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ABSTRACT 

 

NUMERICAL INVESTIGATION OF HYDROGEN SONIC JET  

WITH REAL GAS MODEL 

 

Reza Khaksarfard 

  

Hydrogen is combustible at a very wide range of concentration (4% - 75%) 

and may ignite by a small amount of energy. Furthermore, the small amount 

of energy per unit volume of hydrogen requires a very high pressure 

reservoir to have sufficient amount of fuel. This increases the risk of failure 

of the tank valve which can lead to the release of high pressure hydrogen 

and explosion. Therefore, safe storage of hydrogen is an issue if it is stored 

at high pressures. Sudden release of hydrogen from a high pressure tank is 

numerically investigated here-in by Computational fluid dynamics (CFD). A 

three dimensional in-house code is developed to simulate this flow. A 

transport equation is added to solve and find the concentration of Hydrogen-

air mixture in the domain. A very small mesh, especially near the release 

area, is required to capture all the shocks and features of the flow, therefore 

parallel computation is used to overcome memory problems and to decrease 

the computation time.  High pressure hydrogen requires a real gas equation 

of state to be accurate. Two equations of state, Beattie-Bridgeman and Abel-

Noble are applied as the real gas equation.  The results show that the real 
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gas model is necessary to accurately capture this flow. In reality, the release 

hole is not fixed and enlarges in time. In this work, a moving mesh is 

developed and used to enlarge the release area in time. The impact on the 

flow is analyzed. The boundaries of the release area move in time and all the 

nodes are moved accordingly based on the spring method to have a good 

mesh quality. The code is capable to solve the flow after sudden release 

which can help the industries to investigate different safety scenarios. 
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Chapter 1 

 

INTRODUCTION 

 

 

 

1-1 Hydrogen production, storage and safety  

The pollution problems and global warming due to carbon dioxide and other 

emissions increase the need for a cleaner source of energy such as hydrogen. Hydrogen is 

an affordable, low-polluting, renewable and efficient energy and is a good replacement 

for rapidly depleting fossil fuels. Hydrogen use as fuel is growing fast and countries are 

investing in hydrogen industries to reduce the cost of hydrogen production, storage and 

safety. Hydrogen is also an energy carrier and can be stored in gaseous and liquid form. 

 

Hydrogen can be produced by hydrocarbons, water and biomass. Steam reforming is 

the common way to produce hydrogen by hydrocarbons, mostly methane and natural gas. 

Currently hydrocarbons are the main source of hydrogen. Since hydrogen is supposed to 

replace the current fossil fuels, this method is not a good way to produce hydrogen. 

Hydrogen can be produced by water through electrolysis in which water is decomposed 

into hydrogen and oxygen. Unfortunately this method requires a large amount of energy 

and the electricity needed is more valuable than the hydrogen produced. Hydrogen can be 

produced by biomass. Biomass is derived from garbage, wood or waste and is the best 

way to produce hydrogen since is not using hydrocarbons and is not as expensive as 
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electrolysis. In one method of producing hydrogen through biomass, cellulosic materials 

can be used to produce hydrogen through a stoichiometric reaction. The biomass method 

is the most efficient method and is the future of hydrogen production. 

 

Hydrogen can be stored as compressed, liquid or slush hydrogen. Liquefaction of 

hydrogen imposes a large amount of energy loss and the tank of storage should be well 

insulated to avoid temperature rise. Compressed hydrogen has good amount of energy by 

weight but poor amount of energy by volume and it required a larger tank to store. Figure 

(1-1) shows compressed and liquid hydrogen tanks. Car manufacturers such as Honda 

and Nissan are using compressed hydrogen of 350 or 700 bar. BMW has worked on 

liquid hydrogen and BMW hydrogen 7 is the model.  

 

         

 

 

The main drawback of extensive use of hydrogen is insufficient hydrogen fuel 

stations. Therefore countries like USA, Canada, Japan and some European countries like 

Norway are investing lots of money on building hydrogen fuel stations. A total of 12 

hydrogen fuel stations are built in 11 different cities of Japan and they plan to create a 

Figure (1-1) – Compressed (left) and Liquid (right) hydrogen tanks 

www1.eere.energy.gov 

http://en.wikipedia.org/wiki/Liquefaction
http://www1.eere.energy.gov/
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total 100 by 2015. In March 2007, Stephen Harper, Canadian Prime Minister announced 

funding of almost $200 million for environmental projects in British Columbia including 

the hydrogen highway from Vancouver to Whistler. Today, 20 local Whistler buses in 

British Columbia are using hydrogen fuel cell which accounts for 70 percent of the total 

local buses. Figure (1-2) shows one of theses buses. Hydrogen fuel stations began to be 

built in California in 1999. There are currently between 25 and 30 hydrogen stations in 

California, mostly in and around Los Angeles. 

 

 

Investigating the parameters related to combustibility of hydrogen shows that 

hydrogen is combustible at concentrations between 4% and 74%. Furthermore, Hydrogen 

flame speed is very high in comparison with other gases such as methane. Also hydrogen 

green.autoblog.com 

 
Figure (1-2)- Hydrogen fuel cell bus in Whistler, British Columbia 

http://en.wikipedia.org/wiki/Stephen_Harper
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needs lower ignition energy. Therefore safety of hydrogen is important for an increased 

use in industries such as the automobile transportation industry.   

 

Hydrogen has low-energy content per unit volume and it has to be stored in high 

pressure tanks to store sufficient amount of energy. Computational Fluid Dynamics 

(CFD) is used to simulate the hydrogen release in case of sudden failure of the tank as it 

can become an effective approach to investigate many safety relevant scenarios. The 

objective of this work is to develop an accurate simulation tool for the flow of hydrogen 

in air, to understand the physics regarding the sudden release of hydrogen from a high 

pressure reservoir and to analyze the sonic jet of hydrogen near the exit of the reservoir. 

High pressure of the tank causes choked flow at the exit which causes maximum flow 

rate possible. The sonic flow quickly becomes supersonic after release to the environment 

and shock occurs in the near field of the sonic jet. In this situation the flame front moves 

at a supersonic speed and a strong shockwave propagates. Explosion related to the 

development of a shock wave is called detonation which is the most dangerous type of 

explosion.  Figure (1-3) shows the flow of a highly under expanded jet and the resulting 

shocks [1]. The mach disk is a strong normal shock which changes regime to subsonic. 

The barrel shock is not as strong as this normal shock mach. The pressure ratio of the 

tank to the external environment makes a very high gradient flow which requires a stable 

code along with a high quality mesh to be accurately captured. More description of under 

expanded jets can be found in [2-7].  
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Figure (1-3) the flow structure of a highly under expanded jet [1] 

 

1-2 In-house code features 

Navier-Stokes equations are the general governing equations for the numerical 

simulation of fluid flows. These equations consider the convective terms and viscous 

terms as well as body forces like gravity. The equations consist of a continuity equation, 

three momentum equations for three dimensional problems and the energy equation. 

(Navier-Stokes equations are the three momentum equations but usually all five 

equations are call Navier-Stokes equations). Euler equations are the simpler form of 

Navier-stokes equations where viscosity and heat conduction are zero. Euler equations 

are applied for an inviscid flow. In our cases, the governing equations are Euler 

equations, since the near exit flow is at high speeds and viscous terms can be assumed 
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negligible compared to convective terms. All these equations require a state equation to 

be completed. This equation is either an ideal gas or real gas equation of state. 

 

In order to accurately simulate the near jet flow, the numerical code has to include the 

real gas model. High pressure hydrogen deviates from ideal gas law. The in-house code 

employs a real gas model. Beattie-Bridgeman equation of state with five constants, Van 

der waals with two constants or Abel Noble with only one constant are samples of real 

gas equations of states. In this work, Beattie-Bridgeman and Abel Noble equations are 

applied as real gas equations and the difference is discussed. To apply these equation the 

Jacobian matrices and flux calculating methods are modified. 

 

Since the area of release is very small relative to the whole domain, the elements near 

the jet exit are much smaller than the elements near the far field. This situation increases 

the total number of elements which increases the memory. Parallel processing is used to 

overcome the memory requirements. Also the small size elements decrease the time steps 

and the convergence time becomes very large. Parallel use of processors allows 

decreasing the total computational time. METIS software is used for grid partitioning 

needed for parallel processing. 

 

The mesh used is a three-dimensional tetrahedral grid which is generated with 

GAMBIT.  A three-dimensional simulation is necessary since in the future gravity effects 

will be considered and the flow can not be simulated by a two-dimensional axisymmetric 

mesh. Second order accuracy in space is applied to accurately simulate the flow and an 
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implicit scheme is used. Van Leer limiter is used in the M.U.S.C.L. (Monotone Upwind 

Scheme for Conservation Laws) procedure. 

 

After release, hydrogen is mixed with air in the low-pressure environment and a 

mixture of hydrogen and air exists in the flow. A transport equation is applied to find the 

concentration of the hydrogen-air mixture. More of multi-species flows can be found in 

[1,8].   

 

In reality the exit is gradually opening, since the failure of the tank or the pipes results 

in a hole with increasing diameter. All the research in this field deal with a fixed diameter 

exit and a fixed mesh is applied in the release area. A moving mesh is required to 

accurately simulate the flow. In this work, the boundary nodes are moved and all the 

other nodes are moved accordingly based on the spring method to have the best quality. 

 

The final code will be a tool which solves the three-dimensional flow of sudden 

release of Hydrogen into air. The hazards related to the sudden release are predicted by 

using this code and it can be used in industry as a safety tool to replace the present fuels 

with hydrogen.   

 

1-3 Literature Review 

 

Swain et al. [9] divide the hydrogen release in three main types: hydrogen release in 

enclosed spaces, partially enclosed and unenclosed spaces. When hydrogen is released 
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into an enclosed space the volume of hydrogen accumulating in the space is of great 

importance, while for an unenclosed space the release velocity is the important 

parameter. For a semi-enclosed space which is usually an enclosed space with vents, both 

the hydrogen volume and flow velocity are important. The explosion in an enclosed space 

can be delayed because the volume of hydrogen gradually increases and reaches the 

minimum volume required to have an explosion. Hydrogen explosion can occur if the 

volume of hydrogen is higher than 4.1% and lower that 75% of the space. This wide 

range of flammability confirms the hazardous of hydrogen release. The explosion in an 

enclosed space is more likely to happen in a garage. When the vehicle is parked and there 

is release from the reservoir, hydrogen accumulates in the garage and has potential of 

explosion. Breitung et al. [10] numerically investigate the hydrogen release in a garage 

with CFD simulations. In their work hydrogen releases into air and the flammability of 

the mixture according to the volume percentage of the hydrogen and the flame 

acceleration is discussed. Also a criterion for deflagration to detonation transition 

probability is given.  

 

Mukai et al. [11] simulate the diffusion of Hydrogen in a tunnel, an underground 

parking lot and a multistory parking garage with CFD simulations. The leak hole is a 

square with sides of 5 cm. The 3D Navier-Stokes flow is solved by STAR-CD and 

standard k-epsilon model is used to model turbulence.  Results show that in all cases the 

flammable region is restricted to the small region near the leakage hole. Effects of tunnel 

length for the case of tunnels are presented. Also for the case of parking lot, effects of 
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two leaking vehicle are compared with one leaking vehicle.  For the case of multistory 

garage, effects of the position of vehicle are discussed. 

 

Agranat et al. [12] simulate the hydrogen release into a partially enclosed space which 

is an enclosed space with two vents. The gases are treated as ideal gases. The hydrogen 

concentration is compared with experimental results. Near the outlets (vents) the results 

of the numerical model used are 10 percent different from the experimental results, while 

the results are 20 percent different near the inlet. 

 

In an unenclosed space the flow velocity has an important role in the explosion. In 

this case hydrogen does not accumulate. The pressure ratio of reservoir to environment 

and the release velocity determine the probability of explosion. Hydrogen release into an 

unenclosed space causes a strong shock which may lead to detonation which is the most 

dangerous type of explosion.  An explosion occurred in March 1983 in Stockholm, 

Sweden shows the dangers regarding the release of hydrogen. Venetsanos et al. [13] 

model this explosion with CFD. The accident occurred because of the sudden release of 

hydrogen from a rack of 18 connected vessels with the pressure of 200bar. The 18 vessels 

are modeled by just one reservoir with the same number of openings. In this accident 16 

people were killed and 10 vehicles were damaged. To model this accident, a real gas 

model has been used. The model uses enthalpy as function of temperature and pressure, 

and equation of state RTPPT   ),( . The numerical results are largely compatible 

with the reported accident, both in near and far fields damages.  
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Experimental work about hydrogen release is rare in the literature but can be found in 

[14].  Golub et al. [15] experimentally investigate the self-ignition of release of hydrogen 

through a tube of 65-185 mm in length and the cross section area of 20 mm
2 

into a semi-

confined space. They have tried both round and rectangular cross sections. The pressure 

in the chamber is increased up to 10MPa. They conclude the self-ignition in the tubes of 

20 mm
2 

in cross section is possible when hydrogen is released from a high pressure 

reservoir of 4MPa and higher.  

 

Schefer et al. [16] experimentally discuss the vertical jet into open space. Hydrogen is 

released from eight high pressure hydrogen tubes with the volume of 0.6 m
3
 into a 

stagnation chamber and then is release into air through a jet nozzle. The pressure is 

increased up to 40MPa and the release hole diameter is almost 5mm. The flow pattern is 

discussed for longer times after release in the order of seconds. The flame length is 

almost 9 m after the test initiation. It takes 500s for the tank pressure to reach near 

atmospheric pressure.    

 

Shirvill et al. [17] experimentally investigate the jet release of hydrogen. The results 

are recorded by video cameras. Unignited and ignited releases are tested. The maximum 

release pressure is 130 bars from an orifice diameter of 3 mm.  

 

Dubois [18] discuss the release experimentally in case of a free subsonic jet, free 

supersonic jet and subsonic jet in the presence of an obstacle. Helium is applied for the 

experimental tests. An optical technique, BOS (Background Oriented Schlieren), is used 
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to get the images. For the free subsonic jet, four release area diamteres of 1, 2, 3 and 8 

mm are tested. The results are in 10% difference from the literature simulation for 

Helium subsonic free jet. For the free supersonic jet, the release diameter is fixed at 1 mm 

and the pressure is in the approximate range of 3 to 12 MPa. The experiment is done with 

helium and based on a law resulted from the experiment, hydrogen results are provided. It 

is concluded that the result of BOS for helium are different from the results of hydrogen 

based on a developed law.   

 

Computational fluid dynamics has been very helpful in this field. Many results 

achieved have been done by using Computational fluid dynamics [19-23].  Cheng et al. 

[24] simulate the hydrogen release from a reservoir of 400 bars. The differences between 

using ideal and real gas models are presented. The release hole is 6 mm. For high 

pressure release the difference between ideal gas and real gas is not negligible. The Abel-

Noble equation of state was used to model the real gas. This equation deviates from the 

ideal gas law by a compressibility factor. The difference between ideal gas and real gas 

results increases by increasing the pressure and reducing the temperature.  The results 

show that ideal gas law overestimates the mass flow rate by 30% in the first 10 seconds 

and 35% in the first 25 seconds of release compared to real gas model. The choked 

release lasts 50 seconds by real gas model compared to 47.7 seconds for ideal gas law.  

 

Xu et al. [25] simulate numerically highly under-expanded hydrogen jet. The vessel 

pressure and temperature is set as 20 MPa and 300 K, respectively and the orifice 

diameter is 1 cm. The release pressure, temperature and velocity are 10.6 MPa, 251 K 
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and 1020 m/s, respectively. LES is selected to model turbulence in this problem.  A 45-

degree slice domain with diameter of 50D and length of 80D is used. The second order 

accuracy is employed but it is changed locally to a first order upwind to avoid non-

physical oscillations. The maximum Mach number and velocity are 9 and 2700 m/s 

respectively.   

 

Liu et al. [26] use direct numerical simulation to investigate the high pressure 

hydrogen jet. Two dimensional Euler equations are used and due to symmetry of the 

problem, axisymmetric equations are applied. Hydrogen ignition and combustion are 

simulated by using chemical mechanisms. The exit diameter is 1 mm and the tank 

pressures of 10, 40 and 70 MPa are employed. The stagnation temperature is 300 K. the 

computational domain is a rectangle. The results show that an ignition source is required 

to generate a hydrogen flame.     

 

Pedro et al. [27] simulate the hydrogen release from a vessel of pressure of 100 atm 

by using FLUENT. Ideal gas law is used and the reservoir is also simulated. A second 

order upwind scheme is used for continuity and momentum equations. The energy 

equation is resolved by a first order upwind scheme. Time has also the second order 

accuracy. Nozzle diameter is 5 mm. Adaptation is used to reduce the computational time 

and capture the shocks better. The time steps used are lower than 10e-8 seconds.  

 

Radulescu et al. [28] numerically investigate highly under-expanded slit and round 

jets. The results are compared with the existing experimental results. An adaptive code is 
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used to solve the two dimensional axisymmetric equations and ideal gas law is used. The 

code uses a second order Godunov scheme. Axisymmetric coordinates are used due to 

symmetry of the problem. The pressure ratio of reservoir to environment is between 100 

and 1000. The Reynolds number is assumed high in order to restrict the viscous effects to 

regions with high gradients. Therefore in regions without these high gradients, the results 

are similar to results of Euler equations.  

 

To simulate the real gas, the equation of state for the real gas should be known. This 

equation can be found by equation RTPPT   ),( . In this definition, Real gases 

are different from ideal gases by a factor   in the ideal gas law and is a function of 

temperature and pressure. The pressure derivatives are found by using this equation. For 

hydrogen,   increases by increasing the pressure at a constant temperature. A more 

accurate model of   leads to a more accurate equation of state.  

 

In another approach pressure is directly defined as a function of two independent 

variables. Montagne et al. [29] defines pressure as a function of density and internal 

energy. Mohamed et al. [30] uses Beattie-Bridgeman state equation, in this equation 

pressure is a function of temperature and specific volume. The required derivatives are 

found by this equation and thermodynamics properties.  

 

Recall that hydrogen has a high potential to auto ignite. The possibility of ignition is high 

in front of the hydrogen-air contact surface where the flow is heated by the lead shock. 

Several ignition mechanisms have been tried in the literature including diffusion ignition, 
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sudden adiabatic compression, hot surface ignition, etc. [25] Xu et al. focus on the 

diffusion ignition which was first introduced in [31]. In this mechanism, ignition is 

caused by the diffusion between hydrogen and heated oxygen. Oxygen is heated by the 

lead shock. Since the ignition is cause by diffusion, this mechanism is called diffusion 

ignition. Xu et al. [25] show that when hydrogen is released through a tube, if the tube is 

long enough and the hydrogen pressure is high enough, hydrogen will auto ignite. It is 

presented that the pressure of almost 4 MPa does not lead to auto ignition since the lead 

shock is not strong enough, while the pressure of almost 7 MPa results in auto ignition 

and when the tube length is increased from 2 cm to 6 cm, hydrogen and air have more 

time to mix and auto ignition is more likely to happen. Melguizo-Gavilanes et al. [32] 

study the shock-induced ignition in details. The case is studied by the reactive Euler 

equations. The simulation is performed in one dimension and a transformed coordinate 

system is applied. Liang et al. [33] discuss the detonation structure and Bedard-Tremblay 

et al. [34] investigate the detonation and also deflagration to detonation transition (DDT) 

after the accidental release. The simulation is two-dimensional which causes confinement 

compared to an actual three-dimensional case.  

 

In this work, ignition is not discussed. More of ignition can be found in [35-38]. The 

numerical results achieved in this research will be used by ignition people to be discussed 

in term of different forms of ignition. For example, the pressure on the contact surface at 

different times is important for ignition models. This is one of the outputs of our in-house 

code to be applied for further ignition investigations.  
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1-4 Methodology  

 

The ultimate goal of the work is to have a code which accurately models the release 

of hydrogen into air. Since strong shocks occur in micro seconds after release, a very 

accurate tool is needed to capture all the features of the flow. To achieve this, it is needed 

to have an accurate three-dimensional code.  

 

An existing three-dimensional Euler parallel code is modified to simulate the flow. 

The first task is to apply the real gas model.  Since Hydrogen is stored in a high pressure 

tank, ideal gas model can not accurately capture the characteristics of the flow. The real 

gas model is needed to simulate the hydrogen release from a high pressure reservoir. In 

this work, Beattie-Bridgeman and Abel Noble equations are applied as real gas equations 

and the difference is discussed. All Jacobian matrices and flux calculating methods are 

modified for real gas simulation.  

 

The second task is to increase the accuracy from first order to second order. A 

modified Van Leer limiter is used in the M.U.S.C.L. (Monotone Upwind Scheme for 

Conservation Laws) procedure to have the second order accuracy in space. 

 

The third task is to add a transport equation to find out the concentration of hydrogen-

air mixture. Soon after release hydrogen is mixed with the air and a contact surface is 

generated. The transport equation is solved at each iteration to find out the concentration 

of each species.  
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The fourth task is to add the moving mesh capability to the code. In reality the release 

hole expands by time, therefore a simulation with a fixed diameter hole is not accurate. A 

moving mesh is required to simulate this scenario. Spring-based method is added to the 

code. Boundary nodes are moved and all the other nodes are moved accordingly based on 

the spring method. 

 

The final code is able to model the hydrogen jet. This will help us to examine where 

and when the probability of explosion exists and what should be done to avoid it to 

happen.  The novelty of this code is that it considers all the detailed features of the flow 

and it can be used in industry as a tool to safely use Hydrogen as a fuel. Commercial 

codes do not offer this level of accuracy. This tool uses real gas model which is necessary 

to accurately simulate the release of high pressure hydrogen into air. Commercial codes 

are not capable of applying the real gas equation for this flow. High gradients caused by 

the high pressure ratio result in high instability which commercial codes are not able to 

handle. Application of second order accuracy to this simulation is really a challenge due 

to high gradients in the flow. Note that the flow can reach Mach number of about 9. The 

code uses a transport equation which is capable of finding out the concentration of 

hydrogen or air in the mixture after releasing the high pressure hydrogen into ambient air. 

This tool also considers the fact that the release area is expanding in time by adding the 

moving mesh feature. The moving mesh method maintains the quality of the mesh at 

each step of enlarging the release area. These features of the code make it powerful to 

accurately simulate the flow and have precise results close to what happens in real cases.   
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To be more specific this research wants to make the following contributions:    

 Real gas model  

 Two real gas equations of state, Beattie-Bridgeman and Abel Noble are 

implemented in the code. Results show the real gas model is necessary for the 

simulation.   

 Second order accuracy 

 A modified limiter is used to apply the second order accuracy since high 

gradients in the flow make the second order accuracy hard to be applied. 

 Transport equation 

 A transport equation is added to code to predict the concentration of each specie 

in the hydrogen-air mixture happening soon after release. 

 Moving mesh 

 In reality the release area is expanded by time and is not fixed. Spring-based 

method is used to move the mesh to make the simulation as real as possible. 
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Chapter 2 

 

GOVERNING EQUATIONS 

 

 

 

 

The near exit flow is high speed therefore viscous terms can be assumed negligible 

compared to convective terms. For high gradient areas like shock regions viscous effects 

become higher but the flow can still be treated as inviscid and Euler equations give 

accurate results. Therefore Euler equations are used to simulate this flow:   
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For an ideal gas state equation, pressure is related to the energy as follows: 
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For a real gas this relation will be discussed in section 2-1-2 

The implicit finite-volume discretization is as follows: 
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where J is the flux-Jacobian.  

Roe’s averaging method is used to calculate Fluxes [39]. Conservative jacobians are 

found by primirive jacobians. The Jacobians can be achieved easily if primitive variables 

are used. Primitive variables are  PwvuQT  . The jacobians of primitive 

variables are not a function of equation of state. In other words, the primitive jacobians 

are the same for ideal gas and real gas. So to find conservative jacobians, it is much 

easier to find them by using primirive jacobians. The numerical code uses conservative 

variable but the jacobians are first found by primitive variables and then conservative 

jacobians are calculated by the help of QU   which is needed to transform between the 

primitive and conservative variables.  QU   is as follows: 
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Equation (2-6) shows this relation between primitive Jacobian and conservative Jacobian.  

MJMJ cP

1                                                                                                             (2-6) 

In the same way the left and right eigenvector matrices of conservative Jacobian can be 

found by left and right eigenvector matrices of primitive Jacobian.  

1 MLL
T

p

T

c                                                                                                             (2-7) 

pc MRR                                                                                                                     (2-8) 

The conservative left and right eigenvector matrices are as follows: 










































































a

P

a

wPn

a

vPn

a

uPn

HV
a

Pa

wnvnun

a

P

a

wPn

a

vPn

a

uPn

HV
a

Pa

wnvnun

nnvnun

nnwnun
a

P

a

wP

a

vP

a

uP
HV

a

P

L

iiziyix

i

zyx

iiziyix

i

zyx

xyxy

xzxz

iiiii

2222

2

2

2222

2

2

2222

2

2

)(

)(

00

00

)(



















 

 



   

 

 21 









































































22

22

22

22

)()(

2222

)(

2222

)(
2222

22
001

2222

2

22

22

zy

x

zy

x

x

xz

x

zy

y

x

xy

x

zy

z

i

zz

x

zy

x

xy

yy

x

xz

x

zy

xx

yz

wnvn

un

a

H

wnvn

un

a

H

n

nnv

n

nwn
un

n

nnw

n

nvn
un

P

a
H

n

a

wn

a

w

n

nn

n

nn
w

n

a

vn

a

v

n

nn

n

nn
v

n

a

un

a

u
nnu

aa

R






























 

where, 

 































































































i

T

T

P

i

P

i

T

T

P

i

P
P

T

i
                                (2-9) 

ississ

Pi

i

PPi

i

PP
a 










































































































 

2                    (2-10) 

TiiTii

PT

T

PPT

T

PP
P 










































































































 

                   (2-11) 

 

From [40]:  
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and for an isentropic process: 
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2-1 Real gas models 

 

High pressure hydrogen deviates from the ideal gas law. In order to simulate the flow 

more accurately, a real gas equation of state is added to the in-house code. There are 

several real gas equations. Van der Waals is a well known equation which uses two 

parameters a and b as follows: 

RTbV
V
aP m

m
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where mV  is the molar volume. 

Another two parameters equation is the Redlich-Kwong equation which is more accurate 

than the Van der Waals: 
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A three parameter state equation is Clausius equation :  
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The Wohl equation is another three parameter equation which is more accurate and 

complex: 
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There are also other two parameters equations like Dieterici or Berthelot.  

In this paper, three parameters Beattie-Bridgeman and one parameter Abel-Noble 

equations of state explained in sections 2-1-1 and 2-1-2 are implemented as real gas 

models. In the case of hydrogen in hydrogen both equations are studied but for the case 

of hydrogen in air only the Abel-Noble is examined. It will be shown that these two 

equations have almost the same accuracy for the case of hydrogen in hydrogen. Therefore 

it is pointless to use Beattie-Bridgeman for the case of hydrogen in air release. 

Furthermore the latter suffers from stability problems for the case of hydrogen in air and 

also it requires higher solution time since it is more complicated and uses more constants.  

 

2-1-1 Beattie-Bridgeman 

This equation is relatively complicated since it uses five constants.  
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In table (2-1) the constants are given [40]. This equation is used for the case of hydrogen 

in hydrogen. 

 

 

 

A (m5/Kg.s2) 310
(m3/Kg) 

 B210 (m3/Kg) b210
(m3/Kg) c210

(m3 .K3/ Kg) 

4924 -2.510 1.034 -2.162 2.500 

 

Table (2-1) -constants of Beattie-Bridgeman equation for hydrogen 
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iP  and P  are calculated as follows [41]: 
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vC
~

 and 
0v  are specific heat at constant volume and specific volume at pressure of 0.1 

MPa. 

 

For the ideal gas, iP  and P  are simply calculated by using ideal gas law: 

)1(  iP                                                                                                               (2-20) 

iP )1(                                                                                                                  (2-21) 
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2-1-2 Abel-Noble 

This equation is much simpler compared to Beattie-Bridgeman since it employs only one 

constant: 

RTRTb
b

RT

b

RT
P 












 1)1(

)1()(
                                                                               (2-22)     

where  kgmb 300775.0                                    

  The deviation from ideal gas equation can be illustrated by plotting the compressibility 

factor . The compressibility factor for an ideal gas equals one while it changes for a real 

gas. In figure (2-1), the compressibility factor is compared for an ideal gas and Abel-

Noble real gas for hydrogen at temperature of 300 K. It is always one for ideal gas but for 

the real gas it increases for increasing pressure. The difference may be negligible up to 

pressure of 10 MPa but for higher pressures ideal gas is not accurate enough and the real 

gas is necessary. For example the compressibility factor is almost 1.6 for pressure of 100 

MPa. For compressed hydrogen, the pressure in the reservoir can reach up to 70 MPa and 

a real gas equation is required to capture the flow pattern accurately. 

 

 Figure (2-1)- Hydrogen Compressibility factor at 

Temperature of 300 K 

  
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To close the Euler equations the following relations are used: 


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iP  and P  are calculated as follows: 
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According to these relations, pressure and the derivatives are a function of ratio of the 

specific heats. Therefore if the species of a mixture have the same ratio of the specific 

heats, the equations are closed without updating the gas constant R of the mixture. 

Hydrogen and air have the same ratio of specific heats, so the equations are closed and do 

not need the updating the gas constant of the mixture. 
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2-1-3 Analytical solutions for choked flow  

For the Abel Noble gas model, the choked flow in the release area is related to the 

stagnation state in the tank [16]. Release density is found by following equation: 
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Where 
0  is the stagnation density in the tank, 

e is the density at the release area, b is 

the Abel-Noble constant and   is the ratio of specific heats. Knowing the stagnation 

density in the tank gives the release density. Temperature at the release area is related to 

the stagnation temperature by  
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where 
0T  is the stagnation temperature in the tank and 

eT  is the release temperature. 

Stagnation temperature found from the initial condition and the release density found 

from the equation (2-30) give the release temperature. The release pressure can now be 

found by Abel-Noble equation of state: 
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And finally the release velocity which is the sound velocity in the release area is given by 
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For an ideal gas these equations are simpler as follows: 
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eee RTP                                                                                                                    (2-36) 

ee RTu                                                                                                                    (2-37) 

 

2-1-4 Specific heats and speed of sound  

The specific heats and ratio of specific heats are found by the following equations [30]: 
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 is the specific heat at reference pressure of 0.1 MPa where ideal gas assumptions are 

valid.  
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Assuming ),( TfP  the sound speed and specific heats are as follows: 
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gives the following values for Tf , 
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By substituting these values into equations (2-42 to 2-44) specific heats and sound speed 

are found. 

Abel-Noble equation of state
)(

),(
b

RT
TfP





  gives the following values for Tf , 

vf and 




v

v

TT dTTf ),( : 

b

R
fT





                                                                                                                    (2-48) 

2)( b

RT
f






                                                                                                             (2-49) 

0),( 


v

v

TT dTTf                                                                                                          (2-50) 

By substituting these values into equations (2-42 to 2-44) specific heats and sound speed 

are simplified as follows: 
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Therefore in the Abel-Noble code, specific heats are found by ideal gas law and are 

function of R and a constant ratio of specific heats while equations (2-45 to 2-47) show 

that in the Beattie-Bridgeman specific heats are different from ideal gas and the ratio of 

specific heats cannot be assumed constant. 

 

2-2 Transport Equation 

After release, hydrogen is mixed with air in the low-pressure environment and a mixture 

of hydrogen and air exists in the flow. A transport equation is applied to find the 

concentration of the hydrogen-air mixture [1]: 
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The air concentration is given by c and varies between 0 and 1. Initially the concentration 

is zero in the tank where there is no air while it is one in the low-pressure environment 

where there is no hydrogen. Soon after release hydrogen mixes with air and c changes in 

the mixture regions. The transport equation is solved separately at the end of each time 

step solution, with the same numerical approach as the Euler equations. R of the mixture 

is averaged with respect to concentration as follows:  
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2-3 Temperature Calculation 

 

After computing R, Temperature is simply found by  

mixR

bP
T
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)1( 
                                                                                                                   (2-56) 

For Abel-Noble equation of state, this is the end of the calculation at each iteration. The 

updated R will not be used in the next iteration since the pressure is only dependent on 

the specific heat. Since air and hydrogen have the same specific heat ratio, the 

information found by the transport equation is not used in the next time step and is only 

useful to find the temperature. If the mixture contains a substance with a different 

specific heat ratio, the concentration of each specie has an impact on the next time step 

and our method should be modified. 

   

2-4 Moving Mesh 

 

When the computational mesh moves, Euler equations are changed [42]: 

 

                                                                                                                                    (2-57)          

 

 

 

  Where w is the velocity of each node in case of movement. The discretization is 

changed to the following equation: 
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which includes the volume of the control volume before and after each time step. 

The transport equation is also changed to  
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The mesh is moved based on the spring method [43-45], in which the boundary nodes are 

moved forcing the interior nodes to move accordingly to reach the equilibrium state. Each 

edge acts like a spring. A movement on the boundary nodes causes a force along the 

edges connected to the node, This force based on the Hook’s law is found as: 

)(  xxkF ii                                                                                                    (2-58) 

Where  x   , ix   are the node displacement and the displacements of neighbouring 

nodes.  The total force on the each node is the sum of all forces along the edges 

connected to it. 
ik  is the stiffness of the edge and is found as follows: 

LengthEdge
ki

1
                                                                                                        (2-59) 

Since the force on each node should be zero at equilibrium, the following iterative 

equation is solved: 
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Finally the new position of each node is calculated by adding the displacement: 
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2-5 Second order accuracy in space 

The code uses second order accuracy in space and van Leer - Van Albada limiter is used 

[46]: 
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This limiter is modified to avoid the instability problems. The limiter switches the 

accuracy to first order in locations very near to exit area (
10
DZ  , where D is the 

release area diameter) or the locations of high Mach number gradient. 
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Chapter 3 

 

SIMULATION 

 

 

 

 

A three-dimensional code is developed to simulate the release of high pressure 

hydrogen into ambient air by computational fluid dynamics. The pressure ratio of the 

hydrogen in the tank to the ambient air should be as high as 700 in order to have 

sufficient fuel in the tank. This high pressure ratio results in a very unstable simulation. 

First of all a very high quality mesh with high number of nodes is required to capture all 

the features of this flow accurately. High gradients caused by the high pressure ratio 

results in a very high speed flow and strong shocks.  

 

3-1 Computational fluid dynamics model 

The geometry and mesh requirements are described in this section. GAMBIT is used 

to generate the mesh required for the numerical simulation. High pressure ratio needs a 

very fine mesh to capture all the complexities of the flow. Note that the flow variables are 

stored at nodes, the high number of nodes and elements requires significant memory and 

long computational time; therefore the code employs parallel processing to overcome 

memory requirements and to have much shorter computing time. Without parallel 

processing, it may take months to reach the results on one processor. Message Passing 
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Interface (MPI) method is used in the parallel code. METIS software and an in-house 

code are used for the grid partitioning needed for parallel processing. Cirrus which is one 

of the Concordia University supercomputers is used to run the parallel code. In this 

research, the maximum memory used on cirrus is almost 25GB for a 3 million nodes 

mesh divided into 64 partitions. 

 

3-1-1 Fixed Mesh 

Figure (3-1) shows the three-dimensional and two-dimensional views of the geometry 

and the mesh. The mesh uses three-dimensional tetrahedral elements. The symmetry of 

the problem allows us to model just a small part like a 60-degree or 90-degree slice of the 

geometry but the high aspect ratio of the elements reduces the mesh quality, so it was 

decided to model the whole geometry to have better elements. Furthermore we are 

interested in full three-dimensional results as to be used later to simulate ground effect on 

the jet. This mesh contains almost 11 million elements and 2 million nodes. The 

dimensions are given in the two-dimensional view. The low pressure outside environment 

is a cylinder which is 150 millimetres long and has a radius of 80 millimetres. The release 

hole diameter is 5 millimetres.  The mesh is very dense in the release area and it becomes 

less dense as the distance from the release area increases. In the reservoir the mesh is 

comparatively coarse since the flow gradients in the reservoir are much smaller than flow 

gradients in the low pressure outside environment.  
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3-1-2 Moving Mesh 

In reality the opening is not fixed and is expanding in time. Our results showed the main 

difference in the results happens in the very first few micro seconds, therefore it was 

decided to change the geometry focus more on the area close to the release area. In figure 

(3-2), the initial geometry and mesh for the initial release diameter of 2.0mm are given. It 

is noticed the external environment size is reduced to concentrate on the very first few 

Figure (3-1) - 3D and 2D views of the fixed mesh (Units are in meters)  
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micro seconds after release. Three different meshes of different release area diameters are 

created with Gambit. The meshes have initial release diameters of 2.0mm, 1.5mm and 

1.0mm. The geometry for all cases is similar except the release area. All three meshes 

include around 0.8 million nodes and 4 million tetrahedral elements. Each mesh is 

divided into 32 partitions. Boundary nodes are moved at each time step and all the other 

nodes are moving based on the spring method. In order to see the effect of mesh on the 

results, two fine meshes of 2 million and 3 million nodes with the same geometry are also 

tried for the moving mesh. These meshes are not shown here since the geometry is the 

same and the only difference is the high concentration of node numbers. 
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 Figure (3-2) - 3D and 2D views of the moving mesh  
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3-2 Initial and boundary conditions 

 

The reservoir and outside have the same temperature and velocity as the initial 

conditions. The velocity is zero and the temperature is 300 K. the pressure for the outside 

is 101325 Pa. The initial interface is always in the middle of the release area. The release 

area is 10 mm long for the cases of fixed mesh and 2 mm long for the moving mesh 

cases. The boundary conditions required are slip wall and non-reflecting far field as 

shown in figure (3-3). Boundaries are also adiabatic. Since after a certain amount of time 

there will be no choked flow in the release area and the velocity drops down, the 

reservoir should be included in the domain. 

        

 

 

 

Slip wall 

Outlet 

Slip wall 

Slip wall 

Outlet 

Figure (3-3) – Boundary condition for the fixed and moving mesh 
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Chapter 4 

 

RESULTS 

 

 

 

 

A three-dimensional in-house code is developed to simulate the release of hydrogen from 

a high pressure tank (up to 70 MPa) using both real and ideal gas models. Scenarios of 

hydrogen release in hydrogen and hydrogen release in air are examined. Euler equations 

are used since viscous terms can be neglected in this high speed and high Reynolds 

number (in the order of 10
7
) flow. The code uses parallel processing to decrease the 

solution time and a transport equation to find out the concentration of each specie in the 

hydrogen-air mixture. The geometry consists of a cylinder-shaped reservoir, a tube-

shaped release area and a cylinder-shaped external environment. Two scenarios of fixed 

mesh and moving mesh are discussed in the case of hydrogen release in air. For the fixed 

mesh the release area diameter is 5 mm. Three cases of tank pressure of 10MPa, 34.5MPa 

and 70MPa are examined up to the time of almost 100 micro seconds after release. For 

the moving mesh, three cases of initial diameter of 1.0 mm, 1.5 mm and 2.0 mm are 

considered. Each case is simulated up to the time of 3 micro seconds and three opening 

speed of 80m/s, 200m/s and 500m/s are tested.  
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4-1 Hydrogen release in hydrogen 

The first case investigated is the release of hydrogen in hydrogen, i.e. high pressure 

hydrogen is released into low pressure hydrogen. Both Abel-Noble and Beattie-

Bridgeman equation of states are examined for this case. Initially the tank pressure is 34.5 

MPa and the pressure of the low pressure environment is ambient. The initial temperature 

is 300 K in the whole domain and the initial velocity is zero everywhere. The initial 

interface is at 5mm from the end of the release area.  

 

4-1-1 Real gas simulations comparison 

In table (4-1), the initial density of reservoir is given for ideal gas, Abel-Noble gas and 

Beattie-Bridgeman gas. The ideal gas result is considerably different from the real gas 

results. The difference between the real gas results is negligible. 

 

 

Equation of state Ideal gas Abel-Noble Beattie-Bridgeman 

Initial tank density  27.88 22.93 22.32 

 

 

 

 

 

 

 

Table (4-1)-Initial tank density at the pressure of 34.5 MPa  
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Figure (4-1) - Mach number along the centerline for 

pressure of 34.5 MPa at t=25 micro seconds  

 

Figure (4-2) - Density along the centerline for pressure 

of 34.5 MPa at t=25 micro seconds  
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In figures (4-1) and (4-2), Mach number and density distribution along the centerline are 

given for Beattie-Bridgeman and Abel-Noble at 25 micro seconds. The maximum Mach 

number is almost 6.5 and the results are very close between the two models. To compare 

the ratio of specific heats for Beattie-Bridgeman and Abel-Noble, in figure (4-3) the ratio 

of specific heats of Beattie-Bridgeman is given. As mentioned earlier, for the Abel-Noble 

the ratio of specific heats is constant and equal to 1.40, therefore the maximum difference 

is less than 3 percent. It is noticed that the Abel-Noble and the Beattie-Bridgeman models 

give almost the same results while the Abel-Noble is more stable and is computationally 

faster.  

 

 

 

4-1-2 Validation of the Mach disk final location 

Ashkenas et al. [47] propose an equation for the final location of the Mach disk as a 

function of pressure ratio. Although the unsteady jet is studied in this work, the Mach 

disk finally reaches a steady position and their equation can be used for the validation of 

Figure (4-3) – ratio of specific heats for pressure of 34.5 MPa at 

t=25 micro seconds (Beattie-Bridgeman equation of state) 
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the code. According to the work of Ashkenas et al. [47], the final position of the Mach 

disk is given by: 

2/1

1

0 )(67.0
P

P
D

Z                                                                                                            (4-1) 

where Z is the final location of the Mach disk, D is the release area diameter,
0P is the 

tank pressure and
1P  is the pressure of  low pressure environment. This equation is valid 

for all ratios of specific heats in the range of 1700015 10  PP . Therefore it is valid for 

the cases reported herein.  

 

In table (4-2), values from equation (4-1) are compared with results of our simulation for 

the real gas. Although the difference between these results is not negligible, it is still 

acceptable especially for the lowest pressure of 10 MPa. For the pressure of 70 MPa the 

difference is more than 10 percent. It can be concluded that equation (4-1) is not accurate 

enough for high pressures.  

 

 

 10 MPa 34.5 MPa 70 MPa 

DZ (equation(4-1)) 6.66 12.36 17.61 

DZ (simulation) 7.00 14.00 20.00 

 

4-1-3 Comparison with FLUENT 

To verify the accuracy of our code, simulation results are compared with previous work 

in the literature. Pedro et al. [27] used Fluent to simulate the high pressure release from a 

Table (4-2)-Final Mach disk location comparison 
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10 MPa tank. Axisymmetric equations using ideal gas law are employed in their work. A 

two dimensional structured mesh is used and the mesh is adapted in critical areas. The 

release hole diameter is 5 mm. The mesh initially contains 70,000 quadrilateral elements. 

The external environment is 0.15 m long. Ideal gas was applied in their work. Ideal gas is 

accurate enough for the pressure of 10 MPa.  

 

In our simulation the Abel-Noble equation is employed as the real gas equation of state. 

The mesh is a three-dimensional tetrahedral mesh which does not have the adaptation 

feature. Note that the Fluent simulation uses a two-dimensional mesh, therefore there is 

limited memory requirements and adaptation can be easily applied. In our work, more 

elements are used to make sure the same quality and accuracy is provided. In fact, in the 

future work it is expected to add the adaptation feature to avoid the high number of 

elements and decrease the solution time. Although the two-dimensional Fluent mesh 

seems better in terms of memory requirements and gives the same accuracy, the three-

dimensional mesh used in our research is more flexible in terms of coarsening in less 

important areas like inside the tank and fining in areas like the release area. Overall a 

three-dimensional is is needed for future work for example when adding the ground 

effects. Most cases of interest can only be modeled by a three-dimensional mesh which is 

the ultimate goal of this research.  

The Mach number along the centerline is given in figure (4-4) at four different times. 

Time is non-dimensionalized by diameter of the release area over sound speed of 

hydrogen for ideal gas at Temperature of 300 K. Comparison shows good agreement 

between these two results.  
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Figure (4-4) - Mach number along the centerline for pressure 

of 10 MPa (Top: results of [27], Bottom: present simulation) 
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4-2 Hydrogen release in air 

In general, high pressure hydrogen is released in low pressure air so the rest of the thesis 

analyses this situation. The challenging difference is the hydrogen-air mixture caused 

after release in air since a contact surface between hydrogen and air is generated which 

moves in time and to capture this contact surface a new equation called transport equation 

should be added. Due to different properties of hydrogen and air there are more stability 

problems especially in more complicated situations like using Beattie-Bridgeman 

equation. In the previous section there was only one specie (hydrogen), now the transport 

equation is added to find the concentration of the hydrogen-air mixture. The Beattie-

Bridgeman equation of state encountered stability problems for this case and since in the 

case of hydrogen release in hydrogen it has shown no advantage over the Abel Noble 

model, only the Abel Noble model is applied as the real gas equation.  

 

4-2-1 The evolution of the flow  

Three different tank pressures of 10 MPa, 34.5 MPa and 70 MPa are examined to 

investigate both low and high pressure ratios. In all cases the initial interface is at 5mm 

from the end of the release area. In figures (4-5) to (4-19) Mach, concentration, pressure, 

density and velocity contours are presented at six different times for the initial tank 

pressures of 10 MPa, 34.5 MPa and 70 MPa respectively. The initial temperature is 300K 

and the low pressure environment has initially ambient pressure. Shortly after release, a 

Mach disk and a barrel shock appear and the flow pattern remains the same at all times 

i.e. the Mach disk and the barrel shock exist in all figures. The sonic flow in the release 

area rapidly becomes supersonic after release. The jet gets stronger until it reaches the 
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Mach disk where it is changed to subsonic flow. The Mach disk is a very strong shock.  

The contact surface observed in the concentration contours is ahead of the Mach disk.      

 

    

 

    

 

     

 

        

 

 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-5)- Mach number for an initial tank pressure of 10 MPa at 

different times  
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Figure (4-6)- Concentration contours for an initial tank pressure 

of 10 MPa at different times  

  a) t=25 micro seconds   b) t=35 micro seconds  

  c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds   f) t=110 micro seconds  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-7)- Pressure for an initial tank pressure of 10 MPa at 

different times  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-8)- Density for an initial tank pressure of 10 MPa at 

different times  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-9)- Velocity for an initial tank pressure of 10 MPa at 

different times  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-10)- Mach number for an initial tank pressure of 34.5 MPa 

at different times  
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Figure (4-11)- concentration contours for an initial tank 

pressure of 34.5 MPa at different times  

  a) t=25 micro seconds   b) t=35 micro seconds  

  c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds   f) t=110 micro seconds  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-12)- Pressure for an initial tank pressure of 34.5 MPa at 

different times  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-13)- Density for an initial tank pressure of 34.5 MPa at 

different times  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-14)- Velocity for an initial tank pressure of 34.5 MPa at 

different times  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-15)- Mach number for an initial tank pressure of 70 

MPa at different times  
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Figure (4-16)- concentration contours for an initial tank 

pressure of 70 MPa at different times  

  a) t=25 micro seconds   b) t=35 micro seconds  

  c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds   f) t=110 micro seconds  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-17)- Pressure for an initial tank pressure of 70 MPa at 

different times  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-18)- Density for an initial tank pressure of 70 MPa at 

different times  
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 a) t=25 micro seconds    b) t=35 micro seconds  

 c) t=50 micro seconds    d) t=70 micro seconds  

 e) t=90 micro seconds    f) t=110 micro seconds  

Figure (4-19)- Velocity for an initial tank pressure of 70 MPa at 

different times  
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In figures (4-20) to (4-37) Mach number, concentration, pressure, density, velocity and 

temperature along the centerline are plotted at six different times for the initial tank 

pressures of 10 MPa, 34.5 MPa and 70 MPa respectively. For the case of 10 MPa, at time 

of 110 micro seconds, the maximum Mach number along the centerline reaches 6.2 

(figure(4-20)), for 34.5 MPa it is 7.4 (figure(4-26)) and for the case of 70 MPa it is 8.2 

(figure(4-32)). The flow becomes stronger for higher pressures. Contact surface for the 

case of 10 MPa at the time of 110 micro seconds is located at 0.05 m (figure (4-21)), for 

the case of 34.5 MPa it is at 0.07 m (figure (4-27)) and for the case of 70 MPa it is at 

0.085 m (figure (4-33)). The flow advances faster for higher pressures. Maximum 

velocity also increases by increasing the pressure but relatively it is increased slowly 

compared to Mach number and contact surface location. Maximum velocity at time of 

110 micro seconds is 2750 m/s for the case of 10 MPa (figure (4-24)), it is 2900 m/s for 

the case of 34.5 MPa (figure (4-30)) and 3000 m/s for the case of 70 MPa (figure (4-36)). 

The flow advances very fast as the Mach number increases very rapidly. This shows the 

necessity of a stable code and a high quality mesh to accurately capture all the features of 

the flow. Also a very dense mesh which contains a high number of nodes and elements is 

required. This dense mesh requires a long computational time.  Parallel processing helps 

to decrease the solution time. Without parallel processing, it may take months to have one 

solution. The gradients are very high so that the time step should be kept less than 10
-8 

seconds.  
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Figure (4-20)- Mach number along the centerline for tank 

pressure of 10 MPa  

Figure (4-21)- Concentration along the centerline for 

tank pressure of 10 MPa  
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 Figure (4-23)- Density along the centerline for tank 

pressure of 10 MPa  

Figure (4-22)- Pressure along the centerline for tank 

pressure of 10 MPa  
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Figure (4-24)- Velocity along the centerline for tank 

pressure of 10 MPa  

Figure (4-25)- Temperature along the centerline for 

tank pressure of 10 MPa  
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Figure (4-26)- Mach number along the centerline for tank 

pressure of 34.5 MPa  

Figure (4-27)- Concentration along the centerline for 

tank pressure of 34.5 MPa  

)(m

)(m



   

 

 68 

   

 

 

 
Figure (4-29)- Density along the centerline for tank 

pressure of 34.5 MPa  

Figure (4-28)- Pressure along the centerline for tank 

pressure of 34.5 MPa  
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Figure (4-30)- Velocity along the centerline for tank 

pressure of 34.5 MPa  

Figure (4-31)- Temperature along the centerline for 

tank pressure of 34.5 MPa  
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Figure (4-32)- Mach number along the centerline for tank 

pressure of 70 MPa  

Figure (4-33)- Concentration along the centerline for 

tank pressure of 70 MPa  
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Figure (4-35)- Density along the centerline for tank 

pressure of 70 MPa  

Figure (4-34)- Pressure along the centerline for tank 

pressure of 70 MPa  
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Figure (4-36)- Velocity along the centerline for tank 

pressure of 70 MPa  

Figure (4-37)- Temperature along the centerline for 

tank pressure of 70 MPa  
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In figure (4-38) for the pressure of 70MPa at time of 70 micro seconds, temperature is 

given next to Mach and concentration contours to find out the location of different 

features of the flow. 

  

                      

 

Figure (4-38)- Temperature, Mach number and concentration for 

tank pressure of 70 MPa  
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4-2-2 Mesh study 

In this section the results of a finer mesh are compared to the previous results. The new 

mesh includes 3 million nodes which is 1.5 times bigger than the previous mesh. The 

tank pressure is 70MPa and the results are compared after 25 micro seconds of release. 

Concentration, density, pressure, velocity and temperature along the centerline are given 

in figures (4-39) to (4-43). It is noticed the difference is negligible; therefore the mesh of 

2 million nodes gives accurate results.  

                               

  

Figure (4-39)- Mesh study ( Concentration after 25 micro seconds)  

Figure (4-40)- Mesh study ( Density after 25 micro seconds)  
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Figure (4-41)- Mesh study ( Pressure after 25 micro seconds)  

Figure (4-42)- Mesh study ( Velocity after 25 micro seconds)  
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4-2-3 Different tank pressures comparison  

In figures (4-44) and (4-45) Mach contours and the concentration contours after 90 micro 

seconds of release are presented. Once again the initial temperature is 300 K and the low 

pressure environment is initially at ambient pressure. The flow is getting stronger and 

faster as the tank pressure is increased, nevertheless the flow pattern is similar in all 

cases. The Mach disk, the barrel shock and contact surface exist in all cases. The Mach 

disk always takes place in an area of no air i.e. the hydrogen concentration is 100% in the 

vicinity of the Mach disk.  

 

 

Figure (4-43)- Mesh study ( Temperature after 25 micro seconds)  
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a) 10 MPa  

b) 34.5 MPa  

c) 70 MPa  

Figure (4-44)- Mach number at time of 90 micro seconds for different tank pressures  
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a) 10 MPa  

b) 34.5 MPa  

c) 70 MPa  

Figure (4-45)- Concentration contours at time of 90 micro seconds for different 

tank pressures  
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To investigate the effect of the different tank pressures, in figures (4-46) to (4-51) Mach 

number, concentration, pressure, density, velocity and temperature along the centerline 

are reported. A weak shock ahead of the flow is observed. This weak shock is ahead of 

the contact surface where the Mach number slightly increases. The subsonic flow caused 

by the Mach disk stays subsonic until it reaches the contact surface. Then the Mach 

number increases. For the case of 70 MPa, the Mach number becomes more than one and 

in other cases stays less than one. The weak shock becomes stronger as the tank pressure 

is increased. The flow does not become supersonic in the cases of 34.5 MPa and 10 MPa 

since the weak shock diffuses in air very fast. The weak shock is stronger for earlier 

times since it diffuses in air very fast.   

The flow is faster for higher pressures as the Maximum Mach number is higher for higher 

pressures. The Mach disk and contact surface locations are further for higher pressures. 

The contact surface is approximately located at z= 70 mm for pressure of 70 MPa, z=60 

mm for pressure of 34.5 MPa and z=40 mm for pressure of 10 MPa. 
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Figure (4-46)- Mach number along the centerline at 

time of 90 micro seconds  

Figure (4-47)- Concentration along the centerline at 

time of 90 micro seconds  
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Figure (4-49)- Density along the centerline at time of 

90 micro seconds  

Figure (4-48)- Pressure along the centerline at time of 

90 micro seconds  
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Figure (4-51)- Temperature along the centerline at 

time of 90 micro seconds  

Figure (4-50)- Velocity along the centerline at time of 

90 micro seconds  
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4-2-4 Validation with choked flow analytical solutions  

The analytical equations of release properties detailed in section 2-1-3 are used to 

validate the in-house code results. The code is run to simulate the release of hydrogen in 

air for three tank pressures: 10 MPa, 34.5 MPa and 70 MPa. In table (4-3), the release 

density is compared for analytical ideal gas (equation (2-34)), analytical Abel-Noble gas 

(equation (2-30)) and the Abel-Noble simulation. Note that the release density is 

increased by increasing the stagnation pressure in the tank. The ideal gas equation 

overestimates the release density. Although this overestimation may be negligible for the 

case of 10 MPa, it cannot be ignored for the cases of 34.5 MPa and 70 MPa as it gives an 

error of almost 30 percents for the pressure of 70 MPa.  The real gas model is necessary 

especially for higher pressures. The simulation results are in good agreement with the 

results of the analytical Abel-Noble model. In table (4-4), the release temperature is 

compared for different tank pressures. Release temperature remains the same for the ideal 

gas since it is only a function of stagnation temperature which is 300 K for all cases. For 

the results of analytical Abel-Noble (equation (2-31)) and the simulation, release 

temperature is decreased by increasing the pressure.  

 

 

 10 MPa  34.5 MPa  70 MPa  

Analytical ideal gas 5.1 17.7 35.9 

Analytical Abel-Noble gas 4.8 14.2 23.9 

Abel -Noble simulation 

 (At 90 micro seconds) 

4.6 14.4 25.6 

 

Table (4-3)-Release density ( 3/mKg ) comparison 
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 10 MPa  34.5 MPa  70 MPa  

Analytical ideal gas 250 250 250 

Analytical Abel-Noble gas 247 240 231 

Abel -Noble simulation     

(At 90 micro seconds) 

246 244 241 

 

 

The release velocity, which is the sound velocity, changes with the tank pressure for the 

real gas model unlike the ideal gas in which the sound velocity remains the same and is 

only a function of stagnation temperature. In table (4-5) release velocity is given for the 

analytical ideal gas (equation (2-37)), analytical Abel-Noble (equation (2-33)) and Abel-

Noble simulation. The release velocity increases by increasing the pressure except for the 

ideal gas. Ideal gas underestimates the release velocity and the underestimation is higher 

for higher pressures. There is a difference of 7 percent between the Abel-Noble analytical 

and simulation because we believe that the numerical simulation is sensitive to the mesh 

quality at this location.    

 

 

 10 MPa 34.5 MPa  70 MPa  

Analytical ideal gas 1201 1201 1201 

Analytical Abel-Noble gas 1240 1321 1416 

Abel -Noble simulation     

(At 90 micro seconds) 

1280 1380 1515 

 

Table (4-4)-Release temperature comparison 

 

Table (4-5)-Release velocity ( sm / ) comparison 
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4-2-5 Numerical real gas vs. Numerical ideal gas  

The ideal gas model is not accurate for high pressures as seen by the difference with a 

real gas model for the hydrogen-air scenario. Table (4-6) represents the release velocity 

for ideal gas and real gas simulations. The release velocity remains the same in all cases 

for the ideal gas while it increases by increasing the pressure for the real gas.  Table (4-7) 

gives the release mass flow rate for both ideal gas and real gas cases.  As it is expected, 

for the 10 MPa case, ideal gas is accurate enough and a real gas model may be neglected. 

The ideal gas model overestimated the release mass flow rate at all pressures. The 

overestimation reaches almost 10% in the case of 70 MPa. Therefore without a real gas, 

the results are far from accurate. Figures (4-52), (4-53) and (4-54) show the Mach 

number, density and velocity along the centerline for the tank pressure of 70 MPa at time 

of 110 micro seconds. The difference cannot be ignored and it is noticed that this high 

Mach number and high gradient flow requires a real gas model to accurately capture 

these features. 

  

 10 MPa 34.5 MPa 70 MPa 

Ideal gas (m/s) 1240 1240 1240 

Real gas (m/s) 1280 1380 1515 

 

 

 10 MPa 34.5 MPa 70 MPa 

Ideal gas (g/s) 119.24 411.26 839.56 

Real gas (g/s) 115.55 389.99 761.14 

Table (4-7)- Release mass flow rate at time of 90 micro seconds 

Table (4-6)- Release velocity at time of 90 micro seconds 
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Figure (4-52) - Mach number along the centerline for tank 

pressure of 70 MPa at time of 110 micro seconds  

Figure (4-53) - Density along the centerline for tank 

pressure of 70 MPa at time of 110 micro seconds  
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Figure (4-55) shows the temperature along the centerline for initial tank pressure of 70 

MPa at time of 70 micro seconds for ideal gas and real gas simulations. The maximum 

temperature occurs ahead of the contact surface. The temperature ahead of the contact 

surface increases by approximately 50 degrees for the real gas model compared to the 

ideal gas. The temperature comparison shows the necessity of the real gas model to 

accurately simulate the flow since the difference cannot be neglected.   

 

Figure (4-54) - Velocity along the centerline for tank 

pressure of 70 MPa at time of 110 micro seconds  
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4-3 Hydrogen in hydrogen vs. hydrogen in air 

In this section the release of hydrogen in hydrogen is compared to the release of 

hydrogen in air. The comparison between these two flows has also been discussed by 

Peneau et al. [48].  Molecular mass of hydrogen is almost 2 while for air it is 29 so 

density of air is higher for equal pressure and temperatures. This generates a stronger 

Mach disk for hydrogen in hydrogen at the same time after release. The flow can advance 

faster in the case of hydrogen in hydrogen because it is easier to push the lower density 

hydrogen. In figure (4-56), Mach number along the centerline is viewed for both 

scenarios for tank pressure of 70 MPa and time of 70 micro seconds.   

 

Figure (4-55) - Temperature along the centerline for tank 

pressure of 70 MPa at time of 70 micro seconds  
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4-4 Moving Mesh 

In this section the release area is expanded to simulate a more realistic scenario. Three 

initial release area diameters of 1.0mm, 1.5mm and 2.0mm are tested. These diameter 

values are smaller than for the fixed diameter case because it is believed that this is a 

more sensitive case. The tank pressure for all cases is 70MPa and the outside has ambient 

conditions. The initial temperature is 300K everywhere and the initial interface is in the 

middle of the release area which is 1mm from the end of it. For each case, three opening 

rates of 80m/s, 200m/s and 500m/s are examined. These opening speeds are less than the 

choked velocity in the release area which is almost 1250 m/s for the case of 10 Mpa and 

increases to 1500 m/s for the case of 70 MPa (figure (4-50)). In figure (4-57), for the 

initial diameter of 1.0mm at the opening rate of 500m/s, the two-dimensional view of the 

Figure (4-56) - Mach number along the centerline 

for tank pressure of 70 MPa at t=70 micro seconds  
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release area mesh at different times of 1.0, 1.5, 2.0, 2.5 and 3.0 micro seconds after 

release is given. The mesh is moving based on the spring method and is a very high 

quality mesh. The final diameter (at time of 3.0 micro seconds) for the initial diameters of 

1.0mm, 1.5mm and 2.0mm at the opening rate of 500m/s are 2.5mm, 3.0mm and 3.5mm 

respectively. In figure (4-58), Mach contours for initial diameter of 1.0mm at the opening 

rate of 500m/s are given.  
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 Figure (4-57) – Release area expanding for the initial diameter of 1.0mm at the rate 

of 500m/s.  
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After 1.0 micro seconds 

 

After 1.5 micro seconds 

 

After 2.0 micro seconds 

 

After 2.5 micro seconds 

 

After 3.0 micro seconds 

 
Figure (4-58) – Mach contours for the initial diameter of 1.0mm at 

the opening rate of 500m/s. 
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The hydrogen-air mixture ahead of the contact surface is very likely to ignite since 

oxygen exists and temperature may reach the temperature required for ignition, therefore 

properties on the contact surface are important for combustion discussion. In fact, if 

ignition is supposed to happen it is certainly in front of the contact surface which is 

heated by the lead shock. Combustion models require the pressure as the input. In figure 

(4-59) Pressure versus time on the contact surface is given for initial release area 

diameter of 1.0mm at different opening rates and in figure (4-60) contact surface location 

is given. It is noticed pressure on the contact surface depends on the opening rate. For 

example, at time of 0.5 micro seconds the pressure is almost 2.0MPa for the opening 

velocity of 500m/s while it is almost 5.0MPa for the opening velocity of 80m/s. The main 

difference is noticed in the first micro second. Pressure increases by increasing the 

opening rate up to the time of 1.5 micro seconds, after that the difference is negligible 

and it seems the opening rate does not have an impact on the contact surface pressure. 

There is also a small difference in contact surface location for different opening 

velocities.  
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Figure (4-60) – Contact surface location for the initial diameter of 

1.0mm at different opening rates  

Figure (4-59) – Pressure on the contact surface for the initial 

diameter of 1.0mm at different opening rates  
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In figures (4-61) and (4-62) pressure and contact surface location versus time at opening 

rate of 200m/s for the initial release area diameter of 1.0mm, 1.5mm and 2.0mm are 

given. It is noticed that pressure is higher for higher initial diameters and the difference is 

not negligible. Contact surface locations are similar up to 2.0 micro seconds and after that 

the difference appears. After 2.0 micro seconds, the flow advances faster for higher initial 

diameters.   

  

 

 

 

Figure (4-61) – Pressure on the contact surface for different initial 

diameters at the opening rate of 200m/s  
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A finer mesh is also tested for the moving mesh simulation to see the effect of the 

mesh quality on the results. This mesh includes almost 2 million node numbers. In figures 

(4-63) and (4-64) pressure on the contact surface and contact surface location for the 

coarse and fine meshes and for different opening rates is given. Also in figures (4-65) and 

(4-66) pressure on the contact surface and contact surface location for the coarse and fine 

meshes and for different initial diameters is given. It is concluded that the high node 

number mesh is more accurate. In figures (4-67) and (4-68) pressure on the contact 

surface and contact surface location for two meshes of 2 and 3 millions nodes are given. 

The initial diameter is 1 mm and the opening speed is 80 m/s. It is noticed the 2 million 

nodes mesh is fine enough since the difference in the results is negligible.  

 

Figure (4-62) – Contact surface location for different initial 

diameters at the opening rate of 200m/s  
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Figure (4-63) – Pressure on the contact surface for two meshes 

and different opening rates 

 

Figure (4-64) – Contact surface location for two meshes and 

different opening rates 
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Figure (4-65) – Pressure on the contact surface for two meshes 

and different initial diameters 

 

Figure (4-66) – Contact surface location for two meshes and 

different initial diameters 
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Figure (4-68) – Contact surface comparison for fine meshes at 

opening speed of 80 m/s 

 

Figure (4-67) – Pressure comparison for fine meshes at opening 

speed of 80 m/s 
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Chapter 5 

 

CONCLUSION AND FUTURE WORK 

 

 

 

5-1 Conclusion 

Hydrogen release from a high pressure chamber is numerically simulated with 

computational fluid dynamics. A three dimensional in-house code is developed to 

investigate all the features of the flow after release. 

 

Hydrogen release into hydrogen is simulated by using the Beattie-Bridgeman and Abel 

Noble equations. Results show that the difference between the two models is negligible. 

Hydrogen release in air is only simulated by the Abel Noble model since the Beattie-

Bridgeman suffers from stability problems and has shown no advantage over Abel Noble 

model in case of hydrogen in hydrogen. The release properties are compared with 

analytical results. Pressures of 10MPa, 34.5MPa and 70MPa are discussed and the results 

are compared with the ideal gas results. Real gas model is necessary especially for higher 

pressures as for the initial tank pressure of 70MPa, ideal gas underestimates the release 

velocity by almost 20 percents while for the initial tank pressure of 10MPa the 

underestimation is less than 3 percents. The difference between ideal gas and real gas is 

also observed in the shock location for high pressures. Therefore, based on our test cases, 

the flow cannot be accurately simulated by ideal gas equation of state for initial tank 
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pressures of more than 10MPa and a real gas model is required for an accurate 

simulation.  

 

In reality, the release area expands and does not have a fixed diameter. Three cases of 

initial release diameter of 1.0mm, 1.5mm and 2.0mm with increasing release area are 

discussed. Each case is tested for three different opening speeds of 80m/s, 200m/s and 

500m/s. Properties on the contact surface are important for combustion discussion, 

therefore pressure and contact surface location versus time are given for different cases. 

Each case is investigated until the release time of 3 micro seconds. We conclude that the 

pressure on the contact surface depends on both opening speed and initial release area 

diameter. We also note that when the release area is opening faster the pressure decreases 

faster. 

 

5-2 Contribution  

This research results in a tool with following contributions:    

 This tool is capable of solving the high pressure hydrogen release using real gas 

equations of state. Abel Noble equation of state is the real gas model used in this 

tool. This tool can also be used to simulate the flow using an ideal gas equation of 

state.    

 This tool is able to solve the flow using second order accuracy in space. A modified 

limiter is employed to apply the second order accuracy. This tool has also the option 

to switch to first order accuracy.  
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 This tool has the capability to solve the concentration of hydrogen or air in the 

hydrogen-air mixture caused after release and finding out the contact surface 

location at different times.  

 This tool uses a moving mesh feature to solve the flow in case of an expanding 

release area at different speeds. This tool can also be used to solve the flow in case 

of a fixed mesh.  

 

5-3 Future work 

The future work can be divided into two categories: 

5-3-1 Algorithm 

 Viscous terms are added to the code. Finite element method is used to descritize the 

viscous terms. Viscous terms are already in the code but they are not tested for this 

high pressure simulation. This feature is important to capture long term dispersion of 

hydrogen. 

 Large eddy simulation (LES) feature will also be added to the code to consider the 

turbulence effects. LES is necessary for this high Reynolds number flow. In order to 

apply LES, the mesh should be of high quality and therefore high number of nodes. 

More processors are needed for the LES simulation.  

 External forces like wind effects and ground effects cannot be neglected for the 

simulation of this flow. The effect of these forces will be applied for both horizontal 

and vertical jets. In fact this is the main reason of having a three-dimensional 

computational domain.  



   

 

 103 

 Muti-species capability will be extended to more than only hydrogen and air. More 

species will be added and the equations will be changed to couple the equations 

instead of solving the transport equation at the end of each time step. 

 Mesh adaptation is required to increase the number of nodes in critical areas like 

areas of high gradients. Mesh adaptation will help to save memory by increasing the 

number of nodes in only the critical areas.   

 An ignition model is added to see the possibility of ignition for different tank 

pressures and different release area diameters.     

 

5-3-2 Application 

 The effect of different shapes of the release area including the Irregular shapes can be 

considered. Various shapes including rectangular shape should be discussed. 

 The impact of ground forces on both horizontal and vertical jets is discussed. In 

reality the ground effects exist and affect the flow pattern. Furthermore, other external 

forces like wind should be considered.  

 The possibility of self-ignition for different scenarios including different tank 

pressures, different release area shapes and vertical or horizontal jets will be 

discussed. 

 In reality other species in addition to hydrogen and air exist and should be considered 

in the simulation. The effect of these species is not negligible and should be 

discussed.    
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