggered té infer that the person is going to have
something to eat, that he wili sit at a table, be served by

a walter or waltress, pay the bill, leave a tiﬁ, etc.

The use of CD primitives may not be appropriate for use |in
an interface to databases because most of the primitives
relate to human acts, and the expressive power with

refereﬂ%e to non-human objects is very limited.
4.3.5 Semantic Networks

A semanEic network is a directed graph witk labelled noédes
representing entities, and named arcs bétween the nodes
representing relationships betweén the‘ entities. Each
enﬁity is described by a set of attributes, and the entity
is considered by the network to bé no more and no less .than
that set of attributes. In a semantic net there is a fixed
set of possible relationships, and each has an associafed
inverse relationship. These two-way relationships convey.
the same meaning, but from different perspectives. There
is no one set of semantic relations; rather, relationships

are usually ,tailored to the type of application environment.

Three basic types of relationships can be, represented:
. \:
superset-subset, attributenqbﬁect. and parEicipation in

higher—level' relationships. This allows the system to

-

118

extract information about an object, test for membership 4n

)

a class, and ldentify an object by its attributes.

. . . !
Deductive reasoning with a semantic net is simply a matter
of following arcs through the graph, éxaminiﬁg and selecting
the gelationships that fan out from each of Ehe nodes as

.they are visited. Heuristics are'implemented by determining

which arcs to follow from any given node. Thus, reasoning

4

is a data-driven process.

.Semantic Nets .emphasize the rdleg objecté play in
relatioﬁships and are eséecially important in "natufaf
language dndérstandinq systems kouillian, 1968; Findlar,
1979; and others}). — They aﬁe one of theﬁﬁosﬁ poﬁulét forms

of knowledge representation formalism in AI as a means of

representing commonsense knowledge.

The “"IS-A" réﬁationship is one of the most commonly used
gssociationg to implement the inheritance hierarchy or
taxonomy of a semantic het. ?he attributes of objectslgan be
* represented by a "HAS-PART" relationship. The variety of
relationship labels is extensive, and thus a keﬁ feature of
this formalism is its flexibility. Other types of links
are- possiblé, ~and are employed based on the needs and

purpose of the system.

119

-

While facts and relationships are represented explicitly tﬁe
procedures which govern manipulation of the network are
usuaily.dLStinctly gseparated from the knowledge contained in
the network, althoﬁgh such ls rot the case with systems like

TAXIS.

Work™ by Simmons (Simmons, 1973), used semantic networks to
represent concepts defined in a case gréhmar. ﬁe showed
tﬁat a semantic net can be used to express cohcepts
expressed in natural language as nodes connected to other
concepts 'by particular sets ’of arcs.:balled semantic
relations. The most primitive concepts in the net ake word-
sense meapingé. Primitive semantic relations are those the

verb has with its subject, object and pfepositional'phrases.

This demonstrated an easy transformation from case grammar
to -éemantic nets. Wg can use case frames to determine a
relétio;ship among objects, and to infer objects based on
the ' role-players in a relationship. Objects may be referred
to by their attributes, and so éhe atkributeé are connected

to objects by specific arcs. Case frames provide a means of

determinng the participants in higher-level relatioﬁships.

Prohlems asscociated with semantic networks are subtle, and
include such topics as the goodness of ways of representing

ideas, the wuniqueness or degree of redundancy involved with

120

representations, and the fact that a node only represents a
" collection of attributes, and not an abstract entity

(G;iffith, 1982),

‘ :
Experience with semantic nets has shown that coﬁputaﬁional
problems emerge as the ngtwork becomes large énd non-
trivial. This is because the number of nodes and arcs _ may
become exceediAgly large, and so the time spent at each node

can become unwieldly. However, some of these problems may

be caused by hardware limitations. Also, a database schema
consists of many occurrences of a few record types, so the

number of nodes in our semantic network may be relatively

small.
4.4 Summéry'

Of the formalisms presented here, the cénceétual modelling
tools were found to be too restricted to their narrow
domains, and/or they include procedural knowledge in the
model. Such procedural knowledge ties the knowledge base
closely to the application environment, and this is

something we are trying to avoid. '

121

The semantic network formalism is attractive ' as a
representation scheme for several reasons: Therpg is a clear
separation between procedural and declarative knowledge, apd

this will make .it easy to transport to new domains; it is

relatively easy to implement; deductive reasoning is.

constrained to useful or potentially successful lines of
reasoning; it is- useful as a tool in the experimental

design of a NLI because it is so flexible and so general.

[o

122

8

Chapter 5

»
Implementation of a Prototype

ONL consists of 'thtee procedural modules to accomplish
syntax analysis, domain-independent semantic analysis and
domaiM-gspecific semantic analysis. Each module accesses an
approptiate' declarative knowledge base. A user enters a
question or command which is parsed by the syntactic
analysis module. A single parée tree is passed to the\World
Knéwlgdgé Base (WKB) which atéémpts to gain a general
understanding of the-question, and modifies the original
parse tree appropriately. This domain-independent meaning
representation 1is passed to the Domain Knowledge'gﬁse (DKB)
which.interprets the question with rt_espe.ct to the particular
database.

Feedback demonstrates to thg user, at each stage of the
process, what the. systém has undersﬁood, how it has
processed the input, and alerts the user to potential
prghlemé. _The user can’'take appropriate action to continue,
abort, or modify the processing. There must exist an

ability to demonstrate to the user the system's final

understanding of the question or command before it attempts

-

- execution. . Y §

. 123

A

FEEDBACK . . -
_Meq
i i -
i (-—'l i l
User | | | |
| ' ' |
NATURAL } |
ANGUAGE {
UERY | | | _
g] | | I '
[_ PARSER | GENERAL | Doma1n QuERY
SEMANTIC Semantic || || GenERraTOR
ANALYZER ANALYZER
h a» ’\
l' 0
.->' -I > ';' _L
o T) DBMS
¥ A . o
Lex1cON WORLD ' DomaIn DATABASE - \f——‘\\\\
- KNOWLEDGE KNOWLEDGE MaPPING
fig 5.1 - Architecture of a portable natural language
interface.
r

124

.‘;
The three procedural modules operate in series. Upon

receivlné the user's question, a preprocessor identi!ies the
tokens in the 1input string and generates a normalized
expression containing the possible syhtactic "and sgemantic
roles of each of the tdkens. The parser receives this
expression and builds a single parse tree to represent the
' syntéctic structure of the sentence. The domain-independent
semantic analyzer assigns attachments of modifying phrases,
resolves some pronoun references, handles conjunctions,
disjunctions and negation, and 'resolves anaphora and
ellipsis to generate a domain-independent meaning

representation in the form of a tree.

Next,. in the domain semantic analysis process, fhe'objects
in the tree are transformed into the relations - and
attributes of the database. Ihplied relationships are made
specific, obJects are identified by their attributes,
interogative pronouns which could only be resolved in the
domain are handled here, intermediate relations are

specified, and so on.

The output of this module 1is a noh;proqedural domain-
specific expféssion which may be converted into a relational
calculus or ;elational algebra expression. This expression
can be transformed into a data manibulation language (DML)

like QUEL or SQL. It will be up to the query generator to

125

@.

determine how to schedule the order of operationa, and how

to generate the appropriate expressions in the DML of the

database.
5.1 The Lexicon ' /
The lexicon 1is a list of words their syntactic roles,

Each syntactic role has an associated 1list of semantic
markers describing the term in that role. These semantic

markers are drawn from the WKB, so the words in the lexicon

"are defined in terms of the semantic net. The semantic-
markers are symbols like "physobj", "animatéf, :;Eﬁber",
etc, while syntactic roles are "noun", ‘"verb", ‘'pronoun",
etc.

The lexicon must have access to all of the words used to
describe the objects and events of the domain, as well as’
expressions which can be used to manipulate data in a
database ("sort", ‘"count"), and sufficient "content-empty"
words ("of", ‘"please”, "such", and so on) to carry on a

natural language conversation.
\

'

Terms which have a general meaning in the WKB but have a
special meaning in a domain are defined in both the WKB and
DKB, and accessed by the. preprocessor. This way, both

definitions are available to the NL processor. If the NLI is

~ 126 '

~transported to. a new domain, the pecullarities of the
previous domain may be ignored, and those of the “new
application easily acqulqeq. The set of procedures which
looks for domain-specific interpretations of terms remain
constant; only the .data they manipulate changes from
application to application.

Su;h a need arises with terms like numeric or alpha-numeric
keys ("S234" may refef to a supplier, "P564" refers to a
part, etc.), and numbers which may be used to refer to
domain-specific concepts (007 is a secret agent, 747 is an
aircraft,r .357 1is either a very gooa batting average or a
handgun, and 872-3239 is a telephone number).

-~

If the lexicon itself were augmented with these special
meanings, théﬁ it would have to be reduced for each new
domain, otherwise the special terms would be inadvertantly
applied to othé?\quains. The chosen solution is to define
these terms in the DKB, and instruct the pre-processor to
look in the DKB for this set. When attempting to determine
the meaning pf a term, the domain interpretation is always

given priority:. For ealh of these special terms, there is a

ﬁointer directly to the domain concepts to which they refer.

127 . ‘

"

Dictionary entries take the form of

<word> (<gyntactlic category>
' (semantic markers| case frame) | synonym | nil
) C

Each word in the dictionary has a 1list of synfactic
-4 .
categories. Each category has either a list of semantic

markers (sm) or case framesa (cf), or it ia defined in terms
of a synonym. ﬁigure 5.2 demonstrates some sample

. . 3 .
dictionary entries.

{able (adj (sm capable}))
{ability (n (lex able)})
{aircraft (n {sm physobj)))
{airplane {(n {(lex aircraft)))
(city (n (sm location)))
{its (pronoun {(sm animate physobj abstractobj})}
(many {adj (sm number})
{(pronoun (sm abstractobj physobj ‘animate))
{n. {sm number)))
(sell (vt (cf agent {(rcpt) (object)} (price) (gty))))
{supply {vt (lex sell)))
(n (sm physobj)))
(which (pronoun (sm physobj abstractobj animate))
{relpn)
(gqword (sm physobj abstractobj animate)})

Figure 5.2: Sample entries from the lexicon showing how
words are defined in terms of semantic markers, case
frames, and synonyms.
The current implementation of the lexicon does not include
information .about morphemes: the parts of words which
include the root of the word, and suffixes and prefixes

which alter the meaning. Such analysis is quite complex,

time consuming, ,and does not contribute to the issue of

128

portability. In a real-world implementation, morphologlical
analysis could prove useful to help reduce the size of the
dictionary and derive subtle nuahces in an utterrance, but
for this prototype it is ignored. For a Lisp
implementation of a program for morphological analysis, see

- {Oppacher, 1981).

5.2 Parsing

oy .

‘ . - A
Within the constrained environment of a question-answering

‘system it is frequently possible to predict the oc¢currence
of an interogative or imperative statement based on tﬁe
first few words of a gentence. We begin syntactic
processing by hypothesizing the existence of an interogative
question, and if that fails QeY resort to a default
interpretation of imperative. The range of sentence types
is further constrained in that the NLI expects questions and
commands dealing only with objects, -|attributes and
relationships, and assumes tﬁese refer to the contents of a

database about which it has appropriate knowledge.

Following recognition of the leading tokens of an input
string, processing proceeds with the rest of the phrases
and sub-phrases within a sentehce using a combination top-

-

down and bottom-up strateqgy.

129 ¢

—

L 3

The bottom-up ‘approach predicts which phrase structures
could exist.giveﬁ the syntactic categories of the next token
in the input string, and so acts like a filter. Some tokens
fff: conjunctions, disjunctions and adverba. are simply
pushed onto a stack to be p;ocessed at the seméntic stage.
Vgrbs feéuire speciai atpentioa because they may be csmplex
structure;,_ but this is also postponed’ to the general

semantic analysis} Noun phraseg are the most frequent

occurrences, representing objects and their attributes.

Some phréSe structures can be e#pected to occur after other
phrase strdéfures, such as noun pﬁrases after grepositions
and relative clauses-after noun phrasé;t'kasing the approach
of Waltz (Waltz, 1978), the\parser checks for frequently-

occurring patterns of phrases. However, instead of building

.a tentative structure and then dismantling it, as would a

hypothesis-driven parser, ONL looks ahead to, make sure the
phrase can be built, and only proceeéds if the 1lookahead
confirms the hypothesis. Once confirmed, a representation

-

is built and stored in a temporary buffer.

130

Modifier --> (det) + tadj)*

S --> interogative | imperative

interogative --> Qword + WHQ

interogative «-> Vi + YesNoQ

interogative --»"Prep + Rest

interogative --> modal + YesNoQ

imperative --> (adverb) + Vi*| Vvt + (Vt) + Rest

WHQ --> (modal) + (Vi) + YesNoQ
WHQ --> (modal) + Rest
YegNoQ --> (particle) + Rest

Rest --> Adverb -)

Rest --> NP + Relclause > £
Regt --> infinitive

Regt --> PP

Rest —--> modal

Rest --> Aux + (Vi | Vt)

Rest --> Vi + {(particle) %

- Rest --> participle

Rest --> conj | disj
Rest --> nil

VP --> vi | vt | participle
VP =-~> Aux + VP

NP --> Modifier + Pronoun + {Noun}*
NP --> Modifier + Noun*

PP --> Prep + nil
PP --> Prep + NP
PP --> Prep + Rel

Relclause --> Relpn + (participle) + NP
Relcaluse --> participle + NP

Figure 5.3: The parsing rules used by QNL

131 N

5.3 Syntactic Amblguity

~Syntacflc ambiguity arises when the form of a sentence may
be represented by m&re than one parse tree. This could be
caused by words having multiple syntactic roles, or in the
case of a comblination of conjunctions énd disjunctions. An
ATN parser would follow each possibility, backtracking to
the- choice point, trying to generate a complete parse tree
for each combination-possiple. The Chart parser would
generate all candidate structﬁ;es which could also result in
multiple parse trees. Even if either of these do not.'gpause
several parses' to succeed, there could be " a significént
waste of effort if local ambiguities are encountered (i.e.
only one word in a phrase might have multiple syntactic
roles). The parégr developed as part gf this theéis folléws
the approach of the Marcus parser and uses the 1lookahead

facility to choose a unique syntactic structure for each

‘phrase. L

ﬁarcus restricted they size of his lpokahead bﬁngr to three
. elements on the groun:l_that if it were not constrained, no
advantage would be gained over backtracking (Marcus, 18980).
The implemeﬁtation presented here uses a heuristic lookahead
that looks as far as neeged to'determing what to do next.
If it is confronted by a potential ambiguity, it combines

lodkahéad and the current énvironment to see what would bé

7 132

LY

the "beat" gtructure to bulld. £ We use the term "best" here
to mean a structure which conforms to certailn expectations
L
of the grammar, and minimizes the work to be done by the
\

parser and other components of the system.

The ﬁarser only recogniées a few types of syntactic
ambiquity, the most frequent of %hich will be in the case of
a verb mistaken for a noﬁn ("supply", "list", etc,) while
the pérser is building a‘ noun phrase. In this instance, a
set of heuristics can be-applied to resolve the problem or
defer it until the semantic analysis stage. Figure 5.4
demonstrates a sample of the heuristics to be applied to
noun phrases. _ _ !
Suppose we are processing a noun phrase, and encounter the
word "supply”, which could be either a noun or a verb. If
it is a verb, it could be the main verb of the sentenge (or
one of thém). If we do not yet have. a main verb, '"supply"
might be a good choice. If there 1is a noun phrase
immediately following the ambiguous token, there is a good
chance "supply! is a verb connecting two noun phrases. Are
there any other nouns in this noun phrase before the word
"supply"? If so, the noun phrase could be complete without

Usupply"”. However, 1if the noun phrase begins with a

determiner, and there are no other nouns, then "supply" must

be a noun.

133

Another type of problem'could occur when*trying to build a
noun phrase as part of a prepositional phrase, but the noun-

. phrase is found to be non-existant:
s8l0. "Where does it come from?"

In the case of sentence sl0, the preposition "from" would
be stored in the parse tree, but then abandonned during the

semantic analysis.

»

or a noun then
If there are already nouns in the phrase, then
phrage is complete without the token in question
so make the token a verb

If a token is encountered which could be eithez:a verb

else
If the noun phrase is incomplete and
there are any adjectives in the phrase, then
phrase is a predicate adjective clause, which the
semantic analyzer will resolve and
token is a verb
else .
If there is only a pronoun and no noun, then
* the pronoun will be resolved by semantic analysis
and token is a verb
else :
if there is a determiner but no modifieTrsy pronouns
. nor nouns, then
only the modifler is- pushed onto the stack,
and it will be discarded 1in the
semantic analysis. and token is a verb
else the token is a noun. -

{ 8

Figure 5.4: A Sample set of heuristics to be applied to a
noun phrase if a.potential verb is encountered.

A \

t 134

If a phrase cannot be parsed, OQNL attaches a special phrase
marker "INC" (incomplete) to the phrase, and attempts to

handle it at the semantic stage. Such a problem could oécur-

with relative clauses like those in sentences sll and sl2.

'
bt
"

s1l., "list suppliéfs in London which sell a red part"

sl2, "list suppliers of parts in London which have a
status of 30"

The relative clauses "which sell...", "which have...", must
be marked as incomplete beéause we cannot attacp the
following noun phfaée without semantic knowledge. As will
be explained shortly, the semantic analysis modules of QNL
can . correctly attach such phrases, using a combination of

domain~independent and domain-specific knowledge.

There ard a few othdr types of complex decisions that A must
be made by the bq;ser, and all of them make use of the
lookahead and attention-shifting strategy: If there is
insufficient information to make a unique deciSion: defer
making the decision until more information, or different
processes,'ér both, can be employed. 5
N
The) syntax analysis module does not attach modifying

phrases, and this is a major contribution to its ability to

produce only one parse tree.

135

Consider the question
8l3. f "Get suppliers selling red parts in London to

projects which are in Paris whith use
green parts.”

/ S .
The ﬁ;epositional phrase "in London" in sentence 813 could
be attached éo elther parts or sdbplieré. The relative
clause "which fre in Paris” cguld be syﬂﬁpctically attached
to either suppliers or red parts or london, and the relative
clause "which use green parts" could be attached to parts,
projects, suppliers, Paris or London, 'Tﬁg growth of the
number of patse.trees is exponential because oniy syntac£ic
knowledge is brought to bear: Rather than havé the semahtic.
'analysis module manipulate and verify or discard so many
structures:'it was éecided to producé ohly one tree from the

syntactic analysis module, and allow the semantic analyzer

to use its knowledge to assign attachmeqts.

L -

F
The output of QNL's parser for sentence s13 is shown 1in

Figure 5.5.
%

-,

136

(mood is imperative)

(vt (lex retrieve))
(np (n (sm animate)) {var-113 supplier)))
(rel {((n (sm physobj)) (var-114 part))
({ad} (sm color)) (value. red))
({participle :
(cf agent (rcpt) (object) (gty) (price}) (lex sell}))
(pp ((n (sm location) (value London))
((prep (lex in)))
(pp ((n (8m abstractobj physobj)) (var-115 project))
—— ({prep {lex to}))
{(inc ((vi (lex be)))
~ (relpn (lex which)))
(pp ({n (sm location} (value paris))’
((prep (lex in))) '
(rel {({(n (sm physobj)) (var 116 part))
{{adj (sm color)) (value green))
((vt
(cf agent (object?)) (lex use))
(relpn (lex which)})

Figure- 5.5: Sample parse tree as prbduced by QNL
on sentence sl3. g

5.4 Domain-Independent Semantic Ana{yﬁis

All of the processing done in the general semantic analyzér
is independent of the domain and of the DBMS. The‘ World
Knowledge Base is_a'semantic network that describes, in
general terms, all-of the objects and relationships which
are expected to occur with respect to datébase access, ;nd_
also has general knowledge about the domain. If a ';uman

were to join a new organization, even yithout knowing a lot

about the database, he would be expected to have general

® 137

/

knowledge about the wdorld that could be used to understand
the domain. This is exactly what the WKB does. It provides
an interface between what the user knows, and what the
domain knows. Figure 5.6 shows a small part of the World

Kﬁowledge Base.

2
N
OnuecT . ‘
. N\ .

' ls-A(InsTance 15-A INSTANCE 1s-A INSTANCE
OF OF . OF
”,_JHHL__\\ ‘f,,—f:;:;-~\\

> 2 urrures)
oz ——

Has-A JATTRIB-

ATTRIB-OF

“m Has-
LocaTioN

Figure 5.6: A small part of the World Knowledge Base

138

The lexicon may have the following definitions:

project: (noun (abstractobj/ physobij))
supplier (noun (animate))
supply (noun (physobij))

(vt (cf agent

(object)
(rept)
{location)
: {price)
- (aty))
Each of the semantic markers is defined in the semanti¢ net
as having a collection of attributes, of being attributes of
other objects, and of playing roles in certain
relationships. . :
/ N -
There 1is currently a small set of primitives which“definés
everything in the WKB. Eventually, ' this set could grow to
be quite large. .
B
The current set of primitives includes
animate
abstractobj
physobj .
content-empty
. .

The last primitive is a default for all content-empty words.
Each primitive object has a set of attributes which
describes it in this world model, and these attributes may

be shared with other primitives. A problem with any

139

implementation of a semantic net is that a primitive is only
equal to the sum of its parts, and nothing else. To bhe
truly robust, there must be a large number of attributes, or
a large.set of br{yitives, and an efficient way of following

the links through the graph.

Any object or entity is linked to exactly one primitive, but
may be linked to any other number of entities. Entities are
related to their attributes by symmetrical binary

relationships.

For instance, a physical object may have the following
definition:
physobj: (is-a object)
‘ {has—a identifier)
{has-a location)
{has=-a size)

{has-a colour)
{has-a use)

The IS-A link indicates the attributes of an entity are
inherited from some other entity (or a primitive). HAS-A
indicates the entity has a specific attribute. PART-OF
indicates the entity is an atﬁribute of sométhing else.

Each of the attributes could also be described in terms of
Vs
its characteristics and so an entity inherits the properties

3f its attributes.

140

(size (is-a measure)
{has-a number) :
(has-a size-attribute))
{length (is-a size-attribute))
{metre (is-a length))
{weight (is-a size-attribute))
(kilogram (is-a welight))

Currently the choice of these markazs is arbitrary, created
based on thasé:generally used in the literature (Sowa, 1980;
Harris, lQBS).‘”ThiSvset is expected to grow quite large as
thé size of the world model grows, and as the databases grow
larger. ﬁhile the number of semantic markers in CD Theory
has been kept small, there is a trade-off with respec£ to
processing overhead. As the number of semantic markers
grows, the entfies in the lexicon become more semantic, and
so we tend toward a semantic grammaf. . For instance, a
briefcase might be.described not just as "physobij", but as
"physobi-27", with ?ll of the attributes of a "physobj”, in
addition to those of.some other entity, "physobi-15", whic;
is a hand-held bag used to hold things, and "physobj-27"
also has certain attributes of its own. . One ‘goal of- this

research is to keep this semantic grammar domain~-

independent, so that portability is not compromised.

When the semantic analyzer receives the parse tree, it

traverses the parse tree from right to left, transforming

L

each branch according to appropriate rules which depend on

the semantic focus of the phrase. Objects and their

”~

141

attfibutes tfe han&liq‘separa;ely from relatlionships. For
each branch “Qf the tree, the redhﬁﬁant andéd content-empty
terms are reméved, and the semantic focus is brought to the
‘head of the phrase. For instance, centinuing with the
‘probessing of sentéﬂce 813:

§

(PP {(in (prep)) (london (n sm location))

becomes (location (value london})
and .

(np (red (adj (colour)) {n (part physobj)}) \\¥\~.
beéomes (physobj {part) (colour (value red})))

The fundamental rule of attaching modifiers to a concept is:

Attach a modifier to the most recently referenced
object for which it "makes /sense" to attach that modifier.

Each semantically defined object is stored on an agenda.
Hoéever, before placing it on the agénda, - the chrren; item
is compared to each item already on the agenda. I an item
on the agenda 1is an attribute of the current item, the
agenda item 1is removed and attached to the current item.
.Then, wusing a "first-fit" strateqgy, if the current item is
an aFtribute_ of any agenda item, it is attached to that
agenda item, otherwisé the current item is placed at the top
of the agenda. Once one item is-attéched to another, it

142

Ve

cannot be assigned to any more ltems.

This process suffices for regular, noun phrases and clauses
which contain noun phrases, like relative clauses and
prepositional phrases. _Other types of noun phrases (like
noun-noun modification), require different strategies, and*
these are only handled superficially in QNL at this time by

° - 4
the following rule:)

\‘
\\
Rule 1.

If two nouns are adjacent to one another then
If one. of the nouns is a number then
it modifies the other
else the first noun is a meodifier of the second.

This rule 1is sufficient to handle phrases 1like "London
Suppliers”" and "Flight 57". Marcus describes an algorithm
for parsing noun-noun Todifiers which is more complex than
this, but still is unsuccessful in many cases, and relies to
a large extent on intuitive judgement (Marcus 1980, pg..
251). It was meant to parse phrases like "water meter cover
adjustment screw" (Marcus, 1980, pg. 253).

.__/_\ [}

Basically, the Marcus algorithm attempts to assign one noun

4

to another on the basis of their "semantic goodness”",| which
could be interpreted to mean "if nounl is an attribute of"
noun2, then assign nounl to noun2, otherwise assign noun2 to

nounl. While this works for a phrase like “London flight™,

P~

143

L]

it is not capable of handling "London £light 57", "Tuesday's

London flight 57 passenger list", and neither is QNL.

{(£or all)
((animate (var- 113 supplier))

((.{(location (value london}))))
(bphysobj (var-116 part))

{({color (value green})))) .
((abstractobj physobi (var-115% project)} -«

(({location {(value paris)}}}) '
((physobj (var-114 part)}) ({(color (value red)))))) P

((relationship 1is)
(participle (cf agent (rcpt) (object) (qty) (price))
{lex sell)) ’
(vt (cf agent (object)}-.
(lex use))))
((command is) (retrieve))

Figure 5.7 Domain-independent meaning representation
which is passed to the DKB

S

144

5. ﬁ/? nouns

ONL provides a fairly satisfactory way of dﬁallng with
relative pronouns, interogative pronouns and referential
pronouns that . succeeds 1in a large number of _'casés.
Distributive pronouns 1like "each" and "both" are better
handled as distributive adjectives, Personal pronouns are
basically ignored, although to a user, ' it would appear the
pronouns "I", "me" and "you" are understood. Interogative
pronouns serve as a replacement for the subject of a werb,
‘and are processed by the domain-specific semantic analyzer,

as will be explain;d later,

5.5.1 Referential Pronouns

It is very convenient to use a simple term to refer to a
concept or event which requires a complex linguistic

structure to express:
-~

1

"a monolithic CMOS technology wuniversal counter
circuit evaluation kit" (Tennant, 1980, pg. 115). '

L]

The pronoun "it" provides an abbreviated reference for this

concept. Consider the alternative to -

"Take it and put it in the drawer until it is needed”

145

Referential pronouns like "it", "them", "they", "ones", étc.
make the expression of ideas simpler for a speaker, but they
impose a burden of understanding on the receiver of a
sentence. In‘prdef to underskand what the pronoun refers to
the receiver has to essociatqvfhe'pronoun.*Eith the same
concept as the sgeaker\intended. This is formalized by both
the sender and receiver maintaining a list’ of candidate
cohcepts that were eitHer mentionned or implied by preceding
7

¥
discourse. Although referential pronouns usually refer to

concepts that have come before, there are exceptions:

"Although it was expensive, he bought the windsurfer
anyway." . .

-

)

Fronouns refer to entire concepts, not' just #individual

words: -

!u.; ’
sl4. "Are there suppliers in London with status 252"
sl5. "Which ones sell red parts?" -

The pronoun "ones" is assumed to refer to "suppliers in
London with status 25",- a complex concept. QNL .maintaigg
recgptly-réferred—to concepts in' a queue with the most
recent concepts at the head gnd uses the fundamental rule of
attachment expressed earlier to replace a pronoun wiga an

appropriate concept. Although this is net a foolproof

strategy, it succeeds "about 90% of the time" (Charniak and

146

-

,.
3
-

McDermott, 1985, pg. 596). In database access where users
are ‘requesting information about a small set of different
items at a time, this appears to be a good strategy.

When a referential pronoun is encountered, we compare .it

against each concept in the list. If the pronoun has

‘ * . c,__/'
associrated attributes (egq. 'red ones"), then a potential

—

match is subjected to a further test: the pronoun's

attributes must be allowable attributes of thej'caﬁdidate

‘concept. When a concept is found which hatches the

semantics of the pronoun, it is rgmoved frem thg' éoncept
list, and replaces the pronomial‘phrase in the parse tree.
A little "jiggiing" is required if the yoncept and the
pronoun have phe séme attributes with different values. For
instance, 1if the candidate concept is "blue parts" and the

pronoun is "red ones", the replacement phrase must be "red

L J
parts".
!
slé6. "Which suppliers sell blue parts"”
sl7. "red ones" .

This strategy does not always work the way a user might want

it to. Consider the sequence:

sl8. "List red parts made by projects *in London"
sl19. “list blue ones"

) 147

When parsing _ sentence 819, QNL would find "projects in
london", from 818, to be the most recent concépt; "project”
is defined as an abstract object, and the -WKB defines
abstract objects as being allowed to have a colour
attribute., So the pronoun phrase "blue ones"” is replaced by
"blue projects in London". This would be rejected by the
domain-specific analyzer since the domain knowledge base has

no colour attribute for projects. -

Another example of potential error:

-

. 7
820, "list suppliers and projects in London"
s2l. "which ones are in Parig"

In s21, "ones" will refer to the most recent concept, but
because a LIFO queue is used and the processing of the
P{ES’digg sentence moved from right.to left, the pronouﬁ
"énes" is taken to refer to "ﬁfojects in Paéis", and no
consideration is given to possible ambiguity.
*) k‘)r

In the current implementation, with procesg}ng moving from
right to 1left, this strateqy dces not fin& references to
concepts in the same sentence. To achieve this, it would be
necessary to, postpone the pronocun précessing until all
concepts in the sentence have been recognized. Then it
would be possible to discover the referrent by analysing the

. . o
relationship between a verb and j{pronoun:

" 148

T3

-

822. "Which ones sell red ones to the ones in London?"

Although this has not yet been implemented in QNL, the
process is understood, “and requires a considerable amount of
domain-gspecific knowledge. The semantic analyzer will

recognize the case frame associated with the verb "gell", of

s22, as
SELL (agent,pbject,rcpt,quantity,price)

aff@ the domain-specific analyser will recognize that the
agent of the verb has not been specified,. so will create a
variable called ‘“supplier". (This is precisely how QNL
" currently handles interogative pronouns). The next role in
the case frame reférs to an object which has a colour
attribute, and so the domain-specific analyser would again
be required éo generate an approﬁriate variable. Finally,
the preposition "to" wusually indicates a destination or
recipient, and Eince thé case frame has a recipient role
associated with it, the appropriate vaxiable could again be

generated by the DKB module.
5.5.2 Relative Pronouns and Relative Clauses

Relative clauses fall into three broad types, and are

introduced by either a relative pronoun (eq. "who", "which",

]
149

-

"that"), or a participle, or an ellipsed relative pronoun.

A "defining relative(clauge" |is essential to

the

understanding of a noun phrase as 1t differentiates the noun

from other noun phrases of the same class.

[

"The man whom I saw in Toronto said he was happy."
{
as opposed to

"The man said he was happy."

1

A non-defining relative clause modifies a noun phrase:
H

"Get suppliers who sell red parts."
"...the parts which are used ..."

Finally, connective relative ™myonouns ‘are tpose

continue the content of a sentence. These 5re

whioh

often

replaced by "and" or "but;, although some trangformation

rules may also be required.

"1 asked Bob who said he didn't know."

Relative clauses neeqd not begin with a relative.prongun} but

*
rather & participle or an ellipsed relative pronoun:

"List suppliers who sell red parts."
"List suppliers selling red parts."
"He said (that) he was happy." ’

150

A Relative clause is expacted to contain a verb and a_ noun
phrase, and refers to 'a recent noun (although not

necessarily the most recent).

823. "Get suppliers who are in London which sgell red
parts." . ' .

QNL's strategy for processing a relative claﬁée is shown in
]

Algorithm 2:

Set a pointer to the start of the phrase.
If the first token is a relative pronoun, discard it
and set the pointer to the next token.
If the current token is an adverb (eg. negation),
. push it onto a temporary stack and advance the
—..» . pointer.
Process the current token as a verb, which may or may

" not be theymain verb of the sentence. Advance the
pointer. {~ r

If what remains is a noun phrase, process accordingly,
else mark the relative clause as incomplete.

w

Algorithm 2: Strategy to process a Relative Clause

In séntence sl3, the parser tries to build a relative clause
immediately after the noun phrasg "suppliers”. The parser
recognizes the participle "selling", and so sets a pointer
to that term. The first term is neither a relative pronoun
nor an adverb, so‘the third line of Algorithm 2 is invoked.
"Selling" 1is processed as : verb, and the pointer is

advanced to the next token of the sentence, which is "red".

The phrase beéinning with this adjective is processed as a

151°

noun phrase, and the relative clause is completed at the end
6t this noun phrase. The case frame Ebr "selling" is kept
- separate from the rest of the clause, and the NP "red parts™
is stored on the stac¢k to be procésaed 6}‘ the semantic
analyzer. It will be picked up by the éase frame later.

b
) 3

The next relative clause, "which are in Paris", wiil have
the term "which" discarded, "are" is processed as a verb,
{but not the main verb, since by default all verbs of a form
of "to be" are subsidiary to all other verbs), and then it
is marked as incomplete since what 'follows is a
prepositional phrase and could modify any of the pfeceding
noun phrases. Thé phrase "in Paris" is added to the stack
in the same manner as "red parts"”, and each will be attached
to the most recently referred-to object for which they may
be an attribute, according to the fundamental rule of
modifier attachment, Rule 1. "In Paris" will be attached to
"projects"” since city can be an attribute of projects, but
"red parts" is not an attribgte of anything, so it will be
left as an aobject on the stack, to be atached to the case

frame "SELL".

152

5.6 Conjunctions and Disijunctions
! w

When a conjunction or disjunction- is recogﬁized, it s
stored in a LIFO dﬁ;ue in a normal form. When the next
concept is recognized and added to the agenda, a rule fires
which connects the top two items on bhe,;aenda by the front

element of the LIFO queue.

i

.

The first step in this connection process is to ve?ify'\the
existence of a néunlin both conjuncts/ disjuncts. Iflthe?%
is no noun in both parts, it will be necessary to generate
both a noun and a variable having the'appropriéte - semantic
features. -A collabération between semantic and syntactic
knowledge is required. Figure 5.8 demonstrates some of the
difficulties involved in this collaboration: ~
{f a noun and vgriable are to be generated, the noun must be
semantically 'appropriate. The entity of the half o{l the
conjunction/disjunction is used as a guide to generate a
pseudo-noun, and the semantic analyzer verifies that the
allowable attributes ofythis pseudo-noun are consistent with
the attributes explicit in the sentence. So, for the phrase
number' 6 in Figure 5.8, ‘"red orqblue parts", “"part" is a
physical oabject, "red" 1is a colour attribute, physical
objects can have colour attributes, the other disjunct has a

colour attribute, so it 1is reasonable to generate a

153

"physobj" pseudo-noun called "part". However, if the phrase
had been “red and blue parts", as in number 3 in Figure 5.8,
a rule would simply copy the description of "parts" to the
other conjunct, unless of course there were other

influences} such aﬁ in number 4 which includes a

distributive adjective "both", etc.

"A supplier who sells... \\ f

' "...red parts and blue parts.
"...red parts and blue.”

dx dy 3z (Sx . (Py . Cy,red) . \Pz . Cz,blue)
» (VX,Y » Vxlz))

“

"...red and blue parts."

3x 3y (Sx . (Px . (Cy,red . Cy,blue)) VX /Y)

"...both red and blue parts."”

I« 3y az‘(Sx . (Py . Cy,red) . (Pz . Cz,blue)
L] VX,Y . vx’z)

"...r®d parts or blue parts."
"...red or blue parts."”

Ix Iy (Sx . Py . (Cy,red v Cy,blued.. Vxsy)

T

-

"...only red parts or blue parts.”

3w ax ay 32 (Sx . {(Py . Cy,red) v (Pz ., Cz,blue)

. {(Pw . ~ (Cw,red v Cw,blue))
(Vx,y v Vx,2) . ~ Vx,w)

Figure 5.8. Nuances . of elliptic reference with
conjunctions and disjunctions. S = Supplier, P =
Part, C = Colour, V = Sells.

154

Unfortunately, there 1is- no small set of rules which
cénvaniently handles a large cgllection of conjunctions and
disjunctions like the' referential pronoun rule does.
Although several rules have been implemented, including
those described in Fiéure 5.8, there is a much larger group
of conjunctions and disjuncfions which are not handled. As
'Qﬁe combinations become more complex, the number of tokens

in a sentence which must be considered rapidly increages.

-5.7 Negation ., . L
\’K
Negatives themselves can be a little tricky. It is possible

to negate attributes of objects, parts of sentences or

entire sentences:

"Get names of suppliers who are not in London."
"Get names of suppliers not in London."

"Get suppliers not in London who sell red parts."
"Which suppliers in London do not sell red parts.”

"Which suppliers who sell red parts do not sell
blue parts."

_The attachment of a negation t6 an object<«or relationship is
determined by a lookahead (from right to left) which
attaches the negation to either the top-of the agenda or the
most recent relationship. At this time, only explicit

negation is handled, and double negatives are left as two

negations. /339/hegation 1s stored in a stack while the rest

155

7N
of the phrase is processed normally. Then the negation is

popped from the stack and attached to the front of the

phrase.

Conjunction and negation can also be combined in other

interesting ways:

"Who sells red parts and not blue?”
"who sells red parts but not blue"”
"Who sells all colours but blue?”

5.8 Verbs : \\\\

Verbs in thig system either are content-empty, or they have
one or more case frames, or they are database.commands like
"sort", "find", "list", etc. i
. :) .

When a database command is recognized, it is stored in a
command register and passed straight through to the DKB.
Accepting content-empty verbs like "have" and "are",
requires considerable effort on the part of the NLI. QNL
will hypothesize ‘a-relatidnship based on the objects in the
séntence, as opposed to' forcing a system designer to
anticipatd all vergi and their arguments. A discussion of
how the DKB resolves such implied relationships appears

in section 15 of this chapter.

, 156

Verbs with a case frame ef;r to a relationship between asome
\

domain objects: The qaseeframe makes specific those cases

which play | oblligatory and optional roles in the

relationship. In the earﬂy stages of development of this
prototype, the. general sémgntic analyzer assigned the
objects 1in the sentence to roleézin the relationship, but
this approach has been put aside for now. The domain
semantic analyzer verifigs these role assignments, so doing
it in the WKB duplicated the efforts The current method
results in the output of the general semantic analyzer no£
really being a meanidg representation, since it has left
some of the work undone; however, all of the information
required to generate the meaning of the sentence with
respect to the WKB is stiil there in the form of a list of
concepts, commands in a command register, and optionally,
one or more relationships involving the objects.

At

This implementation 1ignores the concept of time, s0o all

verbs are in either the present simple tense, the present
continucus (auxilliary and participle), infinitive Qr
imperative. Auxilliaries such as "might", "can", etc., are

not handled,

Many NLI do not handle verbs at all. ASK (Thompson and
Thompson, l9§3, 1985) allows only content-empty verbs of a

form of "to be" or "to have". QOther systems consider

157

b
meaningful verbs so cruclal thet "if the range of acceptable

English 1is so small as to exclude verbs, then the uger |is
better off learning a formal gquery language; natural

t al., 1987). QNL

language will not be very usefu%" (Grosz
accepts content-empty verbs as well as domain predicates.
Examples of such predicates are "supply" and "use" in the
Supplier-Parts-Projects domain; "are assigned", "working",
"are boocked", "are certified", and others in the Airline
domain. There are many verbs which have special meanings
within one domain, but are content-empty in other
applications: "available", "able", "get", etc.). |

Kl

5.9 Anaphora

’
Feople frequently speak in grammatically incorrect
sentences, and often they leave out information which is
understood or implied between them, QNL has a limited
abilitylyto accept ill-formed input, and to carry on ‘a
running dialogue. It can correctly handle a sequence

similar to the following:

"Which suppliers sell red patts in Toronto?"
"blue ones"

"yellow”

"to projects in Paris"

"what about green?"

158

Many anaphoric references omit a verb, and this is how QNL
recognizes lte occurrence. The ommissioﬁ pf 5 verb triggers
a set of rules which look at the previous context, and match
the current context with it, If én,object in the currént
context matches an obiect ;n the previous context, those two
are scrutinized for a potential match. If the current
context refers to objects not previously mentionned, the new
objects are accepted, as is. HIE an object was referre§ to
before, its attributes are compared with the previous
context, and if the previous context had more or different
attributes, the different attributes from the previous
context are merged with the current context. It is also
possible to ‘add modifier§ to an object- in the previous
context. Once all possible matches are made, those choices
not elimiated are merged with the current context to
generate a new context. For the user's next question, this

current context will become tQS previous context.

5.10 The Domain-specific Knowledge Base

The objects aﬁd relationships occurring in the database are
described in the Domain'Knowledge Base (DKB) using the same
semantic primitives ;s define the WKB. The DKB is alsoc a
semnatic network. So if we have a relation ™part"”, which

has the gttributes "gize"”, "colour”, "identifier", it would

lor

159

~

be defined in the DKB as a "physobij", and the attributes

which it actually possesses would be explicitly defined.

The domain-specific analyzer receives a hierarchical meaning
repregsentation from the domain-independent analyzer. It
traverses this tree, using a heuristic 1lookahead to
determine which domain objects are being referenced$ We
will continue using sentence sl13 and describe how the DKB
transforms the data structure passed to it from the WKB into
a domain-specific meaning representation, as shown in Figure

5.9.

{for all)
{((var-113 dsupplier (animate)) ({(location (london)}))
((var-116 dpart) (physobj)) ((colour {green))))
((var-115 dproject) (abstractobj)) ((location (paris))))
((var—114 dpart) (physobj)) ((colour (red))})
{{and} ‘
{(dsupply ({var-113 dsupplier (animate))
- {(location (london))))
{{var-114 dpart) (physobi})
({colour (red))})
{(var-115 dproject) (abstractobij))
((location (paris}))))
((duse ((var-116 dpart) (physobj))
{{colour {(green))})
((var-115 dproject) (abstractobj))

_ ({location (paris)))}))
Figure 5.9 Domain-specific Meaning Represe;{;::;ip '
For each object in the tree, QNL determines if the object is

defined in the ébmain. If it does not find the object, it

hypothesizes that it could be an attribute of some other

160

A

1

object. If this hypothesis returns a unique object, then we
assume a successful match and attempt to process 1it. It
unsuccessful, we postpone further processing of that object

until the entire tree has been traversed.

QNL uses already-recognized objects and relationships tg
help guide 1its search. In a narrow domain this is an
effective way of resolving ambiguities, since there is a
small number of objects and relationships, but in a large

>
application, some user-interaction may be necessary.

When it is determined that an object does exist within the
domain, the attributes referred to by the user, if any, are
compared with the attributes actually appearing in the
domain. If the attributes match, then the DKB recognizes
which objeect the user is}referencing.

The user may refer to a domain concept which has more than
one object, and thé process of matching attributes may
eliminate some of the objects from consideration. If more
than one candidate object still remains, then it will be up
to the DBA when specifg}ng the user views, to determine
which domain objects should be returned. This approach is
used in (Waltz, 1978). QONL uses a priocority 1list with
priorities established by the needs of the users and the

characteristics of the domain.

16l

-

5.11 Linking the DKB to.tha WKB

If an objec:\tr relationship exists in a domain which is not
defined 1in the WKB, the WKB must be augmented to describe
this new type of entity. - In this respect the DKB is always
a subset of the WKB. All objects in the domain must be
desribed in terms of the WKB: either in the primitives of
the WKB, or ip‘Eerms of objects which are described in terms
of the primitives. The only exception to this is the
attribute~values which may map directly between a token in

the input string to an attribute in the DKB.

A domain-object may have attributes not generally associated
with those objects in the world model. The domain-specific
definition of ‘"part" may also have attributes which would
not normally be ascribed to parts in general, but are
necessary in the domain. For instance, expiry date,

replacement part, etc.

If an attribute is added to an object which is not normally
part of that object in the real world, one of two things may
happen: the DBA may choose to augment the WKB definition of
the object, or he may elect to add that attribute only in

the DKB.

162

<

If the attribute is added in the WKB, potahtial ambigquity
may be introduced. If the definition is only in the DKB,
extra processing 1is required, but these procedurés are
already built-in ta the system. “\

-~

/

In the SPJ database, supplier, an animate object, has an
attribute called ‘“status". This is not normally an.
attribute of an anfmat; object, so0 if the attribute were
added to the primitive "animate" in the WKB, then every
animate objéct could have a sfatus.
-4

If a wuser asks about the status of parts, the WKB would
reply that parts canﬁot have a status. But this is only
true in this domain, because parts may very well have -q:
status in some other d&main} and so we are compromisind the
WKB, We should allow a user to refer to a concept of
status, and then have the DKB be responsible for expfgining
that parts do not have an attribute of that type.

Status only refers to suppliers with ;especé to a particular
domain. So it would seel more reasonable to define status

only in the DKB.

The preprocessor finds the token "status" in the dictionary,
but 1ts semantic marker will not allow it to be attached to
anything in the WKB. The WKB accepts that "status" may have

special meaning in the domain, and so attaches it as an

163

»

independant object to the tree. At the domain-specific
seé;ntic analysis Bstage, the DKB will match status and
supplier. |

The WKB may need to be augmentéﬁ to expand its concept of
the world. For instance, when the current system was moved
from the Suppliers-Parts-Projects domain to the Airline
domain, it was necessary to add the concepts of day-of-week,
source-location and destination, phone number etc. to the
WKB. The lexicon also had to be expanded to include nouﬁs,

verbs, and adjectives which describe objects in the domain,

such as flights, aircraft, passengers, etc.

Some of these concepts should be permanently added to the
WKB, others may only be application-specific additions. A
program could be created to access existing WKBs and use the
knowledge of similar domains to gquide the érocess of
augmen;ing an existing WKB for a new domain. Peoﬁ?e
accumulate a large amount of knowledge ovet time,r but
occassionaly we have to be reminded about things which we
may forget. . We could conceive of the WKB storing knowledge

which is not very useful in a specific application in a

- secondary memory, which could be called in when appropriate.

The knowledge would always be there, just not wused in

certain situations.

164

Finally, there must be a way of transforming the concepts of
the WKB to the concepts of the DKB. This is essentially a ———
mapping function, where ‘the WKB concepts either 'havp an
associated object or relationship in the domain, or not. 1f
there 1is an association, it must be specified what the

mapping is: 1:1, or m:n. . These associations must be made

explicit.
11 = wl —»Cl dl
12 w2 Acz d2
13 3> 5 C3 ~><_ad3
1 wé cd d4 ,
15 wS c5 das
16 w6 c6 - d6
171 w'?-j_ . c? ~»d7
In wn . cn dn
lexical WKB DKB DKB
items concepts concepts objects and

relationships

Flgure 5.10: Mapping of lexical items to WKB concepts,
and WKB concepts to DKB concepts

Some of the lexical items are content empty and so are not
used to refer to WKB concepts; some lexical items will refer
directly to DKB concepts without referring to the WKB. It
is also possible for many lexical items to refer to a single

WKB concept, and for a lexical item to refer to more than

one concept.

165

’

Each WKB concept may refer to 0, 1 or n DKB concept, and a

DKB concept may be referred to by'l or moré WKB concepts.

Each concept in the DKB will refer to objects or
relationships, or attributes of them. Again, the mapping
could be m:n, but note there must pot be a DKB concept which

does not map to some relation in the DKB.
5.12 Database Values

In any database environment, users could be expected to
refer to objects by their attr}bute values. If all of these
values are stored in the lexicon, the lexicon will become
extremely large, and it will bé duplicating information in

the database.

If the user is asked to define each value as it appears in a
question, there 1is the potential for user frustration and
also for the wuser to introduce errors by incorrectly
describing the semantics of a value. A trade-off then is to
store value sets and frequentl;_ggcurring values in the DKB
where they can be accessed by, the lexical analysis stage.
Further, thére are certain WKB concepts which could be
considered as values in a database, like day-of week and

Ebibur, which could apply to any domain. These concepts are

explicitly stored in the WKB, - res

166

5.13 Transporting to a New Domain

The degree of portability.of‘a NLI depends on how the system
designers view the problem of accepting new dbmains, new
DBMS, new dgrammars and languages, different computer
systems, » etc. For the purposes of this study, we o;ly
consider the introduction of a new domain.

The:e' appears to be a trade-off between robustness and
effiqiency of the natural language understanding component
on ﬁhe one hand,. and ease of portability on the other.
Systems.such as PRE {(Epstein, 1985), CO-OP (Képlan, 1984) do
not have strong NL understanding capabilities, but
transporting to a new domain is a matter of a few hdurs.
TEAM (Grosz et al., 1985, 1987) and ASK (Thompson and
Thompson, 1985) emélby extensive software aids to acquire a
new application, and the Ginsparg system (Ginspaz’g, 1983)
requires a person knowledgeable of the NLI to assist the
process. The degree of portability is gauged by the time
and effort required to complete the task: " the knowledge and
skills required for the task, and the degree of success of
the understanding of questions in the new domain.

The PRE system (Epstein, 1985) does not require a computer
program nor a person familiar with the NLI to perform the

operation. As with other NLI which are basically a mapping

o

167

between attributes, objects, valﬁes and a dictionary, like
ASK (Thompson and Thompson, 1985) and CO-OP (Kaplan, 1984),
the process 1is relatively straight forward, requiring a
matter of hours even for a non-trivial database. Ap the NL
processing knowledge base evolves from schema-mapping or
table lookup to a more robust conceptualization, portability
becomes more difficult, and so extensive tools or expertise
is necessary.

&

5.14 Designing the domain-specific Knowledge Base

The design process 1is not unlike the designing of the
database itself, in that the objects, attributes, value sets
and relationships must be specified. Since we are employing
semantic nets as the formalism, it is a straightforward
matter of transferring the concepts from a data design model
like SDM or the E-R model to the semantic net. The
relationships are kept intact, but alsoc new connectiong are
recognized and implemented to reflect the different ways of

viewing the domain.

A major difference between QNL and conéeptual design models
is 'that primitives in QNL are high-level objects like
physobj, animate, etc., while in database design models the
primitives ~are typically low-level objects 1like string,

char, integer, and so on.

168

The value sets particular to a given applicatlon must be
specified in the DKB, 8o that the semantic analyzer may use
them to make inferences about attaching those values to
objects and attributes. But rather than specifying them in
terms of char and integer, we are interested either in the
range of values (S0001 to $9999 for a range of identifiers),
or the form of the values (999-9999 for a phone number)

({Damereau, 1985).
5.15 Capturing the Semantics of the New Domain

To demonstrate the portability of QNL, the front end was
attached to a new database other than the ones tested during

the design of the system.

The University conceptual model is structurally different
from the Suppliets-Patts-Projects database (SPJ) in that -
there are two relationships instead of one, and each
relationship has only two participants. The number of
attributes of each entity has been kept small for
demonstration purposes, but the attributes wer hosen to
show how ambiquity 1s handled ("location" in SP?%r:nd "name"
here). From start to finish, the introduction of this new

domain to QNL took four hours. Figure 5.1l shows an entity-

relationship diagram for the Gniversity database.

. 169

student student course
name number name

student stu-cours course
course
code
" teach-
course
P
' teacher
name
teacher

Figure 5.11: Entity-Relationship diagram for a simple.
: University database

The wuse of the E-R diagram here is for demonstratian
purposes only, and not because it is necessarily the "best"

. 4 . .
data dedign madel to be used in this process.

The first step is to construct% a graph with the objects as
nodes and the relationships as labelled arcs between them.
The names of the nodes and arcs are inconseguential, as long

as they are unjique. identifiers. Each node is defined . in

170 =

terms of some object in the WKB, and has some specific
attributes which are defined in the DKB. The IS-A link
'éonnects the object to the WKB, and the HAS-A links connect
the attributgs to the object. The inverse of HAS-A is
ATTRIB-OF, aﬁa all attributes are stored in an inverted list
linking them to their objects. Each attribute in this list.
may also have properties which are connected to it by IS-A

and HAS-A arcs. All links between objects and their

attributes are symmetrical.

Objects and attributes must be defined in terms of the WKB.

For instance:

teacher is-a human
has-a cffice

What is an office? It is more than just a location, since
it holds furniture, probably has a telephone, is a heeting
place, etc. it must be linked to the WKB so that it 1is
explained in terms which both the user and the database
understand. Qur chosen solution here is to define it as an

-abstract cbject in the WKB: .

office is-a abstractobi
has-a location

- - ’
At «this stage, a more detailed description of office 1is

unieccessary.

171

Objects are explicitly linked to other objects by the roles
they play in relationships\) This role actually has nothing
to do with the enterprise schema, but is important for the
natural language understandiné process. Students and
courses are related because students register in a course.'

This can be described as
stu-course (student, course)

What roles do these objects play? This depends on the
semantics of the relationship. In the case of ambiguous
semantics, all interpretations will be specified. Each
relationship has compulsory and optional participants; the
use of the compulsory ones aiding in the resolution of

interogative pronouns.

The definition of relationships is symmetrical: The role an
object plays in various relationships is defined, and the
relationghips are defined in terms of their participants.
There may be more than one way of perceiving a relationsh;p,
and sometimes this may not map l:1 with the relationships of
the domain. In such a case, it is necessary to define a
special relationship which 1is a subset of a domain
relationship, and then map it to that relationship. The
mapping occurs in the DB mapg&ng module which occurs after

the NLI. -

172

A real implementation would need to access the database to
build value sets, and for this domain, the value sets are
obviously large: the set of Qalid student numbers, and the
set of person names. It is not appropriate to store all of
these values in the KB, but a range could be specified for
the student numbers. The problem of handling people's names
could be solved by a-storing a set of valid person-names in
the WKB or DKB. It should always be possible for the user to
add new names interactively. Although the number of people
may be large, the vafiety of names is not as large, and so
we could adopt a coEXention of storing frequently occurring
values 1in the KB. For instance, the entries "smith" and
"roy" need only occur once, but could account for a lg;ge
number of attribute values in the database. As the size of
the database grows, the size df the.value sets for some
objects or attributes will grow less fast than the number of

occurrences, as shown in Figure 5.12.

number of occurrences

number of different
names

Figure 5.12: Relationship between number of occurrences
of entities, and the number of different names.

173
%

e -
ey .-

Some value sets are specific to a domain, and should not bhe
added to the WKB. In the University domain, these would
include the.range of student numbers, course codes, office
numbers, etc. The chosen approach ié to maintain a list of
special terms which map directly from these values to
attributes in the DKB. The WKB does not try to interpret
the semantics attached to these values. So, for instance,
in the airline domain, if a user asks about a B747, the NLI
will recognize.it as a value of an attribute called "model-
no". Likewise, in the University domain. the value CSC1l13

will be mapped directly to "coursecode".

The lexicon must be expanded to accept the words which
describe the new domain. 1t already has a store of closed-
class wordg such as determiners, prepositions, conjunctions,
etc., as well as a number of content-empty verbs (do, does,
has, have, 1is, are). There are few nouns, so this is the
first part of the lexicon to be expanded. We need to know
all of the nouns which will be'used to refer to the objects
in the domain, and so we choose one noun which links
directly with a WKB concept, and then define synonyms . for
it. Some synonyms may refer to several links, although in a
narrow domain, this shoyld not be a problem (Blanning,
1984). If an ambiguous term is found, either the WKB will

resolve 1t by intersecting its knowledge about the other

. 0

174

items referred to in the sentence, or interaction must occur

with the user.
p

The WKB concepts are 1inkedlto the DKB via a DKB-map, and
the mapping may be 1:1 or m:n. The map is not crucial to
the success or failure of the understanding process, but it
certainly improves the efficiency by narrowing the search
area. In those instances where the map cannot be used
because no WKB concepts were referred to, the value sets are
scanned for hints about the DKB concepts, wusing either the
value or form of the tokens. If this doesn't work, then an
exhaustive search of the DKB objects takes place, 1looking
for seméntic closeness between the semantic focus of the

user's expression and the domain concepts.

The relaﬁiohships in the domain are referenced by case
frames, and the lexicon is augmented by the addition of
verbs and the case frames to;which they refer. Synonyms
will refer to a case frame, and this case frame will .either
map directlytto a case frame in the DKﬁ, or one of the DKB

Telationships will be a subset of a WKB case frame.

It 1is also convenient to introduce content-empty verbs into
the 1lexicon which make the use of natural language more
convenient. Some of these verbs could have multiple case

frames, but rather than define all possibilities (and risk

175

‘errors), the understanding of the relat{gpship is left to
the DKB, which looks at the attributes to discover an
impli=d relationship. Such ambiguous verbs include "take",

"availablg", "go", "offer", etc.

5.16 Implementation and Testing

)
In the early stages of the development of WNL, a variety of

question forms were tested to determine how to handle
different grammatical and semantic structures. Three basic
guestion types are summarized below, and examples are shown

*

in Appendix D.

1) Simple questions about objects and their attributes.
s23. "Get suppliers in London"

a24. "Get names of passengers"”

In sentence 23, the prepositional phrase is an attribute-
value which modifies the preceding no@ﬂ, while in sentence
24, the noun, "names", is an attribuée of the focus of the
following prepositional phrase. The fundamental rule of
attachment, as described earlier, is sufficient to handle

both types of structures.

2. Explicit relationships between objects.

525. "which suppliers sell red parts"
s26. "which passengers are boocked on flight 57 on Tuesday"
s27. "who teaches c¢sclll”

176

The verbs "gell", "are'booked" and "teaches" trigger case

frames with' appropriate roles to handle the cbjects

mentionned in the guestions.

3. Implied relationships between objects.

s28. "get suppliers of red parts"
s29. "get me a flight to london on Tuesday"
530. "which students are in cscll3”

The user has not used a verb to specify a relationship
between the objects in the question, so it is up to the
system to determine what the relationship is. 1In the second
question, the wuser 1is probably not even aware that an
implied relationship is involved (Flights have destinations,
but Departures have departure dates. A Departure 1is an
instance of a Flight.) The WKB will identify the objects
and - pass them on to the DKB. The DKB will recognize that
more than one object has been mentionned, and so search the
N ‘

semantic net for relationships between the objects.

The ability to, accept implied relationships is <c¢rucial to
the success of an intelligent NLI because it truly frees the
user from having to know about the structure of stored data.
Embellishments to these basic question types as described in
Appendix D include the use of pronouns, predicate
adiectives, relative clauses, anaphora, conjunctions,

disjunctions and so on.

177

Once the NLI was suitably configured to handle th2se 3 basic
question types, an experiment was tried with a group of
12 "naive" users. These people were undergraduate business
students in an introductory microcomputer course. Although
they weré by no means database experts, ‘they were somewhat
computer literate, and understood the purpose of a NLI to a
database. None of them had ever seen the Supplier-Parts-
Projects database, Although a "snapshot" of the database
was presented to them, none of the volunteers referred to it

while making up their questions.

Each participant was given a list of imperative commands for
the database, examples of which are shown in Figqure 5.13.
Each command was in a standard form, and they were asked to
create two (2) different ways of igsuing each command,
either in imperative, interogétive or declarative form.

1) Get full details of all projects in London

2) Get the projects for which sl is a supplier

3) Get the suppliers who supply a London or Paris project
with a red part

Figure 5.13: Sample queries in imperative form on the
Suppliers-Parts-Projects database

Some of the forms of question 2 in 5.13 as asked by .the

-

é

subjects included:

""sl supplies which projects?" .
“sist projects sl supplies® '\
"which projects does sl sell to?*

178

N e e

Each 'participant wrote the questions on a sheet of paper,
and these were tested with the program later. This way, the
particpants were not frustrated by minor bugs in the

program, but they alsoc missed out on important feedback.

Figure 5.14 shows the results of the test on the Suppliers-

Parts-Projects database:

Q% Declar- Imper- Interog. Other ; %
ative ative pronoun interog total correct correct
1 2 9 S 0 16 13 81.25
2 1 4 12 0 17 17 100.00
3 0 4 12 0 16 14 87.50
4 0 6 7 4 17 15 88.24
5 1 4 9 0 14 13 92.80
6 0 5 1l 1 17 4 23.53
7 1 4 8 0 w13 12 92.31
8 1 6 7 0 14 12 . 85.71
9 1 4 5 1 11 5 45.45
10 1 4 9 0 14 11 78.57
totals 8 S0 85 6 149 116 77.85

Figure 5.14: Results of test queries on the
Suppliers-Parts-Projects database

The participants developed patterns which they adhered to°
rather rigidly, and their phrase structures did not deviéte
much from the samples they were given. The lack of
immedi4ate feedback meant that they could make the same error

in several queries without being aware of it.

179

The. types of errors made which prevented QNL from processing
the query included syntax violations {use of contractions
and punctuation wag not allowed), and the use of
quantifiers. There were many instances of ill-formed
guestions, including verb-subject mis-match and number
agreements, but QNL handled many of these. Two questions
resulted in very low success rates because the samples were
'ill-formed, and many of the students simply copied the

phrases from the samples.

As was mentionned in the introduction and cited in Tufig and

Cristea (Tufig and Cristea, 1985%) and Thompson, (Thompson,

1980), an effective way of training a set of users on the

use of a natural language interface ig to present them with

a set of sample questions. After a very short period of
- "

study, wusers will naturally fall into certain patterns of

usage. This phenomenom was observed during this experiment.

For instance, for the sample question

L

"Who supplies a London or Paris project with a red part?”,

7 out of the 10 people who tried thiszquery used the exact
expression "London or Paris project with a red part", even
though they were instructed to come up with different ways
of asking the question. This tendency was especially

noticeable as the questions became more complex:

180

For example,

"Get the projects not supplied with angﬁ{gd part by anv

london supplier”

saw the partial sentence "not supplied with any red part by
any london supplier" repeated 4 out of 11 times, ‘'which

projects are not supplied", 5 times, and the phrase "london

suppliers" 11 times.

To test the transportability of Ehe interface, QNL has been
tested with two other domains: a university database with
information about professors, students and courses, and an
airline database, with information about flights,
departures, employees, passengers, and aircraft. The same
types of questions were asked of each domain ak were asked
of the Suppliers database. This was done to verify tﬁat the
language understanding capabailities were transportable. 184
different types of questions had been asked in any one of
the domains, then we could not be certain of complete
portability. In other words, if a question type works in
only one domain, it could be that the peculiaritigs of that
domain allow an 1interpretation that is accidentally
correct. This 1is possible because QNL will always try to
build some interpretation of a question unless certain pre-

determined rules are violated.

181

Moving to the university database required approximately
four hours of programmer time, including building the domain
semantic net, and augmenting the lexicon and world knowledge
base with more world knowledge. Sample queries are shown in
Abpendix D. The semantics of both the univsity domain and
the suppliers domain are relatively simple, with a small
number of entities joined by fewer relationships. The

semantics of the airline domain were another matter.

In the airline domain, any single query could require many
relationships to be inferred, and the procedures of the
domain-specific semantic network were not sufficiently
robust to handle multiple inferences. However, when the
DKB was reconfigured to reduce the number of relationships
(but still retain "the semantics of the domain), the
performance of the NLI improved considerably. Thus, the

problem obviously lies with the DKB semantic net procedures.
%.17 Summary

The process of 1introducing a new domain involves
characterizing the objects and reiationships in terms of a
semantic network called the DKB, which has a few links to
another semantic network called the WKB. Value sets are
described so as to map d@rectly tc either WKB concepts like

"name”, or to DKB attributes. The lexicon must be augmented

182

to include all of the terms and synonyms used to refer to
the domain. These terms are either content-empty or are
described in the sgemantic net,' and linked to domain

concepts. The domain concepts map m:n to objects in the

domain.

The final stage is to test the NLI with users of the domain.
In the case of the Un%veréity database, the testing waﬁ
quite successful with the major exception of the handling of
conjunctions and disjunctions. It is apparent the combined
syntax-semantic rules which worked in the SPJ domain are not

transportable.

A third domain was investigated as part of this thesis, one
which 1s much more seﬁantically rich than either the SPJ or
University ;pplications: that of an airline domain. The
procedures to answer simple questi?ns about objects and
attributes, objects expressed only by attributesJ aor
attribute-values, and explicit relationships worked as well
as in the SPJ domain. Also, negations, pronoun regerences
and'anaphora were correctly processed. The problems emergéd
with impl\ed relationships and complex relationships, and
this. failure is directly attributable to the DKB procedures
which manipulate the semantic net. In orderlto reduce the
pessibility of wunrestrained inferencing in ‘the” Eeméntic-‘

b -

network which could lead to severe inefficiencies,

183

manipuiations—df:the net are guided by "a priori" knowledge.
Tﬁé procedures) look for speqific links, and _gmly\ follow
these . 1links a pre-determined distancg; Tharefore, the

often never fiﬁd' a correct ingerence, but return- wiﬁ%

.whatever information was at their Ffurthest ﬁode. These

procedures wiil have to be untethered to respond better to

their environment.

Unrestfa;ned inferencing may not be a problém with respect
to database access because there are few osject types.which
are of interest in any domain, although - there aré many
occurrences of each type. The current iﬁplementatibn'of the
semantic net ‘'was :Eurther cohstgained by the memory
limitations and:CEd speed of the machine, aﬁd so compromises
were made at the expense -of robustness. A future
implémentation"mgst' allow data-driven infe;encing' in a

semantic net of arbitrary size.

184

" Ghapter 6

b

Concluding Remarks
6.1 Conclusion

This thesis has studied the issues in the design of a
transportable.,nafhral'language database ingerface. After
completing a survey of recent transportable Nf£I, a modular
design was decided ypon, and a prototype question-answering
sygtem was'impiemented on an IBM‘PC/XT using TLC Lisp;

This is a queétion—answering systém in that users form
questions or give commands ih natural language that will
result in 'tbe retrieval of info;mation Lﬁrom a database.
Commands such as "sort" and "couﬁt" are'supported, as Qell.
as Yes-No questiohs, Wh questioné, and explicit requests for
the retrieval of information. It is not possible at this

time to use this system to update a database.

The prototype, "Queries in Natural Language" (QNL) divides
the process. of understanding a natural language question or
command into three distinct stages: syntax analysis,
- domain-independent semantic analysis and domain-specific

semantic analysis. Each of the steps uses particular types

185

b

-

of -knowledge,‘. divided into declarative and. procedural
modules. |

I
+

In the Hdyntax analysis stage,. a deterministic, dne-path
parser, modelled aftef the ideas of Marcus (Marchs,‘ 1980)
was implemented. A one—ﬁhth'parsef was chosen to constrain
the overhead caused by local émbiguities, both syntactic ‘and
semantic, and therefore imgr;ve d?erall efficiency by
reducing the améunt of work to -be done in -the semantic
analysis stage. Thé'parser recognizes tokens in the input
stfeam and groups them into phraﬁe structures. The types of
tokens include content-empty words, nouns and adjecgives

4
which refer to generic concepts, conjunctions, disjunctions,

pronouns, and verbs.

The domain-independent semantic analyéer, oT Wgrla Knowledge
Base (WKB), consists of a semantic network, and a set of
procedures which operate on the network. The semantic neé
formalism Qas chosen to proJide an inheritance hierarchy,
and to be used as a tool for infe;eﬁce making. All objects
in the world model are specified as instances of certain
primitives, liké.physical objéct,‘ human, and so on, with

attributes particular to the object.

186

~,
”

Semantic nets have been extenslvely used in natural language
systemsf and havé bgen uged in -conjunctian with ‘C;se o
Grammars. They were initially designed as inferétbing
;tools, providing an inheritance hierarchy, and simple means

of recognizing objects by th ir attributes, testing for setf
membership, determinirg similarities between objects, and.so+_:
on. . Semantic n;ts have been usedléuccessfully in severai
recent NLI, and so for these reasons, this férmalism was -

" deemed to be ‘an appropriate knowledge.qepresentation ‘scheme
for. QNL. The knowledge in the‘ngt is déclarative, and ii
was an obgective of this thesis to 'separate~‘declarative
knowledge from procedural knowledge as a means of attaining L
portability. The procedures which manipulate the semantic
net ar# independent of the entities and Eelationships of ‘the
network. l

The 'domain—independent semantic anAlyzer.attacheé modifying
phrases according ;d a "first-fit" strategy encompassed in a
fundamental rQle: * Attach a médifying phrase to the most ‘
recently referred-to object to which ié 'makes sense to ‘C&‘-
"aptach the modlfier. The WKB ig also ‘respohsible for
resolving .eliipsis, anaphora, and pronouns other . than

A

interogative pronouns. A set of rules to handle conjunction
’ N\
and disjunction was implemented, -but it later became obvious

that no small set of general rules could handle this issue.

*

187

) : A :
The WKB passes a tree-structured meaning representation _to

¢

the . domain-apecific knowledge base (DKB). - This is another

i

which verifies the existence, within.,the

semantic ne

domain, of\the entities, attributes, .and relationships as

determined by. the WKB, I%;erogatiﬁe pronouns are Ee;olvéd
‘here, " as are other ambiguities Which.could only be resolved
using domain-specific ‘knéwledge; such as implied
relationships. The output of the DKB is an.expressioh.which
could be . ;ransfofmed. into a relational calculus 5:1

relational aigebra expression, or even directly into the

data manipulation” lanquage of a database management system.

~

Trahsportability is- achieved by changing the declaraﬁive
knowledge in t¥e DKB; the procedures which manipulate the
domain semantic net are left untouched. Curgéntly! thelWKB
is still small since it is only at the prototype stage, so
.it is necessary to also augment the declarative knowledge

within it, but the effort required to do so will reduce as

the WKB grows.

-~ ’

The system was tested by moving the NLI to two other domains
-other than the original one used in the design process: a
university database (Appendix B) and an ‘airline database.

(Appendix C).

188

(o

For the university database, a -fairly simple, but

-

structurdlly {and ‘semantically)"—aissimilar, domain, JQNL.

worked succesﬁfully within 4 few hodrs of initiating the
transportatjon process. For the airline domain, which was
mg&h:more'CSmplex,}although\thé_simple questions like asking
about objects and their attributes worked conq}ptently,lmore
" complex queries, for instance involving implied
relationships among several entities, failed. - These
failures are direétlf attributableito weaknessés in the
procedures which manipulate the semantic networks.
Currently, these procedures are limited as to the nupber of
links which gay be followed in a search for information.

%

6.2 Future Work'

'Future work with respect tq‘fhis research should‘focﬁs on
three (3) areas. First, ‘the NLI should be applied to real
database management syétgms. That is, while analysis shows
the output of the DKB to be correct aﬁd useful, we 'st{li
need té study the prdcess of transforminé these exprqssions

into those which can be manipulated by 'a DBMS. The

procedures to do this will require knowledge of both the

files .and reccrds of the database, and the entities and -

relationships of the DKB. It will BaSibally be a mapping
between these two types ?f knowledge, but may also 1inc¢lude

query optimization.

189 A

N

. - -

The procedures which manipuiate the semantic nets must. be

improved " to allow probing through more 1links than is

currently permitted. ' These procedures were purposely’

constrained for efficiency considerations, but practice has

shown first that it is seldpm necesaafy to search through

large areas of the. networks, and second, that when

significant inferencing is required, artificial constraints’

-are unacceptable.

More work must be done on the grammatical and semantic

analysis to improve - the “handling ' of conjunctions,

disjunctions and pronouns. Work must also be done on”

%fmplex phrases involving comparatives like "between" and

"greater than". As was explained in -Chapter 1, the

applictation of syntac?ic"and semantic analysis should

cooperate in the understanéiﬁg process. There aré\ times
when syntax dégs best, and times when semantic adélysis"is
'ﬁore useful. .'Theiéevelopment‘of any language uhderstahding
pfocess requires -fgrmal,decisiéns about how and when. to

apﬁly these differeht types of knowledge.

" Natural larguage communication with computers will make it

easier for people to use computers and access complex

information, but the process of dnderstanding precisely what

L]

a user wants is difficult to achieve. As many researchers

have already pointed out, tailoring g‘NﬁI for . specific

190

.
LSO

appiica;iona‘is an effective way .of allowing easy access to
5 computer, but it is noé‘necessarily true‘undefstanding of
language. This latter task is much: moré compiex,- and
‘requires a concentration of efforts by linguists, éomputer
gscientists, psycﬁologists and others. ' Tpis thesis has been

a small étep on a long,_long road.

- !

4

191

S

AN

Raferences \\

Addis,T.R, Designing Knowledge-Based Systems, Prentice Hall,
. - ’

Englewood Cliffs, New Jersey, 1985.

Ahq, -A.V., and Jeffery D. Ullman, The Theory of Parsing,

\\EHEE nslation and Compiling, Prentice Hall, Englewood Cliffs,

"y

y-

New .Jersey, 1972,

Barr,. Avr and Feigénbaum, Edward A., The Handbook of

<

Artificiagl Int iligence, William Kaufmann, Inc., Los Altos,
1 .

California, vVol. I, 1981.

Berwick, Robert C., The Acquisition of Syntactic Knowledge,

The MIT Press, Cambridge, Mass., -1985,

Bibel, W. and Petkoff, B., Artificial Intelligence:

Methodology, Systems, Applications, Proceedings ¢f the

International Conference on Artificial Intelligence:
_Methédology, éystems, Applications (AIMSA '84), Varna, .

Bulgaria, (North Holland), September, 1984.

i
L4

Bic, . Lubomir and Gilberﬁ,' Jonathan P., "Learning From AI:
- . 'd
New Trends in-Database Teechnology”", IEEE Computer, March,

1986, pp. 44-54.

Bobrow, D.G., "Natural Language Input for a Computer

Problem-Solving System", in Minsky, Marvin (ed.) Semantic

Information Processing, MIT Press, Cambridge, Mass.,1968.

192

-

Boguraev, B.K., and Sparck-Jones, Karen, "A Natural Language

- Analyser for Database Access",” Information Technology:

Regearch and Development, 1982, pp. 23-29.

----------- " "How to Drive a Database -Front End Using
General Semantic Information," Proceedings™~of the 1983
Conference on Applied Natural Language Processing, i983,'pp.

81-88.

Bruce, Bertram, "Case Systems for Natural Language",

Artificial Intelligence, Vol. 6, 1975, pp. 327-360.

Carbonnell, James G., Mark W. Boggs and .Michael L. Mauldin,
"XCALIBUR Project Report 1: * First Steps Towards an
Integrated Natural Language Interface", Department of

Computer.Science} Carnegie-Mellon University, 1983.

Castro, Luis, " Jay Hanson and Tom Rettigqg, Advanced

Programmer's Guide Featuring dBase III and dBase II, Ashton

Tate, Culver City, California, 1985.

Charniak, Eugene, "A .éommon Representation for Problem

Solving and Language Comprehension Information", Artificial

Intelligence, Vol. 16, 1981, pp. 225-255.

L]
-
. - 4
————=, and Drew McDermott, £§lroduction to Artificial

y

s
Intelligencte, Addison-Wesley ?ﬁblishing Company, = Reading,

"Mass., 1985.

4

. B o 193

Chen, Peter Pin-Shan, "The Entity—Relaéionshiﬁ Model -
Toward a Unified View of Data", ACM Transactions on Database

Systems, Vol. 1, No. 1, March, 1976, pp. 9-36.

. S

----- < “"The Entlﬁy-ﬁelationship Model - A Basis for the
Enterprige‘ View of Data", Proceedings of the AFIPS
ponference,_ National Computer Conference, NCC—??, 1977,'pp.
77-84. ’

Chomsky, Noam, Syhtactic Structures, Mouton, The Hague,

Netherlands, 19%7.

» Aspects of the Theory of ~Syntax, MIT Press,

Cambridge, Mass., 1965.

Craig, "J.A., Berenner, S5.C., Carney, H.C., and Longyear,
C.R., "DEACON: Direct Eﬁglish Access and Control",
Proceedings of the Fall Joint Conference, Montvale, New

Jersey, AFIPS Press, 1986.

Damereau, Fred J. "Problems and Some Solutions 1in
Customization of Natural Language Front Ends", ACM
Transactions on Ofice Information Systems, Vol. 3, No. 2,

April, 198S pp. 165-184. .

-

194

N

Cuilingford,*~ R.R., and Mallory Selfridge, "Real-World
Natural Language Interfaces to Expert Syqtema", Proceedings,
‘Trenas and Applicationsﬂ_ 1983: Autoﬁqﬁing Intelligent
Behaviou; prplications and Frontiers, IEEE, Galithersburg,

Maryland, May 25-26, 1983. pp. 89-93.

Date, C.J., An Introductioh to Database Systems, 3rd

Edition, Addison~Wesléy Publishing Company, Reading, Mass.,

1982, pg. 1l14.

Earley, J., "An Efficient Context-Free Parsing Algorithm",

Communications of the ACM, Vol. 13, 1970, pp. 94-102.

Epstein, Samuel S., . "Transportable Natural Language
Processing Through Simplicity - The PRE System",
Transactions on Office Information Systems, Vol. 3 No. 2

April, 1985, pp. 107-120.

Fillmore, Charles, "A Case for Case", in Bach, Emmon and R.T

Harms (ed.) Universals in Linguist%c Theory, Holt, Rinehart

L g

and Winston, CBS College Publishing, 1968. !}

Findlar, Nicholas V., ed. Associative Networks:

Representation and Use of Knowledge by Computers, Academic

Press, New York, 1979.

Friedman, Joyce, Bredt} Thomas H., Doran,Robert W., Pollack,

Barry W., and Theodore S. Martner, A Computer Model of

Transformational Grammar, American Elsevier, New York, 1971.

195

Frost, R. A., ""Using Semantic Concepts to Characterise
Various Knowlwdge Representation Formalisma: A Method of
Facilitating the: Interface of Knowledge Base System

Componentsg", The Computer Journal, Vol. 28, No. 2, 1985%, pp.’
112-116.

e
éinsparg, Jerrold M., "Natural Language Processing in an
Automatic Programmihg"meq;n", . (Phd. Thesis) Stanford

University, Department of Computer Science, 1978.

Gingparg, . Jerrold M., "A Robust Portable Natutal Language
Database 1Interface", Proceedings of the Conference on
Applied Natural Lanquage Processing, Association for

Computational Lingﬁistics, Feb. 1983, pp. 25-130.

Griffith, Robert L., "Three Principles of Semantic Nets",
ACM Transactions on Database Systems, Vol. 7, No. 3, 1982,

pp. 417-442.

*Grishman, Ralph, "Natural Language Processing", Journal of
‘the American Society for Information Science, vol. 35 No. 5,

1984, pp. 291-296. ‘

————— ' Hirspﬂman, L., Friedman, C.; "Isclating Domain
Dependencies in Natural Language Inéérfaces", Proceedings of
.the Conference on Applied Natural Language Processing,
Association for Computational Linguistics , February, 1983,

pp 46-53.

v 196

drosz, Barbara J., "Pransportable Natural Language
Interfaces: Problems and Techniques", Proceedings of_ the
Conference, 20th Annual ﬁeéting of the -Association for
Computational Linguistics, Association for Computational

Linguistics, June, 1982, pp. 46-50.,

————— , ‘"TEAM: A Transportable Natural‘panguage Intérface
' System", Proceedings of. the Conference on Appliqd Natural
* Language .Processing,' Association for Computational.
Linguistics ' Feerary,'1983, bp.39—45.

-----~, Appelt, Douglés E.., Martin: Paul A., and Pereira,
Fernando C.N., "TEAM: An Experiment %n'-thé Design af
Transportable Nétural Language Interfaces", Artificial
Intelligence, Vol.'32; 1987, pp 173-243.

. - . -]
QU}da, Giovanni_and Tasso, Carlo, "IR-NLI: An Expert Natural
Language Interface to Online Databases", Proceedings of the
Conference on Applied Natural Language Procegsing,
Association for Cbmputational Linguistics , February, i983,

pp.31-38

Hafner and Godden, "Portability of Syntax and Semantics in
Datalog", ACM Transactions on Office Information Systems,

Vol. 3 # 2, April, 1985, pp. 141-164.°

Hammer, Michael and McLeod, Dennis, "Database Description
with SDM: A Semantic Database Model”", ACM Transaétions on

Database Systems, Vol. 6, No. 3, 1981, pp 351-38l.

197

‘Harris, L.R., "The ROBOT System: Natural Lanquage Processing
Applied to Database Query", in ACM 78, ~Proceedings of the
1978 Annual Conference (Washington, D.C., Dec. 1978), ACM,

- New Yo}k,.pp._165-172.

----- , "Experience with ROBOT in 12 Commercial Natural
Language Data Base Quéry Applications“, International Jgint

Conference on Artificial Intelligence, 1979, pp. 365-368.

Harris, Mary Dee, Introduction to Natural Language

-

Processing, Reston Publishing Company, Inc., Reston,

Virginia, 1985.

Hendrix, Gary G. and Lewis, William H., "Transportable
Natural-Language Interfaée§ ;o Databases”, Proceedings of
the Conference, 19th Annual Meeting of the Association for
Computétional Linguistics, Association .Eor Computational

Lﬁnguistics ' Jﬁly, 1981, pp. 159-164.

Hendrix, Gary G., Sacerdoti, Earl D., Sagalowicz, Daniel,
and Slocum, Jonathan, . "Developing a Natural Language
Interface to Complex Data", ACM Transactions on Database

Systems, Vol. 3, No. 2, June, 1978, pp. 105-147.

Hoperoft, J.J., and Jeffery D. Ullman, Formal Languages and
{

their Relation to Automata, Addison-Wesley, Reading, Mass.,

1969.

N

198

~
.

Ishikawa, H., Izumida, Y., Yoshino, T.,ainoéhiai, T.,
Makinouchi, A., "A Knéyledq?:Baséd Approach to Design a
Portablé Natural ﬁanguage Interface%to‘ Databqsel Systems",
Proceedings of the 1986'Intérnational Conference on Data

Engineering,»IEEﬂ Computer Society, 1986, pp. 134-143.

Jarke, Matthias, . Turner, John A., Stohr, Edward A.,
vassiliou, Yannis, White, Norman, and Ken Michielsen, "A
Field Evaluation of Natural Laﬁguage for . Data Retrier%l",
IEEE Tyansactibns on Software Engineéring, Vol. Se-lli No.

1, January, 1985, pp.97-113.

r
1)

lKaplan, 5. Jerrold, "Designing a Portable Natural Language
Database :Query System", - ACM Transéctions on Database
Systems, Vol. 9,‘Nd. l, March, 1984, pp.~ 1-19.

Katz, J.J., and J. A. Fodor, "The Structure of a Semantic
Theory", Language, Vol. 39, Number 2, (Part 1), 1964, pp.

170-210.

Kay, M., "The Mind System", in Rustin, R.,{(ed), Natural

Language Processing, New York, “Alogorithmics Press, 1973,

pp. 155-188.

King, Jonathan J., "Modelling Concepts for Reasoning About
Access to Knowledge", .Proceedings of the Workshop on Data

Abstraction and Databases, ACM, 1980, pp. 138-140.

199 "

Konollige, K., "A Framework for a Portable Natural Language
Interface to LArge Databases", SRI Internatlional (Technicaf

Note 137), Menlo Park, California, 1979.

A Y

Marcus. Mitchel P., A Theory of Syntactic Recqgnition-fbr

Natural Langquage, The MIT Presé, Cambridge, Mass., 1980.

Martin, James} Fourth Gereration Languages: Volume I:
Princigleg, "Prentice Hall, ’%nglewood Cliffs, New Jersey,

1985.

----- , and Joe Leben, FPourth Generation Languages: Volume

LIz Representative 4GLs, Prentice Hall, Englewocod Cliffs,
\

New Jersey, 1986.

Miller, Harry, "Let HAL Do It", PC World, May, 1987, pp.
'206-213. '

Minsky, Marvin, "A Framework for Representing Knowledge", in

P. Winston (ed.) The Psychology of Computer Vision, McGraw

Hill, New York, 1975, pp. 211-277.

Mylopoulos, John, Bernstein, Philip A.,Wong, Harry K. T.,."A
Language Facility for Designing Database-Intensive
Applications", ACM Transaction on Database Systems, Vol. 5,

-

No. 2, 1980, pp. 185-207.

200

Nenova, 1I., "On.an Implementatidn of the ATNL-Language", in

W.. Bibel and B. Petkoff“(eds.s Artificial " Intelligence:

Metheodology, Systems;' . Applications, North. Holland;

Amsterdam,. 1984, pp. 185-190.

Néwell, Allen, "The Knowledge Level", Artificial
. . _ .
Intelligence, Vol 18, pp. 87-127, 1982.

Oppacher, F., "A Programming Approach for Constructing
Natural Language ~Processors, {M. Comp. . Scik. Thesais),

Concordia University, Montreal, 1981 ‘

Orman, Levant, "Nested Set Languages for " Functional
Databases", Information Systems, Vol 9, No. 3/4, 1984, pp

241-249.,

------ , "Design Criteria Ffor Functional ° Databases",

Information Systems, Vol. 10, No. 2, 1985, pp. 201-217.

~

Pavlov, Radoslav, Angelova, Galia and Paskaleva, Elena, "On
Eiperimental Linguistic Processors for Man-Computer Dialogue

in Bulgarian", in W.Bibel and B.Petkof (eds.), Artificial

Intelligence: Methodology, Systems, Applications,; North

Holland, Amsterdam, 1985, pp. 169-176.

hY

Quillian, M.R., Semantic Memory, in Minsky, Marvin, Semantic

Information Processing, MIT Press, Cambridge, Mass., 1975.

J

1 ~

A=

201

r

Rich, Elaine, Artificial 1Intelligence, McGtaw—Hill/ Book
Company, New York, 1983.

Ritchie, Graeme and - Henry Thompson, "Natural Language
Processing”, in Tim O'Shea and Marc Eigenstadt, Artificial

Intelligence: Tools, Techniques and Applications, Harper and

prae—

. Row, New York, 1984, pp. 358-388,

Sager, Naomi, . Natural Language Information Processing: A

Computer Grammar of English and its :Applications, Addison
Wesley Publishing Company,'Readiﬁg, Mass., 1981.

Scha, Remko J. H., "English Words and Data Bases: How to
Bridge the Gap", Proceedings of the Conference, 20th Annual
Meeting of the Association for Computational Linguistics,

Association for Computational Linguistics, June, 1982, pp.

57-59.

Schank, Roger- C., "Conceptual Dependency: A Theory of
Natural Language", in Roger Schank and Kenneth Colby (eds.)

Computer Models of Thought and Language, W.H. Freeman and

'

~Co., San Francisco, 1973.

. N
T

——————— , and Abelson, Robert P., Scriptsﬁxplans, Goals and

: . TN
Understanding: An Inguiry into Human Kné&lqﬁge Structures,
‘ - 7

Lawrence Erlbaum Associates, Publishersjﬁ Hillsdale, New

Jersy, 1977. |

. | \

------- , and Colby, Kenneth Mark, Computer Models of Thought

and Lanquage, W.H. Freeman and Company, San Francisco, 1973.

e | '

Shipman, David W., "The Functional Data Model and the 5ﬁta
) A ' Al
Language DAPLEX", ACM Transactions on Database Systems, Vol.

6, No. 1, 1981, pp.140-173. /

Siklossy, Laurent and Herbert A, 'Simon, "Some Semantic

Methods for Language Prdcess;ng". in Herbert A. Simon and

Laurent Siklossy, (eds.) Representation and ~ Meaning:

Experiments with Information Processing Systems, Prentice-

Hall Inc., Englewocd Cliffs, New Jersey, 1872.

Silva, Georgette, and Montgomery, Christine, "Knowledge
Representation for Automated Understanding ~ of Natural'
Language- Discourse", Computers and the Humanities, Vol. 11, .

1978, pp. 223-234.

Simmons, %gbert. F., "Answering English Questions by
Computer: A Survey", Communications of the ACM, 1965, Volume

8; pp.53_700 .

L m———— , "Semantic Networks: Their Computation and Use for
Understanding English Sentences", in Roger Schank and Keith

Colby {eds.) Computer Models of Thought and Language, W.H.

Freeman and Co., San Francisco, 1973, pp. 63-113.

203

Sowa, John FQ, "A Conceptuai Schema for Knowledge-Based
Systems", Proceedings of the Workshop on Data Abstraction

and Databases, ACM, 1980, pp. 193-1895.

’

_Stockwell, R.P., Schacter, P.P., and ‘B.H. Partee, The

Syntactic Structures of English, Rinehart and Winston, New

York, 1973. | o {,,,/

Tanimoto, Stephen L., The Elements of Arrificial

Intelligence: An Introduction Using Lisp, Computer Science

Press, Roékville; Maryland,(}QBT. *

Templeton, Marjorie, and Burger, John, "Problems in Natural

Language Interface to DBMS with Examples from EUFID",
‘ .

Proceedings of the Conference on Applied Natural Language

Processing, Asspciation for Computational Linqﬁistics '

February, 1983, pp 3-16.

Tennant,'Harry, Natural Language Processing: An Introduction

to an Engireering Technology, Petrocelli Books, Inc,

Princeton, 1981.

Thompson, Barbara H., "Linguistic Analysis of Natural
Language Communication with Computérs", in Proceedings of
the 8th International Conference of Computaiional

Linguistics, 1980

204

.
.

----- ’ aQﬁ Thompson, Frederick B., "Introducihg ASK, a
Simple Knowledgeable System", Froceegings of ‘the Conference
on Applied Natural Language Processing, Association for

Computaﬁional Linguistics , February, 1983,‘pp.17-24.

————— --, "ASK is Transportable in Half a Dozen Ways", ACM
Transactions'os Office Information Systems, ,Vol. i, No. 2,

April, 1985y.p@g 185-203.

Thompson, Henry, .and Graeme Ritchie, "Implementing Natural
Language Pargérs", in Tim O'Shea and Marc Eisenstadt,

Artificial Intelligence: Tools, Techniques and Applications,

Harper and Row, New York, 1984, pp. 245-304.

Thompson, Hernry S., "Chart fa?sing and. Rule Schemata 1in
GPSG", Proceedings of the 19th. Annual Meeting of the
Association for Computational Linguisti&s, Alexandria, VA.,
AgsSociation for Computational Linguistics, 1981.

-

Tomita, Masaru, "An Efficient All-Paths Parsing Algorithm
for Natural Languages", Technical Report, Department of
Computer Science, Carnagie-Mellon University, 1984.

-
e

Tufis, Dan and Cristea, Dan, "IURES: A Human Engineering

Approach to Natural Language Question-Answering Systems"”, in

[

W.Bibel and B.Petkof (eds.}, Artificial 1Intelligence:

Methodology, Systems, Applications,; North _ Holland,

Amsterdam, 1985, PP 177-184.

205

Ullman, Jeffery D., Principles of Database dystems, 2nd
edition, Computer Science Preéiﬁ Rockville, Maryland, 1982,
PP- 16~19. '

Waltz, David. L., "“Natural Lénguage Access to a Large

Database", Computers and People, April, 1976, pp. 19-26.

————— + "An English Language Question Answering System for a
Lar%e Relational Dafabase", Communications of the ACM, July,

1978, Vol. 21, pp. 526-539.

------ "The State of the Art in Natural Language
Undérstanding", in Lehnert, Wendy G., and Ringle, Martin H.,

Strategies for Natural Language Processing, Lawrencé Erlbaum

Associates, Hillsdale, New Jersey, 1982.

Weizenbaum, Joseph, "ELIZA: A Computer Program for the Study
A
of Natural Langupage Communication Between Man and Machine",

Communications of the ACM, 1965, Vol 9, pp. 36-45.

Wilks, Yorick, "An Intelligent Analyzer and Understander of
English", Communications of the ACM, Vol. 18, Ne. 5, May,
1975, pp.264-274.

' - N . .
Winograd, T., Understanding Natural Language, Academic

Press, New York, 1972.

Woods, W.A., "Transition Network Grammars for Natural
Language Analysis", Communications of the ACM, 1970, Vol.

13, pp. 591-606.>

206

—-——, "Context Sensitive Parsing"”, Communications of the

ACM, 1970, Vol. 13, pp. 437-445.

----- , "Transition Network Grammars", in Rustin, R. (ed),

-~ .
Natural Language Processing, Algorigpmics Press, New York,

207

)Appondix A: The suppliorl-Partl-Peroctl Database
-
This appendix_demohstratos the first of three (3) knowledge
bases used in the development and testing of QNL. _ For each
knowledge 'Base, an Entity-Relationship diagram is glven,
- followed by the Lisp desquption of the entities, attribuﬁ;s
and relatibnshipa of the domain. The Lisp expressions
define a semantic network which is parts of the Domain

Knowledge Base (DKB).

A noticeable difference between this and other Knowledge -
Bases like SDM, KID, etc.; is that we are .not defining the
objects and relationships in terms of strings and integers,.
but rather in terms of semantic markers, and semantic
_properties, and how the objects relate to each other. Thus,
if the low—levei definitions in the database.change, this KB

is not affected.

project

gstatus)

supplier part

E-R ﬁ&agram for the Suppliers-Parts-Projects Database .

208

¢

We describe the entities of the domain:

(setq sup-objects
'{(dpart (physobj) ; An object called part

((has-a pnum) - ; has attributes
(has—-a name)
(has-a colour)
(has-a weight))

((obj dsupply) ; plays roles in relationships
(obj duse) :)
(agent weigh)
(obj weigh)))

(dproject (abstracteobj) ; an abstract object : project
((has-a jnum) ; has attributes
(has-a name)
(has-a city))
((rcpt dsupply} ; relationships
(agent duse)))

(dsupplier (animate) ; supplier is animate
((has-a snum) ; has attributes
{has-a name)
{has-a status)
{has-a city))
((agent dsupply))) ; one relationship
))

209 ’

Next, the relationships of the domain.

(setqg sup-relns

'{{dsupply (dsuppllier agent) :

{dpart object)
(dproject rcpt)
(dgty attribte))
{weigh (dpart agent)
{dpart obiject))
(duse (dproject agent).
(dpart object)
{(dgty attribte))))

Each entity and 1its
1 role is specified.

~

Next, we need a way of identifying an object from its

attributes. Each attribute name may indicate more than one

entity in the domain.

(setqg sup-attributes '(
(status-value (has-a number)

(attrib-of dsuppller))

(pnum (attrib-of dpart})

{name (attrib-of dpart)
(attrib-of dproject)
(attrib-of dsupplier))

{colour (has-a colour)

(attrib-of dpart))

(weight {(has—a number)

(attrib-of dpart))
(snum (attrib-of dsupplier})
(location (has-a location)
{attrib-of dsupplier)
(attrib-of dproject))
(jnum (attrib-of dproject))
))

The 1list of special terms may include specific values or

ranges of wvalues: 1in- this case supplier—-numbers, part

numbers and project numbers.

210

(setq sup-gpecial-terms '((sl gsnum)
{pl pnum) .
(31 Joum }3))) ~

4

Finally, we need a direct link between the DKE and thé‘WKB.
This is accomplished by the following map. This connects
the lexical descriptions of words to concepts in the DKB. It
is possible for a description in the WKB to map to several
concepts in the DKB. It is also possible for several
definitions from the WKB to describe the same concept in.
the DKB, not because they are ident%cal, but rather because
they are semantically close. The determination of this

mappihg should be automated at some time in the future.

(setq sup—map '({part dpart)
(supplier dsupplier)
{project dproject)
{use duse)

(weigh weigh)

(buy dsupply)

(sell dsupply)
(supply dsupply)

3

211

Appendix B: The Universtiy domain

The Univérsi(x¥batabase is structurally different from the
Suppliers databzée in that there are three entities joined
by two relationships, rather than one. There is plenty of
possibility of ambigquity since all three entities have a
name, and in fact, since teachers and students are both

human, there |is signficicaﬁt semantic similarity between

these entities.

4 student student course -
name number name

student Stu-course course

teacher:
name

teacher

_3

E-R Diagram of the University Domain’

-

212

First, the objects of the domain:

(setqg univ-objects '{
(student {human)
{ {has-a snumber)
(has-a name)
(has-a major))
{ (agent stu—course!))

(course (abstractobj)
{{(has-a coursecode)
{has—a coursename)
{(has—-a dept))
{(object stu-course)
. {object teach-course))

{teacher (human)
{ (has—a name)
({has—a office})
({(agent teach-course))

The relationships:

\

(setg univ-relns '(

(teach-course (teacher agent)
- (course object})

(stu-course (course agent)

-
¥

)

-

attributes

relationship

attributes

two relationships

attributes

one relationship

v
r

-
r

{student object)))))

Each entity has its
role specified.

R

Next, we “heed a way of identifying an object from its
attributes. Each attribute name may indicate Tmore than one

entity in the domain.

(setqg- univ-attributes '(_

(name (attrib-of student)
{attrib-of teacher))

(office (attrib-of teacher))
{coursecode (attrib-of course))
(coursename (attrib-of course))
(dept (attrib-of course))
(snumber {attrib-of student))
(major (attrib-of course))

These special terms will include the range of valid student

numbers, valid office numbers, valid course codes, and valid

course names.

(setqg univ-special-terms '(
{cscll3 courseccde)
{cscll4 coursecode)
(8700 snumbder)
(fortran coursename)
< (pascal coursename)
(code coursecode)
(codes coursecode)
, (compsci dept)
(bus dept)
{business dept major)
(csc major)
(eng major)
(major major)
(j117 office)
{h906 office}))

214

. Finally, we must

{setq univ-map "

link the DKB to the WKB.

{
{student student)

{course course)
(teacher teacher)
(teach teach-course)
(major student)
(department course)
(register stu-course)
(office teacher)
(classlist stu-course)
(take stu-course}})))))

215

-2

Appendix C. The Airline domain

®

Ban

This domain is more complex than either of the previous

ones, in that there are more relationships, and many more
' ~

ways of referring to these relationships. '

passenger

TR

Bocked
on

Guumber) (Bource)

fligne | 4 (GestD

. day-of~-week

_I/K;;:gned -

employee

(Ga127)

plane

r

< manufacturer i

L)

type

of

model no

216

to

| aircraft

4

serial-no

E-R Diagram of the Airline Domain

First, the entities of the airline domain:

{setq air-objects '{

S~

{passenger (human}
((has=a name)
{has-a address)

. (has~a phone-no))

" {(humanagent booked-on)))

{aircraft (physobj)
((has—-a serial-no)
(has-a model-no})
((object type-of)))

(Elight (ptrans)

{ (has—a number)

{has—-a source)

{has-a dest)

{has-a day-of-week))
({agent departure) v
(obj booked-on)

(obj assigned-to}})

(employee (human)
{(has—a name)
({has~-a address)
{has-a salary)
(has=a idnum})
((humanagent assigned-to)))

(plane (phySobj)
((has=a manufacturer)
{has-a model-no))
(({agent make).
(agent type-of}})))))))

217

-
r

.
r

-
r

attributes
relationship
attributes
relationship

attributes

relationships

attributes

relationship

attributes

relationships

The relationships of .the Airline domain: .
»
(setqg air-relns '/(
(booked-on (passenger humanagent) ; Each entity has ‘
(£light obi)) ; its role specified
(departure (flight agent)) .
(type-of (plane agent)
) (aircraft obj))
{make (plane agent)
{plane obi)) N
(assighed-to- {employee agent)
{(£Elight obi))
({plane (plane agent)})

The attributes of the entities. Some attributes may link
i
with more than one en(lty.

(setqg air-attributes
'({idnum (has-a number) X
{attrib-of .employee)) -
(address (attrib-of employee)

‘ (attrib-of passenger))
(phone-no {attrib-of passenger))
(name (attrib-of passenger)

{attrib-of employee))
(source (has-a location)
"{attrib-of flight))
{salary (has—a number)
(attrib-of employee))
(dest (has-a location)
{(attrib-of flight))]
{day-of-week (attrib—-of flight))
(number (attrib-of flight)
. {is-a phone-no)
(is-a idnum})
. (manufacturer (attrib-of plane))
(model-no {(has-a number)
(attrib-of aircraft)

, {attrib~of plane))

(Elight-no (has—-a number)
{attrib-of flight)))

The special terms, which could include tyérange of wvalid
flight numbers, émployee numbers aircraft serial numbers,
and will include specific values like airélane model

numbers.

218

(setq air-special~terms '((B727 model-no

(727 model-no

{B747 model-no

< - (747 model-no
) (e56 idnum) .
(Boeing manufacturer) -

(al00 serial-no)))} o

Finally, the map which 1inks the DKB with the WKB. Notice
- that some concepts from the WKB map to more than one concept
in the DKB. Also notice that some verbs map to entities

rather' than relationships. '
o

{setq air-map '({(
(booked booked-on))
(booked. assigned-to) !
(depart flight) '

(leave flight)

(make make) _ _
(phone passenger) ' \\
(£ly booked-on)

(passenger passenger)}

(employee employee)

(manufacturer plane)

{plane plane aircraft)

(type type-of)

(work assigned-to) .

(alrcraft aircraft plane) s
(flight flight)

{arrive flight)))

N

[

Appendix D: Sample Queries Handled by QNL

Thé first part of this appendix demonstrates queries applied
to the Suppliers-Parts-Projects database of Appendix A,
followed by questions askéd of the University database of
Appendix B, and of the airline'database of appendix C. Each
English question is-followed by the expression as understood
by QNL. This expression is passed to the query generator to
be transformed into a relational calculus or relational
algebra expression, and then into the DML of the particular

database. All expressions are in fully parenthesized form.

, ¢
First, simple queries about objects and their attributes:

(get full details of all suppliers)

(for all) -
({var-166 dsupplier (animate)))

{get details of suppliers in london)

(Eor all) .
{(var-168 dsupplier (animate}) ((location (london))})

]

220

hat

These next simple queries demonatrate that "nolse words" can
often be ignored. Noigse words include personal pronouns,
gsome adverbs, and so on. Also, some of the different

acceptable grammatical forms are demonstrated.

(i need to know about the projects in london)

(for all)
{(var-169 dproject (abstractobj)) ((location (london)}))

-

In tﬁis next question, "who" is treated as al relative
pronoun, It is later discarded along with the leading noise
words, and the relative clause is treated as thi. complete
sentence However, Ehis ends with'a verb without an object.
QNL tries to generate a meaning with whatever it is given.

-~

(i need to kaow who the london suppliers are)

(for all)

((var~170 dsuppller (anlmate)) ((location. (london)})))

(what do you know about t@e\suppliers in london)

(for all)
((var-172 dsupplier (anlmate)) ((location (london)}))

(full details of all projects are needed)

(for all)
({var-174 dprOJect {abstractobij)))

221

(can you tell me about the paris jobs)

{for all) ‘
((var-171 dproject (abstractobj)) ((locatlion (paris))))

(is there a project in toronto)

(exists)
((var-175 dproject (abstractobj}) ({(location (torontd))))

{can you tell me the weight of each red part)

(Eor all) ‘
({var-178 dpart (physobj)} ((colour (red) (weight (var-179}}))}

One of the problems we can expect to encounter is that some
attributes may be perceived as relationships, and also, as
attributes. The DKB will specifically recognize it both
ways, and tné database mapping will translate the
relationship or attribute appropriately. By this means, if
the actual files of the database change, only the mapping
needsAto be altered, not the entire DKB.

(ﬁbw much does pl weigh)

{for all)
((var-188 dpart (physobj)) ((pnum (pl))))
({weigh) ((var-188 dpart (physobi)) {({(pnum (pl})))})

(print the names of the london suppliers)

{for all)
((var-181 _dsupplier (animate))
((location “(london))} (name (var-182}))))

222

(tell me about jl)

{for all) :
((var-186 dproject (abstractobj)) ((Jjnum (]jl1))))

(what colour is pl) .
1
(for all) ,
{(var-190 dpart (physobj)) ((pnum {pl) (colour (var-191)))))

3

This next question ends with a preposition.

(wh colour does pl come in)

(for aljl)
((var—-184 dpart (physobj)) ((pnum (pl) (colour (var-185}))}))

In this next question, the adjective, "red", follows the
noun. This-is uﬁusual because normally the noun ends a noun
phrase. In this case, "red" is treated as an incomplete
noun phrasé, and is attached to "pl" in the general semantic

analyzer.

(is pl red)

{exists)
({var-187 dpart (physobj)) ((colour (red) (pnum (pl)))))

These next gquestions ask about relationships between
i

objects.

223

\
b
(l1ist all suppliers who sell red parts)

(for all)

((var-193 dpart (physobij)) ((colour (red))))
‘((var-192 dsupplier (animate)))

{ (dsupply) ((var-193 dpart (physobij)) ((colour (red))))
((var-192 dsupplier (animate))))

/

{(which suppliers in Lbndon sell red parts to a praject in
paris)

{for all)

({var-196 dproject (abstractobj)) ((location (paris))))
({var-195 dpart {(physobj}} {{colour (red})))

{(var-194 dsupplier (animate)) {{location {london})))
{(dsupply) ({(var-196 dprOJect (abstrac;ob])) }

((locatlon {paris))))
((var-195 dpart (physobij))

{{colour (red))})
“((var-194 dsupplier (animate))

(flocation (london)))))

The next guestiong require the domain-specific analyzer to
resolve the interogative pronoun "who". It recognizes the
relationship "sell", investigates the appropriate case
frame, and generates a variable for the miss%ng'agent of the

. ¢
case frame.

(who sells red parts)

(for all) .

{(var-197 dpart (physobj)) ((colour (red))))

((var-198 dsupplier (animate}})

{ (dsupply) {(var-197 dpart (physobj)) ((colour (red))))
{(var—198 dsupplier (animate)})))

224

(who sells parts to projects)

(for all)
. ({var-213 dproject (abstractobj)))
({var-212 dpart (physobj)))
({(var—214 dsupplier (animate)))
{ {dsupply) ({var-213 dproject (abstractabij)))
({var—212 dpart (physcbj}))
((var-214 dsupplier (animate))))

(who sells red parts to projects in london)

{for all)

({var-216 dproject (abstractobj)) ({location (london))))
* ((var-215 dpart (physobij)) ((colour (red}}))-

((var-217 dsupplier (animate)))

((dsupply) ((var-216 dproject (abstractobj))

s {{location (london))))
{(var-215 dpart (physcbj))
‘ ((colour (red))))

((var-217 dsupplier (animate))})

This next question contains a relative clause.

{are there any suppliers in toronfo who sell red parts
to a project in paris)

3

{fexists)
(var-201 dproject (abstractobj)) ((location (paris))))
var-200 dpart (physobj)}) {((colour (red))))
r-199 dsupplier (animate)) (({location (toronto})))
y)} ((var-201 dproject {abstractobj))
’ {(location (paris))))
((var-200 dpart (physcbi))
{(colour (red}}))
{(var-199 dsupplier (animate})
((location (toronto}))))

The next gquestion involves an "implied relationship”. The

user has not explicitly stated the relationship between

parts and suppliers, so the relatibnship must be inferred by

225

the domain-specific analyzer. This is done by identifying
the two entities, and then searching the semantic net flor a

relationship between them.

/
g
AN
(get suppliers” of red parts)
{for all) _)
{ (var-203 dpart (physobj))} ({colour {red))})
({(var-202 dsupplier (animate)))
{ (dsupply) - ((var-203 dpart (physobj)) ({(colour (red))))
((var-202 dsupplier (animate))})
Next, three entities are involved in an rmpl}ed

relationship.

(get names of suppliers of red parts to projects in
paris)

{for all) :

{(var-207 dproject (abstractobj}) ((location (paris))))
((var-206 dpart (physobj)) ((colour (red))))

((var-205 dsupplier (animate)) ((name (var-208))})
((dsupply) ((var-207 dpro;ect {abstractobij))

(({location (paris))))
{(var-206 dpart (physobij))

{ (colour (red))))
{({var-205 dsupplier (animate))

{ (name (var- 208)))))

{which projects get red parts from a supplier in london)

(for all)
{(var-210 dpart (physobj}) ((colour (red))))
({(var-211 dsupplier (animate)) ((location {london))))
({var-209 dproject (abstractobj)))
((dsupply) ((var- 210 dpart (physobj))
((colour (red))))
{(var- 211 dsuppller (animate)}

{(location {london}}})
{(var—209 dprogect {abstractobij)})

226

.

ThTS~ neXt -question asks for the suppliers who sell parts
which are both red and blue. It involves a conjunction and
an implied relationship. QNL handles this by generdéing‘two

gimilar fglatfonships,'but note the attributes of dpart.

[y

(who sells red and blue parts) -
(for all) . ,
((and) ((var-218 dpart (physobj)) ((colour {blue)
((var-218 dpart (physobj)}) ((colour (red})
({var-219 dsupplier (animate)})
((and)
((dsupply)

)))
Y

((var-218 dpart (physobj)) {{colour (red))))

({var-219 dsupplier (animate))))} .
({dsupply) (|

((

»

var-218 dpart (physobj)}) ((colour (blue})}))
var-219 dsupplier (animate}))})) .

This last question démqﬂ;trates a subtle problem of semantic
'overshoot. The system will search for parts which can be
both red and blue, but within this domain, it is not clear
whether a part can be multi-coloured. Although the query
can be posed, and Qill result in a null set, there must be a
means of alerting the user that the results may not refléct
the wuser's intent. - This could be avoided by paraphrasing

the query, and repeating it back to the user.

The next gquestion asks for suppliers who supply both red
parts and blue parts. This ‘ involves an implied.
relationship, and a conjunction. To solve the céﬁjunction,
a variable must be geperated to handle the adjective "red",

and ONL realizes this is different from the blue part.

. 227

{who sells both red and blue parts)

(for all) g
((and) ((var-220 dpart (physobj)) ((colour (blue))))
((var-221 dpart (physobj)) ((colour (red)))))
({var-222 dsupplier (animate))}
- ((and)
{{dsupply) ((var=-221 dpart (physobj)) ((colour (red))})
((var-222 dsupplier (animate))))
((dsupply) ((var-220 dpart (physobi)) {((colour (blue})))
({var-222 dsupplier (animate))}))

Néxt ‘we have an implied relationship and a conjunction.
' Each conjunct is an object which is explicitly stated by the
user. QNI prodesses this by generating two distinct queries
and conjoining them. Note that two different parts are

specified in this query.

(who sells blue parts and red parts)

(for all)
({and) ((var-224 dpart (physobj))
((var—-223 dpart {physobij))
({var—-225 dsupplier (animate)))
(¥and)
((dsupply) ({var—223 dpart (physobj)) ((colour (blue))))
{ (var-225 dsupplier (animate))))
((dsupply) (({var-224 dpart {physobj}) ({colour (red))))
((var-225 dsupplier (animate)))))
&

{{colour {red))))
{(colour (blue)))})

"These next sentences are disjunctions. In the second

sentence one of the disjuncts is implied by its attribute.

228

(who sells blue parts or red parts)

“t{for all)
({or) ({var-227 dpart (physobj)
" ((var-226 dpart (physcbj)
((var-228 dsupplier (animate)))
{(or)
((dsupply)

) ((colour (red))))

) ({(colour (blue)))))
(var-226 dpart (physobj)) ({colour (blue))))
(var—-228 dsupplier (animate))))

{
{

((dsupply) ((var-227 dpart (physobj)) ({colour (red))})
((var-228 dsupplier (animate))})))

(who sells blue or red parts)

(for all)
({or) {((var-229 dpart (physobj})
. ({var—229 dpart (physobj}
{((var-230 dsupplier (animate)))
{(or)
((dsupply)

) {{(colour (red))))

) ({colour {(blue)))))
var-229 dpart (physobj)) ((colour (blue))))
var-230 dsupplier (animate))))

(
(
{(var-229 dpart (physobj)) ((colour (red}})}
(var-230 dsupplier (animate))))))

(
(
({(dsupply) t

This next disjunction refers to a single part which |is

either red or blue. This also involves an interogative

-

pronoun 1in place of the agent of the verb, and a relative

clause.

(who sells parts which are red or blue}

(for all}
{({or) ((var-231 dpart (physobj)
{(var-231 dpart (physcbj)
{ (var-232 dsupplier (animate)))
((or) . : ' '
((dsupply) ((var-231 dpart (physobj)) ((colour (blue})))
({var-232 dsupplizr (animate)}))

) ({colour (red)}))
) ({colour (blue)))))

({dsupply) ((var-231 dpart {physob})) ({colour (red))))
((var-232 dsupplMer (animate))}))

229

The next questions demonstrate how negations are’ handled.

In -the first question, an object must not have a certain
attribute=-value.
X

(get suppliers not in london)

'(for all)
((var=-233 dsuppller (animate)) ((not (location (london))}))

In the next question, it is the relationship which is negated.
(which projects do not use red parts)

(for all)

((var—-238 dpart (physobij)} ((colour (red))))

{{var—237 dproject (abstractobj)))

((not duse) ((var-238 dpart (physobi)) ((colour (red))))
({var—-237 dproject (abstractobj))))

This next one includes a relative clause and a negation.

‘Actually, two relationships are involved, one of which |is

negated.

(which projects which use red parts do not use blue parts)

(Eor all)

({var-235 dpart (physcbj)) ((colour (red))})
({var-236 dpart (physobj)) {{colour (blue)))})}
((var-234 dproject (abstractobj))}). :
((and) ((not duse) ((var-236 dpart (physobj)) ((colour (blue}})) -
{(var—-234 dproject (abstractobj}}})
({duse) ((var-235 dpart (physobj)) ((colour (red))))
({var-234 dproject (abstractobij}}})}

230

_(get suppliers not in london who sell red parts)
(for all) .
{{var-240 dpart (physobj)) (({colour (red))))
((var—239 dsupplier (animate)) ((not (location (london)))))
((dsupply) ((var-240 dpart (physobj))
{(colour (red))))

((var-239. dsupplier (animate))
((not {location {london})j))))

This next section deals with similar types of queries on the .
University database. In the first gquestion, no variable for
offices is generated because we may want more information to
be returned than the user has spécified, depending on the

definition of the user view.

(get full details of ‘all courses) ' 6;

(for all)
({var-54 course (abstractobj)))

In this domain, "office" is an attribute of "professor”
(which offices have been assigned to which professors)

{for all)
{(var-595 teacher {(human}))

{which professors are in which offices) .

(for all)
{{var-597 teacher (human}})

231 .

Pl

In these next questions, the domain-specific terms,
"compecl", "csc", and "eng" are used. In order for it to be
recognized, the terms have been added to the DKB where they
may be accessed by the procedures which access the lexicon.

| .
(li%t all students who major in eng)

{for all)
({(var-599 student (human)) ({(major (eng))))

{what are the coursés offered by compsci)

(for all)
((var-600 course (abstractobj)) ((dept (cogpsci))}))

(are there any students majoring in csc)

{exists):
((var-602 student (human)) ((major (csc))))

{are there any eng majors)

{exists)
((var-603 student (human)) ((major (eng))))

The number 8700 is recognized as a value in the range of
valid student numbers. The noun-noun modification rule
concerning numbers states that the number should be attached
as a modifier to the immediately ﬁreceding noun. eg. Flight

-

257, Room 61, etc.

232

(get full details of student 8700)

(kor all) =

((var-6095 gtudent (human}) ((snumber (8700})))

In this next query, 8700 is recognized as being an

attribute-value of a student.
i .)
' JS
(get name of 8700)

.(Eor all)
({var—622 ‘student (human}} ({snumber (8700)))})

There +is a relationship between students and courses, but

the user has not specified it in this next guestion. QNL
\ .

recognizes the entities, then identifies the relationship(s)

between them.

(get all students in cscll3)

(for all) \
((var—-607 course (abstractobj))} ((coursecode (cscll3))))
({var-606 student (human)))
((stu-course) ((var—-607 course {abstractobi))

{ (coursecode™(cscll3))))
* {{var-606 student (human))))

$ 233

This next question Involves a pronoun reference to the

previous query.

{who is teaching it)

(for all)

((var-609 course {abstractobj)) ((cdursecode (caclll))y
{(var-610 teacher {human)))

((teach-course) ((var-609 course {abstractobj))
N { (coursecode (cscllld))))

{{var-610 teacher (human})))
{is there a course in fortran)

{exists)
({var-64 course (abstractobj)) ((coursename (fortran))))

This next question 1is an example of how QNL handles
anaphora. Since no verb is used, the verb(s) from the
previous question are used. QNL also merges the new,

entities with the entities of the previous question.

(what about pascal)

(for all) .
({var—-64 course (abstractob])) {(coursename (pascal))))

This next two questions involve a pronoun reference to the

previous Guestion. v

(

{who teaches it) .

{for all)

({var—-65 course (abstractob])) ((coursename (pascal))})
((var-66 teacher (human))})
({(teach-course) ((var-65 course {abstractobj)) r

- ({coyrsename (pascal}}})
({var-66 teacher (human))))

234

*

(what studehts are taking it)

(for all) ,
{{var-68 course (abstractobj))} ((coursename (pascal)}))
({var-67 student (human})) _ C
({stu-course) ((var-68 course (abstractobj))
({coursename (pascal))))
({var-67 gtudent (human))))

.4
Next, an implied relationship.

{(get me the students in cscll3)

(for ally P,
({var-612 coursé” (abstractobj)) ((coursecode (csclll))))
({yar-61l student (human)}) -
{{stu-course) ((var—-612 course (abstractobj))
((coursecode (cscll3))))
({var—-611 student (human))))

In the university domain, the verb "taking" will point to a

very specific case frame involving humans and courses.

{which students are taking a business course)

{for all) |

{(var-615 course {abstractobj)) ((dept (business}}))
{{var-614 student (human)))

{(stu-course) ((var-615 course (abstractobj))

({dept (business))))
((var-614 student {(human))})

In this next question, a relationship is specified, and only

one of the objects, and that object is identified by an

attribute-value.

235

(what does smith’ teach)
{for all)
{{var—-616 teacher (human)) {((name (smith))))
((teach-course) ({(var—-616 teacher {(human)) ((name (smith)))))
{does wilson teach cscll3)
(exists)
((var—-618 course (abstractobi)) {((coursecode (cscll3)}))
((var-617 teacher (human)) ((name {(wilson))})
(({teach-course) ((var-618 course (abstractobij))
{({coursecode (csclli))))

{{var-617 teacHer {(human))
{(name (wilson)))))

Wilson is a human name, students and teachers are human, but
only students have majors in this domain. So in this next

question, wilson is recognized as a student. -

(what major is wilson)

{(for allj . .
({value student (human)) {({name {(wilson})))

In this next question, smith is recognized as a person's
name, possibly a student or professor. J117 is recognized
as an office number. Professors have an office attribute,

but students do not.

(is smith in jl17)

(exists)
{(var-619 teacher (human)) {(office (j117}}))

4

236

In the next guestion, H960 is recognized as an office. The
interogative pronoun "who" expects a human, so a variable is
generated to refer to a professor. /This requires domain-

specific knowledge.

{who is in h906)

{for all) .

((var-626 teacher (human)) ({office (h906)}})

In this next question, name is assumed to refer to the name
of a course, since c¢sclll is recognized as a course

identifier.

" (get name of csclll)

(gér ally}
((var—-625 course (abstractobj)) ((coursecode (csclll))))

In this next query, there is a spécified relationship,
"taking", but only one of the participants is mentionned,
and that one only by its attribute. 8700 is ‘a student
number, and the relationship "taking" 1s recognized as
linking students and courses. QNL accesses that relation,

but does not specify what attributes are to be returned

(what is 8700 taking)

(for all) .

f{var-627 student (human)) ({snumber (8700)).))

(({stu-course) ((var-627 student (human)) ((snumber (8700)))}}

L2

237

An object, student, is regpgnizdh by the attribute-value
B700, and the relationship "taking" is recognized. From

this information,' we can genérate the other object in the

relationship, "course",.

-

(can you please tell me what 8700 is taking)

(for all)
((var-632 student {human))} ({snumber (8700))))
{{stu-course) ((var-632 student (human)) ((snumber (8700)))))

(what courses does compsi offer)

{for all)
((var—-634 course (abstractobj)) ({(dept (compsci)}})

(what compsci courses does smith not-teach})

{(for all)
{{var-636 teacher (human)) ({(name (smith})).)

({var-635 course (abstractobj)) ((dept (compsci))i)
((not teach-course)

({var-636 teacher {human)) ((name (smith)))) -
({var-635 course {abstractobj}) (({dept (compsci)))))

Q
This next question is an anaphoric reference to the previous

one.

(wilson)

{for all)
{{var-637 teacher (human)) ((name {(wilson}})})

({(var-635 course (abstractobj)}) ((dept (compsci)}})
({not teach-course}

{(var-637 teacher (human)) ((name (wilson))})) _
{{var-635 course (abstractobj)) ((dept (compscil)))))

238

(which students are taking a compscl or business course}

(for all) i\

{(or) ({var—639 course {abstractobi))
((var-640 oourse (abstractobj))

((var~638 student (human)))

{(or)

{{stu-course) .
{{var-640 course {(abstractobi}) ((dept (compsci}}})
((var~638 student (human})))

(({stu~course)

{(var-639 course (abstractobj)) {(dept (business))))
({var-638 student (human}))))) . '

ept (business)
)

((d)
((dept (compsci))

))
))

These next questions apply to the airline domain. First,

questions about entities and their attributes.

(get me details of flight 57 on monday)
{for all)

{(var—-57 flight (ptrans)) ((day-owaeek (monday)
-) {number (57)})))

(are there any flights to paris on friday)
(exists)
{(var-65 flight (ptrans)) ((day-of-week (friday)

(dest (paris)))))
The relationships 1in this domain are more complex.than in
the previous domain, and there are many more ways of wusers
perceiving them. The relationghip "booked-on" links
passengers to flights. Both of these questions include
noun-nounn modifications. The basic rule is that 1if two
nouns occur together, and the second noun is a number, the

number is an attribute of the first noun, else the first

noun is an attribute of the second.

239

(list passengers on flight 106 on tuesday)

(for all)
((var-59 flight (ptrans)) {(number (106))}))

{(var—-60 f£light (ptrans)) ((day-of-week (tueéday))))
({var-58 passenger (human))) -

((booked-on) ({(var-59 flight (ptrans)) ({number {(106))))

A ((var-58 passenger (human))})

{list pagsengers on london flights)

{(for all) ;
{({var—-63 flight {(ptrans)} ({(location (london))))
((var—-62 passenger (human))) '
({ {(booked-on) ((var-63 flight (ptrans)) ((

: ({var-62 passenger (human)))

lecation {london))))
)

This next sequence shows simple guestions between entities,
where each entitiy may or may not be precisely specified, or

the relationship may be implied.

(who is working on monday)

{£ind all)
{((var-72 flight (ptrans)) ((day-of-week (monday)}))

({(var-73 employee (human))) :
{{assigned-to) ((var-72 flight (ptrans)) Y
. ({day-of-week (monday)}))

((var-73 employee {(human)))}

(what kind of plane is al00)

(for all) .

((var-76 aircraft (physcbj serial-no (alg0))))

({var—-75 plane (physobj)))}%’T*\

({type-of) ((var-76 aircraft (physobj)) ((serial-Mo (al00))))
((var-75 plane (physocbij))))

240

(what plane is al00)

(for all) *

((var-79 aircraft (physobj)) {(serial-no (al00))))

({(var-78 plane (physobij)))

({type~of) ((var—79 aircraft (physobj)) ((serial-no (al00))))
{(var-78 plane (physobij))))

(who makes the 747)

(£or all) 3
((var-8] plane (physobj)) ((model-no (747)}})
_{{make) ((var-81 plane (physobj)) ({(model-no (747))))) .

This next sequence demonstrates the interaction between

.

anaphora and pronoun references.

¢
{can 1 get a flight to toronto on tuesday)

{for all) '
{(var-67 flight (ptrans)) ((day-of-week (tuesday)
, : {dest (toronto)))))

(wednesday)
(for all)

({(var-67 flight (ptrans)) ((day-of-week (wednesdéy)
{dest_(toronto)))))

(to montreal)
(for all)

((var-67 flight (ptrans)} (é¢day-of-week (wednesday)
(dest (montreal)}}})

241

(whg_iporking ity y
(£ind 411)

((var-67 light (ptrans)) ((day-of-week (wednesday)

{deat (montreal})))
({var-69 emplcyee (human)))

((assigned-to) ((var-68 flight (ptrans))
" ((day-of-week (wednesday)
{dest (montreal))))
((var-69% empldyee (human)))} '

(are any of them working a flight on thursday)

{exists) -
({var-70 flight (ptrans)) {{day-of-week (thursday))))
((var—-69 employee (human)))
((assigned-to)} ((var-70 flight (ptrans}))
{ (day~of-week (thursday)}))
({var-69 employee (human))))

242

