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ABSTRACT

Comparison theorems for the principal eigenvalue of the Laplacian

Yasmine Raad

We study the Faber - Krahn inequality for the Dirichlet eigenvalue problem of the

Laplacian, first in RN , then on a compact smooth Riemannian manifold M . For the

latter, we consider two cases. In the first case, the compact manifold has a lower bound

on the Ricci curvature, in the second, the integral of the reciprocal of an isoperimetric

estimator function of the Riemannian manifold is convergent. In all cases, we show

that the first eigenvalue of a domain in RN , respectively M , is minimal for the ball

of the same volume, respectively, for a geodesic ball of the same relative volume in

an appropriate manifold M∗. While working with the isoperimetric estimator, the

manifold M∗ need not have constant sectional curvature. In RN , we also consider the

Neumann eigenvalue problem and present the Szegö - Weinberger inequality. In this

case, the principal eigenvalue of the ball is maximal among all principal eigenvalues

of domains with same volume.
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Notations

• R+ denotes all positive real numbers.

• RN denotes the N-dimensional Euclidean space.

• For any measurable subset E of RN , |E| denotes the N-dimensional Lebesgue

measure.

• For any x ∈ RN , ‖x‖ denotes the standard, Euclidean norm of x in RN .

Let Ω be a bounded domain (open, connected) in RN , and let u : Ω → R be an

arbitrary smooth function on Ω. Then

• ∂Ω = Ω̄ \ Ω denotes the boundary of Ω.

• ∇u denotes the gradient of u in Ω.

• ∆u = div (∇u) is the Laplacian of u in Ω.

• Let A = {a ∈ R, |{u > a}| = 0} be the set of essential upper bounds and

B = {b ∈ R, |{u < b}| = 0} be, respectively, the set of essential lower bounds.

Then

ess sup(u) =

 inf A, if A 6= Ø,

+∞, otherwise.
(1)

and

ess inf(u) =

 supB, if B 6= Ø,

−∞, otherwise.
(2)

• C(Ω) denotes the space of continuous functions on Ω.

• C(Ω) denotes the space of continuous functions on Ω̄ = Ω ∪ ∂Ω.

• Ck(Ω) denotes the space of k-times continuously differentiable functions on Ω,

for 1 ≤ k <∞.
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• Ck(Ω) denotes the space of k-times continuously differentiable functions on Ω

whose all derivatives up to the order k have continuous extensions to Ω.

• C∞ denotes the space of infinitely differentiable functions, or also called smooth

functions.

• D(Ω) denotes the space of C∞(Ω) functions with compact support in Ω.

• Lp(Ω) denotes the space of measurable functions that are p-integrable; its norm

is denoted by ‖ . ‖p,Ω.

• W k,p(Ω) denotes the Sobolev space of order k of functions in Lp(Ω) whose all

(distribution) derivatives up to order k are in Lp(Ω).

• W k,p
0 (Ω) denotes the closure of D(Ω) in W k,p(Ω).

• Hm(Ω) = Wm,2(Ω).

• Hm
0 (Ω) = Wm,2

0 (Ω).

Let (M, g) be a smooth Riemmanian manifold with Riemannian metric g. Let Ω be

a bounded domain in M and let u be a smooth real function on Ω. Then

• V (Ω) denotes the n-dimensional volume with respect to g, also referred to as

the volume, of a domain Ω ⊆M .

• A(Ω) denotes the (n − 1)-dimensional volume of ∂Ω induced by g, also called

the surface area of Ω ⊆M .

• |∇u| denotes the norm of the gradient of u whether it is in RN or with the

metric on the Riemannian manifold (M, g).

viii



Chapter 1

Introduction and Prerequisites

1.1 Introduction

Our aim was to understand the use of symmetrization in proving isoperimetric in-

equalities. Studying the Schwarz symmetrization led naturally to the Faber - Krahn

and Szegö - Weinberger inequalities for a class of elliptic operators in RN which

included the Laplacian. These inequalities compare the principal eigenvalue of the

operator on a bounded domain Ω ⊂ RN to the corresponding eigenvalue of the op-

erator on a ball of RN with the same volume as Ω. At the core of the proofs lie the

Schwarz symmetrization of the eigenfunction on Ω. Along the way, we consider a

couple of variations of the eigenvalue problem of the Laplace operator on bounded

Euclidean domains from −∆u = λu to −∆u = λPu, with P any positive continu-

ous function, with both Dirichlet and Neumann boundary conditions. Following the

work of Kesavan, we give our own proofs of two inequalities related to this new prob-

lem, and generalizing Faber - Krahn, respectively Szego - Weinberger for the Laplace

operator in RN , see Proposition 2.3.1, and Proposition 2.4.1.

Next, we consider the Laplace - Beltrami operator on a smooth N -dimensional

Riemannian manifold (M, g) without boundary. There exists a classical result of
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Chavel [3], going back to the 20’s, which states roughly the following. If for any

Ω ⊆ M open domain whose volume equal to the volume of a geodesic ball Bk(r) in

an N -dimensional manifold M∗ with constant sectional curvature k, we have that

Area(∂Ω) ≥ Area(∂Bk(r)), then the first Dirichlet eigenvalue of the Laplacian on

Ω is greater than the first Dirichlet eigenvalue of the Laplacian on Bk(r). Given

an arbitrary Riemannian manifold, this hypothesis is hard to check. It is, however,

implied by a certain Ricci curvature bound and we choose to present here the proof

of the Faber - Krahn inequality on (M, g) under this Ricci curvature bound, which

also implies the compactness of M . Once again one symmetrizes the eigenfunction

corresponding to λ(Ω) which, even if on (M, g) versus (M∗ = SN , g∗), resembles

closely the Schwarz symmetrization in RN . Here SN is the unit sphere in RN+1

with the induced metric. Finally, we asked ourselves whether M∗ really needs to be

a space of constant curvature or is it only a matter of convenience implied by the

above symmetrization. There are very few results in this direction. We encountered

a comment made by Bérard in [1], page 96, about the validity of the Faber - Krahn

inequality on a compact Riemannian manifold M where the principal eigenvalue of

the Laplacian on a domain Ω ⊂ M is compared with the corresponding principal

eigenvalue of a domain in a manifold M∗ which has revolution symmetry, but, in

general, it is not SN . The hypothesis needed here is based on the isoperimetric profile

of the manifold M and, unfortunately, in general, it is not easy to check either. The

proof of Theorem 3.4.1 is the result of our own work to conclude Bérard’s assertion.

The paper is structured as follows. We continue this chapter with the basics of the

Schwarz symmetrization. In Chapter 2, we concentrate on eigenvalue problems for

domains in RN , while Chapter 3 deals entirely with the Dirichlet eigenvalue problem

on Riemannian manifolds.
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1.2 Schwarz symmetrization

For any measurable subset E of RN , denote by |E| its N-dimensional Lebesgue mea-

sure, and by E∗ the ball centered at the origin and having the same Lebesgue measure

as E. We will denote by ωN , the volume of the unit ball in RN .

Let Ω ⊂ RN be a bounded set and let u : Ω → R be a measurable function. For

t ∈ R, given the following level sets

{u > t} = {x ∈ RN ;u(x) > t}, (1.1)

the distribution function of u is defined by

µu(t) = |{u > t}|. (1.2)

This is a decreasing function that takes the value 0 for t ≥ ess sup (u), and the value

|Ω| for t ≤ ess inf (u). Therefore the range of this function is [0, |Ω|].

Furthermore, u#, the decreasing rearrangement of u, is given as

u# : [0, |Ω|] → R

s → u#(s) =

 ess sup(u), if s = 0,

inf{t ; µu(t) < s}, if s > 0.
(1.3)

Definition 1.2.1. Let Ω ⊂ RN be a bounded set. Let u : Ω → R be a measurable

function. Its Schwarz symmetrization u∗, also known as the spherically symmetric

decreasing rearrangement, is the function

u∗ : Ω∗ → R

x 7→ u∗(x) = u#(ωN‖x‖N). (1.4)
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Properties of the Schwarz symmetrization [10]

a. The function u∗ is radially symmetric and decreasing.

b. The functions u, u#, u∗ are all equimeasurable, i.e. they all have the same

distribution function. More precisely,

|{u > t}| = |{u# > t}| = |{u∗ > t}|, ∀t ∈ R. (1.5)

c. If F : R → R is a Borel measurable function such that F (u) ∈ L1(Ω), or

F (u) ≥ 0, then ∫
Ω

F (u(x)) dx =

∫
Ω∗
F (u∗(x)) dx. (1.6)

In particular, ∫
Ω

u(x) dx =

∫
Ω∗
u∗(x) dx, (1.7)

when u is integrable over Ω. Moreover, u and u∗ have the same Lp norms, i.e.

‖u‖p,Ω = ‖u∗‖p,Ω∗ .

d. If ψ : R→ R is a non-decreasing function, then

(ψ(u))∗ = ψ(u∗). (1.8)

e. For any measurable set E ⊂ Ω, we have

∫
E

u(x) dx ≤
∫ |E|

0

u#(s) ds =

∫
E∗
u∗(x) dx. (1.9)

The equality holds above if and only if (u|E)∗ = u∗|E∗ .

f. The Hardy - Littlewood inequality: For f ∈ Lp(Ω) and g ∈ Lq(Ω), where p and
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q are such that
1

p
+

1

q
= 1, then

∫
Ω

f(x)g(x) dx ≤
∫ |Ω|

0

f#(s)g#(s) ds =

∫
Ω∗
f ∗(x)g∗(x) dx. (1.10)

g. The Pólya - Szegö inequality: For 1 ≤ p < ∞, and u ∈ W 1,p
0 (Ω), with u ≥ 0,

then ∫
Ω∗
|∇u∗|p dx ≤

∫
Ω

|∇u|p dx. (1.11)

Moreover, u∗ ∈ W 1,p
0 (Ω∗).
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Chapter 2

The Eigenvalue Problem in RN

2.1 Introduction

Let Ω ⊂ RN be a bounded domain. For 0 < α < β, define M(α, β,Ω) to be the set

of all N × N matrices A = (aij(x)), whose coefficients are functions on Ω and they

satisfy the ellipticity condition

α‖ξ‖2 ≤ Aξ · ξ ≤ β‖ξ‖2, ∀ξ ∈ RN , (2.1)

for almost every x ∈ Ω.

Define the second order elliptic differential operator L corresponding to such a

matrix by

L(u) = −div (A∇u), (2.2)

and consider, for a given f ∈ L2(Ω), the elliptic boundary value problem:

 L(u) = f in Ω

u = 0 on ∂Ω.
(2.3)

A function u ∈ C2(Ω) that satisfies (2.3) is called a classical solution of the

6



problem. Assume that u is a classical solution of (2.3) and take a test function

ϕ ∈ D(Ω), where D(Ω) is the set of smooth functions on Ω with compact support.

Multiplying both sides of the equation in (2.3) by ϕ, and integrating over Ω, we get:

∫
Ω

L(u)ϕ =

∫
Ω

fϕ,∫
Ω

−div (A∇u)ϕ =

∫
Ω

fϕ. (2.4)

By applying Green’s theorem A1.2, as ϕ ∈ D(Ω) and thus ϕ = 0 on ∂Ω, we have

−
∫
∂Ω

A∇uϕ+

∫
Ω

A∇u · ∇ϕ =

∫
Ω

fϕ∫
Ω

A∇u · ∇ϕ =

∫
Ω

fϕ. (2.5)

As D(Ω) is dense in H1
0 (Ω), equality (2.5) holds for any v ∈ H1

0 (Ω), and therefore

∫
Ω

A∇u · ∇v =

∫
Ω

fv, ∀v ∈ H1
0 (Ω). (2.6)

Note that, if u ∈ C2(Ω) and u = 0 on ∂Ω, then u ∈ H1
0 (Ω).

Defining the bilinear form

a(u, v) =

∫
Ω

A∇u · ∇v, ∀u, v ∈ H1
0 (Ω), (2.7)

a solution u ∈ H1
0 (Ω) of (2.3) is also a solution of

a(u, v) =

∫
Ω

fv, ∀v ∈ H1
0 (Ω). (2.8)

We call u ∈ H1
0 (Ω) as above a weak solution. The existence and uniqueness of a weak

solution is long known, see for example [9].
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2.2 The Rayleigh Quotient

Theorem 2.2.1 ([9]). Consider the eigenvalue problem:

 L(u) = λu in Ω

u = 0 on ∂Ω.
(2.9)

There exist an orthonormal basis {ϕAn}n of L2(Ω) and a sequence of positive real

numbers {λAn}n with

0 < λA1 < λA2 ≤ λA3 ≤ ... ≤ λAn ...→∞, (2.10)

 L(ϕAn ) = λAnϕ
A
n in Ω

ϕAn ∈ H1
0 (Ω),

(2.11)

and

a(ϕAn , v) = λAn (ϕAn , v), ∀v ∈ H1
0 (Ω), (2.12)

where (. , .) is the standard inner product in L2(Ω).

Proof. Let f ∈ L2(Ω), and let u = Gf ∈ H1
0 (Ω) be the weak solution of (2.3) where

G : L2(Ω) −→ H1
0 (Ω) ↪→ L2(Ω)

f −→ Gf. (2.13)

Thus ∫
Ω

A∇(Gf) · ∇v =

∫
Ω

fv, ∀v ∈ H1
0 (Ω). (2.14)

As Ω is bounded, by Rellich-Kondrasov Theorem (A2.1), the inclusion H1
0 (Ω) ↪→

L2(Ω) is compact, [9]. Furthermore, G is self-adjoint, as, for g ∈ L2(Ω) we get:

∫
Ω

Gf · g =

∫
Ω

ug =

∫
Ω

gu = a(w, u) = a(u,w) =

∫
Ω

fw =

∫
Ω

f · Gg, (2.15)
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since w = Gg for some g ∈ L2(Ω). Therefore, since G is a compact self-adjoint linear

operator on L2(Ω), by the Spectral Theorem (A3.1), there exist at most countably

many non-zero eigenvalues {µAn}∞n=1 decreasing to zero, and the spectrum of G is

σ(G) = {0} ∪
⋃∞
n=1{µAn}.

Consequently, there exists an orthonormal basis {ϕAn}n of L2(Ω) such that

GϕAn = µAnϕ
A
n . (2.16)

By setting λAn = (µAn )−1, we get the sequence of positive real numbers {λAn}n ↗ ∞,

such that

ϕAn = λAnGϕAn

or ϕAn = G(λAnϕ
A
n ). (2.17)

Furthermore, plugging the latter into the equation (2.14), we have:

∫
Ω

A∇ϕAn · ∇v =

∫
Ω

λAnϕ
A
n v, ∀v ∈ H1

0 (Ω), (2.18)

which means that L(ϕAn ) = λAnϕ
A
n in Ω, in the sense of distributions. Since the range

of G is in H1
0 (Ω), then ϕAn ∈ H1

0 (Ω).

For the proof of (2.12), as f = λu, we have that:

a(u, v) =

∫
Ω

fv =

∫
Ω

λuv = λ

∫
Ω

uv = λ(u, v), (2.19)

where (. , .) is the standard inner product in L2(Ω). In particular, for u = ϕAn , we

obtain that

a(ϕAn , v) = λAn (ϕAn , v), ∀v ∈ H1
0 (Ω), (2.20)

concluding the proof of the theorem.
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We will now introduce the Rayleigh quotient which provides a variational char-

acterization of the eigenvalues of the operator L. We will see that λA1 , called the

principal eigenvalue, is simple - which explains the strict inequality between λA1 and

λA2 in (2.10), and that its corresponding eigenfunction has constant sign.

Definition 2.2.1. For any v 6= 0, v ∈ H1
0 (Ω), we define the Rayleigh quotient of v

to be:

RA(v) =
a(v, v)

‖v‖2
2,Ω

. (2.21)

Theorem 2.2.2 ([9], [10]). For any integer n ≥ 1, let Vn be the subspace of H1
0 (Ω)

spanned by {ϕA1 , ϕA2 , ..., ϕAn}, the corresponding eigenfunctions of the operator L. Con-

sider V0 = ∅ and denote by W an arbitrary n-dimensional subspace of H1
0 (Ω).

Then

∀n ≥ 1 : λAn = RA(ϕAn ) = min
06=v⊥Vn−1

RA(v) (2.22)

= max
06=v∈Vn

RA(v) (2.23)

= min
W⊂H1

0 (Ω)
dimW=n

max
v∈W

RA(v). (2.24)

In particular,

λA1 = min
06=v∈H1

0 (Ω)
RA(v) = RA(ϕA1 ). (2.25)

Proof. Note that, by the definition of the Rayleigh quotient, if ϕAn is the n-th eigen-

function of L, we have

RA(ϕAn ) =
a(ϕAn , ϕ

A
n )

‖ϕAn‖2
2,Ω

=
λAn (ϕAn , ϕ

A
n )

‖ϕAn‖2
2,Ω

= λAn , ∀n ≥ 1. (2.26)

We will start by proving (2.22) (and implicitly(2.25)). Let v ∈ H1
0 (Ω) such that

10



v ⊥ {ϕA1 , ϕA2 , ..., ϕAn−1}. By the Fourier expansion, v can be written in L2(Ω) as

v =
∞∑
k=n

αkϕ
A
k , (2.27)

where αk =

∫
Ω

vϕAk dx. On the other hand, consider the set {(λAk )−1/2ϕAk }k≥n. These

latter functions form an orthonormal basis for H1
0 (Ω) endowed with the inner-product

(u, v)H =

∫
Ω

A∇u · ∇v dx. This is easily seen from

((λAk )−1/2ϕAk , (λ
A
h )−1/2ϕAh )H =

∫
Ω

A(λAk )−1/2∇ϕAk · (λAh )−1/2∇ϕAh

= (λAk )−1/2(λAh )−1/2

∫
Ω

A∇ϕAk · ∇ϕAh

= (λAk )−1/2(λAh )−1/2(λAk )

∫
Ω

ϕAk ϕ
A
h

= (λAk )1/2(λAh )−1/2

∫
Ω

ϕAk ϕ
A
h

= δkh. (2.28)

If u ∈ H1
0 (Ω) such that (u, ϕAk )H = 0, for all k ≥ n, then

0 =

∫
Ω

A∇u · ∇ϕAk = λAk

∫
Ω

uϕAk , ∀k. (2.29)

Therefore ∫
Ω

uϕAk = 0, ∀k, (2.30)

which gives that u = 0, as u ∈ L2(Ω) and {ϕAk }k is an orthonormal basis of L2(Ω),

and thus complete in L2(Ω).

Set vl =
l∑

k=n

αkϕ
A
k . Then vl → v in L2(Ω), and in H1

0 (Ω), and the Fourier expansion

of v in H1
0 (Ω) is

v =
∞∑
k=n

(λAk )−1/2βkϕ
A
k , (2.31)
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where

βk =

∫
Ω

A∇v · ∇
(
(λAk )−1/2ϕAk

)
dx = (λAk )−1/2

∫
Ω

A∇v · ∇ϕAk dx (2.32)

= (λAk )1/2

∫
Ω

vϕAk dx = (λAk )1/2αk.

Thus, v can be written in H1
0 (Ω) as

v =
∞∑
k=n

αkϕ
A
k . (2.33)

and therefore

lim
vl→v

RA(vl) = RA(v). (2.34)

Using now the properties of the orthonormal basis i.e. (ϕAk , ϕ
A
n ) =

∫
Ω
ϕAk ϕ

A
n = δkn,

and the fact that {λi}i is an increasing sequence, we get

RA(vl) =

∫
Ω

A∇vl · ∇vl∫
Ω

v2
l

=

l∑
k=n

α2
k

∫
Ω

A∇ϕAk · ∇ϕAk

l∑
k=n

α2
k

=

l∑
k=n

α2
kλ

A
k

∫
Ω

ϕAk ϕ
A
k

l∑
k=n

α2
k

=

l∑
k=n

α2
kλ

A
k

l∑
k=n

α2
k

≥ λAn

l∑
k=n

α2
k

l∑
k=n

α2
k

= λAn . (2.35)
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Thus, for any v 6= 0, v ∈ H1
0 (Ω), we have that RA(v) ≥ λAn . Since the minimum is

attained for ϕn, then (2.22) and (2.25) are proved.

Let now v ∈ Vn. Then v =
n∑
k=1

αkϕ
A
n , thus

RA(v) =

n∑
k=1

α2
kλ

A
k

n∑
k=1

α2
k

≤ λAn . (2.36)

Therefore max
06=v∈Vn

RA(v) ≤ λAn , but as this maximum is attained for ϕAn , then (2.23) is

proved.

Finally, consider W , any n-dimensional subspace of H1
0 (Ω). There exists ϕA0 ∈ W

such that ϕA0 ⊥ ϕAi , ∀i = 1, . . . , n−1. Hence, by proceeding as in the first part of the

proof, we get R(ϕA0 ) ≥ λAn , thus max
v∈W

RA(v) ≥ λAn . As this holds for any n-dimensional

subspace, we infer that min
dimW=n

max
v∈W

RA(v) ≥ λAn . On the other hand, we have seen

that for the n-dimensional subspace Vn, the minimum is attained. Therefore equality

(2.24) holds and the proof of the theorem is now complete.

Lemma 2.2.1 ([9]). If 0 6= u ∈ H1
0 (Ω) satisfies RA(u) = λA1 , then u is an eigenfunc-

tion corresponding to λA1 .

Proof. Let 0 6= u ∈ H1
0 (Ω) such that R(u) = λA1 , and let v ∈ H1

0 (Ω) an arbitrarily

selected element. By taking t ∈ R∗+, we have that u+ tv ∈ H1
0 (Ω) and

R(u+ tv) ≥ min
06=w∈H1

0 (Ω)
R(w) = λA1 = R(u), (2.37)

i.e. ∫
Ω

A∇(u+ tv) · ∇(u+ tv)∫
Ω

(u+ tv)2

≥

∫
Ω

A∇u · ∇u∫
Ω

u2

= λA1 . (2.38)
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By normalizing u, we may further assume, without any loss of generality, that
∫

Ω
u2 =

1, and thus
∫

Ω
A∇u ·∇u = λA1 . Multiplying both sides of the above inequality by the

denominator of the left hand side, we obtain

∫
Ω

A∇(u+ tv) · ∇(u+ tv) ≥ λA1

∫
Ω

(u+ tv)2. (2.39)

The latter is equivalent to

∫
Ω

A∇u · ∇u+ 2t

∫
Ω

A∇u · ∇v + t2
∫

Ω

A∇v · ∇v ≥ λA1

[∫
Ω

u2 + 2t

∫
Ω

uv + t2
∫

Ω

v2

]
,

(2.40)

and, furthermore, as

∫
Ω

A∇u · ∇u = λA1

∫
Ω

u2, to

2t

∫
Ω

A∇u · ∇v + t2
∫

Ω

A∇v · ∇v ≥ λA1

[
2t

∫
Ω

uv + t2
∫

Ω

v2

]
. (2.41)

Dividing by 2t, then letting t→ 0, we obtain

∫
Ω

A∇u · ∇v = λA1

∫
Ω

uv. (2.42)

As equation (2.42) holds for any function v ∈ H1
0 (Ω), we infer that u satisfies the

equality a(u, v) =

∫
Ω

fv =

∫
Ω

λuv. Hence u satisfies the problem (2.9) and, thus, it

is an eigenfunction of λA1 .

Theorem 2.2.3 ([1]). The eigenfunction ϕA1 associated with the eigenvalue λA1 , also

called the principal eigenfunction, is of constant sign in Ω. We may choose ϕA1 to be

positive in Ω.

Proof. If ϕA1 ∈ H1
0 (Ω), then |ϕA1 | ∈ H1

0 (Ω). Note now that R(ϕA1 ) = R(|ϕA1 |) = λA1 .

Thus, by the previous lemma, |ϕA1 | is an eigenfunction associated with λA1 and, by

the elliptic regularity theory [6], |ϕA1 | ∈ C2(Ω) ∩ C0(Ω). As L(|ϕA1 |) = λA1 |ϕA1 | ≥ 0,
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then, by the Weak Maximum Principle (A4.1), we have min
Ω

(|ϕA1 |) = min
∂Ω

(|ϕA1 |).

Thus, as the eigenfunction cannot be constant, the minimum of |ϕA1 | in Ω is

achieved only on ∂Ω. Due to the Dirichlet condition |ϕA1 | = 0 on ∂Ω, or min
Ω
|ϕA1 | =

min
∂Ω
|ϕA1 | = 0, and we infer that |ϕA1 | is strictly positive in Ω. Therefore ϕA1 > 0

everywhere on Ω, or ϕA1 < 0 everywhere on Ω. Without any loss of generality, we

may consider ϕA1 > 0 on Ω.

Theorem 2.2.4 ([1]). The principal eigenvalue λA1 is simple.

Proof. Let us assume that λA1 is not simple. Then consider two orthogonal eigen-

functions ϕA0 and ϕA1 corresponding to the principal eigenvalue. Their existence is

guaranteed by Theorem 2.2.1. Moreover, by the previous theorem, we may consider

both of the eigenfunctions to be positive in Ω. Therefore
∫

Ω
ϕA0 ϕ

A
1 > 0, contradicting

the fact that the two eigenfunctions are orthogonal.

Remark 2.2.1. Note that, in our work, Ω is assumed to be connected. Otherwise

the value of each eigenvalue must be taken as the minimum among all corresponding

eigenvalues of each connected component, [8].

2.3 The Faber - Krahn Inequality

In the special case where A = Id, we have L = −∆, the Laplace operator. Lord

Rayleigh conjectured in [11] that, in this case, the principal eigenvalue of the disc is

minimal among all plane domains of equal area, that is

λ1(Ω∗) ≤ λ1(Ω), (2.43)
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where λ1 denotes the eigenvalue corresponding to the eigenvalue problem of the

Laplace operator, whereas before we used λA1 to denote the principal eigenvalue of

the general operator L defined in (2.2).

The inequality (2.43) was proved independently by Faber and Krahn in the 20’s

and it is known as the Faber - Krahn inequality, see [10]. Using Pólya - Szegö in-

equality, Kesavan proved the following, more general result, which holds for the entire

class of elliptic operators defined earlier.

Theorem 2.3.1 ([10]). With the previous notations, we have the following inequali-

ties:

αλ1(Ω∗) ≤ αλ1(Ω) ≤ λA1 (Ω), (2.44)

where A ∈M(α, β,Ω), 0 < α < β, is defined as in Section 2.1.

Proof. Let ϕA1 be the eigenfunction corresponding to the eigenvalue λA1 . Then we

have:

λA1 (Ω) = RA(ϕA1 ) =
a(ϕA1 , ϕ

A
1 )

‖ϕA1 ‖2
2,Ω

(2.45)

=

∫
Ω
A∇ϕA1 · ∇ϕA1
‖ϕA1 ‖2

2,Ω

(2.46)

≥
∫

Ω
α|∇ϕA1 |2

‖ϕA1 ‖2
2,Ω

(2.47)

=
α
∫

Ω
|∇ϕA1 |2

‖ϕA1 ‖2
2,Ω

, (2.48)

where we have (2.45) by the definition of the Rayleigh quotient, (2.46) by the definition

of the bilinear form a(u, v), and (2.47) by the ellipticity condition (2.1), which reduces

here to

A∇ϕA1 · ∇ϕA1 ≥ α|∇ϕA1 |2. (2.49)
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On the other hand,

∫
Ω
|∇ϕA1 |2

‖ϕA1 ‖2
2,Ω

≥ min
06=v∈H1

0 (Ω)

∫
Ω
|∇v|2

‖v‖2
2,Ω

= min
06=v∈H1

0 (Ω)

∫
Ω
∇v · ∇v
‖v‖2

2,Ω

= min
06=v∈H1

0 (Ω)
R(v)

= λ1(Ω), (2.50)

where R(v) is the Rayleigh quotient corresponding to A = Id, so a(u, v) =
∫

Ω
∇u·∇v.

Thus, we proved the second inequality of (2.44).

To prove the first inequality of (2.44), consider ϕ1 to be the eigenfunction corre-

sponding to the eigenvalue λ1. By Theorem 2.2.3, we have ϕ1 > 0. Thus, we can

apply Pólya - Szegö inequality and obtain

∫
Ω∗
|∇ϕ∗1|2 ≤

∫
Ω

|∇ϕ1|2. (2.51)

Recall that the Schwarz symmetrization preserves the L2 - norm, thus

‖ϕ1‖2
2,Ω = ‖ϕ∗1‖2

2,Ω∗ . (2.52)

Therefore we get: ∫
Ω∗ |∇ϕ∗1|2

‖ϕ∗1‖2
2,Ω∗

≤
∫

Ω
|∇ϕ1|2

‖ϕ1‖2
2,Ω

. (2.53)

Since ϕ∗1 ∈ H1
0 (Ω∗), then ∫

Ω∗ |∇ϕ∗1|2

‖ϕ∗1‖2
2,Ω∗

= R(ϕ∗1). (2.54)

Thus

λ1(Ω∗) = min
06=v∈H1

0 (Ω∗)
R(v) ≤ R(ϕ∗1) =

∫
Ω∗ |∇ϕ∗1|2

‖ϕ∗1‖2
2,Ω∗

≤
∫

Ω
|∇ϕ1|2

‖ϕ1‖2
2,Ω

= R(ϕ1) = λ1(Ω),

which completes the proof.
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We will now give our own proof to a problem found in Kesavan’s book, [10].

Proposition 2.3.1. Let Ω ⊂ RN be a bounded domain and let P : Ω→ R be a strictly

positive continuous function. The eigenvalue problem

 −∆u = λPu in Ω

u = 0 on ∂Ω
(2.55)

admits an increasing sequence {λn,P (Ω)}n of positive eigenvalues which tends to in-

finity and the first eigenvalue λ1,P (Ω) admits an eigenfunction of constant sign.

Furthermore,

λ1,P (Ω) = min
06=v∈H1

0 (Ω)

∫
Ω
|∇v|2dx∫

Ω
Pv2dx

. (2.56)

Finally, if P ∗ denotes the Schwarz symmetrization of P, we have

λ1,P (Ω) ≥ λ1,P ∗(Ω∗). (2.57)

Proof. Define in L2(Ω) the inner product

(u, v)P =

∫
Ω

Puv dx, (2.58)

where P is the function given above.

For the elliptic boundary value problem

 −∆u = f in Ω

u = 0 on ∂Ω,
(2.59)

follow the same argument as in the introduction of this chapter, and use a test function

v, to get ∫
Ω

∇u · ∇v =

∫
Ω

fvdx. (2.60)
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Therefore, if f = λPu, we have

a(u, v) =

∫
Ω

∇u · ∇v =

∫
Ω

fvdx = λ

∫
Ω

Puvdx = λ(u, v)P , ∀v ∈ H1
0 (Ω). (2.61)

Using the same operator G as in the proof of Theorem 2.2.1, the similar argument

with (u, v)P instead implies that G is a compact self-adjoint linear operator. Relying

again on the Spectral Theorem, the problem (2.55) admits an increasing sequence

{λn,P (Ω)}n of positive eigenvalues that tends to infinity.

Define the Rayleigh quotient

RP (u) :=
a(u, u)

‖u‖2
2,P

=

∫
Ω
−∆u · u∫
Ω
Pu2

=

∫
Ω
|∇u|2∫

Ω
Pu2

. (2.62)

As the eigenfunctions form an orthonormal set of L2(Ω) : (ϕh, ϕk)P =

∫
Ω

Pϕhϕk =

δhk, the set {ϕk}k forms an orthonormal basis for H1
0 (Ω) endowed with the inner-

product (u, v)H =

∫
Ω

∇u · ∇v dx, as

(ϕh, ϕk)H =

∫
Ω

∇ϕh · ∇ϕk =

∫
Ω

λPϕhϕk = λδhk, (2.63)

where λ = λh = λk, for h = k.

Following further the same reasoning as in the proof of Theorem 2.2.2, we get

λ1,P (Ω) = min
06=v∈H1

0 (Ω)
RP (v) = min

06=v∈H1
0 (Ω)

∫
Ω
|∇v|2∫

Ω
Pv2

. (2.64)

We will now prove the last inequality of the theorem. Let φ denote the eigen-

function of λ1,P . By slightly adjusting the proof of Theorem 2.2.3 to the present

eigenvalue problem, it can be shown that this first eigenfunction has constant sign on
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Ω. Using Pólya - Szegö inequality, we have that:

∫
Ω

|∇ϕ1|2 ≥
∫

Ω∗
|∇ϕ∗1|2. (2.65)

By Hardy - Littlewood inequality, we also have:

∫
Ω

Pϕ2
1 ≤

∫
Ω∗
P ∗ϕ∗21 , (2.66)

thus

1∫
Ω
Pϕ2

1

≥ 1∫
Ω∗ P ∗ϕ

∗2
1

, (2.67)

and, therefore, ∫
Ω
|∇ϕ1|2∫

Ω
Pϕ2

1

≥
∫

Ω∗ |∇ϕ∗1|2∫
Ω∗ P ∗ϕ

∗2
1

. (2.68)

On the other hand,

∫
Ω∗ |∇ϕ∗1|2∫
Ω∗ P ∗ϕ

∗2
1

≥ min
06=v∗∈H1

0 (Ω∗)

∫
Ω∗ |∇v∗|2∫
Ω∗ P ∗v∗2

= λ1,P ∗(Ω∗), (2.69)

and

λ1,P (Ω) = RP (ϕ1) =

∫
Ω
|∇ϕ1|2∫

Ω
Pϕ2

1

, (2.70)

thus

λ1,P (Ω) ≥ λ1,P ∗(Ω∗). (2.71)

2.4 The Szegö - Weinberger Inequality

While, in the previous section, we discussed the eigenvalue problem associated with

the Laplace operator with homogeneous Dirichlet boundary conditions, here we will

focus on the eigenvalue problem of the Laplacian with homogeneous Neumann bound-
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ary condition.

Thus, for Ω ∈ RN a smooth bounded domain, consider the problem:

 −∆u = µu in Ω

∂u

∂ν
= 0 on ∂Ω,

(2.72)

where ν is the outer unit normal of ∂Ω.

A similar argument as in the Dirichlet boundary value problem implies that there

exists an increasing sequence of eigenvalues

0 = µ0 < µ1 ≤ µ2 ≤ ... ≤ µn →∞. (2.73)

Since, in this case, the first eigenvalue is zero, we consider µ1 the lowest non-zero

eigenvalue to be the principal eigenvalue. Let ψ0 be a constant function denoting the

eigenfunction corresponding to µ0. Note that here the eigenfunctions are elements of

H1(Ω) with mean value zero.

By using again the Rayleigh quotient, we have the variational description of µ1 as

µ1 = min
06=v∈H1(Ω)∫

Ω v=0

∫
Ω
|∇v|2∫
Ω
v2

. (2.74)

This follows in the same manner as its corresponding counterpart from the Dirichlet

problem described in detail earlier.

Our next objective is the isoperimetric inequality

µ1(Ω) ≤ µ1(Ω∗), (2.75)

which was proved in the 50’s by Szegö, for simply connected domains, and, in general,

by Weinberger. In preparation for the proof, we need the following three lemmas

where we followed the outline of [10].
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Lemma 2.4.1. Let g be a continuous, nonnegative real-valued function on R+. For

each i, 1 ≤ i ≤ N , let Pi : RN −→ R be defined by

Pi(x) = g(‖x‖) xi
‖x‖

. (2.76)

Then, we can choose the origin in RN such that

∫
Ω

Pi(x) dx = 0, ∀i : 1 ≤ i ≤ N. (2.77)

Proof. Let B(0, ρ) be a ball in RN , centered at the origin, containing Ω, and define

on it the map F : B(0, ρ) −→ RN by

y −→ F (y) =

∫
Ω

g(‖x− y‖) x− y
‖x− y‖

dx. (2.78)

Taking the inner product of F (y) with y, we obtain:

F (y) · y =

∫
Ω

g(‖x− y‖) (x · y − ‖y‖2)

‖x− y‖
dx. (2.79)

By considering y ∈ ∂B(0, ρ), we have ‖y‖ = ρ, and

x · y − ‖y‖2 ≤ ‖x‖ · ‖y‖ − ‖y‖2 ≤ 0, ∀x ∈ Ω. (2.80)

Thus F (y) · y ≤ 0, y ∈ ∂B(0, ρ) which we will use to show that there exists a

y0 ∈ B(0, ρ) such that F (y0) = 0.

To do so, we will use Brouwer’s fixed point theorem which states that every

continuous function f from a convex compact subset K of a Euclidean space to K

itself has a fixed point, i.e. ∃ x0 ∈ K : f(x0) = x0. Indeed, assume that F (y) 6=

0, ∀y ∈ B(0, ρ). Define the function G such that G : B(0, ρ)→ B(0, ρ) with G(y) :=
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ρ
F (y)

‖F (y)‖
, ∀y ∈ B(0, ρ). As G is a continuous function from B(0, ρ) to itself, it

has a fixed point by the Brouwer’s fixed point theorem. Consequently, in our case,

∃ y0 ∈ B(0, ρ) : G(y0) = ρ
F (y0)

‖F (y0)‖
= y0. Hence ‖y0‖ = ρ and therefore ρ

F (y0) · y0

‖F (y0)‖
=

‖y0‖2 > 0, contradicting F (y) · y ≤ 0, ∀y ∈ ∂B(0, ρ). Hence the existence of an

element y0 such that F (y0) = 0 is established.

Now by taking the origin to be y0, we get

0 = F (y0) =

∫
Ω

g(‖x− y0‖)
x− y0

‖x− y0‖
dx =

∫
Ω

P (x− y0) dx, (2.81)

where P (x − y0) = (P1(x − y0), . . . , Pi(x − y0), . . . , PN(x − y0)). Which gives that∫
Ω
Pi(x− y0) dx = 0, ∀i = 1, ..., N , and this completes the proof of the first lemma.

Lemma 2.4.2. Let g : R→ R be a non-increasing function, and let Q : Ω→ R be a

strictly positive continuous function. The following statements hold:

a.

∫
Ω

g(‖x‖) dx ≤
∫

Ω∗
g(‖x‖) dx.

b.

∫
Ω

Qg(‖x‖) ≤
∫

Ω∗
Q∗g(‖x‖).

If g is a non-decreasing function, the above inequalities are reversed.

Proof. a. Set g̃(x) = g(‖x‖), respectively h = g̃|Ω. Then, we have

∫
Ω

g(‖x‖) =

∫
Ω

g̃(x) =

∫
Ω

h(x) =

∫
Ω∗
h∗(x), (2.82)

where the last equality follows from property e. of the Schwarz symmetrization

listed in Chapter 1.

To complete the proof, it remains to show that h∗(x) ≤ g(‖x‖), ∀x ∈ Ω∗. As
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h∗(x) and g(‖x‖) are radially non-increasing functions, it suffices to show that

|{x ∈ Ω∗;h∗(x) > t}| ≤ |{x ∈ Ω∗; g(‖x‖) > t}|. (2.83)

Obviously, {h∗ > t} is a ball centered at the origin included in Ω∗. Now let

t ∈ R and note that

|{h∗ > t}| = |{x ∈ Ω∗;h∗(x) > t}| = |{x ∈ Ω;h(x) > t}|

= |{x ∈ Ω; g̃(x) > t}|

= |{x ∈ Ω; g(‖x‖) > t}|

≤ |{x ∈ RN ; g(‖x‖) > t}|. (2.84)

As g is a non-increasing function, then {x ∈ RN ; g(‖x‖) > t} is also a ball

centered at the origin, and therefore we conclude that

|{h∗ > t}| ≤ |Ω∗ ∩ {x ∈ RN ; g(‖x‖) > t}| = |{x ∈ Ω∗; g(‖x‖) > t}|. (2.85)

b. To prove this part, use the same notations as in part a. and note that we have

∫
Ω

Qg(‖x‖) =

∫
Ω

Qh ≤
∫

Ω∗
Q∗h∗ ≤

∫
Ω∗
Q∗g(‖x‖). (2.86)

The first inequality is due to the Hardy-Littlewood theorem (1.10), while the

second inequality is due to part a. as h∗ ≤ g(‖x‖).

A similar argument applies to the case of g non-decreasing.
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Lemma 2.4.3. If Ω = BR is a ball of radius R in RN centered at the origin, then

the principal eigenvalue of the Neumann problem (2.72) is

µ1(BR) =

∫
BR

(
w′(‖x‖)2 +

N − 1

‖x‖2
w(‖x‖)2

)
dx∫

BR

w(‖x‖)2 dx

, (2.87)

for a real function w which can be found explicitly.

Proof. Using spherical coordinates, and the method of separation of variables, we

write u(x) = w(‖x‖)v($), where $ ∈ SN−1. Then w satisfies

w′′(r) +
N − 1

r
w′(r)− N − 1

r2
w(r) + µ1(BR)w(r) = 0, for 0 < r < R, (2.88)

and w(0) = w′(R) = 0. The solution of this equation is given by

w(r) = cr
N
2
−1JN

2
(
√
µ1(BR)r), (2.89)

where c is a constant, Jn is the Bessel function of the first kind, and of order n.

The equation satisfied by w can be written as

µ1(BR)w(r) = − 1

rN−1

d

dr

(
rN−1w′(r)

)
+
N − 1

r2
w(r). (2.90)

Multiplying all terms by w, and integrating over BR, using the notation dA(r) for

the surface area element of the sphere of radius r induced by the Euclidean metric of

RN , we get
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µ1(BR)

∫
BR

w2(‖x‖)dx =

∫ R

0

∫
∂Br

−w(r)

rN−1

d

dr

(
rN−1w′(r)

)
dA(r) dr

+

∫
BR

N − 1

‖x‖2
w(‖x‖)2dx

=

∫ R

0

−w(r)

rN−1

d

dr

(
rN−1w′(r)

)∫
∂Br

dA(r) dr

+

∫
BR

N − 1

‖x‖2
w(‖x‖)2dx

=

∫ R

0

−w(r)

rN−1

d

dr

(
rN−1w′(r)

)
| ∂Br| dr

+

∫
BR

N − 1

‖x‖2
w(‖x‖)2dx

= NωN

∫ R

0

− d

dr
(rN−1w′(r))w(r)dr

+

∫
BR

N − 1

‖x‖2
w(‖x‖)2dx,

= NωN

∫ R

0

rN−1w′(r)2dr +

∫
BR

N − 1

‖x‖2
w(‖x‖)2dx

=

∫ R

0

∫
∂Br

w′(r)2dA(r) dr +

∫
BR

N − 1

‖x‖2
w(‖x‖)2dx

=

∫
BR

w′(‖x‖)2dx+

∫
BR

N − 1

‖x‖2
w(‖x‖)2dx. (2.91)

Above, we used integration by parts, the fact that | ∂Br| = NωNr
N−1, ωN := |B1|,

and the conditions w(0) = w′(R) = 0. Hence the third lemma is also proved.

Note that here we may choose w such that w′(r) > 0 in (0, R), just like we chose

the principal eigenfunction to be positive in the Dirichlet problem. Therefore w is a

non-negative increasing function.
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Theorem 2.4.1. With the previous notations of this section, for any bounded domain

Ω ⊂ RN , we have

µ1(Ω) ≤ µ1(Ω∗). (2.92)

Proof. We will show that

µ1(Ω) ≤
∫

Ω
G(‖x‖) dx∫

Ω
g(‖x‖)2 dx

≤
∫

Ω∗ G(‖x‖) dx∫
Ω∗ g(‖x‖)2 dx

= µ1(Ω∗), (2.93)

where g(r) and G(r) are functions whose precise definition will appear shortly in a

natural way.

Define the function

g(x) =

 w(r) for 0 < r < R

w(R) for r ≥ R,
(2.94)

where R is the radius of Ω∗, and w is the function defined by (2.89). Thus g is a

non-decreasing, non-negative function. Set

Pi(x) = g(‖x‖) xi
‖x‖

, ∀i : 1 ≤ i ≤ N. (2.95)

By Lemma 2.4.1, we can choose the origin such that
∫

Ω
Pi(x) = 0, ∀i : 1 ≤ i ≤ N .

As µ1(Ω) is the minimum over all non-zero functions v ∈ H1
0 (Ω) such that

∫
Ω
v = 0,

and as all Pi’s satisfy these conditions, then

µ1(Ω) ≤
∫

Ω
|∇Pi|2dx∫
Ω
P 2
i dx

, ∀i : 1 ≤ i ≤ N, (2.96)

or

µ1(Ω)

∫
Ω

P 2
i dx ≤

∫
Ω

|∇Pi|2dx, ∀i : 1 ≤ i ≤ N. (2.97)

27



Taking the summation over all i’s, we get

N∑
i=1

(
µ1(Ω)

∫
Ω

P 2
i

)
≤

N∑
i=1

∫
Ω

|∇Pi|2, (2.98)

then

µ1(Ω) ≤
∫

Ω

∑N
i=1 |∇Pi|2∫

Ω

∑N
i=1 P

2
i

. (2.99)

On the other hand,

N∑
i=1

P 2
i =

N∑
i=1

(
g(‖x‖)2 · x2

i

‖x‖2

)
=
g(r)2

r2

N∑
i=1

x2
i = g(r)2, (2.100)

with r = ‖x‖ =
√
x2

1 + ...+ x2
N .

Furthermore,

(
N∑
i=1

|∇Pi|2
)

(x) = g′(r)2 +
N − 1

r2
g(r)2 def

:= G(r), (2.101)

where note here the definition of the function G of (2.93).

To show the first equality of (2.101), we evaluate

∂Pi
∂xi

(x) =
∂g(r)

∂xj
· xi
r

+
g(r)

r
· δij + g(r) · xi ·

∂

∂xj

(
1

r

)
=

∂g(r)

∂r
· ∂r
∂xj
· xi
r

+
g(r)

r
· δij − g(r) · xi ·

1

r2

∂r

∂xj

= g′(r) · xi
r

∂r

∂xj
+
g(r)

r
· δij −

g(r) · xi
r2

∂r

∂xj

=

(
g′(r)− g(r)

r

)
xi
r
· ∂r
∂xj

+
g(r)

r
· δij. (2.102)
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Moreover,

∇Pi(x) =

((
g′(r)− g(r)

r

)
xi
r

)( ∂r
∂x1

, ...,
∂r

∂xj
, ...,

∂r

∂xN

)
+
g(r)

r
(0, ..., 1, ..., 0)

=
xi
r

(
g′(r)− g(r)

r

)
·∇r +

g(r)

r
· ei. (2.103)

Note that

‖ei‖2 = 1,
∂r

∂xj
=
xj
r
, ∇r = (

∂r

∂x1

, ...,
∂r

∂xN
) = (

x1

r
, ...,

xN
r

) =
x

r
,

|∇r|2 =
‖x‖2

r2
= 1, and ∇r · ei =

xi
r
. (2.104)

Thus, by substituting the latter identities into |∇Pi(x)|2, we obtain

|∇Pi(x)|2 =
x2
i

r2

(
g′(r)− g(r)

r

)2

|∇r|2 (2.105)

+

(
g(r)

r

)2

‖ei‖2 + 2
xi
r

(
g′(r)− g(r)

r

)
g(r)

r
· (∇r · ei)

=
x2
i

r2

(
g′(r)− g(r)

r

)2

+

(
g(r)

r

)2

+2
x2
i

r2

(
g′(r)− g(r)

r

)
g(r)

r
.

Hence,

N∑
i=1

|∇Pi(x)|2 =

∑N
i=1 x

2
i

r2

(
g′(r)− g(r)

r

)2

+

(
g(r)

r

)2 N∑
i=1

1

+ 2

∑N
i=1 x

2
i

r2

(
g′(r)− g(r)

r

)
g(r)

r

=

(
g′(r)− g(r)

r

)2

+N

(
g(r)

r

)2

+2

(
g′(r)− g(r)

r

)
g(r)

r

= g′(r)2 + (N − 1)

(
g(r)

r

)2

, (2.106)
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concluding the proof of the first inequality of (2.93),

µ1(Ω) ≤
∫

Ω
G(‖x‖)dx∫

Ω
g(‖x‖)2dx

.

To prove the second inequality of (2.93), compute G′(r). For 0 < r < R,

G′(r) = −2

(
µ1(BR)g(r)g′(r) +

N − 1

r3

(
rg′(r)− g(r)

)2
)
, (2.107)

as for

G′(r) =

(
g′(r)2 + (N − 1)

(
g(r)

r

)2
)

= 2g′(r)g′′(r) + 2
N − 1

r2
g(r)g′(r)− 2

N − 1

r3
g(r)2. (2.108)

Now by substituting g′′(r) from the equation (2.88), we get that

G′(r) = −2g′(r)

(
N − 1

r
g′(r)− N − 1

r2
g(r) + µ1(BR)g(r)

)
+2

N − 1

r2
g(r)g′(r)

− 2
N − 1

r3
g(r)2

= −2
(N − 1

r
g′(r)2 − 2

N − 1

r2
g(r)g′(r) + µ1(BR)g(r)g′(r) +

N − 1

r3
g(r)2

)
= −2

(
µ1(BR)g(r)g′(r) +

N − 1

r3

(
r2g′(r)2 − 2rg(r)g′(r) + g(r)2

))
= −2

(
µ1(BR)g(r)g′(r) +

N − 1

r3

(
rg′(r)− g(r)

)2
)
. (2.109)

As g is non-decreasing, by Lemma 2.4.2, we get that

∫
Ω

g(‖x‖)2 ≥
∫

Ω∗
g(‖x‖)2. (2.110)

Note that G′(r) ≤ 0, for 0 < r < R, as all the terms inside the brackets in (2.109) are

non-negative. In particular, we know that g is non-negative, and that µ1 is positive;
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g′(r) is also non-negative, as g is non-decreasing. Therefore G is non-increasing, which

again by Lemma 2.4.2, gives

∫
Ω

G(‖x‖) dx ≤
∫

Ω∗
G(‖x‖) dx. (2.111)

So, we can conclude the second inequality of (2.93). This also completes the proof of

the theorem, as the last equality follows from Lemma 2.4.3 and the fact that Ω∗ is

the ball BR.

Inspired by Kesavan’s problem (Proposition 2.3.1), we conjectured and proved the

following proposition. We believe that the result is known to the specialists in the

field, however we did not find any reference to it in the literature.

Proposition 2.4.1. Let Ω ⊂ RN be a bounded domain and let Q : Ω → R be a

strictly positive continuous function. The eigenvalue problem

 −∆u = µQu in Ω

∂u

∂ν
= 0 on ∂Ω

(2.112)

admits an increasing sequence {µn,Q(Ω)}n of positive eigenvalues which tends to in-

finity. Furthermore,

µ1,Q(Ω) = min
06=v∈H1(Ω)∫

ΩQvdx=0

∫
Ω
|∇v|2dx∫

Ω
Qv2dx

, (2.113)

and

µ1,Q(Ω∗) =

∫
Ω∗

(
w′(‖x‖)2 + N−1

‖x‖2w(‖x‖)2
)
dx∫

Ω∗ Q∗(x)w(‖x‖)2dx
, (2.114)

where w is determined from the separation of variables u(x) = w(‖x‖)v($) and Q∗

denotes the Schwarz symmetrization of Q.
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Finally, we have

µ1,Q(Ω) ≤ µ1,Q∗(Ω∗). (2.115)

Proof. The proof involves many steps; many of them were seen earlier in similar

situations.

The existence of the increasing sequence of positive eigenvalues is given by the

same argument as in the proof Theorem 2.2.1. To evaluate µ1,Q(Ω) as the minimum

of the Rayleigh quotient, proceed like in the proof of Proposition 2.3.1.

We will now derive equation (2.114). By a change of variables u(x) = w(‖x‖)v($),

we get that w satisfies the differential equation

w′′(r) +
N − 1

r
w′(r)− N − 1

r2
w(r) + µ1,Q(Ω∗)Q∗(x)w(r) = 0, 0 < ∀r < R, (2.116)

and w(0) = w′(R) = 0. And thus, as in the proof of Lemma 2.4.3, we will have

µ1(Ω∗)

∫
Ω∗
Q∗(x)w2(‖x‖)dx =

∫
Ω∗
w′(‖x‖)2dx+

∫
Ω∗

N − 1

‖x‖2
w(‖x‖)2dx, (2.117)

which implies (2.114).

To finish the proof of the proposition, we will show that

µ1,Q(Ω) ≤ µ1,Q∗(Ω∗). (2.118)

By denoting

w′(‖x‖)2dx+
N − 1

‖x‖2
w(‖x‖)2dx := G(‖x‖), (2.119)

it will be enough to prove

µ1,Q(Ω) ≤
∫

Ω
G(‖x‖)dx∫

Ω
Q(x)g(‖x‖)2dx

≤
∫

Ω∗ G(‖x‖)dx∫
Ω∗ Q∗(x)g(‖x‖)2dx

= µ1,Q(Ω∗). (2.120)
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The last equality is equation (2.114). The first inequality is proved in the same way

as in the proof of Theorem 2.4.1, here using the function P of Lemma 2.4.1 to be

such that

P (x− y0) = (QP1(x− y0), ..., QPi(x− y0), ..., QPN(x− y0)). (2.121)

Then using Rayleigh’s eigenvalue characterization,

µ1(Ω) ≤
∫

Ω

∑N
i=1 |∇Pi|2∫

Ω

∑N
i=1QP

2
i

, (2.122)

where ∫
Ω

N∑
i=1

QP 2
i =

∫
Ω

Q
N∑
i=1

P 2
i =

∫
Ω

Qg(‖x‖)2, (2.123)

and ∫
Ω

N∑
i=1

|∇Pi|2 =

∫
Ω

G(‖x‖). (2.124)

The second inequality is obtained by using Lemma 2.4.2, which implies

∫
Ω

Qg(‖x‖) ≥
∫

Ω∗
Q∗g(‖x‖), (2.125)

as g is non-decreasing. Therefore the proof is concluded.

Summing up all previous work, we can conclude the following corollary which

compares µ1(Ω) with λ1(Ω).

Corollary 2.4.1 ([10]). Let λ1(Ω) be the principal Dirichlet eigenvalue of the Lapla-

cian as in  −∆u = λu in Ω

u = 0 on ∂Ω,
(2.126)
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and let µ1(Ω) be the principal Neumann eigenvalue of the Laplacian as in (2.72), then

µ1(Ω) < λ1(Ω). (2.127)

Proof. It is enough to prove that

µ1(Ω∗) < λ1(Ω∗), (2.128)

as we already know by the Szegö - Weinberger inequality that

µ1(Ω) ≤ µ1(Ω∗), (2.129)

and, by the Faber - Krahn inequality, that

λ1(Ω∗) ≤ λ1(Ω). (2.130)

Let R be the radius of Ω∗. The first Dirichlet eigenfunction ϕ1 associated with λ1(Ω∗)

satisfies  −∆ϕ1 = λ1ϕ1 in Ω∗

ϕ1 = 0 on ∂Ω∗.
(2.131)

Note that, in this case, ϕ1 = ϕ∗1, as we are working in Ω∗, therefore ϕ1 is radially

decreasing. The fact that ϕ1 is radial gives, by using spherical coordinates, the

following differential equation

ϕ′′1(r) +
N − 1

r
ϕ′1(r) + λ1(Ω∗)ϕ1(r) = 0, (2.132)

with r = ‖x‖. Differentiate this equation with respect to r, then set v = ϕ′1 to get

v′′(r) +
N − 1

r
v′(r)− N − 1

r2
v(r) + λ1(Ω∗)v(r) = 0. (2.133)

34



Now, on one hand, ϕ1 is decreasing, thus v(R) < 0. On the other hand, by using

the differential equation (2.132) for ϕ1, we get that v′(R) = ϕ′′1(R) > 0. Therefore

v(R)v′(R) < 0. We also have v(0) = ϕ′1(0) = 0. Proceeding one more time as in the

proof of Lemma 2.4.3, we obtain

λ1(Ω∗)

∫
BR

v2(‖x‖) dx = NωN

∫ R

0

− d

dr
(rN−1v′(r))v(r)dr +

∫
BR

N − 1

‖x‖2
v(‖x‖)2dx.

Evaluating by parts the first integral on the right hand side, with the conditions just

obtained above v(0) = 0 and v(R)v′(R) < 0, we can conclude the following inequality

λ1(Ω∗) >

∫
BR

(
v′(‖x‖)2 + N−1

‖x‖2 v(‖x‖)2
)
dx∫

BR
v(‖x‖)2dx

. (2.134)

Moreover, as v = ϕ′1 < 0, by applying Lemma 2.4.1 on Pi(x) = v(‖x‖) xi
‖x‖

, and

following the same argument as in the first part of the proof of Theorem 2.4.1, we

obtain that ∫
BR

(
v′(‖x‖)2 + N−1

‖x‖2 v(‖x‖)2
)
dx∫

BR
v(‖x‖)2dx

≥ µ1(Ω∗), (2.135)

so the proof is complete.
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Chapter 3

The Dirichlet Eigenvalue Problem

on Compact Riemannian Manifolds

3.1 Introduction

Let (M, g) be an N -dimensional complete, compact, connected Riemannian manifold

with no boundary, endowed with the Riemannian metric g. Let dV be the volume

element of M .

We denote by L2(M) the space of real, measurable functions f on M such that

∫
M

f 2dV < +∞. (3.1)

For any f, h ∈ L2(M), we denote by

(f, h) =

∫
M

fh dV, and ‖f‖2 = (f, f), (3.2)

the usual inner product and the induced norm, respectively, on this space.
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3.2 The Dirichlet Eigenvalue Problem for the Lapla-

cian

Let Ω ⊂M be a domain on M and consider the following eigenvalue problem:

 −∆u = λu in Ω

u = 0 on ∂Ω.
(3.3)

We start with some properties of the real numbers λ for which there exists a nontrivial

solution of the problem (3.3). In this respect, we have the following theorem:

Theorem 3.2.1 ([1], [4]). Let (M, g) be a compact Riemannian manifold, and let Ω

be a domain of M . The eigenvalues of the problem (3.3) form an infinite increasing

sequence

0 < λ1 ≤ λ2 ≤ λ3 ≤ ...→∞, (3.4)

where each eigenvalue is repeated as much as its multiplicity. Associated with this set

of eigenvalues, there exists a set of eigenfunctions, {ϕn}∞n=1, which is an orthonormal

basis of L2(Ω); moreover ϕn ∈ C∞(Ω) for each n.

For each eigenvalue, the eigenspace is finite dimensional. In addition, the eigenspaces

associated with distinct eigenvalues are orthogonal in L2(Ω).

Proof. The proof of this theorem involves many classical theorems of spectral theory.

To start, consider D := {f ∈ C∞(Ω) ∪ C0(Ω̄) : f = 0 on ∂Ω}, subspace of C∞(Ω),

which is dense in L2(Ω). Regard ∆ as an unbounded operator in L2(Ω) with domain

D. We have, by Green’s theorem A1.2, that the Laplace operator ∆ is

Symmetric : that is for any ϕ, ψ ∈ D, we have

(∆ϕ, ψ) = (ϕ,∆ψ); (3.5)
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Positive : that is for any ϕ ∈ D, we have

(∆ϕ, ϕ) ≥ 0. (3.6)

Then, by Friedrichs’ Theorem A3.2, this positive symmetric operator admits a

positive self-adjoint extension (Dd,∆d), called the Friedrichs extension. The positivity

of ∆d is implied by the positivity of ∆, and the former gives that the spectrum

of (Dd,∆d) is contained in R+. The compactness of Ω̄ implies that the inclusion

Dd ↪→ L2(Ω) is compact, and this means that for λ 6∈ R+, the resolvent (λ −∆d)
−1

is a compact operator in L2(Ω). Now that we constructed a compact self-adjoint

operator, we can apply the spectral theorem A3.1 on the Hilbert space L2(Ω).

As for the orthogonality, let ϕ1 and ϕ2 be two distinct eigenfunctions associated

with two different eigenvalues λ1 and λ2. Then, by Green’s formula (A.4), we have:

0 =

∫
Ω

(ϕ1∆ϕ2 − ϕ2∆ϕ1) dx =

∫
Ω

(ϕ1λ2ϕ2 − ϕ2λ1ϕ1) dx = (λ2 − λ1)

∫
Ω

ϕ1ϕ2 dx,

which, as λ1 6= λ2, gives that
∫

Ω
ϕ1ϕ2 = 0, thus ϕ1 and ϕ2 are orthogonal in L2(Ω),

and the proof is complete.

Remark 3.2.1. Note that ϕi ∈ C∞(Ω) eigenfunction implies easily that the corre-

sponding eigenvalue must be strictly positive. Indeed, by taking h = f = ϕ in the

Green’s formula (A.1), we get

∫
Ω

ϕ∆ϕdV +

∫
Ω

|∇ϕ|2dV = 0 (3.7)∫
Ω

ϕ(−λϕ)dV +

∫
Ω

|∇ϕ|2dV = 0 (3.8)

−λ‖ϕ‖2 +

∫
Ω

|∇ϕ|2dV = 0 (3.9)
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and thus

λ = ‖ϕ‖−2

∫
Ω

|∇ϕ|2dV ≥ 0. (3.10)

If λ = 0, then ∇φ = 0 a.e. but, as ϕ is a C∞ function, we have that ϕ = constant = 0

which cannot be an element of a basis of L2(Ω). Hence λ > 0.

Denote now by W 1,2(Ω) the space of all L2(Ω) functions with |∇f | ∈ L2(Ω), and

by H1
0 (Ω) the closure of C∞0 (Ω) in W 1,2(Ω).

Define the following bilinear form by

D[f, h] =

∫
Ω

(∇f,∇h) dV, ∀f, h ∈ H1
0 (Ω). (3.11)

Taking {ϕi}∞i=1, the orthonormal basis of L2(Ω), we have that, for each f ∈ L2(Ω),

f =
∞∑
i=1

(f, ϕi)ϕi, (3.12)

and

‖f‖2 =
∞∑
i=1

(f, ϕi)
2. (3.13)

Theorem 3.2.2 (Lord Raleigh, [4]). Let f ∈ L2(Ω), f 6= 0. Then

λ1 ≤
D[f, f ]

‖f‖2
(3.14)

with equality if and only if f is an eigenfunction of λ1.

If {ϕi}∞i=1 is an orthonormal basis of L2(Ω) formed by the eigenfunctions of λi,

and if f satisfies

(f, ϕ1) = ... = (f, ϕk−1) = 0, for k ≥ 2, (3.15)
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then we have

λk ≤
D[f, f ]

‖f‖2
(3.16)

with equality if and only if f is an eigenfunction of λk.

Proof. Let f ∈ L2(Ω), f 6= 0. Set

αi = (f, ϕi) (3.17)

and note that the hypothesis condition (3.15) becomes

α1 = ... = αk−1 = 0, for k ≥ 2. (3.18)

Now, for a fixed k ≥ 1, and for r ≥ k, we have

0 ≤ D
[
f −

r∑
i=1

αiϕi, f −
r∑
i=1

αiϕi

]
(3.19)

= D
[
f −

r∑
i=k

αiϕi, f −
r∑
i=k

αiϕi

]
(3.20)

= D[f, f ]− 2
r∑
i=k

αiD[f, ϕi] +
r∑

i,j=k

αiαjD[ϕi, ϕj] (3.21)

= D[f, f ] + 2
r∑
i=k

αi(f,∆ϕi)−
r∑

i,j=k

αiαj(ϕi,∆ϕj), (3.22)

where in the last step we used that, for any f, h ∈ L2(Ω),

D[f, h] = −(f,∆h), (3.23)

Furthermore, as ϕi is an eigenfunction of λi, we have

(f,∆ϕi) =

∫
Ω

f∆ϕi = −
∫

Ω

fλiϕi = −λi
∫

Ω

fϕi = −λi(f, ϕi) = −λiαi. (3.24)
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Moreover, as the set of eigenfunctions is an orthonormal basis of L2(Ω), then we also

have

(ϕi,∆ϕj) =

∫
Ω

ϕi∆ϕj = −λj
∫

Ω

ϕiϕj = −λj(ϕi, ϕj) = −λiδij. (3.25)

Thus, equation (3.22) becomes

D[f, f ]− 2
r∑
i=k

α2
iλi +

r∑
i,j=k

αiαjλjδij = D[f, f ]−
r∑
i=k

α2
iλi. (3.26)

Therefore

D[f, f ]−
r∑
i=k

α2
iλi ≥ 0, (3.27)

or, equivalently,
r∑
i=k

α2
iλi ≤ D[f, f ], (3.28)

from which we can conclude that

∞∑
i=k

α2
iλi < +∞, (3.29)

and

D[f, f ] ≥
∞∑
i=k

α2
iλi ≥ λk

∞∑
i=k

α2
i = λk

∞∑
i=k

(f, ϕi)
2 = λk‖f‖2. (3.30)

As the choice of k ≥ 1 was arbitrary, the first inequality of the theorem is proved.

As for the case of the equality, if f is an eigenfunction for some λ, then ∆f = −λf ,

and

D[f, f ] = −(f,∆f) = −(f,−λf) = λ(f, f) = λ‖f‖2. (3.31)

For the second direction, suppose that we have equality for some f 6= 0 as in the

hypothesis (3.15), that is

λk =
D[f, f ]

‖f‖2
. (3.32)

41



It means that all inequalities in (3.30) become equalities. Thus

αj = 0, ∀j : λj > λk+l, (3.33)

where l is the multiplicity of λk, with l < +∞ by Theorem 3.2.1. As

αj = 0, ∀j < k, (3.34)

as well, we have

αj = 0, ∀j 6= k, ..., k + l. (3.35)

and f will be such that

f =
k+l∑
i=k

αiϕi, (3.36)

with αi = (f, ϕi), ∀i = k, ..., k + l, and ϕi the linearly independent eigenfunctions

associated with the eigenvalue λk with its multiplicity l. Therefore, as f is a linear

combination of the eigenfunctions of λk, then f itself is an eigenfunction of λk.

3.3 The Faber - Krahn Inequality on Compact Man-

ifolds with Pinched Ricci Curvature

We will first introduce some additional notations. Let

R(M, g) = inf{Ric(u, u) : u ∈ TM}, (3.37)

where Ric is the Ricci curvature of (M, g), and TM is the tangent bundle of M .

Therefore for (SN , g∗), the N -dimensional sphere of radius 1 in RN+1 with the induced

metric, we have R(SN , g∗) = N − 1.
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Theorem 3.3.1 ([2]). Let (M, g) be a complete, N-dimensional, smooth Rieman-

nian manifold with no boundary. Suppose that the smallest eigenvalue of the Ricci

curvature of (M, g) is greater than or equal to (N − 1), i.e. R(M, g) ≥ (N − 1).

Let Ω be an open in M , such that ∂Ω is a smooth submanifold of M , and let Ω∗

be a geodesic ball of the canonical sphere SN , such that the relative volume of Ω∗ in

SN is equal to the relative volume of Ω in M , i.e. V (Ω)/V (M) = V (Ω∗)/V (SN).

Then, the first eigenvalue of the Dirichlet problem in Ω is greater than or equal to

the first eigenvalue problem in Ω∗, i.e. λ1(Ω) ≥ λ1(Ω∗).

Equality holds if and only if (M, g,Ω) is isometric to (SN , g∗,Ω∗).

Proof. Let β be such that

β = V (M)/V (SN), (3.38)

thus the hypothesis becomes V (Ω) = βV (Ω∗). Note that the condition R(M, g) ≥

(N − 1) on the complete manifold M implies, by Bonnet - Myers Theorem A5.1, that

M is compact and that V (M) is finite. Let u be an eigenfunction associated with

λ1(Ω). The idea of the proof is to construct a function u∗ on Ω∗ such that

∫
Ω

|∇u|2 dV∫
Ω

u2 dV

≥

∫
Ω∗
|∇u∗|2 dV∫

Ω∗
u∗2 dV

. (3.39)

As Theorem 3.2.2 gives us that

λ1(Ω∗) = inf
06=f∈L2(Ω∗)
f |∂Ω∗=0

∫
Ω∗
|∇f |2dV∫

Ω∗
f 2dV

, (3.40)

where the infimum is attained when f is an eigenfunction of λ1(Ω∗), the inequality

(3.39) will imply λ1(Ω) ≥ λ1(Ω∗).
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Thus, for 0 < r ≤ m = sup{u(x) : x ∈ Ω}, define the level sets

B(r) = {u > r} = {x ∈ Ω : u(x) > r}, (3.41)

with B(0) = Ω. We will denote the measure, or volume of B(r), by V (r), i.e.

V (r) = V (B(r)) = V ({u > r}) =

∫
{u>r}

dV, (3.42)

and the volume of ∂B(r) by A(r), i.e.

A(r) = A(∂B(r)) = A(∂{u > r}) =

∫
∂{u>r}

dA. (3.43)

For convenience, denote G(r) =
∫
B(r)
|∇u|2 dV and, respectively, H(r) =

∫
B(r)

u2 dV .

Define the geodesic concentric balls B∗(r) of (SN , g∗) such that

V (B(r)) = βV (B∗(r)). (3.44)

Define, like before, the volume of B∗(r) to be V ∗(r), i.e.

V ∗(r) = V (B∗(r)) =

∫
B∗(r)

dV, (3.45)

so that the condition on the geodesic balls becomes

V (r) = βV ∗(r). (3.46)

Similarly, define the volume of ∂B∗(r) by A∗(r), i.e.

A∗(r) = A(∂B∗(r)) =

∫
∂B∗

dA. (3.47)

For simplicity, we have used the same notations dV and dA on SN even if these
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measures are now induced by the metric g∗.

Define the function u∗ : B∗(0) = Ω∗ → R such that

u∗| ∂B∗(r) = r = u| ∂B(r), ∀r : 0 ≤ r ≤ m. (3.48)

It is worth noting that this symmetrization procedure generalizes naturally the sym-

metrization on RN . Note that u∗| ∂Ω∗ = u∗| ∂B∗(0) = 0, and that u∗ ∈ H1
0 (Ω∗). The

last claim is immediate for the regular points of u, where u∗ is C∞, and it suffices to

check that u∗ is continuous as it passes through the values of r corresponding to the

critical points of u. Indeed, at a critical point p ∈ Ω, one can use local coordinates

on M , to conclude ∂u
∂xi

(p) = 0 and, due the fact that u is an eigenfunction of the

Dirichlet problem of the Laplacian,
∑N

i,j=1
∂2u

∂xi∂xj
< 0 on a neighborhood of p. Hence,

by the implicit function theorem, the set of critical values p of u, Γ, is at most an

(N−1)-submanifold, therefore V (Γ) = 0 and u∗ has no jump discontinuities. Finally,

by Sard theorem, the set of critical points of u forms a set of measure zero on M .

Define, by analogy,

G∗(r) =

∫
B∗(r)

|∇u∗|2 dV, (3.49)

and

H∗(r) =

∫
B∗(r)

u∗2 dV. (3.50)

Note that we have

V ′(r) = −
∫
∂B(r)

|∇u|−1dA. (3.51)
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Indeed, as dV = |∇u|−1dAdt, then

V ′(r) =
d

dr

( ∫
B(r)

dV
)

=
d

dr

( ∫ ∞
r

∫
∂B(t)

|∇u|−1dAdt
)

= −
∫
∂B(r)

|∇u|−1dA. (3.52)

Following the same argument, we get

G′(r) =
( ∫

B(r)

|∇u|2dV
)′

= −
∫
∂B(r)

|∇u| dA. (3.53)

Similarly, as u∗ is additionally radial by construction, we also have

V ∗′(r) = −|∇u∗|−1

∫
∂B∗(r)

dA = −|∇u∗|−1A∗(r), (3.54)

and

G∗′(r) = −|∇u∗|
∫
∂B∗(r)

dA = −|∇u∗|A∗(r). (3.55)

The Cauchy-Schwartz inequality applied to the functions |∇u|−1/2 and |∇u|1/2 on

the level sets of u implies

A2(r) =
( ∫

∂B(r)

dA
)2

≤
∫
∂B(r)

|∇u|−1dA ·
∫
∂B(r)

|∇u|dA

= V ′(r) ·G′(r), (3.56)

while, directly,

V ∗′(r) ·G∗′(r) = [−|∇u∗|−1A∗(r)] · [−|∇u∗|A∗(r)] = A∗2(r). (3.57)
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We will now apply Gromov’s isoperimetric inequality (A.11),

A(∂Ω) ≥ βA(∂Ω∗), (3.58)

thus

A(r) = A(∂B(r)) ≥ βA(∂B∗(r)) = βA∗(r). (3.59)

On the other hand, by construction, we have

V (r) = βV ∗(r), (3.60)

therefore, from (3.56) and (3.57), we obtain

β2V ∗′(r) ·G∗′(r) = β2A∗2(r) ≤ A2(r) ≤ V ′(r) ·G′(r)

βV ′(r) ·G∗′(r) ≤ V ′(r) ·G′(r)

β

(
−
∫
∂B(r)

|∇u|−1dA

)
·G∗′(r) ≤ −

(∫
∂B(r)

|∇u|−1dA

)
·G′(r)

−βG∗′(r) ≤ −G′(r). (3.61)

Integrating from r to m, where recall that m = sup{u(x) : x ∈ Ω}, we obtain that

βG∗(r) ≤ G(r). (3.62)

On the other hand, we will now show that

H(r) = βH∗(r). (3.63)
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Indeed

H∗(r) =

∫
B∗(r)

u∗2dV, and use the co-area formula (A7.1),

=

∫ r

0

∫
∂B∗(ρ)

ρ2 1

|∇u∗|
dAdρ, as u∗ is radial and u∗|∂B∗(r) = r,

=

∫ r

0

ρ2 1

|∇u∗|

∫
∂B∗(ρ)

dAdρ

=

∫ r

0

ρ2 1

|∇u∗|
A∗(ρ) dρ

= −
∫ r

0

ρ2V ∗′(ρ) dρ, as V ∗′(ρ) = − 1

|∇u∗|
A∗(ρ),

= −
∫ m

r

t2
1

β
V ′(t)dt, by a change of variable as r ≤ u ≤ m,

= − 1

β

∫ m

r

t2
∫
∂B(t)

− 1

|∇u|
dAdt

=
1

β

∫ m

r

∫
∂B(t)

t2

|∇u|
dAdt

=
1

β

∫
B(r)

u2dV, again by the co-area formula,

=
1

β
H(r). (3.64)

Thus

G(r)

H(r)
≥ G∗(r)

H∗(r)
, ∀r, (3.65)
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which, for r = 0, gives

G(0)

H(0)
≥ G∗(0)

H∗(0)
. (3.66)

Thus, as B(0) = Ω and B∗(0) = Ω∗,

∫
Ω

|∇u|2dV∫
Ω

u2dV

≥

∫
Ω∗
|∇u∗|2dV∫

Ω∗
u∗2dV

. (3.67)

Note that equality in (3.67) implies equality in Gromov’s Levy inequality. The latter

was shown to occur if and only if (M, g,Ω) is isometric to (SN , g∗,Ω∗), concluding

the proof of the theorem.

3.4 The Faber - Krahn Inequality on Compact Man-

ifolds without Curvature Bound

In this section we will follow mostly [1]. We continue to denote by (M, g) a compact,

connected, smooth, N -dimensional Riemannian manifold with no boundary, and by

Ω a smooth domain in M . We seek to replace the hypothesis R(M, g) ≥ N − 1

by a global condition on M . This will bring in a comparison of λ1(Ω) with the

corresponding eigenvalue of a domain Ω∗ in a symmetrized manifold M∗ which, in

general, will not have the full symmetry group of SN .

Definition 3.4.1. We call the isoperimetric function of a Riemannian manifold

(M, g) the real function on [0, 1] defined by

h(β) = h(M, g; β) = inf
Ω

{
A(∂Ω)

V (M)
: Ω ⊆M,V (Ω) = βV (M)

}
. (3.68)

Note from the definition that the isoperimetric function is non-negative and that
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h(β) = h(1− β) for all β ∈ [0, 1].

Definition 3.4.2. We call an isoperimetric estimator of (M, g) any function

H : [0, 1]→ R+ such that h(β) ≥ H(β), ∀β ∈ [0, 1].

Consider a Riemannian manifold (M, g) equipped with an isoperimetric estima-

tor H(β). We will construct a symmetric Riemannian manifold M∗, of the same

dimension as M , having H as its isoperimetric function.

Let M∗ := SN−1 × (0, L) endowed with g∗ = a2(s) dθ2 + ds2, where θ ∈ SN−1,

s ∈ (0, L), dθ2 is the canonical Riemannian metric on SN−1, ds2 is the arclength

element on (0, L), and a2(s) stands for a strictly positive, smooth function on (0, L),

continuous on [0, L], with a(0) = a(L) = 0. Note that (M∗, g∗) is a Riemannian

manifold with revolution symmetry, but not necessarily complete.

Let B(N, s) ⊆M∗∪{N} be the ball of radius s and center N , the North pole, that

is the point corresponding to SN−1 × {0}. Denote by Rvol(s) the relative volume of

the ball B(N, s) = {N} ∪
(
SN−1 × (0, s)

)
with respect to the volume of the entire

manifold M∗. Thus, we have

Rvol(s) =
V (B(N, s))

V (M∗)
=
V (SN−1)

V (M∗)

∫ s

0

aN−1(t) dt. (3.69)

As Rvol(s) ∈ [0, 1], we may evaluate any estimator of M∗ at Rvol(s). Due to the

structure ofM∗, note that the isoperimetric function on the balls B(N, s) ofM∗∪{N},

i.e.

h∗(Rvol(s)) :=
A(∂B(N, s))

V (M∗)
, (3.70)

is actually the isoperimetric function of M∗ itself.

In fact, we want to implement the main feature of the construction by choosing

the estimator H of (M, g) to be the isoperimetric function of the balls B(N, s), in
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other words

H(Rvol(s)) :=
A(∂B(N, s))

V (M∗)
. (3.71)

As A(∂B(N, s)) = V (SN−1) aN−1(s), the previous equality can be written as

H(Rvol(s)) =
A(∂B(N, s))

V (M∗)
=
V (SN−1)aN−1(s)

V (M∗)
=
dRvol(s)

ds
, s ∈ (0, L). (3.72)

Therefore, given a Riemannian manifold (M, g) equipped with an isoperimetric es-

timator H, we can summarize the construction of (M∗, g∗) as follows. Determine

the function Rvol(s) from the differential equation (3.72) with the initial condition

Rvol(0) = 0. Equivalently, this gives Rvol(s) implicitly as

s =

∫ Rvol(s)

0

dv

H(v)
. (3.73)

From the latter, since s is the arclength parameter, we can find the value of L by

L =

∫ 1

0

dv

H(v)
. (3.74)

We can see that h(0) = h(1) = 0 (using the property h(β) = h(1 − β)), thus

H(0) = H(1) = 0. Therefore the two previous equations make sense only when the

integrals converge. The convergence of the integral (3.74) implies the compactness

of M∗, by extending the notation M∗ to
(
SN−1 × (0, L)

)
∪ {N,S}, where N and S

correspond to the points SN−1×{0} and SN−1 ×{L}. Note, however, that for M∗

to be smooth, we need a′(0) = 1 and a′(L) = −1. Otherwise, M∗ will be a manifold

with conical singularities at the North and South poles, respectively.

Before proving the main result, we will present an example of M∗.

Example 3.4.1 ([1]). Let (M, g) be a two-dimensional Riemannian manifold equipped

with the isoperimetric estimator H(β) =
√
β(1− β). By equation (3.73), and by a
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change of variable u =
√
β, we get

s =

∫ Rvol(s)

0

dβ√
β(1− β)

=

∫ √Rvol(s)

0

2 du√
1− u2

= 2 arcsin
√
Rvol(s). (3.75)

Thus, we have

Rvol(s) = sin2 s

2
. (3.76)

Similarly by equation (3.74), we obtain L = π. To compute a(s), apply equation

(3.69), and the fact that here N = 2, to get

Rvol(s) =
V (S1)

V (M∗)

∫ s

0

a(t)dt, (3.77)

then

d

ds
sin2 s

2
=

d

ds

( V (S1)

V (M∗)

∫ s

0

a(t)dt
)
, (3.78)

or

a(s) =
V (M∗)

V (S1)

d

ds

(
sin2 s

2

)
=
V (M∗)

V (S1)

(
sin

s

2
cos

s

2

)
. (3.79)

Thus

a(s) =
V (M∗)

V (S1)

(
1

2
sin s

)
=
V (M∗)

4π
sin s. (3.80)

We thus have M∗ = S1 × (0, π), and g∗ = a2(s) dθ2 + ds2 with a(s) defined as

above. It was proved in [1] that the choice of V (M∗) is arbitrary, as the Raleigh

quotient does not depend on V (M∗). Here, a good choice for V (M∗) is V (M∗) = 4π,

as, in this case, the couple (M∗, g∗) will be exactly (S2, can) whose isoperimetric es-

timator is h(S2, can; β) =
√
β(1− β).

Influenced by the work of Bérard, and using his notations and definitions in [1],

we proved the following generalized theorem of the Faber-Krahn inequality.

Theorem 3.4.1. Let (M, g) be a compact Riemannian manifold with no boundary,
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equipped with an isoperimetric estimator H such that the integrals (3.73) and (3.74)

converge. Let Ω be a domain in M , and let Ω∗ be a ball in M∗ centered at N such

that V (Ω)/V (M) = V (Ω∗)/V (M∗), where M∗ =
(
SN−1 × (0, L)

)
∪ {N,S}. Then

λ1(Ω) ≥ λ1(Ω∗).

Proof. Let γ =
V (M)

V (M∗)
. By the hypothesis on the convergence of

1

H
, we have that

M∗ is compact, and thus V (M∗) is finite. So is V (M), as M is compact.

Let u be the eigenfunction associated with the eigenvalue λ1(Ω). Consider the

level sets Ωt = {x ∈ Ω : u(x) ≥ t}, with 0 ≤ t ≤ m = supu, and Ω0 = Ω. Denote by

G(t) and F (t), respectively, the following

G(t) =

∫
Ωt

|∇u|2dV, (3.81)

and

F (t) =

∫
Ωt

u2dV. (3.82)

Define Ω∗t the balls on M∗ centered at N such that V (Ωt)/V (M) = V (Ω∗t )/V (M∗),

i.e. V (Ωt) = γV (Ω∗t ). Furthermore, define the function u∗ : Ω∗0 = Ω∗ → R radially

such that

u∗|∂Ω∗
t

= t = u|∂Ωt , ∀t : 0 ≤ t ≤ m. (3.83)

Note that u∗|∂Ω∗
0

:= u∗|∂Ω∗ = 0, and that u∗ ∈ H1
0 (Ω∗).

Analogously to (3.81) and (3.82), define the functions G∗(t) and F ∗(t) by

G∗(t) =

∫
Ω∗
t

|∇u∗|2dV, (3.84)

and

F ∗(t) =

∫
Ω∗
t

u∗2dV. (3.85)
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We have V ′(Ωt) = −
∫
∂Ωt

|∇u|−1dA, as

V ′(Ωt) =
d

dt

(
V (Ωt)

)
=

d

dt

(∫
Ωt

dV
)

=
d

dt

(∫ ∞
t

∫
∂Ωτ

|∇u|−1dAdτ
)

= −
∫
∂Ωt

|∇u|−1dA. (3.86)

Similarly, we get

G′(t) = −
∫
∂Ωt

|∇u|dA. (3.87)

Now, as u∗ is radial, by the same method, we get

V ′(Ω∗t ) = −|∇u∗|−1A(∂Ω∗t ), (3.88)

and

G∗′(t) = −|∇u∗|A(∂Ω∗t ). (3.89)

Therefore, by applying the Cauchy-Schwartz inequality to the functions |∇u|1/2 and

|∇u|−1/2 on ∂Ωt, we get

A2(∂Ωt) =
(∫

∂Ωt

dA
)2

≤ V ′(Ωt) ·G′(t), (3.90)

while

A2(∂Ω∗t ) = V ′(Ω∗t ) ·G∗
′(t), (3.91)

as u∗ is radial.

While on the compact manifolds with pinched Ricci curvature, we had Gromov’s

isoperimetric inequality implying

A(∂Ω) ≥ γA(∂Ω∗), (3.92)
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here we will derive it using the isoperimetric estimator. If Ω is a domain in M with

V (Ω) = βV (M), then

A(∂Ω) ≥ h(β)V (M), by the definition of the function h,

≥ H(β)V (M), by the definition of the function H,

=
A(∂Ω∗)

V (M∗)
· V (M), by (3.71),

= γA(∂Ω∗). (3.93)

Thus, we have A(∂Ωt) ≥ γA(∂Ω∗t ) and, by (3.90), (3.91), and the co-area formula, we

obtain that

γG∗(t) ≤ G(t), (3.94)

and

F (t) = γF ∗(t). (3.95)

We omitted the details which can be found in the proof of Theorem 3.3.1. In par-

ticular, for the derivation of the last two equalities, we refer to the equations (3.61),

(3.62) and (3.64).

Accordingly,

G(t)

F (t)
≥ γG∗(t)

γF ∗(t)
=
G∗(t)

F ∗(t)
, ∀ t ∈ [0,m], (3.96)

in particular for t = 0,

G(0)

F (0)
≥ G∗(0)

F ∗(0)
, (3.97)

from which we conclude that∫
Ω

|∇u|2dV∫
Ω

u2dV

≥

∫
Ω∗
|∇u∗|2dV∫

Ω∗
u∗2dV

. (3.98)

Finally, u being an eigenfunction of λ1(Ω), by the variational characterization of
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eigenvalues (Theorem 3.2.2), we have

λ1(Ω) =

∫
Ω

|∇u|2dV∫
Ω

u2dV

, (3.99)

and ∫
Ω∗
|∇u∗|2dV∫
Ω

u∗2dV

≥ λ1(Ω∗). (3.100)

Therefore

λ1(Ω) ≥ λ1(Ω∗), (3.101)

and the Faber - Krahn inequality is then proved.
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Appendix A

Referenced Results

A1 Green’s Formulas

Theorem A1.1 (Green’s formula I, [4]). Let (M, g) be an N-dimensional Riemannian

manifold without boundary. Consider two functions f and h in C2(M) and C1(M),

respectively. Then ∫
M

{h∆f + (∇h,∇f)}dV = 0. (A.1)

If both functions are of class C2 over M , then

∫
M

{h∆f − f∆h}dV = 0. (A.2)

Theorem A1.2 (Green’s formula II, [4]). Let M be as above and, additionally, ori-

ented. Let Ω be a domain in M with boundary of class C1 and let ν be the outward

normal unit vector field along ∂Ω. Consider two functions f and h in C2(M) and

C1(M), respectively. Then

∫∫
Ω

{h∆f + (∇f,∇h)}dV =

∫
∂Ω

h(ν,∇f)dA. (A.3)
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If both f and h are C2 on M , then

∫∫
Ω

{h∆f − f∆h}dV =

∫
∂Ω

{h(ν,∇f)− f(ν,∇h)}dA. (A.4)

A2 Rellich - Kondrasov Theorem

Theorem A2.1 ([9]). Let Ω be an open bounded subset of RN with boundary of class

C1. For 1 ≤ p < N , define p∗ as
1

p∗
=

1

p
− 1

N
. Then the following inclusions are

compact:

a. If p < N , W 1,p(Ω)→ Lq(Ω), 1 ≤ q ≤ p∗,

b. If p = N , W 1,p(Ω)→ Lq(Ω), 1 ≤ q ≤ ∞,

c. If p > N , W 1,p(Ω)→ C(Ω).

If Ω is any bounded domain, then the inclusions are valid for W 1,p
0 (Ω).

A3 Spectral Results

Theorem A3.1 (Spectral Theorem [5]). Suppose that T : H → H is a non-zero

self-adjoint compact operator from a Hilbert space H to itself. Then

1 - There exists at least one eigenvalue λ ∈ {±‖T‖}.

2 - There are at most countably many non-zero eigenvalues, {λn}Nn=1, where N =∞

is allowed. Unless T is finite rank, N will be infinite.

3 - The eigenvalues λn’s may be arranged so that |λn| ≥ |λn+1|, for all n. If N =∞,

then limn→∞ |λn| = 0. In particular, any eigenspace of T corresponding to a non-

zero eigenvalue is finite dimensional.
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4 - The eigenvectors {ϕn}∞n=1 can be chosen to form an orthonormal basis such that

H = span{ϕn} ⊕Nul(T ).

5 - Using {ϕn}Nn=1, we have

Tψ =
N∑
n=1

λn(ψ, ϕn)ϕn, ∀ψ ∈ H. (A.5)

6 - The spectrum of T is σ(T ) = {0} ∪ ∪∞n=1{λn}.

Theorem A3.2 (Friedrichs extension [12]). Let A be a positive symmetric operator,

and let q(ϕ, ψ) = (ϕ,Aψ), for ϕ, ψ ∈ D(A), where D(A) is a domain of the operator

A. Then q is a closable quadratic form and its closure q̂ is the quadratic form of a

unique self-adjoint operator Â, Â is a positive extension of A, and the lower bound of

its spectrum is the lower bound of q. Furthermore, Â is the only self-adjoint extension

of A whose domain is contained in the form domain of q̂.

A4 Weak Maximum Principle

Theorem A4.1. [6] Let Ω be a bounded domain in RN , N ≥ 2, and let L be a linear

elliptic second order differential operator on Ω of the form

Lu =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑
k=1

bk(x)
∂u

∂xk
+ c(x)u. (A.6)

with continuous coefficients. It is assumed that the coefficients aij satisfy the uniform

ellipticity condition and that aij = aji. Suppose that

c = 0 and Lu ≥ 0 (resp. ≤ 0) in Ω (A.7)

for some u ∈ C2(Ω) ∪ C0(Ω). Then, unless u is constant in Ω, the maximum (resp.
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minimum) of u in Ω is not attained on Ω, in other words

max
Ω̄

u = max
∂Ω

u (respectively min
Ω̄
u = min

∂Ω
u). (A.8)

A5 Bonnet - Myers Theorem

Theorem A5.1. [4] Let (M, g) be a complete Riemannian N-dimensional manifold,

N ≥ 2, such that there exists a constant k > 0 for which

Ric (u, u) ≥ k(N − 1) g(u, u), (A.9)

for all u ∈ TM . Then M is compact and the manifold’s diameter, d(M), satisfies

d(M) ≤ π/
√
k. (A.10)

A6 Gromov’s Isoperimetric Inequality

Theorem A6.1. [7] Let M be a compact N-dimensional Riemannian manifold, N ≥

2, equipped with a Riemannian metric g. Let Ω be a domain in M with smooth

boundary. Let Ω∗ be a geodesic ball of the canonical sphere SN , such that the relative

volume of Ω∗ in SN is equal to the relative volume of Ω in M , and let R(M, g) =

inf{Ric (u, u) : u ∈ TM}. If R(M, g) ≥ N − 1 = R(SN , g∗), then we have

A(∂Ω)

V (M)
≥ A(∂Ω∗)

V (SN)
, (A.11)
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with equality if and only if the triplet (M, g,Ω) is isometric to (SN , can,Ω∗).

A7 The Co -Area Formula

Theorem A7.1. Let Ω be an open domain on a manifold Mand let u be a real valued

Lipschitz function on Ω. Then, for any real valued integrable function f on Ω, we

have ∫
Ω

fdV =

∫ sup f

inf f

∫
{u=t}

f |∇u|−1dAdt. (A.12)
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