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Abstract

AN INVESTIGATION OF DECODING COMPLEXITY AND

CODING RATE PERFORMANCE OF RAPTOR CODES

Thang Nguyen

This thesis examines two aspects of wireless transmissions using Raptor codes: (i)

decoding complexity and (ii) rate performance.

First, observing that the high complexity of Raptor decoding process is mainly

due to the required number of decoding attempts, a strategy is proposed to reduce

the decoding complexity by choosing an appropriate time to start the first decoding

attempt and thus keeping a small number of decoding attempts. Simulations results

show that the proposed strategy, when combined with a decoding algorithm, can

achieve a significant reduction in Raptor decoding complexity. Another threshold

strategy is also investigated, aiming to further reduce the decoding complexity by

providing only “reliable” bits for Raptor decoding process. The effect of this con-

sidered strategy can be interpreted as simulating a better transmission channel and

techniques to estimate its effective channel quality improvement are developed and

evaluated.

Second, the Raptor coding rate performance over Nakagami-m fading channels

and in a cooperative relaying network using Binary Phase Shift Keying (BPSK) is

studied. The simulation results show that the Raptor-coded BPSK scheme can pro-

vide a transmission rate closely approaching the channel capacity for different fading

conditions at low SNR. For cooperative relaying network using Raptor-coded BPSK

scheme, two cooperative protocols are considered: the existing Time Division (TD)

and the modified Phase-2 Simultaneous Transmission (PST). Their performance is in-

vestigated in terms of average time and energy required for a successful transmission

under various conditions of the Relay-Destination (RD) link. The simulation results

show that the PST protocol often outperforms the TD protocol in terms of average

transmission time and the TD protocol only has lower average transmission energy

when the RD link’s quality is better that of the Source-Destination (SD) link.
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Chapter 1

Introduction

The advantage of Raptor codes over other traditional channel codes is that they

are rateless, i.e., the coding rate of a Raptor code for a transmission of a message is

not fixed and hence it can be adapted to the channel quality. On the other hand,

the downside of Raptor codes is their high decoding complexity caused by the need

for multiple decoding attempts. This work investigates some aspects of transmission

using Raptor codes over wireless channels, including methods of reducing the Rap-

tor decoding complexity, Raptor coding rate performances over Nakagami-m fading

channels and in a cooperative Wireless Relay Network.

This chapter is organized as follows. Section 1.1 introduces the idea of fountain

codes which are the general class in which Raptor codes fall. Section 1.2 presents three

problems addressed in this thesis. Finally, Section 1.3 provides the thesis outline.

1.1 Transmission with Fountain Codes

Messages transmitted over communication channels are susceptible to errors due

to transmission effects, i.e., added noise, interference etc., which cause unreliable

transmissions. Communication systems have mechanisms to provide reliable trans-

missions. One of the traditional mechanisms is channel coding. A typical transmission

scheme with channel coding is illustrated in Figure 1.1.

At the transmitter, as the message is passed to the channel encoder, the channel

encoder encodes it into a codeword using an encoding algorithm. The codeword

contains not only the message information but also some redundancy which can later

1



Figure 1.1: A transmission scheme with channel coding.

be used at the receiver to overcome the harmful effects encountered in the transmission

of the codeword through the channel. The codeword data (or encoded bits) is then

passed to the modulator and mapped into a form suitable for transmission before

being sent, through the channel, to the receiver. The channel generally distorts or

corrupts the transmitted signal. At the receiver, the demodulator first processes the

noise-corrupted received signal and produces an estimated codeword (a sequence of

received bits) to the channel decoder. The channel decoder then, based on the coding

structure, uses an appropriate decoding algorithm to decode the corrupted codeword.

Depending on how the codeword was damaged and the channel code’s capability, the

channel decoder can detect or correct errors in the corrupted codeword and recover

the message.

An important parameter for a channel code is its coding rate, defined as k/N where

k is the size of the message segment and N is the size of the codeword. Obviously,

0 < k/N ≤ 1 as the codeword always contains redundancy. k/N = 1 stands for the

trivial case of no channel code and the message segment is transmitted without any

protection; on the other hand, the lower coding rate can provide stronger protection

but coming at the cost of more resources for transmitting the redundancy.

Traditional fixed-rate channel codes face a problem of selecting an appropriate

coding rate before the transmission. The basic requirement is that the chosen coding

rate is high enough to protect the message against the impact of transmission errors.

However, as transmission channels are often varying (as in wireless communications),

it is hard to have a good estimation for an appropriate coding rate at the transmitter:

if the chosen coding rate is too low, the message is overly protected and transmission

resources are wasted; in contrast, if the chosen coding rate is too high, the message

does not have enough protection leading to unreliable transmission. It is also worth

2



noting that for many channel codes, once the coding rate is chosen, it is fixed, i.e., it

cannot be changed on the fly if that rate was too high or too low.

That problem of fixed-rate channel codes can be addressed with another kind

of channel codes, called fountain codes, that can automatically adapt their coding

rate to the channel state. Fountain codes [1, 2] work in a way similar to a real

fountain. A real fountain continuously pours out water (drops) for a drinker until

he/she has drunk enough water and quenched his/her thirst. Analogously, a fountain

code encodes a message into a very long stream of encoded symbols and provides them

to a receiver until the receiver has collected enough encoded symbols to successfully

recover the message. In this way, the fountain coding rate is not fixed before the

transmission and can be adapted to the channel state. The unknown coding rate

before the transmission of fountain codes makes them rateless codes.

The rateless nature of fountain codes is especially useful for some communica-

tion applications. One is the broadcast transmission where the single transmitter has

several receivers, each with a channel of varying quality. Using fountain codes, the

transmitter does not need to assign coding rates for each receivers. The transmitter

simply broadcasts encoded symbols of a message to all the receivers until all of them

send back the information to indicate that the message was recovered (e.g., ACK sig-

nals). Another transmission scenario where fountain codes are also useful: a source

needs to transmit a message to a destination and there are some other devices/nodes,

called relays to facilitate that transmission. Such a cooperative transmission system

is called a Wireless Relay Network (WRN) and it can make transmissions more re-

liable and more energy-efficient [3–5]. Applying fountain codes in WRN is one of

the methods to closely achieve an information theoretic capacity of the multiple-relay

channels [3] and also eliminate outage probability [6], i.e., the probability that the

message is not successfully recovered at the destination. Another suitable applica-

tion for fountain codes is data storage which highlights the ability of overcoming the

random losses. If a large file must be backed up, it can be encoded by a fountain

code and the encoded symbols can be stored in several places. To retrieve the file,

the reader just needs to find an appropriate number of encoded symbols and run the

decoding; corrupted encoded symbols due to faults in the device are simply skipped.

On the other hand, one of the downsides of fountain codes is their high decoding

complexity [7, 8]. This mainly comes from the potential multiple decoding attempts

3



at the receiver. As the coding rate of fountain codes is unknown, the receiver tries to

decode the first time after a certain number of encoded symbols required to recover the

message successfully are collected. If the first decoding attempt fails, more encoded

symbols are collected before the receiver tries to decode again. This fail-then-wait-

and-try-again decoding process may repeat itself many times until the message is

successfully recovered. Moreover, a fountain code usually uses the Message Passing

Algorithm (MPA) or the Sum-Product Algorithm [9] in each decoding attempt. This

decoding algorithm has many iterations and high complexity [10, 11]. As the decoding

process accumulates received symbols, the later decoding attempt will have higher

complexity. At the end, such a decoding process consisting of multiple attempts has

high complexity.

Raptor codes, which were invented by A. Shokrollahi [12], are one of the classes of

fountain codes known for their good performances in a wide variety of transmission

channels [13–18]. Due to these good performances, Raptor codes are now used as

channel codes for several multimedia broadcast applications, such as Digital Video

Broadcasting - Handheld (DVB-H), 3rd Generation Partnership Project Multime-

dia Broadcast/Multicast Services (3GPP MBMS) and Internet Protocol Television

(IPTV) [19, 20]. They are also considered for cooperative transmission systems: with

multiple access [21], for broadcast in wireless cellular networks [22] and for coopera-

tive video transmission in ad hoc networks [23]. On the other hand, as Raptor codes

are fountain codes, they are also known for their high decoding complexity [7].

In this thesis, several aspects of the Raptor codes’ transmission over wireless

channels are considered: (i) methods of reducing the Raptor decoding complexity,

(ii) Raptor coding rate performance, i.e., the number of encoded symbols required to

recover the message successfully, over Nakagami-m fading channels and (iii) over a

single-relay WRN. Note that as Raptor codes are now investigated as a channel code

at the application layer, it is convenient to use “bit” instead of “symbol” hereafter.

1.2 Problem Statement

In this section, three issues with Raptor codes addressed in this thesis are pre-

sented.
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1.2.1 Raptor Decoding Complexity

Raptor codes often have high decoding complexity as they generally require mul-

tiple decoding attempts to recover the messages. More specifically, each Raptor de-

coding attempt involves a high number of encoded bits, many decoding iterations and

high computational complexity functions (see Sections 2.1.2.2 and 2.2.2 for details).

The high decoding complexity of Raptor codes is undesirable in some applications

where the receivers are small and power-limited (e.g., sensor nodes in Ad hoc net-

works). Chapter 3 of this thesis investigates several methods to reduce Raptor de-

coding complexity. These methods are compared based on two figures of merits: the

total Raptor decoding complexity and the number of encoded bits required for the

successful recovery of the message.

The total Raptor decoding complexity is calculated as the overall computational

cost of a Raptor decoding process. It consists of two separate components: (i) CR1 is

the computational cost related to the basic operations, i.e., multiplication, division,

addition and subtraction; (ii) CR2 is the computational cost related to the hyper-

bolic tangent (tanh) and inverse hyperbolic tangent (atanh) functions. The detailed

calculations of CR1 and CR2 are presented in Section 3.2.

The number of encoded bits required for the successful recovery of the message,

denoted as NF , is a random variable which depends on the quality of the underlying

transmission channel, i.e., Signal-to-Noise Ratio (SNR) values. In this thesis, the

performances of Raptor codes in terms of NF are showed by the average values of

NF , denoted as E(NF )’s, over a chosen range of channel SNRs.

1.2.2 Raptor Coding Rate Performance over Nakagami-m

Fading Channels

Raptor codes have been intensely investigated for transmissions over a wide range

of channel models, including Additive White Gaussian Noise (AWGN) channels,

Rayleigh fading channels and Rician fading channels [13–18]. The results showed con-

sistently good coding rate performance of Raptor codes in all these channels. While

Nakagami-m models were considered to be more suitable for presenting a wide range

of fading conditions in transmission channels than Rayleigh or Rician models [24–

26], they have not yet been considered for transmissions with Raptor codes. In this
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thesis, the Raptor coding rate is investigated for Nakagami-m fading channels. The

average Raptor coding rate, defined as k/E(NF ) (k is the size in bit of the message),

is the figure of merit considered for this study. In Section 4.1, values of k/E(NF ) are

compared with the values of the average capacity of the underlying channel.

1.2.3 Raptor Coding Rate Performance over a Single-relay

Wireless Relay Network

Various aspects of Raptor codes’ performance in a WRN were investigated in

[3, 27–30]. When employing Raptor codes, the source and relays usually continue the

transmissions to the destination until the message is successfully recovered; hence,

two attributes that are directly related to the Raptor coding rate performance are

often chosen to be the figures of merit: (i) the overall transmission energy and (ii)

the transmission time. X. Liu et al. in [28] studied and compared several cooperative

protocols using Raptor codes in a core block of a WRN, i.e., a WRN with one source,

one relay and one destination or a single-relay WRN. Their results showed that the

Time-Division (TD) protocol has relatively good performances in terms of the av-

erage overall transmission energy. In this work, another protocol, named Phase-2

Simultaneous Transmission (PST) protocol, is proposed and aims to have a better

performance than the TD protocol in terms of the transmission time. The PST proto-

col is a simplified version for a single-relay WRN based on the Asynchronous protocol

proposed in [3] for multiple-relay WRN.

The performances of the TD protocol and the PST protocol are compared based on

two figures of merit: the average energy expenditure E(ES) and average transmission

time E(T ). These two attributes are directly related to the Raptor coding rate and

will be described in Section 4.2.2.2.

1.3 Thesis Outline

This thesis is organized as follows.

Chapter 2 provides the background material for the whole thesis. It includes the

introduction of LT codes, which is the main component of Raptor codes, and then

Raptor codes and how they both encode and decode a message. A particular Raptor
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version and transmission channel models used for the investigation in Chapters 3 and

4 are also presented.

Chapter 3 investigates methods to reduce the Raptor decoding complexity, namely

Previously Inherited Message Passing Algorithm (PIMPA), Late-Start Previously In-

herited Message Passing Algorithm (LSPIMPA) and Thresholded Late-Start Pre-

viously Inherited Message Passing Algorithm (TLSPIMPA); the latter two are the

contribution of this work. The idea of LSPIMPA is to begin the first decoding at-

tempt late, i.e., after receiving a high number of bits, so that the number of decoding

attempts is kept small and so is the decoding complexity. TLSPIMPA is the combi-

nation between LSPIMPA and the threshold technique in which only reliable received

bits are input into the Raptor decoder. The first part of Chapter 3 presents these

methods in detail and then provides the simulation results of their performance in

terms of decoding complexity. The second part contributes to the investigation of

another aspect of the threshold technique: estimating the improved quality of the

channel when only reliable received bits are used for Raptor decoding.

Chapter 4 begins with the investigation of Raptor coding rate performance of

point-to-point transmissions over Nakagami-m fading channels. The simulation re-

sults are provided to show the consistently good Raptor coding rate performances

over different fading conditions. Then, the second part of Chapter 4 considers Rap-

tor coding rate performance over a single-relay WRN. Specifically, it compares the

performance of two cooperative protocols using Raptor codes, the TD protocol and

the PST protocol, in terms of the average transmission time E(T ) and the average

energy expenditure E(ES).

Chapter 5 concludes the thesis and discusses some future work.
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Chapter 2

Background

This chapter aims to introduce some preliminary knowledge for the understanding

of the rest of the thesis. Specifically, the concepts of Luby-Transform (LT) codes are

discussed together with its improved version Raptor codes. Also, the system model

used throughout this work is presented.

The rest of this chapter is organized as follows. Section 2.1 introduces the encod-

ing process of Luby-Transform codes, the first realization of fountain (i.e., rateless)

codes. Also, two different LT decoding algorithms are presented that are applicable

for both types of information output by the demodulator at the receiving end: (i)

hard information (i.e., binary values of 0 or 1) and (ii) soft information (i.e., log-

likelihood values). Section 2.2 summarizes some recent advances in the development

of Raptor codes. Section 2.3 describes the transmission model used in this work.

2.1 Luby-Transform Codes

Luby-Transform (LT) codes, introduced by Luby in [31], are the first full realiza-

tion of fountain codes. They are rateless codes in a sense that at the transmitter LT

encoder generates as few or as many encoded bits as needed on-the-fly, making its

coding rate not fixed a priori. For a given message, LT encoder continues to send a

stream of encoded bits until enough information has been collected by the receiver

for the successful recovery of the original message.

8



Figure 2.1: An example of factor graph representation of LT codes.

2.1.1 Luby-Transform Encoding Process

In the LT encoding process, a message is encoded into a potentially infinite number

of bits, each of which is generated randomly and independently of one another. The

LT encoder first splits the data stream into different k-bit messages, which are then

encoded as follows. Given a distribution D(x) = D1x + D2x
2 + D3x

3 + ... + Dkx
k

where
∑k

i=1 Di = 1(called degree distribution), a number d (called degree) is randomly

generated. Here, Di is the probability that an arbitrary encoded bit has degree d = i.

Based on this, d bits from the k message bits are randomly chosen. Finally, these

selected message bits are exclusive-OR-ed (XOR-ed), outputting one encoded bit.

In this d-to-1 relation, the d message bits are called the neighbours of the output

encoded bit. Essentially, an LT code can be defined by k and D(x). The above-

described process is repeated until enough encoded bits have been generated (i.e., the

original message can be successfully recovered at the receiver side).

The encoding process can be best presented by the so-called factor graph [32]

which describes the relationship between message bits and encoded bits. Specifically,

a certain degree-d encoded bit has d edges connecting itself with its message bit

neighbours. Figure 2.1 illustrates an example of such factor graph. As can be seen,

there are two kinds of nodes in the factor graph (i) variable nodes to represent the

message bits, and (ii) check nodes to represent the encoded bits. The index of the

variable nodes, ranging from 1 to k, reflects the position of the message bits in the

message; while the index of the check nodes gives the order in which the encoded bits

are generated. Moreover, another two sets of indices are also defined:

1. Xi: the set of indices of variable nodes that are the neighbours of check node i.

Assuming check node i has the degree di, then Xi = {j1, j2, ..., jdi} if and only
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if ci = vj1
⊕

vj2
⊕ · · ·⊕ vjdi where ci is the binary value of check node i, vjx is

the binary value of variable node jx and
⊕

presents the XOR operation.

For instance, in Figure 2.1, it is clear that X1 = {1, 3}, X2 = {2, k − 1},...,
Xn = {k},... as c1 = v1

⊕
v3, c2 = v2

⊕
vk−1 and cn = vk.

2. Yj: the set of indices of check nodes that have variable node j as a neighbour.

Assuming variable node j has, in total, ei check node neighbours, then Yj =

{i1, i2, ..., iei} if and only if ∀k ∈ {1, 2, ..., ei}, j ∈ Xik .

For instance, in Figure 2.1, Y1 = {1, n − 1}, Y2 = {2, 3},..., Yk = {n}. As the

variable node 1 is a neighbour of the check nodes 1 and n − 1; the variable

node 2 is a neighbour of the check nodes 2 and 3 and the variable node k is a

neighbour of the check node n.

2.1.2 Luby-Transform Decoding Process

After a message is encoded, it is sent over the transmission channel to the receiving

end. The receiver collects the noise-corrupted encoded bits, called the received bits,

and begins the LT decoding process to recover the original message. The factor graph

is assumed to be perfectly known at the decoder side (see, e.g., [31]).

Based on the types of information received, LT decoders can perform either hard

information or soft information decoding. This section presents two different LT

decoding algorithms for a finite number of received bits (the noise-corrupted encode

bits at the receiver). If received bits are received as either 1 or 0 or completely

unknown, the LT decoding algorithm with hard information is applied; otherwise, if

received bits are provided only with probabilities of their values, the LT decoding

algorithm with soft information is applied.

2.1.2.1 LT Decoding Algorithm with Hard Information

An LT decoding process is usually defined for a truncated LT code where the LT

decoder only has access to a finite number of received bits. Based on the knowledge

of the values of these received bits and the factor graph, the LT decoder uses an

appropriate decoding algorithm to recover the values of the k message bits. An LT

decoding process is successful when all the values of k bits of the message are recovered

correctly.
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After the LT decoder has collected n received bits that are known as either 0 or

1(erasures are discarded), it begins the decoding process. First, it looks for check

nodes (received bits) with degree one. For these, the only neighbouring variable node

(message bit) can immediately be recovered. For example, in Figure 2.1, if the value

of check node n is known, the value of variable node k is immediately recovered. These

recovered variable nodes can be the neighbours of other degree-two check nodes. In

turn, these recovered variable nodes help to recover other variable nodes that share

the same neighbour check node with them. In general, if a check node with degree

d has d− 1 of its neighbouring variable nodes recovered, its remaining neighbouring

variable node can in turn be recovered. This process can be repeated several times

and in the end, all k variable nodes may be gradually recovered. However, in some

cases, the decoding process with n check nodes cannot recover all k variable nodes,

i.e., in cases that some variable nodes have no neighbour or that the decoding process

cannot continue due to the fact that all the unprocessed check nodes have at least

two unrecovered neighbouring variable nodes, then the LT decoder simply waits to

collect more received bits and tries to decode again.

Systematically, the LT decoding algorithm with hard information proceeds in an

iterative manner in the factor graph as follows. The LT decoder first creates a queue

in which all the degree-one check nodes are listed. The LT decoding process begins

by processing the first degree-one check nodes j in the queue. The processing of check

node j (and other degree-one check nodes) is composed of three steps.

1. The only neighbour variable node i of check node j is recovered by assigning its

value to the value of check node j.

2. XOR the recovered value of variable node i to all the check nodes which have

it as a neighbour.

3. Remove all the edges neighbouring to variable node i in the factor graph.

After processing check node j, the LT decoder recovers the value of variable node

i and eventually reduces the degree of other neighbouring check nodes. As a result,

some check nodes may become degree-one and will be put in the queue. The LT

decoding process proceeds by consecutively processing other degree-one check nodes

in the queue until all the variable nodes are recovered or the queue is empty. If the
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queue is empty before all the variable nodes are recovered, the LT decoding process

is not successful and the LT decoder collects more received bits and tries to decode

again. If all the variable nodes are recovered, the LT decoding process is successful.

This LT decoding algorithm for hard information can be applied for transmissions

over erasure channels, where received bits are either completely known or erasures.

While the known received bits are used for decoding process, the erasures are all

ignored. These ignored erasures do not affect the result of the LT decoding process as

long as other received bits can form a factor graph helping the LT decoding process

to proceed until all the message bits are recovered. LT codes for erasure channels are

more suitable to some applications in the network layer as discussed in [2, 31].

2.1.2.2 LT Decoding Algorithm with Soft Information

At the receiver side, instead of identifying each received bit as an absolute value

like 1 or 0, the demodulator can assign each received bit with a reliability or a soft

Log-likelihood Ratio (LLR) value, defined as:

L(ci) = ln

(
P{ci = 1}
P{ci = 0}

)
(2.1)

where L(ci) is the reliability or soft LLR value of received bit i; P{ci = 1} and

P{ci = 0} are the probabilities of ci = 1 and ci = 0, respectively. The calculations

of these values are based on the knowledge of the transmission channel state at the

receiver and are presented in Section 2.3.

Similar to the LT decoding algorithm with hard information, the LT decoding

algorithm with soft information also uses the same factor graph for the decoding pro-

cess; however the soft LLR values of check nodes complicates the recovery of variable

nodes. With LLR values, the degree-one check nodes cannot recover its neighbouring

variable nodes immediately; instead, the check nodes generate soft information mes-

sages and pass them to the neighbouring variable nodes, then the variable nodes also

generate and pass back soft information messages. The decoding process happens in

an iterative manner and at the end the values of variable nodes are recovered based

on the soft information messages obtained at the final iteration. The passing back

and forth of soft messages in the factor graph of this decoding algorithm lends it the

name Message Passing Algorithm (MPA).

Specifically, in each decoding iteration, first all the check nodes generate and pass
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the soft information messages L(ti,j)’s to their neighbouring variable nodes, where

L(ti,j) denotes the soft information message that the check node i (received bit)

generates and passes to its neighbouring variable node j (message bit). This L(ti,j)

message represents the LLR value of the variable node j calculated based on the

knowledge of check node i. Then, all the variable nodes generate and pass the soft

information messages L(hj,i)’s back to their neighbouring check nodes, where L(hj,i)

denotes the soft information message that variable node j generates and passes to its

neighbouring check node i. The L(hj,i) message represents the LLR value of variable

node j and is calculated based on the knowledge of variable node j itself. For each

check node, the outgoing L(ti,j) messages at the current iteration are updated based

on the received L(hj,i) messages from the previous iteration; while at the variable

nodes, the process is reversed.

The details for the update rules for the L(ti,j) and L(hj,i) messages are as follows.

Update rule for L(ti,j) messages

Before showing the update rule for L(ti,j) messages, it is convenient first to present

the following formula: If x = x1

⊕
x2

⊕ · · ·⊕ xn , where x1,...,xn are independent

binary random variables, then the LLR value of x , denoted as L(x), can be calculated

as:

L(x) = 2× (−1)n−1 × atanh

(
n∏

i=1

tanh

(
L(xi)

2

))
(2.2)

Proof

Check Formula 2.2 with n = 2

Consider the binary XOR operation x = x1

⊕
x2, then

P{x = 1} = P
{(

(x1 = 1)
⋂

(x2 = 0)
)⋃(

(x1 = 0)
⋂

(x2 = 1)
)}

= P
{(

(x1 = 1)
⋂

(x2 = 0)
)}

+ P
{(

(x1 = 0)
⋂

(x2 = 1)
)}

.

As x1 and x2 are independent with each other, then P {((x1 = 1)
⋂

(x2 = 0))} =

P{x1 = 1} × P{x2 = 0} and P {((x1 = 0)
⋂

(x2 = 1))} = P{x1 = 0} × P{x2 = 1},
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thus P{x = 1} becomes

P{x = 1} = P{x1 = 1}P{x2 = 0}+ P{x1 = 0}P{x2 = 1}
= P{x1 = 1} (1− P{x2 = 1}) + (1− P{x1 = 1})P{x2 = 1}
= P{x1 = 1}+ P{x2 = 1} − 2P{x1 = 1}P{x2 = 1}.

From the definition of soft LLR values in Equation 2.1, it is derived that P{xi =

1} = eL(xi)

1+eL(xi)
. Replacing that into the above calculation provides

P{x = 1} =
eL(x1)

1 + eL(x1)
+

eL(x2)

1 + eL(x2)
− 2

eL(x1)+L(x2)

(1 + eL(x1)) (1 + eL(x2))

=
eL(x1) + eL(x2)

(1 + eL(x1)) (1 + eL(x2))
,

then

P{x = 0} = 1− P{x = 1}

= 1− eL(x1) + eL(x2)

(1 + eL(x1)) (1 + eL(x2))

=
1 + eL(x1)+L(x2)

(1 + eL(x1)) (1 + eL(x2))
.

Next, L(x) is calculated as

L(x) = ln

(
P{x = 1}
P{x = 0}

)

= ln (P{x = 1})− ln (P{x = 0})

= ln

(
2eL(x1) + 2eL(x2)

(1 + eL(x1)) (1 + eL(x2))

)

− ln

(
2 + 2eL(x1)+L(x2)

(1 + eL(x1)) (1 + eL(x2))

)

= ln

(
1− eL(x1) − 1

eL(x1) + 1
× eL(x2) − 1

eL(x2) + 1

)

− ln

(
1 +

eL(x1) − 1

eL(x1) + 1
× eL(x2) − 1

eL(x2) + 1

)
.
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As tanh(x) = e2x−1
e2x+1

, L(x) can be presented as follows:

L(x) = ln

(
1− tanh

(
L(x1)

2

)
tanh

(
L(x2)

2

))

− ln

(
1 + tanh

(
L(x1)

2

)
tanh

(
L(x2)

2

))

= −2× 1

2

[
ln

(
1 + tanh

(
L(x1)

2

)
tanh

(
L(x2)

2

))

− ln

(
1− tanh

(
L(x1)

2

)
tanh

(
L(x2)

2

))]
.

As atanh(x) = 1
2
[ln(1 + x)− ln(1− x)], L(x) then finally becomes

L(x) = −2× atanh

(
tanh

(
L(x1)

2

)
tanh

(
L(x2)

2

))

= −2× (−1)2−1 × atanh

(
tanh

(
L(x1)

2

)
tanh

(
L(x2)

2

))
.

Since it agrees with Formula 2.2 for n = 2, Formula 2.2 for n = 2 is checked.

By induction, assuming Formula 2.2 is true for n−1, i.e., if Y = x1

⊕
x2

⊕ · · ·⊕ xn−1

then

L(Y ) = 2× (−1)n−2 × atanh

(
n−1∏
i=1

tanh

(
L(xi)

2

))
(2.3)

Consider the XOR operation x = x1

⊕
x2

⊕ · · ·⊕ xn−1

⊕
xn = Y

⊕
xn, using

the Formula 2.2 for n = 2 provides

L(x) = 2× (−1)2−1 × atanh

(
tanh

(
L(Y )

2

)
tanh

(
L(xn)

2

))
(2.4)

Substitute Equation 2.3 into Equation 2.4, the L(x) has the form

L(x) = 2× (−1)× atanh

(
tanh

(
(−1)n−2 × atanh

(
n−1∏
i=1

tanh

(
L(xi)

2

)))
tanh

(
L(xn)

2

))

= 2× (−1)n−1 × atanh

(
n∏

i=1

tanh

(
L(xi)

2

))
.

This completes the proof.

Now consider the soft L(ti,j) message that check node i passes to its neighbouring

variable nodes j. Assuming check node i has degree di and all of the indices of its
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Figure 2.2: Update rule for the L(ti,j) message.

neighbours are given by Xi = {j, j1, j2, ..., jdi−1}, then

ci = vj
⊕

vj1
⊕

vj2 · · ·
⊕

vjdi−1
(as defined in Section 2.1.1)

=⇒ vj = ci
⊕

vj1
⊕

vj2 · · ·
⊕

vjdi−1
.

Since the L(ti,j) message is the LLR value of variable node j, applying Formula

2.2, the L(ti,j) message is calculated as

L(ti,j) = L(vj)

= 2× (−1)di−1 × atanh

(
tanh

(
L(ci)

2

) ∏
k∈Xi andk �=j

tanh

(
L(hk,i)

2

))
(2.5)

where L(vj) and L(ci) are the LLR values of variable node j and check node i,

respectively ; L(hk,i) is the LLR value of variable node k which is passed to check

node i from the previous iteration (since variable node k is one of the neighbours of

check node i). For the first iteration, all the L(hk,i) messages are initialized as 0s.

Figure 2.2 illustrates the update rule for the L(ti,j) message in which the value

L(ti,j) is obtained by “XOR-ing” all the LLR values of L(hj,i) messages from the

previous iteration and the L(ci) value provided by the demodulator. After the L(ti,j)

message is updated at check node i, it is then passed to variable node j through the

corresponding edge in the factor graph.

Update rule for L(hj,i) messages

Consider the L(hj,i) message that variable node j passes to its neighbouring check

node i. Similar to the update rule for L(ti,j) messages, the outgoing L(hj,i) message
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at the current iteration is updated based on the received L(tk,j) messages from the

previous iteration. However, the difference is that there is no XOR operation engaging

all the received L(tk,j) messages at variable node j. Recall that the L(hj,i) message

presents the LLR value for variable node j itself, then one of the ways to decide the

LLR value of variable node j from all that L(tk,j) messages is as follows.

Denote Pk{vj = 1} and Pk{vj = 0} as the probabilities of variable node j equal

to 1 and 0, respectively, according to check node k. These values are contained in

the L(tk,j) message passed from check node k from the previous iteration. Recall

that check node k is just one of the neighbours of variable node j and Yj lists all the

neighbours of variable node j (defined in 2.1.1). The probabilities of variable node

j equal to 1, i.e., P{vj = 1}, and equal to 0 , i.e., P{vj = 0}, can be calculated

as: P{vj = 1} =
∏

k∈Yj andk �=i Pk{vj = 1} and P{vj = 0} =
∏

k∈Yj andk �=i Pk{vj = 0}.
These products exclude the probabilities with k = i as the L(hj,i) message is later

sent to check node i and thus it should not contain the information from the L(ti,j)

message. The LLR value of variable node j, i.e., L(vj), based on these probabilities

is then calculated as

L(vj) = ln

(∏
k∈Yj andk �=i Pk {vj = 1}∏
k∈Yj andk �=i Pk {vj = 0}

)

=
∑

k∈Yj andk �=i

ln

(
Pk{vj = 1}
Pk{vj = 0}

)

=
∑

k∈Yj andk �=i

L(tk,j).

Hence, the update rule for the L(hj,i) message is:

L(hj,i) = L(vj) =
∑

k∈Yj andk �=i

L(tk,j) (2.6)

Figure 2.3 illustrates the update rule for the L(hj,i) message. As there is no XOR

operation at variable node j, the summation of incoming L(ti,j) messages from the

previous iteration is assigned to the value of the outgoing L(hj,i) message.

After the L(hj,i) message is updated at variable node j, it is then passed to check

node i through the corresponding edge in the factor graph. Finally, at the final
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Figure 2.3: Update rule for the L(hj,i) message.

iteration, the LLR value of each variable node j is calculated as

L(vj) =
∑
k∈Yj

L(tk,j) (2.7)

The hard value of each variable node (message bit) is then recovered based on the

sign of L(vj): if L(vj) ≥ 0 then variable node j is bit 1, otherwise it is bit 0.

Finally, the recovered k message bits then are checked to see whether they are

correctly recovered. This checking is employed by including some Cyclic Redundancy

Check (CRC) bits in the k message bits. If the CRC checking fails, the LT decoder

waits to collect more received bits and then tries to decode again; otherwise, the LT

decoding is considered to be successful. The probability that erroneous recovered

messages pass the CRC checking is small and ignored in this work.

2.1.3 Soliton Distributions and The Coding Rate Performance

of LT Codes

There is one question that is usually asked for any LT code: What is, on the

average, the minimum number of received bits required for a successful LT decoding?

This question is first addressed for the LT decoding algorithm with hard information.

That result then can be served as a lower bound for the number of required received

bits in the case of the LT decoder with soft information.

Concerned with this question, in [31], Luby designed the degree distribution D(x)

with the objective of keeping the average number of received bits required for a

successful decoding as small as possible.

The result is the Ideal Soliton distribution

D(x) = ρ(1)x+ ρ(2)x2 + ...+ ρ(k)xk
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where {
ρ(i) = 1

k
i = 1

ρ(i) = 1
i(i−1)

i = 2, 3, ..., k.

This distribution is ideal in the sense of keeping the expected number of received

bits needed to recover the message small; however, in practice, the decoding process

often halts in the middle and fails to recover the message due to lack of degree-one

check nodes. Addressing that problem, Luby proposed the Robust Soliton distribu-

tion, a modified version of the Ideal Soliton distribution, that works better in practice.

The Robust Soliton distribution D(x) = μ(1)x + μ(2)x2 + ... + μ(k)xk is defined as

follows. Let R = c ln(k/d)
√
k for some suitable constant c > 0. Define:

τ(i) =

⎧⎪⎪⎨
⎪⎪⎩

R
ik

for i = 1, .., k
R
− 1

R ln(k/R)
k

for i = k
R

0 for i = k
R
+ 1, ..., k.

Add the Ideal Soliton distribution ρ(.) to τ(.) and normalize to obtain μ(.):

β =
k∑

i=1

(ρ(i) + τ(i))

μ(i) =
ρ(i) + τ(i)

β
i = 1, 2, ..., k.

Finally, Luby showed that, with the Robust Soliton distribution, the expected

number of received bits required for a successful LT decoding wasK = k+O
(√

k ln2(k/σ)
)

where σ is the probability that the LT decoding process of K received bits fails.

2.2 Raptor Codes

As discussed in the previous section, LT codes with the Robust Soliton distribution

need K = k+O
(√

k ln2(k/σ)
)
received bits in average so that the message could be

recovered successfully. However, K is high with high value of k, e.g., with k = 104

and a probability of decoding failure σ = 0.1 then K ∼ 23255, and that causes high

encoding and decoding complexity. In [12], Shokrollahi proposed an extended form

of LT code, called Raptor code, which has a lower required number of received bits

on average for a successful decoding.

The Raptor codes’ idea is to relax the condition of LT codes to recover all message

bits. Instead, Shokrollahi uses an LT code version that recovers just a fraction of the
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message bits, so that the required number of received bits is lower and thus the code

has lower complexity. To maintain the reliability, the weakened inner LT code is

then complemented with an outer code that can compensate for this loss. That is,

in essence, the way a Raptor code is formed: an inner LT code combined with an

outer code. Therefore, a Raptor code can be described by (k,C, D(x)), where k is the

size of each message block at the input, C is the outer code and D(x) is the degree

distribution of the inner LT code. Figure 2.4a-b presents the concatenated structure

of a Raptor encoder and a Raptor decoder.

As shown in Figure 2.4a-b, the concatenated structure of Raptor codes at both

the receiver and the decoder implies two stages of the Raptor encoding/decoding

process. At the Raptor encoder side, k message bits first come through the outer

code C encoder to produce n intermediate bits. The encoded bits output by the

Raptor encoder is then generated by the inner LT encoder from those n intermediate

bits. On the Raptor decoder side, inversely, the inner LT decoder first tries to decode

n intermediate bits. It needs to recover only just a fraction of these n intermediate

bits, leaving the outer decoder to correct the rest of the intermediate bits to get back

the k message bits.

(a) Raptor encoder

(b) Raptor decoder

Figure 2.4: Concatenated structure of Raptor encoder and decoder.

2.2.1 Raptor Encoding Process

Similar to LT codes, at the beginning of a Raptor encoding process, the data

stream is split into messages, each with k message bits. A k-bit message is encoded

into n intermediate bits by the outer encoder C. These n intermediate bits are
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Figure 2.5: An example of factor graph representation of Raptor codes.

further encoded by the inner LT encoder into a stream of encoded bits through the

same encoding process presented in Section 2.1.1.

After the encoding process, a Raptor code also has the factor graph representing

the relationship between the k message bits, n intermediate bits and encoded bits.

Figure 2.5 illustrates an example factor graph of a Raptor code. In this figure, the

Raptor factor graph has variable nodes that represent message bits, intermediate

nodes represent intermediate bits and check nodes represent encoded bits. Note that,

the k message bits are encoded to n intermediate bits by a systematic outer code C in

which n intermediate bits are composed of k unchanged message bits following by n−k

parity bits. This is not always the case as the outer code C can be employed with an

non-systematic code, e.g., a non-systematic Low-Density Parity-Check (LDPC) code.

2.2.2 Raptor Decoding Process

After a message is encoded, the encoded bits are sent over the transmission channel

to the receiver. The Raptor decoder collects a finite number NS of received bits (noise-

corrupted encoded bits) and begins the decoding process. The Raptor factor graph

is assumed to be perfectly known at the decoder. In the following, the decoding is

described only with the LLR values of received bits output from the demodulator.
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A Raptor decoding process usually proceeds with several decoding attempts. Ba-

sically, a Raptor decoding attempt consists of an inner LT soft decoding run and an

outer soft decoding run. Each of these soft decoding runs has several iterations in

which soft messages are passed back and forth in the factor graph as described in

Section 2.1.2.2. Specifically, the Raptor decoder begins the first decoding attempt by

applying the soft LT decoding algorithm to decode NS received bits and then output

n LLR values of intermediate bits to the outer decoder. The outer decoder then runs

its soft decoding algorithm to recover the k message bits. Similar to LT codes, the

recovered messages of Raptor codes are also checked for errors with the embedded

CRCs. If no error is found, the decoding attempt is successful and the whole Raptor

decoding process for this particular message finishes; otherwise, the Raptor decoder

waits until more encoded bits are received and begins a new decoding attempt.

2.2.3 Inner LT Distribution D(x) and Coding Rate Perfor-

mance of Raptor Codes

As described in the previous section, the number of received bits the Raptor de-

coder requires to recover the message is the same as that the inner LT code requires to

recover n intermediate bits. Hence, the Raptor coding rate performance is controlled

by its inner LT code.

In [12], Shokrollahi showed the way of designing degree distributions for the weak-

ened inner LT code, aiming to reduce the average number of received bits required

for a successful Raptor decoding process. Applying his method for a fixed value of k

and a fraction f of uncovered part of the intermediate bits, the degree distribution

can be found. Table 2.1 reproduces Table I in [12] showing the Shokrollahi’s designed

degree distributions of the inner LT code for various values of k. In the table, Di is

the probability that an encoded bit has degree i; ε is the overhead, i.e., the average

number of received bits required for a successful Raptor decoding is K = (1 + ε)k; a

is the average degree of an encoded bit; the applied value of f is 0.01 for all cases.

For example, from Table 2.1 with k = 65536, the distribution is found as:

D(x) = 0.007969x+ 0.49357x2 + 0.16622x3 + 0.072646x4 + 0.082558x5

+ 0.056085x8 + 0.037229x9 + 0.05559x19 + 0.025023x65

+ 0.003135x66. (2.8)
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k
65536 80000 100000 120000

D1 0.007969 0.007544 0.006495 0.004807
D2 0.49357 0.49361 0.495044 0.496472
D3 0.16622 0.166458 0.16801 0.166912
D4 0.072646 0.071243 0.0679 0.073374
D5 0.082558 0.084913 0.089209 0.082206
D8 0.056058 0.041731 0.057471
D9 0.037229 0.043365 0.050162 0.035951
D18 0.001167
D19 0.05559 0.045231 0.038837 0.054305
D20 0.010157 0.015537
D65 0.025023 0.018235
D66 0.003135 0.010479 0.016298 0.009100
D67 0.017365 0.010777
ε 0.038 0.035 0.028 0.02
a 5.87 5.91 5.85 5.83

Table 2.1: Degree distributions of the inner LT code for several values of k.

The average number of received bits required for a successful decoding is then

K = (1 + ε)k = (1 + 0.038)× 65536 = 68026. The corresponding Raptor coding rate

is thus k/K = 65536/68026 = 0.9634, better than the usual coding rate of the LT

code (mentioned at the beginning of Section 2.2) with k = 10000, K = 23255 and

k/K = 0.43. With the degree distribution in Equation 2.8 and K received bits, the

inner LT decoder can recover a fraction 1 − f = 1 − 0.01 = 0.99 of all intermediate

bits.

Finally, in [12], the overall probability that the Raptor decoding fails with K hard-

decision received bits (and an appropriate outer code that can recover the message

from n intermediate bits with a fraction f of erasures) is proved to be very small

(∼ 10−14).

2.2.4 Investigated Raptor Code Version

Raptor coding rate performances over transmission channels with soft information

were considered in [13–18]. In [13], R. Planki and J. S. Yedidia investigated the

performance of Raptor code and compared it with that of the LT code. They selected
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the LT code with k = 10000, and for a fair comparison, they also selected a Raptor

code with k = 9500 and with an outer LDPC code which can encode k = 9500

message bits into n = 10000 intermediate bits. The paper found that the Raptor

code outperforms the LT code and has good coding rate performances on a wide

variety of noisy channels. The results have been widely used by other papers in the

selection and investigation of Raptor codes.

In [13], the Raptor code (k,C, D(x)) has k = 9500, D(x) is given in Equation 2.8

and the outer code C is an LDPC code which also can be presented using a factor

graph. This LDPC code uses a left regular distribution (all variable nodes have degree

4) and right Poisson (check nodes chosen randomly with a uniform distribution) for

its encoding process. As the LDPC encoding and decoding processes are similar to

those of LT codes’, readers are referred to [33] for details.

The Raptor code version mentioned above was proved to have good coding rate

performances over different kinds of transmission channels [13–18]. In this thesis,

this Raptor code version is also used for all the investigations in Chapters 3 and 4.

Hereafter, whenever the “Raptor code” term is mentioned, it refers to this particular

version.

2.3 Transmission Model

The transmission model considered this thesis is illustrated in Figure 2.6. Here, the

transmission model takes the input from the Raptor encoder. The Raptor encoded bit

stream is then Binary Phase Shift Keying (BPSK) modulated before it is transmitted

through the transmission channel to the receiver. In the transmission channel, there

is noise and other effects that corrupt or distort transmitted samples before they

reach the receiver. At the receiver, the BPSK demodulator collects these distorted

samples and, based on the channel state information, outputs their LLR values. These

soft values are then output into the Raptor decoder. Section 2.3.1 describes the

transmission channel effects on transmitted samples in a mathematical model. Section

2.3.2 presents how the BPSK demodulator calculates LLR values of received bits.
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Figure 2.6: Transmission link.

2.3.1 The Transmission Channel Model

The transmission channel effects on transmitted samples are modeled mathemat-

ically as follows.

ri = hiei + ni (2.9)

where ei is the encoded bit i’s sample transmitted at time slot i while ri is the

corresponding noise-corrupted received sample of received bit i; hi is called the channel

gain and presents the fading effect that usually happens in wireless transmissions; ni

is an AWGN random variable that presents the random noise effecting the encoded

bits signal.

While ni is generated independently for each time slot i, hi can be either kept

the same or changed for different i. The number of time slot i in which hi is kept

unchanged is called the block fading size B. If hi = 1 and is kept as a constant in

a whole transmission, i.e., B = ∞, the transmission channel model becomes ci =

ei + ni and it is called the AWGN channel (AWGNC). If B = 1, i.e., hi is generated

independently for each time slot i, the transmission channel is called the fast fading

channel.

In this thesis, hi’s are randomly generated based on a distribution. That dis-

tribution lends its name to the corresponding transmission channel. For example,

the Rayleigh fading channel has hi generated based on the Rayleigh distribution in

Equation 2.10.

f (h|σ) = h

σ2
e−

h2

2σ2 (2.10)

with h > 0 and a parameter σ > 0.
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Other distributions that will be mentioned in Section 4.1 are the Rician and

Nakagami-m distributions. The Rician distribution is given in Equation 2.11 and the

Nakagami-m distribution is given in Equation 2.12.

f (h|σ, ν) = h

σ2
e−

h2+ν2

2σ2 Io

(
hν

σ2

)
(2.11)

with Io(z)is the modified Bessel function of the first kind with order zero.

f (h|m) =
2mmh2m−1

Γ(m)
e−mh2

, ∀h ≥ 0 (2.12)

with Γ(m) =
∫∞
0

xm−1e−x dx.

2.3.2 The Calculation of LLR Values

Similar to Equation 2.1, the LLR value of a received bit i is defined as follows.

L(ci) = ln

(
P{ei = +1|ri}
P{ei = −1|ri}

)
(2.13)

where P{ei = +1|ri} the conditional probability that the transmitted sample ei =

+1, i.e., encoded bit i is 1, for a given received sample ri at the receiver; similarly,

P{ei = −1|ri} is the conditional probability that the transmitted sample ei = −1,

i.e., encoded bit i is 0, for a given received sample ri at the receiver. Recall that ci is

the binary value of received bit (check node) i.

These two conditional probabilities are then may be expressed as

P{ei = +1|ri} =
f(ri|ei = +1)P{ei = +1}

f(ri)

P{ei = −1|ri} =
f(ri|ei = −1)P{ei = −1}

f(ri)

where f(ri) is the probability density function (pdf) of ri; f(ri|ei = +1) and f(ri|ei =
−1) are the conditional pdf’s of ri given ei = +1 and ei = −1, respectively.

Assuming the message has an equal number of bit 1 and bit 0, then P{ei = +1} =

P{ei = −1} = 1/2. Therefore,

L(ci) = ln

(
P{ei = +1|ri}
P{ei = −1|ri}

)

= ln

(
f(ri|ei = +1)

f(ri|ei = −1)

)
.
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If ni is generated based on a normal distribution with variance σ2, f(ri|ei = +1)

and f(ri|ei = −1) are:

f(ri|ei = +1) =
1√
2πσ2

e−
(ri−hi)

2

2σ2

f(ri|ei = −1) =
1√
2πσ2

e−
(ri+hi)

2

2σ2 .

Finally,

L(ci) = ln

(
f(ri|ei = +1)

f(ri|ei = −1)

)

= ln

(
e−

(ri−hi)
2

2σ2

)
− ln

(
e−

(ri+hi)
2

2σ2

)

=
−(ri − hi)

2

2σ2
− −(ri + hi)

2

2σ2

=
2hiri
σ2

. (2.14)

In all the investigations of Chapters 3 and 4, Equation 2.14 is used to calculate the

LLR values of all received bits for the Raptor decoder. Note that, in this thesis, the

receiver is assumed to always know the SNR of the channel. Techniques to estimate

channel SNR at the receiver can be found in [34, 35].
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Chapter 3

Methods of Reducing Raptor

Decoding Complexity

Section 2.2.2 described the overall Raptor decoding process at the receiver. It is

observed that the Raptor decoding process is costly in terms of computation since it

requires multiple decoding attempts to recover the message, and that each decoding

attempt has multiple iterations. Also, the complexity of each iteration is dependent

on the number of received bits in use which can be quite high.

There are several strategies to reduce the Raptor decoding complexity: (i) By

choosing appropriately the number of received bits to be used in the initial decoding

attempt, the number of decoding attempts can be reduced. This is called the late-

start strategy. (ii) Reusing of the decoding results from the previous attempt can

reduce the number of iterations required in each attempt. This is called the reuse-

of-previous-results strategy. (iii) Discarding of uncertain received bits so that only

“more certain” or “reliable” received bits are used can leads to fewer received bits

being used in each iteration. This is called the threshold technique. The reuse-of-

previous-results strategy and the threshold technique were already investigated in [7]

and [28], respectively, while the late-start strategy is the contribution of this work.

Note that, discarded uncertain received bits in the threshold technique are similar

to erasures in the erasure channel. However, for erasure channels, the received bit is

either known for its hard value (1 or 0) or unknown (erasure). On the other hand,

with the threshold technique, the output is the soft LLR value of the received bit.

These three strategies can be combined. Table 3.1 presents combinations that will
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Algorithm Late-start Reuse-of-previous-results Threshold
PIMPA X

LSPIMPA X X
TLSPIMPA X X X

Table 3.1: Three algorithms for reducing Raptor decoding complexity.

be investigated in this chapter. In the table, PIMPA stands for Previously Inherited

Message Passing Algorithm and is employed with only the reuse-of-previous-results

strategy; LSPIMPA stands for Late Start PIMPA and is employed with both the late-

start and the reuse-of-previous-results strategies; TLSPIMPA stands for Threshold

LSPIMPA and is employed with all three strategies: the late-start, the reuse-of-

previous-results and the threshold strategies. As the late-start strategy is the contri-

bution of this work, the main focus of this chapter is on the complexities of LSPIMPA

and TLSPIMPA. Note that the reuse-of-previous-results strategy or PIMPA is chosen

to be the basics for LSPIMPA and TLSPIMPA here as it was shown in [7] to be able

to reduce the decoding complexity without any sacrifice in the number of received

bits for a successful decoding.

In Section 3.3, the decoding complexities of PIMPA, LSPIMPA and TLSPIMPA

are compared with that of the standard Raptor decoding process which uses the

Message Passing Algorithm (MPA) (presented in Section 2.1.2.2) for both the inner

LT decoding and the outer LDPC decoding.

The threshold technique of providing the Raptor decoder with more reliable bits

is similar to simulating a better underlying channel. Section 3.4 investigates this

observation and developes methods to estimate the improved underlying channel.

This chapter is organized as follows. Section 3.1 presents the detailed operation

of the three algorithms. Section 3.2 presents the detailed calculation of the Raptor

decoding complexity in terms of the number of basic operations (i.e., multiplication,

division, subtraction and addition) CR1 and the number of hyperbolic functions (i.e.,

tanh or atanh) CR2. Simulation results are shown in Section 3.3 to demonstrate

how PIMPA, LSPIMPA, and TLSPIMPA reduce the decoding complexity in the

comparison with MPA. Section 3.4 investigates the effect of applying the threshold

technique, i.e., the virtual improved channel quality. Finally, a summary of the
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chapter is given in Section 3.5.

3.1 Methods of Reducing Raptor Decoding Com-

plexity

In this section, the detailed operations of PIMPA, LSPIMPA and TLSPIMPA are

presented. However, first, some of the Raptor decoding parameters that affect the

decoding complexity are reviewed.

3.1.1 Raptor Decoding Parameters

Figure 3.1 presents the overall Raptor decoding process and highlights some im-

portant parameters that will be mentioned later. The Raptor decoding process starts

the first decoding attempt when NS received bits are collected at the receiver. The

inner LT decoder first uses the MPA (for soft information) with T1 iterations to re-

cover the intermediate bits and output the LLR values of intermediate bits into the

outer LDPC decoder. The outer decoder then also uses the MPA with T2 iterations

to recover the message. If the recovered message fails the CRC check, the decoder will

wait to receive more I received bits before having another decoding attempt. Finally,

recall that NF is the number of received bits for a successful recovery of the message,

then the number of the decoding attempts fda is fda =
NF−NS

I
.

3.1.2 Raptor Decoding Algorithms for Reducing Complexity

PIMPA tries to reduce the complexity by reusing the results from the previous

decoding attempt. Specifically, in the first iteration of the first decoding attempt of

PIMPA, all the soft messages that each intermediate node (intermediate bit) passes

to its neighbouring check nodes (received bits) are initialized as 0’s. This is the

same with the MPA presented in Section 2.1.2.2. In the first iterations of subsequent

decoding attempts, MPA also initializes these soft messages as 0’s. However, unlike

MPA, in the first iteration of the ith decoding attempt (i > 1) of PIMPA, the soft

messages that each intermediate node j (1 ≤ j ≤ n) passes to its neighbouring

check nodes are set to its LLR value obtained from the last iteration of the previous

decoding attempt. K. Hu et al. in [7] first proposed PIMPA (called Algorithm B),
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Figure 3.1: Overall Raptor decoding process.

31



and then showed that PIMPA not only outperforms MPA (called Algorithm A) in

terms of decoding complexity, but also requires fewer received bits for a successful

Raptor decoding process.

LSPIMPA is proposed to further reduce the decoding complexity by combining

PIMPA with the late-start strategy. Specifically, LSPIMPA uses a larger NS so that

it is more likely that the decoding process will be successful in the first decoding

attempt. In this way, the number of decoding attempts fda is kept small and thus the

average Raptor decoding complexity is reduced. However, this method clearly costs

the average Raptor coding rate performance as it begins the decoding with a higher

number of received bits in most of the transmissions. Investigation of the values of NS

for LSPIMPA under various channel and SNR conditions will be presented in Section

3.3.

TLSPIMPA is an extension of LSPIMPA. It aims to further reduce the complexity

by combining LSPIMPA with the threshold technique. Specifically, assuming that the

threshold is S ≥ 0, all the received bits that have their absolute LLR values greater

than S are considered as reliable and will be used for the decoding process. Note that,

for TLSPIMPA, the mechanism of choosing the number of received bits for the first

attempt inherited from LSPIMPA is now based on the number of reliable received

bits.

3.2 Overall Complexity of a Raptor Decoding Pro-

cess

As described in Section 2.2.2, a Raptor decoding process usually has many at-

tempts and each attempt consists of an inner LT decoding and an outer decoding.

Section 3.2.1 presents the calculation for the complexity of an inner LT decoding

while Section 3.2.2 presents that for an outer LDPC decoding. Finally, Section 3.2.3

presents the overall Raptor decoding complexity composed of multiple decoding at-

tempts.
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Figure 3.2: Factor graph of the inner LT code with Np check nodes and n
intermediate nodes.

3.2.1 Complexity of an Inner LT Decoding Attempt

This section presents the calculation of the complexity of the pth (p ≥ 1) inner LT

decoding attempt Cp
LT . Before proceeding to the details, it is convenient to present

here, in Figure 3.2, the factor graph of the inner LT code where Np is the number of

received bits (check nodes) used in the pth Raptor decoding attempt.

As discussed in Chapter 2, an inner LT decoding with soft information requires

many iterations. In each iteration, the check nodes calculate and send soft messages

to the intermediate nodes, then the intermediate nodes calculate and send back soft

messages to the check nodes. The complexity of the calculation done at the check

nodes in each iteration is denoted as Cp
c while the complexity of the calculation at

the intermediate nodes in each iteration is denoted Cp
i . Note that these complexities

are the same for each iteration in the same attempt. Hence, if there are T p
1 iterations

in the pth attempt, then the total complexity of the pth attempt is

Cp
LT = (Cp

c + Cp
i )× T p

1 .

(Note that this is the complexity of the inner LT decoding attempt only. The outer

LDPC attempt complexity will be given in Section 3.2.2)

Detailed calculations of Cp
c and Cp

i are as follows.

3.2.1.1 Derivation of Cp
c

As discussed in Section 2.1.2.2, in each iteration of the LT soft decoding process,

each check node calculates and sends soft information to each of its neighbouring
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intermediate nodes. Specifically, it sends an estimate of the LLR value of that in-

termediate node, denoted as L(ti,j) where i is the index of the check node and j is

the index of the check node’s neighbouring intermediate nodes. Assuming check node

i has di neighbouring intermediate nodes, the formula for L(ti,j) is then given by

Equation 2.5 which is reproduced below.

L(ti,j) = 2× (−1)di−1 × atanh

(
tanh

(
L(ci)

2

) ∏
k∈Xi andk �=j

tanh

(
L(hk,i)

2

))
(2.5)

where Xi is the set of all the indices of the neighbouring intermediate nodes of the

check node i as mentioned in Section 2.1.1.

Some observations for the calculation of Equation 2.5 are as follows.

1. tanh (L(ci)/2) depends only on the received bit i and is the same for each

iteration and indeed for every decoding attempt. Thus, it should be calculated

at the time received bit i is received. Hence, the total complexity for these values

is NF × ctanh, where ctanh is the computational cost of the hyperbolic tangent

(tanh) function (NF is the number of received bits required for a successful

decoding as mentioned in Section 3.1.1). As this complexity is only a small

part of the overall Raptor decoding complexity (approximately 0.1%), it will be

neglected in the complexity calculation here.

2. Each L(hk,i) is associated with an edge joining a check node to an intermediate

node and its value changes in each iteration. Thus, the tanh (L(hk,i)/2) must

be calculated in each iteration, but for all calculations in that iteration the

tanh (L(hk,i)/2) is the same. Thus, these tanh (L(hk,i)/2)’s are calculated once

in each iteration. Now there is one L(hk,i) for each edge joining a check node to

an intermediate node; the total number of edge is
∑Np

i=1 di = Ne, and so there

are Ne × tanh (L(hk,i)/2)’s to be calculated in each iteration.

3. For each calculation of Equation 2.5, the argument of the atanh function must

be determined. For each check node i, these arguments are similar. Specifically,

all have di − 1 of the di tanh (L(hk,i)/2)’s associated with the check node i plus

the tanh (L(ci)/2). All these arguments of the check node i can be done with

di multiplications and di − 1 divisions. Then, for all the check nodes in each

iteration, this is Ne multiplications and Ne −Np divisions.
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For example, in Figure 3.2, check node 2 has four neighbouring intermediate

nodes 1, 2, 3 and n, i.e., di = 4. It must calculate Equation 2.5 di = 4

times. It first calculates the four values of tanh (L(t2,1)/2), tanh (L(t2,2)/2),

tanh (L(t2,3)/2) and tanh (L(t2,n)/2). Defining Aj,i as the argument of the atanh

function in Equation 2.5, then the four arguments calculated by check node 2

are A2,1, A2,2, A2,3 and A2,n. They are calculated first by four multiplications

of

M1 = tanh

(
L(ci)

2

)
× tanh

(
L(t2,1)

2

)
,

M2 = M1 × tanh

(
L(t2,2)

2

)
,

M3 = M2 × tanh

(
L(t2,3)

2

)
,

M4 = M3 × tanh

(
L(t2,n)

2

)
.

Note that A2,n = M3. The other Aj,i’s are calculated with three divisions,

namely

A2,1 = M4/tanh

(
L(t2,1)

2

)
,

A2,2 = M4/tanh

(
L(t2,2)

2

)
,

A2,3 = M4/tanh

(
L(t2,3)

2

)
.

4. To finish the calculation of Equation 2.5, an atanh function must be done (note

that the multiplications by 2× (−1)di−1 are taken as trivial).

Now, in each iteration, Equation 2.5 must be calculated for each neighbouring

intermediate node of each check node, i.e., for each edge in Figure 3.2 or Ne times.

Hence, the complexity to calculate all messages from the check nodes to the interme-

diate nodes per iteration at the pth decoding attempt Cp
c is

Cp
c = Nectanh +Necmul + (Ne −Np)cdiv +Necatanh

= Ne(ctanh + cmul + cdiv + catanh)−Npcdiv (3.1)
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where cdiv, cmul, ctanh and catanh are the computational cost of the division, the mul-

tiplication, the hyperbolic tangent (tanh) and the inverse hyperbolic tangent (atanh)

functions, respectively.

3.2.1.2 Derivation of Cp
i

The soft information that an intermediate node calculates and sends to its neigh-

bouring check nodes is the LLR value of the intermediate node itself denoted as

L(hj,i). Here, j is the index of the intermediate node and i is the index of the neigh-

bouring check nodes of intermediate node j. L(hj,i) is given by Equation 2.6 which

is reproduced below.

L(hj,i) =
∑

k∈Yj andk �=i

L(tk,j) (2.6)

where Yj is the set of all the indices of the neighbouring check nodes of the interme-

diate node j as mentioned in Section 2.1.1.

Define ej as the number of the neighbouring check nodes of intermediate node j.

Equation 2.6 for intermediate node j is then calculated ej times in each iteration and

the calculation can be done with ej − 1 additions and ej − 1 subtractions. Then, for

all the intermediate nodes in each iteration, this is
∑n

j=1 (ej − 1) = Ne − n additions

and Ne − n subtractions (note that
∑n

j=1 ej =
∑Np

i=1 di = Ne and they indicate the

number of edges of the inner LT factor graph).

For example, in Figure 3.2, intermediate node 2 has three neighbouring check

nodes 2, 3 and Np, i.e., e2 = 3. The intermediate node 2 calculates e2 = 3 values of

L(h2,2), L(h2,3) and L(h2,Np). These three values can be calculated first by e2− 1 = 2

additions of

B1 = L(t2,2) + L(t3,2),

B2 = B1 + L(tNp,2)

then e2 − 1 = 2 subtractions of

L(h2,2) = B2 − L(t2,2),

L(h2,3) = B2 − L(t3,2)
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while L(h2,Np) = B2.

Hence, the complexity to calculate all the messages from the intermediate nodes

to the check nodes per iteration at the pth decoding attempt Cp
i is

Cp
i = (Ne − n)(cadd + csub) (3.2)

where cadd and csub are the computational costs of the addition and subtraction,

respectively.

3.2.1.3 Derivation of Cp
LT

Combining Equations 3.1 and 3.2, the total complexity of the pth inner LT decod-

ing attempt Cp
LT with T p

1 iterations is

Cp
LT = T p

1 (C
p
c + Cp

i )

= T p
1 (Ne(ctanh + catanh + cmul + cdiv + cadd + csub)

− n× cadd − n× csub −Np × cdiv) (3.3)

Equation 3.3 presents the complexity of the pth inner LT decoding attempt in

terms of the computational complexity of basic operations, i.e., multiplication, divi-

sion, addition and subtraction, and two hyperbolic functions, i.e., tanh and atanh.

From the implementation point of view, the tanh and atanh functions are rather

complex as they involves operations such as divisions, additions, exponentials and

logarithms (i.e., tanh(x) = ex−e−x

ex+e−x and atanh(x) = 1
2
ln
(
1+x
1−x

)
). The piecewise linear

function approximation and the quantisation table approximation were proposed to

reduce the computational complexity of these two functions [10, 36]. Even though

these approximation methods reduced the tanh and atanh complexity by using off-

line computations, it is still hard to compare the complexity of these two functions

and that of the basic operations. Therefore, in this work, the decoding complexity

is considered in two separate terms: (i) the complexity in terms of the number of

tanh or atanh functions and (ii) the complexity in terms of the number of addition,

subtraction, multiplication and division. Also, there are two other approximations

for the complexity calculation: (i) the number of edges in the inner LT factor graph

Ne is approximated by the product between the number of check nodes (received

bits) Np and the average degree of each check node a = 5.87 (Section 2.2.3); (ii) the

computational complexities of multiplication and division are assumed to be equal
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Figure 3.3: Factor graph for the outer LDPC code with n intermediate nodes and k
variable nodes.

to those of addition and subtraction (as in case where a digital signal processor is

used [10]). Denote c as the computational complexity for the basic operations, the

complexity of the pth inner LT decoding attempt Cp
LT in Equation 3.3 is represented

by two separate terms as follows.

Cp
LT1 = T p

1Npa(ctanh + catanh) (3.4)

Cp
LT2 = T p

1Np

(
4a− 2

n

Np

− 1

)
c (3.5)

where Cp
LT1 presents the complexity related to the tanh and atanh functions while

Cp
LT2 presents the complexity related to basic operations.

3.2.2 Complexity of an Outer LDPC Decoding Attempt

Similar to the inner LT code, the outer LDPC code also has the factor graph

which is shown in Figure 3.3.

As the outer LDPC code also uses MPA for the decoding process, the complexity of

its pth attempt is derived in a similar way to Equation 3.3 and also has two separated

items Cp
LDPC1 and Cp

LDPC2 as follows. Note that, here, N ′
e is the number of edges

in the outer LDPC factor graph and T p
2 is the number of iterations of the pth outer

LDPC decoding attempt.

Cp
LDPC1 = T p

2N
′
e(ctanh + catanh) (3.6)

Cp
LDPC2 = T p

2 (4N
′
e − 2k − n)c (3.7)
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3.2.3 Complexity of a Raptor Decoding Process

Recall that fda is the number of decoding attempts that the Raptor decoder has

tried before the message is successfully recovered. Using Equations 3.4, 3.5, 3.6 and

3.7, the total Raptor decoding complexity can be represented by CR1 (in terms of

tanh and atanh functions) and CR2 (in terms of basic operations) as follows.

CR1 =

fda∑
p=1

(Cp
LT1 + Cp

LDPC1)

=

fda∑
p=1

T p
1Npa(ctanh + catanh) +

fda∑
p=1

T p
2N

′
e(ctanh + catanh)

= (ctanh + catanh)

(
fda∑
p=1

T p
1Npa+

fda∑
p=1

T p
2N

′
e

)
(3.8)

CR2 =

fda∑
p=1

(Cp
LT2 + Cp

LDPC2)

=

fda∑
p=1

T p
1Np

(
4a− 2

n

Np

− 1

)
c+

fda∑
p=1

T p
2 (4N

′
e − 2k − n)c

= c

(
fda∑
p=1

T p
1Np

(
4a− 2

n

Np

− 1

)
+

fda∑
p=1

T p
2 (4N

′
e − 2k − n)

)
(3.9)

Table 3.2 summarizes the values of the parameters used in the Raptor decoding

process in this work.

Parameter Value
Number of iterations for an outer LDPC decoding attempt T p

2 = 75
Number of edges of the outer LDPC factor graph N ′

e = 38000
Number of intermediate nodes of the outer LDPC factor graph n = 10000

Number of variable nodes of the outer LDPC factor graph k = 9500

Table 3.2: Values of parameters used in the Raptor decoding process in this work.
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3.3 The Complexities of Raptor Decoding Algo-

rithms

In this section, the complexity of MPA, PIMPA, LSPIMPA and TLSPIMPA over

an AWGN channel is examined using Equations 3.8 and 3.9 and the parameter values

in Table 3.2.

Section 3.3.1 presents the parameter settings for each algorithm, including I - the

interval between two consecutive decoding attempts in received bits, T p
1 - the number

of inner LT iterations for the pth attempt and NS - the number of received bits for

the first decoding attempt. Then, Section 3.3.2 shows the numerical results for the

complexity of each algorithm.

3.3.1 Parameter Settings

3.3.1.1 Choices of I and T1

Parameter MPA PIMPA LSPIMPA or
TLSPIMPA

I - The inter-
val between two
consecutive de-
coding attempts

If the pth (p ≥ 1) decoding attempt fails to recover the
original message, Raptor decoder waits to receive more
I = 50 bits before beginning the (p + 1)th decoding at-
tempt.

T p
1 - Number of

iterations of the
inner LT decod-
ing in the pth

Raptor decoding
attempt.

T p
1 = 75, ∀p ≥ 1 T p

1 = 25, ∀p ≥ 1 T p
1 =

{
75 p = 1
25 p > 1

Table 3.3: Values of I and T p
1 in each Raptor decoding algorithm.

Table 3.3 presents the settings for I and T p
1 in each Raptor decoding algorithm.

They are chosen based on the existing literature. In particular, I is typically chosen

to be 50 [28] or 100 [27]. I = 50 is chosen here as it allows more precise measurement

of the number of received bits required for a successful decoding NF .

With the inner LT decoding, MPA begins each attempt with no results from

40



previous attempts. This needs a certain number of iterations to converge. Typically

75 ≤ T p
1 ≤ 100 is sufficient to generate the saturated results for MPA [7, 17, 18].

In this section, the lower bound of T p
1 = 75 is chosen for MPA. On the other hand,

PIMPA uses the decoding results from the previous attempt. It only requires the

information from the new received bits for the current attempt able to propagate

through the factor graph, thus fewer iterations are sufficient for PIMPA. Moreover,

in [7], PIMPA with the ratio T p
1 /I = 1/2 showed low complexity. Here I = 50 thus

T p
1 = 25. With LSPIMPA (or TLSPIMPA), the decoding starts late with a high value

of NS and applies 75 (inner LT) iterations for the first decoding attempt; then if it

fails, the following attempts will have 25 iterations. The reason of a higher number of

iterations for the first attempt is to recover the message immediately; the following

attempts, if required, need fewer iterations (as the previous decoding result is reused).

3.3.1.2 Choice of NS

For MPA, NS is typically chosen to be slightly higher than k/C where C is the

channel capacity, which is a function of the SNR. k/C shows the minimum number

of received bits required for a successful decoding.

For PIMPA, NS is chosen to be 150 received bits less than the corresponding NS

of MPA so that: by the time the Raptor decoder with PIMPA has received the same

number of received bits as MPA, it already has 150/I = 3 decoding attempts and

thus the total number of inner LT iterations is 3× 25 = 75, equal to T p
1 of MPA.

For LSPIMPA, NS is selected to be close to NF so that the number of decoding

attempts fda = NF−NS

I
is kept small. The selection can be done as follows. It first

estimates NF and then sets NS close to that estimation. As NF is a random variable,

the estimation is based on the empirical data of the number of received bits required

for a successful decoding. In this chapter, 30000 transmissions using the Raptor code

over a range of channel SNR of [-4dB,7dB] are simulated, and at the end, all values

of NF are recorded. With this statistical data, NS of LSPIMPA is chosen to be equal

to the 95 percentile value of NF for each channel SNR.

Table 3.4 presents the numerical values selected for NS of MPA, PIMPA and

LSPIMPA for various channel SNRs used for the simulations. Note that, as mentioned

in Section 2.3.2, the receiver is assumed to know the SNR of the channel.
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NS

Algorithm SNR =
-2.83dB

SNR =
-2dB

SNR =
-1dB

SNR =
0dB

SNR =
1dB

SNR =
2dB

SNR =
3dB

MPA 20450 18000 15650 13900 12600 11650 11000
PIMPA 20300 17850 15500 13750 12450 11500 10850
LSPIMPA 21500 19100 16700 14750 13450 12450 11850

Table 3.4: Selected values of NS of MPA, PIMPA and LSPIMPA for different SNR
over an AWGN channel.

3.3.2 Decoding Complexity

Figure 3.4 compares the average decoding complexity of MPA, PIMPA and LSPIMPA

over an AWGN channel with the settings mentioned in the previous section. These

results are obtained through averaging CR1 and CR2 values calculated by Equation

3.8 and Equation 3.9 over 100 runs.

As expected, MPA and LSPIMPA exhibit the highest and the lowest complexity,

respectively. Specifically, PIMPA achieves a reduction of 32% to 45% in CR1 and 33%

to 46% of CR2 as compared to MPA. These results are consistent with [7] in which

MPA was compared to PIMPA. LSPIMPA has a reduction of 84% to 86% in CR1 and

95% in CR2 as compared to PIMPA (or a reduction of 90% to 92% in CR1 and 97%

in CR2 as compared to MPA).

PIMPA outperforms MPA in terms of complexity because (i) PIMPA has a lower

number of iterations per attempt for the inner LT decoding process (25 < 75) as

compared to MPA; (ii) simulation results indicate that PIMPA requires fewer received

bits for a successful decoding as compared to MPA. This is likely because it reuses

the results of previous decoding attempts.

On the other hand, LSPIMPA has the lowest complexity as it keeps the number

of decoding attempts as small as possible. These arguments are supported by Table

3.5 showing the average number of decoding attempts of the three algorithms. As

shown, the average numbers of decoding attempts of MPA and PIMPA are similar

and usually above 10 (PIMPA usually has lower values); while most of the time, the

decoder with LSPIMPA succeeds, as expected, in the first attempt.

Figure 3.5 compares the average number of received bits for a successful decoding

E(NF ) for each of the three algorithms. The three algorithms have similar E(NF )
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Figure 3.4: Average decoding complexity of MPA, PIMPA and LSPIMPA in terms
of CR1 and CR2.

values: PIMPA has the lowest values, followed by MPA and LSPIMPA requires the

highest values. The better E(NF ) with PIMPA is quite reasonable due to the fact

that it starts earlier than MPA and re-uses the decoding results. On the other hand,

because LSPIMPA uses a value of NS such that most encoded bit-streams will be

able to be decoded in the first attempt, and some of these bit-streams could have

been decoded with fewer than NS received bits, that savings in received bits is lost.

The gain is the reduction in the average decoding complexity.

However, the trade-off in E(NF ) of LSPIMPA is not always a disadvantage as the

energy for the transmission of these bits is spent equally at the transmitter with or

without LSPIMPA. To illustrate this, Figure 3.6 shows the frequency of NF for MPA

and LSPIMPA. It has two sub-figures: the left sub-figure presents the distribution

of NF for MPA over an AWGN channel at SNR = 0dB and the right sub-figure

presents the similar results for LSPIMPA. In the left sub-figure, as NF values for

MPA are spreading from 14100 to 15000 bits, it shows that some users experiencing

good transmission channels can recover the message before the others. However, with

other users are still not able to decode the message successfully, these users are idle
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Average number of decoding attempt
Algorithm SNR =

-2.83dB
SNR =
-2dB

SNR =
-1dB

SNR =
0dB

SNR =
1dB

SNR =
2dB

SNR =
3dB

MPA 13.3 13.69 14.06 12.58 12.94 12.88 12.75
PIMPA 13 13.85 14.24 12.83 12.55 12.5 12.71
LSPIMPA 1.08 1.07 1.02 1.06 1.01 1.02 1.1

Table 3.5: Average number of decoding attempts for MPA, PIMPA and LSPIMPA.

while the transmitter continues the transmission of the current message. On the other

hand, in the right sub-figure, as the NF values for LSPIMPA concentrate around the

value of 14750 bits, it shows that all the users try to start the decoding late at the

same time and most of them recover the message in the first attempt. By this way, the

E(NF ) is increased. However, this increase is not really a trade-off as the transmitter

spends the same amount of energy for the transmission as MPA.

Another method to reduce complexity is to not use received bits that are very

uncertain or unreliable. This strategy is employed in conjunction with LSPIMPA and

the combined method is called Threshold LSPIMPA (TLSPIMPA). When a threshold

on the soft values of received bits is applied, the only change in the parameter setting

with TLSPIMPA as compared to LSPIMPA is that the number of received bits of the

first decoding attempt NS is now counted only for reliable received bits. Similar to

the strategy of choosing NS described in Section 3.3.1.2, the statistical data about the

number of reliable received bits required for a successful decoding with a threshold is

first recorded. Then, the 95% highest value is assigned to NS. All the chosen values

for NS of TLSPIMPA with two thresholds 1.0 and 2.0 are then listed below in Table

3.6.

The average decoding complexity with TLSPIMPA is presented in Figure 3.7. In

the right sub-figure of Figure 3.7, TLSPIMPA is observed to have a reduction of

3% to 14% and 4% to 25% in the average CR1 as compared to LSPIMPA when the

thresholds 1.0 and 2.0 are applied, respectively. On the other hand, in the left sub-

figure of Figure 3.7, TLSPIMPA and PIMPA have very close results for the average

CR2. Also, it is worth noting that the reduction in average decoding complexity is

more significant in the low SNR region than in the high SNR region.

Figure 3.8 shows E(NF ) of TLSPIMPA versus SNR. According to the simulation
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Figure 3.5: Average number of received bits for a successful decoding E(NF ) of
MPA, PIMPA and LSPIMPA.

results, TLSPIMPA can have an increase up to 3% and 21% in E(NF ) as compared

to LSPIMPA with the thresholds 1.0 and 2.0, respectively.

3.4 Effects of The Threshold Technique

As shown in the last section, the threshold technique can be applied to reduce

the decoding complexity. In a sense, providing the Raptor decoder with more reliable

bits is similar to simulating a better channel quality, and so the Raptor decoder

requires fewer received bits to recover the message, thus the decoding complexity

is reduced. This section tries to estimate that better channel quality caused by

the threshold technique in different ways. For convenience, the effectively improved

SNR is designated as the equivalent SNR. In particular, the AWGN channels are

considered in the following study. For other channel models, the estimation process

for the equivalent SNR can be applied in a similar way.
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Figure 3.6: Frequency of the number of received bits for a successful decoding NF

for MPA and LSPIMPA over an AWGN channel with SNR = 0dB.
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NS

Algorithm SNR =
-2.83dB

SNR =
-2dB

SNR =
-1dB

SNR =
0dB

SNR =
1dB

SNR =
2dB

SNR =
3dB

TLSPIMPA
with 1.0

16950 15700 14400 13300 12550 11900 11500

TLSPIMPA
with 2.0

13950 13350 12700 12200 11800 11450 11200

Table 3.6: Empirical values for NS of TLSPIMPA.

This section is organized as follows. First, Section 3.4.1 describes three differ-

ent estimation methods for equivalent SNRs. Then, Section 3.4.2 presents all the

numerical results of the estimation of equivalent SNRs.

3.4.1 Estimation Methods for Equivalent SNR

For convenience, K is denoted as the SNR value of the underlying transmission

channel and K̃ as the equivalent SNR of K when a threshold is applied (obviously,

K̃ > K). NrF is denoted as the number of reliable received bits required for a

successful decoding, to be different from the total number of received bits required

for a successful decoding NF . Again, E(.) of a symbol means its average value, e.g.,

E(NrF ) is the average value of NrF and E(NF ) is the average value of NF .

The first method is based on the average number of reliable received bits required

for a successful decoding E(NrF ). Specifically, for each value of the underlying chan-

nel SNR K, with a threshold is applied, E(NrF ) is recorded. The equivalent SNR K̃

of K is then defined as the SNR value (when the threshold is applied) at which the

average total number of received bits E(NF ) is equal to the recorded E(NrF ) value.

Note that, this method is based on simulation results.

The second and third methods are theoretical estimation processes. For the second

method, with each value of K and a threshold is applied, the error probability of

received bits is calculated. The equivalent SNR K̃ of K is defined as the SNR value

that has the same error probability of received bits as in case of channel SNR K and

a threshold is applied. Similarly, the third method is based on the calculations of the

average soft value of received bits.
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Figure 3.7: Average decoding complexity of LSPIMPA and TLSPIMPA in terms of
CR1 and CR2.

3.4.1.1 Estimating Equivalent SNR Based on The Average Number of

Reliable Received Bits Required for a Successful Raptor Decoding

Process

Monte Carlo simulations are performed for MPA with three thresholds 1.0, 2.0 and

3.0 over an AWGN channel with SNR range from -3dB to 6dB. For each threshold

and each SNR value K, the average number of reliable received bits required for a

successful decoding E(NrF ) is recorded. Figure 3.9 illustrates the estimation process

for the estimate of equivalent SNR K̃.

The left sub-figure of Figure 3.9 shows E(NrF ) versus SNR when MPA and the

threshold 1.0 are applied; while the right sub-figure shows E(NF ) versus SNR in

case when no threshold is set. From the left sub-figure of Figure 3.9, E(NrF ) can

be obtained corresponding to a specific SNR value on the X-axis, e.g., K = 0dB

corresponding to E(NrF ) = 13062 bits. In the right sub-figure, corresponding to

the obtained E(NrF ) is a specific SNR K̃, e.g., E(NrF ) = 13062 bits on the Y-axis

corresponds to the estimated equivalent SNR K̃ = 1.08dB. In other words, with the
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Figure 3.8: Average number of received bits for a successful decoding E(NF ) for
LSPIMPA and TLSPIMPA.
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Figure 3.9: The estimation of equivalent SNR K̃ based on the E(NF ) data (average
number of received bits for a successful decoding) for MPA without threshold.

threshold of 1.0 over an AWGN channel with K = 0dB, the Raptor code is expected

to have the required E(NrF ) equal to the required E(NF ) as in case of an AWGN

channel with SNR K̃ = 1.08dB when no threshold is set.

The results of equivalent SNR K̃ based on this method are shown in Figure 3.14

and Figure 3.15 of Section 3.4.2 - for all three thresholds 1.0, 2.0 and 3.0.

3.4.1.2 Estimating Equivalent SNR Based on The Error Probability of

Received Bits

According to Equation 2.14, the LLR value of a received bit i can be calculated

as follows.

L(ci) =
2hiri
σ2

where σ2 is the variance of the channel Gaussian noise; hi is the channel gain and

here, hi = 1 as an AWGN channel is considered. Also, ri = hiei + ni = ei + ni, then

L(ci) =
2(ei + ni)

σ2
.
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Case of ei = +1 (bit 1)

L(ci|ei = +1) =
2(1 + ni)

σ2
(3.10)

Equation 3.10 shows L(ci|ei = +1) is a linear transformation of a Gaussian random

variable ni [37]. Therefore, L(ci|ei = +1) is also a Gaussian random variable with

mean

m = E [L(ci|ei = +1)] = E

[
2(1 + ni)

σ2

]
=

2

σ2
+

2

σ2
E[ni] =

2

σ2
(3.11)

and variance

v = E

[(
L(ci|ei = +1)− 2

σ2

)2
]
= E

[(
2

σ2
ni

)2
]
=

4

σ4
E[n2

i ] =
4

σ2
(3.12)

Assuming a threshold S (S ≥ 0) is set on the soft outputs of the demodulator so

that all the received bits having their LLR values falling into the range [−S;S] are

not output into the Raptor decoder. In this case, the error probability of received

bits P S
1 (the upper script S indicates the threshold value, the lower script 1 presents

the condition of ei = +1) is defined as:

P S
1 =

P{L(ci|ei = +1) < −S}
1− P{−S ≤ L(ci|ei = +1) ≤ S}

where the numerator P{L(ci|ei = +1) < −S} is the probability of the LLR value of

received bit ci less than −S. If that happens, the received bit is wrongly identified

as bit 0. While the denominator 1 − P{−S ≤ L(ci|ei = +1) ≤ S} is the probability

that the LLR value of received bit ci is outside the unreliable region [−S;S], i.e., ci

is reliable. By this definition, P S
1 is the probability that the LLR value of a received

bit is considered “reliable” but wrongly indicates the correct bit value.

A simple example is presented here to illustrate how to calculate P S
1 . Assuming

SNR = −2.83dB and S = 1.0. If BPSK modulation uses ∓1 for bits 0 and 1,

respectively, the Gaussian noise variance is related with the SNR as σ2 = 1/2SNR.

Changing SNR value to linear scale, the noise variance is obtained as σ2 = 0.9593.

Hence, L(ci|ei = +1) is a Gaussian random variable with mean m = 2/σ2 = 2.0848

and variance v = 4/σ2 = 4.1696. Figure 3.10 shows the pdf of L(ci|ei = +1). Section

Y (the area under the curve of L(ci|ei = +1) ∈ [−S;S]) presents the value of P{−S ≤
L(ci|ei = +1) ≤ S} and section X (the area under the curve of L(ci|ei = +1) ∈
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Figure 3.10: Pdf of L(ci|ei = +1) over an AWGN channel with SNR = −2.83dB and
S = 1.0.

(−∞;−S)) presents the value of P{L(ci|ei = +1) < −S}. Then, the probability of

error is calculated as:

P S
1 =

P{L(ci|ei = +1) < −S}
1− P{−S ≤ L(ci|ei = +1) ≤ S} =

X

1− Y
= 0.1536

Case of encoded bit ei = −1 (bit 0)

Similarly, the probability of error of recived bit ci in case of ei = −1 is defined as

P S
0 =

P{L(ci|ei = −1) > S}
1− P{−S ≤ L(ci|ei = −1) ≤ S} .

As they are symmetrical: P S
1 = P S

0 .

Error probability of received bits
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Figure 3.11: The estimation of equivalent SNR K̃ by using the error probability of
received bits.

Finally, the error probability of received bits P S
error is calculated as:

P S
error = P{ei = +1}P S

1 + P{ei = −1}P S
0 =

1

2
P S
1 +

1

2
P S
0

= P S
1 .

Figure 3.11 illustrates the estimation process for the equivalent SNR K̃ by using

the error probability of received bits over an AWGN channel.

The left sub-figure of Figure 3.11 presents the error probability of received bits

versus SNR in which the threshold is S = 1.0. For example at SNR K = 0dB, the

error probability of received bit is P S=1.0
error = 0.0431 . According to the curve in the

right sub-figure of Figure 3.11 (error probability of received bits versus SNR without

threshold), the error probability of 0.0431 in the Y-axis corresponds to the SNR value

of 1.675 in the X-axis. Hence, the estimated equivalent SNR K̃ is 1.675dB.

All the numerical equivalent SNR K̃ results based on the error probabilities of

received bits obtained by the estimation process above are later presented in Figure

3.14 of Section 3.4.2.

Furthermore, as the distributions for L(ci|ei = +1)and L(ci|ei = −1) are derived
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earlier in this section, it is convenient to include the pdf of L(ci) in this part.

P{L(ci) ≤ y} = P{ei = +1}P{L(ci|ei = +1) ≤ y}+ P{ei = −1}P{L(ci|ei = −1) ≤ y}
=

1

2
P{L(ci|ei = +1) ≤ y}+ 1

2
P{L(ci|ei = −1) ≤ y}

Therefore,

fL(ci)(r) =
1

2
fL(ci|ei=+1)(r) +

1

2
fL(ci|ei=−1)(r)

=
1

2

[
1√
2πv

exp

(
(r −m)2

2v

)
+

1√
2πv

exp

(
(r +m)2

2v

)]
(3.13)

where m and v are calculated based on the noise variance of the underlying AWGN

channel, as in Equations 3.11 and 3.12.

The pdf’s of L(ci), according to Equation 3.13, over AWGN channels with three

values of SNR = −2.83dB, 0dB and 3dB are plotted in Figure 3.12; with the shaded

part in each sub-figure presents the distribution of L(ci) in [-3;3]. The figure demon-

strates the logical expansion of L(ci) towards the more reliable region (high values)

as the channel SNR increases, suggesting the threshold technique would have less

significant effect in the high SNR region.

3.4.1.3 Estimating Equivalent SNR Based on The Average Value of L(ci)

As suggested by Figure 3.12, the distribution of L(ci) is one of the characters that

reflects the channels quality: the higher the SNR value, the higher the absolute value

of L(ci). However, the exact distribution of L(ci) can not be used for a numerical

estimation process, instead the statistical average value of L(ci), i.e., E[L(ci)], is

proposed. Unfortunately, E[L(ci)] = 0 for all SNR values as the pdf of L(ci) is always

symmetric over 0. To overcome this inconvenience, E[L(ci|ei = +1)] or E[L(ci|ei =
−1)] is then used instead of E[L(ci)]. As they are symmetric, in this part, the

estimation process is conveniently based on E[L(ci|ei = +1)]: the more positive the

value of E[L(ci|ei = +1)], the better the channel quality. The estimation of the

equivalent SNR K̃ then proceeds as follows.

1. E[L(ci|ei = +1)] values over an AWGN channel without threshold are obtained

for each value of SNR by averaging 10000 L(ci|ei = +1) values in each case.
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Figure 3.12: Pdf’s for L(ci) over an AWGN channel with SNR = −2.83dB, 0dB and
3dB.

2. E[L(ci|ei = +1)] values over an AWGN channel with threshold 1.0, 2.0 and 3.0

are obtained for each value of SNR by averaging 10000 L(ci|ei = +1) values in

each case.

3. The equivalent SNR K̃ is found by the process presented in Figure 3.13.

The left sub-figure in Figure 3.13 shows the E[L(ci|ei = +1)] over an AWGN

channel with the threshold 1.0. For example, a particular SNR value K = 0dB

corresponds to E[L(ci|ei = +1)] = 4.45397. According to the right sub-figure of

Figure 3.13 (E[L(ci|ei = +1)] without threshold), E[L(ciei = +1)] = 4.45397 in the

Y-axis corresponds to the SNR value of 0.464dB in the X-axis. Hence, the estimated

equivalent SNR K̃ for the SNR value K = 0dB with the threshold 1.0 is 0.464dB.

All the numerical equivalent SNR K̃ results estimated based on E[L(ci|ei = +1)]

are later presented in Figure 3.15 of Section 3.4.2.
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Figure 3.13: The estimation of equivalent SNR K̃ by using E[L(ci|ei = +1)].

3.4.2 Numerical Results for Estimated Equivalent SNRs

Figure 3.14 presents the results for equivalent SNR K̃ values that are estimated

based on the average number of reliable bits for a successful decoding E(NrF ) and

the error probability of received bits for three different thresholds 1.0, 2.0 and 3.0

over an AWGN channel. It plots the equivalent K̃ versus its original K. Continuous

curves present the results based on E(NrF ), while dash curves present the results

based on the error probability of received bits. Note that all the simulations use

MPA for Raptor decoding process. It is observed that in all cases, the equivalent

SNR K̃ is always higher than the original K. This is reasonable due to the fact

that the Raptor decoder is provided with more reliable bits, and thus simulating a

better transmission channel. The higher the threshold is set, the more reliable the

information input into the Raptor decoder and thus the higher the equivalent SNR

K̃ compared to the original K. Another notice is that the two groups of estimation

methods do not give identical results. As the figure shows, the theoretical estimation

for equivalent SNR (based on error probability calculation) is slightly higher than

the practical estimation (based on the average number of reliable bits for a successful
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Figure 3.14: Equivalent SNR K̃ estimated based on the average number of reliable
bits for a successful decoding E(NrF ) and error probability calculation for different

thresholds.

decoding E(NrF )).

The estimation of equivalent SNR K̃ based on the error probability calculation

gives higher values than the practical ones as shown in Figure 3.14. On the contrary,

in Figure 3.15, the method based on the average soft value of received bits E[L(ci|ei =
+1)] gives lower estimated values. Figures 3.14 and 3.15 indicate that the estimation

based on the error probability of received bits produces estimated values closer to the

practical ones.

To further improve the accuracy of the estimated values, a Least-Square estimation

approach [38] is considered. Figure 3.16 presents the modified estimated equivalent

SNR K̃ based on the error probability of received bits, while Figure 3.17 shows similar

modified results based on the average soft value of received bits. They indicate

that the modified estimation method based on the error probability of received bits

produces estimated values closer to the simulation results than the method based on

the average soft value of received bits.

Note on the penalty in E(NF ): Applying a threshold means fewer bits are
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Figure 3.15: Equivalent SNR K̃ estimated based on the average number of reliable
bits for a successful decoding E(NrF ) and the average soft value of received bits

E[L(ci|ei = +1)] for different thresholds.
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Figure 3.16: Modified estimation of equivalent SNR K̃ based on the error
probability of received bits compared with the practical results based on the average
number of reliable bits for a successful decoding E(NrF ) with different thresholds.
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Figure 3.17: Modified estimation of equivalent SNR K̃ based on the average soft
value of received bits E[L(ci|ei = +1)] compared with the practical results based on
the average number of reliable bits for a successful decoding E(NrF ) with different

thresholds.
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Figure 3.18: Penalty in the average number of received bits for a successful decoding
E(NF ) for different thresholds.

required for a successful decoding, however it requires more received bits (since the

unreliable received bits are discarded). Figure 3.18 illustrates the penalty in E(NF )

that must be paid as a consequence of applying the threshold. It presents the number

of received bits that the Raptor decoder needs to collect more in three cases of

thresholds 1.0, 2.0 and 3.0, compared with the case with no threshold. MPA is used

in all cases. As it shows, all the difference in E(NF ) is significant in the low SNR

region and tends to be reduced as the SNR increases. Note that, as expected, the

difference in E(NF ) with the threshold 1.0 is lowest of all in the whole range of SNR

values; while the difference in E(NF ) with threshold 3.0 is so severe at low SNRs that

it might not be suitable for some delay-sensitive applications.

3.5 Summary

In this chapter, methods of reducing the Raptor decoding complexity are inves-

tigated. First, PIMPA tries to reuse the results of previous decoding attempts to
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recover the original message with less iteration. To further reduce the decoding com-

plexity, LSPIMPA is proposed to be a combintation between PIMPA and a strategy of

selecting an appropriate number of received bits NS to begin the first attempt so that

the required number of decoding attempts is limited to minimal numbers. Finally,

another method to reduce the decoding complexity, called the threshold technique,

is also considered. With this technique, only received bits with absolute LLR values

greater than a threshold are considered as “reliable” bits and used for decoding pro-

cess. The combination of LSPIMPA and the threshold technique, named TLSPIMPA,

is then investigated.

Section 3.3 compares the decoding complexities of MPA, PIMPA, LSPIMPA and

TLSPIMPA. The results with PIMPA are similar to those presented in [7], in which

PIMPA not only achieves a reduction of 32% to 45% in CR1 (i.e., the number of hy-

perbolic functions) and 33% to 46% of CR2 (i.e., the number of basic operations), but

also requires a slightly lower average number of receive bits for a successful decoding

E(NF ) as compared to MPA. On the other hand, LSPIMPA is shown to be able to

achieve a reduction of 90% to 92% in CR1 and 97% in CR2 with an increase of 1% to

3% in E(NF ) as compared to MPA. On top of that, with TLSPIMPA, depending on

what threshold is chosen, 3% to 25% further reduction in CR1 is achievable; however,

the increase in E(NF ) is also high - an increase up to 21%. All the significant results,

either reduction or increase, are concentrated in the low SNR region.

Observing that providing the Raptor decoder with reliable information (i.e., using

the threshold technique) is similar to transmitting over an improved channel, Section

3.4 investigates estimation methods for this virtual improved channel. The results

show that the estimation method based on the error probability of received bits give

estimated values closer to the simulated ones as compared to the method based on

the average soft LLR value of received bits.
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Chapter 4

Raptor Coding Rate Performance

over Nakagami-m Fading Channels

and a Cooperative Wireless Relay

Network

In this chapter, the coding rate performance of Raptor codes over Nakagami-m

fading channels and in a cooperative Wireless Relay Network (WRN) is studied.

The chapter is organized as follows. Section 4.1 presents the Raptor coding rate

performance over different Nakagami-m fading channels. Section 4.2 first describes

existing cooperative protocols over a single-relay WRN. One of these is the Time Divi-

sion (TD) protocol. It was shown to relatively outperform other protocols in terms of

transmission energy expenditure. The proposed cooperative protocol, named Phase-

2 Simultaneous Transmission (PST) protocol, is then considered, aiming to reduce

the total transmission time. Note that, the PST protocol is an adaptation for a

single-relay WRN of the Asynchronous protocol which was first proposed for a mul-

tiple relays WRN in [3]. At the end, the simulation results for the PST protocol’s

performance in terms of the average energy expenditure E(ES) and the average trans-

mission time E(T ) are presented and compared with that of the TD protocol. Finally,

a summary of the chapter is given in Section 4.3.
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4.1 Raptor Coding Rate Performance over Point-

to-point Nakagami-m Fading Channels

R. Palanki and J. S. Yedidia in [13] were the first to study the performance of

the Raptor code (the Raptor code version mentioned in Section 2.2.4) in the Bi-

nary Symmetric Channel (BSC) and AWGN channel. They showed that the Raptor

code can achieve a coding rate close to the Shannon channel capacity and the re-

sult is consistent over a range of noise levels for both BSCs and AWGN channels.

O. Etesami and A. Shokrollahi in [14] also showed analogous results, confirming the

capacity-approaching Raptor coding rate performance over Binary Input Memoryless

Symmetric Channel (BIMSC) - the general model of the BSC and AWGN channel.

Later, J. Castura and Y. Mao [16] investigated the Raptor coding rate perfor-

mance over wireless fading channels with different fading block size B (the number

of received bits in which the fading gain is unchanged). They showed that over

Rayleigh fading channels with B = 1000, 5000 and infinity (quasi-static fading), the

average Raptor coding rate is close to the average capacity of the channel. Further, B.

Sivasubramanian and H. Leib [17, 18] confirmed that the Raptor code could deliver

capacity-approaching coding rate performances over both Rician and Rayleigh fading

channels and that these results held for all fading block sizes. Note that, all of the

mentioned results here were obtained by simulations.

The Nakagami-m fading channel models generally fit better for a wide range of

fading statistics than the Rayleigh and Rician models. Specifically, the Nakagami

distribution with an appropriate “shape factor”m fits the measured received envelope

data better than the Rayleigh or Rician distributions [24–26]. Motivated by that

fact, the Raptor coding rate performance over different Nakagami-m fading channels

is studied in this section.

In the simulations presented here, all the bits are transmitted using the BPSK

modulation scheme. The transmission channels are assumed to be fast fading chan-

nels (B = 1) where the channel gain hi for each received bit is independent with

each of the others. At the receiver, the MPA is used for decoding. The interval

between two consecutive decoding attempts is chosen to be I = 50 bits. The average

number of received bits for a successful decoding E(NF ) is obtained by averaging 100

NF values for each channel SNR value. Finally, the average Raptor coding rate is
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Figure 4.1: Average Raptor coding rate over Nakagami-m fading channels.

represented by k/E(NF ). Since the spectral efficiency of BPSK is 1 (b/s/Hz), the

overall rate performance of the point-to-point link using BPSK and Raptor codes

under consideration is also represented by k/E(NF ).

Figure 4.1 shows the Raptor coding rate (b/s/Hz) versus SNR over three different

Nakagami-m fading channels with m = 1.8, 1.0 and 0.5. These m values reflect

different fading conditions of the channel. Note that m = 1.8 and 1.0 are equivalent

to Rician and Rayleigh fading channels, respectively (Section 3.2.2 of [39]), while

m = 0.5 presents a severe fading condition. Here, the theoretical channel capacity

C = log2(1 + SNR) is also plotted for the range up to 1 (b/s/Hz) for comparison.

Using the results in Figure 4.1, Figure 4.2 plots the difference Dm(SNR) =

Cm(SNR) − Am(SNR) where Cm denotes the theoretical (average) channel capac-

ity, m is the parameter of the Nakagami-m channel and Am denotes the average

Raptor coding rate.

The results in Figure 4.2 indicate the good performance of the Raptor code in

the low SNR region: as the channel SNR decreases, the average Raptor coding rate

approaches the average channel capacity. For example, at SNR < 0dB, the achievable

rate of the BPSK-Raptor coding scheme is less than 0.2 (b/s/Hz) away from the
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Figure 4.2: Difference between the average channel capacity and the average Raptor
coding rate versus the SNR of Nakagami-m fading channels.
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Figure 4.3: Model of a single-relay WRN.

channel capacity. As SNR increases, the average rate achieved by the BPSK-Raptor

coding scheme is limited by the BPSK and the coding rate, and hence is far from the

channel capacity.

4.2 Raptor Coding Rate Performance in a Single-

Relay Wireless Relay Network

Figure 4.3 shows the cooperative single-relay WRN under consideration, in which

one relay helps a source to transmit information to a destination. The cooperative

transmission interval can be divided into two phases. In Phase 1, the source broad-

casts the data stream to both the relay and the destination through the Source-Relay

(SR) and Source-Destination (SD) channels, respectively. The relay listens to the

SR channel and tries to decode the message. In Phase 2, after it has recovered the

message successfully, the relay assists the source in transmission to the destination

through the Relay-Destination (RD) channel.

There are several different two-phase cooperative protocols proposed for relay

transmission strategy. Section 4.2.1 will discuss the two-phase cooperative protocols

used in our study. Section 4.2.2 describes simulation configurations, scenarios and

parameter settings. Section 4.2.3 presents the simulation results in terms of the

average energy expenditure E(ES) and the average transmission time E(T ).
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4.2.1 Two-phase Cooperative Protocols under Consideration

Fountain codes in WRNs have been considered. In [3], performance of fountain

codes in a collaborative multiple-relay WRN was examined for the following asyn-

chronous two-phase protocol:

Phase 1: The source broadcasts to all the relays; the relays listen to the source

while the destination is idle as the source-destination (SD) link is assumed to be

unavailable.

Phase 2: The relays that successfully recovered the source message in Phase 1 re-

encode the source message into a different encoded bit streams and asynchronously

transmit them to the destination by using the Code Division Multiple Access (CDMA)

scheme [40] so that multiple received signals at the destination are distinguishable.

In [28], fountain codes over the cooperative single-relay WRN as shown in Figure

4.3 were studied for three following two-phase cooperative protocols.

A. Distributed Space-Time Code (DSTC) protocol

Phase 1: The source encodes the message using a Raptor code and broadcasts

the encoded signal. Both the relay and the destination listen. After the relay has

recovered the message, it encodes the message in the same way as the source.

Phase 2: The Alamouti scheme [41, 42] is used for the cooperative transmission

between the source and the relay. Specifically, the output bits from the source

and the relay are synchronized over time to form consecutive pairs and then

transmitted sequentially: if the source transmits a pair of bits s1 and s2, the

relay will transmit a pair of bits −s∗2 and s∗1 at the same time. Note that, this

cooperation requires that the source and the relay generate exactly the same

encoded version of the message.

At the destination, these pairs of bits are received and decoded to extract the

Raptor encoded data. Finally, the destination uses a Raptor decoding algorithm

to decode the encoded data and recover the message.

B. Time Division (TD) protocol

Phase 1: The TD protocol has the same Phase 1 with the DSTC protocol, that

is the source broadcasts and both the relay and the destination listen.
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Phase 2: Unlike the DSTC protocol, for the TD protocol, the source stops trans-

mitting and the relay alone communicates with the destination. Note that in this

case, the relay can encode the message different from the source and transmit that

encoded bit stream to the destination.

The destination recovers the message by decoding received signals from the source

in Phase 1 and from the relay in Phase 2.

C. Two Hop (TH) protocol

Phase 1: Phase 1 is slightly different in the TH protocol compared to the DSTC

and the TD protocols. Specifically, only the relay listens to the source in Phase 1

while the destination is idle. This scenario usually happens as the SD channel is

unavailable due to the long distance between the source and the destination.

Phase 2: The relay alone transmits the encoded signal to the destination in Phase

2 of TH protocol and it can encode the message different from the source. In

contrast to the two previous protocols, here, the destination recovers the message

by decoding received bits collected solely from the relay in Phase 2.

Study results in [28] indicate that the TD protocol outperforms the other two

protocols in most cases. For an unlimited number of bits that the destination can

receive, the TD protocol performs better than the DTSC and TH protocols in terms

of energy expenditure. On the other hand, for an upper bound on the number of

bits that the destination can receive, the TD protocol provides a smaller number

of times in which the destination fails to recover the message than the DTSC and

TH protocols. Based on this conclusion, the TD protocol will be considered in our

following study.

In addition, another two-phase cooperative protocol for a single-relay WRN using

Raptor codes, namely Phase-2 Simultaneous Transmission (PST) protocol, is also

considered as follows. Note that, the PST protocol is a modified version for a single-

relay WRN of the Asynchronous protocol [3] mentioned above.

Phase 1: The source broadcasts its encoded signal to the relay and destination

(i.e., similar to the TD protocol).

69



Phase 2: Both the source and relay can simultaneously transmit (different) en-

coded signals to the destination in an asynchronous manner. An appropriate trans-

mission scheme (e.g., CDMA) is assumed so that multiple received signals are distin-

guishable at the destination.

In the PST protocol, since the relay encodes the message in a different way from

the source, the source and the relay transmit, in general, different encoded signals to

the destination. The destination simply collects all of them for the Raptor decoding.

As a result, in Phase 2, the destination using the PST protocol receives about twice the

amount of encoded signals as compared to the TD protocol. Such an advantage can

lead to a good performance of the PST protocol in terms of the average transmission

time E(T ).

4.2.2 Set-up for Simulations

4.2.2.1 Coding and Transmissions

For the encoding process, at the source and the relay, the same Raptor encoder

mentioned in Section 2.2.4 are implemented; however, the random encoding manner

ensures that encoded bits output from the source and the relay are different. Decoding

processes at the relay and the destination use MPA and start after the fraction k/NS

becomes a little lower than the underlying average channel capacity. Recall that NS is

the number of received bits that the Raptor decoder has collected in the first decoding

attempt. The number of received bits between two consecutive decoding attempts is

chosen as I = 50 bits. Note that, at the destination, I is counted for received bits

from both the source and relay.

Both the source and the relay use the BPSK modulation scheme for transmission.

The transmission energy and time duration for each output bit at both the source

and the relay are assumed to be Eb and Tb, respectively. All transmission channels

in the single-relay WRN - the SD, SR and RD channels - are assumed to be fast

Rayleigh fading channels (i.e., the channel gain hi is independent and different for

each transmitted bit).

4.2.2.2 Figures of Merit

The following figures of merit are considered.
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The average energy expenditure E(ES) of a transmission over a single-relay WRN

is defined as the average transmission energy that the source and the relay have spent

to transmit the message to the destination, i.e.,

E(ES) = E(NF )× Eb (4.1)

where E(NF ) is the average number of bits that the destination receives from both

the source and the relay to successfully recover the message.

The average transmission time E(T ) of a transmission over a single-relay WRN

is defined as the average amount of time during which the transmission of a message

happens: it starts when the source begins its broadcast and ends when the destination

recovers the message successfully.

The E(T ) calculation is slightly different between the TD and PST protocols. For

the TD protocol, at each phase of the transmission, there is only one transmitter: it

is either the source or the relay. Therefore, the average transmission time E(T ) for

the TD protocol can be calculated as

E(T ) = (E(NSD1) + E(NRD2))× Tb (4.2)

where E(NSD1) is the average number of bits that the source transmits to the desti-

nation in Phase 1 and E(NRD2) is the average number of bits that the relay transmits

to the destination in Phase 2.

For the PST protocol, the source also transmits in Phase 2 and it continues trans-

mitting until the destination successfully recovers the message; therefore the trans-

mission time is equal to the period in which the source transmits and E(T ) can be

calculated as

E(T ) = E(NSD12)× Tb (4.3)

where E(NSD12) is the average number of bits that the source transmits to the des-

tination in both Phase 1 and Phase 2.

The values of E(NF ), E(NSD1), E(NRD2) and E(NSD12) are all obtained by av-

eraging 100 simulation values.

4.2.2.3 Simulation Scenarios

For all simulation scenarios, the SR channel always has higher SNR than the SD

channel precluding the case of the destination recovering the message before the relay

does. Three simulation scenarios are presented in Table 4.1.
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Scenario SNR of the SD
channel

SNR of the SR
channel

SNR of the
RD channel

RD-better-than-SD γ γ + 5 γ + 5
RD-equal-SD γ γ + 5 γ
RD-worse-than-SD γ γ + 5 γ − 5

Table 4.1: Three simulation scenarios.

These scenarios are chosen to investigate the effects of the RD channel quality on

the performance of cooperative protocols in terms of E(ES) and E(T ) as compared

to that of the SD channel. For example, the TD protocol is expected to reduce the

energy expenditure when the RD channel is good, i.e., the RD channel is better than

the SD channel, but does it still keep that good performance when the RD channel

is worse than the SD channel? Similar questions are asked for the PST protocol’s

performance in transmission time. Simulation results in Section 4.2.3 give answers to

these questions. Note that the 5dB difference presented in these scenarios is just a

subjective value used to demonstrate the better or worse in the transmission channel

quality.

4.2.3 Simulation Results and Discussions

Figures 4.4 - 4.6 show the performance in terms of the average energy expenditure

E(ES) and the average transmission time E(T ) of the TD and PST protocols using

the Raptor code over a single-relay WRN for all three scenarios: RD-better-than-

SD, RD-equal-SD and RD-worse-than-SD, respectively. Note that in each figure, the

performance of the point-to-point transmission, i.e., the source transmits data to the

destination without any assistance from the relay, is also included to serve as the

benchmark.

In Figure 4.4 for the RD-better-than-SD scenario, it is observed that, over the

whole range of SNR of interest, the TD protocol has the least average energy ex-

penditure E(ES) while the average transmission time E(T ) of the PST protocol is

smallest. Specifically, the TD protocol achieves a reduction up to 6% in E(ES) as

compared to the PST protocol and a reduction up to 8% in E(ES) as compared to the

point-to-point transmission. On the other hand, the PST protocol has a reduction of
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Figure 4.4: Average energy expenditure E(ES) and average transmission time E(T )
of the TD protocol, the PST protocol and the point-to-point transmission over a

single-relay WRN with fast Rayleigh fading channels - the RD-better-than-SD case.

4% to 10% in E(T ) as compared to the TD protocol and a reduction of 5% to 22%

in E(T ) as compared to the point-to-point transmission. These performances can be

explained as follows.

For energy expenditure, the PST protocol outperforms the point-to-point trans-

mission due to the fact that the source is assisted by the relay in Phase 2 and that

the RD channel is better than the SD channel. On the other hand, the TD protocol

has less average energy expenditure E(ES) compared to the PST protocol due to the

transmission on the RD channel alone, in Phase 2 of the TD protocol, being more

energy-efficient than the transmission on both the SD and RD channels in Phase 2

of the PST protocol. To elaborate this point, the transmissions of two arbitrary bits

over the RD channel alone and over both the RD and SD channels are considered.

Two bits transmitted through the RD channel alone require an energy amount of

2Eb. That same amount is also required for two bits with each of them transmitted

over the SD and RD channels. However, the bit transmitted over the RD channel has

higher reliability than that over the SD channel. As a result, the destination then
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will require fewer bits in the TD protocol than in the PST protocol.

For transmission time, the TD protocol performs better than the point-to-point

transmission due to the fact that the relay, instead of the source, transmits to the

destination in Phase 2 of the TD protocol and the RD channel is better than the SD

channel. On the other hand, with the PST protocol, the transmission of both the

source and the relay in Phase 2 shortens the transmission time even more.

In Figure 4.5 for the RD-equal-SD scenario, the right sub-figure shows all three

curves lie on top of each other, indicating the same average energy expenditure E(ES)

for both protocols and the point-to-point transmission. Because the RD and SD

channels have the same SNR in this case, it makes no difference in terms of energy

expenditure whether the source transmits to the destination alone or with the help

of the relay in Phase 2. However, the transmissions from both the source and the

relay in Phase 2 of the PST protocol still reduce the average transmission time E(T ),

as presented in the left sub-figure of Figure 4.5. Specifically, the TD protocol and

the point-to-point transmission have the same E(T ) while the PST protocol has a

reduction from 5% to 18% in E(T ) as compared to both of them.

Unlike the above scenarios, in Figure 4.6 for the RD-worse-than-SD scenario, the

TD protocol has higher the average energy expenditure E(ES) than the PST protocol,

and the point-to-point transmission has the smallest E(ES) of all. The explanation

is that when the RD channel is degraded, the bits transmitted from the relay do

not help the destination to decode faster while increasing the total energy spent for

transmission. On the other hand, in the left sub-figure of Figure 4.5, the average

transmission time E(T ) of the PST protocol is still smaller than that of the point-

to-point transmission. This result indicates the advantage of the PST protocol in

transmission time even when the RD channel is worse than the SD channel.

Conclusions: Over a single-relay WRN, whenever the SR channel is good, i.e.,

the relay can recover the message before the destination, the PST protocol has advan-

tages in the average transmission time. The PST protocol, therefore, is suitable for

delay-sensitive applications, i.e., live conference or Voice over IP. On the other hand,

if the objective is minimizing the average energy expenditure of the transmission, the

TD protocol is a better choice than the PST protocol. But this is only true in the

case when the RD channel is better than the SD channel. If the RD channel quality

is degraded, the TD protocol even spends more energy than the PST protocol.
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Figure 4.5: Average energy expenditure E(ES) and average transmission time E(T )
of the TD protocol, the PST protocol and the point-to-point transmission over a
single-relay WRN with fast Rayleigh fading channels - the RD-equal-SD case.
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Figure 4.6: Average energy expenditure E(ES) and average transmission time E(T )
of the TD protocol, the PST protocol and the point-to-point transmission over a

single-relay WRN with fast Rayleigh fading channels - the RD-worse-than-SD case.
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4.3 Summary

In this chapter, first, Section 4.1 presents the Raptor coding rate performance

over Nakagami-m fading channels. The simulation results confirm that the Raptor

code can adapt its coding rate close to the average channel capacity in the low SNR

region when the fading condition varies.

Second, Section 4.2 investigates the Raptor coding rate performance over a single-

relay WRN and its impacts on the average energy expenditure E(ES) and the average

transmission time E(T ) of the TD protocol and PST protocols. The PST protocol

targets to reduce the average transmission time E(T ) as compared to the TD protocol,

by having both the source and the relay transmit encoded signals to the destination in

Phase 2. The reduction in transmission time comes from that fact that the receiving

rate at the destination is doubled as the source and the relay transmit simultaneously

(different) encoded signals. Three simulation scenarios are considered: the SD channel

is better than the RD channel; the SD channel is equal to the RD channel; the SD

channel is worse than the RD channel. The simulation results show that the PST

protocol reduces the average transmission time E(T ) in all scenarios, while the TD

protocol has lower average energy expenditure E(ES) than the PST protocol only

when the RD channel is better than the SD channel.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis addresses three problems related to the employment of Raptor codes

in wireless transmissions: (i) reducing Raptor decoding complexity; (ii) the Raptor

coding rate performance over Nakagami-m fading channels and (iii) the Raptor coding

rate performance in a single-relay WRN.

For the first problem, Previously Inherited Message Passing Algorithm (PIMPA)

is the widely-used decoding algorithm that was designed to reduce the decoding com-

plexity of Raptor codes by re-using the decoding result from the previous attempt.

Chapter 3 of this thesis proposes a modified version of PIMPA called Late Start

PIMPA (LSPIMPA) to further reduce the Raptor decoding complexity. LSPIMPA

begins the first decoding attempt only after an appropriate number of received bits

have been collected so that the required number of decoding attempts is reduced

and thus the decoding complexity is also reduced. The simulation results show that

LSPIMPA can achieve a reduction of 86% in average decoding complexity while only

cause an increase of 1% to 3% in the average number of received bits as compared to

PIMPA.

Moreover, the threshold technique of reducing the Raptor decoding complexity

is considered. Specifically, observing that, feeding the Raptor decoder with only

reliable received bits in the threshold technique is similar to simulating a better

channel quality, the issue of estimating this better channel quality is investigated.

Three estimation methods are then proposed: (i) Estimation based on the average
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number of reliable received bits required to recover the message; (ii) Estimation based

on the error probability of received bits; (iii) Estimation based on the average of LLR

value of received bits. The second method gives closer estimates to the simulation

results.

For the second problem, this thesis provides simulation results on Raptor coding

rate performance over Nakagami-m fading channels, with m = 0.5, 1.0 and 1.8. The

results show the consistently good performances of the Raptor code over different

kinds of fading channels: when the fading condition varies, the Raptor code can

adapt its coding rate consistently close the underlying channel capacity at low SNR.

For the third problem, two figures of merit of the Raptor coding rate over a

single-relay WRN is considered in this thesis: (i) the average energy expenditure

E(ES) and (ii) the average transmission time E(T ). The PST protocol is considered

to reduce E(T ) by allowing both the source and the relay simultaneously transmit to

the destination after in the second phase of the cooperative interval. The performance

of the PST protocol is compared with that of the TD protocol, which only has the

relay transmit to the destination in the second phase, in terms of E(T ) and E(ES).

The simulation results show that the PST protocol often outperforms the TD protocol

in terms of E(T ) while the TD protocol only had advantages in E(ES) when the RD

channel is better than the SD channel. Hence, the PST protocol may be more suitable

than the TD protocol for delay-sensitive applications.

5.2 Future Work

In this work, all transmissions are assumed to have fading block size B = 1, i.e.,

the channel gain hi is independent for each bit transmitted over the channel. This

model is suitable for relatively fast fading scenarios, e.g., mobile transmissions from

a car moving at high speed. There are slower fading scenarios with B > 1, e.g.,

wireless transmissions in office buildings. Further work to study the impact of slow

fading on the performance of Raptor codes over Nakagami-m point-to-point links or

WRN would be of interest. Note that, with B > 1, the threshold technique should

be modified so that it is adaptive to the channel SNR. For example, if the channel

SNR is low for all B = 5000 bits, the magnitude of soft values of all these bits may

be all less than the chosen threshold and so they are all ignored for the decoding.
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This process is wasteful if the low channel SNR persists for several blocks, and thus

modifications to the threshold technique should be considered when investigating

slow fading scenarios. Moreover, simulations in the B > 1 scenarios may be costly as

compared to the research in this thesis. For example, with B = 1 and over Nakagami-

m fading channel with m = 1.0 and SNR = 2.0dB, the receiver requires 15559 bits

on average to successfully recover the message. On the other hand, with B = 5000,

i.e., a block of 5000 bits having the same value for the channel gain hi, the number

of the simulations required is 5000 times higher than those in this thesis.
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