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ABSTRACT

On existence and stability of absolutely continuous invariant mea-

sures in some chaotic dynamical systems

Peyman Eslami, Ph.D.

Concordia University, 2011

In this work, we study problems related to the existence and stability of abso-

lutely continuous invariant measures (acim’s) in chaotic dynamical systems. Since

it is often necessary for a map to be eventually expanding in order to admit

an acim, we start with the problem of showing eventual expansion for a family

of piecewise linear maps of the unit interval. We conjecture that the piecewise

linear map f(x) = px for x ∈ [0, 1/p) and f(x) = sx − s/p for x ∈ [1/p, 1],

p > 1, 0 < s < 1, which has an expanding, onto branch and a contracting

branch, is eventually piecewise expanding. We prove this conjecture under ad-

ditional assumptions on the slopes, in particular for values of p and s such that

d− ln(p(1−s)+s)
ln s

e 6= d− ln p
ln s
e.

Next, we consider the problem of existence and stability of acim’s for random

maps with position dependent probabilities. We generalize some of the existing

results in this direction by weakening the usual expansion criterion. Furthermore,

we model the phenomenon of metastability by a position dependent random map
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in one and higher dimensions and provide some examples.

Finally, we investigate the dependence on the parameters of acim’s for a family

of piecewise linear piecewise expanding maps (W -maps). We construct an example

to show that the transitivity (lack of invariant intervals) of the maps does not imply

the convergence of those measures to the absolutely continuous invariant measure

for the limit map. We also explain how this family of maps exhibits metastable

behaviour in a way that is similar to those in the existing literature.
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Introduction

In discrete dynamical systems, one is concerned with the asymptotic behaviour

of trajectories under the iteration of a map. The existence of chaos (in partic-

ular, sensitivity to initial conditions) in deterministic dynamical systems makes

it impossible to predict the long-term behaviour of these systems starting from a

specific set of initial conditions. However it is possible to draw statistical conclu-

sions about chaotic systems using ergodic theory. The main objects of study in

this regard are invariant measures.

The following major result in ergodic theory, proved in 1931 by G. D. Birkhoff

(see [9]), shows the importance of invariant measures in studying chaotic systems.

Theorem 0.1 (Birkhoff). Suppose τ : (X,B, µ)→ τ(X,B, µ) is measure preserv-

ing, where τ(X,B, µ) is σ-finite, and f ∈ L1(µ). Then there exists a function

f ∗ ∈ L1 such that

1

n

n−1∑
k=1

f(τ k(x))→ f ∗, µ-a.e. (1)

Furthermore, f ∗ ◦ τ = f ∗ µ-a.e. and if µ(X) <∞, then
∫
X
f ∗dµ =

∫
X
fdµ.

The importance of Birkhoff’s Ergodic Theorem becomes more clear by the

following corollary. It states that if µ is invariant under τ , then most initial

conditions (according to µ) visit a given set E with asymptotic relative frequency
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equal to µ(E).

Corollary 0.1. If τ is ergodic, then f ∗ is constant µ-a.e. and if µ(X) = 1, then

1

n

n−1∑
k=1

χE(τ k(x))→ µ(E), µ-a.e. (2)

Invariant measures that are absolutely continuous with respect to the Lebesgue

measure (referred to as acim’s) often play a more important role in practice because

they are consistent with our notion of length (area, volume in higher dimensions).

Also, computer simulations of invariant measures only reveal the absolutely con-

tinuous invariant measures in general (for an explanation see [10], p.104).

Examples of acim’s were known to Ulam and von Neumann (see [33]). Rényi

was the first person to define a class of maps with an acim (see [31]) and his idea

of using distortion estimates were used in more general works such as [1].

In 1973, Lasota and Yorke (see [25]) used bounded variation tools to prove the

existence of acim’s for piecewise monotonic and expanding maps of the interval.

Since then, the study of acim’s and their ergodic properties has been an active

area of research. There have been numerous works on the existence of invariant

measures for different classes of dynamical systems most of which use generaliza-

tions of the bounded variation technique of Lasota and Yorke. The existence of

acim’s and their properties is also well-known for Markov transformations (see e.g.

[6]) or specific classes of maps such as the logistic family (see e.g. [27]). Except

in rather special situations the techniques used in this field are refinements and

generalizations of the techniques in the aforementioned works.

We remark that general results regarding the existence of acim’s require the

class of maps under consideration to satisfy a condition of expansion and a con-
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dition of regularity. In fact, to show the importance of the expansion condition,

Lasota and Yorke (in [25]) constructed an example of a map on the interval that

is expanding everywhere except at a single point but it does not admit a finite

acim.

It often suffices to assume eventual expansion (rather than expansion of the

first iterate) to show the existence of an acim. For piecewise linear and eventually

expanding maps of the interval one can even express the invariant density of acim’s

in terms of an explicit formula (see [19]).

We show in Chapter 21 that even in the simple case where the map is piecewise

linear and consists of an expanding branch and a contracting branch it is nontrivial

to show eventual expansion. We show under additional assumptions that such

maps are eventually expanding and hence admit an acim. This problem is of

historical importance and has been studied in different forms, for example in [7]

and [22]. It also appears in the context of ergodic theory of numbers (see for

example [12]), and in the study of Lorenz-like maps [13].

We should mention that we recently learned about the main result of preprint

[13] in which the authors prove the existence of an acim for a three-parameter

family of piecewise linear Lorenz-like maps fa,b,c : [0, 1]→ [0, 1] defined as follows.

fa,b,c(x) =


ax+ 1− ac, 0 ≤ x < c,

b(x− c), c < x ≤ 1,

(3)

where ac + b(1 − c) ≥ 1. They prove in particular that if fa,b,c(0) < fa,b,c(1),

then fa,b,c is eventually expanding. Since the family of maps that we consider

1This chapter, with minor modifications, has been published in the 2011 Aug/Sep issue of
the American Mathematical Monthly (see [16]).
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in Chapter 2 is contained in the {fa,b,c}, it follows that our family is eventually

expanding and Conjecture 2.1 is indeed true.

Besides the problem of existence of acims, a central problem in measure-

theoretic dynamical systems is the stability of acim’s with respect to a deter-

ministic perturbation. In Chapter 3 and Chapter 4 we investigate the stability

of acims for random maps with position dependent probabilities and for a class

of continuous maps of the interval. In Chapter 3 we prove the stability of acim’s

of random maps in one and multi-dimensional settings under weak expansion and

regularity conditions (conditions (A) and (B) or condition(C); see Chapter 3).

Also, we use this result to model metastable behaviour with random maps. A

metastable system is often created by a perturbation of a system with two or

more invariant components. The perturbation is such that the trajectories can

move from one component to the other through “holes”.

Tokman et al. modeled metastability in [32] using deterministic maps. They

considered a dynamical system consisting of two disjoint invariant sets which is

perturbed so that trajectories can switch from one component to the other through

holes. They showed, under some conditions (see [32]), that the acim’s of the

perturbded system converge to a convex combination of the acim’s of the original

map with weights proportional to the size of the holes.

In our random map model of metastability, we consider acim’s of perturbations

as the probabilities of escape through holes approach zero. In this way we do not

need as many conditions on the system and our results hold in higher dimensional

settings. In the setting of random maps, we show that the acim’s of perturbations

converge to a convex combination of the acim’s of the original map with weights

proportional to the probability of escape through the holes.
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Metastability also appears in continuous dynamical systems such as the Lorenz-

Model (see [34]).

In Chapter 42, we study the stability of acim’s of a class of piecewise expanding

piecewise linear transformations, called W -maps, under deterministic perturba-

tions. One is often interested to know whether acim’s of perturbations converge

in the weak-* topology to the acim of the unperturbed transformation as the size

of the perturbation approaches zero. If this property holds, the system is called

acim-stable. One of the earliest and most general results on acim-stability ap-

peared in the work of G. Keller (see [23]). He proved that piecewise monotonic

and expanding maps satisfying a uniform Lasota-Yorke type inequality are acim-

stable. Keller also provided an example of an acim-singular (not acim-stable)

class of maps of the interval in which acim’s of perturbations converge to a point

measure. It was conjectured that the only way such an acim-singularity can oc-

cur for a continuous map of the interval with a fixed turning point is if small

neighbourhoods of this turning point are invariant under the perturbations.

We provide a counter-example to this conjecture by constructing a three-

parameter family of transitive W -maps whose acim’s converge to a convex com-

bination of the point measure at the fixed turning point and the acim of the

unperturbed map.

Our family of W -maps also exhibits metastable behaviour in the following

sense. As the original W -map is perturbed, the trajectory of almost every point

spends a long time in a certain box (as defined in Chapter 4) around the turning

point, switching between this box and its complement every now and then. In

this way, our results regarding W -maps complements the metastability results of

2This chapter, with minor modifications, has been published in the Journal of Difference
Equations and Applications (see [17])
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Tokman et al., in the presence of a fixed turning point.
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Chapter 1

Preliminaries

In this chapter we recall some standard definitions and results in ergodic and

dynamical systems. Most of the material, including proofs, can be found in [9].

1.1 Review of measure theory

Let X be a set. In most cases we will assume that X is a compact metric space.

Definition 1.1. A family B of subsets of X is called a σ-algebra if and only if:

1. X ∈ B;

2. for any B ∈ B, X \B ∈ B;

3. if Bn ∈ B, for n ∈ N, then ∪∞n=1Bn ∈ B.

Elements of B are called measurable sets.

Definition 1.2. A function µ : B → R+ is called a measure on B if and only if:

1. µ(∅) = 0;

7



2. for any sequence {Bn} of disjoint measurable sets, Bn ∈ B, n ∈ N,

µ

(
∞⋃
n=1

Bn

)
=
∞∑
n=1

µ(Bn).

The triple (X,B, µ) is called a measure space. If µ(X) = 1, we say it is a

normalized measure space or a probability space.

Definition 1.3. A family A of subsets of X is called an algebra if:

1. X ∈ A;

2. for any A ∈ A, X \ A ∈ A;

3. for any A1, A2 ∈ A, A1 ∪ A2 ∈ A.

For any family J of subsets ofX there exists a smallest σ-algebra, B, containing

J . We say that J generates B and write B = σ(J ).

Theorem 1.1. Given a set X and an algebra A of subsets of X, let µ1 : A → R+

be a function satisfying µ1(X) be a function satisfying µ1(X) = 1 and

µ1

(⋃
n

An

)
=
∑
n

µ1(An)

whenever An ∈ A, for n = 1, 2, . . . , ∪∞n=1An ∈ A and {An} disjoint. Then there

exists a unique normalized measure µ on B = σ(A) such that µ(A) = µ1(A)

whenever A ∈ A.

Definition 1.4. Let X be a topological space. Then the smallest σ-algebra con-

taining all open subsets of X is called the Borel σ-algebra of X and its elements,

Borel subsets of X.
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Definition 1.5. Let (X,B, µ) be a measure space. The function f : X → R is said

to be measurable if for all c ∈ R, f−1(c,∞) ∈ B, or, equivalently, if f−1(A) ∈ B

for any Borel set A ∈ R.

If X is a topological space and B is the σ-algebra of Borel subsets of X, then

each continuous function f : X → R is measurable.

Definition 1.6. Let Bn be a σ-algebra of Borel subsets of X, n ∈ N. Let n1 <

n2 < . . . nr be integers and Ani
∈ Bni

, i = 1, 2, . . . , r. We define a cylinder to be

a set of the form

C(An1 , . . . , Anr) = {(x1, x2, . . . ) ∈ XN : xni
∈ Ani

, 1 ≤ i ≤ r}.

Definition 1.7. Let (Xi,Bi, µi), i ∈ N be normalized measure spaces. The direct product

measure space (X,B, µ) = Π∞i=1(Xi, Bi, µi) is defined by

X = Π∞i=1Xi and µ(C(An1 , . . . , Anr)) = Πr
i=1µni

(Ani
).

It is easy to see that finite unions of cylinders form an algebra of subsets of

X. By Theorem 1.1 it can be uniquely extended to a measure on B, the smallest

σ-algebra containing all cylinders.

1.2 Spaces of Functions and Measures

Let F be a linear space. A function ‖ · ‖ : F → R+ is called a norm if it has the

following properties:

1. ‖f‖ = 0⇐⇒ f ≡ 0

9



2. ‖αf‖ = |α|‖f‖

3. ‖f + g‖ ≤ ‖f‖+ ‖g‖,

for f, g ∈ F and α ∈ R. The space F endowed with a norm ‖ ·‖ is called a normed

linear space.

Definition 1.8. A sequence {fn} in a normed linear space is a Cauchy sequence

if for any ε > 0, there exists an N ≥ 1 such that for any n,m ≥ N ,

‖fn − fm‖ < ε.

Every convergent sequence is a Cauchy sequence.

Definition 1.9. A normed linear space F is complete if every Cauchy sequence

converges, i.e., if for each Cauchy sequence {fn} there exists f ∈ F such that

fn → f . A complete normed space is called a Banach space.

Let (X,B, µ) be a normalized measure space.

Definition 1.10. Let 1 ≤ p <∞. The family of real-valued measurabale functions

(or rather a.e.-equivalence classes of them) f : X → R satisfying

∫
X

|f(x)|pdµ <∞ (1.1)

is called the Lp(X,B, µ) space and is denoted by Lp(µ) when the underlying space

is clearly known, and by Lp where both the space and the measure are known.

The integral in (1.1) is assigned a special notation

‖f‖p =

(∫
X

|f(x)|pdµ
) 1

p

,

10



and is called the Lp norm of f . Lp with the norm ‖ · ‖p is a complete normed

space, i.e., a Banach space.

The space of almost everywhere bounded measurable functions on (X,B, µ) is

denoted by L∞. Functions that differ only on a set of µ-measure 0 are considered

to represent the same element of L∞. The L∞ norm is given by

‖f‖∞ = ess sup |f(x)| = inf{M : µ{x : f(x) > M} = 0}.

The space L∞ with the norm ‖ · ‖∞ is a Banach space.

Definition 1.11. The space of bounded linear functionals on a normed space F

is called the adjoint space of F and is denoted by F∗. The weak convergence in

F is defined as follows: a sequence {fn}∞1 ⊂ F converges weakly to an f ∈ F if

and only if for any F ∈ F∗, F (fn) → F (f) as n → ∞. Similarly, a sequence of

functionals {Fn}∞1 ⊂ F∗ converges in the weak-* topology to a functional F ∈ F∗

if and only if for any f ∈ F , Fn(f)→ F (f) as n→∞.

Theorem 1.2. Let 1 ≤ p <∞ and let q satisfy

1

p
+

1

q
= 1, (

1

∞
= 0).

Then Lq is the adjoint space of Lp.

If f ∈ Lp, g ∈ Lq, then fg is integrable and the Hölder inequality holds:

∫
X

|fg|dµ ≤ ‖f‖p‖g‖q.

11



Let g ∈ Lq. We define a functional Fg on Lp by setting

Fg(f) =

∫
X

fgdµ

‖Fg‖ = sup
f 6=0

{
|Fg(f)|
‖f‖

}
.

Clearly, Fg is linear.

Proposition 1.1. Each function g ∈ Lq defines a bounded linear functional Fg

on Lp with Fg(f) =
∫
X
fgdµ and ‖Fg‖ = ‖g‖q.

Theorem 1.3 (Riesz Representation Theorem [14]). Let F be a bounded linear

functional on Lp, 1 ≤ p <∞. Then there exists a function g in Lq such that

F (f) =

∫
X

fgdµ.

Furthermore, ‖F‖ = ‖g‖q.

We will use the following types of convergence in Lp spaces.

1. Norm (or strong) convergence:

fn → f in Lp-norm⇐⇒ ‖fn − f‖p → 0, n→∞.

2. Weak convergence: fn → f weakly in Lp, 1 ≤ p <∞⇐⇒

∀g ∈ Lq,
∫
fngdµ→

∫
fgdµ, where

1

p
+

1

q
= 1.

12



3. Pointwise convergence:

fn → f almost everywhere (a.e.) ⇐⇒ fn(x)→ f(x)

for almost every x ∈ X.

The following results give several characterizations of these types of conver-

gence and connections between them:

Theorem 1.4. Let a sequence {fn}∞n=1, fn ∈ L1, n = 1, 2, . . . satisfy

1. ‖fn‖1 ≤M for some M ;

2. ∀ε > 0 ∃δ > 0 such that for any A ∈ B, if µ(A) < δ then for all n,

∣∣∣∣∫
A

fndµ

∣∣∣∣ < ε.

Then, {fn} contains a weakly convergent subsequence, i.e., {fn} is weakly

compact.

Corollary 1.1. If there exists g ∈ L1 such that fn ≤ g for n = 1, 2, . . . , then {fn}

is weakly compact.

Theorem 1.5 (Scheffé’s Theorem [6]). If fn ≥ 0,
∫
fndµ = 1, n = 1, 2, . . . and

fn → f a.e. with
∫
fdµ = 1, then fn → f in L1-norm.

Theorem 1.6. If fn → f weakly in L1 and almost everywhere, then fn → f in

L1-norm.

We now consider spaces of continuous and differentiable functions. Let X be

a compact metric space.

13



Definition 1.12. C0(X) = C(X) is the space of all continuous real functions

f : X → R, with the norm

‖f‖C0 = sup
x∈X
|f(x)|.

Definition 1.13. M(X) denotes the space of all measures µ on B(X). The norm,

called the total variation norm on M(X), is defined by

‖µ‖ = sup
A1∪···∪AN =X

{|µ(A1)|+ · · ·+ |µ(AN)|},

where the supremum is taken over all finite partitions of X.

A more frequently used topology on M(X) is the weak topology of measures,

which we can define with the aid of the following result [14]:

Theorem 1.7. Let X be a compact metric space. Then the adjoint space of C(X),

C∗(X), is M(X).

Definition 1.14. The weak topology of measures is a topology of weak convergence

on M(X), i.e.,

µn → µ⇐⇒
∫
x

gdµn →
∫
x

gdµ, for any g ∈ C(X).

In view of Theorem 1.7 this is sometimes referred to as the topology of weak-*

convergence.

Theorem 1.8. The weak topology of measures is metrizable and any bounded (in

norm) subset of M(X) is compact in the weak topology of measures.

We now present two important corollaries of Theorem 1.7.

14



Corollary 1.2. Two measures µ1 and µ2 are identical if and only if

∫
X

gdµ1 =

∫
X

gdµ2

for all g ∈ C(X).

Corollary 1.3. The set of probability measures is compact in the weak topology

of measures.

For excellent accounts on the weak topology of measures, the reader is referred

to [5] and [29].

Definition 1.15. Let ν and µ be two measures on the same measurable space

(X,B). We say that ν is absolutely continuous with respect to µ if for any A ∈ B,

such that µ(A) = 0, it follows that ν(A) = 0. We write ν << µ.

A useful condition for testing absolute continuity is given by

Theorem 1.9. ν << µ if and only if given ε > 0 there exists δ > 0 such that

µ(A) < δ implies ν(A) < ε.

The proof of this theorem can be found in [14].

If ν << µ, then it is possible to represent ν in terms of µ. This is the essence

of the Radon-Nikodym Theorem (Theorem 1.10).

Theorem 1.10 (Radon-Nikodym). Let (X,B) be a space and let ν and µ be

two normalized measures on (X,B). If ν << µ, then there exists a unique f ∈

L1(X,B, µ) such that for every A ∈ B,

ν(A) =

∫
A

fdµ.
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f is called the Radon-Nikodym derivative and is denoted by dν
dµ

.

Definition 1.16. Let X be a compact metric space and let µ be a measure on

(X,B), where B is the Borel σ-algebra of subsets of X. We define the support of

µ as the smallest closed set of full µ measure, i.e.,

supp(µ) = X \
⋃

O-open
µ(O)=0

O.

It is worth noting that two mutually singular measures may have the same

support.

LetM(X) denote the space of measures on (X,B). Let τ : X → X be a mea-

surable transformation (i.e., τ−1(A) ∈ B for A ∈ B). τ induces a transformation τ∗

onM(X) by means of the definition: (τ∗µ)(A) = µ(τ−1A). Since τ is measurable,

it is easy to see that τ∗µ ∈M(X). Hence, τ∗ is well-defined.

Definition 1.17. Let (X,B, µ) be a normalized measure space. Then τ : X → X

is said to be nonsingular if and only if τ∗µ << µ, i.e., if for any A ∈ B such that

µ(A) = 0, we have τ∗µ(A) = µ(τ−1A) = 0.

Proposition 1.2. Let (X,B, µ) be a normalized measure space, and let τ : X → X

be nonsingular. Then, if ν << µ, τ∗ν << τ∗µ << µ.

Proof. Since ν << µ, µ(A) = 0 ⇒ ν(A) = 0. Since τ is nonsingular, µ(A) =

0⇒ µ(τ−1A) = 0⇒ ν(τ−1A) = 0. Thus, τ∗ν << τ∗µ. Since τ is nonsingular, we

obtain τ∗µ << µ.

Definition 1.18. Let (X,B, µ) be a normalized measure space. Let

D = D(X,B, µ) = {f ∈ L1(X,B, µ) : f ≥ 0 and ‖f‖1 = 1}
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denote the space of probability density functions. A function f ∈ D is called a

density function or simply a density.

If f ∈ D, then

µf (A) =

∫
A

fdµ << µ

is a measure and f is called the density of µf and is written as dµf/dµ.

1.3 Functions of bounded variation

Let [a, b] ⊂ R be a bounded interval and let λ denote Lebesgue measure on [a, b].

For any sequence of points a = x0 < x1 < · · · < xn = b, n ≥ 1, we define a partition

P = {Ii = [xi−1, xi) : i = 1, . . . , n} of [a, b]. The points {x0, x1, . . . , xn} are called

end-points of the partition P . Sometimes we will write P = P{x0, x1, . . . , xn}.

Definition 1.19. Let f : [a, b] → R and let P = P{x0, x1, . . . , xn} be a parition

of [a, b]. If there exists a positive number M such that

n∑
k=1

|f(xk)− f(xk−1)| ≤M

for all partitions P, then f is said to be of bounded variation on [a, b].

Definition 1.20. Let f : [a, b]→ R be a function of bounded variation. the number

V[a,b]f = sup
P

{
n∑
k=1

|f(xk)− f(xk−1)|

}

is called the total variation or, simply, the variation of f on [a, b].
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Theorem 1.11. Let f : [a, b]→ R have a continuous derivative f ′ on [a, b]. Then

V[a,b]f =

∫ b

a

|f ′(x)|dλ(x).

Let us define the indefinite integral
∫

(Φ) of a function Φ ∈ L1 by

∫
(Φ)(y) =

∫
x≤y

Φ(x)dλ(x).

Theorem 1.12. For f ∈ L1,

V (f) = sup
Φ
|
∫
fΦdλ|,

where the supremum extends over all Φ ∈ L1 with ‖
∫

(Φ)‖∞ ≤ 1 and
∫

Φdλ = 0.

1.4 Perron-Frobenius Operator

Definition 1.21. Let I = [a, b], B be the Borel σ-algebra of subsets of I and let

λ denote the normalized Lebesgue measure on I. Let τ : I → I be a nonsingular

transformation. We define the Frobenius-Perron operator Pτ : L1 → L1 as follows:

For any f ∈ L1, Pτf is the unique (up to a.e. equivalence) function in L1 such

that ∫
A

Pτf =

∫
τ−1A

fdλ

for any A ∈ B.

The validity of this definition, i.e., the existence and the uniqueness of Pτf ,

follows by the Radon-Nikodym Theorem.
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Proposition 1.3. Pτ : L1 → L1 enjoys the following properties:

1. (Linearity) ∀f, g ∈ L1 and α, β ∈ R, Pτ (αf + βg) = αPτf + βPτg a.e.

2. (Positivity) If f ∈ L1 and f ≥ 0, then Pτf ≥ 0.

3. (Preservation of Integrals)
∫
I
Pτfdλ =

∫
I
fdλ.

4. (Contraction property) ∀f ∈ L1, ‖Pτf‖ ≤ ‖f‖ .

5. (Composition property) If τ, σ : I → I are nonsingular, then Pτ◦σf = Pτ ◦

Pσf . In particular, Pτnf = P n
τ f .

6. (Adjoint property) If f ∈ L1 and g ∈ L∞, then

∫
I

(Pτf) · gdλ =

∫
I

f · Uτgdλ,

where Uτ : L∞ → L∞ is called the Koopman operator and is defined by Uτg =

g ◦ τ .

The following proposition shows the connection between fixed points of Pτ and

τ -invariant measures.

Proposition 1.4. Let τ : I → I be nonsingular. Then Pτf
∗ = f ∗ a.e., if and only

if the measure µ = f ∗ · λ, defined by µ(A) =
∫
A
f ∗dλ, is τ -invariant, i.e., if and

only if µ(τ−1A) = µ(A) for all measurable sets A, where f ∗ ≥ 0, f ∗ ∈ L1 and

‖f ∗‖1 = 1.

There is an extremely useful representation for the Frobenius-Perron operator

for a large class of one-dimensional transformations .

19



Definition 1.22. Let I = [a, b]. The transformation τ : I → I is called piecewise

monotonic if there exists a partition of I, a = a0 < a1 < · · · < aq = b, and a

number r ≥ 1 such that

1. τ |(ai−1,ai) is a Cr function, i = 1, . . . , q which can be extended to a Cr function

on [ai−1, ai], i = 1, . . . , q, and

2. |τ ′(x)| > 0 on (ai−1, ai), i = 1, . . . , q.

If in addition, |τ ′(x)| ≥ α > 1 whenever the derivative exists, then τ is called

piecewise monotonic and expanding.

Proposition 1.5. If τ : I → I is piecewise monotonic, then

Pτf(x) =
∑

y∈{τ−1(x)}

f(y)

|τ ′(y)|
=

q∑
i=1

f(τ−1
i (x))

τ ′(τ−1
i (x))

χτ(ai−1,ai)(x).

1.5 Some theorems on the existence of acim’s

We consider the interval I = [a, b] with normalized Lebesgue measure λ on I.

Let T (I) denote the class of transformations τ : I → I that satisfy the following

conditions

1. τ is piecewise monotonic and expanding, i.e., there exists a partition P =

{Ii = [ai−1, ai], i = 1, . . . , q} of I such that τ |Ii is C1 and |τ ′i(x)| ≥ α > 1 for

any i and for all x ∈ (ai−1, ai);

2. g(x) ≡ 1
τ ′(x)

is a function of bounded variation, where τ ′(x) is the appropriate

one-sided derivative at the endpoints of P .
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Theorem 1.13 (Lasota-Yorke). Let τ ∈ T (I). Then it admits an absolutely

continuous invariant measure whose density is of bounded variation.

Theorem 1.14 (Folklore Theorem). Suppose τ is piecewise monotonic and ex-

panding and satisfies the following conditions.

1. (smoothness) For each i = 1, 2, . . . , N , τ |i has a C2-extension to the closure

of Ii, Īi.

2. (local invertibility) For each i = 1, 2, . . . , N , τ is strictly monotone on Īi and

therefore determines a 1-to-1 mapping of Īi onto some closed subinterval

τ(Īi) of I.

3. (Markov property) For each J ∈ P, there is a subset P(J) of P such that

τ(J) =
⋃
{K̄ : K ∈ P(J)}.

4. (aperiodicity) for each J ∈ P, there exists a positive integer q such that

τ q(J̄) = Ī.

Then it has an ergodic and hence unique (actually exact) invariant probability

measure µ equivalent to λ with density function dµ/dλ which can be chosen as a

piecewise continuous function with the discontinuities only at endpoints of intervals

in P, and satisfying

1/M ≤ dµ

dλ
≤M

for some M > 0.
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1.6 Functions of bounded variation and existence

results in RN

The main tool in proving the existence of acim’s in RN is the multidimensional

notion of variation defined using derivatives in the distributional sense (see [14]):

Definition 1.23. Let f ∈ L1(RN) with bounded support. The total variation of f

is defined by

V (f) =

∫
RN

‖Df‖dλN = sup

{∫
RN

fdiv(g)dλN : g = (g1, ..., gN) ∈ C1
0(RN ,RN)

}
,

where Df denotes the gradient of f in the distributional sense, and C1
0(RN ,RN) is

the space of continuously differentiable functions from RN into RN having compact

support.

We will use the following property of variation which is derived from [14],

Remark 2.14:

Proposition 1.6. If f = 0 outside a closed domain A whose boundary, ∂A, is

Lipschitz continuous, f |A is continuous, f |int(A) is C1, then

V (f) =

∫
int(A)

‖Df‖dλN +

∫
∂A

|f |dλN−1,

where λN−1 is the (N − 1)-dimensional measure on the boundary of A.

In the multidimensional setting we shall always consider the Banach space (see

[14], Remark 1.12),

BV (S) = {f ∈ L1(S) : V (f) < +∞},
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with the norm ‖f‖BV = V (f) + ‖f‖1.

Now we describe the setting for Theorem 1.15 showing the existence of acim’s

in the multidimensional case [21].

Let S be a bounded region in RN and let λN be the Lebesgue measure on S.

Let τ : S → S be a piecewise one-to-one and C2, non-singular transformations

on a partition P of S : P = {S1, ..., Sq} and τi = τ |Si
, i = 1, ..., q. Let each Si

be a bounded closed domain having a piecewise C2 boundary of finite (N − 1)-

dimensional measure. We assume that the faces of ∂Si meet at angles bounded

uniformly away from 0. Let Dτ−1
i (x) be the derivative matrix of τ−1

i at x.

Fix 1 ≤ i ≤ q. Let Z denote the set of singular points of ∂Si. Let us construct

for an x ∈ Z the largest cone with vertex at x and which lies completely in Si.

Let θ(x) denote the vertex angle of this cone. Then define

β(Si) = min
x∈Z

θ(x).

Since the faces of ∂Si meet at angles bounded away from 0, we have β(Si) > 0.

Let α(Si) = π/2 + β(Si) and

a(Si) = | cos(α(Si))|.

Now we will construct a C1 field of segments Ly, y ∈ ∂Si, every Ly being a

central ray of a regular cone contained in Si, with vertex angle at y greater than

or equal to β(Si).

We start at points y ∈ Z where the minimal angle β(Si) is attained, defining

Ly to be central rays of the largest regular cones contained in Si. Then we extend

this field of segments to the C1 field we want, making Ly short enough to avoid
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overlapping. Let δ(y) be the length of Ly, y ∈ ∂Si. By compactness of ∂Si we

have

δ(Si) = inf
y∈∂Si

δ(y) > 0.

Now, we shorten the Ly of our field, making them all of length δ(Si).

Suppose there exists 0 < σ < 1 such that for all i = 1, . . . , q,

‖Dτ−1‖ < σ.

We have the following theorem from [21]:

Theorem 1.15. Let τ : S → S, S ⊂ RN be a piecewise C2 expanding trans-

formation. If σ(1 + 1/a) < 1, then τ admits an absolutely continuous invariant

measure.
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Chapter 2

On piecewise expanding maps of

the interval

A piecewise differentiable function f is expanding if |f ′(x)| > 1 for all x at which

the derivative exists. f is said to be eventually expanding if there exists N ∈ N

such that fN (the N -fold composition of f with itself) is expanding.

Eventually expanding maps play an important role in dynamical systems the-

ory. For example, most theorems on existence of absolutely continuous invariant

measures require the map to be expanding or eventually expanding. Very often

proofs for general maps are reduced to the eventually expanding situation. How-

ever, showing that a map is eventually expanding is far from trivial. As a simple

example, let f be a piecewise linear function on the unit interval [0, 1] with two

increasing branches, one of which has slope greater than one and the other less

than one. This is one of the simplest maps one can define that is not expanding,

but it seems to be rather difficult to show that it is eventually expanding. In

this paper we conjecture that f is eventually expanding if the first branch is onto,
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and the second branch is touching the x-axis. We provide a partial proof of the

conjecture. This family of maps was investigated in [12] by different methods. For

p ≤ 2 (p being the slope of the first branch) its natural extension was constructed

and proved to be Bernoulli. Similar, but different types of maps were analyzed in

[7] and [22] and shown to admit absolutely continuous invariant measures.

As we mentioned in the Introduction, we recently learned about the main result

of preprint [13] in which Conjecture 2.1 is proven to be true.

2.1 A region where f is eventually expanding

Let f : [0, 1]→ [0, 1] be defined by

f(x) =


px, 0 ≤ x < 1

p
,

s(x− 1
p
), 1

p
≤ x ≤ 1.

(2.1)

Figure 2.1 shows the graph of f for p = 7/2 and s = 1/2.

Conjecture 2.1. For all (s, p) ∈ (0, 1)× (1,∞), f is eventually expanding.

For a real number x, let dxe = min {n ∈ Z| n ≥ x} and bxc = max {n ∈ Z| n ≤ x}.

Theorem 2.1. For all (s, p) ∈ (0, 1)× (1,∞) such that

⌈
− ln(p(1− s) + s)

ln s

⌉
6=
⌈
− ln p

ln s

⌉
,

f is eventually expanding.

Proof. Consider a positive integer N and for any x ∈ [0, 1], consider the sequence

x, f(x), f 2(x), . . . , fN−1(x). There are only finitely many values of x such that
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Figure 2.1: Graph of y = f(x) for p = 7/2 and s = 1/2.

for some i with 0 ≤ i < N , f i(x) = 1/p. These finitely many values of x divide

the interval [0, 1] into finitely many intervals. If J is one of these intervals, then

one can verify by induction that for all i < N , f i(J) is an interval that does not

contain 1/p, so it is contained in either [0, 1/p) or (1/p, 1]. If f i(J) ⊂ [0, 1/p),

then for all x ∈ J , f i+1(x) is obtained from f i(x) by applying the first branch

of f , and if f i(J) ⊂ (1/p, 1] then f i+1(x) is obtained from f i(x) by applying the

second branch of f . In the first case we say that f is expanding on J at step i+ 1

and in the second case we say that it is contracting. It is easy to see that fN is

linear on J , with slope pmsn, where m and n are the numbers of steps at which f

is expanding and contracting on J . Note that 0 ≤ n,m ≤ N and m+ n = N .

Let A = {(s, p) : d− ln p/ ln se 6= d− ln(p(1− s) + s)/ ln se}. Suppose there ex-

ists (s, p) ∈ A such that for every N ∈ N, fN is not expanding. Then for every N

there exists an interval J ⊂ I, as described above, on which f is linear with slope
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pmsn ≤ 1. This implies

m ≤ cN , where c =
− ln s

ln p− ln s
.

J expands m times and contracts n times during N iterations; hence J must

contract consecutively dn/(m+ 1)e times during N iterations of f . That is, there

exists i ∈ N such that f i+k(J) ⊂ (1/p, 1], for k = 0, 1, . . . , dn/(m+ 1)e − 1.

Since m ≤ cN and m is an integer, m ≤ bcNc, and therefore

⌈
n

m+ 1

⌉
≥
⌈
N − bcNc
bcNc+ 1

⌉
=

⌈
1
c
− bcNc

cN

1 + 1−(cN)
cN

⌉
≥
⌈ 1

c
− 1

1 + εN

⌉
,

where (cN) denotes the fractional part of cN and εN = (1− (cN))/cN ≥ 0. Note

that εN → 0 as N → ∞. Therefore, there exists N0 ∈ N such that for every

N > N0, d(1/c − 1)/(1 + εN)e = d1/c − 1e = d− ln p/ ln se. Taking N = N0 + 1,

we conclude that there is an interval J that, in the first N iterations of f , has

j = d− ln p/ ln se consecutive contractions. This means that there is some i such

that for all x ∈ f i(J), fk(x) > 1/p for k = 0, 1, . . . , j − 1. Letting x be any point

in the interval f i(J), we find that

1

p
< f j−1(x) = sj−1x− s

p

(
1− sj−1

1− s

)
≤ sj−1 − s

p

(
1− sj−1

1− s

)
,

which means that

j − 1 < − ln(p(1− s) + s)

ln s
.
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Since j is an integer, this implies that

⌈
− ln(p(1− s) + s)

ln s

⌉
≥ j =

⌈
− ln p

ln s

⌉
.

But since 0 < s < 1 and p > 1, p(1− s) + s < p, so

⌈
− ln(p(1− s) + s)

ln s

⌉
≤
⌈
− ln p

ln s

⌉

and therefore ⌈
− ln(p(1− s) + s)

ln s

⌉
=

⌈
− ln p

ln s

⌉
.

Therefore, (s, p) /∈ A, a contradiction.

The complement of the setA in the proof of Theorem 2.1 is given by d− ln p/ ln se =

d− ln(p(1− s) + s)/ ln se. If we solve this equation for p, we get the regions

1 +
1

s
+ · · ·+ 1

sk
< p ≤ 1

sk+1
, for k ∈ N ∪ {0} .

Hence, the curves on the boundary of the region A are of the form p = 1 + 1
s

+

· · ·+ 1
sk and p = 1

sk+1 .

2.2 Other regions where f is eventually expand-

ing

We will refer to {(s, p) ∈ (0, 1)× (1,∞)| f is eventually expanding} as the “good”

region. We show that the good region contains all points with small enough p:

Proposition 2.1. If 1 < p ≤ 2 and 0 < s < 1, then f is eventually expanding.
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Proof. Let N be the least positive integer such that pN−1s > 1. Note that N ≥ 2

and pN−2s ≤ 1. Consider the first N iterations of f . As in the proof of Theorem

2.1, fN is piecewise linear on [0, 1], and if J is one of the intervals on which f

is linear, then the slope of f on J is pmsn, where m and n are the numbers of

expansions and contractions of J under f . We claim now that we always have

n ≤ 1, so the slope is at least pN−1s > 1 and therefore f is eventually expanding.

To prove this claim, suppose that n ≥ 2. Then there must be some i and j

such that 0 ≤ i < j ≤ N − 1, f is contracting on J at steps i + 1 and j + 1,

and f is expanding on J at step k + 1 whenever i < k < j. In other words,

f i(J) ⊂ (1/p, 1], f j(J) ⊂ (1/p, 1], and if i < k < j then fk(J) ⊂ [0, 1/p). This

means that if x ∈ f i(J) then x > 1/p, fk(x) < 1/p for k = 1, . . . , j − i − 1, and

f j−i > 1/p. But then

f j−i(x) = pj−i−1s

(
x− 1

p

)
≤ pN−2s

(
x− 1

p

)
≤ x− 1

p
≤ 1− 1

p
=
p− 1

p
≤ 1

p
,

which is a contradiction.

Denote the boundary curves of the region A by:

γ Lk (s) =
1

sk
,

γ Uk (s) = 1 +
1

s
+

1

s2
+ · · ·+ 1

sk
=

1− sk+1

sk(1− s)
,

where k ∈ N ∪ {0}. The following lemma shows that for p ∈ [γ Un−1(s), γ Un (s)), the

nth image of 1 is the first image of 1 to fall into [0, 1/p).

Lemma 2.1. For n ≥ 0, f j(1) ≥ 1/p for j = 0, 1, . . . , n if and only if p ≥ γ Un (s).

If p = γ Un (s), then fn(1) = 1/p.
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Proof. We prove it by induction. If n = 0, then the equivalence to be proven says

that 1 ≥ 1/p if and only if p ≥ 1 and that is clearly true. For the induction step,

assume that the statement is true for n = k− 1. Then to prove the statement for

n = k it suffices to show that for p ≥ γ Uk−1(s), fk(1) ≥ 1/p if and only if p ≥ γ Uk (s).

So suppose that p ≥ γ Uk−1(s). Then by inductive hypothesis, f i(1) ≥ 1/p for

i = 0, . . . , k − 1. Therefore

fk(1) = sk − s

p

(
1− sk

1− s

)
,

and we have

fk(1) ≥ 1

p
⇐⇒ sk − s

p

(
1− sk

1− s

)
≥ 1

p
⇐⇒ p ≥ 1

sk

(
1− sk+1

1− s

)
= γ Uk (s).

A similar argument shows that fn(1) = 1/p if p = γ Un (s).

Consider any s ∈ (0, 1) and any k ≥ 2. For p ≥ γ Uk−1(s) we have

fk(1) = sk − s

p

(
1− sk

1− s

)
,

which clearly increases as p increases. Also, if p = γ Uk−1(s) then fk−1(1) = 1/p

and therefore fk(1) = 0, and if p = γ Uk (s) then fk(1) = 1/p. It follows that there

is a unique p ∈ (γ Uk−1(s), γ Uk (s)) such that fk(1) = 1/p2. We denote this unique

value of p by γMk (s). Clearly if γ Uk−1(s) ≤ p < γMk (s) then fk(1) < 1/p2, and if

p > γMk (s) then fk(1) > 1/p2. We can find a formula for γMk (s) by setting the

formula for fk(1) above equal to 1/p2. Solving the resulting quadratic equation
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we get

γMk (s) =
1− sk +

√
(1− sk)2 + 4(1− s)2sk−2

2(1− s)sk−1
.

Proposition 2.2. Suppose k ≥ 2. If 1/2 < s < 1 and

γ Uk−1(s) ≤ p ≤ γMk (s) =
1− sk +

√
(1− sk)2 + 4(1− s)2sk−2

2(1− s)sk−1
,

then f is eventually expanding.

Proof. Let N be a positive integer, and consider N iterations of f . As usual,

let J be an interval on which fN is linear, with slope pmsn, where m and n are

the numbers of expansions and contractions of J in the N iterations of f . Since

γ Uk−1(s) ≤ p ≤ γMk (s), we have fk(1) ≤ 1/p2. It follows that J can never have

more than k consecutive contractions, and if it has k consecutive contractions and

those contractions are followed by at least two more steps, then both of those steps

must be expansions.

The sequence of contractions and expansions of J can be described by a string

of c’s and e’s, where the ith letter is a c if J contracts at step i and an e if it expands.

This string can be broken up into blocks of the form cie, where 0 ≤ i ≤ k − 1, or

ckee, except possibly for a final block consisting of up to k c’s, perhaps followed

by an e. If we associate with each block of the form ciej the factor sipj, then the

product of all of these factors is pmsn, the slope of fN on J .

For a block of the form cie with 0 ≤ i ≤ k − 1, the corresponding factor

is sip ≥ sk−1p, and for a block of the form ckee the factor is skp2. Since p ≥

γ Uk−1(s) = 1 + · · · + 1/sk−1 > 1/sk−1, we have sk−1p > 1. And sp ≥ sk−1p > 1, so

skp2 = (sp)(sk−1p) > sk−1p. Thus, for all blocks except the last, the factor is at

least sk−1p, which is greater than 1. The factor for the last block is at least sk.
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The length of the last block is at most k + 1, and the length of every other block

is at most k+2, so the number of blocks is at least N/(k+2). Therefore the slope

of fN on J is at least

(sk−1p)N/(k+2)−1sk.

Since sk−1p > 1, this will be larger than 1 for sufficiently large N , so f is eventually

expanding.

Corollary 2.1. If 1 < p and 1
2
≤ s < 1, then f is eventually expanding.

Proof. Suppose f is not eventually expanding. Then by Theorem 2.1, there is some

k ≥ 1 such that γ Uk−1(s) < p ≤ γ Lk (s). If k = 1 then this means 1 < p ≤ 1/s ≤ 2,

contradicting Proposition 2.1. Now suppose k ≥ 2. Since p ≤ γ Lk (s) = 1/sk, we

have sk ≤ 1/p, and therefore

fk(1) = sk − s

p

(
1− sk

1− s

)
≤ 1

p
− s

p

(
1− 1/p

1− s

)
=

1

p2
−
(

2s− 1

1− s

)(
p− 1

p2

)
≤ 1

p2
.

Therefore p ≤ γMk (s), so we have a contradiction with Proposition 2.2.

The following proposition shows other parts of the good region.

Proposition 2.3. If 1
pk < s ≤ 1

pk−1(p−1)
, k ≥ 2, then f is eventually expanding.

Proof. If s ≤ 1
pk−1(p−1)

, then f(1) = s(1 − 1/p) ≤ 1/pk. It follows that in k + 1

iterations, any interval can contract at most once. So on any of the intervals on

which fk+1 is linear, the slope is at least spk > 1.

Therefore, if we let ηUk (p) = 1/(pk−1(p − 1)) and ηLk (p) = 1/pk where k ≥ 2,

then for (s, p) satisfying ηLk (p) < s ≤ ηUk (p), f is eventually expanding.
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s

Figure 2.2: The shaded regions are the regions where f has been proven to be
eventually expanding for p > 2 and s < 1/2. If 1 < p ≤ 2 or s ≥ 1/2, f is
eventually expanding by Proposition 2.1 and Corollary 2.1. It is conjectured that
f is eventually expanding whenever 1 < p and 0 < s < 1.

Figure 2.2 shows the regions where we have proven f to be eventually ex-

panding (darker regions) for p > 2 and s < 1/2. Note that f is also eventually

expanding if 1 < p ≤ 2 or s ≥ 1/2 as shown by Proposition 2.1 and Corollary 2.1.

2.3 Exactness and other properties.

A function f : I → I is said to be exact or locally eventually onto if for every open

interval J ∈ I there exists N such that fN(J) = I.

Proposition 2.4. The map f defined by (2.1) is exact (or locally eventually onto)

if it is eventually expanding.

Proof. By assumption, there exists N such that fN is piecewise expanding. Since
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both branches of f touch the x axis, all branches of f j touch the x axis, for any

j ∈ N. Since fN is piecewise expanding, any given interval J ∈ [0, 1] grows under

action of fN until its image covers a discontinuity point. Thus, there exists an

integer k such that fkN+1(J) contains the fixed point 0. Since the branch that

contains the fixed point is onto and expanding, some iterate of fkN+1(J) under f

eventually covers all of [0, 1].

If the map f is eventually expanding, the whole rich theory of such maps

applies to it. In particular f admits an absolutely continuous invariant measure µ

[9, 25]. Similarly as in Proposition 2.4 it can be proven that µ is unique and the

system {f, µ} is exact in the measure-theoretical sense. An explicit formula for

the density of µ can be obtain using methods of [19].

A point x is called periodic under f if there exists N ∈ N such that fN(x) = x.

In this case, x is said to be repelling if |(fN)′(x)| > 1 and attracting if |(fN)′(x)| <

1. The following property of f has been noticed by M. Misiurewicz.

Proposition 2.5. (Misiurewicz) All periodic points of f are repelling.

Proof. Let us fix an N ≥ 1. All branches of fN are increasing and touch the x

axis. The slope of fN at 0 is pN > 1. Thus, no branch with a slope smaller than or

equal to 1 can intersect the diagonal. Thus, any fixed point of fN is repelling.
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Chapter 3

Metastable Systems as Random

Maps

3.1 Introduction

One-dimensional metastable systems were recently studied [32] in the framework

of piecewise expanding maps on two disjoint ergodic sets. Under small determin-

istic perturbations, the asymptotic dynamics of the merged metastable system is

captured by the absolutely continuous invariant measure (acim) on the combined

ergodic sets. The main result of [32] shows that this combined acim can be approxi-

mated by a convex combination of the two disjoint acim’s with weights depending

on the respective measures of the holes. The method of [32] invokes the usual

bounded variation technique that applies naturally in a setting where the slopes

of the original map are > 2. For maps with slopes only > 1 in magnitude, the BV

technique encounters difficulties as the partitions needed for the approximating

family of maps have elements that go to zero in measure and hence render the
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standard BV inequalities ineffective in establishing precompactness of the family

of probability density functions associated with the family of approximating maps.

To handle this problem, the authors of [32] introduce some additional conditions

on the maps they consider.

In this chapter we take a different approach to modeling metastable behaviour.

We consider two piecewise expanding maps: one is the original map, τ1, defined on

two disjoint invariant sets of RN and the other, τ2, is a deterministically perturbed

version of τ1, which allows passage between the two disjoint invariant sets of τ1 via

holes. We model such a system by means of a random map based on τ1 and τ2,

to which we associate position dependent probabilities that reflect the switching

between the maps. A typical orbit spends a random amount of time governed

by the dynamics of either τ1 or τ2, then switches to the other map. Suppose p1,

the probability of using map τ1, is close to 1, then with very high probability the

orbit spends a lot of time under the influence of τ1, that is, it stays in either one

or the other of the two disjoint sets invariant under τ1. Since p1 < 1, there is

a small but positive probability of switching from τ1 to τ2. When this happens,

the dynamics comes under the control of τ2, which allows movement between the

disjoint invariant sets. Unlike the model in [32] where the hole sizes shrink to 0,

the hole sizes in our random map model stay fixed. (Their measures in a skew

product interpretation of random maps converge to 0, see [2], so one could argue

that both models are in a way similar.) What changes are the probabilities of

switching from one map to the other. As p1 approaches 1, the orbits are almost

completely defined by τ1 and therefore remain in one or the other of the two

disjoint invariant sets for a very long time. This behaviour is the hallmark of

metastable dynamics. Our main result establishes a result similar in spirit to that
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in [32]: we prove that, as the probability of using τ1 converges to 1, the dynamics

is captured by an acim that is a convex combination of the acim’s on the two

disjoint invariant sets. Furthermore, we calculate the weights of the respective

acim’s from a formula analogous to the one derived in [32].

In the billiards problem metastable behaviour is attributed to small physical

holes in the boundary between the tables. From the perspective of random maps,

the holes can be large with the probabilities of switching controlling the metastable

behaviour. This allows for the consideration of situations where there are no actual

physical holes, but where balls can “leap” from one table to the other.

In Sections 3.2 and 3.3 we recall the definition of a position dependent random

map and collect some existence and continuity results in 1 and N dimensions.

In Section 3.4 we present a random map model for a metastable system with

two ergodic components. We show that there exists a unique acim which is a

convex combination of the acim’s on the two ergodic sets where the weights in the

combination are calculated from a formula similar to the one in [32]. In Section

3.5 we present the generalization of this result for a metastable system with more

than two ergodic components. A deterministic model of such situation is discussed

in [15]. Section 3.6 contains examples.

3.2 Position Dependent Random Maps and Their

Properties

Let (I,B, λ) be a measure space, where λ is an underlying measure. Let τk : I → I,

k = 1, ..., K be piecewise one-to-one, differentiable, non-singular transformations

on a common partition P of I : P = {I1, ..., Iq} and τk,i = τk|Ii , i = 1, ..., q,
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k = 1, ..., K (P can be found by considering finer partitions). We define the

transition function for the random map

T = {τ1, ...τK ; p1(x), ...pK(x)}

as follows:

P(x,A) =
K∑
k=1

pk(x)χA(τk(x)), (3.1)

where A is any measurable set and {pk(x)}Kk=1 is a set of position dependent

measurable probabilities, i.e.,
∑K

k=1 pk(x) = 1, pk(x) ≥ 0, for any x ∈ I and

χA denotes the characteristic function of the set A. We define T (x) = τk(x)

with probability pk(x) and TN(x) = τkN
◦ τkN−1

◦ ... ◦ τk1(x) with probability

pkN
(τkN−1

◦ ...◦ τk1(x)) ·pkN−1
(τkN−2

◦ ...◦ τk1(x)) · · · pk1(x). The transition function

P induces an operator P∗ on measures on (I,B) defined by

P∗µ(A) =

∫
I

P(x,A)dµ(x) =
K∑
k=1

∫
I

pk(x)χA(τk(x))dµ(x)

=
K∑
k=1

∫
τ−1
k (A)

pk(x)dµ(x) =
K∑
k=1

q∑
i=1

∫
τ−1
k,i (A)

pk(x)dµ(x)

(3.2)

We say that the measure µ is T -invariant iff P∗µ = µ, i.e.,

µ(A) =
K∑
k=1

∫
τ−1
k (A)

pk(x)dµ(x), A ∈ B. (3.3)

If µ has density f with respect to λ, then P∗µ has also a density which we
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denote by PTf . By change of variables, we obtain

∫
A

PTf(x)dλ(x) =
K∑
k=1

q∑
i=1

∫
τ−1
k,i (A)

pk(x)f(x)dλ(x)

=
K∑
k=1

q∑
i=1

∫
A

pk(τ
−1
k,i x)f(τ−1

k,i x)
1

Jk,i(τ
−1
k,i )

dλ(x) ,

(3.4)

where Jk,i is the Jacobian of τk,i with respect to λ, J(τ) = dτ∗(λ)
dλ

. Since this holds

for any measurable set A we obtain an a.e. equality:

(PTf)(x) =
K∑
k=1

q∑
i=1

pk(τ
−1
k,i x)f(τ−1

k,i x)
1

Jk,i(τ
−1
k,i )

χτk(Ii)(x) (3.5)

or

(PTf)(x) =
K∑
k=1

Pτk (pkf) (x) (3.6)

where Pτk is the Perron-Frobenius operator corresponding to the transformation

τk (see [9] for details). We call PT the Perron-Frobenius operator of the random

map T .

3.3 Continuity theorems

3.3.1 Existence and Continuity theorems in one dimension

Let (I,B, λ) be a measure space, where λ is normalized Lebesgue measure on

I = [a, b]. Let τk : I → I, k = 1, ..., K be piecewise one-to-one and C2, non-

singular transformations on a partition P of I : P = {I1, ..., Iq} and τk,i = τk|Ii ,

i = 1, ..., q, k = 1, ..., K. Let {pk(x)}Kk=1 be a set of position dependent measurable

probabilities, i.e.,
∑K

k=1 pk(x) = 1, pk(x) ≥ 0, for any x ∈ I. Assume in addition
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that pk is piecewise differentiable on P .

Denote by V (·) the standard one-dimensional variation of a function, and by

BV (I) the space of functions of bounded variations on I equipped with the norm

‖ · ‖BV = V (·) + ‖ · ‖1.

Let gk(x) = pk(x)
|τ ′k(x)| , k = 1, . . . , K. We assume the following conditions:

Condition (A):
∑K

k=1 gk(x) < α < 1, x ∈ I, and

Condition (B): gk ∈ BV (I), k = 1, . . . , K .

Let T = {τ1, . . . , τK ; p1, . . . , pK} be a random map with position dependent

probabilities satisfying conditions (A) and (B). We define PN as a maximal com-

mon monotonicity partition for all maps defining TN . For w = (k1, . . . , kN−1, kN) ∈

{1, ..., K}N we define

gw =
pkN

(τkN−1
◦ ... ◦ τk1(x)) · pkN−1

(τkN−2
◦ ... ◦ τk1(x)) · · · pk1(x)

|(τkN
◦ τkN−1

◦ ... ◦ τk1)′(x)|
.

The following results are proved in [3]:

Lemma 3.1. Let T satisfy conditions (A) and (B). Then for any f ∈ BV (I) and

M ∈ N,

‖PM
T f‖BV ≤ AM‖f‖BV +BM‖f‖1, (3.7)

where AM = 3αM + WM , BM = βM(2αM + WM), βM = maxJ∈PM (λ(J))−1,

WM ≡ maxJ∈PM

∑
w∈{1,...,K}M VJgw.

Theorem 3.1. Let T be a random map which satisfies conditions (A) and (B).

Then T preserves a measure which is absolutely continuous with respect to Lebesgue

measure. The operator PT is quasi-compact on BV (I), see [9].

We now present the Continuity Theorem in one dimension. A similar theorem
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was proved in proposition 2 of [20] under stronger conditions. Our aim is to show

that it holds under the weaker conditions (A) and (B).

Theorem 3.2 (Continuity Theorem 1-dim). Let T = {τ1, . . . , τK ; p1, . . . , pK} be

a random map with position dependent probabilities satisfying conditions (A) and

(B). Let {p(n)
1 , . . . , p

(n)
K }∞n=1 be a sequence of sets of probabilities such that p

(n)
k → pk

as n → +∞, k = 1, . . . , K, in the piecewise C1 topology on the fixed partition

P. Let T (n) = {τ1, . . . , τK ; p
(n)
1 , . . . , p

(n)
K }, n = 1, 2, . . . be a sequence of random

maps. For n large, T (n) has an invariant density f (n) and the sequence {f (n)}∞n=1

is precompact in L1. Moreover, all limit points of f ∗ of this sequence are fixed

points of PT .

Proof. We will prove the theorem in three steps. In the first step we show that

an inequality similar to inequality (3.7) of Lemma 3.1 holds uniformly for all T (n)

with n large enough. In order to achieve this, we need to show that for large

enough n conditions (A) and (B) are satisfied uniformly.

Suppose α < γ < 1, where
∑K

k=1 gk(x) < α < 1. First, choose ε such that∑K
k=1

ε
|τ ′k(x)| < γ − α. Then choose N1 such that for n > N1 and 1 ≤ k ≤ K,

pk − ε ≤ p
(n)
k ≤ pk + ε. Then

K∑
k=1

p
(n)
k (x)

|τ ′k(x)|
≤

K∑
k=1

pk + ε

|τ ′k(x)|
=

K∑
k=1

pk(x)

|τ ′k(x)|
+

K∑
k=1

ε

|τ ′k(x)|
≤ α + (γ − α) = γ < 1.

Therefore, condition (A) holds uniformly for all n > N1, with α replaced by γ.

Regarding condition (B), note that

|VJg(n) − VJg| ≤
∫
J

|(g(n))′ − g′|dλ→ 0 as n→∞.

42



It follows that there exists a constant C1 and an integer N2 such that for all

n > N2, VJg
(n) < C1 for any interval J ⊂ I.

Now consider W
(n)
1 = maxJ∈P

∑K
k=1 VJg

(n)
k . From the above statement it

follows that W
(n)
1 is also uniformly bounded for n sufficiently large. That is,

there exists C2 and integer N3 such that for all n > N3, W
(n)
1 < C2. Let

N4 = max {N1, N2, N3} and C = max {C1, C2}. It is shown in [3] that W
(n)
M ≤

MαM−1W
(n)
1 , hence for n > N4, W

(n)
M < MγM−1C. Therefore, for n > N4, in-

equality (3.7) holds uniformly with α replaced by γ.

In the next step we show that the sequence of invariant densities
{
f (n)

}
is

uniformly bounded in BV (I). Without loss of generality consider
{
f (n)

}∞
n=N4+1

instead of
{
f (n)

}
. Moreover since inequality (3.7) is now satisfied uniformly for

all n, we drop the superscript of (n) and write AM , BM for A
(n)
M , B

(n)
M respectively.

Also assume M is large enough so that AM = 3γM +WM < 1.

To summarize, we have shown that there exists M such that for any f ∈ BV (I)

and n ∈ N:

‖PM
T (n)f‖BV ≤ AM‖f‖BV +BM‖f‖1, (3.8)

where AM = 3γM + WM < 1, BM = βM(2γM + WM), βM = maxJ∈PM (λ(J))−1,

WM ≡ maxJ∈PM

∑
w∈{1,...,K}M VJgw.

Using inequality (3.8) repeatedly, one can show that each f (n) is a limit point

of the sequence of averages
{

1
m

∑m−1
j=0 PMj

T (n)1
}

and

‖f (n)‖BV ≤ 1 +
BM

1− AM
.

Therefore
{
f (n)

}
is a bounded set in BV (I) and hence it has a limit point f ∗ in

L1.
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In the final step show that f ∗ is invariant under PT :

‖PTf ∗ − f ∗‖1 ≤ ‖PTf ∗ − PT (n)f ∗‖1 + ‖PT (n)f ∗ − PT (n)f (n)‖1

+ ‖PT (n)f (n) − f (n)‖1 + ‖f (n) − f ∗‖1

= ‖
K∑
k=1

Pτk(pkf
∗)−

K∑
k=1

Pτk(p
(n)
k f ∗)‖1

+ ‖
K∑
k=1

Pτk(p
(n)
k f ∗)−

K∑
k=1

Pτk(p
(n)
k f (n))‖1

+ ‖PT (n)f (n) − f (n)‖1 + ‖f (n) − f ∗‖1

≤
K∑
k=1

‖f ∗(pk − p(n)
k )‖1 +

K∑
k=1

‖(f ∗ − f (n))p
(n)
k ‖1

+ ‖PT (n)f (n) − f (n)‖1 + ‖f (n) − f ∗‖1

The third summand is 0 by definition of f (n). The other three converge to 0 since

f (n) → f ∗ and p
(n)
k → pk as n→∞ in L1 and L∞, respectively.

3.3.2 Existence and Continuity theorems in higher dimen-

sions

We now prove the Continuity Theorem in RN . Let S be a bounded region in

RN and λN be Lebesgue measure on S. Let τk : S → S, k = 1, ..., K be piece-

wise one-to-one and C2, non-singular transformations on a partition P of S :

P = {S1, ..., Sq} and τk,i = τk|Si
, i = 1, ..., q, k = 1, ..., K. Let each Si be a bounded

closed domain having a piecewise C2 boundary of finite (N − 1)-dimensional mea-

sure. We assume that the faces of ∂Si meet at angles bounded uniformly away

from 0. We will also assume that the probabilities pk(x) are piecewise C1 functions

on the partition P . Let Dτ−1
k,i (x) be the derivative matrix of τ−1

k,i at x. We assume:

44



Condition (C):

max
1≤i≤q

K∑
k=1

pk(x)‖Dτ−1
k,i (τk,i(x))‖ < σ < 1.

The main tool of this section is the multidimensional notion of variation defined

using derivatives in the distributional sense (see [14]):

V (f) =

∫
RN

‖Df‖ = sup{
∫

RN

fdiv(g)dλN : g = (g1, ..., gN) ∈ C1
0(RN ,RN)},

where f ∈ L1(RN) has bounded support, Df denotes the gradient of f in the

distributional sense, and C1
0(RN ,RN) is the space of continuously differentiable

functions from RN into RN having a compact support. We will use the following

property of variation which is derived from [14], Remark 2.14: If f = 0 outside a

closed domain A whose boundary is Lipschitz continuous, f|A is continuous, f|int(A)

is C1, then

V (f) =

∫
int(A)

‖Df‖dλN +

∫
∂A

|f |dλN−1,

where λN−1 is the (N − 1)-dimensional measure on the boundary of A. In this

section we shall consider the Banach space (see [14], Remark 1.12),

BV (S) = {f ∈ L1(S) : V (f) < +∞},

with the norm ‖f‖BV = V (f) + ‖f‖1.

Theorems 3.3 and 3.4 were established in [3]. We refer the reader to [3] for

proofs of these theorems. The functions a(·) and δ(·) which appear in these the-

orems are defined as in Section 1.6. We remark here that for a random map
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T = {τ1, . . . , τK ; p1, . . . , pK}, the functions a and δ are independent of the proba-

bilities {p1, . . . , pK}.

Theorem 3.3. If T is a random map which satisfies condition (C), then

V (PTf) ≤ σ(1 + 1/a)V (f) + (M +
σ

aδ
)‖f‖1, (3.9)

where a = min{a(Si) : i = 1, . . . , q} > 0, δ = min{δ(Si), : i = 1, . . . , q} > 0,

Mk,i = supx∈Si
(Dpk(x)− DJk,i

Jk,i
pk(x)) and M =

∑K
k=1 max1≤i≤qMk,i.

Theorem 3.4. Let T be a random map which satisfies condition (C). If σ(1 +

1/a) < 1, then T preserves a measure which is absolutely continuous with respect

to Lebesgue measure. The operator PT is quasi-compact on BV (S), see [9].

Now we present the multi-dimensional version of theorem 3.2. The proof of

this theorem is similar to the proof of the one-dimensional Continuity Theorem

hence we will only sketch the proof here.

Theorem 3.5 (Continuity Theorem in RN). Let T = {τ1, . . . , τK ; p1, . . . , pK}

be a random map with position dependent probabilities, satisfying condition (C).

Also assume that σ(1 + 1/a) < 1. Let {p(n)
1 , . . . , p

(n)
K }∞n=1 be a sequence of sets

of probabilities such that p
(n)
k → pk as n → +∞, k = 1, . . . , K, in the piecewise

C1 topology on the fixed partition P. Let T (n) = {τ1, . . . , τK ; p
(n)
1 , . . . , p

(n)
K }, n =

1, 2, . . . be a sequence of random maps. For m large, T (n) has an invariant density

f (n) and the sequence {f (n)}∞n=1 is precompact in L1. Moreover, all limit points f ∗

of this sequence are fixed points of PT .

Proof. The main part of the proof is to establish an inequality similar to the

inequality (3.9) uniformly for all n larger than some integer N1. As a result of
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applying Theorem 3.3 to T (n) we obtain:

V (PT (n)f) ≤ σ(n)(1 + 1/a(n))︸ ︷︷ ︸
A(n)

V (f) + (M (n) +
σ(n)

a(n)δ
)︸ ︷︷ ︸

B(n)

‖f‖1, (3.10)

where

a(n) = min{a(n)(Si) : i = 1, . . . , q} > 0,

δ(n) = min{δ(Si), : i = 1, . . . , q} > 0,

M
(n)
k,i = sup

x∈Si

(Dp
(n)
k (x)− DJk,i

Jk,i
p

(n)
k (x)),

and

M (n) =
K∑
k=1

max
1≤i≤q

M
(n)
k,i .

Note that a(n) and δ(n) do not depend on probabilities, so the superscript (n)

can be dropped. In order to show that inequality (3.10) holds uniformly it suffices

to choose N1 large enough that σ(n)(1 + 1/a) < 1 for all n > N1. This is easily

achievable since p
(n)
k → pk for all k = 1, . . . , K. The uniform boundedness of

{
f (n)

}
in BV and the invariance of its limit points under PT follow in a similar way to

the one-dimensional case. Note that in this case it is not necessary to consider a

higher power of the map T (n) as opposed to the one-dimensional case.

3.4 A model of metastability for a system with

two ergodic components

Let T = {τ1, τ2; p1, p2} be an N -dimensional random map with position dependent

probabilities p1(x) = 1 and p2(x) = 0 satisfying the conditions of the previous
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section. Note that since p2(x) = 0 for all x, T is essentially the same map as τ1.

Let us suppose that the domain of T is I = I1 ∪ I2, where I1 and I2 are invariant

under τ1. Also, suppose τ1 has exactly two ergodic measures µ1, and µ2 with

densities f1 and f2 on I1 and I2, respectively. The map τ2 differs from τ1 on the

sets H1,2 ⊂ I1 and H2,1 ⊂ I2, where H1,2 = I1 ∩ τ−1
2 (I2) and H2,1 = I2 ∩ τ−1

2 (I1).

We assume that

µ1(H1,2) > 0 and µ2(H2,1) > 0 . (3.11)

Now consider a sequence of random maps T (n) =
{
τ1, τ2; p

(n)
1 , p

(n)
2

}
, perturba-

tions of T , where only the probabilities are changed. Let

p
(n)
1 = (1− p(n)

2,1 )χH2,1 + (1− p(n)
1,2 )χH1,2 + χI\H2,1∪H1,2 (3.12)

p
(n)
2 = 1− p(n)

1 , (3.13)

with p
(n)
1,2 , p

(n)
2,1 > 0, independent of x. Our main result is the following theorem.

Theorem 3.6. If p
(n)
1,2 , p

(n)
2,1 → 0 and limn→∞

p
(n)
2,1

p
(n)
1,2

exists, then the acim’s of the

n−dimensional random maps T (n) converge to the measure µ = α1µ1 + α2µ2,

where

α1

α2

=
µ2(H2,1)

µ1(H1,2)
lim
n→∞

p
(n)
2,1

p
(n)
1,2

.

Proof. Let µT (n) be an acim of T (n) (we do not assume it to be unique). Let

f (n) be the invariant density of µT (n) . By (3.11) we have µT (n)(H1,2) > 0 and

µT (n)(H2,1) > 0. Then,

µT (n)(I1) =

∫
I

P(x, I1)dµT (n) = 1 · µT (n)(I1 \H1,2) + (1− p(n)
1,2 ) · µT (n)(H1,2)

+ 0 · µT (n)(I2 \H2,1) + p
(n)
1,2µT (n)(H2,1).
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Hence,

µT (n)(H1,2)

µT (n)(H2,1)
=
p

(n)
2,1

p
(n)
1,2

. (3.14)

By Theorem 3.5,
{
f (n)

}
n≥1

is precompact in L1 and if f ∗ is a limit point, then

f ∗ is of the form α1f1 + α2f2 for some 0 ≤ α1, α2 ≤ 1, α1 + α2 = 1. In terms of

the corresponding measures, there exists a subsequence nk such that:

µT (nk)(H1,2) → α1µ1(H1,2) + α2µ1(H2,1) = α1µ1(H1,2) (3.15)

µT (nk)(H2,1) → α1µ2(H1,2) + α2µ2(H2,1) = α2µ2(H2,1) (3.16)

Applying (3.14), (3.15) and (3.16), we get

α1

α2

=
µ2(H2,1)

µ1(H1,2)
lim
k→∞

p
(nk)
2,1

p
(nk)
1,2

.

Additional information about the spectrum of operators PT (n) is provided in

the following theorem based on results of [24].

Theorem 3.7. Let us assume that 1 is an eigenvalue of PT of multiplicity 2. For

arbitrarily small δ > 0, there exists an nδ such that for n ≥ nδ the spectrum of

PT (n) intersected with {z : |z − 1| < δ} consists of two eigenvalues of multiplicity

1: 1 and rn, |rn| ≤ 1, rn 6= 1 and rn → 1, as n→∞.

Proof. The family PT (n) , n ≥ 1, satisfies the assumptions of Corollary 1 of [24]

which implies the above statement.
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3.5 A generalization for a system with L ergodic

components

Let T = {τ1, τ2; p1, p2} be an N -dimensional random map with position dependent

probabilities p1(x) = 1 and p2(x) = 0. So T is essentially the same map as τ1.

Suppose τ1 has L ergodic components I1, . . . , IL, ∪Li=1Ii = I. Suppose there are

L−1 “holes” {Hi,j}1≤j≤L, j 6=i in each component Ii. Map τ2 is defined as a piecewise

expanding map which has the following properties

τ2(Hi,j) ⊂ Ij , for i, j ∈ {1, . . . , L}

and τ2 = τ1 outside the holes.

Let T (n) = {τ1, τ2; p
(n)
1 , p

(n)
2 } be a sequence of random maps such that

1− p(n)
1 = p

(n)
2 =

L∑
i=1

∑
j 6=i

p
(n)
i,j χHi,j

, (3.17)

0 < p
(n)
i,j < 1 and

p
(n)
i,j = h(n)ai,j + o(h(n)) , (3.18)

for some function h such that limn→∞ h(n) = 0. Let µ
(n)
T denote the invariant

measure of T (n). Then for every 1 ≤ k ≤ L,

µT (n)(Ik) =

∫
P(x, Ik)dµT (n)(x) =

∫
τ−1
1 (Ik)

p
(n)
1 (x)dµT (n) +

∫
τ−1
2 (Ik)

p
(n)
2 (x)dµT (n) .
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It follows that for every 1 ≤ k ≤ L,

∑
j 6=k

p
(n)
k,jµT (n)(Hk,j) =

∑
i 6=k

p
(n)
i,k µT (n)(Hi,k). (3.19)

The left hand side of the equation (3.19) can be interpreted as the amount of

µT (n)-measure that leaves the component Ik and the right hand side as the amount

of µT (n)-measure that enters the component Ik. Intuitively, these two quantities

are equal because µT (n) is preserved under T (n).

Let us define qi,j = ai,jµi(H(i, j)) for j 6= i, qi,i = 1 −
∑

j 6=i qi,j for 1 ≤ i ≤ L,

and

Q = [qi,j]1≤i,j≤L . (3.20)

By the Continuity Theorem for random maps, there exists a subsequence nk

such that µT (nk) → µT =
∑L

i=1 αiµi. Therefore, µT (nk)(Hi,j) → αiµi(Hi,j). Hence,

the equations (3.19), for n = nk, can be written as

∑
j 6=k

ak,jαkµk(Hk,j) =
∑
i 6=k

ai,kαiµi(Hi,k) + o(1) ,

or

(1− qk,j)αk =
∑
i 6=k

qi,kαi + o(1) ,

which in matrix form is

αQ = α + o(1) ,

where α = (α1, . . . , αL). If, for w = (w1, . . . , wL) the solution of the equation
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w = wQ is stable under small perturbations, then, α = (α1, . . . , αL) satisfies

α ·Q = α.

The conditions for stability of the eigenvectors for probability matrices are well

known, see for example [11].

We have proved the following theorem

Theorem 3.8. Let T (n) be a sequence of random maps satisfying assumptions of

Section 3.4 but such that map τ1 has L ≥ 2 ergodic components. Let probabilities

p
(n)
i,j , 1 ≤ i, j ≤ L satisfy assumptions (3.18). If the matrix Q defined in (3.20) has

stable left 1-eigenvector, then the invariant measures µT (n) converge as n→∞ to

the measure
∑L

i=1 αiµi, where αQ = α, and µi is the τ1-invariant measure on the

i-th ergodic component.

3.6 Examples

Example 3.1.

We now present a simple Markov map example on the interval [0,1]. Consider

the maps τ1 and τ2 as shown in figure 3.1.

Both maps are Markov on the partition P = {J1 = [0, 0.1], J2 = [0.1, 0.5], J3 =

[0.5, 0.95], J4 = [0.95, 1]}. Let |J | denote the Lebesgue measure of the set J . Then

|J1| = 0.1, |J2| = 0.4, |J3| = 0.45, |J4| = 0.05. τ1 and τ2 have slopes of the

same magnitude on J1, . . . , J4. They are s1 = 5, s2 = 5/4, s3 = 10/9, s4 = 10,

respectively. The ergodic components of τ1 are I1 = J1 ∪ J2 and I2 = J3 ∪ J4. The

holes are H1,2 = J1 and H2,1 = J4.
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Figure 3.1: Maps τ1 and τ2.

Our aim is to compute the acim’s of the random maps T = {τ1, τ2, 1, 0} and

T (n) = {τ1, τ2, p
(n)
1 , p

(n)
2 }, where p

(n)
1 and p

(n)
2 are defined as in equation (3.12) and

(3.13). To this end, we will first compute the invariant densities of τ1 and τ2.

The matrices corresponding to Perron-Frobenius operators for τ1 and τ2 are

Mτ1 =



1/5 1/5 0 0

4/5 4/5 0 0

0 0 9/10 9/10

0 0 1/10 1/10


, Mτ2 =



0 0 1/5 1/5

4/5 4/5 0 0

0 0 9/10 9/10

1/10 1/10 0 0


.

Any invariant density of τ1 or τ2 is piecewise constant on the partition P . More-

over, if we denote the value of the invariant density on Ji by fi, 1 ≤ i ≤ 4, then

(f1, f2, f3, f4) is the left eigenvector of the Perron-Frobenius matrix corresponding

to eigenvalue 1. For τ2, one easily checks that (2/3, 2/3, 4/3, 4/3) is the unique

normalized invariant density. On the other hand, τ1 has two ergodic components

with acim’s µ1 and µ2 which are simply the normalized Lebesgue measure on I1
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and I2, respectively. Any acim of τ1 is of the form tµ1 + (1− t)µ2, 0 ≤ t ≤ 1.

It follows from equation (3.6) that the invariant density of T is the same as

the invariant density of τ1.

For the random map T (n) = {τ1, τ2; p
(n)
1 , p

(n)
2 }, equation (3.6) implies that the

invariant density (f
(n)
1 , f

(n)
2 , f

(n)
3 , f

(n)
4 ) satisfies

(
f

(n)
1 , f

(n)
2 , f

(n)
3 , f

(n)
4

)
=
(

(1− p(n)
1,2 )f1, f

(n)
2 , f

(n)
3 , (1− p(n)

2,1 )f
(n)
4

)
Mτ1

+
(
p

(n)
1,2f

(n)
1 , 0, 0, p

(n)
2,1f

(n)
4

)
Mτ2 ,

(3.21)

which yields f
(n)
1 = f

(n)
2 , f

(n)
3 = f

(n)
4 and p

(n)
2,1f

(n)
4 = 2p

(n)
1,2f

(n)
1 . So the unique

normalized invariant density for T (n) is

f (n) =
2

p
(n)
2,1 + 2p

(n)
1,2

(
p

(n)
2,1 , p

(n)
2,1 , 2p

(n)
1,2 , 2p

(n)
1,2

)
.

Suppose limn→∞ p
(n)
2,1/p

(n)
1,2 = l. Then f (n) → (2/(2 + l))(l, l, 2, 2). It follows

that the invariant measure µT (n) → α1µ1 + α2µ2, where α1 = (2l)/(l + 2) and

α2 = 4/(l + 2). Moreover,

α1

α2

=
1

2
l =

0.05

0.1
l =

µ2(H2,1)

µ1(H1,2)
lim
n→∞

p
(n)
2,1

p
(n)
1,2

.

The Perron-Frobenius operator for the random map T (n) corresponds to the
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matrix (already shown in (3.21))

MT (n) =



1/5− (1/5)p
(n)
1,2 4/5 0 (1/10)p

(n)
1,2

1/5 4/5 0 0

0 0 9/10 1/10

(1/5)p
(n)
2,1 0 9/10 1/10− (1/10)p

(n)
2,1


,

with eigenvalues: 1, r
(n)
1 = 1/2−(1/20)p

(n)
2,1−(1/10)p

(n)
1,2 +a, r

(n)
2 = 1/2−(1/20)p

(n)
2,1−

(1/10)p
(n)
1,2 − a(n) and 0, where

a(n) = (1/20)

√
100 + 16p

(n)
2,1 + 24p

(n)
1,2 + (p

(n)
2,1 )2 + 4p

(n)
2,1p

(n)
1,2 + 4(p

(n)
1,2 )2 .

For p
(n)
1,2 and p

(n)
2,1 close to 0, we have r

(n)
1 close to 1 and r

(n)
2 close to 0. For example,

if p
(n)
1,2 = p

(n)
2,1 = 0.01, then r

(n)
1 ∼ 0.9995 and r

(n)
2 ∼ −0.0025. The eigenvector

corresponding to r
(n)
1 is v ∼ [−0.749265,−0.751139, 0.375571, 0.373698].

Example 3.2.

We present a random map with 3 ergodic components of the original map τ1,

see figure 3.2. Consider maps τ1 and τ2 on a set I = [0, 1]: τ1 has three ergodic

components I1 = [0, 1/3], I2 = [1/3, 2/3] and I3 = [2/3, 1], ∪i=1,2,3Ii = I. On each

components normalized Lebesgue measure µi, i = 1, 2, 3, is τ1-invariant. There

are 2 holes in each component. They are

H1,2 = [1/9, 2/9], H1,3 = [2/9, 1/3] ⊂ I1 ;

H2,1 = [1/3, 4/9], H2,3 = [5/9, 2/3] ⊂ I2 ;

H3,1 = [2/3, 7/9], H3,2 = [7/9, 8/9] ⊂ I3 .
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Figure 3.2: Maps τ1 and τ2 for Example 3.2 with 3 ergodic components.

Map τ2 is defined as a piecewise expanding map (shown in Fig. 3.2). It has

the following properties

τ2(Hi,j) ⊂ Ij , for i, j ∈ {1, 2, 3}

and τ2 = τ1 outside the holes.

We define the probabilities that each of the holes will be used by

p
(n)
i,j = h(n)ai,j + o(h(n)), 1 ≤ i, j ≤ 3 ,

where h is such that limn→∞ h(n) = 0 and the matrix A = [ai,j]1≤i,j≤3 is given by

A =


0 0.3 0.5

0.7 0 0.2

0.1 0.1 0

 .

The position dependent probability of applying the map τ2 is defined by

p
(n)
2 (x) =

∑
i=1,2,3

∑
j 6=i

p
(n)
i,j χHi,j

(x) , x ∈ I. (3.22)
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The probability of applying map τ1 is defined by p
(n)
1 (x) = 1− p(n)

2 (x), x ∈ I.

Consider the random map T (n) = {τ1, τ2; p
(n)
1 , p

(n)
2 }. Let µT (n) be its invariant

measure. By the Continuity Theorem, µT (n) → α1µ1 + α2µ2 + α3µ3 as pi,j → 0,

i 6= j. Since µi(Hi,j) = 1/3 for i 6= j, 1 ≤ i, j ≤ 3, by (3.20) we have

Q =
1

30


22 3 5

7 21 2

1 1 28

 .

Therefore, the normalized vector α = (α1, α2, α3) = 1
78

(16, 11, 51).

Example 3.3.

We consider a two dimensional Markov map example with τ1 having 4 ergodic

components. We will use the notation of Example 3.2. The space I is a unit

square of the plane R2. It is divided into 4 identical subsquares I1, I2, I3, I4 and

each of them is further divided into 9 identical smaller subsquares: I1 = ∪9
i=1Si,

I2 = ∪18
i=10Si, I3 = ∪27

i=19Si, I4 = ∪36
i=28Si, as in figure 3.6.

Figure 3.3: The Markov partition for map τ1 of Example 3.3.

We define τ1 restricted to each of Ii, i = 1, 2, 3, 4, as the same Markov map
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transforming each square Sj onto four squares Sk in such a way that the corre-

sponding adjacency matrix of the map τ1 restricted to Ii is

M =
1

4



1 1 0 1 1 0 0 0 0

1 1 0 1 1 0 0 0 0

0 1 1 0 1 1 0 0 0

0 0 0 1 1 0 1 1 0

0 0 0 0 1 1 0 1 1

0 1 1 0 1 1 0 0 0

0 0 0 1 1 0 1 1 0

0 1 1 0 1 1 0 0 0

0 1 1 0 1 1 0 0 0



.

The matrix Mτ1 corresponding to τ1 is the block matrix with 4 matrices M along

the diagonal. The map τ1 has 4 ergodic components. For each component the nor-

malized acim µi , i = 1, 2, 3, 4, invariant for τ1 restricted to Ii, can be represented

by the vector

[µi(1), µi(2), µi(3), µi(4), µi(5), µi(6), µi(7), µi(8), µi(9)]

= [0.05357, 0.16071, 0.10714, 0.08036, 0.25, 0.16964, 0.02679, 0.08929, 0.0625] .

The squares S6, S8, S13, S17, S20, S24, S29, S31, are designated as holes. We have

S6 = H1,2, S8 = H1,3, S13 = H2,1, S17 = H2,4, S20 = H3,1, S24 = H3,4, S29 = H4,2,

S31 = H4,3. We have µ1(S6) = µ3(S24) = 0.16964, µ1(S8) = µ2(S17) = 0.08929,
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µ2(S13) = µ4(S31) = 0.08036, µ3(S20) = µ4(S29) = 0.16071.

We define τ2 to be the Markov map on I which realizes the transfers. On

squares which are not holes it is equal to τ1. On each of the squares which is

a hole τ2 is a linear map transferring this square onto four squares in appro-

priate component Ij. The matrix Mτ1 has most of its rows the same as the

matrix Mτ1 , except for rows 6, 8, 13, 17, 20, 24, 29, 31 which have elements (6, 10),

(6, 11), (6, 13), (6, 14), (8, 19), (8, 20), (8, 22), (8, 23), (13, 5), (13, 6), (13, 8), (13, 9),

(17, 29), (17, 30), (17, 32), (17, 33), (20, 4), (20, 5), (20, 7), (20, 8), (24, 31), (24, 32),

(24, 34), (24, 35), (29, 14), (29, 15), (29, 17), (29, 18), (31, 20), (31, 21), (31, 23),

(31, 24), equal to 1/4 and all other elements 0.

Let h be such that limn→∞ h(n) = 0. We define the matrix of transfer proba-

bilities between Ii and Ij as

P (n) =
[
p

(n)
i,j

]
1≤i,j≤4

= h(n) · A , where A =



0 0.4 0.5 0

0.3 0 0 0.8

0.7 0 0 0.5

0 0.6 0.6 0


.

We define position dependent probabilities p
(n)
1 , p

(n)
2 as in (3.17). The random map

T (n) = {τ1, τ2; p
(n)
1 , p

(n)
2 } has matrix MT (n) with rows the same as the rows of Mτ1
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except for rows 6, 8, 13, 17, 20, 24, 29, 31 defined by

row(6,MT (n)) = (1− p(n)
1,2 )row(6,Mτ1) + p

(n)
1,2 · row(6,Mτ2) ,

row(8,MT (n)) = (1− p(n)
1,3 )row(8,Mτ1) + p

(n)
1,3 · row(8,Mτ2) ,

row(13,MT (n)) = (1− p(n)
2,1 )row(13,Mτ1) + p

(n)
2,1 · row(13,Mτ2) ,

row(17,MT (n)) = (1− p(n)
2,4 )row(17,Mτ1) + p

(n)
2,4 · row(17,Mτ2) ,

row(20,MT (n)) = (1− p(n)
3,1 )row(20,Mτ1) + p

(n)
3,1 · row(20,Mτ2) ,

row(24,MT (n)) = (1− p(n)
3,4 )row(24,Mτ1) + p

(n)
3,4 · row(24,Mτ2) ,

row(29,MT (n)) = (1− p(n)
4,2 )row(29,Mτ1) + p

(n)
4,2 · row(29,Mτ2) ,

row(31,MT (n)) = (1− p(n)
4,3 )row(31,Mτ1) + p

(n)
4,3 · row(31,Mτ2) .

The T (n)-invariant measure µT (n) has been obtained using Maple. We define the

vector α(n) = [µT (n)(I1), µT (n)(I2), µT (n)(I3), µT (n)(I3)]. Then,

α(n) =
1

126509
[25416, 52668, 14130, 34295] +O(h(n)) .

The matrix Q is defined as in (3.20). The left 1-eigenvector of Q is equal to

limn→∞ α
(n).

For ε := h(n) close to 0 the matrix corresponding to Frobenius–Perron operator

of T (n) has, except 1, three other eigenvalues close to 1 but different from 1. For

ε = 10−3 they are 0.9997176900 , 0.9998399077 and 0.9998924535. For ε = 10−4

we obtained 0.9999717673, 0.9999839914, 0.9999892419.
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Chapter 4

Singular limits of absolutely

continuous invariant measures for

families of transitive maps

4.1 Introduction

The existence of chaos in deterministic systems has been known for a long time.

In such systems it is impossible to make accurate predictions of the long-term

behaviour of trajectories. However, it may be possible to make statistical pre-

dictions with the use of invariant measures. Of such measures, the ones that are

absolutely continuous with respect to the Lebesgue measure play the most impor-

tant role. In particular, these measures are physically meaningful (in the sense

that we explained in the Introduction). Consider a system with a unique abso-

lutely continuous invariant measure . In practice, due to measurement errors, one

is really dealing with a perturbation of the system. It is natural to ask whether the
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acim of the perturbed system is in some sense close to the acim of the unperturbed

system. We will consider here one-dimensional dynamical systems and show that

even in very simple systems the question of this type of stability is difficult.

When we deal with piecewise expanding maps, we know that for each of them

an acim exists, as was proved by Lasota and Yorke [25]. Moreover, if the map

is transitive, then this measure is unique (it follows immediately from the results

of [26]). Consider the case when there is an invariant interval such that the

trajectory of almost every point falls into this interval, and the map restricted to

this interval is transitive. Then there is also a unique acim, and it is supported by

this invariant interval. Keller in [23] used this property to construct an example in

which such an interval exists for some interval of parameters, and as the parameter

converges to a limit value, those intervals become shorter and shorter. Then the

weak-∗ limit of acim’s is a measure concentrated at one point, while the limit map

is transitive and has an acim with the support equal to the whole phase space. He

conjectured that this is the only mechanism in which the continuity of the acim’s

can be violated. We are showing here that other mechanisms can exist.

The chatper is organized as follows. In Section 4.2 we briefly describe Keller’s

example. In Section 4.3 we construct our own example. Then we study it in

Section 4.4, where we compute the invariant density, and in Section 4.5, where we

compute limit measures. In Section 4.6 we look at what happens if the slopes on

laps (intervals of monotonicity) are constant, similarly as in the Keller’s example.

Finally, in Section 4.7 we review what we did, and pose some additional questions.
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4.2 Keller’s example

Keller [23] showed that a large class of piecewise expanding maps, namely those

that admit uniform Lasota-Yorke bounds, are acim-stable (in the sense of weak-∗

convergence of acim’s). However, many simple dynamical systems exist that do not

fall into this category. Keller’s example mentioned in the preceding section looks

as follows. Consider a 3-parameter family {Wa,b,r : 1/2 ≤ a, b ≤ 1; 0 < r < 1/2}

of maps of the interval [0, 1] into itself, defined on [0, 1/2] by

Wa,b,r(x) =


a
(
1− x

r

)
if 0 ≤ x ≤ r,

2b
1−2r

(x− r) if r ≤ x ≤ 1/2,

and on (1/2, 1] by Wa,b,r(x) = Wa,b,r(1− x) (see Figure 4.1).

c b

Figure 4.1: Map W6/7,3/5,3/20.

Those maps are piecewise expanding and, if 1/2 < b ≤ 1 − 2r, then the

trajectory of almost every point falls into the invariant interval [c, b], where c =

2b(1 − b − r)/(1 − 2r), on which the map is transitive. Thus, for any sequence

(an, bn, rn) converging to (a, 1/2, 1/4), if 1/2 < bn ≤ 1 − 2rn for all n, the acim’s
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of Wan,bn,rn converge to the measure concentrated at 1/2. On the other hand,

Wa,1/2,1/4([0, 1]) = [0, a] and on [0, a] this map is transitive. Therefore it has an

acim with the support [0, a]. Keller conjectured that for continuous maps of the

interval, the only way such acim-instability can occur is if small neighborhoods of

the orbit of a periodic turning point of the unperturbed map are invariant under

the perturbed maps.

The acim-instability of a dynamical system is closely related to sensitive de-

pendence on parameters defined by M. Misiurewicz in [27]. It is shown in [27] that

the popular class of logistic maps has sensitive dependence on parameters which

implies they are not acim-stable. However, there the acim-instability is based on

the fact that for most of the maps there is no acim, and instead we consider Sinai-

Ruelle-Bowen (or physical) measures, that are often concentrated on attracting

periodic orbits.

Let us also mention that by the result of Raith [30], if the family of maps

consists of unimodal maps with constant slope, then we have acim-stability. When

we say “slope,” we mean the absolute value of the slope.

4.3 Construction of transitive W -maps

Let I = [0, 1] and let T : I → I be a continuous map. Let P be a partition of I

given by the points 0 = a0 < a1 < · · · < an = 1. For i = 1, . . . , n let Ii = [ai−1, ai]

and denote the restriction of T to Ii by Ti. If Ti is a homeomorphism from Ii onto

some connected union of intervals of P , i.e., some interval [aj(i), ak(i)], then T is

said to be Markov. The partition P = {Ii}ni=1 is referred to as a Markov partition

with respect to T . If each Ti is also linear on Ii, we say T is a piecewise linear
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Markov transformation. For a piecewise linear Markov transformation we define

the incidence matrix AT = (aij)
n
i,j=1 induced by T and P by

aij =


1 if Ij ⊂ T (Ii),

0 otherwise.

In Keller’s example perturbations of the map left a small neighborhood of 1/2

(the turning fixed point of the unperturbed map) invariant. Therefore the measure

piled up at 1/2 as the size of the perturbation decreased. In our example we allow

for the leak of the measure from small neighborhoods of 1/2. We have some nearly

invariant interval surrounding 1/2; we will call it the box, because we are thinking

about the graph of the map. We define perturbations of the map such that the

measure can escape through some small interval centered at 1/2, contained in the

box. If Keller’s conjecture were true, we would see a convergence of acim’s of

perturbed maps to the acim of the limiting map. However, by controlling how

fast the measure escapes out of the box and how fast it comes back into it, we

prove that the measure can still pile up at 1/2. We define perturbations based

on three parameters a, b and c, as shown in Figure 4.2. Parameter a represents

the size of the box. Parameter b is the size of the opening through which measure

escapes. In this way we control how much of the measure escapes out of the box.

Parameter c is the height of the peak that sticks out of the box; it controls how

long the measure stays out of the box.

More precisely, we define a 3-parameter family W (a, b, c) of piecewise linear
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maps of the unit interval as follows. If 0 ≤ x ≤ 1/2 then

W (a, b, c)(x) =



(1− 4x) if 0 ≤ x ≤ 1
4
,

2−2a
1−2a

(
x− 1

4

)
if 1

4
≤ x ≤ 1−a

2
,

2a
a−b x−

(1−a)(a+b)
2(a−b) if 1−a

2
≤ x ≤ 1−b

2
,

2c
b
x+ 1+a

2
+ c− c

b
if 1−b

2
≤ x ≤ 1

2
;

and if 1/2 < x ≤ 1 then W (a, b, c)(x) = W (a, b, c)(1 − x) (see Figure 4.2). In

particular, we have W (a, b, c)(0) = 1, W (a, b, c)(1/4) = 0, W (a, b, c)((1− a)/2) =

(1− a)/2, W (a, b, c)((1− b)/2) = (1 + a)/2, W (a, b, c)(1/2) = (1 + a)/2 + c.

a

a

c

b

Figure 4.2: Graph of W (a, b, c) = W2(a, b) for a = 1/10, b = 11/405, c = 16/405,
and its Markov partition.
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Let

s1 = 4, s2 =
2− 2a

1− 2a
, s3 =

2a

a− b
, s4 =

2c

b
(4.1)

denote the slopes of W (a, b, c) on the consecutive pieces of [0, 1/2] on which the

slope is constant.

Lemma 4.1. If 0 < b < a < 1/2 and b < c ≤ (1− a)/2, then the map W (a, b, c)

is transitive. Likewise, the map W (0, 0, 0) is transitive.

Proof. Assume that 0 < b < a < 1/2 and b < c ≤ (1−a)/2. Then all the slopes are

larger than some constant α > 2. Suppose an interval J of length |J | is contained in

a lap of W (a, b, c). Then W (a, b, c)(J) either contains a lap, or contains an interval

K contained in a lap, with |K| > (α/2)|J |. Since α/2 > 1, this proves that for

some n the interval W n(a, b, c)(J) contains a lap. Then W n+1(a, b, c)(J) ⊃ [0, 1/2],

and W n+2(a, b, c)(J) = [0, 1]. This proves transitivity of W (a, b, c).

For W (0, 0, 0) the situation is a little more complicated because the slopes

of the second and third laps are equal to 2. However, if K = W (0, 0, 0)(J) is

contained in the union of the first and second laps or in the union of the third and

fourth laps, then (because the slope of the first and fourth laps is 4) the length of

W 2(0, 0, 0)(J) is equal to max(4p, 2q) for some non-negative p, q with p+ q = |K|.

The function p 7→ 4p is increasing, while the function p 7→ 2(|K|−p) is decreasing.

Therefore the minimum of max(4p, 2q) occurs at the point where 4p = 2q, that

is, p = (1/3)|K|. This proves that max(4p, 2q) ≥ (4/3)|K|. Thus, the only reason

why the proof from the preceding paragraph may not work for W (0, 0, 0) is that

W k(0, 0, 0)(J) contains 1/2 in its interior for some k. However, 1/2 is a fixed

point, and its left-hand-sided neighborhood grows under the action of W (0, 0, 0)

until some image contains the second lap. Then the next image contains the
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interval [0, 1/2], and again we get transitivity.

We will show that there exists a sequence (an, bn, cn) converging to (0, 0, 0)

such that the unique acim’s of W (an, bn, cn) converge to the measure concentrated

at 1/2 rather than the acim of W (0, 0, 0). With other choices of (an, bn, cn), other

behaviours are possible, as described in Theorem 4.1. We will choose the sequence

(an, bn, cn) so that the maps W (an, bn, cn) are Markov. More precisely, we require

that 1/2 is mapped to a point on the third lap, then for some time the trajectory

stays on the second lap, being repelled from the fixed point (1 − a)/2, until it

gets to 1/4. The number n is such that W n+1(an, bn, cn)(1/2) = 1/4. The point

symmetric to W (a, b, c)(1/2) with respect to 1/2 is (1− a)/2− c and the slope on

the interval [1/4, (1− a)/2] is s2. Thus we get the equation

c ·
(

2− 2a

1− 2a

)n
=

1− a
2
− 1

4
.

The solution to this equation is

c = cn(a) =
1− 2a

4

(
1− 2a

2− 2a

)n
. (4.2)

When we specify an and bn, then we will take cn = cn(an).

Let us denote Wn(a, b) = W (a, b, cn(a)). This map is a Markov map on n + 8

subintervals {Ii}n+8
i=1 . The first subinterval is [0, 1/4]. then there come n subinter-

vals of [1/4, (1− a)/2] determined by the images of 1/2, then 4 subintervals of the

box, 2 subintervals of [(1 + a)/2, 3/4], and finally [3/4, 1] (see Figure 4.2).
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4.4 Invariant density

Generally, the density of an acim for a map of the interval cannot be written

in a closed form. However, for a piecewise linear Markov map this density can

be calculated. Let T be a piecewise linear Markov map with incidence matrix

AT = (aij)
k
i,j=1. Define MT = (mij)

k
i,j=1 by mij = aij/|T ′i |. If T admits a unique

invariant density, then the invariant density is piecewise constant on the intervals

of the Markov partition and is given by the left eigenvector of the matrix MT

corresponding to eigenvalue 1 (for a reference see [9]). This vector is normalized

so that the total measure is 1.

Let An be the incidence matrix for Wn(a, b). Then the entry aij of An is equal

to 1 in the following cases:

• 1 ≤ j ≤ n and i ∈ {1, j + 1, n+ 7, n+ 8},

• j = n+ 1 and i ∈ {1, n+ 1, n+ 6, n+ 8},

• n+ 2 ≤ j ≤ n+ 5 and i ∈ {1, n+ 2, n+ 5, n+ 8},

• j = n+ 6 and i ∈ {1, n+ 3, n+ 4, n+ 8},

• n+ 7 ≤ j ≤ n+ 8 and i ∈ {1, n+ 8}.

The slopes |T ′i |, according to (4.1), are

• 4 if i ∈ {1, n+ 8},

• (2− 2a)/(1− 2a) if 2 ≤ i ≤ n+ 1 or i ∈ {n+ 6, n+ 7},

• 2a/(a− b) if i ∈ {n+ 2, n+ 5},

• 2cn(a)/b if i ∈ {n+ 3, n+ 4}.
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This gives us the following equations for our eigenvector (x1, x2, . . . , xn+8). If

1 ≤ j ≤ n then

xj =
x1

4
+

1− 2a

2− 2a
xj+1 +

1− 2a

2− 2a
xn+7 +

xn+8

4
, (4.3)

xn+1 =
x1

4
+

1− 2a

2− 2a
xn+1 +

1− 2a

2− 2a
xn+6 +

xn+8

4
, (4.4)

if n+ 2 ≤ j ≤ n+ 5 then

xj =
x1

4
+
a− b

2a
xn+2 +

a− b
2a

xn+5 +
xn+8

4
, (4.5)

xn+6 =
x1

4
+

b

2cn(a)
xn+3 +

b

2cn(a)
xn+4 +

xn+8

4
, (4.6)

if n+ 7 ≤ j ≤ n+ 8 then

xj =
x1

4
+
xn+8

4
. (4.7)

Set

x1 = 1. (4.8)

Then from (4.7) we get

xn+7 = xn+8 =
1

3
. (4.9)

Next, from (4.5) we get

xn+2 = xn+3 = xn+4 = xn+5 =
a

3b
. (4.10)

Further, from (4.6) we get

xn+6 =
1

3
+

a

3cn(a)
. (4.11)
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Finally, from (4.4) we get

xn+1 = 1− 4a

3
+
a(1− 2a)

3cn(a)
. (4.12)

Now, in order to compute x2, x3, . . . , xn, we rewrite (4.3) as

xj+1 =
2− 2a

1− 2a
xj −

3− 4a

3− 6a
.

From this, we get by induction

xj = 1− 4a

3
+

4a

3

(
2− 2a

1− 2a

)j−1

.

Taking into account (4.2), we get for 1 ≤ j ≤ n+ 1

xj = 1− 4a

3
+
a(1− 2a)

3cj−1(a)
. (4.13)

Note that for j = n+ 1 this agrees with (4.12).

Now we have to find the normalizing factor

C =
n+8∑
j=1

|Ij|xj. (4.14)

The lengths of intervals Ij of our Markov partition are:

• 1/4 if j ∈ {1, n+ 8},

• cj−2 − cj−1 if 2 ≤ j ≤ n,

• cn−1 if j = n+ 1,
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• (a− b)/2 if j ∈ {n+ 2, n+ 5},

• b/2 if j ∈ {n+ 3, n+ 4},

• cn(a) if j = n+ 6,

• (1− 2a)/4− cn(a) if j = n+ 7.

Let us look at various parts of the sum (4.14) and their limits as a, b go to 0 and

n goes to infinity (so cn(a)→ 0). We have

|I1|x1+
n+8∑
j=n+6

|Ij|xj =
1

4
·1+cn(a)·

(
1

3
+

a

3cn(a)

)
+

(
1− 2a

4
− cn(a)

)
·1
3

+
1

4
·1
3
→ 5

12
,

(4.15)
n+5∑
j=n+2

|Ij|xj =

(
2 · a− b

2
+ 2 · b

2

)
· a

3b
=
a2

3b
, (4.16)

and

|In+1|xn+1 = cn−1(a) ·
(

1− 4a

3
+
a(1− 2a)

3cn(a)

)
→ 0. (4.17)

Finally,

n∑
j=2

|Ij|xj =
n∑
j=2

(cj−2(a)− cj−1(a)) ·
(

1− 4a

3
+
a(1− 2a)

3cj−1(a)

)
.

We will compute this sum in two steps. First,

n∑
j=2

(cj−2(a)− cj−1(a)) ·
(

1− 4a

3

)
= (c0(a)− cn−1(a))

3− 4a

3
→ 1

4
. (4.18)

Next, since cj−2(a)− cj−1(a) = cj−1(a)/(1− 2a), we have

n∑
j=2

(cj−2(a)− cj−1(a)) · a(1− 2a)

3cj−1(a)
= (n− 1)

a

3
. (4.19)
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Thus, we get

lim inf
n∑
j=2

|Ij|xj =
1

4
+ lim inf

na

3
, lim sup

n∑
j=2

|Ij|xj =
1

4
+ lim sup

na

3
. (4.20)

Now we see that the behaviour of the invariant density as a, b go to 0 and n

goes to infinity depends on the behaviour of the quantities a2/b and na. However,

it turns out that only a2/b matters.

Lemma 4.2. Let 0 < bn < an < 1/2 and bn < cn ≤ (1− an)/2 with an, bn, cn → 0

as n → ∞, and cn = cn(a). If nan → α on a subsequence, with α ∈ (0,∞], then

(a2
n/bn)/(nan)→∞ on the same subsequence.

Proof. By (4.2), we have cn < 2−n−2, so 1/bn > 2n+2. Therefore

a2
n/bn

(nan)2
>

2n+2

n2
→∞

as n → ∞. Thus, if nan → α > 0 on a subsequence, then (a2
n/bn)/(nan) →

α · ∞ =∞ on the same subsequence.

Using the same methods, it is very easy to find the density of the acim for

W (0, 0, 0). We get a Markov partition into 4 intervals: [0, 1/4], [1/4, 1/2], [1/2, 3/4]

and [3/4, 1]. The density on the first two intervals is 3/2, and on the last two 1/2.

4.5 Limit measures

Now we investigate what happens with the acim’s µn for Wn(an, bn) as n goes to

infinity and an, bn go to 0. We denote by µ the acim for W (0, 0, 0) and by δ1/2 the

Dirac delta measure at 1/2.
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Theorem 4.1. Let 0 < bn < an < 1/2 and bn < cn(an) ≤ (1 − an)/2 with

an, bn → 0 and a2
n/bn → β ∈ [0,∞] as n→∞. Then

lim
n→∞

µn =
2

2 + β
µ+

β

2 + β
δ1/2 (4.21)

in the weak-∗ topology.

Proof. We can write µn as the sum of three measures: νn + σn + τn, defined as

follows. They are all absolutely continuous with respect to the Lebesgue measure,

and their densities are:

• for νn:

xj/C on Ij for j = 1, n+ 1, n+ 6, n+ 7, n+ 8,

(3− 4a)/(3C) on Ij for j = 2, . . . , n,

0 on Ij for j = n+ 2, . . . , n+ 5,

• for σn:

xj/C on Ij for j = n+ 2, . . . , n+ 5,

0 on all other Ij,

• for τn:

a(1− 2a)/(3Ccj−1(a)) on Ij for j = 2, . . . , n,

0 on all other Ij,

where a = an, and Ij, xj and C depend on n.

Consider now three cases, depending on the value of β.
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Case I: β = 0. Then by (4.16), σn → 0. Moreover, by Lemma 4.2, nan → 0, so

by (4.19) τn → 0. Therefore the limit of the measures µn is the same as the limit

of measures νn. By (4.15), (4.16), (4.17) and (4.20), the limit of C as n → ∞ is

5/12 + 1/4 = 2/3, and thus the density of νn is 3/2 on [0, 1/4], 1/2 on In+7 ∪ In+8

(and this interval converges to [1/2, 1]), and (3−4a)/2 on
⋃n
j=2 Ij (and this interval

converges to [1/4, 1/2]. The total measure on remaining intervals converges to 0,

and thus νn → µ. This proves (4.21) in this case.

Case II: β ∈ (0,∞). The only difference between this case and the preceding

one is that this time σn converges to a positive constant times δ1/2. This changes

the constant by which we divide xj’s to get the density of νn. By (4.16) and the

computations from Case I we know that

lim
n→∞

σn([0, 1])/ lim
n→∞

νn([0, 1]) =
β/3

2/3
=
β

2
.

Thus the constant mentioned above is β/(2 +β), and the limit of the measures νn

is 2/(2 + β) times µ instead of just µ. This proves (4.21) in this case.

Case III: β =∞. Then

lim
n→∞

σn([0, 1])/ lim
n→∞

νn([0, 1]) = lim
n→∞

σn([0, 1])/ lim
n→∞

τn([0, 1]) =∞,

so

lim
n→∞

µn = lim
n→∞

σn = δ1/2.

This proves (4.21) in this case.

The above theorem does not yet prove that the example we claimed we built

really exists. Namely, we have to show that the sequences (an) and (bn) satisfying
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its conditions exist. We can also settle the question whether in such examples we

can have slopes bounded independently of n.

Theorem 4.2. For every β ∈ [0,∞] there exist sequences (an) and (bn) satisfying

the assumptions of Theorem 4.1 and such that for sufficiently large n all slopes of

the maps Wn(an, bn) are in (2, 4].

Proof. The slopes of Wn(an, bn) are 4, (2 − 2an)/(1 − 2an), 2an/(an − bn) and

2cn(an)/bn. Under the assumptions of Theorem 4.1, they are all larger than 2.

Additional conditions guaranteeing that they are not larger than 4 are

an ≤
1

3
, bn ≤

an
2
, cn(an) ≤ 2bn.

Thus, we need to show that we can find sequences (an) and (bn) of positive numbers

convergent to 0, with a2
n/bn → β and

2bn ≤ an ≤
1

3
,

cn(an)

2
≤ bn < cn(an) <

1− an
2

when n is sufficiently large.

We define numbers βn as follows. If β = 0 then βn = 1/n. If β ∈ (0,∞) then

βn = β for all n. If β = ∞, then βn = n. Then we define continuous functions

fn : [0, 1/2)→ R by

fn(a) =
5a2

4cn(a)
.

Note that fn(0) = 0 and if a > 0 then fn(a) > 5a22n. For all values of β we have√
βn/5 · 2−n/2 → 0, so for sufficiently large n there exists an ∈ (0,

√
βn/5 · 2−n/2)

such that fn(an) = βn, and we have an → 0. Therefore cn(an) < (1 − an)/2 for

sufficiently large n.
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Set bn = (4/5)cn(an). Then cn(an)/2 < bn < cn(an). Moreover, a2
n/bn =

fn(an) = βn, so a2
n/bn → β. We have

an
bn

=
βn
an

>
βn√

βn/5 · 2−n/2
=
√

5βn · 2n/2 →∞.

Therefore 2bn ≤ an for sufficiently large n. Thus, the sequences (an) and (bn)

satisfy all properties they were supposed to satisfy.

4.6 Maps with constant slopes on laps

In this section we study the special case when the slope of W (a, b, c) is constant

on each lap of the map (see Figure 4.3). This means that

Figure 4.3: Map W (a, b, c) with constant slopes on laps.

2− 2a

1− 2a
=

2a

a− b
=

2cn(a)

b
,

that is,

b =
a2

1− a
, cn(a) =

a2

1− 2a
. (4.22)
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In view of (4.2), we get an equation

(
2a

1− 2a

)2

=

(
1− 2a

2− 2a

)n
.

For a = 0, the left hand side of this equation is 0, while the right hand side is

positive. For a = 2−(n+2)/2 the left hand side is larger than 2−n, while the right

hand side is smaller than 2−n. Therefore it has a solution an ∈ (0, 2−(n+2)/2). Then

we set bn = a2
n/(1− an).

Let us check whether the assumptions of Theorem 4.1 are satisfied. Since

an ∈ (0, 2−(n+2)/2), we get an < 1/2 and an → 0. Then 0 < bn < an and

bn < cn(an) follow immediately from (4.22). The inequality cn(an) ≤ (1− an)/2 is

equivalent to an ≤ 1/3, so it is satisfied for all n ≥ 2. We have a2
n/bn = 1−an → 1.

Therefore, by Theorem 4.1 we get

µn →
2

3
µ+

1

3
δ1/2.

Thus, even in this simple case the limit of the acim’s of the maps Wn(an, bn)

is not the acim for W (0, 0, 0).

4.7 Discussion and questions

Let us review our example. As we mentioned in Section 4.3, parameters a, b and

c play different roles. The size b of the hole in the box, compared to the size a

of the box, determine how fast the measure leaks from the box. The parameter c

controls how long the part of the measure that left the box stays outside. However,

according to Theorem 4.1, only the ratio a2/b plays any role in determining the
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limit behaviour. This is due to the additional assumption that b < c. It is a

technical assumption, used in Lemma 4.1 to make the slopes larger than 2. In

fact, that lemma is probably also true without this assumption; while some slopes

may be even less than 1, for an appropriate iterate of the map they should become

larger than 2. Thus, we are left with the question: why does it seem that the size

of c is irrelevant in the limit behaviour of acim’s? The answer is in Lemma 4.2.

For this lemma to hold, we need n2b to converge to 0, and if c is too small then n

is too large. Thus, the heuristic arguments are correct.

Let us now pose a couple of questions. The first one is whether it is important

in our example that the maps are Markov (or even Markov with this specific

Markov partition). While the “common sense” suggests that everything should be

similar in the non-Markov case, estimates of the density of the acim do not seem

to be simple.

The second question is about unimodal maps. As we mentioned in Section 4.2,

if the family of the maps consists of unimodal maps with the constant slope,

in this family we have acim-stability. However, there is an interesting family of

unimodal maps, for which the acim-stability is unknown. It is defined as follows

(see Figure 4.4).

A(a, b)(x) =


1−a
b
x+ a if 0 ≤ x ≤ b,

1
1−b(1− x) if b ≤ x ≤ 1.

Consider the map A(1/2, 1/2). It seems that this map is acim-stable in this

family. This example is the simplest example one can make whose acim-stability

seem not to follow from any of the existing techniques. We remark that this map

79



Figure 4.4: Map A(1/2, 1/2).

is not a “good” map as defined in [4]. A unimodal map is good in this sense if its

critical point is not periodic or it is periodic of period n and inf |(fn)′| > 2.
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Chapter 5

Conclusions

In this work we tackled the problem of existence and stability of acim’s in some

chaotic dynamical systems in one and higher dimensions.

First, we considered the problem of eventual expansion of maps of the unit

interval. Since this property is a common assumption in most theorems on the

existence of acim’s, it is important that one be able to verify whether a map is

eventually expanding or not. We constructed a family of piecewise linear maps

defined on two laps, one expanding and one contracting, and we showed that under

additional assumptions these maps are eventually expanding. We conjectured that

such maps are eventually expanding in general (without additional assumptions on

the slopes). As described in the Introduction, the validity of this conjecture follows

from a recent preprint (see [13]); however, the methods of proof are different. We

used elementary mathematics to prove the eventual expansion of our family of

maps. It is conceivable that this problem and its proof could be generalized

to other piecewise linear maps of the interval or even slightly nonlinear ones by

approximation. These results could also be investigated in a higher dimensional
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setting. In general, the problem of eventual expansion has rarely been studied and

there is room for much improvement.

Next we turned to the problem of stability. In Chapter 3, we showed that

random maps with position dependent probabilities in a multidimensional setting

are acim-stable under weak expansion conditions (in the sense that maps with low

probabilities could be non-expanding). We used this result to model metastable

systems which often appear as a result of perturbation of a a dynamical system

with several invariant components. It was shown that the acim’s of perturbations

converge to a convex combination of ergodic acim’s of the unperturbed map with

weights proportional to probabilities of escape through the holes.

We also studied the stability of a class of continuous, piecewise linear maps

of the interval called W -maps. The main characteristic of W -maps is that they

contain a periodic turning point. It has been well-known that perturbations near

such points create difficulties in obtaining stability results; however, to our knowl-

edge there has not been any stability results for this type of systems up to now. In

Chapter 4, a three-parameter family of W -maps where constructed to show that

transitivity of continuous maps of the interval containing a fixed turning point

does not imply their acim-stability. There are still many open questions left unan-

swered regarding the stability of maps with periodic turning points. Section 4.7

discusses a few such questions.

W -maps, as described in Chapter 4, also exhibit a metastable behaviour. It

would be interesting to explore this property in higher dimensional setting and for

other maps of the interval with periodic turning points.

In conclusion, this work has attempted to shed light on some of the darker

corners of the area of dynamical systems as far as existence and stability of acim’s
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are concerned.
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