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ABSTRACT

A Multi-Faceted Approach to Network Security Metric through Combining

CVSS Base Scores

Pengsu Cheng

A network security metric enables the direct measurement of the effectiveness of net-

work security solutions. Combining CVSS scores of individual vulnerabilities provides

a measurement of the overall security of networks with respect to potential attacks. How-

ever, most existing approaches to combining such scores, either based on Attack Graph or

Bayesian Network, share two limitations. First, a dependency relationship between vulner-

abilities will either be ignored, or modeled in an arbitrary way. Second, only one aspect

of the scores, the probability of successful attacks, has been considered. In this thesis,

we address those issues as follows. First, instead of taking each base score as input, our

approach works at the underlying base metric level where dependency relationships have

well-defined semantics. Second, our approach interprets and combines scores in three dif-

ferent aspects, namely, probability, effort, and skill which may broaden the scope of appli-

cations for CVSS and allow users to weigh different aspects of the score for their specific

needs. Finally, we evaluate our approach through simulation.
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Chapter 1

Introduction

Today’s critical infrastructures and enterprises have become increasingly dependant on the

proper functioning of interconnected information systems. Such systems must thus be

secured against potential network intrusions. A network security metric is desirable in

this context since you cannot improve what you cannot measure. By applying a network

security metric immediately before, and after, deploying potential security solutions, these

solutions’ relative effectiveness can be judged in a more direct and precise manner. Such a

capability will render securing computer networks a science rather than an art.

Standard techniques exist for measuring the relative severity of individual vulnerabil-

ities, such as the Common Vulnerability Scoring System (CVSS) [48]. CVSS provides a

standard way for security analysts and vendors to assign numerical scores to known vulner-

abilities based on their exploitability (for example, whether it can be remotely exploited),

potential impact (on confidentiality, integrity, and availability), and other factors. CVSS

scores of many vulnerabilities are readily available in vulnerability databases (for example,

the NVD [53]).

The CVSS standard provides a solid foundation for developing network security met-

rics. On the other hand, CVSS is mainly intended to rank different vulnerabilities in the

same network, and it does not directly provide a way for measuring the overall security of
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different network configurations. Naive ways for combining individual scores, such as tak-

ing the average or maximum value, may lead to misleading results, as we shall demonstrate

shortly. The main reason is that such naive approaches do not take into consideration the

causal relationships between vulnerabilities (that is, exploiting one vulnerability enables

exploiting another). Several approaches address this issue based on attack graphs, which is

a model of such causal relationships [22, 34, 73].

In this thesis, we first point out following two limitations shared by those existing ap-

proaches.

• First, a dependency relationship between vulnerabilities that is not captured in attack

graphs may also affect the process of combining scores, which is either ignored, or

handled in an arbitrary way, in existing approaches.

• Second, only one aspect of security metrics, namely, the probabilities of attacks,

has been considered in most approaches, whereas other important aspects are being

ignored.

To address the above issues, we propose a novel multi-faceted approach to separately

combine CVSS base metrics. Specifically, instead of taking the base score as a black box

input, our approach breaks it down to the underlying base metrics. At the base metric

level, dependency relationships between vulnerabilities have well-defined semantics and

can thus be easily handled. Our approach also interprets CVSS scores in three different

aspects, namely, probability, effort, and skill. We show that the scores need to be combined

in different ways for different aspects. We evaluate our approach through simulations. The

results confirm the advantages of our approach.

The contribution of this thesis is summarized in the following.

• First, we identify and demonstrate important limitations of existing approaches in

defining or interpreting security metrics.
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• Second, working at the base metric level, our approach brings out more semantics in

combining CVSS scores and consequently produces metric results that may be more

meaningful and adoptable to security practitioners.

• Third, the multi-faceted approach to interpreting CVSS scores may broaden the scope

of applications for the standard and allow users to weigh different aspects of the score

based on their specific needs.

• Fourth, to the best of our knowledge, the simulation presented in this paper is among

the first efforts on experimentally evaluating network security metrics.

The rest of this thesis is organized as follows. Chapter 2 reviews related work. Chapter 3

reviews background knowledge necessary for understanding this thesis and demonstrates

limitations of existing approaches as the motivation of our work. Chapter 4 presents our ap-

proaches to combining base metrics for handling dependencies between vulnerabilities and

then extends this approach to further consider three different aspects of the metric scores.

Chapter 5 presents the algorithms for combining skill and effort aspects and presents sim-

ulation results. Chapter 6 briefly summarizes our other work related to this thesis. Finally,

Chapter 7 concludes the thesis.
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Chapter 2

Review of Literatures

In the field of vulnerability detection, many work including commercial efforts focus on

designing tools for finding existing vulnerabilities in a network. However, these tools do

not reveal how such vulnerabilities can be combined in a multi-step attack to penetrate net-

works. Security analysts are needed to take into account the combining impact of multiple

vulnerabilities to qualitatively evaluate the security of a given network against multi-step

attacks. Traditional methods for network vulnerability analysis usually involve heavy hu-

man intervention by the so-called red teams. Specifically, vulnerability scanners are used to

detect vulnerabilities on each hosts with the given network. Then other information about

about the network, such as assets, connectivities among hosts, and configuration of each

host, are integrated with the detected vulnerabilities by the red team members in order to

produce sequences of attacks. Each attack sequence, or attack path, will lead the attacker to

an undesirable state against critical assets. For example, a state where the attacker obtains

root accesses on an administrator’s host. However, the red team approach largely relies on

the skills of the team members; for a relatively large network, such manual processes will

become error-prone, tedious, and complicated to an unmanageable extent. Therefore, we

now review existing solutions that can address such limitations in the following.
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2.1 Attack Graph and Applications

Attack graph models emerged as a promising approach towards automating the task of

network security evaluation. Early efforts on the defence against multi-step network attacks

exist [17, 19, 54, 81]. The concept of attack tree is proposed as trees with AND and OR

relations for analyzing the security of systems in [65]. The authors proposed an attack

graph model in [59].

Early efforts on building attack graph is also presented in [69]. The authors use for-

ward search for building attack graph, and use following data as input: configuration files,

attacker profiles, and a database of manually created attack templates. In their model of

attack graph, each node represents a attack templates instantiated with particular hosts and

users; each edge is assigned a weight as the probability of success or cost of the attack.

Given a set of start nodes and end nodes, the security analysis is proposed as finding the

shortest path leading to end nodes.

Another early effort on automatic attack graph generation is presented in [71]. The pro-

posed require and provide approach is later widely adopted in defending against multi-step

attacks. By linking attack steps via precondition requirements and postcondition capabil-

ities, their approach is used to generate attack scenarios. Along the attack sequence, each

attack step enables attackers with more capabilities.

In [62], model checking is applied to the analysis of multi-step network attacks. Each

state is composed of known vulnerabilities on network hosts, connectivity among hosts, and

the initial capabilities of attacker. Exploits form the transitions between states executed

by attackers. Model checking is used to test the reachability of the goal states based on

the given formal model. In case a sequence of exploits leading to the goal states exists,

the model checker will find this counterexample as a potential attack path that should be

blocked in order to secure the network.

Attack paths enumeration is also presented in [40, 66], where all possible attack paths
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are generated as counterexamples to a query describing the secure state of the given net-

work by modified model checker applied to the finite-state machine created from network

configuration. Based on this model, the authors introduced the analysis of finding a cut

set in the attack graph so that disabling nodes in the cut set can block all attack paths

from reaching the goal conditions. The authors also show that it is intractable to find the

minimum attack sequence leading to the given goal conditions.

In [66], the goal of an automated analysis is to enumerate potential multi-step intru-

sions based on prior knowledge about vulnerabilities and their relationships. To avoid the

exponential explosion in the number of explicit attack sequences, a compact representation

of attack graphs was proposed based on the monotonicity assumption saying an attacker

never needs to relinquish any obtained capability [3]. The term of topological vulnerabil-

ity analysis is introduced in [63], where the authors provided thorough discussion on how

connectivity should be modeled at different layers of the network. Attack graphs have been

applied to alert correlation and hypotheses of missed attacks [75].

The monotonic assumption is introduced in [3] to address the scalability problem of

model checking-based approaches. Their approach relies on an assumption of monotonic-

ity, which states that the preconditions of a given exploit are never relinquished by the

successful application of another exploit. In other words, the attacker never needs to back-

track. This assumption reduce the complexity of attack graph from exponential in the

number of hosts to the polynomial. The attack graph is built in a two-pass search. The

first pass connects the exploits, by searching forward from the initial state, and then deletes

those irrelevant states by searching backward in the second pass. Additional analysis is

presented, such as finding the minimum attack sequence that leads to the given goal state.

Their approach avoid the state explosion problem that may face a model checking-based

approach [66].

Recently, a logic programming-based approach is introduced in [55], where Datalog
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language is applied to encode knowledge of network attack scenarios. MulVAL is pre-

sented in [56] as a security analyzer using the off-the-shelf tools to retrieve information

about software and vulnerabilities. Network configuration information is input into the en-

gine, then the attack steps leading the compromise of the network is generated. The time

complexity of the provided algorithm is reduced to polynomial in the size of the network.

In the aspect of scalability issue, an notable improvement is presented in the [51], where

a hierarchical approach is used to build rules at every level of the aggregation and integrate

every levels through common attribute values of attack graph elements or attack connectiv-

ity. The attack graph compression is performed by recursively collapse the subgraphs into

single vertices, at same time, keeping the same semantics. In addition, the abstraction of

protection domains is introduced to reduce the complexity where groups of machines have

complete connectivity. The time complexity is reduced to quadratic complexity.

In [52], the authors apply a matrix clustering algorithm to the adjacency matrix of

attack graphs, and the resulting adjacency matrix shows the feature of protection domain

on the main diagonal. Further improvements to attack graph representations are presented

in [35], where the authors use directed graph to model the subnets as nodes and possible

inter-subnet attacks as edges. Based on the domination relationships, a dominator tree is

used to find possible attacks of inter-subnet or intra-subnet. Then the groups of exploits

are reduced to virtual nodes, and the reachability of the attack graph will increase after this

abstraction. By applying these two approaches, the complexity of visualized attack graph

is significantly reduced, which allow security analyst to quickly grasp imminent threats.

In [78], Wang et al. proposed a framework that uses combining functions to find the

combined effect of vulnerabilities in a given network. They proposed the idea of using an

analogy to the resistance of electrical circuits in [79] and address the issue of additional

dependency between exploits although the solution is not entirely satisfactory since the

cycles in attack graphs are mostly ignored.
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2.2 Security Metrics

General reviews of security metrics are given in [7,39]. The NIST’s efforts on standardizing

security metrics are given in [48, 50, 68]. Intuitive properties for security metric are given

in [54] to measure the difficulty of attacks in terms of time and efforts based on a Markov

model. More recently, several security metrics are proposed by combining CVSS scores

based on attack graphs [22, 73, 78, 79]. The minimum efforts required for executing each

exploit is used as a metric in [9,58]. A mean time-to-compromise metric is proposed based

on the predator state-space model (SSM) used in the biological sciences in [43].

Security metrics are developed for specific applications, such as IDSs [42] and dis-

tributed trust management [61]. Attack surface measures how likely a software is vulner-

able to attacks [45, 57]. Few work exist on measuring zero day attacks. One exception is

the effort on ordering different applications in a system by the seriousness of consequences

of having a single zero day vulnerability [37]. Another work presents a novel model for

measuring the number of zero day vulnerabilities that an network can resist, which is re-

garded as a metric [74]. Homer and Ou propose using MinCostSAT for automated network

reconfiguration with numeric cost assigned to each configuration [33].

Metric has been employed for many different purposes in the broad area of network

security. A novel approach to behavioral distance measurement using a new type of Hidden

Markov Model is proposed for detecting the compromise of a process or mimicry attacks

in [24–26]. Metrics were used for detecting common data types found within network data

which can assist in measuring the similarity of network activities in the spatial and temporal

aspects [16]. The measurement issues associated with deploying darknets and analyzing

the data collected by darknets were studied in [8]. An approach to network risk assessment

is proposed to determine the risk level of a network by using Hidden Markov Models [5].

The Mahalanobis distance is used as a metric to measure the similarity between the payload

samples and pre-computed models [72].
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Granger Causality Test is used as a measurement to determine whether two alerts have

causal relationship [60]. A Bayesian network model is given for determining the probabil-

ity of achieving attack goals in [49]. An average reachability measure is used to identify

potentially malicious behavior [27]. Sawilla and Ou extend the PageRank algorithm to

rank nodes in an attack graph [64]. Other than relying on universal metrics, a clinic trial

approach is proposed to evaluate security products by deploying them with randomly se-

lected targeted populations [67]. The cost of network hardening is quantified in [77].

Measurement of the threat of potential multi-step attacks is another research topic gain-

ing increasing interest. Several different security measurement approaches are reviews

in [7, 39, 47]. Several standard security metrics are introduced by NIST in [50]. Further

contributions are presented in [68]. As a result, the Common Vulnerability Scoring Sys-

tem (CVSS) is proposed in [48]. In [36], the authors present an overview of many aspects

network security metrics.

In [17, 18, 54], Dacier et al. propose more intuitive properties should be satisfied in

all security metrics. An approach for the valuation of trustworthiness is proposed in [9],

where the authors use this valuation method to determine whether accept or reject an entity

as being suitable for sensitive tasks. They use the cost of time and efforts by attackers as

metrics to measure the difficulty of attacks. Based on the observation that an attacker’s

success rate over time almost match an exponential distribution, they apply the Markov

model and the Mean Time to Failure (MTTF) to measure the security of a given network.

Simple cases of combining individual measurements are presented, while no discussion on

general case are extensively given.

In [58], the authors propose to use weakest attacker model to the relative risk of differ-

ent network configurations, where the least conditions leads to success attack are viewed as

the key metric. McHugh proposes a metric called attack surface to measure the likelihood

a software is vulnerable to attacks in [45], where partial order is established on different
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network configurations based on their relative security. In [9], Balzarotti et al. present ap-

proach to compute the minimum efforts required for executing each exploit. However, there

are improvement space in many aspects of security. For instance, the network resources are

treated equally significant, and the resistance to attacks is considered as binary.

Relevant work also includes areas, such as the study of trust in distributed system. In

the [12], the authors proposed a metric for measuring the trust in an identity that has been

established through overlapping chains of certificates. They prove that the way they com-

bine values of trust in certificates into an over-all value of trust is useful in the study of

security metrics. In [61], Reiter et al. present a design of principles intended for develop-

ing metrics of trust and we find these principles applicable to our study. In [6], the authors

use structures similar to attack graph for risk analysis in safety-critical systems, focusing

on trust relationships. In [32], the authors present a technique for testing whether a finite

execution of events generated by program violates a linear temporal logic (LTL) formula.

In the aspect of attack generation, [62, 66] use topological vulnerability analysis to enu-

merates potential multi-step intrusions based on prior knowledge about vulnerabilities and

their relationships. In the aspect of attack response, some studies [47, 76, 80] shows the

use of attack graph for hypotheses of alerts missed by IDSs, attack correlation, and the

prediction of possible future attacks.

In [21, 22, 73], Wang et al. proposed a probabilistic network security metric based on

attack graphs. They presented the use of probability scores for each vulnerability to rep-

resent the likelihood that one attacker will exploit the vulnerability or the percentage of

attackers that can successfully exploit the vulnerability. Their approach quantifies the cost

of removing vulnerabilities in hardening a network, however, it does not consider other

hardening options, for example, modifying connectivities. Their approach has another lim-

itation about adopting a qualitative view of damages ( when all the given assets are equally

critical) and attack resistance when attacks on assets are either trivial or impossible.
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In [44], Liu et al. present the idea of using Bayesian network to model network vulner-

abilities and find a quantitative value to represent the security level of a network. Bayesian

network is used to model each potential atomic attack step. Each vertex corresponds to a

single security property violation state; each edge represents an exploitation of single or

multiple detected vulnerabilities. Weight is assigned to each edge to represent the proba-

bility of successful exploits. In [4], An et al. apply Dynamic Bayesian Network (DBN) to

privacy intrusion detection, where they use DBN to relate a database operator’s intension

to observable factors, such as the time spent on a certain operation. In [22], the authors

deploy the similar ideal but use DBN model to combine the CVSS scores for measuring

network security.

2.3 General metrics and applications

In 1971, Akiyama [1], published the first attempt to use metrics for software quality pre-

diction when he proposed regression-based model for module defect density. From the

mid-1970, more interests in measurement of software complexity which is pioneered by

Halstead [30,46], and measurement functional size such as function points in [2,70]. These

approaches are independent of programming language. Later, research on extending and

refining complexity metrics and functional metrics gain more academic interest. For exam-

ple, in [15,31], software metrics that are relevant to object oriented language are introduced.

By borrowing ideas from the Total Quality Management field, Basili et al. proposed

a simple scheme for making metrics activities always goal-driven [11]. They claimed that

a metrics program established without clear and specific goals and objectives is doomed

to fail [29]. Their measurement studies on quantifying the effectiveness of software engi-

neering methods and technologies [10] point out the great challenge for academic software

metrics to benchmark [41] and evaluate the effectiveness of different software engineering

methods and technologies.
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Causal models are also applied in the study of software engineering metrics. Because

the underlying theory of Bayesian probability has been studied for a long time, together

with the improvement in the modelling and algorithms of Bayesian belief net (BBN), Fen-

ton et al. take the advantages of BBN to design risk management decision-support tools that

build on existing relatively simple metrics [20]. Their approach combines different aspect

of software development and testing and enable many kinds of predictions, assessments

and trade-offs during the software life-cycle.

12



Chapter 3

Preliminaries

In this chapter, we first review two important concepts relevant to our further discussions,

namely, attack graph and CVSS. We then motivate our discussions by demonstrating limi-

tations of existing approaches through examples.

3.1 Attack Graph

Attack graph is a graphical representation of inter-dependent vulnerabilities found in net-

worked hosts. An attack graph is a directed graph whose nodes are partitioned into two

classes, namely, exploits and security conditions (or simply conditions). An exploit is typ-

ically represented as a predicate v(hs, hd), where hs and hd represent two connected hosts

and v a vulnerability on the destination host hd. A security condition is a predicate c(h),

indicating the host h satisfies a condition c relevant to one or more exploits. Notice that

hs, hd, and v are abstract notations that could in practice possess different semantics, for

example, hs and hd can be host names, IP addresses, and so on, and v can be the name

of a vulnerability or its ID in a vulnerability database. These are more formally stated as

Definition 1.
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Definition 1 An attack graph G is a directed graph G(E ∪ C,Rr ∪ Ri) where the set of

nodes include E, a set of exploits, and C, a set of conditions, and the set of edges include

the require relation Rr ⊆ C × E and the imply relation Ri ⊆ E × C.

Corresponding to the inter-dependency between exploits and conditions, the two types

of edges in an attack graph have different semantics. First, the require relation Rr is a

directed edge pointing from a condition to an exploit, which means the exploit cannot be

executed unless the condition is satisfied. For example, an exploit v(hs, hd) requires fol-

lowing two conditions, that is the existence of the vulnerability v on hd and the connectivity

between hs and hd. Second, the imply relation Ri pointing from an exploit to a condition

means executing the exploit will satisfy the condition. Notice that there is no edge directly

connecting two exploits (or two conditions).

Figure 1 shows a simple example of attack graphs which depicts a simple scenario

where a file server (host 1) offers the File Transfer Protocol (ftp), secure shell (ssh), and re-

mote shell (rsh) services; a database server (host 2) offers ftp and rsh services. The firewall

only allows ftp, ssh, and rsh traffic from a user workstation (host 0) to both servers. In the

attack graph, exploits of vulnerabilities are depicted as predicates in ovals and conditions

as predicates in clear texts. The two numbers inside parentheses denote the source and des-

tination host, respectively. The attack graph represents three self-explanatory sequences of

attacks (attack paths).

Two important semantics of attack graphs are as follows. First, the require relation is

always conjunctive whereas the imply relation is always disjunctive. More specifically, an

exploit cannot be realized until all of its required conditions have been satisfied, whereas

a condition can be satisfied by any one of the realized exploits. Second, the conditions

are further classified as initial conditions (the conditions not implied by any exploit) and

intermediate conditions. An initial condition can be independently disabled to harden a

network, whereas an intermediate condition usually cannot be.
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Figure 1: An Example of Attack Graph

To generate an attack graph, two types of inputs are necessary, namely, type graph and

configuration graph. Type graph represents expert knowledge about the dependency rela-

tionship between vulnerabilities. On the other hand, configuration graph represents hosts

and their connectivity and vulnerability information. We assume the domain knowledge

required for type graph is available from tools like the Topological Vulnerability Analysis

(TVA) system, which covers more than 37,000 vulnerabilities taken from 24 information

sources including X-Force, Bugtraq, CVE, CERT, Nessus, and Snort [38]. On the other
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hand, we assume the configuration information including vulnerabilities and connectivity

can be obtained using available network scanning tools, such as the Nessus scanner.

3.2 Common Vulnerability Scoring System (CVSS)

Our discussions in subsequent sections will need metric scores assigned to individual vul-

nerabilities according to the Common Vulnerability Scoring System (CVSS) [48]. The

CVSS is an open and free framework that provides a means for assigning quantitative val-

ues to vulnerabilities based on well defined metrics. In CVSS, each vulnerability is to be

assigned a base score (BS) ranging from 0 to 10, on the basis of two groups of totally six

base metrics [48]. The base metrics are intended to stay constant over time and across dif-

ferent user environments. Optionally, the base score can be further adjusted with temporal

and environmental scores. We briefly review the CVSS standard in the following to make

this thesis more self-contained.

3.2.1 Base Scores

The Base Score (BS) for each vulnerability quantifies its intrinsic and fundamental proper-

ties that are supposed to be constant over time and independent of user environments. The

base score ranges from 0 to 10. The Base Score is calculated based on the following six

metrics:

• Access Vector - AV: This indicates the types of accesses required for exploiting the

vulnerability. Possible values are Local (numerical value 0.395), Adjacent Network

(0.646), and Network (1.0), which are all self-explanatory.

• Access Complexity - AC: A quantitative measure of the attack complexity required

to exploit the vulnerability. The range of values are: High (0.35), Medium (0.61) and

Low (0.71).
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• Authentication - Au: A measure of the the number of times an attacker must authen-

ticate to a target in order to exploit a vulnerability. The defined range of values are:

Multiple (0.45), Single (0.56) and No (0.704).

• Confidentiality - C: A measure of the impact on confidentiality following a suc-

cessful exploitation with the following defined range of values: None (0.0), Partial

(0.275) and Complete (0.660).

• Integrity - I: A measure of the impact on integrity following a successful exploitation

with the following defined range of values: None (0.0), Partial (0.275) and Complete

(0.660).

• Availability - A: A measure of the impact on availability following a successful ex-

ploitation with the following defined range of values: None (0.0), Partial (0.275) and

Complete (0.660).

The CVSS Framework imposes the use of a vector which encodes the metric score

values used to compute the overall score for a vulnerability. The following is an example

vector:

AV : N/AC : L/Au : N/C : N/I : C/A : C

from which we can derive the numerical scores as indicated above.

The Base Metric score (BS) is computed as follows,

BS = round−to−1−decimal((0.6 ∗ Impact+ 0.4 ∗ Exploitability −

1.5) ∗ f(Impact))

Impact = 10.41 ∗ (1− (1− ConfImpact) ∗ (1− IntegImpact) ∗ (1− AvailImpact))

Exploitability = 20 ∗ AccessV ector ∗ AccessComplexity ∗ Authentication

f(Impact) = 0 if Impact = 0, 1.176 otherwise (1)
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Using the example vector, the following demonstrates how to compute the BS:

• Exploitability = 20 ∗ 1 ∗ 0.71 ∗ 0.704 == 9.9968

• Impact = 10.41 ∗ (1− (1− 0) ∗ (1− 0.660) ∗ (1− 0.660) == 9.2066

• f(impact) = 1.176

• BaseScore = round−to−1−decimal((0.6∗9.2066)+(0.4∗9.9968)−1.5)∗1.176 ==

9.4

3.2.2 Temporal Scores

The Temporal Score (TS) quantifies a vulnerability when considering properties of the

vulnerability that may change over time. The three temporal metric values used in CVSS

are:

• Exploitability - E: Indicates the current state regarding the availability of exploit

codes or techniques, with the following defined range of values: Unproven (0.85),

Proof-of-concept (0.90), Functional (0.95), High (1.00) and Not Defined (1.00).

• Remediation Level - RL: Indicates the current situation regarding the availability of

remediation solutions. The defined range of values is: Official Fix (0.87), Temporary

Fix (0.90), Workaround (0.95), Unavailable (1.00) and Not Defined (1.00)

• Report Confidence - RC: Indicates the degree of confidence regarding the existence

of a vulnerability and the technical details. The range of defined values is: Uncon-

firmed (0.90), Uncorroborated (0.95), Confirmed (1.00) and Not Defined (1.00).

The Temporal Metric Score (TS) is computed as follows:

TS = round_to_1_decimal(BS ∗ E ∗RL ∗RC) (2)
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For convenience, the following product is defined:

TGS = (E ∗RL ∗RC) (3)

TS = round_to_1_decimal(BS ∗ TGS) (4)

Consider the example of a vulnerability with the above Base Score and the following

Temporal vector:

E : POC/RL : W/RC : C

The Temporal Score (TS) is calculated as follows:

• TGS = 0.90 ∗ 0.95 ∗ 1 == 0.855

• TS = 9.4 ∗ 0.855 == 8.0

3.3 Existing Approaches and Their Limitations

To illustrate limitations of existing approaches to combining CVSS scores, we consider

a toy example. Figure 2 depicts a network consisted of two hosts (host 1 and 2), and an

attacker on host 0 in the Internet. We shall consider two cases based on the same network.

In Case 1, we assume host 1 to be a UNIX server running a telnet service and host 2 a

Windows XP workstation running the Universal Plug and Play (UPnP) service. In Case 2,

we assume host 1 and 2 swap their OS (and hence the corresponding services). In both

cases, the firewalls disallow any traffic except accesses to those services.

We assume the telnet service contains the vulnerability CVE-2007-0956 [53], denoted

by vtelnet, which allows remote attackers to bypass authentication and gain system accesses

via providing special usernames to the service. We also assume the UPnP service contains
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Figure 2: An Example Network

the vulnerability CVE-2007-1204 [53], denoted by vUPnP , which is a stack overflow that

allows attackers on the same subnet to execute arbitrary codes via sending specially crafted

requests.

Table 1 shows the CVSS base metrics of those two vulnerabilities [53]. By applying

Equation 1, we can calculate the base score of vulnerability vtelnet to be BS = 7.6. Sim-

ilarly, we have BS = 6.8 for vulnerability vUPnP . The difference in those base scores

suggests that vulnerability vtelnet is relatively more severe then vUPnP . This is sufficient for

purposes like prioritizing vulnerabilities for removal. However, for other purposes, such as

comparing the relative security of the two configurations of Case 1 and 2, we shall need to

combine the base scores for judging the overall network security.
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Metric Group Metric Metric Value of vtelnet Metric Value of vUPnP

Exploitability
Access Vector Network (1.00) Adjacent Network (0.646)
Access Complexity High (0.35) High (0.35)
Authentication None (0.704) None (0.704)

Impact
Confidentiality Complete (0.660) Complete (0.660)
Integrity Complete (0.660) Complete (0.660)
Availability Complete (0.660) Complete (0.660)

Base Score (BS) 7.6 6.8

Table 1: The CVSS Base Metrics and Scores of Two Vulnerabilities

3.3.1 Average and Maximum

First, we consider two naive approaches to combining the CVSS scores, namely, by taking

the average value (7.2 in both Case 1 and 2) and maximum value (7.6 in both cases),

respectively. Although those approaches provide a rough sense of overall security, their

limitations are also obvious. Since the average and maximum values are both defined over

a set, they do not depend on where those vulnerabilities are located in a network and how

they are related to each other. For example, if we assume the UNIX server in Figure 2

is the only important network asset, then intuitively the overall network security is quite

different between Case 1 (in which an attacker can directly attack the UNIX server on host

1) and Case 2 (in which the attacker must first compromise the Windows workstation on

host 1 and use it as a stepping stone to attack host 2). Nonetheless, by taking the average

or maximum base score, we cannot distinguish between the two cases.

3.3.2 Attack Graph-Based Approach

The above naive approaches lead to misleading results because they ignore causal relation-

ships between vulnerabilities. Such causal relationships can be modeled in attack graphs,

as illustrated in the lower portion of Figure 2. Each triple 〈v, h1, h2〉 inside an oval rep-

resents an exploit of vulnerability v on host h2 from host h1; each pair 〈c, h〉 represents a

security-related condition c on host h; each arrow either points from a pre-condition to an
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exploit, or from an exploit to a post-condition.

The attack graph-based approach [73] first converts each CVSS base score into a proba-

bility by dividing with its domain size, and then assigns the probability to exploits with the

corresponding vulnerability. Each condition is also assigned a probability 1. The proba-

bilities are then combined based on following causal relationships: An exploit is reachable

only if all of its pre-conditions are satisfied (that is, a conjunction); a condition is satisfied as

long as one reachable exploit has that condition as its post-condition (that is, a disjunction).

In Case 1 of our example, we should assign 7.6/10 = 0.76 to 〈vtelnet, 0, 1〉, and

6.8/10 = 0.68 to 〈vUPnP , 1, 2〉, and 1 to both conditions. We can then update 〈root, 1〉

as a post-condition of 〈vtelnet, 0, 1〉 to the new value 0.76; now by taking 〈root, 1〉 again as

a pre-condition of 〈vUPnP , 1, 2〉, we can then update 〈vUPnP , 1, 2〉 and 〈root, 2〉 with the

value 0.76 × 0.68 = 0.52. Similarly, we will obtain the same result for Case 2. At first

glance, this is reasonable, since the attacker is exploiting the same two vulnerabilities in

both cases.

Unfortunately, upon more careful observation, we shall see this is not the case. First,

we recall that the vulnerability vUPnP (CVE-2007-1204) requires the attacker to be within

the same subnet as the victim host. In Case 1, exploiting vtelnet on host 1 helps the attacker

to gain accesses to local network, and hence makes it easier to exploit host 2. In another

word, exploiting vtelnet has the effect of increasing the probability of successfully exploiting

vUPnP . In contrast, in Case 2, there is no such affect due to the reversed order of exploits.

This difference between the two cases is apparently not captured by the identical result 0.52

produced by this approach.
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3.3.3 Bayesian Network (BN)-Based Approach

Next we consider the Bayesian network-based approach [22]. The lower left-hand side of

Figure 3 shows the BN corresponding to Case 2 of our example. Similar to the previ-

ous approach, the CVSS base score is first converted into a conditional probability. For

example, the conditional probability of successfully exploiting vUPnP , given that all of its

pre-conditions are satisfied, is assigned as 0.68. The lower right-hand side of Figure 3

depicts the corresponding Conditional Probability Table(CPT) for each exploit in Case 2.

The probability of reaching the goal state, which is assumed as exploiting both vulnera-

bilities in this example, can be calculated as P (vtelnet = T ) =
∑

vUPnP∈{T,F}
P (vtelnet =

T, vUPnP ) = 0.52.
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Figure 3: Bayesian Network-Based Approach [22]

The upper left-hand side of Figure 3 depicts the BN for Case 1. Since exploiting vtelnet

on host 1 makes it easier to exploit vUPnP on host 2, according to this approach, we should

assign to P (vUPnP = T |vtelnet = T ) a value higher than the one directly derived from the

base score (that is, 0.68). If we assign, say, 0.8, then the possibility of achieving the goal
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state is P (vUPnP = T ) =
∑

vtelnet∈{T,F}
P (vUPnP = T, vtelnet) = 0.61. This result is more

accurate since it reflects the dependency relationship between the two exploits. However,

note that we have chosen an arbitrary value 0.8 because this approach does not provide

means for determining that value, which is clearly a limitation.
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Chapter 4

Main Approach

In this chapter, we present our main approaches to dealing with dependencies between

vulnerabilities by combining base metrics, and to combining metrics based on different

aspects of the scores’ semantics.

4.1 Combining Base Metrics

We first give an overview of our approach, which is followed by the formal framework and

an example.

4.1.1 Overview

We first illustrate our approach by revisiting the example in Figure 2. The key observation

is that the existing approaches discussed in the previous section all take the CVSS base

scores as their inputs. The base score is regarded as a black box, and the underlying base

metrics are not involved in the process of combining scores. However, we notice that

the dependency relationships between vulnerabilities are usually only visible at the level

of base metrics, which makes it difficult for those approaches to properly handle such

relationships.
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Approaches Case 1 Case 2 Summary

Average 7.2 7.2 Ignoring causal relationships
Maximum 7.6 7.6 (exploiting one vulnerability enables the

other)
Attack graph-based
approach [73]

0.52 0.52 Ignoring dependency relationships (ex-
ploiting one vulnerability makes the other
easier)

BN-Based ap-
proach [22]

0.61 0.52 Arbitrary adjustment for dependency re-
lationships

Our approach 0.58 0.52 Adjustment with well-defined semantic

Table 2: Comparison of Different Approaches

Instead of working at the base score level, our approach handles potential dependency

relationships between vulnerabilities at the base metric level. For the above example, the

dependency relationship can be easily modeled at the base metric level as follows. When an

attacker successfully exploits vtelnet on host 1, he/she gains accesses to the local network of

host 2, which is required for exploiting vUPnP on host 2. At the base metric level, this sim-

ply means the AccessV ector metric of vUPnP , which has the value AdjacentNetwork,

should be replaced with Network, since the attacker is effectively accessing vUPnP re-

motely (using host 1 as a stepping stone).

With this adjustment to the base metric AccessV ector, we can apply Equation 1 to

recalculate a new effective base score, which is equal to 0.76 in this case. Clearly, the

new result is also higher than the original value 0.68, but this result has well defined se-

mantics, unlike the arbitrary value chosen by the previous approach [22]. The final score

corresponding to Case 1 shown in Figure 2 can now be calculated as P (vUPnP = T ) =
∑

vtelnet∈{T,F}
P (vUPnP = T, vtelnet) = 0.58. In Table 2, we summarize our discussions

about the above example and compare the results produced by different approaches.
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4.1.2 Formal Framework

We are now ready to formalize our approach. We assume an attack graph is given as a

directed graph G = 〈E ∪ C, {〈x, y〉 : (y ∈ E ∧ x ∈ pre(y)) ∨ (x ∈ E ∧ y ∈ post(x))}〉

where E, C, pre(), and post() denote a set of exploits (each of which is a triple 〈v, hs, hd〉

denoting an exploit of vulnerability v on host hd from host hs), a set of security-related

conditions, a function that maps an exploit to the set of its pre-conditions, and a function

that maps an exploit to the set of its post-conditions, respectively [38].

We call a condition initial condition if it is not the post-condition of any exploit. A

sequence of exploits is called an attack sequence if for every exploit e in the sequence,

all its pre-conditions are either initial conditions, or post-conditions of some exploits that

appear before e in that sequence. We say an exploit e′ is an ancestor of another exploit e,

if e′ appears before e in at least one minimal attack sequence (that is, an attack sequence of

which no subsequence is a valid attack sequence).

We also assume the CVSS base metrics can be obtained for each exploit e as a vec-

tor bm of six numeric values each of which corresponds to a base metric [48]. We shall

use the notation bm[AV ], bm[AC], . . . , bm[A] to denote each corresponding element of

the vector bm. Finally, we assume the dependency relationships between exploits are

given using a function adj() formalized in Definition 2. When a base metric m (m ∈

{AV,AC,Au,C, I, A}) of an exploit e is affected by another exploits e′ due to dependency

relationships, we assume adj(e, e′,m) is given. And we use < e′, e > to denote that exploit

e can be affected by exploit due to dependency relationship.

Definition 2 Given an attack graph G with the set of exploits E, we define a function

adj() : E × E × {AV,AC,Au,C, I, A} → [0, 1]. We call adj(e, e′,m) the adjusted value

for the metric m of exploit e due to e′.

Next, we formalize the concept of effective base metric and effective base score in

Definition 3. For each exploit e, the effective base metric simply takes the original base
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metric if no adjusted value is given. Otherwise, the effective base metric will take the

highest adjusted value defined over any ancestor of e (note that an exploit may be affected

by many exploits in different ways, leading to more than one adjusted values), because

a metric should always reflect the worst case scenario (that is, the highest value). The

effective base score basically applies the same equation to effective base metrics instead of

the original metrics. In the definition, both effective base metric and score can be defined

with respect to a given subset of exploits, which will be necessary later in Chapter 4.

Definition 3 Given an attack graph G with the set of exploits E, the adjusted values given

by function adj(), the CVSS base metric vector bm for each e ∈ E, and any E ′ ⊆ E (E ′

will be omitted if E ′ = E), we define

• the effective base metric vector ebm of e with respect to E ′ as

– ebm[m] = bm[m] for each m ∈ {AV,AC,Au,C, I, A}, if adj(e, e′,m) is not

defined for any ancestor e′ of e in E ′.

– ebm[m] = adj(e, e′,m), if adj(e, e′,m) is the highest value defined over any

ancestor e′ of e in E ′.

• the effective base score ebs of e as the base score calculated using Equation 1 with

the base metrics replaced with the corresponding effective base metrics.

Finally, Definition 4 formalizes a Bayesian network (BN)-based model for combining

the effective base scores. The directed graph is directly obtained from the attack graph.

The conditional probabilities are assigned according to the causal relationships between

an exploit and its pre- and post-conditions. Since the dependency relationships between

exploits are already reflected in our definition of effective base scores, the BN needs not

to explicitly model them. With the BN model, we can easily calculate the probability of

satisfying any given goal conditions (or equivalently, the probability of important network

assets being compromised).
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Definition 4 Given attack graph G with exploits E, and the effective base score ebs for

each e ∈ E, we define a Bayesian network B = 〈G,Q〉 where

• G is the attack graph interpreted as a directed graph with each vertex representing a

random variable taking either T (true) or F (false), and the edges representing the

direct dependencies among those variables.

• Q is the collection of conditional probabilities assigned as the following.

– P (c = T |e = T ) = 1, for each e ∈ E satisfying c ∈ post(e).

– P (e = T |
∧
∀c∈pre(e)(c = T )) = ebs/10.

4.1.3 An Example

We now illustrate our approach by applying it to the example shown in Figure 4. The

figure shows a fictitious attack graph in which the dotted lines indicate dependency rela-

tionships, which will be explained shortly. Table 3 gives the corresponding model obtained

by applying our formal framework as introduced above.

Specifically, we assume exploit C will give an attacker the local shell accesses to target

host, which is required for exploiting D (since its base metric AV is Local), as indicated by

the dotted line from C to D. This dependency relationship is modeled using the function

adj(), as shown on the right-hand side of Figure 4. Also, we assume that exploiting D

requires the same authenticated account as B (both of their base score Au are Single).

If attackers can exploit B, no additional accounts are required for exploiting D. This

dependency relation is indicated by the dotted line from B to D, and modeled using the

function adj(). Therefore, we can replace the base metric of exploit D with its effective

base metrics for the two cases (ebmD|C , ebmD|B,C as shown on the right-hand side of

Figure. 4) in order to calculate its effective base scores (we assume the impact metrics of all

exploits are ConfImpact = Complete, IntegImpact = Complete, and AvailImpact =

29



�

�

� � ���

�������� ����

��

	�

���

��
�

��

�����

��

Figure 4: An Example Attack Graph

None). Here we need consider two cases: ebsD|C when the attacker has already exploited

C; and ebsD|B,C when the attacker has exploited B and C (we don’t consider the case that

B is already exploited while C is not, because from the semantics of this attack graph we

can see that D cannot be exploited without C being exploited at first). We then calculate

P (D = T ) using the BN model shown in the upper right-hand side of Figure 4 as P (D =

T ) =
∑

A,B,C∈{T,F} P (D = T |B,C)P (C|A,B)P (A)P (B) = 0.27.

30



Adjusted Values:
adj(D,C,AV ) = 1.0

adj(D,B,Au) = 0.704

Base Scores:

Exploits AV AC Au bs
A Network Low None 9.43
B Network Medium Single 7.95
C Network Medium None 8.77
D Local Medium Single 6

Effective base metric of D:
ebmD|C = 〈Network,Medium, Single〉
ebmD|B,C = 〈Network,Medium,None〉

Effective base score of D:
ebsD|C = 7.95
ebsD|B,C = 8.77

Table 3: The Corresponding Model

A
T F

0.943 0.057
B

T F
0.795 0.205

C
A B T F
F F 0 1
T F 0.877 0.123
F T 0.877 0.123
T T 0.877 0.123

D
B C T F
F F 0 1
T F 0 1
F T 0.795 0.205
T T 0.877 0.123

Table 4: The BN Model
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4.2 Considering Different Aspects of Scores

In this section, we first demonstrate the need for interpreting and combining base scores

from different aspects. We then extend our approach accordingly to combine metric scores

based on different aspects, and provide an example of our approach.

4.2.1 The Need for Considering Different Aspects

CVSS metrics and scores can be interpreted in different ways. In this thesis, we shall

consider three aspects of the scores.

• First, as discussed in the previous section, the difference in scores may indicate

different probabilities of attacks. For example, an AccessV ector metric value of

AdjacentNetwork corresponds to a lower numerical score than the value Network,

which can be interpreted as that a vulnerability that requires accesses to local net-

works is less likely being exploited than one that is remotely accessible.

• Second, we can also interpret the difference in scores as the minimum amount of time

and effort spent by any attacker. For example, if a vulnerability requires multiple

authentications at both OS and applications, then it certainly will require more time

and effort than one that requires no authentication at all.

• Third, the difference in scores can also indicate the minimum skill level of an attacker

who can exploits that vulnerability. For example, exploiting a vulnerability with its

AccessComplexity score as High will likely require more skills than exploiting

one that has the value Low (note that each exploitability metric may potentially be

interpreted in all three aspects).

Considering different aspects of CVSS scores will require different methods for com-

bining such scores. We demonstrate this fact through an example. Figure 5 shows a network
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consisted of four hosts (host 1 through 4) and another host on the internet (host 0). We as-

sume there are firewalls between the hosts that prevent any traffic except those indicated

by lines shown in the figure. We also assume host 1 through 4 each has a vulnerability,

denoted by a letter inside parentheses. Finally, we assume the base scores are partially

ordered, that is, vulnerability B is more severe than all others, and A is more severe than

C (for simplicity, we shall not consider effective base scores in this example). We now

consider how the scores should be combined for each of the three aspects.

� �

�

host 0

�

host 1

(A)
�

host 2

(B)

�

host 4

(D)

�

host 3

(C)

Figure 5: An Example of Different Aspects

• First, suppose we have assigned probabilities PA, PB, PC , and PD to those four

vulnerabilities based on the base scores. Also suppose the security of host 3 is our

main concern. Clearly, the probability of host 3 being compromised can be calculated

as P = PA ∗ (PB + PD − PB ∗ PC) ∗ PC . Next, suppose we remove host 4 from the

network. The probability will change to P = PA ∗ PB ∗ PC , which is now smaller.

This is reasonable since, by removing host 4, an attacker now has only one choice

left, that is, to reach host 3 through host 2. Finally, suppose we further remove host 2
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from the network, the probability now becomes P = PA∗PC , which is larger. This is

also reasonable since now an attacker only need to compromise host 1 before he/she

can reach host 3.

• We show a different story by considering the effort aspect. First, suppose we have

assigned some effort scores FA, FB, FC , and FD to the four vulnerabilities based

on their base scores (we shall discuss how the effort score should be defined later).

Without considering dependency relationships, the effort spent on exploiting vulner-

abilities will accumulate.

Therefore, addition is the natural way to combine the effort scores. However, there is

one more complication. In this example, an attacker may compromise host 3 in two

ways, either through host 2 or host 4. Since a metric should measure the worst case

scenario, it should yield the minimum effort required to compromise host 3. That is,

F = FA + FB + FC (note that FB is less than FD due to our assumption).

If we remove host 4 from the network, we can easily see that the effort score will

remain the same, F = FA+FB+FC , instead of becoming smaller like in the case of

attack probability. This is reasonable since vulnerability D is not on the minimum-

effort attack sequence so its removal will not affect the effort score. If we further

remove host 2 from the network, we can see that the effort score now reduces to

F = FA + FC .

• Finally, we show yet another different story by considering the skill aspect. First,

suppose we have assigned some effort scores SA, SB, SC , and SD to the four vulner-

abilities based on their base scores. Based on our assumption, we have that SB is the

smallest among the four and SA is less than SC . It is now easy to see that to compro-

mise host 3, the minimum level of skills required for any attacker is SC regardless

of which sequence of attacks is being followed. Also, whether we remove host 4 or
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host 2 (even host 1) from the network does not affect the skill score.

4.2.2 Combining Scores for Different Aspects

We now formalize our approach to combining scores for the effort and skill aspects. For

both aspects, we shall only consider the exploitability metric group, that is, the first three

elements of the effective base metric vector. The formula shown in Definition 5 basically

converts the exploitability score (defined in CVSS as the multiplication of the three metrics)

to the same domain as the CVSS base score. Note that the effective base metric vector of

each exploit is now defined with respect to a given subsets of exploits. This is necessary

since whether a base metric needs to be adjusted will depend on which attack sequence is

involved.

Definition 5 Given an attack graph G with the set of exploits E and the effective base met-

ric vector ebm for each e ∈ E with respect to some E ′ ⊆ E, we define for e both the effort

score es(e) and skill score ss(e) with respect to E ′ as round_to_1_decimal(frac0.6395ebm[AV ] ∗ ebm

0.2793).

Although both scores are defined in the same way, they will need to be combined differ-

ently, as demonstrated in the previous section. Definition 6 formalizes the way we combine

those scores. Roughly speaking, for combining effort score, we find an attack sequence

whose summation of effort scores is the minimum among all attack sequences (although

such an attack sequence is not necessarily unique, the minimum value is always unique);

for combining skill scores, we find an attack sequence that whose maximum effort score

is the minimum among all attack sequences. The range of the result of es(e) and ss(e) is

within [1, 10] so that we can follow the same range of CVSS Base score.

Definition 6 Given an attack graph G with the set of exploits E, and the effort score es(e)

and skill score ss(e) for each e ∈ E, we define
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• the accumulative effort score of e as F (e) = min({
∑

e′∈q es(e
′) : q is an

attack sequence with e as its last element}) (here es(e′) is defined with respect to q).

• the accumulative skill score of e as S(e) = min({max({ss(e′) : e′ ∈ q}) : q

is an attack sequence with e as its last element}) (here ss(e′) defined with respect to

q).

4.2.3 An Example

Now we demonstrate how our approach can be applied to calculate the accumulative ef-

fort and skill scores through a more elaborated example. Figure 6 shows an example at-

tack graph in which two attack sequences can both lead to the assumed goal condition.

In the upper table of Table 5 we show CVSS metrics of the vulnerabilities. The dashed

lines in the attack graph indicate dependency relationships between the exploits. Specifi-

cally, the adjusted AccessV ector metric value of C should be Network and the adjusted

Authentication metric value of F should be None.

The calculated cumulative effort scores and cumulative skill scores are shown on the

lower part of Table 5. Note that in calculating the scores for each sequence, we need the

effort and skill scores that are defined with respect to that sequence. In particular, exploit

F has two different effort and skill scores, since its effective base metric Authentication

is adjusted in sequence q2 (due to exploit E) but not in sequence q1.

36



�

c0

c1 c2

c3 c4

cgoal

E

C

B

A

D

F

ci1

Figure 6: An Example Attack Graph

AV AC Au es, ss
vA Network Low None 1
vB Network Medium None 1.21
vC Local Low None 1 (w.r.t. q1)
vD Local Medium None 3.49
vE Network Medium Single 1.59
vF Network Medium Single 1.59 (w.r.t. q1)

and 1.21 (w.r.t. q2)

Attack Sequence Effort F (F ) Skill S(F )
q1 : A→ B → C → F 4.8 1.59
q2 : A→ B → D → E → F 8.5 3.49

Table 5: The Effort and Skill Scores
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Chapter 5

Algorithm and Simulation

In this chapter, we first discuss algorithm design for implementing the proposed models,

and then give simulation results that confirm the advantages of our approach.

5.1 Algorithms

In order to capture the dependency relation in an attack graph, we will need to introduce

new nodes and edges into an existing attack graph so to represent the semantics of depen-

dency relations. More specifically, given a set of exploit nodes Sk = {ei| < ei, ek >},

which contains all exploit nodes that have dependency relation with exploit node ek, we

add additional virtual linkage nodes and corresponding edges to represent the equivalent

dependency relation in the attack graph model.

For example, on the left-hand side of Figure 7 is an original attack graph with one

dependency relation < B,D >. On the right-hand side, we add an virtual node D′ and

intermediate condition node cd′ between node B and D to represent the scenario that, when

B is exploited, the adjusted score for D is applied by D′. Note D and D′ share the same set

of pre-conditions and post-conditions so that D′ keep the same relation in the attack graph,

and meanwhile the intermediate condition node cd′ is added to make sure that D′ can be
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exploited when B is already exploited.
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Figure 7: The Virtual Linkage Nodes

In Figure 7, we have shown a simple example for adding such virtual linkage nodes.

More generally, the procedure includes three steps shown as follows.

1. Given the original attack graph G =< V,E > and a set Sk = {ei| < ei, ek >}, for

each ei ∈ Sk, add intermediate condition node c′i onto V with post(ei) = post(ei) ∪

{c′i}.

2. For each subset Tk ⊆ Sk(Tk 6= ∅), add one node eTk
onto V with pre(eTk

) = pre(ek)

and post(eTk
) = post(ek). For each ei ∈ Tk, append the corresponding intermediate

condition node c′i to pre(eTk
).

3. For each eTk
, assign es(eTk

) and ss(eTk
) as es(ek) and ss(ek) respectively, with re-

spect to the corresponding Tk.

Before applying the following two algorithms, we first extend the original attack graph

G by appending virtual linkage nodes for all dependency relations.
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Procedure CombineSkill

Input: An attack graph G, a set of goal conditions Cgoal

Output: A non-negative real number as combine skill score
Method:

1. Create new exploit egoal with pre(egoal) = Cgoal, post(egoal) = ∅
2. Create a queue Q
3. Create a array score to record the score of each condition
4. Enqueue initial conditions onto Q
5. Create a set M = Q, assign s(c) = 0 for each c ∈M
6. While Q is not empty:
7. Dequeue an item from Q to v
8. If v is exploit node:
9. Let s(v) = max({s(u) : u ∈ pre(v)} ∪ {ss(v)})
10. Let M = M ∪ {v}
11. Enqueue each node c′ ∈ post(v) such that {e : c′ ∈ post(e)} ⊆M
12. Else :
13. Let s(v) = min({s(u) : v ∈ post(u)})
14. Let M = M ∪ {v}
15. Enqueue each node e ∈ post(v) such that pre(e) ⊆M
16. Return s(egoal)

Figure 8: Combining the Skill Scores

5.1.1 Combining skill scores

In Figure 8, we show formally the method for combining the skillscore of a given attack

graph. Note that the input attack graph is the one after appending virtual linkage nodes.

In procedure CombineSkill, we first place all conditions to be achieved by attackers in

a single set Cgoal, and create a new exploit egoal with pre-condition set pre(egoal) = Cgoal.

Then, follow the aforementioned procedure, we add the corresponding virtual linkage

nodes for each adjustable ej with respect to the set Sj , which contains the exploits that

can affect the skill score of node j due to dependency relationships. Then we conduct a

Breadth First Search (BFS) to traverse the attack graph from initial conditions. At each

step, we pick the minimal skill score of exploits that lead to condition v as the score of
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the condition v; for each exploit v, we assign the ss(v) as the maximal of the scores of the

pre-conditions of exploit v. In this way, we update the skill score of each exploit e as the

accumulative skill score S(e), up to the goal exploit egoal.

The time complexity of this procedure can be derived from that of a BFS as (O(|V | +

|E|)). The difference between our procedure and standard BFS is that, before a node is

about to be enqueued, all of its predecessors will be checked (Line 11 in Figure 8). The

worst case is that each node has |V | − 1 predecessors. So the worst case time complexity

of this procedure is O(|E| · |V |+ |E|).

We now prove the correctness of procedure CombineSkill by induction. First, we extend

the definition of S(e) in Definition 6 to both exploit nodes and condition nodes. Specifi-

claly, if v is an exploit node, S(v) still follow the definition in Definition 6. If v is a condi-

tion node, we let S(v) = min({max({ss(e′) : e′ ∈ q}) : q is an attack sequence with e′ as

its last element, and v ∈ post(e′)}). We need to show that s(v) = S(v) is true for very

node v at the end of the procedure, which shows that the procedure correctly computes

the accumulative skill score of each exploit. We prove this by induction on |M | with the

induction hypothesis ∀(v ∈M) s(v) = S(v).

• Base case(M = {c : c is initial condition}): Since the initial conditions can be

enabled without exploiting any exploits, s(c) = 0 = S(c) for each c ∈M .

• Inductive hypothesis: When a new node v to be added to M , s(v) = S(v) for each

v ∈M .

• Inductive case: Here we only need to prove that the new node v satisfying s(v) =

S(v).

– If v is an exploit: assume that S(v) = s′ < s(v). Let Q be the attack sequence

ending with v such that S(v) = max({ss(e) : e ∈ Q}) = s′. Since v ∈ Q,

we have ss(v) ≤ s′. By line 9 of the procedure CombineSkill, we have s(v) =
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max({s(u) : u ∈ pre(v)}∪{ss(v)}) > s′, so s′ < max({s(u) : u ∈ pre(v)}).

Let’s assume c ∈ pre(v) such that s′ < s(c). And since c ∈ M , S(c) =

s(c) > s′. However, since the attack sequence Q can reach the condition c,

S(c) ≤ max({ss(e) : e ∈ Q}) = s′. So we come to a contradiction. Therefore

we have s(v) = S(V ).

– If v is a condition: assume that S(v) = s′ < s(v). Let Q be the attack sequence

ending with e′ such that v ∈ post(e′) and S(e′) = s′ = S(v). By line 13 of the

procedure CombineSkill, we have s(v) = min({s(u) : v ∈ post(u)}) ≤ s(e′),

and e′ ∈ M , because v ∈ post(e′). Then we have s(e′) = S(e′) = S(v),

so s(v) ≤ S(v), which contradicts with the assumption that S(v) < s(v).

Therefore s(v) = S(v).

Since egoal can be reached by at least one attack sequence, at last, egoal ∈ M . Ac-

cording the previously proved claim, we have S(egoal) = s(egoal). Therefore the

procedure CombineSkill is correct.

5.1.2 Combining effort scores

To calculate the combined effort score, we first create a goal exploit egoal with respect to the

set of goal conditions Cgoal, and add virtual linkage nodes similar to the CombineSkill pro-

cedure. Then, starting from egoal, we recursively call the Min_Score procedure to traverse

though the attack graph G, and find the accumulative effort score of egoal.

More specifically, in line 4 to 7, we find the set C of further conditions needed to be

enabled by exploiting more exploits, excepted for initial conditions. Line 8 and 9 deal with

the base case of this recursion, where no more conditions needed to be enabled, and E

contains a set of exploits which are necessary for an attack sequence with egoal as its last

element. Line 10 to 17 deal with the recursive cases, where different attack sequences are

explored. In line 14, we use some heuristic feature to avoid exploring attack sequences
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that cannot result in minimal combined effort scores. In line 15 to 17, potential attack

sequences with minimal combined effort scores are explored by recursively call the Min_-

Score sub-procedure, and return the minimal combined effort scores among the different

attack sequences.

The problem of combining effort score is NP-hard. This can be easily proved by con-

sidering a special case which is similar to the problem of computing k-zero day safety [74],

which has been proven to be NP-hard. For example, when we assign ss(e) = 1 for each

exploit e in the attack graph G, finding combined skill score is equivalent to finding k-zero

day safety of G.
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Procedure CombineEffort

Input: A attack graph G, a set of goal conditions Cgoal

Output: A non-negative real number Score
Method:

1. Create new exploit egoal so that pre(egoal) = Cgoal

2. Let Score = Min_Score({egoal}, ∅)
3. Return Score
Sub-Procedure Min_Score

Input: A set of exploits to be exploited E, a set exploits already exploited Epath

Output: A non-negative real number MinScore
Method:

4. Let C = {c : c ∈ pre(e′), e′ ∈ E}
5. For each c in C
6. If c is initial condition
7. Delete c from C
8. If C = ∅
9. Return

∑
e∈E es(e)

10. Else

11. Let E ′ = {e′ : c ∈ post(e′), c ∈ C}
12. Let MinScore = +∞
13. Let Epath = Epath ∪ E
14. For each subset E ′′ ⊆ E ′ satisfying C ⊆

⋃
e′′∈E′′ post(e′′)

and for any set E ′′′ ⊂ E ′′, C ∩
⋃

e′′′∈E′′′ post(e′′′) 6= C
15. Let Score = Min_Score(E ′′, Epath)
16. If Score < MinScore
17. Let MinScore = Score
18. Return MinScore

Figure 9: Combining the Effort Scores
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5.2 Simulation Results

We evaluate the proposed approaches through Monte Carol simulations that takes random

attack graphs and simulated attackers as inputs and compares the distribution of resultant

metric scores. The motivation for simulation is that, to the best of our knowledge, there do

not exist public datasets of real-world attack graphs that can be used for experiments.

We employ the Boston university Representative Internet Topology gEnerator(BRITE) [13],

and the Georgia Tech Internetwork Topology Models topology generator(GT-ITM) [28] to

generate simulated network topologies. We then inject vulnerability information into the

generated network topologies to obtain network configurations, and finally generate attack

graphs from the configurations using the standard two-pass procedure [3]. All simulations

are conducted on a computer equipped with a 3.0GHz CPU and 8GB memory.

The objective of the first two simulations is to use Monte Carol simulation to evaluate

our approach from the aspect of attack probability, as detailed in Chapter 4. For this pur-

pose, we first randomly assign base metrics to each vulnerability and dependency relation-

ships between pairs of vulnerabilities. We then apply both our approach and the existing

approach by Marcel et al. [22] to calculate the probability of attacks with respect to a set

of randomly chosen goal conditions. We also compare our result to the percentage of sim-

ulated attackers (each simulated attacker is modeled as a random subset of vulnerabilities

that he/she can exploit) who can successfully reach the goal conditions.

In Figure 10, we use the BRITE topology generator to create random network topology.

The X-axis is the average effective base score of all vulnerabilities in each network divided

by 10, denoted by β. The Y -axis is either the combined score of attack probability (for both

our approach and the approach by Marcel et al.) or the percentage of successful attackers.

Each result is the average of 500 simulations on different network configurations. The

curve Simulation corresponds to the simulated attackers, which is used as a base line for

comparison. The line β corresponds to the naive approach of taking the average base score
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among all vulnerabilities in a network, which is clearly inaccurate.
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Figure 10: The Probability Aspect (BRITE)

In Figure 10, the curve S0 corresponds to our approach and the curve S1 the approach

by Marcel et al.. The curve δ1 represents the absolute value of the difference between the

probability result from our approach and the simulated attackers, and the curve δ2 repre-

sents the absolute value of the difference between the probability result from the approach

by Marcel et al. and the simulated attackers. Clearly, our result is closer to the simulated

attackers than theirs. Also, our probability is always higher than theirs due to the proper

handling of dependency relationships. In Figure 10, we have assigned dependency rela-

tionships to n pairs of randomly chosen vulnerabilities where n is drawn from a uniform

distribution on [0, 3]. Figure 11 shows a similar simulation, except that we increase the

amount of dependency relationships to n pairs where n is now drawn from a (uniform dis-

tribution on [0, 5]. The results show that our approach is still very close to the simulated

attackers, whereas Marcel’s result further deviates from the baseline results. In Figure 12
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Figure 11: Increased Dependency Relationships (BRITE)

and Figure 13, we present similar experiment result as Figure 10 and Figure 11 respectively,

by using another topology generator GT-ITM.

In Figure 14, we fix the distribution of CVSS score distribution based on [23]. We keep

the uniform distribution of dependency number, but change the average number from 0 to

3 as shown on the X-axis. Similar to the aforementioned experiments, the Y -axis is either

combined score of attack probability (by our approach and Marcel et al.), or the percentage

of successful simulated attackers.

The objective of the next simulation is to study the deviation of combined scores from

the baseline of simulated attackers. For this purpose, Figure 15 depicts the results computed

on 800 different networks. The X-axis is the percentage of simulated attackers who can

reach the goal conditions, and the Y -axis is the combined probability score. The dots

S0 and S1 correspond to the results of our approach and Marcel’s, respectively. The two

solid lines labeled with S0 and S1 represent the average probability score within each 0.05
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Figure 12: The Probability Aspect (GT-ITM)

interval of the X-axis. The two polygon areas depict the distribution of combined scores

produced by the two approaches. As we can see from the figure, our results evenly spread

around the simulated attackers’ results, whereas Marcel’s results are almost always lower

than the baseline results.

The next simulation aims to evaluate our approach from the skill aspect. For this pur-

pose, each simulated attacker is randomly assigned a skill level based on exponential distri-

bution (significantly less attackers possess a higher level of skills). Each simulated attacker

can only exploit those vulnerabilities whose skill scores (as defined in Chapter 4) are no

greater than the attacker’s assigned skill level. In Figure 16, the X-axis is the percentage

of successful simulated attackers, and the Y -axis is either the skill score produced by our

approach or the skill level of simulated attackers. Each result is the average of 100 sim-

ulations. The curve Skill metric is the cumulative skill score of our approach; the curve

Minimal skill corresponds to the lowest skill level of simulated attackers among those who
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Figure 13: Increased Dependency Relationships (GT-ITM)

can reach the goal conditions. We can see that those two curves almost overlap each other,

indicating the accuracy of our approach. The curve Average skill shows the average skill

level among successful simulated attackers, which has the same trend, but is always higher

than our result. The curve Vulnerability average shows the average skill score of all vul-

nerabilities in each network, which is clearly not a valid metric for skill level.

The next simulation evaluates our approach from the effort aspect. For this purpose,

each simulated attacker is randomly assigned aneffort threshold based on exponential dis-

tribution (less attackers are willing to spend more effort). We assume each simulated at-

tacker will only exploit those vulnerabilities whose effort scores (as defined in Chapter 4)

are no greater than the attacker’s assigned effort threshold. In Figure 17, the X-axis is the

percentage of successful simulated attackers, and the Y -axis is either the effort score or the

effort threshold (of simulated attackers). The curve Effort metric is the cumulative effort

score of our approach; the curve Minimal effort and Average effort respectively correspond
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Figure 14: The Probability Aspect using real world CVSS distribution

to the lowest and average effort threshold of those simulated attackers who successfully

reach the goal conditions. Again, we can see our effort scores closely match the minimum

required effort and follow the same trend as the average effort. The Vulnerability aver-

age curve shows the average skill score of all vulnerabilities is not as good a metric for

measuring effort.

In Figure 18, we demonstrate the comparison of computation time between Combine-

Effort and brute force algorithm for computing Effort. We tested four sets of cases. In each

case, we generate random attack graphs of 90 instances. From this experiment shows that

our heuristic algorithm CombineEffort reduces the computation time exponentially with

respect to the size of attack graph.
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Figure 18: Performance Comparison for Combining Effort
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Chapter 6

My Other Work

This chapter briefly introduces two other work on different but related topics, which have

been completed during this thesis work.

6.1 Case Studies on Applying k-Zero Day Safety

In [74], a novel security metric, k-zero day safety, is proposed based on the number of

unknown zero day vulnerabilities. That is, the metric simply counts how many unknown

vulnerabilities would be required for compromising a network asset, regardless of what vul-

nerabilities those might be. The main motivation is that existing efforts on network security

metrics typically assign numeric scores to vulnerabilities as their relative exploitability or

likelihood. The assignment is usually based on known facts about each vulnerability (e.g.,

whether it requires an authenticated user account). However, such a methodology is no

longer applicable when considering zero day vulnerabilities about which we have no prior

knowledge or experience. In fact, a major criticism of existing efforts on security metrics

is that unknown zero day vulnerabilities are unmeasurable.

The k-zero day safety model is proposed to address this issue. Instead of attempting to

measure which zero day vulnerability is more likely, our metric counts how many distinct
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zero day vulnerabilities are required to compromise a network asset (in our model, network

asset is a general concept that may encompass one or more aspects of security, such as

confidentiality, integrity, and availability). A larger number will indicate a relatively more

secure network, since the likelihood of having more unknown vulnerabilities all available

at the same time, applicable to the same network, and exploitable by the same attacker,

will be lower. Based on an abstract model of networks and attacks, we formally define

the metric and prove it to satisfy the three algebraic properties of a metric function. We

then design algorithms for computing the metric. Finally, we show the metric can quantify

many existing practices in network hardening and discuss practical issues in instantiating

the model.

My main contribution to this work is a series of case studies that demonstrate how the

k-zero day safety metric can be applied to evaluate different network hardening options.

Those case studies will show that our metric may reveal interesting and sometimes surpris-

ing results, which are not always so obvious even in a small network. Therefore, for larger

and more realistic networks, a systemetic approach to security evaluation using our metric

and algorithms will become even more important.

6.1.1 Diversity

It is a commmon belief that a greater diversity in software and services may help to

strengthen a network’s resistence against potential security threats. However, we have

shown that more diversity does not always mean more security, with respect to known

vulnerabilities [78]. In this case study, we will reiterate this point with respect to zero day

vulnerabilities by applying the proposed metric.

The left-hand side of Figure 19 shows a local network with four hosts represented by

boxes, two firewalls represented by double lines, and an attacker’s host in the Internet

represented by a symbol of cloud. The active running services are marked within each box.
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Host A, B and C provide an HTTP service (http) and host D provides a secure shell service

(ssh). Firewalls enforce additional traffic restriction according to rules listed beside the

firewalls. For example, in the direction from Internet to the local hosts, firewall FW1 only

allows connections to host A, B or C, while in the reverse direction all connections are

allowed. Firewall FW2 only allows connections from host A, B or C to its right-hand side,

and allows all connections from its right-hand side to left-hand side.

�

Figure 19: Case Study 1: Security by Diversity

We assume attacks originate from the attacker host on Internet and our main security

concern is over the root privilege on host D. And we assume that all the services are free

of known vulnerabilities unless explicitly stated. For the following examples, unless ex-

plicitly stated, we assume different services involve distinct zero day vulnerabilities; all

the services except host-based access control service (iptables and tcpwrapper) are not

protected by isolation, that is, exploits of these services via zero day vulnerabilities directly

yield root privilege on that host. And we assume that all the firewalls are already diversi-

fied due to security concern, that is, exploits of different firewalls involve distinct zero day

vulnerabilities.(do not satisfy ≡v relation)

Assume the three web servers are providing the http service using exactly the same

software. It may be tempting to think that this lack of diversity results in less security, since

as long as the attacker can compromise any one of three web servers by exploiting an 0day

vulnerability of http, he can exploiting the same zero day vulnerability to compromise the
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others without further efforts. However, by applying the k-zero day metric, we can easily

see that k remains to be 2 regardless whether the three web servers are running the same

software or not, because each shortest attack sequence will only involve one of these three

services (e.g., [< vhttp, attacker, A >,< vssh, A,D >]). Therefore, increasing diversity in

this case does not increase k.

Intuitively, the reason that diversity does not help security in the above case seems to

be that the three web servers work in parallel so, informally speaking, increasing diversity

among them does not help to move host D further away from attackers. Consequently, for

the network shown on the right-hand side of Figure 19, it may seem obvious that increasing

diversity in the ftp services of hosts B and C will certainly lead to better security. However,

as we shall show, this is not the case, either.

First of all, in this network, we assume the iptables services on host D only allow

connection from host B and C. Given that host B and C are accessible from each other,

once host B is compromised by zero day attack, the attacker can easily step further into the

internal subnet by exploit the same zero day vulnerability on host B. It thus seems tempting

to diversify ftp services on host B and C, so that it will be hard for the attacker compromise

host C after gaining root privilege on host B.

However, by applying our approach on this network, we will find this hardening mea-

surement does not help to increase the network’s resistance against zero day attacks. Sup-

pose we use ftpX and ftpY to indicate two different version of ftp service program on

host B and C respectively. By applying our approach again, we will find that the shortest

attack sequences of the original network are [< vhttp, attacker, A >,< vftpX , A,B >,<

vnfs, B,D >], [< vhttp, attacker, A >,< vftpY , A, C >,< vnfs, C,D >] (k = 2). And the

shortest attack sequences after diversifying ftp on host B and C are [< vhttp, attacker, A >

,< vftpX , A,B >,< vnfs, B,D >], [< vhttp, attacker, A >,< vftpY , A, C >,< vnfs, C,D >

] (k = 2). We can now find out that, although hosts B and C are not working in parallel,
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the attacker still only needs one zero day vulnerability, of either vftpX or vftpY , in addition

to vhttp and vnfs, to compromise host D.

This case study indicates that the way diversity affects security in networks is not always

straightforward, even for small networks as described above. To manually conduct a similar

analysis for larger and more complex networks will clearly be a daunting task to most

security analysts. On the other hand, our proposed model and algorithms will automate

such a task and yield meaningful results for networks of any reasonable size.

6.1.2 Known Vulnerability

In this case study, we show how the existence of known vulnerabilities may affect the k-

zero day safety of a network by serving as shortcuts to help attackers in compromsing an

asset with less zero day vulnerabilities.

�

Figure 20: The Effect of Known Vulnerabilities

In Figure 20, host D is an administration client on which no services are running. And

we assume no known vulnerabilities are found in this network. By applying our approach,

we show two attack sequences in the lower part of Figure 20 ( note that the path represented

57



by dashed line is the one after introducing a known vulnerability and we shall talk about it

later). Note that here we omit some other attack sequences which are relatively longer. The

lowest path in the figure is the shortest attack sequence, namely the one requires least zero

day vulnerabilities.

Briefly speaking, the attacker first exploits a zero day vulnerability vhttp to obtain root

privilege on host A; then gains root privilege on host C through another zero day vul-

nerability vssh; continually bypasss firewall FW3 and FW4 through two distinct zero day

vulnerabilities vFW3 and vFW4; and lastly gains root privilege by exploiting vssh again. It

can be observed that this shortest sequence requires four distinct zero day vulnerabilities,

that is k = 4. Now we assume that a remote shell service(rsh) is opened on host D. And an

additional rule allowing connection from host C to D is added to the access control rules of

FW3. Once the attacker can access host D, she will obtain user privilege on host D which

can be used as a steppingstone to gain connection to other hosts. We use vrsh to represent

this known vulnerability.

The dashed line in the lower part of Figure 20 shows the resultant attack sequence after

introducing vrsh: after obtaining root privilege on host C by exploiting < vhttp, attacker, A >

and < vssh, A, C >, the attacker can access the rsh service on host D and gain user priv-

ilege; lastly, exploiting the ssh zero day vulnerability on host E, the attacker successfully

completes the goal, while using only two distinct zero day vulnerabilities (vhttp and vssh),

instead of four.

Note that since the exploit of this introduced known vulnerability vrsh is unreachable in

generating the attack graph of known vulnerabilities [3], vrsh is discarded in their approach.

And from this example we can see that attack graph of zero day vulnerabilities can reveal

much more potential risk of existing known vulnerabilities.

Since patching known vulnerabilities usually incur a cost (e.g., software upgrade, hard-

ware replacement, or administrative effort), we need to prioritize the patching process based
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on the effect of a vulnerability on security. In the following, we will show that patching

known vulnerabilities does not necessarily help to increase k-zero day safety.

Instead of introducing rsh service on host D, let’s consider a known vulnerability in

ftp on host B. We assume that attacker can exploit this vulnerability as long as she has

connection to the ftp service, and exploit of this vulnerability will provide root privilege to

the attacker. However from the attack graph showed in the lower part of Figure 20, we can

clearly see that this known vulnerability does not give the attacker any advantage. Note that

in this case, vftp is considered as a known vulnerabilit. However, applying our approach

we can find that k remains as 4. So if we patch vftp, it will be come the same case as the

original network. But patching vftp does not help improve the security of the network.

6.1.3 Backup of Asset

In this case study, we will apply our metric to study the effectiveness of improving security

of an asset by placing backups at different locations inside a network.

�

Figure 21: The Effectiveness of Asset Backups
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In Figure 21, the attacker’s goal is to gain root privilege on host D so that the avail-

ability of host D can be compromised (by shutting down host D). We assume that there

exists a common known vulnerability in the http service on host A and E, which will

provide the attacker with root privilege after exploitation. Note that the three dashed

line circles marked with ’a’, ’b’ and ’c’ are three candidate positions to place a backup

server synchronizing with host D. Before any security measures are enforced, we first ap-

ply our approach to find k of this network. Similar procedure as before, here we present

the shortest attack sequences: [< vhttp, attacker, A >,< vssh, A, C >,< vnfs, C,D >],

[< vhttp, attacker, A >,< vsmtp, A,B >,< vnfs, B,D >], [< vsmtp, attacker, B >,<

vnfs, B,D >]. Note that vhttp is a known vulnerability. We can find that in this case k = 2.

Setting up backup server for host D helps to increase the difficulty for the attacker,

because she has to gain root privilege on both hosts so that the availability of host D

and its backup can be compromised. Now we consider effectiveness of the three differ-

ent backup options. We assume that the new backup server is named host G. (1) If we

place host G at the point a, we can find that k is not changed, because once host D is

compromised, the attacker can directly exploit the same zero day vulnerability of nfs on

host G. (2) If we place host G at the point b (note that an additional access rule from

host G to host D should be allowed so that we can make the two hosts connected for syn-

chronization), by applying our approach, we will find that the shortest attack sequence is

[< vhttp, attacker, A >,< vhttp, A, E >,< vnfs, E,G >,< vnfs, G,D >]. In this case,

the k decreases from 2 to 1. (3) If we place the host G at the point c, although we can

follow the same attack sequence, which requires only two zero day vulnerabilities, as the

original case, the shortest attack sequence to gain root privilege on both host D and host G

is longer: [< vsmtp, attacker, B >,< vftp, B, F >,< vnfs, F,G >,< vnfs, G,D >]. We

can see that in the scenario, k is increased from 2 to 3.
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6.1.4 Intrusion Detection

In this case, we apply our metric to study the effectiveness of detection effort and isolation

techniques when they are implemented differently inside a network.

�

Figure 22: The Effectiveness of Intrusion Detection and Isolation

In Figure 22, a local network connects to Internet through two different physical con-

nections and provides mail service (smtp) and web service (http) on host A and C re-

spectively. On host F and H, to achieve more security, a host-based access control ser-

vice (iptables) is enforced. More specifically, iptalbes on host F only allows connec-

tion request from host E, G and H; on host H, only connection requests from host E,

F and G are allowed. The attacker’s goal is to gain root privilege on either host I or J

(< root, I > ∨ < root, J >).

Now consider two hardening scenarios by adding detection (IDS) to the network. First,

since the attacker can penetrate into the network through either firewall FW1 or FW4, it

seems necessary to place two IDSs behind FW1 and FW4 to assure that no intrusion at-

tempts are missed. However, in reality, this is usually a costly, if not impractical, solution
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due to high traffic throughput at the two entrances of the network. Secondly, since as

long as either host I or J is compromised, we will fail to protect the network, it seems

necessary to place two IDSs just behind the firewall FW3 and Fw6 so that any malicious

traffic toward host I or J will be detected. This is a practical solution, however, not nec-

essarily the most cost efficient one. By applying our approach, we will find that the two

shortest attack sequence are [< vsmtp, attacker, A >,< vssh, A, E >,< vssh, E, I >],

[< vsmtp, attacker, A >,< vssh, A, E >,< vssh, E, J >], [< vhttp, attacker, C >,<

vssh, C, E >,< vssh, E, I >], [< vhttp, attacker, C >,< vssh, C, E >,< vssh, E, J >].

All these four sequences exploit a common zero day vulnerability vssh on host E. So as

long as an IDS (instead of two IDSs) placed before host E, all these four attack sequences

can be blocked.

Similarly, although it will be helpful to protect the services on host I and J by isolation,

our approach can help to identify more cost efficient hardening scenarios while still im-

proving the network’s resistance again zero day attacks. One example is to isolate the ssh

service on host E, which will block the four shortest attack sequences.

6.1.5 Firewall

In this case, we evaluate the effectiveness of using firewall as temporary workaround for

blocking exploitation of a known vulnerability.

In Figure 23, host-based access control services iptables and tcpwrapper are set up to

further restrict connections among internal hosts. The iptables service on host C allows

inbound connection from A and outbound connection to D. The tcpwrapper on host D al-

lows inbound connection from host C and outbound connection to host E. The tcpwrapper

service on host F only allows inbound connection from E or G. The iptables service on

host C is detected vulnerable to a known vulnerability, exploiting which helps the attacker

bypass the access control and gain connection to the ftp service on host C. The attacker’s
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Figure 23: The Effectiveness of Firewalls

goal is to obtain root privilege on host F.

By applying our approach, we find the shortest attack sequences are [< vftp, attacker, B >

,< viptables, B, C >,< vftp, B, C >,< vnfs, C,D >,< vssh, D,E >,< vftp, E, F >] and

[< vftp, attacker, B >,< vFW2, B, FW2 >,< vhttp, B,G >,< vftp, G, F >]. Note that

viptables is a known vulnerability, so the resultant k = 3.

Suppose There is no patch available for the known vulnerability viptables. As a tem-

porary workaround, the administrator moves host C behind firewall FW2 (at point a) and

remove the iptables service, but keep the same access control rules by adding extra rules

to FW2: allow connections from A to C and C to D. However, our approach shows that this

measurement makes the network less secure. After the moving host C behind FW2, the

shortest attack sequence become [< vhttp, attacker, A >,< vftp, A, C >,< vhttp, C,G >

,< vftp, G, F >]. In this scenario k decreases from 3 to 2. This is because, although the

access control from/to host C is enforced by FW2, placing host C in the same subnet as

host G will allow additional connection from C to G which does not exist in the original

network. Without applying our approach to re-evaluate the security of ’improved’ network

against zero day vulnerability, some intuitive hardening measurement might not necessarily
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enhance the security of the network, in contrary, enable more advantages for the attackers.

6.1.6 Other Cases

In following two cases, we show how insignificant hosts involve in zero day attacks and

how a seemly insecure change of the network configuration helps to increase the resistance

to zero day attacks.

�

Figure 24: An Example of Seemingly Useless (Useful in Reality) Hardening

In Figure 24, the iptables service running on host C only allows (1) connection requests

of ftp service from host B and E, and (2) connection requests of nfs service from host E.

The attacker’s goal is to obtain root privilege on host C. And we assume that there is a

known vulnerability of weak password in the ssh service of host E.

Since the attacker’s goal is to gain root privilege on host C, it is intuitively to put higher

priority on securing hosts A, B and C, because there is larger chance that the attacker can

compromise these three hosts than host E and D which are placed in the inner part of the

network and require more steps before the attacker can reach them.

However, our approach reveals that the shortest attack sequences leading to < root, C >

is [< vhttp, attacker, A >,< vnsf , A,B >,< vnsf , B,D >,< vweakpassword, D,E >,<

vnfs, E, C >] with k = 2, because the vweakpassword is a known vulnerability and the ex-

ploits of vnfs count as one unique zero day vulnerability. Note that, it seems more difficult
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for the attacker to reach host D and E than host C, however, the hosts D and E involve as a

stepping stone for the attacker gain access to the nsf service on host C.

Now consider hardening the network by moving the host D from the inner subnet to

the point a(marked by the dashed line circle). This seems improper because placing host

D in the middle subnet will enable more connection among host A, B, C and D. Applying

our approach, we find that his seemly insecure change of the network increase k from 2 to

3(there we omit the details of attack graph), because the connection from host D to host E

is now blocked which makes it harder to exploit the known vulnerability of ssh on host E.

Such kind of hardening measurements may otherwise not be found by existing techniques.

6.2 Similation Results on Attack Graph Compression

In [14], we present a novel representation of attack graphs using a well known compression

technique, namely, reference encoding. Specifically, we represent a large number of hosts

with similar configurations and connectivity using a few reference hosts together with tex-

tual rules describing minor differences between hosts. Our representation has two main

advantages. First, unlike a general-purpose data compression scheme (whose results are

useless until decompressed), our compression process will produce compressed, but valid

attack graphs, which can directly reveal similar threats as the original attack graph does.

Second, the compression is lossless in the sense that any valid sequence of attack steps may

be recovered from the compressed attack graph if necessary. These two facts together im-

ply that our representation eliminates the need for ever generating the original attack graph,

which is usually a prohibitive task for large networks.

My main contribution to this work is to evaluate the proposed compression model

through simulation (since no publicly available datasets of real world attack graphs ex-

ist to the best of our knowlege). All simulations are conducted on machines equipped with
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an Intel 1.80GHz processor and 1024MB RAM. We employ two synthetic topology gener-

ators, the Boston university Representative Internet Topology gEnerator (BRITE) [13] and

the Georgia Tech Internetwork Topology Models topology generator(GT-ITM) [28]. We

inject vulnerability information into generated topologies to obtain random configuration

graphs. We employ the Jaccard similarity coefficient as a parameter for describing the de-

gree of similarity between vulnerabilities on different hosts. To determine the grouping

of hosts in the compression process, we use a metric defined as the weighted average of

the total number of hosts and that of reference rules in the compressed configuration graph

(there certainly exist other application-specific ways for defining the metric).

Figure 25a shows the compression results of 263 topologies with the numbers of hosts

varying from 60 to 1020 and the number of subnets from 3 to 32. For each topology, the

degree of similarity in vulnerabilities on hosts inside each subnet is within the range of

[0.930, 0.956]. The weights on the number of host and rules are both set as 0.5. From the

results, we can see that the compression rate varies even if the size of topologies is fixed.

Figure 25b shows similar compression results by fixing the size of subnets to 10, 30, and

50, respectively, while increasing the number of subnets. We can see that the compression

method generally works better for networks with larger subnets.

Figure 25d and 25e show the compression results with the total number of hosts fixed

at 420, 576, and 630, respectively, while the size of each subnet increases and the number

of subnets decreases. Figure 25d and 25e are compression results of topologies generated

by BRITE and GT-ITM, respectively. From the results we can see that while different

generators do not make a significant difference to the compression rate, the size of subnets

is clearly a major factor.

Figure 25f shows how the weight α assigned to the numbers of hosts (the weight as-

signed to the number of rules is 1 − α) will affect the result. Two sets of topologies are

generated by BRITE and GT-ITM, respectively. The value of α in this experiment varies
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between 0.2 and 0.7. The size of original networks is fixed to 240 hosts with 40 hosts in

each subnets. From the results, we can see that an optimal weight assignment to α is be-

tween 0.5 and 0.6 (which helps to achieve a balance between the reduction of the number

of hosts and that of the number of rules).

Figure 25c shows the compression rate in the degree of similarity of vulnerabilities

on different hosts. We generate 2330 topologies with a fixed size of 420 nodes with 7

subnets, and we vary the average similarity degree. The metric weight assignment is α =

0.5. We can see that the compression rate is almost linear in the degree of similarity of

vulnerabilities.
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Figure 25: Simulation Results
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Chapter 7

Conclusion

In this thesis, we have addressed two important limitations of existing approaches to com-

bining CVSS scores, namely, the lack of support for dependency relationships between

vulnerabilities, and the lack of consideration for aspects other than attack probability. We

have formally presented our approaches to removing both limitations. Specifically, we han-

dled potential dependency relationships at the base metric level so the resulted adjustment

in base scores had well-defined semantics. We have also extended our approach to inter-

pret and combine CVSS metrics and scores in the skill and effort aspects. The simulation

results have confirmed the advantages of our approach. Future work will be directed to

incorporating the temporal and environmental scores, the consideration of other aspects for

interpreting the scores, and experiments with more realistic settings.
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