
SEMANTIC DOCUMENT CLUSTERING FOR CRIME

INVESTIGATION

KABI G. DAGHIR

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

SEPTEMBER 2011

c© KABI G. DAGHIR, 2011

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Kabi G. Daghir

Entitled: Semantic Document Clustering for Crime Investigation

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Information Systems Security

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Lingyu Wang Chair

Dr. Nizar Bouguila Examiner

Dr. Govind Gopakumar Examiner

Examiner

Dr. Benjamin Fung Supervisor

Approved by

Chair of Department or Graduate Program Director

September 12, 2011

Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Semantic Document Clustering for Crime Investigation

Kabi G. Daghir

Computers are increasingly used as tools to commit crimes such as unauthorized access

(hacking), drug trafficking, and child pornography. The proliferation of crimes involving

computers has created a demand for special forensic tools that allow investigators to look

for evidence on a suspect’s computer by analyzing communications and data on the com-

puter’s storage devices. Motivated by the forensic process at Sûreté du Québec (SQ), the

Québec provincial police, we propose a new subject-based semantic document-clustering

model that allows an investigator to cluster documents stored on a suspect’s computer by

grouping them into a set of overlapping clusters, each corresponding to a subject of interest

initially defined by the investigator.

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Benjamin C. M. Fung,

for his resolute recommendations, guidance and assistance from the earliest to the final

stages of my research. He has been a great source of encouragement throughout my study,

and I am profoundly grateful to him.

My gratitude also goes to Sûreté du Québec (SQ) for providing us with real-life mate-

rials for experimentation.

Last, but definitely not least, I am endlessly grateful to all my family members for their

unwavering support and motivation throughout this entire process.

iv

“The best way to predict the future is to invent it.” - Alan Kay

v

To my wife Bahaa and my children George and Gabriel.

vi

Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Organization . 7

2 Related Work and Background Knowledge 8

2.1 Text Classification . 8

2.1.1 Logic-based Classification . 10

2.1.2 Incremental Classification . 11

2.1.3 Statistical Learning Classification 12

2.1.4 Support Vector Machine Classification 13

2.2 Semi-supervised Text Clustering . 14

2.2.1 Seed-based Clustering . 14

2.2.2 Constraint-based Clustering . 15

vii

2.2.3 Feedback-based Clustering . 16

2.3 Unsupervised Text Clustering . 17

2.3.1 Partitional Clustering . 17

2.3.2 Hierarchical Clustering . 18

2.4 Forensic Data Mining . 20

2.5 Topic-based Vector Space Model . 21

2.6 WordNet . 22

3 Problem Definition 24

3.1 Initial Subject Definition . 24

3.2 Extended Synonym List (ESL) . 25

3.3 Preprocessing . 25

3.4 Clustering System Definition . 26

4 Solution Modeling 28

4.1 Subject Vector Generation . 28

4.2 Subject Vector Space Model (SVSM) . 29

4.3 Document-Subject Similarity Function . 31

5 Semantic Clustering Algorithm 32

5.1 ESL Lookup (Lines 6-11) . 34

5.2 WordNet Synonyms (Lines 17-18) . 35

5.2.1 Synset Repository Construction 36

5.2.2 Unique Synset Assignment . 37

viii

5.2.3 Expansion Using Synonyms . 38

5.3 Top Frequent Terms (Lines 24-30) . 39

5.3.1 Compute Top Documents . 39

5.3.2 Compute Top Frequent Terms . 40

5.3.3 Word Sense Disambiguation . 40

5.3.4 Relatedness Distance Measure . 41

6 Experimental Evaluation 43

6.1 Data Sets . 44

6.2 Evaluation Method . 44

6.3 Experimental Results . 45

6.3.1 Accuracy . 45

6.3.2 Efficiency and Scalability . 46

7 Conclusion 51

7.1 Summary of Contributions . 51

7.2 Future Work . 52

Bibliography 54

ix

List of Figures

1 Digital Forensic Investigation (DFI) process as defined by DFRWS 2

2 Subject Vector Space Model (SVSM) . 30

3 Subject si Vector Generation Process . 35

4 Lexical Semantic Expansion Using WordNet 37

5 Sensitivity to cluster’s minimum similarity (τ) in relation to the maximum

subject vector length (δ) . 47

6 Efficiency with regard to Classic3 and Forensic document sets 48

7 Scalability with the scale-up Classic3 document set 50

x

List of Tables

xi

Chapter 1

Introduction

1.1 Motivation

The process of investigating digital devices for the purpose of generating digital evidence

related to an incident under investigation is commonly referred to as Digital Forensic In-

vestigation (DFI). According to Carrier et al. [CS04], digital evidence of an incident is any

digital data that supports or refutes a hypothesis about the incident. The task of analyzing

persistent documents found on a storage device of a suspect’s computer is an essential part

of the DFI process to gather credible and convincing evidence. However, this task is daunt-

ing due to the large number of documents usually stored on a hard disk. The continuously

increasing size of storage devices makes the task even more difficult.

Existing digital forensic tools for analyzing a set of documents provide multiple levels

of search techniques to answer questions and generate digital evidence related to the in-

vestigation. However, these techniques stop short of allowing the investigator to search for

documents that belong to a certain subject he is interested in, or to group the document set

based on a given subject.

In this thesis, we propose a new document clustering model that allows an investigator

1

Identification Preservation Collection

Examination

Analysis Our Contribution:

Subject-based Semantic

Document Clustering

Presentation

Figure 1: Digital Forensic Investigation (DFI) process as defined by DFRWS

to cluster all documents on a suspect’s computer according to certain subjects he is inter-

ested in (e.g. hacking, child pornography). Once the documents are clustered in groups,

each corresponding to a subject, the investigator can search for documents that belong to a

certain subject.

There have been several attempts to define a digital forensic model that abstracts the

forensic process from any specific technology, such as the DFRWS’s model for digital

forensic analysis [PC01], Lee’s model of scientific crime scene investigation [LPM01],

Casey’s model for processing and examining digital evidence [Cas00], and Reith’s model

for digital forensic analysis [CRCG02]. Digital Forensics Research Workshop (DFRWS)

is a pioneer in developing the forensic process. DFRWS defined Digital Forensic Science

as a linear process:

The use of scientifically derived and proven methods toward the preservation,

collection, validation, identification, analysis, interpretation, documentation and

presentation of digital evidence derived from digital sources for the purpose of

facilitating or furthering the reconstruction of events found to be criminal, or

helping to anticipate unauthorized actions shown to be disruptive to planned

operations. [PC01]

2

Figure 1 illustrates the Digital Forensic Investigation (DFI) process as defined by DFRWS.

After determining items, components, and data associated with the incident (Identification

phase), the next step is to preserve the crime scene by stopping or preventing any activi-

ties that can damage digital information being collected (Preservation phase). Following

that, the next step is collecting digital information that might be related to the incident,

such as copying files or recording network traffic (Collection phase). Next, the inves-

tigator conducts an in-depth systematic search of evidence related to the incident being

investigated, such as filtering, validation, and pattern matching techniques (Examination

phase) [CRCG02]. The investigator then puts the evidence together and tries to develop

theories regarding events that occurred on the suspect’s computer (Analysis phase). Fi-

nally, the investigator summarizes the findings by explaining the reasons for each hypoth-

esis that was formulated during the investigation (Presentation phase). In the examination

phase, investigators often utilize certain forensic tools to help examine the collected files

and perform an in-depth systematic search for pertinent evidence. However, there are three

problems with today’s computer forensic tools:

High-level Search. Since manual browsing is time consuming, investigators often rely

on the automated search capability provided by either the operating system or existing DFI

tools to conduct a search on the documents stored on the suspect’s computer in order to

identify related evidence. The main automated search techniques provided by current DFI

tools include keyword search, regular expression search, approximate matching search, and

last modification date search. Unfortunately, such techniques are applied directly against

all of the stored documents without any advance knowledge about the topics discussed in

each document. Hence, the results based on these search techniques generally suffer from

a large number of false positives and false negatives.

Evidence-oriented Design. Existing DFI tools are designed for solving crimes com-

mitted against people, in which the evidence exists on a computer; they were not created

3

to address cases where crimes took place on computers or against computers. In general,

DFI techniques are designed to find evidence where the possession of evidence is the crime

itself; it is easier to solve child pornography cases than computer hacking cases. [Gar10]

Limited Level of Integration. Most existing forensic tools are designed to work as

stand-alone applications and provide limited capability for integration with each other or

other custom tools or resources the digital forensic team might have already developed.

Our solution attempts to address these problems by answering the question of whether

or not evidence for events defined by the investigator, such as hacking or child pornography,

is present in the documents collected from the suspect’s computer. The investigator initially

defines the subjects (events) he is interested in investigating by providing a set of terms to

describe each subject, such as vocabularies that are commonly used in the subject. We

introduce a novel subject-based semantic document clustering algorithm that groups (clus-

ters) all documents into a set of overlapping clusters, each corresponding to one unique

subject.

The general intuition of our clustering approach is to generate a set of expansion vectors

for each given subject using its initial subject definition. Each expansion vector consists of

a set of weighted terms related to the subject, where each term is generated using Word-

Net [Mil95]. Our clustering algorithm also supports integration with the Extended Synonym

List (ESL), a list of forensic-specific synonyms and related terms provided by the digital

forensic investigation team at Sûreté du Québec (SQ) for the purpose of generating terms

that are related to the subject. Once the expansion vectors for a subject are generated, they

will be used with the initial subject definition to construct a vector of weighted term fre-

quencies called subject vector such that the problem of measuring the similarity between a

document and a subject is reduced to measuring the similarity between the document and

the subject vector.

4

The generated clusters overlap for two reasons: First, the subjects are not necessar-

ily independent of each other; for example, “hacking” and “cyberterrorism” subjects can

be related as the cyberterrorist might be a hacker who broke into a government’s website.

Second, a document might discuss more than one subject (topic), and consequently it be-

longs to more than one cluster. In order to define a subject, an investigator has to provide a

set of associated terms that are commonly used in the same context of the subject.

Example 1. Let us assume that the investigator is interested in investigating whether hack-

ing events occurred on the suspect’s computer. He might provide the following set of terms

(along with their PoS tag) to define the subject:

〈Hacking〉hack:Verb,security breach:Noun,login:Noun,

Nmap:Noun,permission:Noun,exploit:Verb〈/Hacking〉

During the clustering process, the files that do not belong to any of the subjects are

grouped together in one generic cluster. The investigator can then browse the documents in

this cluster manually or apply a standard clustering algorithm, such as bisecting k-means

algorithm, to conduct further analysis on them.

Contribution. As illustrated in Figure 1, our contributions fall under the examination

phase of the digital forensic investigation process. We summarize the major contributions

of the thesis as follows:

• Subject Vector Space Models: We model our clustering solution by proposing Sub-

ject Vector Space Model (SVSM), a new model based on Vector Space Model (VSM) [Sal89]

and Topic-based Vector Space Model (TVSM) [BK03]. In SVSM, each dimension

represents a subject, where terms and documents are represented in the space ac-

cording to their relations to all subjects. This allows a more realistic representation

of the terms because terms inherently are not are orthogonal to each other. This

representation also allows us to reduce the clustering problem of a document to the

5

determination of the coordinate of this document on each subject vector. This is

reflected in our proposed similarity function Sim(d, si) that measures the similar-

ity between any document d ∈ D and subject si ∈ S, where D is a collection of

documents and S is a set of subjects.

• Novel subject-based semantic document clustering algorithm: We introduce an ef-

ficient and scalable subject-based semantic document clustering algorithm that ex-

pands the term vector representing each subject using WordNet [Mil95]. Word Sense

Disambiguation (WSD) algorithm [DS10] is integrated in the process to determine

the appropriate sense (and accordingly, the synonym set) of a term in WordNet

in the context of the initial terms that define a subject. The integration of WSD

improves the precision of our clustering algorithm by reducing the polysemy af-

fect [DDF+90] [SJ88].

• Dynamically capturing suspects’ terminologies: We make use of the document set

to incrementally expand the subject vector by adding top frequent terms from the

most similar documents to the subject. WSD is also integrated in this phase to deter-

mine the dominant sense of the term, which is the sense used the most in the several

contexts in which the term appears.

• Experiments on real-life data: We conduct an extensive experimental study over two

real-life data sets and examine the effectiveness of the algorithm according to subject

vector length and document-score thresholds. We also demonstrate that our approach

is highly scalable for large data sets.

6

1.2 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 reviews background knowledge and

related work. Chapter 3 provides the formal definition of our clustering problem. Chap-

ter 4 demonstrates the modeling of our solution. Chapter 5 introduces a three-stage seman-

tic clustering algorithm. Comprehensive experimental results are presented in Chapter 6.

Finally, we conclude the thesis in Chapter 7.

7

Chapter 2

Related Work and Background

Knowledge

In this chapter, we summarize the various types of text mining techniques. We discuss

major algorithms related to classification, semi-supervised clustering, and unsupervised

clustering. We also discuss the data mining techniques developed/integrated with forensic

investigations. We then discuss the concept of topic-based vector space model, and finally

we introduce WordNet at the end of this chapter.

2.1 Text Classification

Text classification is the task of assigning a boolean value to each pair (dj, ci) ∈ D × C,

where D is a set of documents and C = {c1, c2, . . . , c|C|} is a set of predefined classes [Seb02].

If (dj, ci) = true then document dj is assigned to class ci; otherwise, document dj is not

assigned to class ci.

The assignment of documents to classes is based on their scores and can be achieved in

two ways: mono classification and multi classification. Mono classification occurs when

each document is assigned to one and only one class with the best score. On the other hand,

8

multi classification occurs when each document is assigned to zero or multiple classes with

scores above certain threshold.

Recent advancements in information retrieval and artificial intelligence fields makes

text classification a hot topic. Text classification may be applied in many applications such

as e-mail spam filtering, the categorization of newspaper articles into topics, mail routing,

and the organization of web pages into hierarchical categories.

To classify a set of documents into a given set of classes, a profile for each class must

be constructed. In general, there are two common approaches to achieve that: manual

rule-based approach and supervised machine learning-based approach [CMSW92].

Classification systems based on manual constructions of class rules can be very accurate

when the rules are written by experts, and classification criteria can be easily controlled

when the number of rules are small. However, the higher the number of rules, the more

difficult the maintenance of the rules becomes. Besides, the rules must be reconstructed

every time a target domain changes.

On the other hand, supervised machine learning-based approach provides automatic

learning techniques that are efficient and more suitable for rapidly evolving classifications.

The basic process of supervised machine learning classification is as follows. First, prepare

a set of training data, then create a classifier by applying a machine learning tool to the

training data, and finally classify the new documents using the classifier.

Many algorithms have been developed for building classifiers. According to Kot-

siantis [Kot07], the supervised machine learning classification techniques can be divided

into four categories: Logic-based Classification, Perceptron-based Classification, Statisti-

cal Learning Classification, and Support Vector Machines Classification.

9

2.1.1 Logic-based Classification

In this section we will discuss the two most common groups of logical learning methods:

decision trees and rule-based classifiers.

Decision Tree Classifiers. A decision tree classifier [Mit97] [Mur98] is a tree in which

each internal node is labeled by a term, each branch going out of the node represents the

weight of the term in a training document, and each leaf represents a class.

The classification of a document occurs by recursively checking the weight of the terms

labeling the internal nodes and comparing that with the weight of the terms in the document

vector, until a leaf node is reached. The label of this node (class) is then assigned to the

document. Decision tree classifiers are typically built by a top-down “divide-and-conquer”

approaches. Decision tree classifiers can be significantly complex due to the replication

at node level. Markovitch et al. [MR02] presented the FICUS algorithm that implements

complex features at nodes in order to avoid replications.

There are several standard packages for decision tree learning, such as ID3 [FB91],

C4.5 [CS99] [Joa98] [LC94], and C5 [LJ98]. Text classification efforts based on experi-

mental decision tree packages include Dumais et al. [DPHS98], and Weiss et al. [WAD+99].

Decision Rule Classifiers. It is possible to convert a decision tree into a set of rules by

creating a separate rule for each path from the root to a leaf (class node) in the tree [Qui93].

Rules, however, can also be induced from the training data directly using a variety of

rule-based algorithms [F9̈9]. Each class is represented by disjunctive normal form (DNF).

Unlike decision trees, DNF decision rules are typically built by a bottom-up approaches.

The goal is to generate a minimum set of rules while maintaining consistency with the

training data. Some fundamental learning classifiers based on decision rules include RIP-

PER [Coh95] and CN2 [CN89].

10

2.1.2 Incremental Classification

Incremental (also called On-Line) classification methods start to build classifiers as soon

as the first training document is processed, and then incrementally refine the classifier as

more training documents are processed. This is useful if the training data is not completely

available in its entirety from the start, or if the “meaning” of the classification classes might

change over time. The two most popular incremental classifiers are Perceptron [Ros62] and

Winnow [LW94].

Perceptron Classifier. An additive weight updating algorithm that was first applied

in text classification by Schütze et al. [SHP95] and Wiener et al. [WPW95], and then by

Dagan et al. [DKR97] and Ng et al. [NGL97]. A weight vector is kept for all terms such

that the weights of active terms are updated whenever a mistake is made. The weights are

updated in an additive fashion (additive learning); that is, a weight is promoted by adding

a learning rate value α to it and demoted by subtracting α from it.

When the processing of all training data is completed, if the weight of a term is very

low, that means the term has negatively contributed to the classification process so far, and

may thus be discarded from the representation. Hence, the perceptron classifier can be

perceived as a runtime dimensionality reduction technique [DKR97].

Positive Winnow Classifier. A multiplicative weight updating algorithm that is a vari-

ant of the perceptron classifier [DKR97] [KSB03]. It differs from perceptron in two ways.

First, constant α1 > 1 used for promoting weights is different from constant 0 < α2 < 1

which is used for weight demotion. Second, promotions and demotions are reached by

multiplying, instead of adding, by α1 and α2, respectively.

Balanced Winnow. A variation of the positive winnow classifier algorithm where neg-

ative and positive weights are maintained for each term. This makes balanced winnow

classifier more robust against variations in document length in the data set.

11

2.1.3 Statistical Learning Classification

Instead of classifying a document into one or more classes, classifiers based on statis-

tical learning algorithms provide the probability for each document to belong in each

class [Lew98]. In this section, we take a look at naïve bayes [Jen96] and instance-based

classification algorithms, the most well known representatives of statistical learning algo-

rithms.

Naïve Bayes Classifier. It is a simple probabilistic classifier based on applying Bayes’

theorem [McG11] with strong (naïve) independence assumptions. It is composed of di-

rected acyclic graphs with only one parent and several children. The parent represents the

unobserved node, whereas the children represent the observed nodes. It assumes a strong

assumption of independence among child nodes in the context of their parent [Kot07]. The

major advantage of the naïve Bayes classifier is its short computational time for training.

For this algorithm to work, it assumes non-zero probability for each feature. Since the fea-

ture space in text classification is very large, some unseen terms must therefore start with a

reasonable value for their probability to exist in each class. Kohavi et al. [KBS97] proposed

to assign 0.001 as a starting probability for such terms. There has been several attempts

to overcome the independence assumption. Friedman et al. [FGG97] added extra edges

to include some of the dependencies between the features, whereas Kononenko [Kon91]

proposed a semi-naïve bayesian classifier in which attributes are partitioned into groups,

and two features are considered conditionally independent if and only if they belong to

different groups.

Instance-based Learning Classifiers. Such classifiers are also called lazy learners,

since “they defer the decision on how to generalize beyond the training data until each new

query instance is encountered” [Mit97]. The first application of instance-based classifiers

to text categorization is due to Creecy et al. [CMSW92] and Masand et al. [MLW92].

Lopez de Mantaras and Armengol [LdMA98] presented a historical survey of logic and

12

instance based learning classifiers. One of the most straightforward instance-based learning

classifiers is the k-nearest neighbor [YC94], which determines whether a document belongs

to a class by verifying if the k training documents most similar to the document are also

in that class. Cohen and Hirsh [CH98] implemented an instance-based learning classifier

by proposing a new WHIRL classification system which uses different similarity function

from the one used in k-nearest neighbor classifier.

In addition to naïve bayes and instance-based learning classifiers, other statistical learn-

ing algorithms include linear discriminant analysis (LDA) [Fri89] and its variations [GHT07]

[XBP09], commonly used in machine learning algorithms for the purpose of finding a lin-

ear combination of features which best characterize or separate two or more classes, and

maximum entropy [Csi96], a statistical method for estimating probability distributions from

data.

2.1.4 Support Vector Machine Classification

The support vector machine (SVM) method has been introduced in text classification by

Joachims [Joa98] and subsequently extended by Drucker et al. [DWV99], Dumais et al.

[DPHS98], and Klinkenberg and Joachims [KJ00]. It attempts to find, among all the hy-

perplanes of the feature space that separate the training documents into two classes, the

optimum hyperplane that separates the documents into two classes by the widest possible

margin. Documents that lie on the margin of the optimum separating hyperplane are known

as support vectors. In the case of linearly separable data, the solution then is represented as

a linear combination of only these support vectors.

SVM classifiers typically involves two classes. However, if more than two classes exist,

then the SVM classifier uses a one-on-one approach. In a one-on-one approach, the algo-

rithm creates a binary classification model for every possible combination of classes, and

it uses a voting mechanism to identify the best class. If the voting mechanism identifies

13

more than one class, the algorithm then selects the class that is the closest to the training

document. Joachims [Joa98] argues that support vector machine classifiers do not require

term selection, as they tend to be fairly robust to overfitting and can scale up to considerable

dimensionalities. Besides, non-traditional data types like strings and trees can also be used

as input, instead of feature vectors. Dumais et al. [DPHS98] introduced a novel algorithm

for efficiently training support vector machine classifiers.

In summary, text classification approaches all depend on the availability of training data

for the purpose of training their classifiers. Therefore, text classification fails to address

our subject-based clustering problem because of the lack of training data in digital forensic

investigations.

2.2 Semi-supervised Text Clustering

Unlike text classification algorithms which depend on labeled documents for training, semi-

supervised text clustering algorithms provide a limited form of supervision by utilizing a

small amount of available domain knowledge for the purpose of guiding or adjusting the

clustering process.

Next, we discuss three common techniques in semi-supervised text clustering: seed-

based clustering, constraint-based clustering, and feedback-based clustering.

2.2.1 Seed-based Clustering

Seed-based clustering approaches use supervised (labeled) data in order to help initialize

cluster centroids. Proper initialization of clusters reduces the chances of the search space

getting stuck in poor local optima, while simultaneously produces a clustering similar to

the user-specified labels [BM03].

14

Basu et al. [BBM02] used seed-based clustering to initialize the k-means algorithm.

They defined the seed set as a subset of the document set such that there exists k partitions

(disjoint and non-empty) in the seed set, each of which corresponds to one and only one

cluster. In k-means, instead of initializing the algorithm by randomly selecting k means,

the seed set is used for this purpose by initializing the mean of each cluster with the mean of

the corresponding partition. The seeds are only used for initialization, and do not get used

in the following steps of the clustering algorithm. Basu et al. experimentally demonstrated

that k-means benefits from the application of seed-based clustering.

2.2.2 Constraint-based Clustering

Constraint-based clustering in the field of information retrieval addresses the problem of

partitioning document points into a specified number of clusters when limited supervision

is provided in the form of pairwise constraints. Pairwise supervision is typically available as

must-link and cannot-link constraints on document points: a must-link constraint indicates

that both document points in the pair should be placed in the same cluster, while a cannot-

link constraint indicates that two document points in the pair should belong to different

clusters. If the constraints are soft, it means that the algorithm can violate them, but that

would be undesirable.

Constraint-based methods use the provided supervision to guide the algorithm towards

a data partitioning that avoids violating the constraints [DBE99] [WCRS01]. Pairwise

relations naturally occur in various domains and applications. In information retrieval, for

example, if an expert mention that two documents should not be in the same cluster, this

is equivalent to cannot-link pairwise constraint. Basu et al. [BBM02] designed a model to

store the pairwise constraints and used them to formulate the objective function in k-means

algorithm. They also compared seeded approaches and constrained approaches based on

the spherical k-means [DM01] and observed that the constrained version fares at least as

15

well as the seeded one.

2.2.3 Feedback-based Clustering

Feedback-based clustering approaches execute a regular clustering process and then adjust

the resulting clusters based on feedbacks from the user. There are many different types of

feedback the users might provide to a semi-supervised clustering system. For example, the

user might specify that the resulting clusters are too small or too big. The user might also

provide certain constraints on individual document points.

Cohn et al. [CCM03] presented a new approach of feedback-based clustering by al-

lowing the user to iteratively provide feedback to a clustering algorithm. The feedback is

incorporated in the form of constraints which the clustering algorithm attempts to satisfy

on future iterations. These constraints allow the user to guide the clustering process toward

what he finds more useful. Zhong et al. [ZG03] [Zho06] presented a deterministic an-

nealing extensions of the three semi-supervised clustering methods: seed-based clustering,

constraint-based clustering and feedback-based clustering, and compares their performance

on real text data sets. Experimental results show that feedback-based clustering is superior

when the labeled data contain only a partial set of text categories.

Having reviewed the main approaches in semi-supervised text clustering, and since the

initial subject definition vector is not in the format of labeled data or pairwise constraint

and the subject information is very limited, semi-supervised text clustering cannot address

the subject-based clustering problem presented in this thesis.

16

2.3 Unsupervised Text Clustering

Text (document) clustering is the process of partitioning unlabeled data set into a set of

clusters, such that documents within a cluster are very similar, and documents in differ-

ent clusters are very different. Clustering is considered part of the unsupervised learning

approach because clustering is usually performed when no information is available con-

cerning the membership of documents to predefined clusters.

Several taxonomies of clustering methods were suggested in [KR90], [JMF99] and

[ELL09]. In the following sections, we describe the major categories of clustering methods

that are best represented in the literature.

2.3.1 Partitional Clustering

Partitional clustering algorithms generate a set of non-hierarchical clusters. Because only

one set of clusters is the output of the algorithm, the user is required to input the desired

number of clusters (usually called k). The following are some of the well known partitional

clustering algorithms.

k-means algorithm is a clustering algorithm that aims to partition a data set into k

clusters in which each data point belongs to the cluster with the nearest mean. The mean is

the average of all the points in the cluster; that is, its coordinates are the arithmetic mean for

each dimension separately over all the points in the cluster [For65] [Mac67]. The algorithm

of k-means can be presented as follows:

1. Initialize k clusters randomly.

2. Until converged: assign each data point to the cluster with the nearest mean, and

then recompute the cluster means.

k-means algorithm discovers hard clusters since each data point belongs to one and

17

only one cluster, and it tends to produce clusters of widely different sizes. Several meth-

ods were developed for cases where a mean (centroid) cannot be defined, namely the k-

medoid [KR90] method and the k-modes [Hua97] method. k-means algorithm has some

limitations if clusters are empty or if they differ in sizes and densities.

Fuzzy-C-Means algorithm is a variation of k-means algorithm that discovers soft clus-

ters where a particular document point can belong to more than one cluster with certain

probability. This method was developed by Dunn [Dun73] and improved by Bezdek [Bez81].

The algorithm of Fuzzy-C-Means is as follows:

1. Initialize k clusters randomly.

2. Until converged: compute the probability of a data point belong to a cluster for

every (point,cluster) pair, and then recompute the cluster means using above probability

membership values of points to clusters.

2.3.2 Hierarchical Clustering

Hierarchical clustering aims to obtain a hierarchy of clusters, called dendrogram, that

shows how the clusters are related to each other. These methods proceed either by iter-

atively merging small clusters into larger ones (agglomerative) or by splitting large clusters

(divisive). A partition of the data items can be obtained by cutting the dendrogram at a

desired level.

Agglomerative clustering starts by treating each document as a singleton cluster and

then successively merges (or agglomerates) pairs of clusters until all clusters have been

merged into a single cluster that contains all documents. Bottom-up hierarchical cluster-

ing is therefore called hierarchical agglomerative clustering (HAC). The criteria for the

merging of pairs of clusters are variants of the classical single-link [SS73], complete-

link [Kin67] or minimum-variance [War63] criteria.

18

CURE [GRS98] is an agglomerative clustering algorithm which employs multiple rep-

resentatives per cluster in order to obtain clusters of arbitrary shape while avoiding the

problems of the single-link criterion. OPTICS [ABKS99] is another agglomerative clus-

tering algorithm which does not build an explicit clustering of the collection of items, but

rather an ordered representation of the data that reflects its clustering structure.

Divisive clustering is a variant of hierarchical clustering also called top-down cluster-

ing . We start at the top with all documents in one cluster. The cluster is split using a flat

clustering algorithm, such as k-means algorithm. This procedure is applied recursively un-

til each document is in its own singleton cluster. Divisive clustering is conceptually more

complex than agglomerative clustering since we need a second, flat clustering algorithm as

a “subroutine”; however, it is more efficient than the agglomerative approach if we do not

generate a complete hierarchy all the way down to individual document leaves.

Bisecting k-means is a divisive clustering algorithm that generates a hierarchy of clus-

ters by utilizing k-means algorithm to split and produce clusters with the highest similarity.

The bisecting k-means algorithm starts with a single cluster of all the documents in the data

set and works in the following order:

1. Select a cluster to split.

2. Find 2 sub-clusters using the basic k-means algorithm. (bisecting step)

3. Repeat step 2, the bisecting step, for a fixed number of times and take the split that

produces the clustering with the highest overall similarity. (The similarity for each cluster

is the average pairwise document similarity)

4. Repeat steps 1, 2 and 3 until the desired number of clusters is reached.

Unlike k-means algorithm, bisecting k-means algorithm tends to produce clusters of

relatively uniform size.

Since all approaches in unsupervised text clustering do not accept any type of user

19

input, none of them will be able to utilize and take advantage of the information included

in the initial subject definition vectors in order to guide the clustering process. Therefore,

unsupervised text clustering is not suitable to address the subject-based clustering problem

presented in this thesis.

2.4 Forensic Data Mining

Data mining is a powerful tool that allows forensic investigators to explore large volume of

data quickly and efficiently [FU02]. Traditional data mining techniques such as association

analysis, classification and prediction, clustering, and outlier analysis are already being

used by law enforcement to identify patterns in structured data [HK06].

Classification techniques find common properties among different crime entities and or-

ganize them into predefined classes. This technique has been used to identify the source of

e-mail spamming based on the sender’s linguistic patterns and structural features [dVACM01].

Classification is used to predict crime trends; however, it requires a predefined classifica-

tion scheme, as well as reasonably complete training and testing data set because a high

degree of missing data would limit prediction accuracy [CCX+04].

Clustering techniques group data items into classes with similar characteristics to max-

imize or minimize intra-class similarity, for example, to identify suspects who conduct

crimes in similar ways or distinguish among groups belonging to different criminal groups.

Link analysis is a technique used to evaluate relationships between nodes identified in terms

of network theory, where relationships may be identified among various types of nodes in-

cluding organizations, people and transactions. Link analysis has been used for investiga-

tion of criminal activity, namely fraud detection, counterterrorism, and money laundering

and other financial crimes [SGW+95].

Chen et al. [CCX+04] introduced a crime data mining framework that identifies re-

lationships between data mining techniques applied in criminal and intelligence analysis.

20

The objective is to help investigators to use more effectively those techniques in order to

identify trends and patterns, address problem areas, and even predict crimes.

As a conclusion, researchers have developed/applied various automated data mining

techniques in the forensic investigation field; however, the focus has been more on an-

alyzing and extracting information from existing databases of previous cases rather than

analyzing new document sets retrieved from suspects’ computers in order to extract evi-

dences. We believe that none of the existing forensic data mining techniques are capable

of solving our clustering problem by taking advantage of the information the investigator

initially provides about each subject while taking in consideration that no training data is

available.

2.5 Topic-based Vector Space Model

Kuropka et al. [BK03] proposed an algebraic model called topic-based vector space model

(TVSM) for information retrieval. TVSM is a d-dimensional space where each dimension

represents one fundamental topic, and all fundamental topics are independent from each

other (orthogonal). Terms, documents, and queries are represented as vectors, each repre-

sented by its coordinates on all dimensions (topics). TVSM does not define the term-topic

relation (length of each term vector and the inter-term vector angles). This is important in

order to determine the similarity between a document and topic.

Enhanced topic-based vector space model (eTVSM) [PK07] attempted to define the

term-topic relation by providing an algorithm that uses WordNet ontology as source of se-

mantics. Our proposed subject vector space model (SVSM) on the other hand is also based

on TVSM, where each dimension corresponds to an interested subject originally provided

by the investigator. However, we propose a novel approach to define the subject vector for

each dimension in SVSM, consequently allowing us to determine the term-subject relation

of any term and subject in SVSM. In addition, we propose a novel similarity function that

21

calculates the similarity (angle) between any document vector and subject vector in SVSM.

2.6 WordNet

Wordnet [Mil95], a lexical database for the English language, is utilized to establish seman-

tic relations between terms during several phases of our clustering algorithm. WordNet’s

lexicon is divided into four major categories: nouns, verbs, adjectives, and adverbs. The

basic unit of a WordNet lexicon is synonym set (synset), in which each synset includes a

word, its synonyms, definition, and sometimes example. Any word is assumed to have a

finite number of discrete meanings, where each meaning under one type of part of speech

(PoS) is called a sense. Each sense of a word in WordNet is represented in a separate synset.

WordNet supports two type of relations: semantic and lexical.

• Semantic relation defines a relationship between two synsets by relating all of the

words in one of the synsets to all of the words in the other synset. Hypernymy,

hyponymy, meronymy, and troponymy are some examples of sematic relations.

• Lexical relation defines a relationship between two particular words within two synsets

of WordNet synsets. Antonym and Synonymy are two examples of lexical relations.

According to Leibniz1, synonymy can be defined as follows: “two expressions are syn-

onymous if the substitution of one for the other never changes the truth value of a sentence

in which the substitution is made.” However, since such global synonymy is rare, we use

synonymy relative to a context: “two expressions are synonymous in a linguistic context C

if the substitution of one for the other in C does not alter the truth value.”

1http://plato.stanford.edu/entries/leibniz/

22

Some words are monosemous with only one meaning or sense. However, many words

have multiple senses, so words can be either homonyms 2 or polysemous 3.

2Two senses of a word are considered homonyms if they have the same spelling but completely different
meanings.

3A word is considered polysemous if all of its senses are various shades of the same basic meaning.

23

Chapter 3

Problem Definition

In this chapter, we formally define the research problem. First, we illustrate the user input

to define each clustering subject in Section 3.1. Then, we explain the preprocessing steps of

the document set in Section 3.3 and provide the formal definition of our clustering system

in Section 3.4, followed by a problem statement.

3.1 Initial Subject Definition

Suppose an investigator of a digital forensic case is interested in clustering a collection of

documents by interested subjects, denoted by S. For each subject si ∈ S, the investigator

has to provide a set of terms, denoted by s0i = {t1, . . . , t|s0i |}, that describes the subject. The

input terms, for example, can be the vocabularies that are commonly used in the subject.

For each input term t ∈ s0i , the investigator also needs to provide its part of speech

PoSt. This helps increase the accuracy of our clustering algorithm by avoiding homony-

mous word problems where more than one distinct meaning exists for the same word.

Moreover, PoSt should be either “verb” or “noun.” We limited ourselves to only verbs and

nouns because they are the most content-bearing types of words [LCH08].

24

3.2 Extended Synonym List (ESL)

The digital forensic investigation team at Súreté du Québec (SQ) maintains the Extended

Synonym List (ESL), a list of forensic-related synonyms and related terms such as acronyms

and slang terms that are commonly used by criminals and that do not usually exist in stan-

dard dictionaries. ESL is not an incident-specific list, but rather a shared resource that is

accessible by all investigators and usable in any incident. Our clustering algorithm utilizes

this tool in order to generate terms related to clustering subjects.

3.3 Preprocessing

We apply three common used preprocessing procedures of text mining, namely stopwords

removal, stemming, and tokenization, on each document with the goal of reducing its di-

mensionality, noise, and computational complexity while avoiding a significant loss of in-

formation.

Stopwords removal: Words that do not convey any meaning as well as common words,

such as ‘a’ and “the”, are removed. We compiled a static list of stopwords to be used for

this purpose.

Stemming: Words that have morphological forms are normalized to their canonical

form. A stemming algorithm, forexample, reduces the words “playing”, “played”, “play”,

and “player” to the root word, “play”. We employed the Porter stemming algorithm [Por97].

Tokenization: Given a sequence of characters in a document, the tokenization process

separates the characters into tokens by using white spaces and punctuation marks as sepa-

rators. For example, the string “George, Sam and Mike” will yield three tokens: “George”,

“Sam”, “Mike”.

After the preprocessing, the set of distinct terms in a given document set is denoted by

T. Next, we index all documents by their terms and compute the weight of the terms in

25

each document:

Indexing. For each term t ∈ T, we maintain a list of documents that contain t so this

list can be efficiently retrieved.

Weight assignment. As we will see in Section 4.2, each document is represented by

a vector whose coordinates are the weights of the document in each subject dimension.

To achieve such representation, we first must determine the weight of each term in each

document. Specifically, we must determine each weighted term frequency �t,d = tf(t, d)×

idf(t,D), where tf(t, d) is the frequency of term t in document d and idf(t,D) is the

inverse document frequency of term t in the document set D:

idf(t,D) = 1 + log(
|D|

1 + Freqt,D
) (1)

where |D| is the number of documents in the document set D, and Freqt,D is the number

of documents in D that contain the term t.

3.4 Clustering System Definition

We can now define our clustering system as a tuple:

CL = [D,S, SV SM, Sim(d, si), C]

where:

• D = {d1, d2, . . . , d|D|} is a set of input documents to be clustered.

• S = {s1, s2, . . . , sn} represents a set of n subjects, where each subject si is a set of

weighted terms that are semantically generated based on the initial definition vector

s0i .

26

• SVSM is a framework for representing terms, documents, and subjects as vectors, as

well as defining the relationship between them.

• Sim(d, si) is a similarity function that measures the similarity between a document

d ∈ D and a subject si ∈ S, and returns a real value that ranges between 0 and 1.

• C = {C1, C2, . . . , Cn} is a set of n overlapping output clusters, each of which is

associated with one subject. In other words, each cluster Ci ∈ C contains a set of

retrieved documents for subject si ∈ S given a similarity threshold τ :

Ci = {d | d ∈ D,Sim(d, si) ≥ τ} : τ ∈ [0, 1] (2)

Problem Statement. Given a set of subjects S, the initial definition of each subject si ∈

S, a collection of documents D, and a similarity threshold τ , the problem of subject-based

semantic document clustering is to group the documents in D into a set of overlapping

clusters C = {C1, C2, . . . , C|C|} such that each cluster Ci is associated with one and only one

subject si ∈ S and Ci = {d | d ∈ D,Sim(d, si) ≥ τ}.

27

Chapter 4

Solution Modeling

One major contribution of our proposed clustering method is to incrementally expand the

subject vectors from the initial subject definitions. In this section, we first describe the

concept of expansion vector, followed by the Subject Vector Space Model (SVSM) and the

similarity function that measures the similarity between a document and subject vector in

SVSM.

4.1 Subject Vector Generation

Our goal is to represent each given subject by a set of weighted terms that are most related

to the subject. Therefore, for each subject si ∈ S, our clustering algorithm generates

a set of expansion vectors {s1i , s
2
i , . . . s

pi
i } such that each expansion vector sri is a set of

weighted terms that are semantically related to the terms in the previous expansion vector

sr−1

i , and the first expansion vector s1i is semantically generated from the initial subject

definition vector s0i provided by the investigator for subject si. The number of generated

expansion vectors varies from one subject to another. Note that all terms that belong to the

same expansion vector are assigned the same weight value. However, the more expansion

vectors we generate for a subject, the higher the chance of introducing noise from unrelated

28

terms that degrades the accuracy of our clustering algorithm. Therefore, the weight of the

generated terms decreases as we generate more expansion vectors.

Subject vector si can then be constructed by taking the union of the terms in the initial

definition vector s0i with all the terms in the expansion vectors of si:

si = s0i

r=pi
⋃

r=1

sri (3)

4.2 Subject Vector Space Model (SVSM)

We introduce the Subject Vector Space Model (SVSM), an algebraic model generated based

on the Vector Space Model (VSM) [Sal89] and the Topic-based Vector Space Model (TVSM) [BK03].

SVSM is an n-dimensional vector space in which each dimension (axis) represents a sub-

ject si ∈ S. Similar to TVSM, all axis coordinates in SVSM are positive, and all axes are

orthogonal to each other:

∀−→si ,
−→sj ∈ SV SMn

≥0 :
−→si ·

−→sj = 0

where (−→si ·
−→sj) denotes the dot product between −→si and −→sj .

Figure 2 illustrates an example of the Subject Vector Space Model.

The representation of terms and documents in SVSM is analogous to their representa-

tion in TVSM.

Term Representation. Terms are represented in SVSM with respect to subject dimen-

sions in SVSM, i.e., each term t ∈ T is represented as an n-dimensional vector
−→
t whose

coordinates are the weights of the term in each dimension:

−→
t = {�t,si | i = 1, 2, . . . , n}

29

d1

s1

s2

s
1
1

s2
0

s2
2

s3

s
1

0

t1

t2

s3
0

s
2
1

s
3
1

s3
2

Figure 2: Subject Vector Space Model (SVSM)

where �t,si is the weight of term t in subject dimension si. If a term t exists in the set of

weighted terms of subject si, then there will be a weight value assigned to t and �t,si will

be equal to this value; otherwise, �t,si = 0.

The norm (positive length) of a term vector ||
−→
t || represents the global weight of that

term:

||
−→
t || =

√

√

√

√

n
∑

i=1

(�t,si)
2

Since all axis coordinates are positive, it allows the similarity values between term

vectors to be between zero and 1:

0 ≤ θ(
−→
ti ,

−→
tj) ≤ π/2 ⇒ cos(θ) ∈ [0, 1]

where θ is the angle between term vectors
−→
ti and

−→
tj in SVSM.

30

Document Representation. Each document d ∈ D is represented as an n-dimensional

vector
−→
d whose coordinate in each dimension −→si is the summation of the products of each

term coordinate with the weight of a term in document d:

−→
d =

1

ψd

∑

t∈T

−→
t .�t,d | ψd = ||

∑

t∈T

−→
t .�t,d||

where, �t,d is the weight of term t in document d. Also note that we divide all the coordi-

nates of the document by its norm value ψd to normalize the document length to 1.

Since the similarity value between any two term vectors is between zero and one, the

similarity value between any two document vectors is also between 0 and 1. This provides

a more intuitive way to understand the similarity between documents, where 0 means the

two document vectors are not similar at all and 1 means the two document vectors are either

identical or their coordinates differ by a constant factor.

4.3 Document-Subject Similarity Function

Having determined the way to represent terms and documents in SVSM, we can now define

a new similarity function that measures the similarity between a document and a subject

and returns a real value that ranges between 0 and 1. We observe that the similarity between

a document d and a subject si corresponds to the coordinate value of document vector
−→
d

in dimension −→si , i.e.,

Sim(d, si) =
1

ψd

∑

t∈T

�t,si × �t,d (4)

where �t,si ,�t,d are the weight of term t in subject si and document d, respectively.

31

Chapter 5

Semantic Clustering Algorithm

In this chapter, we illustrate our approach for semantically clustering a document set D

based on initial subject definitions {s01, s
0
2, . . . , s

0
n}. The objective is to utilize the initial

subject definition vector of each subject si ∈ S to semantically generate expansion vectors

such that the final representation of the subject can be expressed as defined by (3).

After modeling the subjects, the algorithm clusters the documents by measuring the

similarity between each document d ∈ D and each subject si ∈ S and generates a set of

overlapping clusters C accordingly.

Algorithm 1 provides an overview of the subject vector generation process. The al-

gorithm iterates through the following three steps to generate expansion vectors for each

subject si ∈ S:

Step1- ESL Lookup (Lines 6-11): Generate an expansion vector by looking up syn-

onyms/related words in the Extended Synonym List (ESL) of each input term of this step.

Step2- WordNet Synonyms (Lines 17-18): Utilize WordNet to determine the synsets

of each input term of this step, and then generate an expansion vector using the synonym

terms resulting from applying Lesk’s [Les86] word sense disambiguation technique to

determine the appropriate synonyms of each term.

Step3- Top Frequent Terms (Lines 24-30): Compute frequently used terms from the

32

Algorithm 1 Subject Vector Generation

Require: |s0i | > 0
1: si ← s0i
2: r ← 1
3: for each subject si ∈ S do

4: ä ← s0i
5: while |si| ≤ δ do

6: sri ← LookupESL(ä)
7: if r == 1 then

8: �sri
= 1

9: else

10: �sri
= λ× �sr−1

i

11: end if

12: if |si + sri | > δ then

13: break
14: else

15: si ← si + sri
16: r ← r + 1
17: sri = Synonym(wsdWordNet(ä+ sr−1

i))
18: �sri

= λ× �sr−1

i

19: if |si + sri | > δ then

20: break
21: else

22: si ← si + sri
23: r ← r + 1
24: q̈ ← {

⋃l=r−1

l=1
sli}

25: D′ ← {d | d ∈ D, scoreε(q, d)}
26: M̂ ← tfidf(t ∈ D′ × d ∈ D′)
27: tft(P̂) ← {t |

∑

d∈M̂ tf(t, d) · idf(t,D′) ≥ σ}

28: wsd(t) ← St⊂dominant

⋃

x∈X wsdx(t) : t ∈ tft(P̂)

29: sri = {t | t ∈ tft(P̂),
∑

tc∈s0i
jcn(t, tc) ≥ σ′}

30: �sri
= λ× �sr−1

i

31: if |si + sri | > δ then

32: break
33: else

34: si ← si + sri
35: ä ← sri
36: r ← r + 1
37: end if

38: end if

39: end if

40: end while

41: end for

42: return S = {s1, s2, . . . , sn}

33

top-ranked documents of the document set, and then generate an expansion vector by ex-

tracting top frequent terms (tft) using Jiang-Conrath’s [JC97] relatedness distance measure.

Word sense disambiguation (WSD) technique is utilized for part-of-speech (PoS) tagging

and sense determination in a context to address the problem of homonyms and polysemous

words.

Note that the weight of each term in any initial vector s0i is equal to 1. However, as we

start to construct each subject si ∈ S by generating a set of expansion vectors, the weight

of each term in any expansion vector sr+1

i will be less or equal to the weight of any term in

the previous expansion vector sri , i.e.,

�t′ = λ× �t : t ∈ sri and t
′ ∈ sr+1

i

Based on an extensive number of experiments conducted, we observed that our clustering

algorithm provides better results when λ = 1 in Step1- ESL Lookup. This is because in-

troducing new terms using ESL imposes a minimal risk of adding noise because the list

is provided by the investigator. We also observed that our clustering algorithm provides

better results when λ = 0.5 in Step2- WordNet Synonyms and Step3- Top Frequent Terms.

This is because using ontology terms or external source terms as additional features may

introduce noise [HZL+09].

Figure 3 illustrates the subject si vector generation process.

5.1 ESL Lookup (Lines 6-11)

The objective of this step is to generate an expansion vector sri by looking up synonyms/re-

lated words in the Extended Synonym List (ESL) such that r − 1 expansion vectors have

already been generated.

34

Lookup
Extended

Synonym

List (ESL)

WordNet Synonym

Document Set
Top

Frequent

Terms

Subject Definition Vector Si
0

+

Final Subject Vector Si

Lookup
Extended

Synonym

List (ESL)

WordNet Synonym

Document Set
Top

Frequent

Terms

Lookup
Extended

Synonym

List (ESL)

WordNet Synonym

Document Set
Top

Frequent

Terms

Si
0 Synonym/Related Terms

Figure 3: Subject si Vector Generation Process

The input in this step is a set of weighted terms denoted by ä = {t1, t2, . . . , t|ä|}. If this

is the first expansion vector to be generated (r = 1), then ä is the initial subject definition

vector s0i for subject si; otherwise, ä is the expansion vector sr−1

i for subject si.

For each t ∈ ä, Line 6 scans the ESL. If t ∈ ESL, then any related term t′ ∈ ESL will

be added to sri such that t′ will be assigned a weight equal to the weight of t.

5.2 WordNet Synonyms (Lines 17-18)

The next phase is to utilize WordNet to determine the synsets of each input term and to

generate an expansion vector sr+1

i using the synonym terms resulting from applying Lesk’s

word sense disambiguation technique [Les86] to determine the appropriate synonyms of

each term.

The input for this step is a set of weighted terms denoted by b̈ that combines the terms

from both ä and sri from the previous step (ESL Lookup).

35

While generating sr+1

i , it is important that we handle homonyms and polysemous words

carefully by finding the best sense that represents the meaning of each term t ∈ b̈ in context.

To achieve this goal, we utilize a word sense disambiguation (WSD) technique for part-

of-speech (PoS) tagging and sense determination in a context.

Our lexical semantic expansion approach using WordNet involves three stages: First,

we identify all the senses for each term t ∈ b̈ (Section 5.2.1), then use WSD algorithm

to select the most appropriate sense for each term (Section 5.2.2), and finally generate the

expansion vector sr+1

i by assigning the synonym terms (Section 5.2.3). Figure 4 illustrates

the lexical semantic expansion approach using WordNet.

5.2.1 Synset Repository Construction

Let b̈ = {t1, t2, . . . , t|b|} be the set of input terms. We define a synonym function Syn() that

takes a term t as input and returns the synsets of t that correspond to the senses matching

the term’s part of speech (PoS) from WordNet:

Syn(t) = {Sj|Sj ∈ SynsetWN(t) ∧ PoSSj
= PoSt}

where PoSSj
denotes the part of speech of all synonyms in synset Sj . We observe that

associating only the synsets of the senses with matching PoS for each term has a major

impact on the WSD algorithm, as it helps improve the overall disambiguation accuracy

while reducing the computational time of the algorithm due to the reduction in search

space. However, if the term is not tagged (no PoS is assigned to it), then we associate the

synsets of both verb and noun senses with that term:

Syn(t) = {Sj|Sj ∈ SynsetWN(t), PoSSj
∈ [V erb,Noun]}

Note that Syn(t) = ∅ when term t cannot be recognized by WordNet. This case could

36

WSD

t1 t2 t3 t4 t5 t6 t7

S1 S2 S3 S4 S5 S6 S7

t71

S1 S2 S3 S4 S5 S6

t11 t21 t31 t51

S7

t12 t32 t33

S11

S12

S13

S14

S21

S22

S31

S32

S33

S41 S51

S52

S53

S61

S62

S71

S72

S73

S74

t1 t2 t3 t4 t5 t6 t7

t1 t2 t3 t4 t5 t6 t7

b
0

i
s

b

Synonym Extension

Figure 4: Lexical Semantic Expansion Using WordNet

occur since WordNet lexicon contains the majority (but not all) of the English words. This

could also happen if the initial subject definition vector s0i contains special terms, e.g., slang

and special expressions, that are commonly used within criminal society but do not exist in

standard English dictionaries.

5.2.2 Unique Synset Assignment

In the previous step, we associated a set of synsets with each term t. In this step, the

objective is to identify the best fit synset in the context of subject si for each term t ∈ b̈. To

achieve that, we use an adapted version of a word sense disambiguation method based on

Lesk’s algorithm [Les86]. Lesk’s algorithm disambiguates a word by comparing the gloss

of each of its senses to the glosses of every other word in a phrase. A word is assigned to

the sense whose gloss shares the largest number of words in common with the glosses of

37

the other words. The adapted version of Lesk’s algorithm [DS10] will be applied to each

term t ∈ b̈ to solve the ambiguity problem as follows:

1. Define the context around target term tl ∈ b̈ to be all the terms in the initial subject

definition vector s0i .

2. For each context term tk ∈ s0i , list all the possible senses {Sj ∈ SynsetWN(tk)|PoSSj
=

PoStk}.

3. For the target term tl, as well as each context term tk ∈ s0i , list the following: its

own WordNet gloss/definition, the concatenated glosses of all hypernym synsets, the

concatenated glosses of all hyponym synsets, the concatenated glosses of all of the

meronym synsets, and the concatenated glosses of all of the troponym synsets.

4. Measure the relatedness between each gloss of target term tl with each gloss from

each term tk ∈ s0i by searching for overlaps. The overall score of each sense of a

target term is the sum of the scores for each gloss pair.

5. Once each combination has been scored, assign the synset of the corresponding sense

with the highest score to the target term.

6. Repeat this process for every term tl ∈ b̈ to determine the most appropriate sense for

each term.

5.2.3 Expansion Using Synonyms

Having assigned a synonym set St to each term t ∈ b̈, the subject expansion vector sr+1

i

can now be generated by assigning the synonym terms of each term t ∈ b̈ to it:

∀t ∈ b̈ : sr+1

i = {t′i ∈ Synonym(St)| St = wsd(tl), t
′ /∈ b̈}

38

where wsd(tl) represents the best fit synset in the context of subject si for each term tl.

The terms in expansion vector sr+1

i will be assigned a weight that equals half the weight of

the terms in sri .

5.3 Top Frequent Terms (Lines 24-30)

The goal in this step is to generate an expansion vector sr+2

i for subject si based on the

expansion vector sr+1

i that was generated in the previous step. First, we determine the

documents in D that are the most related to already generated expansion vectors in Sec-

tion 5.3.1, then we compute top frequent terms (tft) in Section 5.3.2. For each term in tft we

then apply the WSD algorithm to determine the context dominant sense in Section 5.3.3.

Finally we apply the Jiang-Conrath similarity measure [JC97] to determine the most related

terms to the initial subject definition s0i in Section 5.3.4.

5.3.1 Compute Top Documents

The input for this section is a set of terms q̈ that represents all the system-generated subject

vectors for subject si ∈ S that have already been created:

q̈ = {t | t ∈
l=r+1
⋃

l=1

sli}

Our algorithm utilizes q̈ as a query vector. Hence, it computes the score between each

document vector d ∈ D and q̈ by computing the dot-product between each pair of vectors

as follows:

score(q̈, d) =
∑

t∈q̈

tf(t, d) · idf(t,D) (5)

The score of all documents will then be normalized to be a real number between 0 and

39

1. Given a threshold ε ∈ N+, we consider the top ε of the documents with the highest score

as the most related set of documents denoted by D′.

5.3.2 Compute Top Frequent Terms

To determine the top frequent terms in D′, we first build a term-document matrix M̂ in

which each row corresponds to a document d ∈ D′ and each column corresponds to a

term t ∈ D′. The entries in the matrix are the term frequency−inverse document frequency

(tf-idf) [SB88] of each term in each document.

Based on matrix M̂, we then determine the set of top frequent terms using the func-

tion (tft). Let M̂ be a term-document matrix where each entry corresponds to a term

frequency−inverse document frequency (tf/idf) of a term t ∈ D′ in a document d ∈ D′,

and let σ be a minimum support threshold. We define the function top frequent terms (tft)

of matrix M̂ as follows:

tft(M̂) = {t ∈ M̂ |
∑

d∈M̂

tf(t, d)× idf(t,D′) ≥ σ}

5.3.3 Word Sense Disambiguation

Even though we have extracted the set of frequent terms tft(M̂) from the document set D′,

it is not clear − for each term− which sense was used the most in the contexts where the

term appeared. We call such sense a dominant sense, and our goal here is to determine the

dominant sense for each term t ∈ tft(M̂).

As previously, we use the adapted version of the word sense disambiguation method

based on Lesk’s algorithm [Les86]. However, the main difference in this case is that each

term exists in multiple contexts X . We define each context x ∈ X of term t as a frame of

e terms that appear to the left and right of the term in each of its occurrences.

Since the terms are not tagged, we associate with each term (in each context) the synsets

40

of both its verb and noun senses:

Syn(t) = {Sj|Sj ∈ SynsetWN(t), PoSSj
∈ [V erb,Noun]}

We first determine the most appropriate sense for a term in each context x ∈ X:

wsdx(t) = St | St ∈ Synx(t)

and then we determine the sense to be assigned to the term by finding the dominant one

among all senses in all contexts:

wsd(t) = St | St∈dominant
{
⋃

x∈X

wsdx(t)}

5.3.4 Relatedness Distance Measure

The set of terms tft(M̂) we extracted from the document set to capture the suspects’ termi-

nologies might be unrelated (or weakly related) to the initial subject definition. To reduce

noise and avoid a reduction in both the recall and precision of our clustering algorithm, we

use a similarity measure to determine the relatedness of each term t ∈ tft(M̂) to the initial

subject definition vector s0i . The Jiang-Conrath similarity measure (jcn) [JC97] is used for

this purpose. According to Pedersen et al. [PPM04], it enriches the information content

of the least common subsumer of two concepts with the sum of the information content of

the individual concepts by subtracting the information content of the least common sub-

sumer from this sum, and then takes the inverse to convert it from a distance to a similarity

measure.

Using jcn, we compute the distance between each term t ∈ tft(M̂) and all terms in s0i .

The terms that meet a certain threshold σ′ will be used to construct the expansion vector

41

sr+2

i :

sr+2

i = {t ∈ tft(M̂) |
∑

tc∈s0i

jcn(t, tc) ≥ σ′}

The expansion vector sr+2

i will be assigned a weight (real value between 0 and 1) that

equals half the weight of the previous expansion vector for the same subject, i.e.,

�sr+2

i
= 0.5× �sr+1

i

and the weight of each term t ∈ sr+2

i is equal to the weight of the expansion vector itself

�sr+2

i
. Once sr+2

i has been computed, it will then be used to start a new iteration of subject

vector expansion by starting to look up all the terms in sr+2

i in the Extended Synonym List

(ESL) in Section 5.1.

Once the generation of expansion vectors for all subjects si ∈ S is completed, our algo-

rithm starts the clustering process by applying the similarity function Sim(d, si) between

each document d ∈ D and each subject si ∈ S and generates a set of overlapping clusters

C accordingly. Algorithm 2 provides an overview of the clustering process used to assign

each document to one or more clusters.

Algorithm 2 Document Clustering

Require: |si| < δ
1: for each subject si ∈ S do

2: for each document d ∈ D do

3: if Sim(d, si) > τ then

4: Ci ← d
5: end if

6: end for

7: end for

8: return C = {C1, C2, . . . , Cn}

42

Chapter 6

Experimental Evaluation

Based on our proposed clustering solution, we have developed a tool called Cyber Forensic

Search Engine (CFSE) for the Súreté du Québec (SQ) as a proof of concept. CFSE is a

Java-based application that is composed of three components:

Indexing Engine. This engine parses documents on the suspect’s computer, analyzes

the documents by applying the preprocessing steps, namely tokenization, stemming, stop

word removal, and text normalization, and then indexes the documents. We used Apache

Tika 1 and Lucene 2 to parse, preprocess, and index the documents.

Clustering Engine. This engine groups all the documents into a set of overlapping

clusters according to the algorithm proposed in this thesis, in which each cluster is associ-

ated with one and only one pre-defined subject, such that the similarity between a document

and its assigned subject is maximized.

Search Engine. This engine allows an investigator to search the resulting clusters and

retrieve relevant documents according to a given search query and a specific subject.

The objective of the experiments is to evaluate the performance of our proposed subject-

based semantic document clustering algorithm implemented in the clustering engine in

1Apache Tika. http://tika.apache.org/
2Apache Lucene. http://lucene.apache.org/

43

terms of accuracy, efficiency, and scalability.

6.1 Data Sets

We use two data sets in our experiment: Classic3 and Forensic. The pre-classification of

each document will be used to measure the accuracy of the clustering results; however,

during the clustering process, this information will be hidden.

Below is a brief summarization of each data set’s characteristics:

• Classic3 is a benchmark data set used in text mining3. It consists of 3893 documents

from 3 disjoint classes: 1400 aeronautical-system documents (CRAN), 1033 medical

documents (MED), and 1460 information-retrieval documents (CISI).

• Forensic is a data set we collected for validating our clustering algorithm against a set

of crime-related documents. This data set consists of 90 documents from 3 different

classes: 30 drug-related documents, 30 hacking-related documents, and 30 sexual

assault-related documents.

6.2 Evaluation Method

We use F-measure [LA99] to measure the accuracy of the clustering solution produced by

our method.

Let C = {C1, C2, . . . , Cn} be the set of clusters generated by our system against a doc-

ument set D. Let K = {K1,K2, . . . ,Kl} be the natural classes of the document set D.

We compute the Precision and Recall of cluster Cj ∈ C with respect to class Ki ∈ K as

follows:

Precision(Ki, Cj) =
|Ki

⋂

Cj|

|Cj|
(6)

3Classic3. ftp://ftp.cs.cornell.edu/pub/smart/

44

Recall(Ki, Cj) =
|Ki

⋂

Cj|

|Ki|
(7)

where |Ki|, |Cj|, and |Ki

⋂

Cj| denote the number of documents in class Ki, in cluster Cj ,

and in both Ki and Cj respectively.

Based on the above, the generic version of F-measure (Fβ) can be presented as follows:

Fβ =
(β2 + 1)× Precision×Recall

β2 × Precision+Recall
(8)

where β ∈ R+ is a balancing parameter between Precision and Recall. To make F-

measure equivalent to the harmonic mean of Precision and Recall, we set β = 1 and end

up with a balanced version of F-measure called F1 measure. We use F1 in our experiments

to compute the accuracy of cluster Cj with respect to class Ki as follows:

F1(Ki, Cj) =
2× Precision(Ki, Cj)×Recall(Ki, Cj)

Precision(Ki, Cj) +Recall(Ki, Cj)
∈ [0, 1] (9)

where F1 score reaches its best value at 1 and worst score at 0.

6.3 Experimental Results

In this section, we evaluate our subject-based semantic document clustering algorithm in

terms of accuracy, as well as efficiency and scalability. All experiments were conducted on

an Intel Core2 Quad E6650 3GHz PC with 4GB RAM.

6.3.1 Accuracy

Our clustering algorithm allows for two user-specified thresholds δ and τ , where δ is the

maximum length (maximum number of terms) threshold of a subject vector and τ is the

minimum similarity threshold for all clusters. A document d ∈ D is added to cluster Ci if

45

its normalized score returned by the similarity function is larger than τ (2).

Figure 5 depicts the F-measure values (accuracy) of the clustering algorithm with re-

spect to δ and τ . We set δ to three different values relative to the average document length

avg_dl in the data set: 0.25 ∗ avg_dl, 0.50 ∗ avg_dl, and avg_dl, whereas τ was set to a

range of values between 0.05 and 0.5. We observe that the F-measure value spans from 0.61

to 0.72 when the minimum similarity threshold τ increases from 0.05 to 0.5. Assigning a

value between 0.1 and 0.175 to τ provides high accuracy for all three different values of δ.

Based on the extensive number of experiments conducted, we observed that our clustering

algorithm provides a high accuracy value when τ ∈ [0.08, 0.2] and δ = avg_dl.

We also observe that the change in δ value affects the accuracy of the algorithm in a

minimal way. We argue that the integration of WSD technique in step2 and step3 of our

subject vector generation algorithm helps reduce the noise and consequently reduces the

sensitivity of our clustering algorithm to the input parameter δ. We also observe that when

the maximum length of a subject vector is equal to the average document length in the

document set (δ = avg_dl), the algorithm in most cases provides higher F-measure values.

6.3.2 Efficiency and Scalability

One major contribution of our work is the development of an efficient and scalable al-

gorithm for semantic document clustering that expands the term vector representing each

subject using WordNet. According to Algorithm 1, the runtime complexity of our approach

is dominated by the maximum subject vector length δ and the data set size; therefore, we

study the runtime under different subject vector lengths and different data set sizes.

Figure 7 presents the runtime on the two data sets Forensic and Classic3, with respect to

δ that ranges between 0.25*avg_dl and 1.25*avg_dl. We observed that the runtime scales

linearly with respect to the subject vector length under both data sets. We also observed

that regardless of the size of the data set (Classic3 is 43 times larger than Forensic), the

46

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0
.0

5

0
.0

7
5

0
.1

0
.1

2
5

0
.1

5

0
.1

7
5

0
.2

0
.2

2
5

0
.2

5

0
.2

7
5

0
.3

0
.3

2
5

0
.3

5

0
.3

7
5

0
.4

0
.4

2
5

0
.4

5

0
.4

7
5

0
.5

F
-M

e
a

su
re

Minimum Similarity ()

avg_dl avg_dl avg_dl

Figure 5: Sensitivity to cluster’s minimum similarity (τ) in relation to the maximum subject
vector length (δ)

gradient (slop) of each data set’s runtime remains the same.

We choose Classic3, the larger data set with 3893 files, to examine the runtime with

different data set sizes. The files in the data set are duplicated so scalability can be measured

starting from 10,000 documents, going up to 100,000 documents. To ensure a balanced

duplication of the data set, we define the scaleup factor α as follows:

α = �
Target#ofdocuments

|D|
� (10)

47

90

190

290

390

490

590

690

0.25*avg_dl 0.5*avg_dl 0.75*avg_dl avg_dl 1.25*avg_dl

T
im

e
 (

se
co

n
d

s)

Maximum Subject Vector Length (

Classic3 Forensic

Figure 6: Efficiency with regard to Classic3 and Forensic document sets

We also define the remainder factor α′ as follows:

α′ = (Target#ofdocuments) % |D| (11)

where � � and % are the floor function and remainder function, respectively. We first copy

all files in Classic3 (α − 1) times, and then we copy α′ random files 1 time. The total

number of files, including the original files in Classic3, is equal to the target number of

documents.

Our subject vector generation algorithm consists of three phases: ESL Lookup, WordNet

Synonyms, and Top Frequent Terms. The objective is to measure the runtime of each phase

to ensure it does not grow proportionally to the total number of documents in the data

48

set. Figure 7 depicts the runtime of the three phases with respect to the total number of

documents being clustered. The total runtime for processing 100,000 documents is 313s,

where 3s are spent looking up synonyms from ESL, 46s are spent generating synonyms

using WordNet, and 264s are spent analyzing the document set to extract frequent terms

that capture the suspects’ terminologies. The runtimes of both the ESL Lookup phase and

WordNet Synonyms phase are independent of the total number of documents. As for the

Top Frequent Terms phase, the runtime grows as the total number of documents increases.

This is due to the internal parameter ε that is used to capture the suspect’s terminologies

and is set to 1% of the data set size. The runtime scales linearly with respect to the data

set’s size. Since each phase of the algorithm is either independent or grows linearly with

respect to the total number of documents, the experimental results on real-life data sets

suggest that our algorithm is scalable.

49

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
co

n
d

s)

of Documents (in thousands)

ESL Lookup WN Synonyms Top Frequent Terms Total

Figure 7: Scalability with the scale-up Classic3 document set

50

Chapter 7

Conclusion

This chapter concludes the thesis. First, we give a summary of the contributions, then we

describe the research directions that can be conducted as a future work.

7.1 Summary of Contributions

In this thesis, Motivated by the digital forensic process at Sûreté du Québec (SQ), we

have proposed a subject-based semantic document clustering algorithm for digital forensic

investigations with the objective of using data mining to support investigations.

First, we modeled our clustering solution by proposing Subject Vector Space Model

(SVSM). In SVSM, each dimension represents a subject, where terms and documents are

represented in the space according to their relations to all subjects. This allows a more

realistic representation of the terms because terms inherently are not are orthogonal to each

other. This representation also allows us to reduce the clustering problem of a document

to the determination of the coordinate of this document on each subject vector. This is re-

flected in our proposed similarity function Sim(d, si) that measures the similarity between

any document d ∈ D and subject si ∈ S, where D is a collection of documents and S is a

set of subjects.

51

Second, we introduced an efficient and scalable subject-based semantic document clus-

tering algorithm that expands the term vector representing each subject using WordNet.

Word sense disambiguation (WSD) algorithm was integrated in the process to determine the

appropriate sense (and accordingly, the synonym set) of a term in WordNet in the context

of the initial terms that define a subject. The integration of WSD improved the precision of

our clustering algorithm by reducing the polysemy affect.

Third, we dynamically captured suspects’ terminologies by making use of the document

set to incrementally expand the subject vector by adding top frequent terms from the most

similar documents to the subject. WSD is also integrated in this phase to determine the

dominant sense of the term, which is the sense used the most in the several contexts in

which the term appears.

Finally, we conducted an extensive experimental study over two real-life data sets

and examined the effectiveness of the algorithm according to subject vector length and

document-score thresholds. We also demonstrate that our approach is highly scalable for

large data sets.

7.2 Future Work

For future work, we identify several potential research directions.

SVSM model assumes that all axes are orthogonal to each other. It implies that subjects

(dimensions) are completely independent of each other, i.e., the dot product between any

two subject vectors is 0. This assumption simplifies the system and makes it easier to

understand; however, in most cases, the subjects to be investigated are not completely

independent since one or more terms might exist in more than one subject vector. Such

dependency between subjects will impact the way the similarity between documents are

computed, but more importantly, the similarity function between a document vector and a

subject vector will change to take in consideration the dependency between subject vectors.

52

In the three steps of our algorithm, we integrated word sense disambiguation to im-

prove the accuracy (presision/recall) of the algorithm. It would also be interesting to study

how to integrate certain dimensionality reduction techniques, such as Principal Component

Analysis [Jol86] or Outlier detection techniques [AY01], with respect to the impact on the

accuracy, efficiency, and scalability of the algorithm.

In our algorithm, we limited each term in the initial subject definition to be either a verb

or a noun. The reason for that is because verbs and nouns are the most content-bearing types

of words [59]. However, it would be also interesting to investigate the impact of allowing

other type of words to be part of the initial subject definition. For example, adjectives

and adverbs also bear some content meaning, and WordNet already supports these type of

words.

53

Bibliography

[ABKS99] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander. Optics: Ordering

points to identify the clustering structure. SIGMOD Rec., 28:49–60, June

1999.

[AY01] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In

Proceedings of the 2001 ACM SIGMOD International Conference on Man-

agement of Data, pages 37–46, New York, NY, USA, 2001. ACM.

[BBM02] S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering by

seeding. In Proceedings of the 19th International Conference on Machine

Learning, pages 27–34, San Francisco, CA, USA, 2002. Morgan Kaufmann

Publishers Inc.

[Bez81] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.

Kluwer Academic Publishers, Norwell, MA, USA, 1981.

[BK03] J. Becker and D. Kuropka. Topic-based Vector Space Model. In Proceedings

of the 6th International Conference on Business Information Systems, pages

7–12, Colorado Springs, July 2003.

[BM03] S. Basu and R. J. Mooney. Semi-supervised clustering: Learning with limited

user feedback. Technical report, University of Texas at Austin, 2003.

54

[Cas00] E. Casey. Digital Evidence and Computer Crime: Forensic Science, Comput-

ers, and the Internet with Cdrom. Academic Press, Inc., Orlando, FL, USA,

1st edition, 2000.

[CCM03] D. Cohn, R. Caruana, and A. Mccallum. Semi-supervised Clustering with

User Feedback, 2003.

[CCX+04] H. Chen, W. Chung, J. J. Xu, G. Wang, Y. Qin, and M. Chau. Crime data

mining: A general framework and some examples. Computer, 37:50–56,

April 2004.

[CH98] W. Cohen and H. Hirsh. Joins that generalize: Text classification using whirl.

In Proceedings of the 4th International Conference on Knowledge Discovery

and Data Mining, pages 169–173, 1998.

[CMSW92] R. H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz. Trading mips and

memory for knowledge engineering. Communications of the ACM, 35:48–64,

August 1992.

[CN89] P. Clark and T. Niblett. The cn2 induction algorithm. Machine Learning,

3:261–283, March 1989.

[Coh95] W. W. Cohen. Fast effective rule induction. In Proceedings of the 12th In-

ternational Conference on Machine Learning, pages 115–123. Morgan Kauf-

mann, 1995.

[CRCG02] M. R. Clint, M. Reith, C. Carr, and G. Gunsch. An Examination of Digital

Forensic Models, 2002.

[CS99] W. W. Cohen and Y. Singer. Context-sensitive learning methods for text cat-

egorization. ACM Transactions on Information Systems (TOIS), 17:141–173,

April 1999.

55

[CS04] B. D. Carrier and E. H. Spafford. An event-based digital forensic investiga-

tion framework. In Proceedings of the 4th Digital Forensic Research Work-

shop, 2004.

[Csi96] I. Csiszár. Maxent, mathematics, and information theory. Maximum Entropy

and Bayesian Methods, 79:0–35, 1996.

[DBE99] A. Demiriz, K. Bennett, and M. J. Embrechts. Semi-supervised clustering

using genetic algorithms. In Proceedings of the Artificial Neural Networks in

Engineering (ANNIE-99, pages 809–814. ASME Press, 1999.

[DDF+90] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.

Indexing by latent semantic analysis. Journal of the American Society for

Information Science, 41(6):391–407, 1990.

[DKR97] I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text catego-

rization. In Proceedings of EMNLP-97, the 2nd Conference on Emperical

Methods in Natural Language Processing, pages 55–63, June 1997.

[DM01] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text

data using clustering. Machine Learning, 42:143–175, January 2001.

[DPHS98] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning al-

gorithms and representations for text categorization. In Proceedings of the

7th International Conference on Information and Knowledge Management,

pages 148–155, New York, NY, USA, 1998. ACM.

[DS10] T. N. Dao and T. Simpson. Measuring similarity between sentences. The

Code Project, 2010.

[Dun73] J. C. Dunn. A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters. Journal of Cybernetics, 3(3):32–57, 1973.

56

[dVACM01] O. de Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail content for

author identification forensics. ACM SIGMOD Record, 30:55–64, December

2001.

[DWV99] H. Drucker, D. Wu, and V. N. Vapnik. Support vector machines for spam

categorization. IEEE Transactions on Neural Networks, 10(5):1048 –1054,

September 1999.

[ELL09] B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Wiley Publishing,

4th edition, 2009.

[F9̈9] J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Re-

view, 13:3–54, February 1999.

[FB91] N. Fuhr and C. Buckley. A probabilistic learning approach for document

indexing. ACM Transactions on Information Systems (TOIS), 9:223–248,

July 1991.

[FGG97] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers.

Machine Learning, 29:131–163, November 1997.

[For65] E. W. Forgy. Cluster Analysis of Multivariate Data: Efficiency vs Inter-

pretability of Classifications. Biometrics, 21:768–769, 1965.

[Fri89] J. H. Friedman. Regularized discriminant analysis. Journal of the American

Statistical Association, 84(405):pp. 165–175, 1989.

[FU02] U. Fayyad and R. Uthurusamy. Evolving data into mining solutions for in-

sights. Communications of the ACM, 45:28–31, August 2002.

[Gar10] S. L. Garfinkel. Digital forensics research: The next 10 years. Digital Inves-

tigation, 7(1):S64 – S73, 2010.

57

[GHT07] Y. Guo, T. Hastie, and R. Tibshirani. Regularized Linear Discriminant Anal-

ysis and its Application in Microarrays. Biostat, 8(1):86–100, January 2007.

[GRS98] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm

for large databases. In Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data, pages 73–84, New York, NY, USA,

1998. ACM.

[HK06] J. Han and M. Kamber. Data mining: Concepts and Techniques. Elsevier,

2006.

[Hua97] Z. Huang. A fast clustering algorithm to cluster very large categorical data

sets in data mining. In Proceedings of the Research Issues on Data Mining

and Knowledge Discovery, pages 1–8, 1997.

[HZL+09] X. Hu, X. Zhang, C. Lu, E. K. Park, and X. Zhou. Exploiting wikipedia

as external knowledge for document clustering. In Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 389–396, New York, NY, USA, 2009. ACM.

[JC97] J. J. Jiang and D. W. Conrath. Semantic similarity based on corpus statistics

and lexical taxonomy. In Proceedings of the International Conference Re-

search on Computational Linguistics (ROCLING X), pages 9008+, Septem-

ber 1997.

[Jen96] F. V. Jensen. Introduction to Bayesian Networks. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 1st edition, 1996.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM

Computing Surveys, 31:264–323, September 1999.

58

[Joa98] T. Joachims. Text Categorization with Support Vector Machines: Learning

with Many Relevant Features. In Claire Nédellec and Céline Rouveirol, ed-

itors, Machine Learning: ECML-98, volume 1398, chapter 19, pages 137–

142. Springer Berlin / Heidelberg, Berlin/Heidelberg, 1998.

[Jol86] I. Jolliffe. Principal component analysis. Springer Verlag, 1986.

[KBS97] R. Kohavi, B. Becker, and D. Sommerfield. Improving simple bayes, 1997.

[Kin67] B. King. Step-wise Clustering Procedures. Journal of the American Statisti-

cal Association, 62(317):86–101, 1967.

[KJ00] R. Klinkenberg and T. Joachims. Detecting concept drift with support vector

machines. In Proceedings of the 17th International Conference on Machine

Learning, pages 487–494, San Francisco, CA, USA, 2000. Morgan Kauf-

mann Publishers Inc.

[Kon91] I. Kononenko. Semi-naive bayesian classifier. In Proceedings of the Euro-

pean Working Session on Learning on Machine Learning, pages 206–219,

New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[Kot07] S. B. Kotsiantis. Supervised machine learning: A review of classification

techniques. In Proceedings of the 2007 Conference on Emerging Artificial In-

telligence Applications in Computer Engineering: Real Word AI Systems with

Applications in eHealth, HCI, Information Retrieval and Pervasive Technolo-

gies, pages 3–24, Amsterdam, The Netherlands, The Netherlands, 2007. IOS

Press.

[KR90] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction

to Cluster Analysis. Wiley-Interscience, 9th edition, March 1990.

59

[KSB03] C. H. A. Koster, M. Seutter, and J. Beney. Multi-classification of patent ap-

plications with winnow. In Proceedings of the Ershov Memorial Conference,

pages 546–555, 2003.

[LA99] B. Larsen and C. Aone. Fast and effective text mining using linear-time doc-

ument clustering. In Proceedings of the 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 16–22, New

York, NY, USA, 1999. ACM.

[LC94] D. D. Lewis and J. Catlett. Heterogeneous Uncertainty Sampling for Super-

vised Learning, pages 148–156. Morgan Kaufmann, 1994.

[LCH08] Y. Li, S. M. Chung, and J. D. Holt. Text document clustering based on fre-

quent word meaning sequences. Data & Knowledge Engineering, 64:381–

404, January 2008.

[LdMA98] R. Lopez de Mantaras and E. Armengol. Machine learning from examples:

Inductive and lazy methods. Data & Knowledge Engineering, 25:99–123,

March 1998.

[Les86] M. Lesk. Automatic sense disambiguation using machine readable dictio-

naries: How to tell a pine cone from an ice cream cone. In Proceedings of

the 5th annual International Conference on Systems Documentation, pages

24–26, New York, NY, USA, 1986. ACM.

[Lew98] D. D. Lewis. Naive (bayes) at forty: The independence assumption in infor-

mation retrieval. In Proceedings of the 10th European Conference on Ma-

chine Learning, pages 4–15, London, UK, 1998. Springer-Verlag.

[LJ98] Y. H. Li and A. K. Jain. Classification of text documents. The Computer

Journal, 41:537–546, 1998.

60

[LPM01] H. Lee, T. Palmbach, and M. Miller. Henry Lee’s Crime Scene Handbook.

San Diego: Academic Press, 2001.

[LW94] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Infor-

mation and Computation, 108:212–261, February 1994.

[Mac67] J. B. Macqueen. Some Methods of Classification and Analysis of Multivariate

Observations. In Proceedings of the 5th Berkeley Symposium on Mathemati-

cal Statistics and Probability, pages 281–297, 1967.

[McG11] S. B. McGrayne. The Theory That Would Not Die: How Bayes’ Rule Cracked

the Enigma Code, Hunted Down Russian Submarines, and Emerged Tri-

umphant from Two Centuries of Controversy. Yale University Press, 2011.

[Mil95] G. A. Miller. WordNet: A Lexical Database for English. Communications of

the ACM, 38:39–41, 1995.

[Mit97] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA,

1 edition, 1997.

[MLW92] B. Masand, G. Linoff, and D. Waltz. Classifying news stories using memory-

based reasoning. In Proceedings of the 15th annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages

59–65, New York, NY, USA, 1992. ACM.

[MR02] S. Markovitch and D. Rosenstein. Feature generation using general construc-

tor functions. Machine Learning, 49:59–98, October 2002.

[Mur98] S. K. Murthy. Automatic construction of decision trees from data: A multi-

disciplinary survey. Data Mining and Knowledge Discovery, 2:345–389, De-

cember 1998.

61

[NGL97] H. T. Ng, W. B. Goh, and K. L. Low. Feature selection, perceptron learning,

and a usability case study for text categorization. In Proceedings of the 20th

Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 67–73, New York, NY, USA, 1997. ACM.

[PC01] G. Palmer and M. Corporation. A Road Map for Digital Forensic Research.

In Proceedings of the 1st Digital Forensic Research Workshop, August 2001.

[PK07] A. Polyvyanyy and D. Kuropka. A Quantitative Evaluation of the Enhanced

Topic-based Vector Space Model. Universitätsverlag Potsdam, 2007.

[Por97] M. F. Porter. An Algorithm for Suffix Stripping, pages 313–316. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[PPM04] T. Pedersen, S. Patwardhan, and J. Michelizzi. Wordnet: : Similarity - mea-

suring the relatedness of concepts. In Proceedings of AAAI, pages 1024–

1025, 2004.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[Ros62] F. Rosenblatt. Principles of Neurodynamics: Perceptron and the Theory of

Brain Mechanisms. Spartan Books, Washington, D.C., USA, 1962.

[Sal89] G. Salton. Automatic Text Processing: the Transformation, Analysis, and

Retrieval of Information by Computer. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1989.

[SB88] G. Salton and C. Buckley. Term-weighting approaches in automatic text re-

trieval. Information Processing and Management, 24:513–523, August 1988.

62

[Seb02] F. Sebastiani. Machine learning in automated text categorization. ACM Com-

puting Surveys (CSUR), 34:1–47, March 2002.

[SGW+95] T. E. Senator, H. G. Goldberg, J. Wooton, M. A. Cottini, U. Khan, C. D.

Klinger, W. M. Llamas, M. P. Marrone, and R. W. H. Wong. The fincen

artificial intelligence system: Identifying potential money laundering from

reports of large cash transactions. AI Magazine, 16:21–39, 1995.

[SHP95] H. Schütze, D. A. Hull, and J. O. Pedersen. A comparison of classifiers and

document representations for the routing problem. In Proceedings of the 18th

Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 229–237, New York, NY, USA, 1995. ACM.

[SJ88] K. Sparck Jones. A Statistical Interpretation of Term Specificity and its Ap-

plication in Retrieval, pages 132–142. Taylor Graham Publishing, London,

UK, 1988.

[SS73] P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy (by) Peter H.A. Sneath

(and) Robert R. Sokal: The Principles and Practice of Numerical Classifica-

tion. W.H. Freeman, 1973.

[WAD+99] S. M. Weiss, C. Apte, F. J. Damerau, D. E. Johnson, F. J. Oles, T. Goetz, and

T. Hampp. Maximizing text-mining performance. IEEE Intelligent Systems,

14:63–69, July 1999.

[War63] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function. Jour-

nal of the American Statistical Association, 58(301):236–244, March 1963.

[WCRS01] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means clus-

tering with background knowledge. In Proceedings of the 18th International

63

Conference on Machine Learning, pages 577–584, San Francisco, CA, USA,

2001. Morgan Kaufmann Publishers Inc.

[WPW95] E. D. Wiener, J. O. Pedersen, and A. S. Weigend. A Neural Network Ap-

proach to Topic Spotting. In Proceedings of SDAIR-95, the 4th Annual Sym-

posium on Document Analysis and Information Retrieval, pages 317–332,

Las Vegas, USA, 1995.

[XBP09] P. Xu, G. N. Brock, and R. S. Parrish. Modified linear discriminant analysis

approaches for classification of high-dimensional microarray data. Compu-

tational Statistics & Data Analysis, 53:1674–1687, March 2009.

[YC94] Y. Yang and C. G. Chute. An example-based mapping method for text cate-

gorization and retrieval. ACM Transactions on Information Systems, 12:252–

277, July 1994.

[ZG03] S. Zhong and J. Ghosh. A unified framework for model-based clustering. The

Journal of Machine Learning Research, 4:1001–1037, December 2003.

[Zho06] S. Zhong. Semi-supervised model-based document clustering: A compara-

tive study. Machine Learning, 65:3–29, October 2006.

64

