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ABSTRACT

A Comparison of Two Nonparametric Density Estimators in the Context of Actuarial

Loss Model

Mengjue Tang

In this thesis, I will introduce two estimation methods for estimating loss function in actuar-

ial science. Both of them are related to nonparametric density estimation (kernel smoothing).

One is derived from transformation based kernel smoothing while the other one is derived

from a generalization of Hille’s lemma and a perturbation idea that results in a density esti-

mator similar to the kernel density estimator. Both these methods are appropriate for density

estimation for non-negative data in general and for actuarial losses in particular. There exist

many nonparametric density estimation methods in the literature, but which one should be

more appropriate in the context of actuarial losses? I will conduct a simulation study on both

of the competing density estimators. The transformation based estimator has been recom-

mended in the literature to be appropriate for the actuarial losses; however, the present study

indicates that the new asymmetric kernel density estimator that uses a perturbation idea near

zero performs equally well locally as well as globally for many long tailed distributions. The

new method is also much simpler to use in practice and hence may be recommended to prac-

titioners in actuarial science.
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Chapter 1

Introduction to Kernel Smoothing

With ever increasing demand of efficient decision-making, as well as extensive use of large

database and the rise of data mining, the scope of parametric methods is limited, and this

makes the nonparametric density estimation come into play. There are many kinds of non-

parametric density estimation methods, such as histogram estimation, kernel density esti-

mation (Parzen-Rosenblatt window method), nearest neighbor estimation and so on. Parzen

(1962) proposed fixed bandwidth kernel density estimation, establishing the principle of the

bandwidth selection and expanding the utilization of the kernel estimate in mathematical

statistics. Rosenblatt (1965) extended this method of estimation to estimation of derivatives

of the density. Given a data set, kernel smoothing, or kernel density estimation method can

effectively exhibit the data structure without assuming a parametric model. Hence it is widely

used nowadays in the areas of social science, medical care, actuarial science and so on. Esti-

mating actuarial loss model is a very interesting and very important problem for all actuaries.

Traditional parametric method is computational and with high efficiency but lower uncer-

tainty. Nonparametric method becomes more and more popular because of the development

of computer science. If the computation time is no longer a problem for us, we show more
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interest to nonparametric estimation (Izenman, 1991).

1.1 General Method of Kernel Density Estimation

1.1.1 Definition

Suppose X1,X2, · · · · · · ,Xn is an independent and identically-distributed sample of a random

variable X with its density function f (x), then the kernel density estimator of f (x) is given

by

f̂ (x;h) =
1

nh

n

∑
i=1

K

(

x− xi

h

)

, (1.1)

where K is called the kernel function, which is usually a symmetric density function, and h is

a smoothing parameter, called bandwidth.

Many kinds of kernel functions are available in practice such as Biweight, Triangular, Epanech-

nikov, Exponential, Uniform, Gaussian and so on, however the standard Gaussian kernel is

more popular. Also, since the Gaussian probability density function is infinitely differen-

tiable, this leads to the same property of the probability density function estimator.

It has been observed that the choice of kernel function is not the crucial part in kernel

density estimation and any kernel function can guarantee the consistency of the density es-

timation (Wand and Jones, 1995). However, the bandwidth choice is crucial as it controls

the smoothness of the estimator; smaller is the bandwidth, rougher is the estimator. Kernel

smoothing is more popular due to its ease of application, mathematical analysis and asymp-

totic properties, such as strong consistency and asymptotic normality in case of independent
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and identically distributed data (Silverman, 1986).

1.1.2 Bandwidth Selection

There are several bandwidth selection criteria that can generally be classified into two cate-

gories. One is called “ quick and simple ” which can find a bandwidth very easily but without

too much mathematical computation. The other one is called “ hi-tech ” which is obviously

based on mathematical arguments. There are two methods classified into the first category,

that is, Rule-of-thumb and Maximal Smoothing Principle. Basically these two methods are

based on AMISE (the asymptotic mean integrated squared error). Before we formulate the

AMISE, it would be better to explain MISE (mean integrated squared error) that is given

below:

MISE{ f̂ (x;h)}= E

∫
{ f̂ (x;h)− f (x)}2dx

=
∫
{[Bias( f̂ (x;h))]2 +Var( f̂ (x;h))}dx

(1.2)

then we can prove that:

Bias( f̂ (x;h)) =
1

2
h2µ2(K) f

′′(x)+o(h2) (1.3)

and

Var{ f̂ (x;h)}= 1

nh
f (x)R(K)+o

(

1

nh

)

, (1.4)

where

µ2(K) =
∫

x2K(x)dx, and R(K) =
∫

K2(x)dx.

Hence the MSE (mean squared error) of f̂ is given by,

MSE{ f̂ (x;h)}= (nh)−1R(K) f (x)+
1

4
h4µ2

2(K)( f
′′(x))2 +o{(nh)−1 +h4}. (1.5)

MISE is obtained by integrating MSE and therefore we have

MISE{ f̂ (x;h)}= AMISE{ f̂ (x;h)}+o{(nh)−1 +h4},

3



where

AMISE{ f̂ (x;h)}= 1

nh
R(K)+

1

4
h4µ2(K)

2R( f ′′) (1.6)

We consider the kernel function K as a probability density function with mean zero, hence

we have:
∫
K(x)dx= 1,

∫
xK(x)dx= 0 and

∫
x2K(x)< ∞.

The optimal bandwidth may be determined by minimizing AMISE. If we differentiate the

RHS of the equation (1.6) with respect to h, the optimal bandwidth is as follows:

hAMISE =

[

R(K)

µ2(K)2R( f ′′)n

]1/5

. (1.7)

• Rule-of-thumb

The idea of Rule-of-thumb method was proposed by Deheuvels in 1977. However it is

also called Silverman’s Rule-of-thumb because it is popularized by Silverman (1986).

According to the equation (1.7), what we have to do is try to substitute the unknown

f by a reference distribution function. Deheuvels (1977) proposed K as the Gaus-

sian distribution and the standard normal distribution as reference distribution, then the

Rule-of-thumb yields the estimator:

ĥROT = 1.06σ̂n−1/5 (1.8)

with

R( f ′′) = σ̂−5 3

8
√

π
, (1.9)

where σ̂2 is the sample variance and n is the sample size.

However there is one problem with the method rule-of-thumb, that is, it is sensitive to

outliers. Silverman (1986) suggested a modified estimator which can alleviate this kind

of problem. The modified one is as follows:

ĥROT = 1.06min

{

σ̂,
Q

1.34

}

n−1/5, (1.10)
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where Q is interquartile range and Q= X[0.75n]−X[0.25n].

Both estimator (1.8) and (1.10) are quite helpful if the true density similar to the normal

distribution, but if the true density is far away from the normal distribution, we might

get a poor result by using the rule-of-thumb method.

• Maximal smoothing principle

This principle was introduced by Terrell (1990) that considers finding an upper bound

for R( f ′′). And the estimator according to the maximal smoothing principle method is

as follows:

ĥMSP = 3(35)−1/5σ̂

[

R(K)

µ2(K)2

]1/5

n−1/5 (1.11)

Terrell (1992) strongly advises the use of the“ quick and simple ” method because“ they start

with a sort of null hypothesis that there is no structure of interest, and let the data force us to

conclude otherwise. ”

The other category of bandwidth selection criterion is “ hi-tech ” and I have introduced it a

little bit at the beginning of this section. Since this method is based on mathematical argu-

ments, it appeals to practical applications. Asymptotically, optimal bandwidth selection can

be obtained by being switched to minimize MISE{ f̂ (· ;h)} if the distribution is continuous.

From the equation (1.2), we know that the value of MISE is the summation of Bias square

and Variance.

MISE{ f̂ (x;h)}=
∫
{[Bias( f̂ (x;h))]2 +Var( f̂ (x;h))}dx (1.12)

As from the equations (1.3) and (1.4), we know that Bias( f̂ (x;h)) goes up whileVar( f̂ (x;h))

goes down with the increasing of bandwidth h. That means we should consider both Bias

and Variance to make MISE as small as possible so as to achieve the optimal bandwidth.

Bias-variance trade-off becomes the key point of this problem.
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Next I will introduce three hi-tech bandwidth selection criterions which are commonly used:

Cross-validation (including Least squares cross-validation and Biased cross-validation) and

Plug-in method.

• Least squares cross-validation

The least squares cross-validation (LSCV) method was introduced by Rudemo (1982)

and Bowman (1984). It is based on the formulae of MISE:

MISE{ f̂ (x;h)}= E

∫
f̂ 2(x;h)dx−2E

∫
f̂ (x;h) f (x)dx+

∫
f 2(x)dx (1.13)

From the above equation, we can derive an unbiased estimator using the first two terms:

LSCV (h) =
∫

f̂ 2(x;h)dx− 2

n

n

∑
i=1

f̂−i(Xi;h), (1.14)

where f̂−i(x;h) = 1
n−1 ∑n

j 6=iKh(x−X j), Kh(u) =
1
h
K(u/h).

The minimizer ĥLSCV of LSCV (h) is then taken to be an estimator for the bandwidth.

Hence that we obtain the optimal bandwidth ĥLSCV .

• Biased cross-validation

The biased cross-validation was suggested by Scott and Terrell (1987). It is derived

from the formulae of AMISE:

AMISE{ f̂ (x;h)}= 1

nh
R(K)+

1

4
h4µ2(K)

2R( f ′′), (1.15)

where R(K) =
∫
K2(x)dx and µ2(K) =

∫
x2K(x)dx. Then we have a new estimator:

R̃( f ′′) = 1
n2 ∑∑i 6= j(K

′′
h ∗K′′h )(Xi−X j) which is proposed by Scott and Terrell (1987).

The biased cross validation minimizes AMISE{ f̂ (x;h)} with R( f ′′) replaced by R̃( f ′′).

That is, we minimize the following expression as suggested by Scott and Terrell (1987):

6



BCV (h) =
1

nh
R(K)+

1

4
h4µ2(K)

2R̃( f ′′). (1.16)

The corresponding bandwidth is denoted by hBCV .

• Plug-in method

The plug-in method was introduced by Sheather and Jones in 1991. Basically it is

based on BCV. We can obtain the optimal bandwidth h by differentiating the RHS of

the equation (1.6), we get:

hAMISE =

[

R(K)

µ2(K)2R( f ′′)n

]1/5

(1.17)

and then we use a kernel estimator R̂( f ′′) to replace the R( f ′′) in equation(1.17), this

leads to the plug-in estimator:

ĥDPI =

[

R(K)

µ2(K)2R̂( f ′′)n

]1/5

(1.18)

Usually R̂( f ′′) is derived from a “pilot ” kernel estimate of f ′′(x;h), which is,

f̂ ′′(x;h) =
1

nh3

n

∑
i=1

K′′
(

Xi− x

h

)

(1.19)

Taking the standard normal kernel φ(x), this becomes:

R̂( f ′′) =
1

n2(
√

2h)5

n

∑
i=1

n

∑
j=1

φ(4)
(

Xi−X j√
2h

)

(1.20)

The details about the bandwidth selection criteria can be found in Wand and Jones (1995).

And it comes up with a nature question: how to compare those criteria and which one leads to

a better result? Actually it is hard to identify which one is better, it depends on in what kind

of situations. Basically undersmoothing by LSCV and oversmoothing by BCV and plug-in

method show obvious uncertainty of bandwidth selection methods (Loader, 1999). We cannot
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fall in love with any one of them. And we can judge which method is better in a different

situations using real data example, simulation study and asymptotic analysis. Usually, the

performance of LSCV in real data example and simulation study shows a poor result and

that makes people feel disappointed in LSCV method. Same thing happens in asymptotic

studies because the BCV and Plug-in estimators have faster rate of convergence than that

of LSCV (Turlach, 1993). However if we take into account the central processing time, the

best bandwidth selection criterions are LSCV or BCV. LSCV and BCV methods take less

time and are more efficient than Plug-in method while plug-in provides estimates with a good

bias-variance trade-off (Mugdadi and Jetter, 2010). Obviously it is hardly fair to praise any

method theoretically. We may have prejudice on some of the bandwidth selectors. The only

thing we can do is when we are supposed to analyze a real data set or to do simulation, we

can apply different bandwidth selectors to the data and then try to find out the best one by

comparing all the possible bandwidths.

1.2 Transformations in Kernel Density Estimation

The kernel estimator gives us a new idea about estimating a density, but it fails to do with

some kinds of boundary problems. The kernel estimator performs very well only when the

density is quite similar to Gaussian distribution. Otherwise we may get a very poor result.

Suppose we have a random variable X1, ...Xn with its density function f (x). If the domain

is on [0,∞) and we have f (0) > 0, then we may find that f̂ (0) fails to estimates continuity

at boundary f (0). Wand, Marron and Rupert (1991) proposed an idea about general trans-

formation methods which can alleviate this problem more or less. Basically the transforma-

tion method is to obtain a new sample whose probability density function is approximately

8



symmetric as normal distribution. The transformation is given by Yi = T (Xi) where T is an

increasing differentiable function which is defined on the domain of f . Hence that the new

transformed kernel density estimator can be written as:

f̂ (x;h,T ) = n−1
n

∑
i=1

Kh{T (x)−T (Xi)}T ′(x) (1.21)

where Kh(·) = 1
h
K( ·

h
), K is kernel function.

However we still find some problems when we are using the transformation method to do

some data analysis. Let’s take the log transformation as an example, we get the follow-

ing transformation estimator: f̂ (x;h) = n−1 ∑n
i=1Kh{log(x)− log(Xi)}1

x
. If we examine the

density graph, we notice that “the method could not be fully satisfactory for reducing the

boundary bias.” (Chaubey et al., 2007). Then we may have to find out other methods to deal

with the boundary problem.

“ How to choose the transformation T ” is another important question. It quite depends on

the shape of the original density function. In the next chapter, I will discuss about it in detail.
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Chapter 2

Semi-parametric Transformation Kernel

Smoothing of Actuarial Loss Function

2.1 Actuarial Loss Model

A loss distribution is a distribution of a positive random variable that has long tail in order

to allow large claims. According to these properties, actuaries will use a method which has

positive domain and is good at estimating the density at the tails. Actually, it is equally for

actuaries to estimate all the possible losses (small losses, medium losses and large losses) in

a loss distribution. However large losses may suggest us to reconsider insurance contract,

which makes people pay more attention to the density tails. Traditionally, we use paramet-

ric models such as log-normal distribution or Pareto distribution or some kinds of mixture

of them which have relatively heavy tail. We have to notice that no matter what kind of

loss model we choose, it is only an approximation of real data. A loss model is a proba-

bility distribution depicting the probability for the number of dollars paid on an insurance

claims. Naturally the corresponding random variable is non-negative. If we use parametric

10



models, we have to compare the competing models so as to figure out which one is the best

and simplest. In case standard models don’t fit well, things get complicated for actuaries.

Nonparametric method may be useful in such cases where we have large insurance portfolios

(Klugman et al., 2008). If nonparametric smoothing method would help solving the problems

for actuaries, it will be widely used because of its lower uncertainty and simplicity. However

classical kernel smoothing fails to estimate the density tails. By noticing that, a method using

in the paper “Kernel density estimation of actuarial loss functions” (Bolance et al., 2002)

comes up, which is a slightly adjusted version of the semi-parametric transformation method

of Wand et al. (1991).

2.2 The Shifted Power Transformation

In the first chapter, we already know the very basic knowledge about transformation method.

In this section, we will mainly discuss about one family of transformations which is called

shifted power transformation. Basically it is an extension of Box-Cox transformation. With

respect to the paper Bolance et al. (2002), the semi-parametric transformed method behaves

very well in estimating actuarial loss functions because the transformation gives a symmetric

distribution. There are three reasons for doing so. Firstly, it is quite useful to deal with the

problem of heavy tail. Secondly, it is reasonable to use a simple rule-of-thumb bandwidth

selection criterion when estimating the density which can make things easier. Lastly, it more

or less alleviates the boundary problem.

The shifted power transformation modified by Wand et al. (1991) is

y= gλ(x) =















(x+λ1)
λ2 i f λ2 6= 0,

ln(x+λ1) i f λ2 = 0,

(2.1)

11



where λ1 >−min(X1, ...,Xn) and λ2 < 1. (λ1,λ2) are transformed parameters. According to

the equation (1.21), we can obtain the transformed density as follows:

fy(y,λ) = f{g−1
λ
(y)}(g−1

λ
)′(y) (2.2)

If we use the standard kernel density estimator, then the transformed density fy can be esti-

mated by the following estimator:

f̂ (x,λ) = g′λ(x)n
−1

n

∑
i=1

Kb(gλ(x)−gλ(Xi)) (2.3)

To estimate loss function using semi-parametric transformation method, we have to focus

on the transformation parameters selection and the bandwidth selection. Obviously they are

crucial parts of estimating loss models.

• Transformation parameters selection

In order to find the optimum value of λ, we minimize the MISE given in equation (2.3).

Substituting the optimal bandwidth h given in the equation (1.8) into the equation (1.6),

the MISE of the equation (2.3) becomes:

MISE{ f̂ (x,λ)}= 5

4
[µ2(K)R

2(K)]2/5R( f ′′y )
1/5n−4/5 (2.4)

where

R( f ′′y ) =
∫ +∞

−∞
[ f ′′y (y,λ)]

2dy (2.5)

Minimizing the quantity in the RHS of the equation (2.4) is equivalent to minimize the

quantity in the equation (2.5).

In order to estimate R( f ′′y ), Hall and Marron (1987) introduced the following estimator:

R̂( f ′′y ) = n−1(n−1)−1
n−1

∑
i=1

n

∑
j=i+1

c−5K×K{c−1(Yi−Yj)} (2.6)

12



Suppose that fy is a normal distribution, then the bandwidth c for the above estimator

can be estimated by the following equation:

ĉ= σ̂x(21/40
√

2n2)1/13 (2.7)

where σ̂x =
√

n−1 ∑n
i=1(Yi−Y )2 (Park and Marron (1990)).

After determining the optimal transformation parameters, we are going to select the

optimal bandwidth which will be used in the transformed estimator (2.3).

• Bandwidth selection

According to the bandwidth selection criteria which was introduced in Section 1.1.2,

we can simply use the rule-of-thumb method here since the true density is very similar

to normal distribution. This “quick and simple” method is very attractive for the actuar-

ies because it cause less time. Bolance used shifted power transformation to make the

density zero skewness. It seems reasonable to just apply the rule-of-thumb to estimate

the bandwidth. Then the following bandwidth estimator is:

b̂= 1.059σ̂xn
−1/5 (2.8)

Using the estimators for transformation parameters and bandwidth, we denote the corre-

sponding transformation estimator for equation (2.3) as f̂ (x, λ̂, b̂).

In the chapter 4, there is a simulation study to check if the semi-parametric transformation

kernel smoothing suitable for estimating actuarial loss models, as compared to a new non-

parametric density estimation method which will be introduced in the next chapter.
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Chapter 3

A New Smooth Density Estimator

Compared to the other kernel density estimators, the one I introduced in the Chapter 2 seems

more efficient. It is because the semi-transformation method more or less alleviates the

boundary problem which is also important in estimating some models including loss models.

However, it is not the only way to deal with the boundary problem and we are more interested

in finding a new estimator which is similar to kernel density estimator and without data trans-

formation. In order to simplify the computational process, Chaubey et al. (2007) proposed a

new smooth density estimator for non-negative random variables. The new estimator is based

on two ideas: one is generalization of Hille’s lemma and the other is perturbation idea. If we

combine these two ideas, we can find it quite helpful to alleviate the boundary problem. And

we are expecting it to be also efficient to the heavy tail estimation. I will compare the two

methods which are both efficient in dealing with the boundary and to find which one is rel-

atively better in estimating loss model (especially in estimating the tails) in the next chapter.

By performing simulation study on these two methods, we can easily find which one is more

suitable that cause less error for loss model theoretically. In the next section I will introduce

the general idea about the new smooth density estimator.

14



3.1 General Idea of the New Estimator

When we are estimating a density, we are always trying to look for a more efficient and easier

way. A new estimator derives from Hille’s lemma gives us a different idea to estimate non-

negative random variables.

Lemma 1 (Hille’s Lemma)

Let u(x) be any bounded and continuous function on R+. Then

e−λx ∑
k≥0

(λx)k

k!
u

(

k

λ

)

→ u(x),as λ→ ∞, (3.1)

uniformly in any finite interval in R+, where λ is a given non-negative constant.

The above lemma is introduced in Feller (1965) that had been used by Chaubey and Sen

(1996) for suggesting smooth density estimators based on Poisson probabilities. Later, Chaubey

et al. (2007) used a generalization of the above lemma in proposing a new kernel type density

estimator that will be outlined now.

Lemma 2 (Generalization of Hille’s lemma)

Let u(x) be any bounded and continuous function on R+and Gx,n be any family of distribution

with mean µn(x) and variance h2
n(x). Then

ũ(x) =
∫ ∞

−∞
u(t)dGx,n(t)→ u(x). (3.2)

uniformly in any finite interval in R+, where µn(x)→ x and hn(x)→ 0.

Next suppose we have a random variable X1,X2, ...,Xn, the empirical distribution function Fn

is defined as follows:

Fn(x) =
1

n

n

∑
i=1

I(Xi ≤ x),x≥ 0 (3.3)
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Now if we apply lemma 2 to estimate a distribution function by substituting u(x) by the

empirical distribution function Fn(x), we obtain the following equation

F̃n(x) =
∫ ∞

−∞
Fn(t)dGx,n(t)→ Fn(x). (3.4)

For a non-negative random variable X , suppose the cumulative distribution function is F , then

the survival function S is defined as

S(x) = 1−F(x) (3.5)

Then the equations (3.4) and (3.5) motivate the following estimator of F(x)

F+
n (x) = 1− 1

n

n

∑
i=1

Qvn

(

Xi

x

)

(3.6)

Qv(x) is a distribution on positive domain with mean 1 and variance v2, where vn → 0 as

n→ ∞.

Obviously, if we take the derivative of F+
n (x), we can obtain the estimator of density function

f (x) as follows

d

dx
(F+

n (x)) =
1

nx2

n

∑
i=1

Xiqvn

(

Xi

x

)

(3.7)

In the above equation, we note that x cannot be zero, hence we modify the above estimator

by just simply applying the idea of perturbation, that gives the following estimator:

f+n (x) =
1

n(x+ εn)2

n

∑
i=1

Xiqvn

(

Xi

x+ εn

)

,x≥ 0 (3.8)

where εn→ 0 at an appropriate rate as n→ ∞.

In order to deal with the boundary problem better, Chaubey et al. (2007) suggested a corrected

version of the estimator (3.8). That is

f ∗n (x) =
f+n (x)

cn
(3.9)
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where cn is a constant and has the value of

cn =
1

n

n

∑
i=1

Qvn

(

Xi

εn

)

(3.10)

Therefore our new estimator is as follows:

f ∗n (x) =
1

(x+εn)2 ∑Xiqvn(
Xi

x+εn
)

∑Qvn(
Xi
εn
)

(3.11)

When we study the asymptotic properties of the new estimator, we find that the new estimator

is strongly consistent which is a very important property in estimation theory. Also the new

estimator has the asymptotically normal distribution. By proving all the asymptotic theorems,

we can conclude that the new estimator is reasonable and will work quite well in practice.

All the proofs are given in the paper of Chaubey et al. (2007).

It seems that both of the estimators work quite good theoretically, especially in dealing with

the boundary problem. However when estimating the loss model, it is more important to es-

timate the tail. So in the next chapter, I will compare the two estimators by simulating some

loss models and find how different they are.

After introducing the new estimator, we have to decide: how to choose the smoothing pa-

rameters of the equation (3.11)? For the new estimator (3.11), we usually take the function

Qvn(.) to be the Gamma distribution function with shape 1/v2 and scale v2. Then what we

have to do is to decide how to obtain the optimal values of v and εn. We already know the

new estimator is quite similar to the kernel smoothing, so we can simply apply the bandwidth

selection criterions in the section 1.1.2 to the new estimator. And we may find that those

criterions work quite good for the new smooth density estimator.
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3.2 Selection of the Smoothing Parameters

According to the asymptotic studies and previous experience, BCV method is more preferable

because of its relatively faster convergence and its more efficiency. We can use the BCV

criterion to determine what is the optimal smoothing parameters. According to the section

1.1.2, the BCV method is based on AMISE. Firstly we find the values of Bias and Variance

of estimator (3.9) which is not difficult. The Bias and the Variance of estimator (3.11) can

be obtained easily given that the Bias and the Variance of estimator (3.9). We need to use

the definition of Bias and Variance, together with Taylor’s expansion and the asymptotic

properties of the equation (3.9). More details can be found in the paper Chaubey et al. (2007).

Hence that we can obtain the following information about the new estimator (3.11):

Bias[ f ∗n (x)] =
xv2

n+ εn
cn

f ′(x)+o(v2
n+ εn), v2

n→ 0 and εn→ 0. (3.12)

Var[ f ∗n (x)] =
I2(q) f (x)

nc2
nvn(x+ εn)

+o((nvn)
−1), vn→ 0, εn→ 0 and nvn→ ∞ (3.13)

Where I2(q) = 1/
√

4π.

MSE shows up when we combine the Bias and the Variance

MSE[ f ∗n (x)] =
I2(q) f (x)

nc2
nvn(x+ εn)

+

[

xv2
n+ εn
cn

f ′(x)

]2

+o(v2
n+ εn)+o((nvn)

−1) (3.14)

After taking integration of MSE, we get the value of MISE as follows:

MISE[ f ∗n (x)] =
I2(q)

nc2
nvn

∫ ∞

0

f (x)

x+ εn
dx+

∫ ∞

0

[

xv2
n+ εn
cn

f ′(x)

]2

dx+o(v2
n+ εn)+o((nvn)

−1)

(3.15)
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With respect to the asymptotic property, we know that the leading term of MISE is so called

AMISE which is the key to the parameter selection. The leading term of MISE is:

AMISE[ f ∗n (x)] =
I2(q)

nc2
nvn

∫ ∞

0

f (x)

x+ εn
dx+

∫ ∞

0

[

xv2
n+ εn
cn

f ′(x)

]2

dx (3.16)

Recalling the method BCV in the chapter 1, we get the BCV by substituting f (x) by f ∗n (x) in

the equation (3.16):

BCV =
I2(q)

nc2
nvn

∫ ∞

0

f ∗n (x)
x+ εn

dx+
∫ ∞

0

[

xv2
n+ εn
cn

f ∗
′

n (x)

]2

dx (3.17)

The pair of (vn,εn) which can minimize the above BCV function (3.17) is our best choice

of parameters. Let’s denote it as (v̂n, ε̂n). By knowing the optimal estimator for smoothing

parameters and bandwidth, we denote the corresponding new estimator for equation (2.3) as

f̂ (x, v̂n, ε̂n). Next Chapter I will compare the performance of the two estimators f̂ (x, λ̂, b̂) and

f̂ (x, v̂n, ε̂n).
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Chapter 4

A Simulation Study

4.1 Introduction

In order to compare the two estimators in Chapter 2 and Chapter 3, I take advantage of sim-

ulation method. Similar to the paper of Bolance et al. (2002), I also consider 6 loss models

and compute two measures of departure from the target distribution. These are based on the

values of ISE (integrated squared error) and WISE (weighted integrated squared error) that

will be defined later in this section. For WISE, the weights are proportional to x2 as this

measure puts smaller weights for densities closer to zero, i.e. at tails of the distribution. Still

these measures are appropriate for global comparison of the density estimators. In order to

judge the estimators locally we would like to compare expected squared errors in specific

regions of supports, for example in the tail of the distribution. In actuarial science, we use

some densities which allow skewed and heavy tail distributions such as Pareto or lognormal

or some kinds of mixture of them. In order to figure out this problem more comprehensive,

the six loss models we generate are: a Weibull distribution with parameter 1.5, a lognormal

distribution with parameters (0,0.5), a lognormal distribution with parameters (0,1), a mixture
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model of 70% lognormal distribution with parameters (0,1) and 30% Pareto distribution with

parameter 1, a mixture model of 40% lognormal distribution with parameters (0,1) and 60%

Pareto distribution with parameter 1, a mixture model of 10% lognormal distribution with

parameters (0,1) and 90% Pareto distribution with parameter 1. The domain for each model

is on positive.

I generate n (n=100, n=200, n=1000) random numbers from the above six models, then exam-

ine the performance of the two estimator by comparing the ISE and WISE. Each simulation

will be conducted replicated 100 times in order to get a more accurate result. The basic idea

of calculating ISE is as follows:

ISE =
∫ +∞

−∞
{ f̂ (x)− f (x)}2dx (4.1)

As we can see, the ISE is the squared value of the distance between the estimated density and

the simulated density, integrated over the support of the distribution and WISE is similarly

interpreted, where the weights are x2, thus

WISE =
∫ +∞

−∞
{ f̂ (x)− f (x)}2x2dx. (4.2)

To compare the two estimators based on simulation, we could use simulated averages of ISE

and WISE, however, we have considered the following two measures as goodness of the

estimators as in Bolance et al. (2002):

D1 =
1

n

n

∑
i=1

{ f̂ (Xi)− f (Xi)}2, (4.3)

D2 =
1

n

n

∑
i=1

{ f̂ (Xi)− f (Xi)}2X2
i . (4.4)
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In order to see the distribution of these divergence measures, we repeat the sampling 100

times for each sample size. Even though this provides a limited study, it does give a relative

comparison of the two estimators based on the same set. A small number of replications is

chosen, specially for local comparison as the computing time required becomes enormous

for larger replications. In the next section I provide, the mean, median and sd (standard devi-

ation) of simulated values D1 and D2.

4.2 Global Comparison of the Two Estimators

Here are the results of global comparison for the two estimations. Smaller value of D1 and

D2 indicate better performance of the corresponding estimation method.

Table 4.1: Transformation estimator with Weibull distribution (c=1.5)

n= 100 n= 200 n= 1000

ISE mean 0.01344 0.00737 0.00191

median 0.00990 0.00530 0.00157

sd 0.01091 0.00595 0.00145

WISE mean 0.00680 0.00371 0.00091

median 0.00532 0.00281 0.00082

sd 0.00536 0.00311 0.00049
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Table 4.2: New estimator with Weibull distribution (c=1.5)

n= 100 n= 200 n= 1000

ISE mean 0.01053 0.00694 0.00257

median 0.00757 0.00566 0.00181

sd 0.00892 0.00499 0.00239

WISE mean 0.00591 0.00394 0.00142

median 0.00442 0.00319 0.00101

sd 0.00478 0.00279 0.00142

According to these summary statistics presented in the tables, the transformation method

performs pretty much the same as the new estimator for the first three models. When n is

large enough, the D1 and D2 values for the transformation method are a little smaller than

those of the new estimator. However the new estimator seems better than the transformation

method for the other three mixture models as based smaller values of D1 and D2 for the new

estimator. Usually loss models have long tails in order to allow large claims. If we sketch the

graphs of each simulated density, we can find that which model is more suitable to describe

a loss model. The simulated densities of all these six models are presented in Figure 4.1.
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Table 4.3: Transformation estimator with lognormal distribution (σ = 0.5)

n= 100 n= 200 n= 1000

ISE mean 0.00617 0.00418 0.00141

median 0.00549 0.00350 0.00121

sd 0.00444 0.00277 0.00094

WISE mean 0.00419 0.00290 0.00103

median 0.00364 0.00239 0.00088

sd 0.00298 0.00202 0.00075

Table 4.4: New estimator with lognormal distribution (σ = 0.5)

n= 100 n= 200 n= 1000

ISE mean 0.00857 0.00538 0.00166

median 0.00758 0.00487 0.00124

sd 0.00625 0.00351 0.00128

WISE mean 0.00638 0.00396 0.00125

median 0.00586 0.00352 0.00095

sd 0.00467 0.00266 0.00103
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Table 4.5: Transformation estimator with lognormal distribution (σ = 1)

n= 100 n= 200 n= 1000

ISE mean 0.00438 0.00271 0.00081

median 0.00368 0.00215 0.00068

sd 0.00421 0.00207 0.00055

WISE mean 0.00209 0.00134 0.00042

median 0.00176 0.00102 0.00033

sd 0.00192 0.00105 0.00031

Table 4.6: New estimator with lognormal distribution (σ = 1)

n= 100 n= 200 n= 1000

ISE mean 0.00481 0.00289 0.00084

median 0.00400 0.00247 0.00070

sd 0.00369 0.00190 0.00062

WISE mean 0.00247 0.00148 0.00044

median 0.00209 0.00125 0.00034

sd 0.00197 0.00010 0.00036
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Table 4.7: Transformation estimator with mixture model 30% Pareto + 70% lognormal

n= 100 n= 200 n= 1000

ISE mean 0.02917 0.02244 0.02659

median 0.00728 0.00427 0.00178

sd 0.09478 0.09789 0.19054

WISE mean 0.00994 0.00736 0.00816

median 0.00329 0.00195 0.00069

sd 0.02839 0.02941 0.05716

Table 4.8: New estimator with mixture model 30% Pareto + 70% lognormal

n= 100 n= 200 n= 1000

ISE mean 0.00610 0.00371 0.00142

median 0.00508 0.00332 0.00111

sd 0.00468 0.00244 0.00097

WISE mean 0.00296 0.00177 0.00068

median 0.00252 0.00158 0.00053

sd 0.00214 0.00112 0.00048
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Table 4.9: Transformation estimator with mixture model 60% Pareto + 40% lognormal

n= 100 n= 200 n= 1000

ISE mean 0.31726 0.30106 0.06680

median 0.01245 0.00865 0.00349

sd 2.75066 2.38577 0.38046

WISE mean 0.18993 0.18068 0.04003

median 0.00724 0.00529 0.00203

sd 1.65005 1.43128 0.22826

Table 4.10: New estimator with mixture model 60% Pareto + 40% lognormal

n= 100 n= 200 n= 1000

ISE mean 0.00802 0.00317 0.00137

median 0.00429 0.00305 0.00123

sd 0.00947 0.00201 0.00084

WISE mean 0.00262 0.00099 0.00042

median 0.00132 0.00092 0.00037

sd 0.00318 0.00063 0.00025
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Table 4.11: Transformation estimator with mixture model 90% Pareto + 10% lognormal

n= 100 n= 200 n= 1000

ISE mean 0.88790 0.40273 0.08531

median 0.01966 0.01221 0.00671

sd 7.02564 2.16752 0.31053

WISE mean 0.58946 0.44495 0.02704

median 0.01436 0.00809 0.00361

sd 3.45938 2.51473 0.10225

Table 4.12: New estimator with mixture model 90% Pareto + 10% lognormal

n= 100 n= 200 n= 1000

ISE mean 0.01746 0.00467 0.00175

median 0.00776 0.00310 0.00156

sd 0.02113 0.00625 0.00091

WISE mean 0.00174 0.00045 0.00017

median 0.00077 0.00030 0.00016

sd 0.00213 0.00062 0.00009

28



0 2 4 6 8 10
0
.0

0
.2

0
.4

0
.6

Weibull Density with Parameter 1.5

x

f(
x
)

0 2 4 6 8 10

0
.0

0
.4

0
.8

Lognormal Density with Parameters (0,0.5)

x

f(
x
)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

Lognormal Density with Parameters (0,1)

x

f(
x
)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

x

f(
x
)

Mixture of 70% Lognormal and 30% Pareto

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

x

f(
x
)

Mixture of 40% Lognormal and 60% Pareto

0 2 4 6 8 10

0
.0

0
.4

0
.8

x

f(
x
)

Mixture of 10% Lognormal and 90% Pareto

Figure 4.1: Simulated densities of the six loss models

Usually actuaries prefers to use the mixture model such as the mixture of 30% Pareto and

70% lognormal when they want to simulate a loss model. Hence if we focus on the table 4

and table 4’, we find that the D1 values for the new estimator are much less than that of trans-

formation method when n is large. And also the values of D2 point out similar performance.

We notice that the D2 values for the new estimator are smaller than that of transformation

method no matter whether n is large or not. When a density has a relatively heavy tail, the

performance of the new estimator appears to be much better than the transformation method
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by comparing the six parts of tables. As a result, we can say that the new method is better

than the transformation method not only when estimating a density on the whole domain, but

also on the tails.

This is further illustrated using the local comparison described further.

4.3 Local Comparison of the Two Estimators

For the local comparison, I plot the average squared errors based on the 100 replications for

each density, i.e., I plot the values of

ASE(x) =
1

100

100

∑
i=1

{ f̂[i](x)− f (x)}2, (4.5)

where f̂[i](x) is the density estimator of f (x) based on the ith replication.

“A graph is worth a thousand words,” and this is very well depicted in the present case. The

graphs can explain the tail estimation more clearly and vividly.

These graphs are for the sample size n = 100 for the six models studied in this thesis. The

solid line represents the performance of the new estimator and the dash line stands for the

transformation method.
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Figure 4.2: Average integrated squared error for Weibull distribution(c=1.5).
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Figure 4.3: Average integrated squared error for lognormal distribution(σ = 0.5).
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Figure 4.4: Average integrated squared error for lognormal distribution(σ = 1).
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Figure 4.5: Average integrated squared error for mixture of 30% Pareto and 70% lognormal.
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Figure 4.6: Average integrated squared error for mixture of 60% Pareto and 40% lognormal.
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Figure 4.7: Average integrated squared error for mixture of 90% Pareto and 10% lognormal.
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Focussing on the tails of the distribution, we see from Figure 4.1 that the new estimator is

pretty much similar to the transformation estimator in terms of ASE(x) when estimating the

tail. However, in general we can say that the new method prosed by Chaubey et al. (2007)

performs better than the transformation method on the whole domain for the Weibull distri-

bution. Further looking at the Figure 4.2, the transformation estimator seems better than the

new estimator when estimating the tail, however, only slightly, this being true on the whole

support in this case. Figure 4.3 is for another lognormal distribution with parameter 1, but

a larger variance and hence more heavier tail than the previous lognormal distribution. Here

again, for estimating the tail, the performance of both the methods is very similar to each

other but the new estimator seems better than the transformation method overall. Figures 4.4,

4.5 and 4.6 reflect the situation of the mixture loss models. We can clearly see that the tail es-

timation for both of the methods is pretty much the same in the cases of mixture models 1 and

2. While on the whole domain, we can say that the new estimator seems a little better than

the transformation estimator for the first two mixture models. For the third mixture model,

the transformation estimator seems better than the new estimator, especially in the lower tail

of the distribution. To sum it up, the two methods are very comparable when estimating the

loss models and the new method is relatively computationally more efficient than the trans-

formation method and the transformation method does not offer any significant advantage.

4.4 Conclusion

When actuaries analyze loss models, they are always striving for a more accurate and eas-

ier method. Both of the two methods are quite good on estimating distributions describing
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actuarial loss because they both alleviate the boundary problem and provide a meaningful

description of the loss. However the transformation method is too complicated to implement

without offering any significant advantage in terms of local or global comparison. Although

they just simply use rule-of-thumb to determine the bandwidth in the paper Bolance et al.

(2002), it may have to choose the transformation function in order to get a symmetric density.

On the other hand, the new method proposed by Chaubey et al. (2007), performs pretty much

as good as the transformation method in estimating some loss models, and may show better

performance in some cases. For actuarial analysis of loss models, the tail estimation is more

important. According to the simulation results based on global as well as local comparisons,

we have enough evidence to conclude that the new method performs better or is qualitatively

comparable to the transformation method, especially for the tail estimation. Also we note that

the new method is computationally much simpler than the transformation method because we

don’t need extra computation time to choose the optimal transformation.

In order to facilitate the use of nonparametric density estimation, we always look to make

things easier and more approachable. The new method proposed by Chaubey et al. (2007)

presents such a method which adapts the kernel method for the whole real line to the non-

negative data by using asymmetric kernels. It provides the actuaries a new perspective in

order to estimate loss models non-perimetrically that is computationally very efficient and

seems as good as competing methods available in the literature. Overall, it is good for us to

have many different estimators to use and each method has its own pros and cons, and any

decision maker has to find a balance between the computational efficiency and accuracy of

procedure. The new density estimator seems to provide such a balance for estimating loss

models.
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Appendix A: R-codes for Computing D1 and D2

for the Transformation Method (An example for

Weibull distribution with c=1.5)

#Parameters selection

fn1=function(y,r){

n=length(y)

r1=r[1]

r2=r[2]

z=rep(0,n)

for (i1 in 1:n){

if(r2==0){z[i1]=log(y[i1]+r1)}

else{z[i1]=(y[i1]+r1)ˆr2}

}

return(z)

}

fn11=function(y,r){

n=length(y)

r1=r[1]

r2=r[2]

s=0

for (i in 1:(n-1)){

for (j in (i+1):n){

if(r2==0){
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s=s+(sqrt(mean((fn1(y,r)-mean(fn1(y,r)))ˆ2))*((21/(40*sqrt(2)*nˆ2)))ˆ(1/13))ˆ(-5)*

(dnorm(1/(sqrt(mean((fn1(y,r)-mean(fn1(y,r)))ˆ2))*((21/(40*sqrt(2)*nˆ2)))ˆ(1/13))*

(log(y[i]+r1)-log(y[j]+r1))))ˆ2}

else{s=s+(sqrt(mean((fn1(y,r)-mean(fn1(y,r)))ˆ2))*((21/(40*sqrt(2)*nˆ2)))ˆ(1/13))ˆ

(-5)*(dnorm(1/(sqrt(mean((fn1(y,r)-mean(fn1(y,r)))ˆ2))*((21/(40*sqrt(2)*nˆ2)))ˆ

(1/13))*((y[i]+r1)ˆr2-(y[j]+r1)ˆr2)))ˆ2}

}

}

s=s/(n*(n-1))

return(s)

}

bandwidth=function(y,r){

n=length(y)

r1=r[1]

r2=r[2]

if(r2==0){b=1.059*sqrt(mean((log(y+r1)-mean(log(y+r1)))ˆ2))*nˆ(-1/5)}

else{b=1.059*sqrt(mean(((y+r1)ˆr2-mean((y+r1)ˆr2))ˆ2))*nˆ(-1/5)}

return(b)

}

fn2=function(x,y,r,h){

n=length(x)

r1=r[1]

r2=r[2]

f=rep(0,n)
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for (i in 1:n){

if(r2==0){

f[i]=(mean(dnorm((log((y+r1)/(x[i]+r1)))/h))/(h*(x[i]+r1))-dweibull(x[i],1.5))ˆ2}

else{

f[i]=(mean(dnorm((((y+r1)ˆr2-(x[i]+r1)ˆr2)/h)))/h*(r2*(x[i]+r1)ˆ(r2-1))-

dweibull(x[i],1.5))ˆ2}

}

return(f)

}

fn3=function(x,y,r,h){

n=length(x)

r1=r[1]

r2=r[2]

k=rep(0,n)

for (i in 1:n){

if(r2==0){

k[i]=(x[i]ˆ2*mean(dnorm((log((y+r1)/(x[i]+r1)))/h))/(h*(x[i]+r1))-x[i]ˆ2*

dweibull(x[i],1.5))ˆ2}

else{

k[i]=(x[i]ˆ2*mean(dnorm((((y+r1)ˆr2-(x[i]+r1)ˆr2)/h)))/h*(r2*(x[i]+r1)ˆ(r2-1))-x[i]ˆ2*

dweibull(x[i],1.5))ˆ2}

}

return(k)

}
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n=100

times=100

M1=rep(0,times)

M2=rep(0,times)

for (i in 1:times){

set.seed(1+i*times)

y=rweibull(n,1.5)

a=optim(c(0, 0),fn11,y=y,lower=c(0,100),upper=c(-100,1),method ="L-BFGS-B")

r=a$par

h=bandwidth(y,r)

}

#Comparison of D1 and D2

bandwidth=function(y){

n=length(y)

b=1.059*sqrt(mean((log(y)-mean(log(y)))ˆ2))*nˆ(-1/5)

return(b)

}

fn2=function(x,y,h){

n=length(x)

f=rep(0,n)

for (i in 1:n){

f[i]=(mean(dnorm((log((y)/(x[i])))/h))/(h*(x[i]))-dweibull(x[i],1.5))ˆ2

}
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return(f)

}

fn3=function(x,y,h){

n=length(x)

k=rep(0,n)

for (i in 1:n){

k[i]=(x[i]ˆ2*mean(dnorm((log((y)/(x[i])))/h))/(h*(x[i]))-x[i]ˆ2*dweibull(x[i],1.5))ˆ2

}

return(k)

}

n=100

times=100

M1=rep(0,times)

M2=rep(0,times)

for (i in 1:times){

set.seed(1+i*times)

y=rweibull(n,1.5)

h=bandwidth(y)

M1[i]<-mean(fn2(y,y,h))

M2[i]<-mean(fn3(y,y,h))}
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Appendix B: R-codes for Computing D1 and D2 for

the New Method (An example for Weibull distribu-

tion with c=1.5)

fn1<-function(x,y,h){

n1<-length(y)

h1<-h[1]

h2<-h[2]

f1<-0

f2<-0

f3<-0

f4<-0

for (j in 1:n1){

l<-dgamma(y[j]/(x+h2),h1,h1)

f1<-f1+y[j]*l

f2<-f2+((y[j])ˆ2)*l

f3<-f3+((y[j])ˆ3)*l

f4<-f4+y[j]*dgamma(y[j]/h2,h1,h1)

}

f1<-f1/n1;f2<-f2/n1;f3<-f3/n1;f4<-f4/n1/(1/h2ˆ2);

g1<-sqrt(h1)*(f1)/(((x+h2)ˆ3)*sqrt(4*pi)*n1)+((h2+x/h1)*(h1/(x+h2)ˆ4*f2-(h1+1)/

(x+h2)ˆ3*f1)+xˆ2/(2*h1)*(h1ˆ2/(x+h2)ˆ6*f3-(2*h1ˆ2+4*h1)/(x+h2)ˆ5*f2+

(h1ˆ2+3*h1+2)/(x+h2)ˆ4*f1)+f4*h2*f1/(x+h2)ˆ2)ˆ2

return(g1)
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}

bcv<-function(y,h){

h1<-h[1]

h2<-h[2]

a<-integrate(fn1,lower=0,upper=Inf,y=y,h=h,abs.tol=0.1ˆ100)

b<-a$value

return(b)

}

fn2<-function(x,y,h){

n2<-length(x)

h1<-h[1]

h2<-h[2]

f<-rep(0,n2)

for (i1 in 1:n2){

f[i1]<-(mean(dgamma(y/(x[i1]+h2),h1,h1)*y)/(((x[i1]+h2)ˆ2)*mean(pgamma(y/h2,h1,h1)))

-dweibull(x[i1],1.5))ˆ2

}

return(f)

}

fn3<-function(x,y,h){

n3<-length(x)

h1<-h[1]

h2<-h[2]

k<-rep(0,n3)
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for (i2 in 1:n3){

k[i2]<-(mean(dgamma(y/(x[i2]+h2),h1,h1)*y)/(((x[i2]+h2)ˆ2)*mean(pgamma

(y/h2,h1,h1)))*x[i2]ˆ2-dweibull(x[i2],1.5))ˆ2*x[i2]ˆ2

}

return(k)

}

n<-100

times<-100

M1<-rep(0,times)

M2<-rep(0,times)

for (i in 1:times){

set.seed(i+i*times)

y<-rweibull(n,1.5)

d<-optim(c(3,0.01),bcv,y=y,lower=c(1,0.1ˆ(200)),upper=c(200,1),method ="L-BFGS-B")

h<-d$par

if(h[2]<0) h[2]=0

M1[i]<-mean(fn2(y,y,h))

M2[i]<-mean(fn3(y,y,h))

}

46


