/
Finite Element Study Of The Post-Buckling Behaviour
Of Plate Girder Panels Under Shear Load

DFG:C» Co

TA
Wafik M. A. Ajam L'\'%% ~)

s P71 ARST
| A 853
=L
A Thesis
In

Center for Building
Studies

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montreéal, Québec, Canada

September 1986

© Wafik M. A. Ajam, 1986



ABSTRACT

Finite Element Study Of The Post-Buckling Behaviour

Of Plate Girder Panels Under Shear Load

Wafik M. A. Ajam, Ph.D.
Concordia University, 1986

This study used the finite element method to analyse a
single panel with stiffeners along all four edges subjected

to imposed shear displacements.

The analysis clarifies the stress distribution from
initial buckling until the failure load, and shows that
although the theories used in the design of plate girders
under shear loading may give satisfactory values, the model
used is very far from the real behaviour. For plate girders
used in structural engineering the capacity is reached when
first yield in shear in the tension corners occurs, without

any of the diagonal tension assumed in most of the theories.

The ultimate load capacity of shear webs in a plate
girder is modelled as the sum of the shear strength of the
web and the bending strength of the flanges. After initial
buckling the web provides an increasing shear resistance,
without any contribution from flange bending until the first
shear yielding occurs in the tension corners., After this
yielding occurs, the flanges bend and the capacity of the
web may be further increased as aresult of the normal force

at the boundary created by the bending rigidity in the
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flange.

In this study a new simple equation is developed to

predict the ultimate shear force for rectangular panels.

iv




ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude to
his supervisor, Prof. Cedric Marsh, for his help, valuable

guidance and useful suggestions.

The author wishes to thank his co-supervisor, Dr. Kinh
Ha for his suggestions, guidance and his continuous

encouragement throughout the course of this work.

Last, but not least, the author would like to thank his
wife, Sahar and his children Sara, Hajar and Israa for their

encouragement and long waiting.



1.1

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
NOTATIONS

INTRODUCTION
LITERATURE SURVEY
NONLINEAR FINITE ELEMENT PROCEDURE

INTRODUCTION

CHOICE OF ELEMENT TYPE AND MESH SIZE
2.2.1=- Lateral loading

2.2.2- In-Plane Compression Loading
ELEMENT CHOICE

ACCURACY VERSUS ELEMENT NUMBER

PANEL SUBJECTED TO SHEAR DISPLACEMENTS

SQUARE PANEL

3.17.1- Web Capacity

3.1.2- Influence of Flanges
3.1.3- Analysis of Test Panels

- Panel TG14

vi

PAGE

iii

vi
ix
xiii

Xv

10

10
12
13
13
14
15

26

26
26
29
30
30




3.1.4-
3.1.5-
3.1.6-
3.1.7-

DESCRIPTION

Panel TG17

Panel TG19

Deflection of the Web

Plate Behaviour

Normal Forces at the Boundaries
Comparison Between Tests

and FEM Results

RECTANGULAR PANEL

3.2.1-
302.2"

3.2.3-

3.2.4-
3.2.5-
3.2.6-

Web Capacity

Influence of Flanges

Analysis of Test Panels

Panel G6T1

Panel G6T3

Panel TG9

Plate Behaviour

Normal Forces at the Boundaries
Comparison Between Tests

and FEM Results

PROPOSED MODEL FOR ULTIMATE SHEAR LOADING

SQUARE
4.1.1-
§.1.2-
4.1.3-

PANEL
Description
Webs

Flanges

vii

PAGE

31
32
33
33
34
34

37
37
38
39
39
39
40
40
41
41

83

83
83
84
87




DESCRIPTION PAGE

4,1.4- Extreme Cases ' 90

4,1.5- Comparison of Predicted Shear Strength 92

4,2 RECTANGULAR PANEL 97

4.2.1- Description 97

4,2.,2- Webs 97

4.2.3- Flanges | 99

1 4,2.4- Extreme Cases 101
4,2.5- Comparison Between Test Results 102

and Proposed Design Procedure

4.3 PANEL SUBJECTED TO COMBINED BENDING 708
MOMENT AND SHEARING FORCE

4.4 LONG THIN PLATE GIRDERS WITHOUT 109
WEB STIFFENERS

5.0 SUGGESTIONS FOR FUTURE RESEARCH 11
5.1 TRANSVERSE WEB STIFFENERS 111

5.2 LONGITUDINAL WEB STIFFENERS 11

5.3 OPENINGS IN THE WEB 112

6.0 CONCLUSION 114
REFERENCES 17

APPENDIX 1 121

viii




LIST OF FIGURES
FIGURE . PAGE

1 The distribution of the tension field according 9
to a number of researchers

2 Central deflection of lateraly loaded simply 16
supported plate using triangular elements

3 Central deflection of a laterally loaded simply 17
supported plate using isoparametric element

y Centre deflection of uniformly compressed plate 18
using triangular elements

5 Boundaries stresses for a uniformly compressed 19
square plate

6 Ceptre deflection of uniformly compressed 20
square plate using isoparametric elements

7 Boundary stresses in a uniformly compressed 21
square plate -

8 Different meshes used to analyse a uniformly 22
compressed plate

9 Comparison between stresses for different 23
numbers of elements for uniformly compressed
square plate

10 Different meshes used to analyse a square plate 24

subjected to lateral load

11 Comparison between moments for different numbers 25
of elements for a laterally loaded plate
1 12 Quarter of a square plate finite element grid, 4s

36 elements

ix




FIGURE DESCRIPTION PAGE

13 Relation between shear displacement and centre 46
deflection

14 Shear force V displacement : b7

15 Shear stress along boundary for varying 48
displacement

16 Deflection along compression diagonal : 49

17 Boundary shear stress distribution 50

18 Shear force V displacement, TG14 51

19 Shear stress along boundary for varying 52

displacement, TG14

20 Deflection along compression diagonal, TG14 53
21 Shear force V displacement, TG17 54
22 Shear stress along boundary for varying 55

displacement, TG17

23 Deflection along compression diagonal, TG17 56
24 Shear force V displacement, TG19 57
25 Shear stress along the boundary for Varying 58

displacement, TG19

26 Deflection along compression diagonal, TG19 59
27 Centre deflection variations,F.E.M. 60
28 Principal stresses at first yield, square 61

plate, TG14

29 Principal stresses at first yield, square 62
plate, TG19

S 30 Principal stresses after first yield, square 63

plate, TG14




FIGURE DESCRIPTION PAGE

31 Principal stresses after first yield; square 64

plate, TG19

32 Normal forces at boundaries, TG14 65
33 Normal forces at boundaries, TG19 66
34 Finite element grid for rectangular panels 67
35 Shear force V displacement : 68
36 Shear stress along boundaries for varying 69

displacement. Rectangular panel

37 Deflection along the compression diagonal 70
38 Shear force V displacement, G6T1 71 -
39 Shear stress along boundary with varying 72

displacement, G6T1

40 Daflection along the compression diagonal, G6T1 73
41 Shear force V displacement, G6T3 T4
y2 Shear stress distribution for varying 75

displacement, G6T3

43 Deflection along compression diagonal, G6T3 76
4y Shear force V displacement, TG9 17
45 Shear stress along boundary for varying 78

displacement, TG9

45 Deflection along the compression diagqnal, TG9 79

47 Principal stress directions, rectangular plate 80
48 Normal force at the boundaries, TGS 81
49 Comparison between test results and FEM 82

S analysis

] xi

{




FIGURE DESCRIPTION PAGE

50 Square panel under shear force in the proposed 85
model
51 Finite element test for square panel under 87

compression load at one corner

52 Hinge formation in the flange of isolated panel 88
53 Formation of ¢two hinges 1in the flange 89
54 Hinge formation at all corners of the panel 91
55 Shear stress distribution along the boundaries 98

of rectangular panel, the length b divided into
three zone in the proposed model
56 Comparison Dbetween test results and 107

proposed design procedure

A.1 Square panel under shear force 121

A.2 Shear stress distribution along the boundaries 121

A.3 Positive shzar sign convention 122
A4 Shear stress sign convention in the model 123
xii




TABLE

O 0 3 O

10
11

12

13

14

LIST OF TABLES

Properties of three panels tested by

Rockey and analysed by F.E.M.

Properties of square panels analysed by F.E.M.
Comparison between test results and F.E.M. .
Properties of three rectangular panels tested
by Basler, Rockey and analysed by F.E.M.
Properties of rectangular panels analysed by
F.E.M.

Comparison between test results and F.E.M.
Properties of square panels

Comparison between test results and P.D.P.
Comparison between test results and shear
strengths according to Hoglund, Rockey and
P.D.P.

Ratio of predicted to experimental capacity

Properties of rectangular panels

. Comparison between test results and P.D.P.

for rectangular panels

Comparison between test results and shear
strengths according to Hoglund, Rockey and
P.D.P.

Ratio of predicted to experimental capacity

for rectangular panels

xiii

PAGE
30
35

36
38

43

Ly
93
94
95

96
103
104

105

106




TABLE DESCRIPTION PAGE

15 Properties-of three simply supported plate 110
girders tested by Hoglund
16 Comparison between test results and proposed 110

design procedure

xiv




F.EOM.

(i)
T (i-1)

M'
Mx
My

Mxy

=|

Nx

Ny
Nxy

NOTATION

half width of square plate

clear width of web panel between stiffeners
breadth of flange

position of plastic hinge from tension corner
extent of diagonal tension zone

clear depth of web plate between flanges
elastic modulus |

vector of nodal point forces equivalent to
the internal element stresses, evaluated at
time T+AT

Finite element method

elastic shesar modulus

aspect ratio b/d

iteration number

rigidity matrix, coefficient includes linear
and non-linear effects for iteration (i-1)
plastic moment of the flange plate‘

plastic moment reduced due to axial force
bendingz moment about X axis

bending moment about Y axis

torsion moment about X and Y axis

Mx + ﬁy - Mx My + 3 ﬁxY

membrane force per unit length along X axis
membrane force per unit length along Y axis

shear force per unit length along X and Y axis

XV




NOTATION

N ﬁi + ﬁ; - Nx Ny + 3 ﬁay
MN Mx Nx + My Ny - 0.5(Mx Nx + My Ny) + 3 Mxy Nxy
P.D.P. Proposed design procedure
P yield force in the flange
P! axial force in the flange
q uniformly lateral load per unit area
Q q bu/ E tl+
S concentrated force
s MN /| MNI |
t thickness of web panel
te thickness of flange plate
T time
T+aTg vector of externally applied nodal points
forces, at time T+AT
(i)
U increment to the current displacement vector
for iteration (i)
Vex ‘shear force in experimental tests
Vg shear force resisted by the contribution of
bending rigidity, suported by flange and web
Vy ultimate shear capacity
Vo shear force up to first yield suported by web
é Vy d (Ty) t
f' X,Y axes
i  Xg distance along boundary
? W central deflection
- B 8 t2 pp © Y
! f bg yf)/(b t cy)

xvi




NOTATION

v Poisson's ratio

Uy yield stress of web material

oyf yield stress of flange material

Teor critical shear stress of web material
Ty shear yield stress of web material

S imposed displacement of the flange
Gcr displacement at critical stress

5y : calculated nominal displacement at first yield
s 8 ,cy

AT time increment

z rotation angle at the plastic moment
o inclination of diagonal tension field
84 angle of the panel diagonal

xvii




CHAPTER 1

INTRODUCTION

The linear elastic stability theory for thin flat
plates subjected to in-plane shear loading does not provide
a valid basis for determining the ultimate load-bearing
capacity of slender webs, which can be much greater than the

critical load.:

Most of the models developed to predict the ultimate
shear web capacity are based on the assumption of a tension
field in the web panel, but such an assumption only has

limited validity.

Rockey and Skaloud [ 4 ], in the discusion of the test
results for a typical girder having flanges with a small
bending strength, stated " It is also of interest to note
~that at an applied load of 20 tons, which is 83.5 % of the
failure load, the diagonal membrane stresses are still
elastic ". In the discussion of girders formed from two
rectangular panels theoretically under the same loading,
they observed " Although one panel has failed the other
panel has remained relatively undistorted. This indicates
that the final developement of the plastic diagonal zone in
the web together with ths final developement of the plastic
hinges in the flanges is a rather quick phenomenon; this
being particularly true in the case of those girders having

relatively flexible flanges ". These two points suggest



that the theories of the tension field used in the design of
plates girders under shear loading may be far from the real
behaviour of plate girders, specially for girders of civil

engineering proportions which normaly have thin flanges.

Most of the theories and models predicting the ultimate
shear web capacity are based on the assumption that after
buckling in shear the web has no ability to carry additional
compressive loading. Marsh [ 7 ] presented a theoretical
model in which the compressive principal stress has values

exceeding the initial critical stress.

This study uses the finite element method to clarify

the behaviour of the plate girder under shear loading.

1.1 LITERATURE SURVEY

The behaviour of thin flat plates subjected to in-plane
shear loading which causes buckling requires large
deflection theory of plate behaviour for the post-buckling

regime.

A number of researchers have proposed stress models for
predicting the ultimate strength of shear webs, most of

which are semi-empirical.

A total diagonal tension field, was proposed by Wagner
in 1929. Wagner used a complete, uniform tension field to
determine the strength of a panel in pure shear. The flanges

are assumed to be rigid and the web very thin. This model




has been found to be quite satisfactory for riveted airecraft
structures, but is an inappropriate model for the post-
buckled behaviour of stiffened shear webs in girders

normally used in civil engineering.

Basler [2] in 1960 recognised that, for welded plate
girders, the flanges were too flexible to be capable of
withstanding forces normal to.them, and he proposed a
partial tension field anchored against the vertical edges of
the panel only. The inclination and width of the yield band
are defined by the angle 8, which is chosen so as to
maximize the shesar strength. Many variations based on the
post-buckling tension field have been developed since Basler

solution was published ( see Fig. 1 ).

Takeuchi [18] in 1964 appears to have been the first
to make an allowance for the effect of flange stiffness on
the yield zone in the web. He located the boundaries of the
tension field at the distances c¢1 and c2 from diagonally
opposite corners of the panel. These distances afe assumed
to be proportional to the respective flange stiffnesses, If1
and If2, and were chosen to maximize the shear strength.
However, shear strengths determined in_this way were not in

good agreement with test results.

Fujii [6] in 1968 assumes a tension field encompassing
the whole panel, with an interior hinge at midpanel. The web
compression in the direction perpendicular to the principal

tension is assumed equal to the compression in that



direction at the initiation of buckling. If the flanges can
resist the web stress in the yield condition, the web yields
uniformly over the panel, but if they cannot, there is a
central band of yielding with a smaller tension equal to
that which the flange can support in the outer triangular

portions,

Komatsu [18)] in 1971 gives formulas for four modes of
failure. Failure in the first mode occurs where the inner
band yields under the combined action of tne buckling stress
and the post-buckling tension field, while the smaller
tension in the outer bands is the value that can be
supported by the girder flange. As a beam mechanism with the
interior hinge at the distance, ¢, determined by an
empirical formula based on tests. The inclination of the
yield band is determined so as to maximize the shear, the
optimum inclination must be determined by trial. In the
second mode, which is a limiting case of the first mode, the
interior hinge develops at midpanel, and the web yields
uniformly throughout ths panel. In the third mode of failure
the flanges are assumed to remain elastic while allowing
complete yielding in the web. An optimum value of the
diagonal tension inclination must also be found by trial for
this case. The fourth case is a limiting case in which a
Wagner field develops along with a panel mechanism of the

flanges.

Chern and Ostapenko [18] in 1969 proposed a tension




field where the principal band is determined by yielding,
taking into account the stress that exists at buckling. A

panel mechanism is assumed to develop in the flanges.

Hoglund [25] in 1971 has developed a theory for girders
without intermediate transverse stiffeners which was later
extended for girders with intermediate stiffeners ( see

section 4.3 in CHAPTER 4 ),

Herzog [18] in 1974 takes the boundary of the tension
field from the mid-depth of the panel at the stiffeners to
the plastic hinges in the flanges, the distance ¢ is based
on an average, and a chart, developed from a study of

various test results.

Rockey and Skaloud [3] in 1968 showed that for plate
girders with heavy flanges the flange rigidity was
significant and had an. influence on the ultimate load.
Failure occurs when a certain region of the web yields as a
result of the combined effect of the inclined tensile
membrane stress field and the web buckling stress, and when
plastic hinges are formed in the flanges due to the diagonal

tension in the web.

Calladine [23] in 1973 establish a more rational

version of Rockey and Skaloud model.

Porter, Rockey, and Evans [5] in 1975 represented the

behaviour of a plate girder, under an increasing applied

shear loading, by the following three phases.




- Prebuckled behaviour:

Prior to buckling, if a uniform shear'stress, T, |is
applied to the web, the principal tensile or compressive
stresses of magnitude 0y = O, = 1 occur at an inclination
of 45 to the flange. This stress system will exist until
the applied shear stress T reaches the critical value 7.,
at which the panel buckles. In practice, the value of the
critical shear stress is based on the assumption that all

the boundaries of the web panel are simply supported, and

carry a uniformly distributed stress.
- Post-buckled behaviour:

It is then postulated that once the critical shear
stress Top iIs reached and the panel buckles, the panel
cannot sustain any increase in compressive stress. Any
additional load is assumed to be supported by a tensile
membrane field, which anchors against the top and bottom
flanges and against the adjacent members on either side of
the web. The magnitude of the tensile membrane stress is
indicated by ¢t and the angle of inclination of the membrane

stress field is denoted by 8.
- Collapse behaviour:

Upon further increase of the applied loading, the
tensile membrane stress Oy developed in the web, increases
and exerts an increasing force normal to the flanges.

Failure of the girder occurs when the web yields and plastic




hinges are formed in the flanges.

Each of the models adopted, however, fails in some way
to satisfy the esséntial requirements of the stress systems,
either normal to the boundaries, where the tension stress is
not balanced, or in the distribution of the stress along the

boundaries.

Marsh [7] in 1982 proposed a model, the most important
aspect of which is that the web is capable of providing a
shear resistance well in excess of that causing initial web
buckling, without the need for any bending strength in the
boundary stiffeners. Only after the shear yielding occufs in
the corners do the boundary stiffeners bend and begin to

contribute to the shear resistance of the panel.

Up to now no rigorous analysis for the distribution of
shzar stress in the post-buckling condition has Dbeen
developed. Classical formulation of this problem leads to a
set of partial differential equations which are
characterized by a coupling of the variables describing the
in-plane and out-of plane behavior of the plate. These

equations are difficult to solve.

Anotiher means of obtaining a solution is by the use of
the finite element method. This approach yields a numerical
solution and can be formulated in terms of simple physical

concepts, without recourse to complex differential

equations,.




This study is focused on:

1=~ The distribution of the stress along'the boundaries
after buckling in shear, and the prediction of the ultimate

shear force.

2- The membrane stresses, under shear loading, in webs

taking account large deflections.

3- The influence of flange strength on the ultimate shear

resistance.

To carry out the analyses the computer program
ADINA ( Automatic Dynamic Incremental Non Linear Analysis )

was used.
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CHAPTER 2
NONLINEAR FINITE ELEMENT PROCEDURE

2.1- INTRODUCTION

For nonlinear analysis when displacements are large and
strains are small, a step-by-step solution is used to solve
the problem [ 20 J]J. In the analysis for imposed
displacements, a transformation from displacement increments
to load increments is used [ 17 ] to get the solution of the
equilibrium equations. Assuming that the externally applied
loads are described as a function of time, the basic
approach in a step-by-step solution is to assume that the
solution for discrete time T is known, and that the solution
for discrete T+4AT is required, where AT is a suitable time
increment. The equilibrium condition for a system of finite
elements representing the body under consideration can be

expressed as:
T+AT T+ T

R - F =0 | eq. 2.1
THT
where R is-i vector of externally applied nodal point
T+ T
forces and F is a vector of nodal point forces

equivalent ( in the virtual work sense ) to the internal

element stresses, both being evaluated at time T+4T.

The incremental solution of eq.2.1 results in the

following iterative scheme:

T (i-1) (i) T+4T T+AT (i=1)
K U = R - F eq. 2.2

10




T (i-1)

where K is a coefficient matrix include linear and
: (1)
non-linear effects for iteration (i-1) and U 1is an

increment to the current displacement vector for iteration

(i):
T+T (i) T+AT (i-1) (i)
U = U + U eq. 2.3
The essential work in geometric nonlinearity is that
the equilibrium equation must be written with resbect to the
deformed geometry. This is an important difference from
linear analysis in which it is assumed that the

displacements are infinitesimally small and the equilibrium

equations can refer to the initial configuration.

A large-displacement problem can be analysed in
Lagrangian coordinates or in Eulerian coordinates [ 20 1],
{ 21 1. In the Lagrangian approach, called Total Lagrangian
( T. L.), the original reference frame remains stationary,
and everything 1is referred to it, i.e. displacements,
differentiations and integrations are all with respect to
the original frame, As displacements become larger and
larger, more and more terms must be added to the strain
displacement relations in order to account for

nonlinearities.

The use of Eulerian coordinates is called Updated
Lagrangian ( U. L. ). Differentiations and integrations are
done with respect to local coordinates. The current deformed

state is used as the reference state prior to the next

11



incremental step of the solution, then the local coordinates
are updated to produce a new reference state. In the ADINA
program U. L. is used for the triangular plate and shell

elements and T. L. is used for the isoparametric eleménts.

Small prescribed displacement increments make the
solution expensive, while displacement increments that are
too large, result in convergence difficulties during the
equilibrium iterations. The most effective solution is
obtained when variable displacement step sizes are used. The
best size of displacement increments will be relative to the
experience of the program user. It is of significant
advantage to employ large displacement steps initially and
smaller displacement steps as the critical displacement is
approached. The displacement level can then be increased to

solve for the post-collapse range.

In the ADINA program the number of equilibrium
iteration is limited to 15, if the iteration 1limit is
reached with no convergence the analysis will stop. The
convergence of the iteration is reachad when the value of
the energy convergence tolerance ( relative displacement

tolerance times the relative force tolerance ) is less 152.

2.2- CHOICE OF ELEMENT TYPE AND MESH SIZE

The ADINA program was used to solve some large
deflection plate problems for lateral and in plane loading.

The objective was to establish confidence in the use of the

12




program and to select the optimum element type and mesh size

for the shear web problen.

2.2.1- Lateral Loading

The solution of Von Karman equations in terms of
trigonometric series for a simply supported rectangular
plate under lateral loading was solved by Samuel Levy for

the case of no in plane displacement at the boundaries [12].

Two different elements were used in the analysis to
make comparisons with the Levy solutions, with load
increments. The first analysis of a quarter plate has 32
triangular elements, U.L. formulation is used, each node has
5 degrees of freedom; 12 incremental steps were performed.
The second, with a single isoparametric element, has 16
nodes, T.L. formulation is used, each node has 5 degrees of

freedom; 22 incremental steps were performed.

The result of the Adina programm agreed well with the

Levy result, ( see Fig. 2 and Fig. 3 ).
2.2.2- In-Plane Compression Loading

For the plate compressed uniformly i.e. subjected to a
uniform shortening in the Y direction, using displacement
increments, with lateral expansion in the X direction
prevented. Timoshenko gives a solution for the sStress
distribution [ 19 1, using only the first term of the

Fourier series representing the deflected plate.

13
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With the same boundary conditions, using quarter of the
plate with 32 triangular elements and 5 degrees of freedom
at each node, uniform equal incremental end displacements
of, § , were applied. The centre deflection ratio after each

increment is shown in Fig. 4, up to 10 increments.

The final stresses at the edges of the plate are shown
in Fig. 5. It is seen that for larger end displacements the
distribution of compressive stresses is no longer uniform
and a large part of the load is taken by the plate near the

edges.

Using U4 isoparametric elements with 9 nodes per element
and 5 degrees of freedom per node and uniform equal
incremental end displacements, the result for the deflection

and the stress are shown in Fig. 6 and Fig. 7.

Both the triangular elements and the isoparametric

elements give satisfactory results.

2.3~ ELEMENT CHOICE

The isoparametric element is a high-order element
based on regenerating three-dimensional stress conditions.
This element is quite effective, but can be costly in use.
The element stiffness matrix is relatively large in size and
a high integration order must be used. Another disadvantage

is that each node is limited at 5 degrees of freedom.

The triangular element is simple, and is basically

14



obtained by superimposing plate bending and membrane
stresses. The element is flat, has 3 nodes with up to 6
degrees of freedom per node. The time required to analyse
the Timoshenko problem using a triangular element mesh, with
5 degrees of freedom per node, is one fifth of that required
using isoparametric element mesh has the same number of
nodes. Another advantage is that the output, in the form of
stress resultants ( moments, membrane forces ), facilitates
the interpretation of the results. For these reasons the
triangular element is used for the analysis of the shear

panels.
2.4- ACCURACY VERSUS ELEMENT NUMBER

Linear analysis, using three different triangular
meshes, for a quarter plate under uniform compression in the
Y direction, gave the membrane stress distribution shown 1in
Fig. 9. Fig. 11 shows the moments for a square plate

subjected to uniform lateral loading.

In both types of problem, the results from the 8
elements mesh are judged to be poér in comparison with the
more accurate results obtained from the mesh of 72 elements.
The results from the 32 element mesh are comparable in
accuracy with the 72 element mesh. A similar analysis should

be made for any new problem to select a reasonable mesh,

15
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CHAPTER 3
PANEL SUBJECTED TO SHEAR DISPLACEMENTS

3.1- SQUARE PANEL

The initial analysis is for a single square panel with
stiffeners along all four edges, the stiffeners having an
area, and hence axial stiffness, but no flexural rigidity.
When this panel is subjected to a shear force, it is evident
that there can be no normal stress at the boundaries and

only shear stress can exist there.

For the analysis, imposed displacements of the
stiffeners are used rather than loading. In Fig. 12, the
distance OA' is reduced, and distance OB increased, by an
amount § , to cause a shear displacement along the boundary,
creating a shear stress distribution which will be

determined by the analysis.

For a square panel, of depth d and thickness t,
subjected to a uniform shear distribution the elastic

buckling stress, T,., [ 19 ] is given by:

Top = 9.34 7 E€/(1201-v) &) eq. 3.1
where v is Poisson's ratio, E elastic modulus. The total

shear force at initial elastic buckling is equal to:

Vop = Top d t eq. 3.2

After buckling, as the applied displacement increases,
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the shear stress is no longer uniform but increases in value
towards the tension corner. This process is continued until

the web yields in shear at the corner.

The total shear force, V, is given by the integration
of the shear f}ux at the boundary. For more displacement of
the flanges the extent of the yield zone increases, but, for
the case with flanges having no flexural stiffness, the
actual total shear force along the boundary has been shown

to decrease, due to a change in the stress distribution.

A finite element model of one quarter of the square
panel, with an assumed initial deflection in the plane
perpendicular to the web is analysed, using 36 elements for
the quarter plate. Ilyushin's yield criterion, which assumes
a sudden plastification through the plate depth [ 22 ], is
used in the ADINA program. This criterion is expressed by.

t % t %

=
F—

S

wl

g_cy \
where N, MN and M are quadratic stress intensities given by:

2
Nk + N% - Nx Ny + 3 Nxy

N =

- 2 2 2

M = MXx + My - Mx My + 3 Mxy

MN = Mx Nx + My Ny - 0.5( Mx Ny + My Nx ) + 3 Mxy Nxy

and s = MN /|MNI .
Since the program ADINA ( version 1931 ) does not have
the capability for autonstique buckling analysis, an initial

lateral deflection must be imposed at the central node.
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Fig. 13. shows the variation of the central deflection w/t
with respect to the shear displacements, the initial
deflection is equal to ( t/1000 ). Irrespective of the
assumed initial central deflection, the central deflection
increases only when the imposed shear displacement reaches a
certain critical value T,,., This point is the bifurcation
point and it agrees very well with the linear buckling
theory. At the bifurcation point the plate deflection is
formed by three half-waves in the compression direction and
one half-wave in the tension direction. There is an
advantage to start with this deformed mode as an initial
deflection ( with a central amplitude equal to t/10 ), in

order to reduce the time for computation.

For non-dimensional presentation of the results, the
value on the abscissa is the ratio A=6§/46y, where Sy is
the nominal displacement when the shearing strain is7ty / G,
given by:

§y = (d/2V2)( 1y /G) | eq. 3.4

where G is the elastic shear modulus.

The ordinate is V /7 V where V is the total shear

y
force and vy =Ty d t. Fig. 14 shows the behaviour of a panel

with d/t = 316, t = 1 mm,and a flange area Agf = 5A, = 5d ¢t.

The variation of the shear stress along the boundary is
shown in Fig. 15, the abscissa is the ratio x/b, the
ordinate is T / Ty. Because the Ilyushin criterion includes

plate bending, the value of '/ Ty does not reach unity.
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Fig. 16 shows the ratio of the central deflection to
the thickness plotted along the compression diagonal, for

various displacement values.
3.1.2= Influence of Flanges

If the flange has bending and torsional rigidity, it
can contribute to the shear capacity of the panel, by the
influence of its torsional rigidity on the buckling stress
of the web, by resisting the diagonal tension and by its own

shear resistance.

The analysis of the panel, for increasing
displacements until plastic hinges are formed in the
flanges, requires extensive execution time. As a compromise
a mesh with 16 triangular elements was used with only a
small loss of accuracy, as seen in Fig. 17 which shows the
shear stress distribution along the boundaries when, & =0.6,

obtained using 16 and 36 elements.

The influence of flange strength ( axial, bending and
torsional rigidity ) on the behaviour of shear panels
operating in the post-buckled range has been determined. For
the purposes of this study, the specimens tested by Rockey
[4] were analysed. Table 1 gives the dimensions and
properties of the panels tested. The relative proportions of
the flange are expressed by the ratio of flange area to web
area, Ag/A,, which is 0.5 for an optimum beam, and the

ratio, B, of the plastic moment strength of the flange
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(0.25b¢p éf %) to that required to resist a tension field
encompassing the whole panel, with an interior hinge at the
midpoint ( oy gzt/32 ), this B = 8 by t? / b t, which is
usually less than 0.1 for practical welded plate girders. In
studying the results of the tests by Rockey, the sizes of
the flanges should be compare with the values Af / Ay = 0.5
and B = 0.1, which represent girders of civil engineering

proportions.

TABLE 1
Girder Slenderness Web Flange Ar Yield Stress B
Ratio Thickness Dimension ]f o T yp
mm mm M¥a M?a

TG14 d/t=316 £=0.965 76.2x3.12 0.8 220 309 0.09
TG17 d/t=316 t=0.965 76.2x9.32 2.4 220 315 0.85
TG19 d/t=316 t=0.965 76.2x15.52 4,0 220 268 2.00

3.1.3- Analysis of Test Panels [4]
~ Panel TG14

In this panel the flange area is equal to 0.8 dt where
d is the depth and t the thickness of the panel. A 16
elements mesh was used. The shear force increases up to
first yielding when & is thus approximately unity and the
ratio V/Vy=0.55. Because the flange has little bending
rigidity, the maximum shear force is obtained at the first
yielding in shear of the web, shown in Fig. 18. As the
displacement increases, the force remains almost constant up

to the formation of the first plastic hinge at the tension
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corner; at this point A = 17. The contribution by the

flange was obtained from the shear force across the flange.

Fig. 19 shows the shear stress distribution along the
boundary for different values of A . Fig. 20 shows the
deflection along the compressive diagonal for different

values of A,

The analysis for this test girder shows that £he flange
has almost no effect on the web capacity, and that the
maximum shear capacity is reached at first shear yielding in
the web, when the shear force is some 4 times the

theoretical value to cause initial buckling.

- Panel TG17

This panel has a heavy flange area equal to 2.4 dt,
B = 0.85, First shear yielding in the web again occurs when
A is approximately unity, at which point V/VY:O,6O. As the
displacement increases beyond this point the shear force
increases, due to the development of stresses normal to the
boundary resisted by the strength of the flanges. The
capacity of the web itself is increased by the developmant
of the diagonal tension, as shown by the lower line in Fig.
21. The additional capacity represented by the distance from
the lower line to the upper line is the shear force resisted

by the action of the flanges.

The first plastic hinge is developed at the tension

corner when A = 27. At this point V/Vy = 1.02 when the total
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shear force is 70 percent more than the capacity of the web

at first yield.

Fig. 22 shows the shear stress distribution along the
boundary for different values of A. Fig. 23 shows the
variation of the deflection along the compressive diagonal

for different values of &4 .
- Panel TG19

This panel has a very heavy flange, that would be
impractical in civil engineering construction, of area equal
to 4,0 dt, B = 2.0. The model proposed by Wagner is clear
in this panel. At first yielding, when A4 is approximately
unity, the ratio V/V,=0.68. As the displacement increases
the web resistance increases. Fig. 24 shows how the large
flange is sufficient to cause the web to yield in shear
along the full length of the boundary. The web reaches a
total capacity in shear when A=z 12, beyond this point
additional shear resistance is taken by the frame action.
The ratio V/Vy at the development of the first plastic hinge
is equal to 1.38. The gain in shear force is more than 100

percent of the value obtained at the first yield in the web.

Fig. 25 shows the variation of the shear stress along

the boundary for different values of A4,

Fig. 26 shows how the number of half wave increase from
3 to 5 when 4= 7.6, due to the development of the diagonal

tension.
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3.1.4=- Deflection Of The Web

After yielding in shear at the tension corner of the
web the centre deflection grows more rapidly with light
flanges than with heavy ones, due to the influence of the
torsional stiffness of the flanges on the initial critical
stress, and due to the creation of diagonal tension. Fig.
27 shows the curves obtained from the analysis of three

specimens tested by Rockey.
3.1.5- Plate Behaviour

The principal stress resultants for panels TG14 and
TG19 at first yield are illustrated, in Figs. 28, 29, which
show the inclination of the principal stress at the boundary
are shown equal to uél Figs. 30, 31 show that after the
first yields the angle does not change at the boundaries but

it change slightly in the centre of the plate.

For panel TG1U4, at the compression corners °c decreases
but °t does not increase because the band of diagonal
tension is narrow and is concentrated along the central
diagonal. On the other hand, for panel TG19, %t increases
because the band of diagonal tension encompasses the whole
panel. This explains why the shear stress near the
compression corners decreases in panel TG14 and increases in

panel TG19.

It is concluded that the inclination of the tension

developed in the square panel with heavy or light flanges
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]
stays at 45. The varying angle 8 used by the different
theories to model the inclination of the diagonal tension is

inappropriate and does not represent the real behaviour.

3.1.6~- Normal Force At The Boundaries

Up to first yield there is no normal force at the
boundaries. This means that the flange has no effect. After
yielding in the tension corner, the flange begins to
contribute. By increasing the displacement, the magnitude of
the normal stresses increases up to the maximum value of
(oy/2 ). From Fig. 32 for TG14, where Af = 0.8 Ay, there

is almost no normal stresses near the compression corner.

For panel TG19 with Ag¢ = 4.0 Ay, Fig. 33 shows the
distribution of the normal forces. After yielding, the
normal forces increase between the two corners due to the
bending rigidity. At failure the normal forces are uniformly

distributed along the edges.
3.1.7- Comparison Between Tests And FEM Results

The finite element study was compared with the result
of experimental tests ( see Table 2 for properties of the
panels). Table 3 shows the value from experimental tests and
the finite element study. The total shear force in the
panel, given by the finite element analysis, is the sum of
the shear force resisted by the flange and the shear force
resisted by the web. The mean value of V,/Vey is 0.936 and

the standard deviation equal to 0.11.
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TABLE 2- Properties of square panels analysed by F.E.M.

Ref. Girder t d Ay te bf Af/Aw b/t B

P

TG1 2.72 609.8 1658.0 4,70 101.6 0.29 224 0.018
4 TG2 2.72 609.8 1658.0 6.55 101,6 0.40 224 0.034

=

TG14 .965 304.8 294.0 3.12 76.2 0.81 316 0.093

4 TG15 .965 304.8 294.0 5.00 76.2 1.30 316 0.224
4 TG16 .965 304.8 294.0 6.45 76.2 1.67 316 0.451
b TG17 .965 304.8 294.0 9.32 76.2 2.41% 316 0.850

4 TG18 .965 304.8 294.0 12.95 76.2 3.36 316 1.593
4 TG19 .965 304.8 294.0 15.52 76.2 4.02 316 2.004

4 TG20 2.03 304.8 619.0 3.25 76.2 0.40 150 0.046
4 TG21 2.03 304.8 619.0 4.88 76.2 0.60 150 0.097
4 TG22 2.03 304.8 619.0 6.48 76.2 0.80 150 0.207
4 TG23 2.03 304.8 619.0 9.22 76.2 1.14 150 0.419
4 TG24 2.03 304.8 619.0 12.95 76.2 1.59 150 0.724
4 TG25 2.03 304.8 619.0 15.54 76.2 1.91 150 0.914
4 GTT1 4.98 1270.0 6325.0 19.50 310.0 0.96 255 0.120

4 G7T2 4.98 1270.0 6325.0 19.50 310.0 0.96 255 0.120

N.B. All the panels are square

35




TABLE 3- Comparison between test results and F.E.M,

Ref. Girder Yield Stress Finite Element Analysis Exp. Vu

(4 T S I T I E

4 TG1 253 253  145.0 0.1 145.0  120.0 1.208
4y TG2 238 238  139.0 0.7  140.0 126.0 1.111
4 TG4 219 306 20.2 0.1 20.0  25.0 0.800
4 TG15 219 286 20.2 4.0 24.0 29.0 0.828
4 TG16 219 337 20.7 7.0 28.0  31.0 0.903
4 TG17T 219 308 29.3 7.5 37.0  39.0 0.949
4 TGI8 219 304 33.4 12.0 45.0  50.0 0.900
B TS19 219 268 33.5 19.2 53.0  54.0 0.981
4 TG20 229 305 69.5 0.3 70.0  51.¢

¥ TG21 229 286 71.3 0.8 72.0  71.0 1.01%4
4 TG22 229 337 73.0 1.3 74.0  78.0 0.949
4 TG23 229 308 73.0 2.8 76.0  81.0 0.938
4 TG24 229 304 54,3 23.7 78.0  96.0 0.813
4 TG25 229 268 69.3 25.2 95.0 103.0 0.922
5 GTT1 253 259 539.5 6.6 546.0 623.0 0.876
4 G7T1 253 259 539.5 6.6 546.0 645.0 0.847

The mean value of Vy/Vex is 0.936 and the standard

deviation equal to 0.11.

* Flange collapsed because the bending stress exceeded the

yield stress in the flange.




3.2~ RECTANGULAR PANEL
3.2.1- Web Capacity

For a rectangular panel of width b, depth d and
thickness t, subjected to a uniform shear distribution the

elastic buckling stress, T,., is given by:
Ter = K TE £/ 1201-V) &)
cr - - eq. 3.5

were K = 5.34 ( 1.0 + 0.75 (d/b%) for b > d
Vis Poisson's ratio.
The total shear force at initial elastic buckling is

equal to:

u
A

er er d t eq. 3.2

The analysis was first made for the complete panel
using 72 elements, with stiffeners having area but no
independent flexural rigidity. The imposed displacements
are as shown in Fig. 34, the distance AA' is reduced and
distance BB' increased, by an amount 28 . At first yield in
shear in the tension corner the nominal displacement of the
flange is taken to be:

§y =d/2 ( "y /G )(cos(arctg d/b)) eq. 3.6
where G is the elastic shear modulus.

Fig. 35 shows the behaviour of a panel with
d/t = 300, t = 0.5 mm, and a flange area of 4dt. The
abscissa is the ratio 4=6/ 38y, where % yis the calculated

displacement at the first yield in shear, and the ordinate
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is V / Vy, where Vy = Ty d t. V increases with® until,
at A is approximately unity, shear yielding occurs in the

tension corner,.

The variation of the shear stress along the boundaries is

shown in Fig. 36.

Fig. 37 shows the ratio of deflection over thickness

plotted along the compression diagonal.

It should be noted that the aspect ratio of the panel
is b/d, which may be more or less than 1.0, and that the
summation of the shear stress, to obtain the shear force, is

along the depth d.
3.2.2- Influence of Flanges

The influence of flange rigidity on the behaviour of
shear panels operating in the post-buckled range has been
analysed and compared with the results of the tests by
Basler et al. [4] and Rockey et al. [#4] Table U4 gives the

dimension and properties of the panels tested.

TABLE 4
Girder Aspect d Web Flange Af Yield Stress PB
Ratio Thickness Dimension R, © Tuf
mm mm mm an Mga

G6T1 b/d=1.5 1270 t=4.9 309x19.8 1.0 253 261 0.06
G6T3 b/d=0.5 1270 t=4.9 309x19.8 1.0 253 261 0.51
TG9I b/d=2.0 610 t=2.62 203x9.85 1.3 266 250 0.04
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3.2.3- Analysis of Test Panels
- Panel G6T1

In this panel the aspect ratio is 1.5, and the flange
area is equal to (d t) where d is the depth and t the
thickness of the panel. Fig 38 shows how the shear force
increases up to first yielding in shear, when & 1is
approximately equal to 1.0 and the ratio V/Vy=0.62, and,
because the flange has little bending rigidity, how the

maximum shear force is obtained at this point. As the

displacement increases, the ratio V/Vy remains almost

constant up to formation of the first plastic hinge at the

tension corner.

Fig. 39 shows the shear stress distribution along the

boundary for different values of A.

Fig. 40 shows the deflection profiles along the

compressive diagonal for different values of A.

From this analysis we can conclude that the flange has
almost no effect on the web capacity, and that the maximum
shear capacity is reached at first shear yielding in the
web, when the shear force is some 4 time the theoretical

value to cause initial buckling.

- Panel G6T3

This panel with an aspect ratio of 0.5, has a flange

area equal to (dt). First shear yielding in the web occurs
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when A is approximately equal to 1.0. As the displacement
increases beyond this point the shear force’decreases. The
capacity of the panel is reached approximately at 1.0 see

Fig. 41,

Fig. 42. shows the shear stress distribution along the

boundary for different values of 4.

Fig. 43. shows the variation of the deflection along

the compressive diagonal for different values of A.

- Panel TG9

This panel, with an aspect ratio of 2, has a flange
area equal to 1.25 (dt). At first yielding the ratio

V/Vy=0.54. Fig. 44 shows how the small flange bending

rigidity has little effect on the shear resistance.

Fig. 45 shows the variation of the shear stress along

the boundary for different values of A,

Fig. 46 shows the deflection profiles along the

compressive diagonal for different value of A,

3.2.4- Plate Behaviour

The principal in-plane stress resultants for panel TG9
are plotted in Fig. 47, which shows the magnitude and
distribution of the principal stress at first yield for the

whole panel. Near the compression corners the magnitude of
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the stress is much lower than near the tension corners. The
inclination of the principal stress along the boundaries is
shown to be equal to 45%at first yield. After first yield
the angle does not change at the boundary in the area where
the diagonal tension is expected to developed, but it
changes near the compression corners and in the middle of
the plate, where the angle approaches that of the panel

diagonal.
3.2.5- Normal Forces at the Boundaries.

Up to first yield there is no normal force at the
boundaries i.e. only the capacity of the web itself acts.
After yielding a normal force is developed at the
boundaries. For the rectangular panel TG5, Fig. 48 shows
that the value of the normal force developed along the

shorter side is higher than that on the longer side.

3.2.6- Comparison Between Tests and FEM Results

Table 6 shows the finite element study compared with
the result of tests made by Basler [U4], Rockey [4], Sadao
[24] and Fujii (26]. Table 5 shows the properties of the
girders. The total shear force obtained by the finite
element analysis is equal to the shear force resisted by the
frame plus the shear force resisted by the web. From Table 6
we can see the frame resistance in shear decreases, when the
flange area is equal to or less than the web area, and when

the aspect ratio increases.
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The mean value of V,/V,, in Table 6 is equal to 1.029,
and the standard deviation equal to 0.10.

Fig. 49 represents the square and rectangular panels

studied by the finite element method compared with the test.
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TABLE 5- Properties of

Ref. Girder

G6T3
G6T2
G6T1
TG5
TG9
F10-P1
F10-P5
G1-2
Ge-2
G2

G6

G9

t
mm

k.9
4.9
b.9
2.62
2.62
6.65

6.53
6.6

6.6
8.0
8.0
8.0

1270
1270
1270
610
610
1270
1270
1200
950
440
560
720

rectangular

Ay

6223
6223
6223
1598
1598
8446
8293
7920
6270
3520
4480
5760

mm

19.8
19.8
19.8

9.5

9.9
32.0
25.4
36.0
32.0
30.0
30.0
30.0

43

panels analysed by F.E.M.

bf Af/Aw
mm

308 0.98
308 0.98
308 0.98
203 1.22
203 1.25
395 1.49
408 1.25
250 1.14
250 1.28
200 1.70
250 1.67
250 1.30

d/t

259
259
259
233
233
191
194
182
144

55

70

90

0.504
0.224
0.056
0.067
0.041
0.107
0.066
0.118
0.096
0.131
0.439
0.054

b/d

0.5

0.75
1.5

1.5
2.61

2.78

B o e sl e W e




TABLE 6- Comparison between test results and F.E.M.

Ref. Girder Yield Strength Finte Element  Exp. Vu

wha “HBa Wl KE O
4 G6T3 253 261 779.0 0.0 779.0 787.0 0.990
4 G6T2 253 261 546.5 21.4 568.0 667.0 0.852
4 G6T1 253 261 494.8 3.1 498.0 516.0 0.955
¥ TGS 291 291 152.4 1.0 153.0 130.0 1.177
4 TGY 266 266  141.4 0.5 142.0 123.0 1.154
24 F10-P1 236 188  810.0 7.2 817.0 819.0 0.998
24 F10-P2 267 199  815.8 16.8 833.0 846.0 0.985
26  G1-2 486 474 1262.2 19.6 1335.0 1265.0 1.055
26 G2-2 486 485 1032.8 151.2 1184.0 1226.0 0.966
26 G2 430 411 873.0 0.0 873.0 824.0 1.059
26 G6 430 411 1098.0 0.0 1098.0 1177.0 0.933
26  G9 430 411  1408.0 0.0 1408.0 1158.0 1.216

The mean value of V,/V., in Table 6 is equal to 1.029,

and the standard deviation equal to 0.10.
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CHAPTER 4

PROPOSED MODEL FOR ULTIMATE SHEAR LOADING

4,1- SQUARE PANEL
4.1.1- Description

The proposed model is developed for a square panel. The
shear capacity is divided into that contributed by the web

and that contributed by the flanges.

For the capacity of the web, the model is developed for
a panel with stiffeners along all four edges; these boundary
stiffeners will be referred to as flanges. The flanges are
integrally attached to the web of the panel, but are
initially assumed to posses no bending or torsional
rigidity., If this panel is subjected to shear force, it is
evident that there can be no normal stress at right angles
to the boundaries. The results of the F.E. analysis
( Chapter 3 ) for a panel with flanges having axial rigidity
only, show that the prinecipal sﬁresses are equal at the
boundaries, and the web remains elastic up to first shear
yield in the corners, the distribution of the shear stress

at the boundaries may be approximated by a parabola.

After first yield the capacity of the flange is
analysed independently of the web., Because the length of the
yield zone between the web and the flange increases with

increasing loading, there is no available shear resistance
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between the web and the flange. Any diagonal tension can
only be reacted by the flange, causing the flange to bend
without assistance from the web. The results of the F.E.
analysis show the contribution of the flanges are negligible
up to first yield in the web, after which the flange bends

and begins to contribute to the shear capacity of the panel.

4,1.2- Webs

The model proposed resembles two sets of diagonal
strips, one in tension and one in compression; limiting to
Teor at the longest compression diagonal and to Ty at the
longest tension diagonal. It's assumed that the buckling
stress at the boundaries varies in parabolic form, the shear
stress at a point, s, on the edge, 0X, is:

2
Ts =Ter + ( Ty = Tor ) x/7d) eq. 4.1

in which x = distance from the corner; Ter = theoretical

critical shear stress which occurs at x = zero; and Ty =

yielding shear stress which occurs at x = d.

o
The principal stress along any line running at U5

remains constant along that line, with a maximum value of

e = Ot = Ty, At any point in the web, for values of
( x +y)<d, x <y, the stresses are given by:

2

Gg = Ter + ( Ty - Ter ) ( (X"Y)/d ) 2q. 4.2

2
Otz Tep+ (Ty - Tor ) ( (x+y)/d ) eq. 4.3
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The shear force V on a boundary is the area under the

shear stress curve times the thickness.

d
V=tS3 T5 dx

The equations of equilibrium for

point ara:

90 x 31T xy
5% T T3y 0
90 9T

y Xy
v T TIX 0

That the stress system satisfies the reguirement is proved

in APPENDIX 1.

The critical shear stress depends upon the boundary

conditions of the isolated panel,

conditions for
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accurately because the degree of restraint imposed by the
flanges and by the adjacent web panels cannot be evaluated.
It can be assumed conservatively that all the boundaries of
the web panel are simply supported, so that the critical

shear stress is given by:
Top = K 10 E t2/12(1 -v7) 4’ eq. 4.7
where the buckling coefficient K is given by:
K =5.30 (14+0.75 (d/bf) when b > d

Up to first yield, eq. 4.1 represents the variation of
the shear stress along the boundaries. The shear forces in
the plate at first yield in the web is obtained by
integrating the shear stress distribution along the edge,

giving:

Vi =(1/3( 2 ter + Ty ) d t , eq. 4.8

For more rigid flanges the ultimate shear force is
equal to thes shear force up to first yielding plus thes

contribution of the flanges in shear.

The failure load can be determined from a consideration

of the mechanism developed in the frame panel.

In this model up to first yielding in shear there is no

normal force at the boundary. As the load increases, %t will
increase and o, will reduce in such way as to conserve the

value of shear stress =1y at the tension corner, as the
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normal force increases.

The tension stress in the longer diagonal increases up
to the value of Oy, the final condition approaching a

series of yieldsd diagonals strips, the maximum value of

the normal force developed at the boundary is t °y/2'

b.1.

(@)

- Flanz=s

A finite element analysis was conducted, for a panel
with a high slenderness ratio, shown in Fig. 51. The two
tension corners are free to move; one compression corner is
fixed in the X and Y directions. The load is appliasd at the

other compression corner in X and Y direction.

b
C |
; ﬁr 4
—y
A
Y
Fig. 51

After first yielding in shear at thz2 tension corner, as

the load increases the yielded zone spreads, and normal

forces are created on the flanges. Failure occurs wh=an

hinges have formed in the flanges which together with the
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yielded zone A A' A'', B B' B'" form a plastic mechanism,

|
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fob |

Fig. 52

Consider a rotation @ to occur at the plastic hinges
producing the mechanism shows in Fig 52, the work done in

the plastic deformation of the flange and web is:

2Vecf=8Mpf + 4 (ay/2)ctec @/

Ve = 4 Mp/e +c t oy/2 eq. U.9

e

T

The load is applied at the compression corner in Fig.

51 in the Y direction only, and is assumed to be reacted by

a uniformly distributed load Py t/2 normal to the flange

exerted by the web. Since the plastic hinge will occur at
the point of maximum bending moment where the shear is zero,

the position of the internal hinge A is obtained by

considering the equilibrium of the beam section A A'. Taking

moments about A', one obtains.

(ct Oy/2) c/2=2Mp => UMp/e =ct Ty/2

c=\l(8Mp/( % t ) eq. 4.10
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Fig. 53

The failure load will be equal to the force at first

yield plus the contribution of the flange when the normal

forces are developed.

Vu = vw + Vf eq. 4.11

In the case of a girder, the internal hinges A'' and
B''* will not be formed because we have a continous web, and
the failure load will be determined from a consideration of
the mechanism developed in Fig. 53. Consider a rotation ¢ at
the plastic hinges, the work is done only on the sections
A A' and B B'. For equal flanges the distance ¢ for upper
and lower flanges will be equal, and the work done by the

axial force in the flanges will be zero.
The virtual work done in the mechanism is:
Ve g =UMp B +(ay/2)ct)cd
Ve=4Mp/ec + ( Uy/Z (e t) eq. 4.12

Equation 4.12 is the same as equation 4.9. The first

term of this equation, on the right hand side, represents
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the frame resistance in shear, the second term represents
the contribution of the flanges to increasing the web

capacity. By using equation 4.10 these two terms are shown

to be equal. Putting eq. 4.8 and eq. 4.12 into eq. 4.11

gives:

Vu =(1/3)( 2 ter + Ty ) dt + O'y c t eq. 4.13

Using the value of ¢ from eq. 4.10 in eq. 4,13 the

ultimate shear force becomes:

Vy =(1/3)( 2 ter + Ty ) dt +V8 Mp Oy t eq. 4.14

It should be noted that the value of the plastic moment
in the flange will be reduced by the presence of the axial

force P'. The value of the effective moment M' is given by:

M = Mp (1 - (PP )2) eq. 4.15

where P is the axial force to yield the flange, equal

to Af Oy
4,1.4- Extreme Cases

From eq. 4.13, it is seen that the shear capacity is
composed of two components. The first component represents
the capacity of the web up to first yield without any
contribution from the flange; the second component
represents the additional shear capacity of the flange

bending rigidity.
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In the case of a girder with very weak flanges, taking
account of the reduced moment resistance due to the axial
force in the flange, the value of the flange strength Mo
becomes small and the value of ¢ becomes very small; the

second term of eq. 4.13 becomes negligible so that:
Vu =(1/3)(Tcr+1y)dt eq. 4.16

When the flanges are very strong, the distanée of the
plastic hinge from the end of the panel ¢ increases, as
shown by eq. 4.10. When ¢ becomes equal to the width b, the
hinges form at the four corners of the panel to form a

" picture frame " mechanism, as shown in Fig. 54.

By substituting the value of ¢ =b =d into eq. 4.10 we

get:

eq. 4.17

Fig. 54

When determining the ultimate shear 1load for any

girder, the flange strength should be evaluated to see
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whether it exceeds the limiting value given by eq. 4.17.
If this is so ( it will not often be the case for girders of

civil engineering proportions ), the expression for shear

capacity is:

Vo =((1/3)C 2 Ter + Ty ) + % ) d ¢t eq. 4.18

The adoption of the Tresca yield criterion, tys oy / 2,
for panels in shear leads to simple analysis, énd give
better results than using the Von Mises criterion,
'@=0y/d§: because in the finite element analysis the membrane
shear yielding according to the Ilyushin criterion is less
than the true shear yield, due to the additional stresses
developed by the bending moments. If we assume Tresca yield

criterion the expression for shear capacity is :

Vu =(1/3)(C 2 Ter + 1 Ty)dt eq. 4,19

4.1.5- Comparisons of predicted shear strength

Table 7 gives the properties of the plate girder
panels. Table 8 gives comparisons of predicted shear
strengths according to the present model with results of
tests from a number of sources. Table 9 gives comparisons of
predicted shear strengths according to Hoglund, Rockey and
the proposed design procedure with results of tests from a
number of sources. Table 10 summarized the comparison of

test results.
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TABLE 7~ Properties of square panels

Ref.

P~ -

N —

24

24

24

24

24

27

Girder

TG1

TG2
TG4
TG15
TG16
TG17
TG18
TG19
TG20
TG21
1G22
TG23
TG24
TG25

GTT1
G7T2

TG1
TG1!

TG2
TGz2!

IG3
TG3!

TGY
TG4 !

1G5
TGS!

PC3

t
mm

2.72
2.72
. 965
.965
.965
.965
. 965
.965
2.03
2.03
2.03
2.03
2.03
2.03
4.98

2.50

2.50

2.50

2.50

2.50

1.0

mm
609.8
609.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8
304.8

1270.0

1000.0
1000.0
1000.0
1000.0
1000.0

800.0

Ay

1658.0
1658.0
294.0
294.0
294.0
294.0
294.0
294.0
619.0
619.0
619.0
619.0
619.0
619.0
6325.0

2500.0

2500.0

2500.0

2500.0

2500.0

800.0

93

tf
mm

4.70
6.55
3.12
5.00
6.45
9.32
12.95
15.52
3.25
4.88
6.48
9.22
12.95
15.54
19.50

5.06

10.00

16.43

20.16

29.73

10.0

bf
mm

101.6
101.6
76.2
76.2
76.2
76.2
76.2
76.2
76.2
76.2
76.2
76.2
76.2
76.2
310.0

160.0
200.0
200.0
200{0
200.0

250.0

Af/Aw

0.80
1.31
1.61
3.00

3.12

0.018
0.034
0.093
0.224
0.451
0.850
1.593
2.004
0.0U46
0.097
0.207
0.419
0.724
0.914
0.120

0.019

0.090

0.241

0.366

0.790

0.431




TABLE 8- Comparison between test results and P.D.P.

Girder d/t

TG1 -

TG2
TG4
TG15
TG16
TG17
TG18

PC3

Yield Stress Vv P.D.P. V Exp.
Oy MPa Oyf MPa KN kN

224 253 253 120.0 120.0
224 2383 238 130.0 126.0
316 219 309 24.0 25.0
316 219 289 29.0 29.0
316 219 349 35.0 31.0
316 219 315 43.0 39.0
316 219 306 54.0 51.0
316 219 268 59.0 55.0
150 229 309 65.0 51.0%
150 229 289 73.0 71.0
150 229 349 84.0 79.0
150 229 315 96.0 81.0
150 229 306 114.0 96.0
150 229 263 121.0 104.0
255 253 259 645.0 623.0
645.0 645.0

400 200 230 131.0 152.0
131.0 116.0

400 200 280 174.0 160.0
‘ 174.0 - 139.0

400 200 280 223.0 190.0
223.0 190.0

400 200 280 251.0 219.0
251.0 207.0

400 200 280 323.0 309.0
323.0 300.0

800 216 262 8§2.0 79.0

* Premature failure,

flange collapse due to bending

stress higher than yielding stress in the flange.
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TABLE 9- Comparison between test results and shear strength
according to Hoglund, Rockey and P.D,P.

Girder V Hoglund V Rockey V P.D.P. V Exp.
kN kN KN kN
TG1 140.0 143.0 120.0 120.0
TG2 138.0 142.0 130.0 126.0
TG14 21.0 23.0 24.0 25.0
615 24.0 26.0 129.0 29.0
TG16 29.0 30.0 35.0 31.0
617 37.0 36.0 43.0 39.0
TG18 46.0 44,0 54.0 51.0
TG19 50.0 48.0 59.0 55.0
TG20 64.0 68.0 65.0 51.0"
TG21 67.0 71.0 73.0 71.0
TG22 4.0 76.0 84.0 79.0
G623 83.0 81.0 96.0 81.0
TG24 99.0 90.0 114.0 96.0 %
TG25 106.0 94.0 121.0 104.0 g
GTT1 575.0 605.0 645.0 623.0 -
G7T2 575.0 605.0 645.0 645.0 "
TG 1 119.0 142.0 131.0 152.0 :
TG1' 119.0 2.0 131.0 116.0 :
TG2 136.0 166.0 174.0 160.0 @
TG2! 136.0 166.0 174.0 139.0 :
TG3 168.0 196.0 223.0 190.0 |
TG3' 168.0 196.0 223.0 190.0 :
TGY 191.0 214.0 251.0 219.0
TG 191.0 214.0 251.0 207.0
TGS 256.0 265.0 323.0 309.0
TGS ! 256.0 265.0 323.0 300.0
PC3 49.0 73.0 82.0 79.0

*Premature failure, flange collapse due to bending
stress higher than yielding stress in the flange.

a5




TABLE 10~ Ratio of predicted to experimental capacity

Investigator

Hoglund
Rockey

P.D.P.

Mean of
Vu/Vex

0.91
0.97
1.08

96

Standard
Deviation

0.17
0.11
0.1

Range Of

0.62-1.17
0.82-1.22
0086"'1025




4,2~ RECTANGULAR PANEL

4,2.1- Description

This approximate model of the stress distribution in
the panel is developed for a rectangular panel with aspect
ratio b/d=i, where d is the beam depth, with flanges along
all four edges. The flanges are integrally attached to the
web of the panel, but are initially assumed to possess no

bending or torsional rigidity.
4.2.2- Webs

Along the shorter length d, the shear stress varies
parabolically from Tp to Ty The shear stress along the

longer boundary is divided into three zones;

1- A length of 2(b-d)/3 from the compression corners in

i T = T
which er-

2- A length d in which t varies parabolicaly from T to Ty.

3- A length (b-d)/3 in which T = Ty.

The total shear force along the length of the panel, b,
is equal to i V, where V is the total shear force along the
shorter length of the panel. Fig. 55 shows how the three
zones along the width b will be formed for the assumed shear
stress distribution along the boundary when yield first

occurs.
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&
i

! d 23(b-d)
1/3(b-d)

Fig. 55

Taking the origin of the coordinates at point I, the

shear stress at a point s, on the edge between I 2and J, is:

Ts = ter + ( Ty = Ter ) ( )(/d)2 eq. 4.1

The shear force at ths boundary for tnhne width b is the

area under th2 shear stress curve times the tnickness.

(1/3)(2i+1)d

dx +(1/3)(i-1) d t Ty

vV =(2/ i-1) d t T
(2/31(1-1) d t Tor + 5(2/3)(?-1)d

(1/3)(2i+1)d

V 2((2 ter + 1y )/3) (i-1) d t + t§ eq. 4,20

T dx
(2735 (i-1)d

The shear force at the boundary for depth d is the area

under the snhnzar stress curve times the thickness.

d
V=2t To dx
So ®
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All the boundaries of the web panel are assumed to be

simply supported, thus the critical shear stress is given

by:
2 2 2 2
Torp =K ™ E t /7 (1201 - V) d) eq. 4.7
where the buckling coefficient K is obtained as:

K =5.38 (14 0.75 (d/b) ) when b > d

4.,2.3- Flanges

Up to first yield eq. 4.1 represents the variation of
the shear stress along the boundaries, the integration of
eq. 4.1 gives the total capacity in shear for a panel having
low flange rigidity. After yield for higher flange
rigidities the width of the yield zone and ths normal force
both increase. Failure is accompanied by the creation of

plastic moment in the flanges.

The ultimate shear force is equal to the shear force up
to first yielding, plus the contribution of the flanges when

plasticmoments are creative in the flanges.

For rectangular panels the finite element analysis has
shown that the inclination of the principal stress is not
constant. The principal tensile stress varies from MSOat the
boundary to the angle of the panel diagonal in the middle.
To facilate the work, assume a constant membrane tension

inclination equal to thé angle of the panel diagonal, 8y
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The value of the normal force at the boundaries has a
higher value in the X direction along the depth d and a
lower value in the Y direction along ths width b, the ratio

of the normal forces is:

o] 2 2
X=(1 + cos 28d)/(1 - cos 26d)=cota§ gg=(b/d) = 1" eq. 4.21
—% ,

Assume a uniform load t %y/2 distributed for some
length along the deptnh d. The magnitude of the normal force

2 .
along the width b is than equal to t o 7/ ( 2 i"), which

agrees with the finite element results.

Since the plastic hinge occurs at the point of maximum
bending moment whesre the shear force across the flange is
equal to zero, the position of the internal hinge is
obtained by considering the equilibrium of the beam section

A A'. Taking moments abouts A', one obtains:

( 9y/(2 iz)) t c/2 = 2 Mp => ¢ = iy 8 Mp/ %y t eq. 4.22

The failure load will be equal to the‘force at first
yielding in shear in the web plus the contribution of the

flanges when the normal force are developed:

Vu Vw + Vf

s V2

(1/3)C 2 Tapr + Ty ) d t

x
n

s \2
Vu =(1/3)0 2 1ter + Ty ) d t +ct oy/(l) eq. 4.23
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Put the value of c from eq. 4.22 into eq. 4.23 we get

Vu =(1/3)(2 ter + 1y)d ¢t +1/i V 8 Mp oy t  eq.b.24

The aspect ratio i reduces the second term on the right
hand side. This is the only the difference between eq. 4,14
which represent the ultimate force for square panel and
eq. H4.24 which represent the ultimate force in a rectangular
panel., Eq. 4.24 could be used as a general ehuation,
including the square panel. It should be noted when the
aspect ratio b/d of the panel is less than 1 the equation of
the square panel 4,14 is used to get the ultimate shear

force, because the normal force can not increase to more

than t Oy/2-

4,2, U- Extreme Cases

In the case of a girder with light flanges, the value
of the flange strength, Mp, is small and the distance of the
plastic hinge from the end of the panel ¢ becomes very

small; so the ultimate shear force will equal to:

Vo z(1/3)Cter + Ty ) d t eq. 4.25

When the flanges are heavy, the distance of the
plastic hinge from the end of the panel ¢ increases, when ¢
becomes equal to the width b, the hinges form at four
corners of the panel. By substituting the value ¢ = b into

eq. 4.22 we get:

2
Mp = d?ay t /7 (8 1) eq. 4.26
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When determining the ultimate shear load for any
girder, the flange strength should be evaluated to see
whether it exceeds the limiting value of eq. 4.26 . The

expression for shear capacity is:

g
Vu = ((1/3)(2 Ter + Ty) + oy/ i) dt eq. 4.27

4,2,5- Comparisons Between Test Results And Proposed Design

Procedure

Table 12 gives comparisons of predicted shear strengths
according to the proposed design procedure with the results
of tests from a number of sources. Table 11 gives the
properties of the plate girders. Table 13 gives comparisons
of predicted shear strengths according to Hoglund, Rockey
and the proposed design procedure with the results of tests
from a number of sources. Table 14 summarized the comparison

of test results.

Fig. 56 shows the comparison between the experimental
results and those predicted by the present model for square

and rectangular panels.
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TABLE 11~ Properties of rectangular panels

Ref. Girder t d Ay te bf Af/Ay b/d B
mm mm mm mm

4 G6T3 4.9 1270 6223 19.8 308 0.98 0.5 0.504

y G6T2 4.9 1270 6223 19.8 308 0.98 0.75 0.224

4 G6T1 4.9 1270 6223 19.8 308 0.98 1.5 0.056

4 G5 2.62 610 1598 9.5 203 1.22 1.5 0.067

Y TG9 2.62 610 1598 9.9 203 1.25 2.0 0.041

24 F10-P1 6.65 1270 8446 32.0 395 1.5 1.5 0.107
24 F10-P2 6.53 1270 8293 25.4 408 1.25 1.5 0.066

26 G1-1 6.6 1200 7920 23.0 250 0.73 3.0 0.013
26 G1-2 6.6 1200 7920 36.0 250 1.14 1.5 0.118
26 G2-1 6.6 950 6270 19.0 250 1.32 3.0 0.014
26 G2-2 6.6 950 6270 32.0 250 1.28 .1.5 0.096
26 G1 8.0 440 3520 30.0 160 1.36 2.61 0.104
26 G2 8.0 440 3520 30.0 200 1.70 2.61 0.130
26 G3 8.0 560 4480 30.0 250 1.67 2.63 0.099
26 GV 8.0 560 4480 30.0 250 1.67 3.57 0.054
26 G5 8.0 560 4480 30.0 250 1.67 2.68 0.095
26 G6 8.0 560 4480 30.0 250 1.67 1.25 0.439
26 G7 8.0 560 4480 30.0 250 1.67 2.68 0.095
26 Gy 8.0 720 5760 30.0 250 1.30 2.78 0.054
27 PA3 .96 800 800 12.0 249 3.75  0.75 0.792

103




TABLE 12- Comparison between test results and P.D.P.

Girder da/t Yield Stress V P.D.P. V EXP.

9y MPa oyr MPa kN kN
G6T3 255 253 261 821.0 787.0
G6T2 255 253 261 687.0 667.0
G6T1 255 253 261 518.0 516.0
TG5 316 291 291 160.0 130.0
TGY 316 266 266 133.0 123.0
F10=-P1 193 236 188 837.0 819.0
F10-P2 196 267 199 817.0 846.0
G1-1 184 486 499 924 ,0 971.0
G1-2 184 486  47H4 1478.0 1265.0
G2-1 144 486 519 807.0 961.0
G2-2. 144 486 485 1335.0 1226.0
61" 55 430 411 757.0%* 804.0
G2* 55 430 411 920.0 824.0
G3" 70 430 411 963.0** 971.0
Gu* 70 430 411 QU4.0 952.0
G5* 70 430 411 1125.0 1050.0
G6™ 70 430 411 1550.0 1177.0
67" 70 430 411 1125.0 1050.0
G9 90 430 411 1077.0 1158.0
PA3 832 216 206 85.0 86.0

* The theoretical critical shear stress is higher than

yield shear stress so the value of yield shear stress is
used in the equation.

**'Flange collapsed because the bending stress exceeded the
yield stress in the flange.
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TABLE 13- Comparison between test results and shear strength
according to Hoglund, Rockey and P.D.P.

Girder V Hoglund V Rockey V P.D.P. V EXP.
kN KN KN kN
G6T3 819.0 878.0 821.0 787.0
G6T2 654.0 712.0 687.0 667.0
G6T 1 492.0 460.0 518.0 516.0
TG5 153.0 142.0 160.0 130.0
TG9 135.0 111.0 133.0 123.0
F10-P1 829.0 757.0 837.0 819.0
F10-P2 825.0 752.0 817.0 846.0
G1-1 1046.0 710.0 924.0 971.0
G1-2 1367.0 1289.0 1478.0 1265.0
G2-1 996.0 680.0 807.0 961.0
G2-2 1290.0 1181.0 1335.0 1226.0
G1 914.0 757.0 757.0 804.0
G2 947.0 920.0 920.0 824.0
63 1070.0 1123.0 963.0 971.0
Gy 1082.0 1099.0 9uu,0 952.0
G5 1133.0 1150.0 1125.0 1050.0
G§ 1352.0 1550.0 1550.0 1177.0
6T 1133.0 1150.0 1125.0 1050.0
G9 1217.0 1093.0 1077.0 1158.0
PA3 61.0 83.0 85.0 86.0

*  The theoretical critical shear stress is higher than
yield shear stress so the value of yield shear stress is
used in the equation.

** Flange collapsed because the bending stress exceeded the
yield stress in the flange.
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TABLE 14- Ratio of predicted to experimental capacity for

rectangular panels

Investigator Mean of
Vu 7 Vex
Hoglund 1.03
Rockey 1.00
P.D.P. 1.02
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Standard
Deviation

0.12
0016
0.11

Range Of
Vu 7/ Vex

0.71-1.15
0.71-1.32
0082-1032
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4.,3- PANEL SUBJECTED TO COMBINED BENDING MOMENT AND
SHEARING FORCE.

In a fabricated plate girder, the primary function of
the top and bottom flange plates is to resist the axial
tensile and compressive forces arising from the bending

action, whilst the web plate resists the shear force.

When a girder with heavy flange is subjected to a
bending moment in addition to shear, the pure shear capacity
will be reduced by the presence of bending moment. On the
other hand, the axial force P' = M / d 1in the flanges
reduces the moment capacity in the flanges hinges to

M' = My (1 - ( P/ P) ) and M' should used in place of Mp
in eq. 4.14 or 4,24,

For a girder with a light flange stiffened transversely
with a a/t > 200 typical of those used in civil
engineering ( Ap ¢ Ay ), at first yield in shear there is
no normal force at the flange from the web, and because the
web is buckled any bending moment contributed by the web may
be neglected. The flange failure mode normally occurs when
the value of the applied bending moment is approximately
equal to the plastic moment resistance provided by the

flange plates only:
M= Af Tyr d

For a girder carrying a single concentrated load, S, in

the middle, simply supported over a span length L, the panel
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is subjected to bending moment and shear. The ultimate load

capacity, S, for failure due to bending is then:

S = 4 Af Oyf d/ L

4.4- LONG THIN PLATE GIRDERS WITHOUT WEB STIFFENERS

The simply supported girder is a common element in
construction. When the load is sufficiently distfibuted
along the girder no other vertical web stiffeners than at
the supports are needed. When the girder is subjected to a
few concentrated loads vertical web stiffeners are required

to prevent web crippling.

Even in the case of a long web plate without transverse
stiffeners there is on additional post-buckling capacity due

to redistribution of the stresses.

Hoglund [ 25 ] replaced the web by a system of
intersecting bars whose inclination is changed when the load
is increased. The compressed bars carry a constant stress
equal to the critical shear buckling stress, 0,= icr’ while
the stress in the tension bars increases a§ their
inclination decreases. The ultimate shear force is reached
when yielding according to the Von Mises criterion occurs.

Hoglund developed an empirical formula to give the ultimate

load.

The ultimate mean shear stress for the three girders

tested by Hoglund agrees very well with the formula
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developed in this study up to first yield with no
contribution from the flange. Tables 15 and 16 gives the
properties of the plate girders and the comparison of the
predicted mean shear stress according to the present model

with the results of the tests.

TABLE 15
Ref. Girder t d Aw tf bf Af/Aw 9/t
mm .oomm mm mm
i 25 B1 2.86 600 1716 9.9 226  1.30 210
i 25 BY 2.0 600 1200 6.1 151  0.77 300
1 25 K1 2.86 600 1716 9.9 226 1.30 210
f TABLE 16
] Ref. Girder L Yield stress P.D.P. Tests
3 1 T
{ mm ﬁga g¥£ MPa MPa
i 25 B1 9000  418.5 294.4 85.1 85.3
f 25 BY 9000  280.0 304.0 54, 2 52.9
25 K1 6000  418.5  294.4 85.1 92.4
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CHAPTER V
SUGGESTIONS FOR FUTURE RESEARCH .

5.1- TRANSVERSE WEB STIFFENERS

The stiffeners must sustain axial forces developed from
the web membrane action plus the effect of frame action, the
stiffeners must remain straight and not deflect out of the
web plane during the web buckling and posthuckling stages,

up to reaching the ultimate load.

The experimental study conducted by Rockey et al. 1981
[ 28 ], and a similar study by Mele and Puthali 1979[ 28 ],
has shown that a portion of the web plate acts with the
stiffener in resisting the axial loading. Four factors must

be considered in stiffeners design:
- The amount of web acting with the stiffener.

- The moment arising due to the eccentricity of the applied

load P from the centroidal axis of the stiffener.
-~ The Euler buckling load of stiffeners.

- The connection welds between the stiffeners the web and the

two flanges.
5.2- LONGITUDINAL WEB STIFFENERS

The webs of plate girders may be reinforced by
longitudinal, in addition to transverse, stiffeners, to

increase their bending and shear capacity.
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The longitudinal stiffeners increase the buckling
resistance of the web in shear, because the sub-dividing of
the web increases the buckling stress in the smaller sub-

panels.

Several researchers have studied 1longitudinal web
stiffeners [28], notably Owen et al. 1970, Massonet 1960,
Meszaros and Djubek 1966, Rockey 1977, but up to now no

universal satisfactory method has been developed.

When the longitudinal stiffened web is subjected to
axial force due to bending moments in addition to shear, two

main problems need to be studied.

- The number of the stiffeners across the depth and how each

longitudinal stiffener acts.

- The deployment of the longitudinal stiffeners in the
compression zone, to increases the yielding length at the

boundary.

5.3- OPENINGS IN THE WEB

Designers frequently find it necesary to introduce

openings in the webs in order to provide services.

The cutting of a large opening in the web of a plate
girder can have a significant effect on the behaviour of the
plate girder under load, the stress distribution in the web,

the ultimate strength and the deflection.

112



In general, webs in built-up girders are made up of
relatively thin plates having web-slenderness values, d/t,

in excess of 200 subjected predominatly to shear loading.

Several researchers have proposed methods including
Hoglund 1971 {30], European Convention for Constructional
Steelwork (ECCS) 1976 [28], Redwood and Shrivastava 1980
(291, Narayanan and Adorisio 1983 [28].

Redwood developed a mathematical model for the design
of thick webs, however, these methods are not valid for thin
webs. For thin webs, Narayanan and Rockey studied several
tests and developed a method to predict the ultimate load,
but these methods are based on the theories developed by
Rockey et al. for plate girders without openings, with some

modification including the opening in the web.

Up to now no satisfactory method has been found for the
ultimate value of shear plates with openings. There are four
effects associated with web opening which need to be

investigated:

1- Hole size relative to the web size,

2- Location of the opening in the web,.

'3~ The shape of the opening(rectangular, circular,..etc).

4~ The presence of any reinforcement around the opening.
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CHAPTER VI
CONCLUSION

-Finite Element Method

The finite element method has been used for the large
deflection elastic-plastic analysis of plates wunder shear

loading, in the post-buckled regime.

Before buckling the shear stress is uﬁiformly
distributed along the boundary. After buckling the shear
stress distribution becomes non-uniform with a maximum value
at the tension corner., Up to the shear force which causes
first yielding at thevjunction between the web and the
flange at th2 tension corner, there is no normal force at
the boundaries. For panels with very strong flanges and thin
webs, as the load increases a normal force is developed at
the boundaries reacted by the flanges. The principal tension
stress increases and the principal compression stress
decreases in a such way as to conserve shear yield along the

boundary near the tension corner. The maximum value of the

stress normal to the boundary is Oy/2~

It has been shown that the shear capacity of a web,
having flanges with small bending rigidity along the
boundaries, is reached at first yielding of the web in shear
in the tension corner, with no stress normal to the

boundary.

With stronger stiffeners, after first yield, the
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capacity of the web increases as a result of the resistance
to normal force at the boundary due to the bending rigidity
of the flange. Furthermore, the capacity of the frame itself
in shear is added to the total capacity of the panel. In
this case as the displacements increase, the number of half-
waves increases from 3 to 5 or more, and some diagonal

tension is developed.

In most girders used in civil engineering the flanges
are light ( flange area < web area ) and no useful
diagonal tension is developed before the maximum capacity is

reached.

When the d/t ratio of the panel is small enough that
the shear force to cause yielding exceeds that to cause
elastic buckling, no bending is develbped in the flanges.
The first yield may take place in the middle of the éanel
area, due to a combination of meinbrane stresses and bending
stresses ( this may explain the difference between some

author's test observations ).

For rectangular panels all the above considerations are
equally valid. The magnitude of the normal forée at- the
boundary after first yield is a function of the aspect ratio
b/d, and any contribution from the flanges to the shear
capacity reduces rapidly with the increase of the aspect

ratio of the panel.

WAith light flanges the inclination of the stress stays

115




at 4§ along the boundaries at first yield. With heavy
flanges some diagonal tension develops after first yield and
the capacity of the web increases. The inclination of the
stress near the centre of the panel is equal to the angle of

the panel diagonal.
~Proposed Design Procedure

The proposed model to predict the ultimate load
capacity of shear webs in a plate girder treats the shear
strength of the web and the bending strength of the flanges

independently.

The proposed equation is simple, applies to square and
rectangular panels, gives satisfactory results compared with
many tests, and avoids the need for iteration used in other

methods.

The model illustrates that for girders of typical
engineering proportions the contributions by the flange to

the ultimate capacity is less than 10 %.

116




REFERENCES

1. WASTLUND, D. and BERGMANN, S. G. A., " Buckling of Webs
in Deep Steel I Girder, "™ IABSE, Vol. 8, p. 291 - 310,
1947,

2. BASLER, K., " Strength of Plate Girders in Shear, " ASCE,
Proc. No 2967, Part 1. ST. 7, p. 151-180, Oct. 1969.

3. ROCKEY, K. C. and SKALOUD, M., " Influence of Flange
Stiffeners Upon the Load Carrying Capacity of Webs in
Shear, " Proc. 8 th Congress, IABSE, New York,
Sept. 1968.

4, ROCKEY, K. C. and SKALOUD, M., "™ The Ultimate Load
Behaviour of Plate Girders Loaded in Shear, " The
Structural Engineer, Vol. 50, No 1, p. 29-47, Jan. 1972.

5. PORTER, D. M., ROCKEY, K. C. and EVANS,H. R., "™ The
Collapse Behaviour of Plate Girders Loaded in Shear, "
The Structural Engineer, Vol. 53, No 8, P. 312-325,
Aug. 1975.

6. FUJII, T., " On an Improved Theory for Dr. Basler's
Theory, ™ 8 th Congress, IABSE, New York, Sept. 1968.

7. MARSH, C., " Theoretical Model for Collapse of Shear
Webs, " Journal of the Engineering Mechanics Division,
ASCE, Vol. 108, No. EM5, p. 819-832, Oct. 1932.

8. MARSH, C., "™ Photoelastic Study of Postbuckled Shear
Web, " Canadian Journal of Civil Engineering, Vol. 12,
No. 2, p. 415-417, 1985.

9. DJUBEK, J., " Deformation of Rectangular Slender Web

Plates With Boundary Members Flexible in the Web Plate

117




10.

11.

12.

13.

14,

15.

Plane, " The Aeronautical Quarterly, Vol. xvii,
p. 371-394, Nov. 1966.

LEvY, S., FIENUP, K., and WOOLY, R., " Analysis of
Square Shear Web Above Buckling Load, " NACA Technical
Note, No. 962, Washington, Feb. 1945,

LEVY, S., WOOLEY, R. and CQRRICK, J., " Analysis of Deep
Rectangular Shear Web Above Buckling Load, "™ NACA
Technical Note, No. 1009, Washington, Mar. 1946. |

LEVY, S., " Bending of Rectangular Plates With Large
Deflection, "™ NACA Technical Note, No. 846, Washington,
May. 19442.
OSTAPENKO, A., YEN, B. AND BEEDLE, L., "™ Research on
Plate Girders at Leigh University, " Proc. 8 th,
Congress, IABSE, New York, Sept. 1968.

BATHE, K. and BOLOURCH S., " Large Displacement Analysis
of Three-Dimensional Beam Structures, " International
Journal for Numerical Methods in Engineering, Vol. 14,
p. 961-986, 1979.
BATHE, K. and BOLOURCHI S., "™ A Geometric and Material
Nonlinear Plate and Shell Element, " Computers and

Structures, Vol. 11, p. 23-48, 1981.

16. BATHE, K. and HO, L., "™ A Simple and Effective Element

for Analysis of General Shell Structures, " Computers

and Structures, Vol. 13, p. 673-681, 1981.

17. BATHE, K. and DVORKIN, E., " On the Automatic Solution

of Nonlinear Finite Element Equations, " Computers and

Structures, Vol. 17, No. 5-6, p. 871-879, 1983.

118



18. JOHNSTON, B., " Guide to Stability Design Criteria for
Metal Structures, " John Willey and Sons, 3rd edition.

19. TIMOSHENKO, S. and GERE, J., " Theory of Elastic
Stability, " McGraw-Hill Book Company, 2nd edition.

20. BATHE, K., " Finite Element Procedures in Engineering
Analysis, " Prentice-Hall, 1982.

21. FUNG, Y. C., " Foundations of Solids Mechanics, "
Prentice-Hall, 1965. |

22. CRISFIELD, M. A., " Large-Deflection Elasto-Plastic
Buckling Analysis of Plates Using Finite Elements, "
Transport and Road Research Lab., London, Report LR 593.

23. CALLADINE, C. R. " A Plastic Theory for Collapse of
Plate Girders Under Combined Shearing Force and Bending
Moment, " The Structural Engineer,Vol. 51, No. 4,
p. 147-154, April 1973.

24, SADAO, K., " Ultimate Strength of Stiffened Plate
Girders Subjected to Shear, " Proc, IABSE Colloquium,
London, 1971.

25. HOGLUND, T. , ™ Simply Supported Long Thin Plate
Girders Without Web Stiffeners Subjected to Distributed
Transverse Load, " Proc. IABSE Colloquium, London, 1971.

26. FUJII, T., " A Comparison Between the Theoretical Values
and the Experimental Results for the Ultimate Shear
Strength of Plate Girders, " Proc. IABSE Colloquium,
London, 1971. |

27. TANG, K. H. and EVANS, H. R., " Transverse Stiffeners

for Plate Girder Webs an Experimental Study, " J.

119



e
23
E
[
2
g
B:

28.

29.

30.

Construct. Steel Research 4, Elsevier Applied Science
Publishers, England, p. 253-280, 1984,

NARAYANAN, R., " Plated Structures Stability and
Strength, " Applied Science Publishers, 1983.

REDWOOD, R. G., and SHRIVASTAVA, S, C., " Design
Recommendations for Steel Beams With Web Holes, "
Canadian Journal of Civil Engineering, 7(4), p. 642-650,
1980. |
HOGLUND, T., "™ Strength of Thin Plate Girders With
Circular or Rectangular Web Holes Without Web

Stiffeners, " Proc. IABSE Colloquium, London, 1971.

120

]



APPENDIX 1

The panel is square b = d, with uniform edgze flanges.

By symetry, each edge carries the same shear force, V;

and the same shear stress distribution.

F

y

_:_——”Tt,
|

Fig. A.2
the shear stress at a point s on the boundary A B, is

Ts=Tcr+(Ty-"cr)(x/d)2 eq. U.1

The shear force on a boundary is the area under the

shesar stress curve times the thickness.
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PROUVE

The equation of equilibrium for plane stress at a point

are:
90 X 9T xy
7% T =y - 0
eq. 4.6
3oy dTxy
oy o X =0
x
L >

Fiz. A.3

The positive sign convention is shown in Fig. A.3, on
the face2 of th=2 positive direction of Y axis the positive
shear stress take the direction of the positive X axis, on
the face of the positive direction of X axis the positive
shear stress taxe the direction of the positive Y axis, Fig.
A.4 shown the shear stress in the model studiad has an

opposit signe. The equations of equilibrium become:

dcx dTxy

“oX gy 0

eq. A.1
doy 9Txy
5y < 5x = O
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Fig. A.4

eq. 4.4 in CHAPTER 4 give:

Txy = Tar + ( Ty = Tor ) ( (x=y)% (x+yP ) ( 1726)

From Moar's circle;

ox = 0y = (0t - 0¢ ) / 2 eq. A.2

Oc and O are equatioas 4.2 and 4.3 in CHAPTER 4.

Ox = (Ty - Ter) (2% y/ B) eq. A.3
2
30x _ ( Ty - Tcr ) ( 2 y / b ) eq- A.u
.——g—x—_
2
a'fxy _ ( Ty - Ter ) ( 2 y / b ) eq- A.5
__a_y.__

put eg. A.4 and A.5 into eq. A.1 w2 get zero.

Also same:

2
°y= (Ty— Tcr)(2XY/b) eq. A¢6
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3y
2
—3x -

put eq. A.7 and A.8 into eq. A.1 we get zero.
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