
Semantic Web Enabled Software Engineering

Philipp Schügerl

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy(Computer Science) at

Concordia University

Montreal, Quebec, Canada

September 2011

c© Philipp Schügerl, 2011

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Philipp Schügerl

Entitled: Semantic Web Enabled Software Engineering

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Computer Science)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. M. Pugh

External Examiner

Dr. G. Antoniol

External to Program

Dr. F. Khendek

Examiner

Dr. S. Bergler

Examiner

Dr. V. Haarslev

Thesis Supervisor

Dr. J. Rilling

Approved by

Dr. V. Haarslev, Graduate Program Director

September 8, 2011

Dr. Robin A.L. Drew, Dean

Faculty of Engineering & Computer Science

Abstract

Semantic Web Enabled Software Engineering

Philipp Schügerl, Ph.D.

Concordia University, 2011

Ontologies allow the capture and sharing of domain knowledge by formalizing in-

formation and making it machine understandable. As part of an information system,

ontologies can capture and carry the reasoning knowledge needed to fulfill different ap-

plication goals. Although many ontologies have been developed over recent years, few

include such reasoning information. As a result, many ontologies are not used in real-life

applications, do not get reused or only act as a taxonomy of a domain.

This work is an investigation into the practical use of ontologies as a driving factor

in the development of applications and the incorporation of Knowledge Engineering as

a meaningful activity into modern agile software development. This thesis contributes

a novel methodology that supports an incremental requirement analysis and an iterative

formalization of ontology design through the use of ontology reasoning patterns. It also

provides an application model for ontology-driven applications that can deal with non-

ontological data sources. A set of case studies with various application specific goals

helps to elucidate whether ontologies are in fact suitable for more than simple knowledge

formalization and sharing, and can act as the underlying structure for developing large-

scale information systems. Tasks from the area of bug-tracker quality mining and clone

detection are evaluated for this purpose.

Acknowledgments

Foremost, I would like to express my gratitude to my supervisor, Dr. Juergen Rilling,

for giving me the opportunity to work on an interesting research project together with the

Defence Research and Development Canada (DRDC) agency. His intellectual guidance,

insights and patience have made this work possible and have shaped me, both as a person

and researcher. My gratitude also goes out to Dr. Sabine Bergler for invaluable support

over the years. Her suggestions from a research perspective outside the Software Engi-

neering community have helped me keep this thesis balanced. I would also like to thank

Dr. Volker Haarslev for his great feedback that has always encouraged me. Furthermore,

my gratitude goes to my fellow master’s and Ph.D. students in the research lab who have

always given me great feedback. Last but not least, I want to thank my family and friends

for their support, encouragement and inspiration during my studies — You are the source

of my success.

This research was partially funded by DRDC Valcartier (contract no. W7701-081745

/001/QCV) and by NSERC Grant: 227680.

iv

Dedication

To my parents and brother...

v

Table of Contents

List of Tables . ix

List of Figures . x

Listings . xii

Glossary . xiii

1 Introduction . 1

1.1 Motivation and Objective . 2

1.2 Contributions . 4

1.3 Outline . 5

2 Background . 6

2.1 Software Engineering . 7

2.2 Artificial Intelligence and Software Engineering 9

2.3 Knowledge Engineering . 15

2.4 Knowledge Modeling Technologies 19

2.4.1 Description Logics . 20

2.4.2 Web Ontology Language . 23

3 Methodology . 30

3.1 Term Disambiguation . 31

3.2 Ontology Design Quality . 32

3.3 Ontology Design Methodologies . 35

3.3.1 Gruninger et al. 36

3.3.2 Uschold et al. 37

3.3.3 Fernandez et al. 38

3.3.4 Swartout et al. 39

3.3.5 Sure et al. 40

3.3.6 Hristozova et al. 41

3.3.7 NeOn Project . 41

3.3.8 Summary . 42

vi

3.4 SE-ONTO Methodology . 45

3.4.1 Ontology Entity Analysis . 48

3.4.2 Ontology Development . 55

4 Ontology Design Patterns . 61

4.1 Ontology Visualization . 62

4.2 Design Patterns . 66

4.3 Structural Reasoning Patterns . 72

4.3.1 Limited Transitivity Pattern . 72

4.3.2 Restriction Generalization Pattern 74

4.3.3 Property-Class Commonality Pattern 76

4.3.4 Representative Individual Pattern 78

4.3.5 Subclass Disjunction-Like Pattern 80

4.3.6 Subproperty Disjunction-Like Pattern 81

4.3.7 Hierarchy Creation Pattern . 83

4.3.8 Unbound Key Pattern . 85

4.3.9 Equivalence Similarity Pattern 87

5 Ontology Application Model . 90

5.1 SE-ADVISOR Application Model . 92

5.2 SE-ADVISOR IDE Support . 96

6 Case Studies . 101

6.1 Reasoning Pattern Performance . 102

6.1.1 Limited Transitivity Pattern . 106

6.1.2 Restriction Generalization Pattern 107

6.1.3 Property-Class Commonality Pattern 108

6.1.4 Hierarchy Creation Pattern . 109

6.2 Software Maintenance Case Study . 110

6.3 Bug Quality and Triage Case Study . 114

6.3.1 Background . 115

6.3.2 Ontology Design . 117

6.3.3 Application Logic . 123

6.3.4 Validation . 127

6.4 Clone Detection Case Study . 129

6.4.1 Background . 130

6.4.2 Ontology Design . 133

6.4.3 Application Logic . 140

6.4.4 Validation . 141

7 Conclusions . 148

vii

Bibliography . 151

viii

List of Tables

Table 2.1 RDFS/OWL2 constructs for concepts translated to DL 24

Table 2.2 OWL2 restrictions translated to DL 25

Table 3.1 Comparison of ontology design methodologies 43

Table 4.1 Ontology visualization techniques 63

Table 4.2 Example definition of the Agent Role pattern 69

Table 4.3 Example definition of the Classification to Taxonomy pattern 70

Table 6.1 Used reasoners and their respective details 103

Table 6.2 Limited Transitivity pattern performance 106

Table 6.3 Restriction Generalization pattern performance 107

Table 6.4 Property-Class Commonality pattern performance 108

Table 6.5 Hierarchy Creation pattern performance 109

Table 6.6 Sentiment analysis examples . 127

Table 6.7 Bug-tracker quality case study performance validation 128

Table 6.8 Clone detection case study performance validation 143

Table 6.9 Clone detection validation JDK 1.4 (swing) 145

Table 6.10 Clone detection validation JDK 1.5 (javax, org) 145

Table 6.11 Clone detection validation Apache Commons 146

ix

List of Figures

Figure 1.1 Main contributions of the thesis 4

Figure 2.1 Iterative software development process 7

Figure 2.2 Software development lifecycle . 9

Figure 2.3 Overlapping research in AI and SE 11

Figure 2.4 Case-based reasoning model . 12

Figure 2.5 Rule-based reasoning model . 14

Figure 2.6 Layers of the semantic web . 20

Figure 2.7 DL system architecture . 22

Figure 3.1 Methodology related term disambiguation 31

Figure 3.2 SCRUM analysis and sprint . 47

Figure 3.3 Contributions in the software development life cycle 48

Figure 3.4 Requirements analysis for ontology design 49

Figure 3.5 Entity analysis diagram . 51

Figure 3.6 Sprint task for ontology development 57

Figure 4.1 Design pattern visualization . 65

Figure 4.2 Agent Role pattern example . 68

Figure 4.3 Classification to Taxonomy pattern example 69

Figure 4.4 Limited Transitivity pattern example 74

Figure 4.5 Property-Class Commonality pattern example 77

Figure 4.6 Property-Class Commonality pattern example 78

Figure 4.7 Hierarchy Creation pattern input 84

Figure 4.8 Hierarchy Creation pattern example 85

Figure 4.9 Unbound Key pattern input . 86

Figure 4.10 Equivalence Similarity pattern example 88

Figure 5.1 SE-ADVISOR application model 93

Figure 5.2 SE-ADVISOR in the Eclipse ecosystem 97

Figure 5.3 SE-ADVISOR query management and process guidance 98

Figure 5.4 SE-ADVISOR project template and login 100

Figure 6.1 Performance measurements for evaluating patterns 104

x

Figure 6.2 Software maintenance case study results 113

Figure 6.3 Entity analysis diagram for bug quality case study 116

Figure 6.4 Clone detection approach . 132

Figure 6.5 Entity analysis diagram for the clone detection case study 134

Figure 6.6 Clone detection application complexity comparison 144

Figure 6.7 Precision and recall for the ontology-driven application 146

xi

Listings

4.1 Dot graph example definitions . 65

5.1 Task interface for SE-ADVISOR application server 94

6.1 Bug quality case study entity refinement 118

6.2 Clone detection case study entity refinement 135

xii

Glossary

The following is a list of acronyms used throughout the dissertation:

AI Artificial Intelligence, the branch of computer science that aims to create intelligent

machines.

DL Description Logic, a family of formal knowledge representation languages.

IR Information Retrieval, the area of study concerned with searching for documents and

the information within documents.

SE Software Engineering, a systematic approach dedicated to designing, implementing,

and modifying software.

KE Knowledge Engineering, an engineering discipline which involves the integration of

knowledge into systems to solve complex problems.

XP Extreme Programming, an agile software development methodology.

AST Abstract Syntax Tree, a tree representation of the abstract syntactic structure of

source code.

API Application Programming Interface, a particular set of specifications that software

programs can follow to communicate.

CBR Case-Based Reasoning, the process of solving new problems based on the solutions

of similar past problems.

IDE Integrated Development Environment, a software application that provides devel-

opment facilities to computer programmers.

KBS Knowledge-Based Systems, AI tools that provides intelligent decisions with justi-

fication.

NLP Natural Language Processing, the field of linguistics concerned with the interac-

tions between computers and human languages.

xiii

OWL Web Ontology Language, a family of knowledge representation languages for au-

thoring ontologies.

OWA Open World Assumption, the assumption that the truth-value of a statement is

independent of whether or not it is known.

RDF Resource Description Framework, a conceptual description of information that is

implemented in web resources.

RUP Rational Unified Process, an iterative software development process framework.

UML Unified Modelling Language, a visual language for modeling the structure of soft-

ware artifacts.

UNA Unique Name Assumption, the assumption that different names always refer to

different entities in the world.

URI Uniform Resource Identifier, a string of characters used to identify a name or a

resource on the Internet.

W3C the World Wide Web Consortium, the standards body for web technologies.

XML Extensible Markup Language, a set of rules for encoding documents in machine-

readable form.

ASEG Ambient Software Evolution Group, a research group of Concordia University.

DRDC Defence Research and Development Canada, an agency for the scientific and

technological needs of the Canadian Forces.

KBSE Knowledge-Based Software Engineering, the vision of software engineering as an

AI-supported activity.

RDFS Resource Description Framework Schema, a set of classes with certain properties

for RDF.

REST Representational State Transfer, a style of software communication for the Inter-

net.

SPARQL SPARQL Protocol and RDF Query Language, an RDF query language for

triple storages.

xiv

Chapter 1

Introduction

Creating software is a knowledge-intensive activity. In fact, it is the amount

and scope of relevant knowledge that makes software so difficult. — Peter G.

Selfridge, AT&T Bell Laboratories

Knowledge Engineering is an important aspect of Artificial Intelligence and Cogni-

tive Science. It is the process of defining and formalizing information using knowledge

representation techniques so that computers are able to process and use it [SBF98]. In

particular, it is the knowledge engineer’s task to define facts from which a computer can

infer additional knowledge (reasoning services) [HKR09]. With the emergence of the se-

mantic web, ontologies (a form of knowledge representation) have found their way into

modern software development. The role of the knowledge engineer in a modern software

project is, however, still largely undefined. While Software Engineering processes guide

software development and provide activities, techniques and artifacts to developers, there

exists little work on how to incorporate Knowledge Engineering into the software devel-

opment life cycle. Problems such as the design, management and reuse of knowledge

have emerged and there exists a need to make Knowledge Engineering an integral part

1

of modern incremental/iterative software projects. At the same time, problem domains

which particularly benefit from Knowledge Engineering, and can be modeled and solved

efficiently using knowledge representation techniques and reasoning services, need to be

identified.

In this thesis, a novel ontology design methodology, which fits into an agile software

application development process, is introduced. Ontology design is no longer treated as a

separate activity but is incorporated into application development (therefore, throughout

this thesis, also referred to as “ontology development”). User stories are leveraged as the

starting point for modeling knowledge within an agile process. Iterations within Knowl-

edge Engineering are facilitated by introducing ontology design patterns as reusable,

best-practice solutions for ontology design. By applying ontology design patterns re-

peatedly throughout the development process an ontology can be incrementally refined

while ensuring a satisfactory design quality and capturing individual responsibilities of

user stories. To ensure reasoners can infer additional knowledge from the facts stated

by the knowledge engineer, a novel type of ontology design patterns, namely structural

reasoning patterns, are introduced. Additionally, an application model for the use of non-

ontological data sources is introduced in this thesis as a proven solution for a particular

set of problems that can be tackled using Knowledge Engineering and reasoning services.

1.1 Motivation and Objective

The work in this thesis is cross-disciplinary research which positions itself at the intersec-

tion of Software Engineering and Knowledge Engineering. The original (generally de-

fined) motivation for this thesis was the question of “How can semantic web technologies

2

be of use for Software Engineering?” In particular, the “applicability of reasoning ser-

vices on large Software Engineering ontologies” and “the feasibility of mining Software

Engineering artifacts using semantic web technologies” were considered as motivational

ideas. From this starting point, the development of different applications scenarios has

led to the investigation of how developers can leverage reasoning service and, ultimately,

how ontology design can be incorporated into agile software development. This refined

perspective has led to the following set of objectives for this thesis which can be defined

as:

1. To investigate how Knowledge Engineering can benefit the Software Engineering

domain.

2. To propose a methodology for the integration of ontology design into an agile

software process-skeleton.

3. To provide an application model for the proposed methodology.

4. To evaluate the methodology and application model through different application

scenarios

This work is focusing on the development of ontology-driven applications (applica-

tions which make use of ontologies and reasoning services) and ultimately tries to lower

the existing fear of first contact with semantic web technologies by allowing a seamless

integration of ontologies into the widely used agile software processes and practices.

The expected impact of the thesis is the two-fold: (1) the methodology defined in this

thesis should allow project managers to quickly integrate ontologies into their agile soft-

ware development process and (2) the best practices as well as the application model

3

Figure 1.1: Main contributions of the thesis

should guide software developers in building ontology-driven applications that are of

lower complexity than their traditionally built counterparts.

1.2 Contributions

The main objective of this thesis is to investigate to what extent the design of ontologies

can be incorporated into modern Software Engineering processes, and how developers

can leverage ontologies and reasoning services in order to solve application problems

(develop “ontology-driven” applications). The thesis introduces a novel methodology,

called SE-ONTO methodology, which incorporates ontology design activities into the ag-

ile SCRUM [Sch97] software development process-skeleton. It defines a set of techniques

regarding the incremental requirement analysis (for ontology design) and the iterative de-

velopment/formalization of ontologies in agile software processes which is facilitated by

4

a library of novel ontology reasoning design patterns. While the patterns foster a better

understanding of what problems can be solved efficiently using ontologies and reasoning,

the thesis also contributes a specific application model (called SE-ADVISOR) for the in-

corporation of existing non-ontological data sources into an ontology-driven application.

Figure 1.1 depicts a general overview of the contributions of this thesis: (1) The integra-

tion of ontology design into agile development (SE-ONTO methodology). (2) Guidelines

for ontology-driven application development, and (3) the facilitation of ontology-driven

development through an application model (SE-ADVISOR) and supporting tools.

1.3 Outline

The remainder of this thesis is organized as follows: Chapter 2 describes the background

of this thesis, including work from Software Engineering and Artificial Intelligence, as

well as recent contributions in Knowledge Engineering and the modeling of knowledge

(such as OWL). Chapter 3 reviews the state of the art in ontology design methodologies,

and introduces the novel SE-ONTO methodology that can be incorporated into the ag-

ile SCRUM software process-skeleton. As part of this ontology design methodology that

fosters the use of reasoning services, a novel type of ontology reasoning design patterns

is presented in Chapter 4. An application model for the use of the SE-ONTO method-

ology in conjunction with non-ontological data sources is presented in Chapter 5. The

methodology, application model and ontology reasoning design patterns are evaluated in

terms of their performance and their ability to support multiple application scenarios in

Chapter 6. The thesis concludes with a summary of the achieved results in Chapter 7.

5

Chapter 2

Background

It is not the aim of AI to build intelligent machines having understood

natural intelligence, but to understand natural intelligence by building

intelligent machines.

— Ipke Wachsmuth, The Concept of Intelligence in AI

While Software Engineering has emerged as an engineering approach to the profes-

sional development of software which is supported by many different processes, Knowl-

edge Engineering and Artificial Intelligence in general have not yet seen wide-spread

process oriented support by the scientific community. This lack of support can be par-

tially addressed by developing a methodology that incorporates ontology design into

agile software process-skeletons. Relevant background for this methodology, such as

Software Engineering, Knowledge Engineering, and Artificial Intelligence, are explored

in this chapter. Further, technologies and concepts which have been adapted in the con-

text of this thesis are discussed and explained. Each section concludes with a review of

related work and its relevance to the contributions of this thesis.

6

Iteration 1 Iteration 2 Iteration N

Start
...

Specification

Analysis

Design

Implementation

Testing

Deployment

Figure 2.1: Iterative software development process

2.1 Software Engineering

Software Engineering (SE) is a systematic approach concerned with the development

and maintenance of software systems. It covers areas such as requirements engineering,

designing, coding, testing, maintaining, and assessing software. One of the key elements

of SE is the need for a structured set of activities required for the development of a system,

also called software process. In contrast to a life-cycle model, which only provides an

outline of a project flow, a software methodology describes details (deliverables and

artifacts) on how to build software [ZSG79].

Traditional models such as the sequential waterfall model [Roy70] or the V model

[Ger92] have been replaced over time by iterative and incremental development methods

such as the spiral model [Boe86]. Iterative models suggest multiple development itera-

tions with frequent releases of the developed software and an incremental refinement of

software over time (depicted in Figure 2.1). Common to these models is that they support

7

the development of software solutions for which requirements are expected to change pe-

riodically over time [BA96]. Consequently, the efficient management and execution of

these changes are critical to software quality and evolution [BLP00]. Agile approaches,

such as RUP [JBR99], XP [Bec99] or SCRUM [Sch97], are lightweight methodologies in

the sense that they try to minimize the overhead forced upon a developer by a software

process and focus on a working product. For this purpose the agile manifesto [Bec01]

defines the following priorities:

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Individuals and interactions over processes and tools

• Responding to change over following a plan

The observation that software is constantly changing and evolving has also been made

by Lehman and Belady [Leh79] who describe that there needs to be “a balance between

forces driving new developments on one hand, and forces that slow down progress on the

other hand”. The findings have been stated as Lehman’s laws:

• FIRST LAW: A system that is used will be changed.

• SECOND LAW: An evolving system increases its complexity unless work is done

to reduce it.

Life cycle models (e.g. Figure 2.2, [ZSG79]) have been introduced to model and

guide the activities involved in software development.

8

Analysis

DesignEvaluation/

Maintenance

Implementation

Problem

Solution

Real Abstract

Figure 2.2: Software development lifecycle

As part of a software methodology, knowledge has to be continually integrated from

different sources (including source code, repositories, documentation, and test cases), an-

alyzed at different levels of abstraction (from single variables to system documentation),

and shared among individuals. The need to integrate various resources represents a sim-

ilar challenge to the one faced in Knowledge Engineering. Nevertheless, methodologies

for Knowledge Engineering often miss the maturity of those of Software Engineering.

2.2 Artificial Intelligence and Software Engineering

The term Artificial Intelligence (AI) was formed at the Dartmouth conference in 1956

as the study and design of intelligent agents [HJK+04]. P. H. Winston [Win93] states

that “AI is the study of the computation that makes it possible to perceive, reason, and

act”. Artificial Intelligence is often miss-interpreted as re-creating human intelligence,

9

although today’s AI research community agrees on a broader perspective. Nevertheless,

the late ’60s and early ’70s were marked by exactly such an understanding and the confi-

dence to be able to imitate human intelligence within a short time. In 1965 H. A. Simon

is quoted “Machines will be capable, within twenty years, of doing any work a man can

do” [Cre93]. After initial success and heavy funding through the U.S. Department of

Defense, AI research declined in the mid ’70s with little progress made towards this final

goal. The ’80s were dominated by the success of expert systems (and knowledge-based

systems in general). Today, AI can be found in many systems ranging from games to

medical diagnosis and logistics. A driving factor of AI is the increasing power of per-

sonal computers (CPUs as well as GPUs), allowing for larger knowledge representations

and more sophisticated reasoning within it.

While there are not many intersections between AI and SE on first sight, Figure 2.3

shows several main areas in which interdisciplinary work exists. In both domains, ex-

pressing knowledge and expertise is a fundamental aspect (although often less formal

in SE). Especially Knowledge-Based Systems (KBS), Knowledge-Based Software Engi-

neering (KBSE) and Ambient Intelligence (AMI) or research in the field of Knowledge

Engineering build upon the methods explored in classical AI.

In the Article “Expert Systems for Software Engineering”, Tsai et al. [TZ88] describe

why SE cannot be easily supported by expert systems. They state that SE problems are

ill-structured and that there exists little expertise in many SE areas. In contrast to the

practices in place 20 years ago, today’s software projects follow well-defined software

processes. The focus and ideas of what an expert system can achieve (within the domain

of SE) have changed: In contrast to a general purpose SE expert system, applicable to any

10

Figure 2.3: Overlapping research in AI and SE

software project, modern expert systems are highly specialized to a specific project and

only share core constraints and concepts with other projects.

Software Engineering itself depends heavily on the experience of experts. Design

patterns are an excellent example of expert knowledge, which is transferred between in-

dividuals [AJWH03]. Similarly, expertise in development methods, tools, and techniques

needs to be captured and shared in every modern software project.

Software comprehension and reverse engineering have been an important aspect of

SE since its beginning. The late ’80s defined the systematic reuse and management of

experiences, knowledge, products, and processes through the use of the so-called Expe-

rience Factory (EF) [Bas85] or also referred to as Learning Software Organization (LSO)

[BCR94]. One of the first organizations to incorporate an EF was SEL (the NASA Soft-

ware Engineering Laboratory) [RU89]. Other EF applications were developed in the USA

and Europe [HSW98] [HSW91] [ABKD+02]. While EF methods focus on capturing or-

ganizational and process-oriented knowledge, synergies through collaboration methods

and modern knowledge representation are left out of their scope.

11

Figure 2.4: Case-based reasoning model

As one variant of a KBS, Case-Based Reasoning (CBR) emerged in the late ’70s as a

model for problem solving and learning [SA77]. As shown in Figure 2.4, CBR systems

work by finding a (generalized) example of a problem within a Knowledge Base (KB)

and suggest a solution based on this information. The steps performed are: (1) to codify

the problem into a set of distinct (and comparable) features; (2) to retrieve from the

existing cases the one that matches the closest; (3) to reuse the found case with the new

information and suggest a solution; (4) to revise the case through testing or through an

expert and (5) to retain the gained knowledge as an example for further cases. Additional

knowledge is used to model domain specific ground rules, dependencies, etc. The use

of similarity measurements is another key principle of CBR systems. The objective is to

rank cases in decreasing order of similarity (the nearest k cases). Choosing an appropriate

value for k is an ongoing research issue, which is further discussed in [KCS01]. Once

12

similar cases have been identified, they can be adapted to solve the problem case either

by rules, a human expert or by a simple statistical procedure such as a weighted mean.

In the latter case, the system is often referred to as using the k-nearest neighbor (k-NN)

technique.

A basic similarity measurement often used in CBR is defined in [Aha91], where P is

the set of n features, C1 and C2 are cases with numerical features:

SIM(C1, C2, P) =
1

√

∑

j∈P (C1j − C2j)2

Examples of CBR systems in SE range from process effort [MVP92] and cost es-

timation [Kem87], to specification [Mai91] and component reuse [OHPDB92]. More

recently, CBR systems have also been used with EFs [AN04]. An overview on relevant

approaches for Knowledge-Based Software Engineering (KBSE) is given in [Cha01]. A

fundamental limitation of existing CBR systems is their need for codification of knowl-

edge into a feature vector which makes the resulting knowledge representation non-

interchangeable. Furthermore, this representation does not support reasoning within ex-

isting knowledge.

Other types of KBS are referred to as rule-based reasoning systems [HK87]. In the

literature the term expert systems and rule-based KBS are used interchangeably, although

they differ in their objectives. The term expert system focuses on who creates information

in contrast to the term rule-based KBS which focus on describing the methodology used

to store and reason on the modeled data. Consequently, an expert system could also be a

CBR - KBS by definition.

13

Figure 2.5: Rule-based reasoning model

Figure 2.5 [BCM+03] shows the architecture of a typical rule-based KBS. Premise-

consequence rules (also referred to as condition-action rules) are stored in a knowledge

base (KB). The Working Memory holds the initial facts from the KB and generated facts

from the Inference Engine. In order to generate facts, the condition-part of the rules is

matched against facts stored in the Working Memory. Rules with satisfied conditions are

active rules and are placed on the Agenda. Among all active rules, one is selected (based

on predefined priorities) as a next rule for execution (“firing”) and the consequence of

the rule is added as a new fact to the Working Memory. Most systems also contain an

Explanation Facility that provides the details (reasoning steps) on how facts have been

created in order to “explain” (to a user) how a solution was found. The cycle ends when

no more rules are on the Agenda.

Different methods of reasoning and rule activation within rule-based KBS[Jac99] ex-

ist:

Forward-Chaining: In this method the inference engine starts with the available facts

and uses the rules to conclude more facts until a conclusion is reached. Because the

14

data available determines which inference rules are used, this method is also called

data driven. The method is often used for real-time expert systems in monitoring

and control. Examples of systems using forward-chaining are CLIPS and OPS5.

Backward-Chaining: Starting from a hypothesis (query), supporting rules and facts are

sought until all parts of the antecedent of the hypothesis are satisfied. Because the

list of goals determines which rules are selected and used, this method is also called

goal driven. The method is often used for diagnostic and consultation systems. An

example of a system using backward-chaining is EMYCIN.

A main focus in AI lies on the representation of information and reasoning within

it [RN03]. In order to solve problems, formalized knowledge about the domain of dis-

course, such as objects, their properties, and relations between them, is required. Al-

though early small KBS showed promising results, many large (and commercial) im-

plementations failed due to missing proper development (design) and maintenance pro-

cesses, a situation similar to the SE “software crisis” in 1968. This ultimately lead to the

establishment of Knowledge Engineering as a separate discipline.

2.3 Knowledge Engineering

Knowledge Engineering (KE) is closely related to SE and deals with the development

of expert-systems and knowledge repositories as well as knowledge representation tech-

niques and their methodologies. It has the goal to bring the process of constructing

KBS to a well-defined “engineering discipline”. A sub-discipline of KE, focusing on the

development of specific knowledge repositories, is ontology engineering [GPFLC04].

Ontologies have their origin in philosophy, where they correspond to a theory about the

15

nature of existence and the categories of things that exist. In computer science, ontolo-

gies are an important part of knowledge modeling and sharing, by acting as a common

language. This becomes imminent in the context of semantic web technologies, of which

ontologies are a fundamental building block.

“A conceptualization is an abstract, simplified view of the world that we wish

to represent for some purpose. [...] An ontology is an explicit specification

of a conceptualization.” [Gru93]

Ontologies have been widely used in computer science in order to formally define

domains of discourse and can be described as a conceptualization of explicit information

[BCM+03]. They consist of concepts (also often referred as classes) and their properties

and relations between them. Ontologies emphasize engineering quality aspects such as

communication and interoperability [UG96]. In contrast to databases, ontologies allow to

define the semantics associated with a described domain, allowing for reasoning services

to automatically infer knowledge out of explicitly stated facts. Additionally, their formal

representation is easy extendable and interchangeable [Gru93].

Implementations of ontologies can vary in several ways, such as their degree of qual-

ity, formality, reusability or reasoning capabilities. In general one can distinguish ref-

erence ontologies and application ontologies [Obe04]. Reference ontologies only act

as a specification of a domain and provide a taxonomy as well as unique identifiers to

specify knowledge unambiguously. Application ontologies, on the other hand, serve an

application-specific purpose and can use reasoning services to infer knowledge about

stated facts (classify instances, check consistency of facts, or answer queries). A more

detailed categorization of ontologies is defined in [Gua97]:

16

Domain ontology: A domain ontology acts as a specification of the world in a specific

context (the domain). Its main purpose is the disambiguation of terms and the

definition of relations between them. For example, a “car ontology” might have

a different meaning in the domain of Formula-1 race cars and regular street cars,

even though some properties and terms might overlap.

Application ontology: Application ontologies capture a particular problem (and solu-

tion). The reusability of application ontologies is generally low as they are built

with a specific purpose in mind. Application ontologies can be built on top of a

domain ontology.

Upper ontology: An upper (sometimes also called “generic”) ontology captures general

concepts that may appear in application and domain ontologies across many fields.

Such concepts are independent of a usage scenario and intended to be shared in a

community of knowledge engineers as a common basis (e.g. the concept “event”).

An example for an implementation of such an ontology is the PROTo ONtology1

(a basic subsumption hierarchy for indexing and annotation).

Core ontology: As an intermediate between upper and domain ontology, generic re-

usable values for a set of domains can be expressed in a core ontology. The dis-

tinction between what constitutes a core, upper or domain ontology thereby is flu-

ent. An example for a core ontology is the SIOC2 (Semantically-Interlinked Online

Communities) ontology.

1http://proton.semanticweb.org/
2http://sioc-project.org/

17

A further classification of ontologies can be made according to their expressiveness:

Heavyweight ontologies are very detailed and extensively axiomatized. In many cases

they are used for reasoning activities and carry the application specific knowledge needed

for specific tasks. An example for such an ontology is the SNOMED ontology [SPSW01]

which describes clinical terms. Lightweight ontologies, on the other hand, are simple

taxonomies with only primitive structural relations. Their value lies in the agreement on

a common terminology. ProdLight [Hep07], an ontology for production descriptions, is

an example for such a lightweight ontology design.

Given the increasing popularity of ontologies, a question arises as to what extent on-

tologies differ from expert systems. Due to their different abstraction level, ontologies

and expert systems cannot directly be compared. Instead ontologies should be compared

with the knowledge representation part of an expert system. Welty et al. [Wel00] state

that a main difference between expert systems and ontologies is that simple expert sys-

tems are usually toys while simple ontologies may already be extremely useful. He ex-

plains this by the focus of ontologies as means to share and query knowledge. A second

difference can be seen in the available tool support. Expert systems usually need to be

built by experts, while ontologies are a relatively comprehensible technology with plenty

of tools available (also thanks to their standardization/specification). Also, in contrast to

expert system, ontologies can be generated semi-automatically. A representational dif-

ference between ontologies and expert systems is that, the former use popular formats

such as XML, whereas knowledge systems are relying on their proprietary formats.

18

2.4 Knowledge Modeling Technologies

For machines to understand and reason about knowledge, it needs to be represented in a

well-defined language. The semantic web is an initiative of the W3C3 that has the goal

to represent knowledge on the Internet in such a language. Due to the emergence of the

semantic web vision[BLHL02] ontologies have been attracting much attention recently.

Along with this vision, new technologies and tools have been developed for ontology

representation, machine-processing, and ontology sharing. There exist, however, a large

number of knowledge representation languages that differ mainly in their semantics, syn-

tax and expressivity. In this thesis, the Web Ontology Language (OWL) has be selected

as the knowledge representation language as it is quickly becoming the standard for KE

due to its use in the emerging area of the semantic web. Further, it is superior to other

representation languages, as it is layered on top of existing well-established technologies

[HPPSH05]. It uses Extensible Markup Language (XML) related standards like Uniform

Resource Identifier (URI) and Unicode for its data layer, which is followed by a general

resource description layer called Resource Description Framework (RDF) that can repre-

sent graphs (acting as the basic assertion language). This is the underlying model for the

Resource Description Framework Schema (RDFS) and eventually OWL which both add a

specific meaning to certain URIs and elements (e.g. rdfs:subClass). The different

layers are shown in Figure 2.6.

A subset of OWL is based on Description Logic (DL), a formal knowledge represen-

tation language that is a decidable fragment of first order logic [BCM+03]. This section

therefore starts with an introduction into DL before detailing its relation to OWL.

3http://www.w3.org/standards/semanticweb/

19

URI Unicode

XML Namespaces

XML Query XML Schema

RDF

RDFS

OWL

Figure 2.6: Layers of the semantic web

2.4.1 Description Logics

In order to define a domain of discourse, a knowledge representation formalism has to

be used. Logic-based approaches use predicate calculus to define facts (in comparison to

non-logic based approaches that model knowledge in ad-hoc data structures). Descrip-

tion Logic (DL) is a logic-based formalism that can describe a domain formally. A further

emphasis within DL lies on reasoning services. The “is-a” relationship (subsumption) is

a fundamental building block of DLs that allows to categorize a domain into sub and

super-concepts, creating a taxonomy.

There exist different implementations of DLs with different syntax. Attributive Lan-

guage (AL) represents a minimal set of constructs on which most other DLs are built (C

and D denote concept descriptions):

C,D →

C atomic concept

⊤ universal concept (top)

⊥ bottom concept

¬C atomic negation (not)

C ⊓D intersection

∀R.C value restriction (for all)

20

Further extensions allow more expressive DLs such as:

C,D →

C ⊔D union

∃R.C existential quantification (exists)

¬C concept negation (not)

Or introduce numerical restrictions such as:

C,D →
≥n R numerical restriction (at least)

≤n R numerical restriction (at most)

The formal semantics of the definitions given above can be expressed through the

following as defined in [BCM+03]: Given is an interpretation I that consists of a non-

empty set ∆I (the domain of the interpretation) and an interpretation function which

assigns to every atomic concept C a set such as CI ⊂ ∆I and to every atomic role R

a binary relation RI ⊆ ∆I × ∆I . The interpretation function can then be extended to

concept descriptions by the following inductive definitions:

⊤I =∆I

⊥I =∅

(¬C)I =∆I\CI

(C ⊓D)I =CI ∩DI

(∀R.C)I ={a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}

(∃R.⊤)I ={a ∈ ∆I | ∃b.(a, b) ∈ RI}

21

ReasoningDL

TBox

ABox

Description Logic System

Knowledge Definition

Figure 2.7: DL system architecture

(C ⊔D)I =CI ∪DI

(∃R.C)I ={a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

(¬C)I =∆I\CI

(≥n R)I =

{

a ∈ ∆I

∣

∣

∣

∣

∣

∣{b|(a, b) ∈ RI}
∣

∣ ≥ n

}

(≤n R)I =

{

a ∈ ∆I

∣

∣

∣

∣

∣

∣{b|(a, b) ∈ RI}
∣

∣ ≤ n

}

DL-based knowledge systems allow for implementation of reasoning services. The pur-

pose of reasoning is to explicate knowledge that is stored implicitly in a given knowledge

base. Tableau algorithms are a commonly used procedure. Most reasoners thus go be-

yond the expressiveness of the basic ALCN Description Logic described before.

DL systems provide the means to set-up a knowledge base and reason about their

content. A typical architecture is shown in figure Figure 2.7 [BCM+03]. A knowledge

base consists of a TBox T , defining the terminology of a domain (as formalized above),

and an ABox A, defining assertions about named individuals (nominals). Individuals

22

denote a specific state of an ontology. The following definitions for assertions over every

individual I in a set II ⊂ ∆I can be made:

(I)I =II ⊆ ∆Iwith|II | = 1

(C(a))I =aI ∈ CI

(R(b, c))I =(bI , cI) ∈ RI

Distinct individual names (e.g. a and b), usually denote distinct objects (aI 6= bI). I

satisfies an ABox A with respect to a TBox T if it is a model of A and T [BCM+03].

Typical reasoning tasks on concepts are satisfiability checks, to determine whether a

description can have individuals, or subsumption tests, to examine whether one descrip-

tion is more general than another one. Concepts can be organized into a terminology

hierarchy according to their generality through the use of subsumption reasoning. Other

TBox reasoning includes classification and consistency checks. Basic reasoning for the

ABox includes instance checking (i.e., whether a given individual is an instance of a

certain concept), tuple retrieval, and instance realization.

2.4.2 Web Ontology Language

The Web Ontology Language (OWL)4 has been standardized by the World Wide Web

Consortium (W3C) and has paved the way for a machine-understandable Internet. More

recently, ontologies have found their way into most KE application domains and are now

widely accepted as an proven method for knowledge representation.

4http://www.w3.org/2004/OWL/

23

RDFS/OWL2 Constructor DL Syntax Semantics

owl:Thing ⊤ ∆I

owl:Nothing ⊥ ∅
rdf:type (individual) C(I1) II ∈ CI

rdf:resource (relation) P (I1, I2) (II1 , I
I
2) ∈ P I

rdfs:subClassOf C1 ⊑ C2 CI
1 ⊆ CI

2

rdfs:subPropertyOf P1 ⊑ P2 P I
1 ⊆ P I

2

owl:equivalentClass C1 ≡ C2 CI
1 = CI

2

owl:equivalentProperty P1 ≡ P2 P I
1 = P I

2

owl:complementOf ¬C ∆I\CI

owl:disjointWith Ck ⊑ Cj ≡ ⊥ CI
i ⊆ CI

j = ∅, k 6= j

owl:intersectionOf C1 ⊓ . . . ⊓ C2 CI
1 ∩ · · · ∩ CI

2

owl:unionOf C1 ⊔ . . . ⊔ C2 CI
1 ∪ · · · ∪ CI

2

owl:oneOf {I1, . . . , In} {I1}
I ∪ · · · ∪ {In}

I

owl:sameAs I1 = . . . = In IIj = IIk
owl:differentFrom I1 6= . . . 6= In IIj 6= IIk
owl:TransitiveProperty Tra(P) (RI)+

Table 2.1: RDFS/OWL2 constructs for concepts translated to DL

OWL terms differ slightly from those used in DLs: The definitions for the terms

owl:class, owl:ObjectProperty, owl:DatatypeProperty, as well as the

terms owl:Individual and owl:Datatype correspond to concept, role, concrete

role, object and concrete domain in DLs. Table 2.1 shows RDFS and OWL constructs and

their DL representation; Table 2.2 lists restriction types for concepts. C,C1, C2 are OWL

classes, P, P1, P2 denote an OWL property and I1, I2 are OWL individuals [HPSH03]. The

given semantics of the DL syntax is used throughout this thesis.

The Web Ontology Language Version 2 (OWL2)5 is an extension of OWL developed

by the same W3C working group. It enriches OWL with features such as simpler meta-

modeling, additional property and qualified cardinality constructors and more flexible

datatypes. Examples of OWL2 can be found in the OWL2 primer6. The owl:hasKey

5http://www.w3.org/TR/owl2-overview/
6http://www.w3.org/TR/owl2-primer/

24

RDFS/OWL2 Constructor DL Syntax Semantics

owl:someValuesFrom ∃P.C {x|∃y(x, y) ∈ P I ∧ y ∈ CI}
owl:allValuesFrom ∀P.C {x|∀y(x, y) ∈ P I → y ∈ CI}
owl:hasValue ∃P.{I} {x|(x, II) ∈ P I}
owl:hasSelf ∃P.Self {x|∃y(x, y) ∈ P I ∧ y = x}
owl:minCardinality ≥ n P.C {x|#(y|(x, y) ∈ P I ∧ y ∈ CI) ≥ n}
owl:maxCardinality ≤ n P.C {x|#(y|(x, y) ∈ P I ∧ y ∈ CI) ≤ n}

Table 2.2: OWL2 restrictions translated to DL

is a new feature of OWL2 that allows to specify a set of keys which identify an indi-

vidual uniquely. It is implemented separately as a rule in most reasoners and cannot be

directly translated to DL. For simplicity, it is expressed as Key(C, u1, u2, ...) in this the-

sis, whereby C denotes a concepts and u1...un denote a data or object property. Another

new functionality in OWL2 is the introduction of a property chain axiom (represented as

◦) that allows the definitions of object property chains which are more expressive than

simple transitivity (e.g. hasSister ◦ hasChild → isUncleOf).

The original OWL specification is separated into three sub-languages with different

degrees of expressiveness:

OWL Lite: OWL Lite supports users which primarily need hierarchy classification and

simple constraints. It can be considered a minimal useful subset of language fea-

tures that are easily implemented by tool developers.

OWL DL: OWL DL, a sub-language of OWL, is based on DL. It supports users who

want maximum expressiveness of a description language but still a system that

terminates in finite time. OWL DL includes all language constructs specified in

OWL but only allows to use them under certain restrictions (e.g., in comparison

to OWL Full, a class cannot be an individual). The resulting sub-language is still

25

relatively easy to implement for tool developers.

OWL Full: OWL Full allows the unrestricted use of RDF constructs and is undecidable.

Limited support of tool developers regarding OWL Full exists.

OWL2 is separated into different tractable language profiles7 that are better suited for

the implementation of reasoners with different runtime characteristics (a main criticism

of the original OWL sub-languages):

OWL EL: The profile has been created in response to the development of very large

ontologies (used so far mainly in the medical domain) that do not need the full ex-

pressivity of OWL and benefit from class satisfiability and subsumption checking

in polynomial time. It is based on EL++ that allows class intersections, existential

quantifications, property chains, keys and transitivity of object properties. How-

ever, universal quantification, negation and disjunctive class descriptions as well

as more advanced properties (such as symmetric or inverse object properties), are

out of the scope of the profile. Reasoning in EL++ is known to scale well and has

in particular been shown to be distributable to multiple machines [MM10] [LD09].

OWL QL: The QL profile has been developed to allow for conjunctive query answering

using traditional database systems which can be performed in logarithmic time.

The profile is more restrictive than OWL EL and does not allow existential quan-

tifications, keys or transitive object properties. However, symmetric, inverse and

reflexive object properties are allowed. Reasoning in OWL QL remains in the poly-

nomial time complexity class and the profile is therefore only beneficial to very

large ABox datasets with a static TBox.

7http://www.w3.org/TR/owl2-profiles/

26

OWL RL: The profile is a subset of OWL that can be expressed using rule languages. It

therefore can be reasoned about using rule-based reasoners. It is more restrictive

than OWL QL but guarantees ontology consistency, class expression satisfiability,

subsumption, instance checking, and conjunctive query answering in polynomial

time.

Two interesting aspects of ontologies are the Unique Name Assumption (UNA) and

Open World Assumption (OWA):

UNA: While two different object names normally denote tow different objects, the same

does not hold true for ontologies. Stating that R(a, b) holds and R(c, b) holds with

the restriction that b is only related to one other object through R will not result in

the ontology being inconsistent but rather a and c denoting the same object.

OWA: Unspecified knowledge is not assumed to not exist (be “false”) as in databases or

other logic systems, but rather treated as unknown. This prevents a reasoner from

making decisions that might not be correct (e.g. just because the information that

“Paul and Paulina have a child” is not specified does not mean it is not true) and

therefore makes OWL reasoning ideal for the WWW.

As a knowledge representation language, OWL has already been applied in many

applications within the SE domain, such as model-driven software development (e.g.

[TPO+06]), reverse engineering tool integration (e.g. [JC05]) and component reuse (e.g.

[HKST06]). There exists relevant work on conceptualizing the SE domain to support

teaching of SE, e.g., [ABH+00]. Petrenco et al. [PPRB07] used open-source software

systems in teaching software evolution. Falbo et al. [FNM+03] reported on the shared

27

conceptualization for integrated tool development, and Deridder et al. [DWL00] have

used ontologies for linking artifacts at several phases of the development process. The

SWEBOK project8 applies ontologies in SE to provide pointers to relevant literature on

each of its concepts. Current web-based learning approaches [Pol03] focus on reusabil-

ity in their content design. Wongthongtham et al. [WCDS05] [AWWH08], introduced

a SE ontology for the collaborative nature of SE. Ankolekar et al. [ASH+06] modeled

bugs and software components using an ontology. In [DE05] a software design patterns

OWL ontology that supports the identification of design pattern in source code is pre-

sented. [Wel97] introduced a system called Code-Based Management Systems (CBMS)

which uses a representation of source-code to detect programming side effects (e.g. erro-

neously changed global variables). Common to all of these approaches is that their main

intend to support, in one form or another, the conceptualization of knowledge, mainly by

standardizing the terminology to support knowledge sharing based on a common under-

standing. These approaches typically fall short on adopting and formalizing a process

model that supports connecting knowledge resources. The presented models do not ex-

plicitly consider the advantages of reasoning services and lack a concrete “added value”

in comparison to other forms of knowledge representation.

Software development is a knowledge-intensive activity [Sel92] which has lead to

different implementations to support the development process. Such systems are often

referred to as KBSE tools. LaSSIE [PRPB91] is such a tool that was introduced to sup-

port the development of the Bell telephone system. Studies have shown that LaSSIE

could reduce time and costs in building software systems but was also cumbersome to

8http://www.computer.org/portal/web/swebok/

28

maintain due to the manual creation of relations within the domain model. In addition to

KBSE tools, there exist further traces of knowledge modeling in SE. In [WF99] an on-

tology that can capture an architectural layer of a system is presented. [M9̈6] describes

how object oriented concepts are modeled as a functional layer for DLs and Berardi et

al. [BCG01] uses DLs to perform consistency checks on formalized Unified Modelling

Language (UML) models. However, no methodology for producing OWL ontologies is

given in the mentioned approaches. Instead, ontologies are created ad-hoc and based

on “intuition”. This lack of existing processes in developing application specific ontolo-

gies has motivated the development of the SE-ONTO methodology and the SE-ADVISOR

application model, which are described later in this thesis.

29

Chapter 3

Methodology

The main objective of this thesis is to investigate to what extent the design of ontolo-

gies can be incorporated in modern Software Engineering processes and how developers

can leverage ontologies and reasoning services in order to build ontology-driven appli-

cations. In order to address this objective, a methodology, which incorporates ontology

design into an agile software development process (namely SCRUM), is presented in this

chapter. The so-called SE-ONTO methodology has a strong focus on designing ontolo-

gies together with an application in order to guide the ontology design and ensure the

goal of an “ontology-driven” application, in which some responsibility is handled by an

ontology and reasoning services, is met. In contrast to other approaches, responsibilities

and reasoning goals are constantly monitored throughout the design.

The outline of the chapter is as follows: There are several aspects to what constitutes

good ontology design which are discussed in Section 3.2. Section 3.3 reviews exist-

ing methodologies in the Knowledge Engineering community and compares them to the

proposed methodology. The novel SE-ONTO methodology is presented in Section 3.4,

30

whereby details of the incremental requirement analysis are presented in Section 3.4.1

and the iterative development/formalization of ontologies is explained in Section 3.4.2.

3.1 Term Disambiguation

The terms methodology, process, activity and task are used vaguely throughout the lit-

erature. In this thesis, a composite relationship between the terms is assumed. This is

in accordance with the definition used in the IEEE glossary of Software Engineering

terminology [IEE90] and IEEE Software Project Management guidelines [IEE98] that

state:

Methodology: “A set of ordered process steps and techniques that describe

the creation of a service by certain quality criteria.”

Process: “A sequence of steps performed for a given purpose.”

Activity: “A collection of work tasks.”

Task: “The smallest unit of work.”

Methodology

Processes

Activities

Tasks

Figure 3.1: Methodology related term disambiguation

31

3.2 Ontology Design Quality

In SE there exist many definitions for quality. The Institute of Electrical and Electronics

Engineers (IEEE) defines quality as “the degree to which a system, component or process

meets specified requirements” [IEE90]. The International Organization for Standardiza-

tion (ISO) provides the definition as “the degree to which a set of inherent characteris-

tics fulfills a need or expectation that is stated, general implied or obligatory” [Hoy01].

Several generic quality models have been introduced in the past (e.g. [ISO01]). Never-

theless, no agreement exists on what constitutes good design quality within the research

community. Some common properties are:

Maintainability: The ease with which a design can be modified or adapted to a changed

environment.

Extensibility: The ability to add further/supplementary properties to the design.

Portability/Reusability: The ability of the design to represent different model imple-

mentations.

Integrability: The ability to combine the design with another.

Testability: The ease with which the design can be tested.

Similarly, the evaluation of design quality in the ontology community is a widely dis-

cussed subject. One of the fundamental rules in ontology design is that “there is no one

correct way to model a domain, there are always viable alternatives. The best solution

almost always depends on the application that you have in mind and the extensions that

you anticipate” [NM01]. While design quality criteria can provide helpful insights into

32

different aspects of ontology design, a compromise between expressiveness and perfor-

mance is nearly always required.

An important aspect of any ontology design methodology is the quality of the pro-

duced ontology. In order to evaluate what constitutes a good ontology, several aspects

must be taken into consideration. In general, the evaluation of an ontology can be

grouped into three categories [GP94]:

• Ontology Validation - All ontology definitions must be necessary and sufficient to

represent the ontology’s purpose.

• Ontology Verification - The process of ensuring that the ontology specification and

requirements function correctly.

• Ontology Assessment - The evaluation of quality aspects from a user-perspective

such as usability, comprehensibility, generality, etc.

Gruber et al. [Gru95] introduced one of the first extensive criteria catalogs and design

guidelines. Their catalog consists of the following items:

Clarity: The ontology must use a clear description of any used terminology (in natural

language).

Coherence: The ontology must pass any consistency tests by reasoners. Additionally,

the ontology (and its inferred axioms) should be checked against examples given

in natural language in the documentation for contradicting statements.

Extensibility: The ontology must be designed for evolution. Adding and removing of

terms should have as little side effects as possible on the ontology.

33

Minimal encoding bias: The ontology should not make any assumptions of how it is

being used and only use necessary conditions in its definition.

Minimal ontological commitment: The ontology should make minimal assumptions

about the world in regards to the modeled domain.

While Gruber states that there is a trade-off between ontological commitment and clarity

as well as extensibility, his criteria are solely motivated by seeing ontologies as a medium

to transfer knowledge. In particular, the minimal encoding bias has led to the current

state of ontology design which is not motivated by use-cases but maximal reusability.

This has led to a race for the most general ontologies that only provide concepts without

questionable clarity.

Further criteria for the evaluation of ontologies are defined by Gomez-Perez et al.

[GP99]. The inspection of an ontology taxonomy focuses mainly on the detection of

static errors that are partially discoverable by reasoners:

Consistency: No knowledge that is contradictory to the ontology specification must be

inferable. An example of a consistency problem is a “Partition Error”.

parititionError ↔ ∃C1, C2, C3 ∈ C

subClassOf(C1, C2)∧

subClassOf(C1, C3)∧

disjointWith(C2, C3)

Completeness: The ontology does not lack any information necessary for its function-

34

ality. Examples of criteria for incomplete ontologies are “Incomplete Disjoints”.

incompleteDisjoints ↔ ∃C1 ∈ C I1, I2, I3 ∈ I

instanceOf(I1, C1)∧

instanceOf(I2, C1)∧

instanceOf(I3, C1)∧

disjointWith(I1, I2)∧

¬disjointWith(I2, I3)

Conciseness: No unnecessary (in regards to the ontology’s responsibilities) knowledge

is specified in the ontology or can be inferred from it. Redundancies, such as the

“Indirect Subclass Repetition”, are a violation of this criterion.

Baumeister et al. [BS05] introduced further criteria to check the structure of an ontology

outside a reasoner.

3.3 Ontology Design Methodologies

Building a good ontology is a challenging task [SS09]. Over recent years, many ontolo-

gies have surfaced with only very few being actively used. The semantic web community

has been divided into those who advocate ontologies as a means to exchange information

in a standardized way (as linked data), and those who see ontologies as the underlying

framework for information systems and reasoners. Not surprisingly, this has also led to

different standards for ontology design. Many of the existing ontology design method-

ologies focus solely on the knowledge sharing aspect of ontologies and only consider

reasoners for simple consistency checks. Most methodologies are detailed about the

35

definition of concepts, relations and attributes but fail to address the usability aspect of

ontologies.

In ontology design, criteria such as extensibility and coherence are of high impor-

tance [Gru95]. However, design details always depend on the intended use of the on-

tology. Generic (upper) ontologies focus on a minimal ontological commitment; the

reusability quality criterion is of most importance. Application ontologies, on the other

hand, have a strong ontological commitment and are tailored to a certain use-case. Most

methodologies focus on domain ontologies, which have a strong focus on reusability

but trade some ontological commitment and extensibility to describe certain aspects of a

domain in detail.

The following sections outline a number of methodologies to create ontologies. The

methodologies are ordered by their publication date and listed under their primary author.

3.3.1 Gruninger et al.

The Gruninger and Fox methodology [GF94] is based on a motivating scenario that il-

lustrates the use of an ontology. The scope of the ontology is informally defined. In

a preliminary step, ontologies that could be reused are identified and evaluated. Next,

informal competency questions (in natural language) are defined that express the re-

quirements that the ontology needs to meet. The formalized ontology must represent

all these questions using its terminology and provide their answers through axioms and

definitions. The final questions are usually simple questions (e.g. starting with “Who”,

“What”, “Why”). These are first used to specify the terminology vocabulary (its con-

cepts, relations and axioms) and then serve as the basis for concepts in first-order logic

themselves. An ontology is considered complete when it is able to answer every formal

36

competency question.

The methodology consists of the following individual steps (in order):

1. Identify and evaluate existing ontologies for reuse

2. Gather informal competency questions

3. Specifying the ontology terminology formally

4. Specifying the competency questions formally using the ontology terminology

5. Verification of completeness

3.3.2 Uschold et al.

The design of an ontology according to the Uschold and King (“skeletal model”) method-

ology [UK95] starts with the identification of the ontology scope and purpose (range of

intended users and example scenario). The authors suggest different strategies be used to

identify concepts and relations: bottom up (from the most specific), top down (from the

most general) and middle out (combined). Unambiguous textual definitions are stored in

a concept dictionary. In a further step, the captured definitions are “coded” into an ontol-

ogy language (such as OWL or Prolog). Existing ontologies can be considered during this

step. The methodology concludes with an evaluation phase which is similar to the one

proposed by Gruninger and Fox (competency questions). All assumptions made during

the development of the ontology must be documented.

The methodology consists of the following individual steps (in order):

1. Identifying purpose and scope

37

2. Ontology building

- Capturing concepts and relations informally

- (En)Coding of captured knowledge using the ontology terminology

- Integrating existing ontologies

3. Evaluating the ontology

4. Documenting the ontology

3.3.3 Fernandez et al.

The so-called METHONTOLOGY of Fernandez, et al. [FLGPSS99] starts, similar to

other approaches, with the specification of the intended purpose, scope and level of for-

mality. In a knowledge acquisition stage, (un-)structured interviews with experts and

text analysis are carried out. A top-down knowledge specialization is suggested. Next,

existing ontologies have to be checked for reuse and are evaluated from a knowledge

representation point of view. In the conceptualization activity, a glossary of terms (con-

cepts, relations, instances, attributes, ...) is constructed which is then used to build a

concept taxonomy and define a binary relations diagram. The ad hoc binary relations,

instances and class attributes are then incrementally detailed and organized into tables.

Once all elements have been defined, formal axioms and rules are added to infer values.

The ontology is formalized in an ontology language. Ontology evaluation concludes the

methodology whereby the ontology, its associated software environment and the docu-

mentation is analyzed with respect to a frame of reference. “The frame of reference may

be requirements specifications, competency questions, and/or the real world” [GP94].

The methodology consists of the following individual steps (in order):

38

1. Knowledge acquisition

2. Ontology reuse

3. Conceptualization activity

- Build a glossary of terms

- Create concept taxonomies and establish ad hoc binary relations

- Incrementally detail binary relations, instances and class attributes

- Describe formal axioms and rules

- Add instances and infer values

4. Ontology formalization

5. Ontology evaluation

3.3.4 Swartout et al.

In the SENSUS methodology by Swartout, Knight, Russ and Rey [SKRR97], an ontology

is built by matching seed terms against a generic high-level ontology of more than 50000

concepts (inspired by Cyc [GL90] and WORDNET [Fel98]). This abstract ontology

of synonyms and related concepts is linked by hand to seed terms from the modeled

domain. The selection of seed terms (that should be relevant to the domain) is also

carried out manually. Subtrees/graphs in the SENSUS ontology, which have many links,

are completely carried over to the target ontology.

The methodology consists of the following individual steps (in order):

1. Select relevant seed terms in domain

39

2. Match seed term to SENSUS ontology

3. Carry over parts from SENSUS ontology to target domain ontology

3.3.5 Sure et al.

The aim of the On-To-Knowledge methodology by Sure, Schnurr, Studer and Staab

[SSS00] is to further develop Ushold’s and Fernandez’s methodologies into a full on-

tology life-cycle model. Best practices, such as competency questionnaires and the need

for ontology evaluation, are taken over from the two models and are refined with exam-

ples. In a “kickoff” phase, the goal, domain and scope of an ontology are identified.

Sources of knowledge (e.g. persons) and applications to be supported by the ontology

must also be noted. A list of users, usage scenarios and competency questions concludes

the phase. In a refinement phase, a seed taxonomy is detailed until a final ontology de-

sign is reached. The ontology is formalized and assessed in an evaluation phase (against a

requirements specification document and the target application environment). The main-

tenance preparation phase documents the ontology for future changes.

The methodology consists of the following individual steps (in order):

1. Identification of the goal, domain, scope, sources of knowledge, applications, us-

age scenarios and competency questions

2. Refinement of a baseline taxonomy into an ontology that can be formalized

3. Evaluation against requirements and the target application

4. Maintenance preparations

40

3.3.6 Hristozova et al.

The so-called EXPLODE methodology of Hristozova and Sterling [HS03] collects re-

quirements through competency questions and defines system constraints (depending on

the use and application of the ontology). In a planning stage, the scope and proposed

concepts and relations are detailed and functional and quality requirements are both for-

malized and prioritized as competency questions. Starting from a baseline (the “simplest

possible ontology” capturing the architectural outline and core competency questions of

the application), the ontology is refined to address additional questions and constraints.

The methodology concludes with an acceptance testing phase where all constraints and

competency questions are used to verify the system.

The methodology consists of the following individual steps (in order):

1. Requirements analysis and planning (through competency questions and system

constraints)

2. Baseline implementation of core competency questions

3. Refinement (addressing more questions and system constraints)

4. Acceptance testing

3.3.7 NeOn Project

In the “eXtreme Design” (XD) methodology [SFBD+09], a test-driven approach to ontol-

ogy design is introduced that borrows some practices from Extreme Programming (XP).

The methodology defines the use of ontology design patterns as “solutions to typical

modeling problems”. Selected requirements from a specification document are trans-

41

formed into use cases. Simple sentences from those requirements are then transformed

into competency questions and further into queries for unit tests. Next, content pat-

terns (an ontology design pattern type that addresses some domain specific problems)

are matched against the complete competency question. This is repeated until all com-

petency questions are covered. Once the ontology is populated with instances, unit tests

queries are run.

The methodology consists of the following individual steps (in order):

1. Use cases are extracted from the specification

2. Competency questions (queries) and unit tests are created

3. Content patterns are matched against competency questions

4. Population of ontology and execution of queries as unit tests

3.3.8 Summary

Many ontology design methodologies have been proposed over the last few decades in-

volving an ever-increasing level of detail and sophistication. At the same time, a growing

trend towards the incorporation of more SE best practices is taking place and software de-

velopment methodologies have influenced many of the life-cycles for ontology develop-

ment. However, the disconnect between ontology design and agile software development

remains a challenge.

42

G
ru

n
in

g
er

U
sc

h
o
ld

F
er

n
an

d
ez

S
w

ar
to

u
t

S
u
re

H
ri

st
o
zo

v
a

N
eO

n

O
n
to

lo
g
y

re
u
se

N
o

Y
es

N
o

P
ar

ti
al

ly
Y

es
N

o
N

o

O
n
to

lo
g
y

d
es

ig
n

p
at

te
rn

s
N

o
N

o
N

o
N

o
N

o
N

o
S

o
m

e

N
o
n
-o

n
to

lo
g
ic

al
d
at

a
so

u
rc

es
N

o
N

o
N

o
N

o
N

o
N

o
P

ar
ti

al
ly

S
u
p
p
o
rt

fo
r

re
as

o
n
in

g
se

rv
ic

es
N

o
N

o
N

o
N

o
N

o
N

o
N

o

L
ev

el
o
f

d
et

ai
l

L
o
w

L
o
w

H
ig

h
L

o
w

M
ed

iu
m

L
o
w

H
ig

h

L
if

e-
cy

cl
e

m
o
d
el

N
o

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

P
ro

je
ct

m
an

ag
em

en
t

g
u
id

el
in

es
N

o
N

o
N

o
N

o
N

o
N

o
P

ar
ti

al
ly

A
p
p
li

ca
ti

o
n

m
o
d
el

N
o

N
o

N
o

N
o

N
o

N
o

N
o

A
p
p
li

ca
ti

o
n

d
o
m

ai
n
s

O
n
e

O
n
e

M
u
lt

ip
le

M
u
lt

ip
le

O
n
e

O
n
e

M
u
lt

ip
le

T
es

ti
n
g

an
d

ev
al

u
at

io
n

C
Q

1
C

Q
1

C
Q

1
N

o
R

S
D

2
C

Q
1

+
S

C
3

C
Q

1

T
a
b

le
3
.1

:
C

o
m

p
ar

is
o
n

o
f

o
n
to

lo
g
y

d
es

ig
n

m
et

h
o
d
o
lo

g
ie

s

1
C

o
m

p
et

en
cy

Q
u
es

ti
o
n
s

2
R

eq
u
ir

em
en

ts
S

p
ec

ifi
ca

ti
o
n

D
o
cu

m
en

t

3
S

y
st

em
C

o
n
st

ra
in

ts

43

Table 3.1 shows an overview over the different ontology design methodologies. No-

tably, Swartout et al. [SKRR97] is the only methodology which does not use compe-

tency questions. Competency questions were first introduced by Gruninger et al. in 1994

[GF94] and have since been reused in most methodologies as either a starting point for

the development of an ontology or as an evaluation basis. They are abstract enough

to capture demands/queries for an ontology without the need to know its final design

(concepts, relations, etc.). The process of identifying competency questions, however, is

usually carried out with a customer who has little or no knowledge about ontology de-

sign and imposes his own knowledge of the processed data on the formulated questions.

Competency questions are therefore ill-suited to validate or guide the complete ontology

design. Ontologies developed in such a way tend to be 1-1 transformations from entity-

relationship diagrams or database schemas, which limit their advantages to those of RDF

and linked data. This 1-1 transformation, most of the time, defies the very purpose of

developing an ontology and results in customer dissatisfaction.

Although the XD methodology of the NeOn project incorporates ontology design

patterns, it fails to address the application specific constraints which often dictate con-

crete classes, relations and axioms and hinder the reuse of generalized design tidbits. As

stated by Poveda-Villalon et al. [PVSFGP10]: “[We] realized the difficulty of apply-

ing the above mentioned method because of the lack of detailed guidelines in some of

the tasks”. While design patterns have been successfully applied in other domains, the

design pattern categories suggested in the methodology are too narrowly set which has

led to many design pattern incarnations with little or no value for ontology application

development [Hep05]. This is further explored in Section 4.2 of this thesis.

44

The NeOn project also addresses non-ontological resources outside of their method-

ology in “Scenarios for Building Ontology Networks”. Nevertheless, their approach is

limited to 6 non-ontological resource types (glossaries, dictionaries, lexicons, classifica-

tion schemas, taxonomies and thesauri) which are easily transferable into standardized

ontology schemas. In contrast, the methodology introduced in this thesis does not use

such resources as a starting point for ontology development and reusability, but rather as

a separate conversion/transformation process, independent from ontology development.

3.4 SE-ONTO Methodology

The semantic web, as a general knowledge modeling approach where ontologies can be

exchanged and combined, is often limited by the complexity of ontology design. Most

ontology design methodologies cannot be easily incorporated into agile software pro-

cesses due to this inherent complexity. Additionally, there exists a gap between “how on-

tologies are designed” and “how ontologies can be useful for application development”,

that is not filled by existing approaches. Ontology development should be raised to a

similar well-established process as software development by promoting the reuse of best

practices and existing ontologies. The large number of unused and unfocused ontologies

available on the Internet justifies and encourages the development of a novel method-

ology. Such a methodology must be based on the experiences gained from existing,

well-established development methodologies in the traditional SE domain. Furthermore,

the methodology should promote the iterative and incremental building of ontologies in

modern agile development projects, a property which is often neglected in existing pub-

lications. These goals have motivated the development of SE-ONTO and distinguish it

45

from the methodologies introduced in Section 3.3, which solely focus on the design as-

pect of mostly generic ontologies. As a main contribution in this thesis, a methodology

is introduced with the objective to promote a paradigm shift in ontology design away

from “designing broad for every possible usage scenario” to “designing for and with an

application”.

The SE-ONTO methodology promotes the reuse of best practices from the agile

SCRUM [Sch97] software process-skeleton rather than defining a completely new pro-

cess from scratch. SCRUM is an incremental, iterative approach to software development

that has proven itself against traditional waterfall-style development practices. Instead of

an extensive upfront requirement analysis and a single development-deployment cycle,

SCRUM (and other agile approaches) suggest an iterative and incremental process. Each

iteration (called a “sprint” in SCRUM) thereby includes multiple steps and is enriched

with proposed activities and suggested artifacts. SCRUM applies particularly to Knowl-

edge Engineering as it is a pure product development process and does not require any

code-related activities (for example pair-programming from XP) or restrictive roles and

artifacts (such as in RUP). Furthermore, it is widely supported by project management

tools and has found large support from both open-source communities as well as com-

panies (e.g. Google). These basic SCRUM principles are applied in SE-ONTO for the

Knowledge Engineering process without modification of the process-skeleton. Regard-

ing roles, SE-ONTO suggests that at least one domain expert, depending on the project

type and assuming a team size of 7(±2), must be part of the SCRUM development team.

The domain expert should be familiar with ontologies as he is also responsible for keep-

ing the ontology aligned with the terminology in the customer domain. He assists one or

46

Iteration/Sprint 1-...

Plan and

prioritize

Select and execute

sprint task

Review and

demo

Reflect and

improve

Daily Scrum

Sprint Backlog

Iteration/Sprint 0

Product Backlog
Requirements

analysis

Figure 3.2: SCRUM analysis and sprint

more knowledge engineers as part of the development efforts.

A general outline for a SCRUM sprint with some of its major artifacts/practices is

shown in Figure 3.2. A usual time-frame for each iteration/sprint is about one month.

Each sprint task from the SCRUM backlog is no longer than 8 hours working time and

can be handled by a single person. It has to be noted that requirements analysis will

happen throughout the project whenever there is a need to adapt the software. However,

the first sprint (iteration 0) intensively analyzes the requirements in order to get a better

understanding of the product to be developed. For a more detailed description of SCRUM,

the reader is referred to the excellent overviews in [DBL10] and [RJ00].

The main contributions of the SE-ONTO methodology, interwoven into the software

development life cycle, are shown in Figure 3.3. The methodology specifies the gathering

47

Figure 3.3: Contributions in the software development life cycle

of requirements in regards to ontology design and defines how such requirements can

be transformed into a usable specification for incremental ontology design (the “entity

analysis” phase). In an “ontology development” phase, the previously specified entities

are formalized using a set of ontology design patterns. SE-ONTO makes use of a novel set

of ontology reasoning patterns whose goal is to encourage the use of reasoning services

during ontology design.

The following sections list the activities and work products (proposed by the SE-

ONTO methodology) that can be used by following an agile development process (such

as the SCRUM process-skeleton) and that allow for an iterative and incremental ontology

design. As mentioned earlier, the methodology focuses on ontology-driven application

development and the incorporation of reasoning services.

3.4.1 Ontology Entity Analysis

The main purpose of the analysis phase in SE-ONTO is the collection of requirements

from the customer for the ontology design. It is therefore part of the requirement anal-

ysis phase of a software project. As suggested by the SCRUM process, user stories are

an excellent mechanism to capture a customer’s goals and wants. A best practice is to

48

Requirement analysis

Ontology

design relevance

Define

user stories

Entity

transformation

Data sources

Customer

Create entity

analysis diagram

Model-affecting Entities

EA-Diagram

Ontology

refinement

Ontology

test catalog

Test cases

Figure 3.4: Requirements analysis for ontology design

define user stories in the format: “As ...(who)... I want/become/change ...(what)... so

that ...(why)”. This captures the important context of the stakeholder (who) as well as

a textual description of the reason (why) a certain task needs to be achieved. For exist-

ing data sources (such as databases), concepts and relations are often already available.

Nevertheless, it is suggested to create user stories with customer involvement to capture

the important semantics behind data and discourage both 1-1 mappings and ontologies

that are too generic to be useful for a specific application context. This also benefits

the verification of existing data structures that have often grown over time and are not

necessarily well designed. Figure 3.4 summarizes all steps of the requirements analysis

phase.

49

For user stories to be transformed into an ontology, a knowledge engineer first needs

to extract the data model from the description into a less ambiguous representation that

shows the inter-connected structure of the data. This also helps to reduce, at an early

stage of the development cycle, potential misunderstandings from a customer perspec-

tive regarding the application knowledge requirements. In contrast to other methodolo-

gies, SE-ONTO does not differentiate between concepts, individuals and properties in the

entity analysis. They are instead seen as implementation details which should not be con-

sidered in this stage of the development process. The term “entity” is used to talk about

an element that will be represented in the data model (either as a concept, individual, ...).

SE-ONTO transforms user stories into entities by analyzing their text (using noun and

adjective analysis). The objective of this analysis is to determine for each part of the user

story: “What is the most concrete class that describes the part of the sentence?”. The

“most concrete class” is a descriptive name for a category of things (multiple elements

should, at least in theory, be able to be part of/participate in the class) that is as concrete

as possible (limits the amount of things that it represents to a minimum, but greater than

one). The transformation is carried out manually by inspecting sentences from user sto-

ries but can be supported by Natural Language Processing (NLP) tools. For example, the

user story “As a retailer, I want red cars to cost more because they sell better” identifies

the entities Retailer, RedCar, BetterSellingCar and CarCost. Each class

can have multiple participants, such as concrete retailers for Retailer or concrete cars

for RedCar. The identified potential candidates are matched against a list of existing

entities to prevent synonymous terms from being included and to identify similar entities,

such as BlueCar. Entities extracted from a user story are placed in an entity analysis

50

Car

FullCarConfig

Supplier

Customer

LowDemand

HighCarCost

CarOrder

Car

RedCar

CarCost

Retailer

BetterSellingCar

Figure 3.5: Entity analysis diagram

diagram which shows inter-connections. Entities are connected through their user story

(dotted circles) and each entity has connections to similar terms (solid lines). The result-

ing entity analysis diagram is shown in Figure 3.5. Creating an entity analysis diagram

is a supporting activity that allows a knowledge engineer to gain a better understanding

of the domain and the user stories to be modeled. The entities identified during this stage

are, however, not final and can change throughout the ontology development.

For each user story, the knowledge engineer must determine its relevance for the

ontology design. A relevant user story is thereby defined as “containing an entity that

(potentially) affects the underlying data model”. It is important to clarify at this point,

whether a problem described in the user story should be modeled by an ontology or

better solved elsewhere (e.g. in application logic/program code). The responsibilities of

the ontology for each user story must be specified in the task description that is added to

the SCRUM backlog artifact (together with the entity analysis diagram).

Ontology design is different from classical database design. Concepts, data and ob-

51

ject properties (relations) can be easily added at any point. An entity ItemName might,

for example, have no influence at all on the ontology design but acts only as a storage

slot. Consequently, it is not as important to identify all entities in the initial iteration of

the ontology design. In order to limit the amount of entities that need to be considered

for the ontology design, it can be practical to keep two lists of entities: one primary list

for potentially model-affecting entities and a secondary for all other entities that can be

added later (if required). Model-affecting entities have the following characteristics:

• They are dependent on or affecting other entities in the data model.

• They do not have a composition relationship to an entity. They are not part of an

entity and can exist without it.

• They do not model external information and/or solely relate to Information Re-

trieval- (IR) like tasks.

Consider the following two user stories (taken from an IBM project 1 and Westboro

Systems agile training2):

“As a sales person, when an item is scanned, I want a short description of the

item and its price.”

“As a customer, when I purchase more than $5000 in goods, I become a

preferred customer so that I can receive a 10% discount on all prices.”

From the first statement the following entities can be identified: SalesPerson,

ScannedItem, ItemDescription and ItemPrice. Following the previous defi-

nition one can identify ItemDescription and ItemPrice as non-model-affecting

1http://www.ibm.com/developerworks/java/library/j-jmod1023/
2http://www.westborosystems.com/2010/02/user-story-estimation/

52

entities as they are part-of ScannedItem and do not affect each other, or are affected

by SalesPerson. In the second statement the following can be found: Customer,

MoreThanFiveThGoods, PreferredCustomer as well as TenPerDiscount-

Price. This suggests a revision of ItemPrice as it now is a model-affecting entity

and should be added to the corresponding list. Note that, although SE-ONTO suggests

the use of existing terminology, it is sometimes not clear which definition to use. Instead

of TenPerDiscountPrice, the term DiscountTen could for example be used to

represent the “10% discount on all prices”. Nevertheless, such ambiguities are usually

resolved in the later steps of the process.

User stories for Knowledge Engineering are usually larger and more complex than

regular user stories. This can be explained by the fact that modeled knowledge usually

spans over multiple user stories. With small user stories, it is more important to keep

all suggested artifacts (the entity analysis diagram and entity lists), in order to not let

any modeling gaps occur. To limit the amount of overlooked entity connections in the

breaking down of requirements, SE-ONTO suggests to look at two user stories at a time

(pair-wise inspection), to detect possible modeling connections. This also helps with

identifying inconsistencies in the usage of the application terminology.

Once the entity analysis diagram is complete and all descriptive entities have been

eliminated, SE-ONTO proposes a refinement technique that engages customers in a revi-

sion of the requirements by creating multiple examples. Thereby, connected clusters of

entities (from the entity analysis diagram) are selected as a group and presented to the

customer to express one of the following:

• A hierarchy or equality. Ask the key question: “Is every ... also a ...”. E.g. “Is

53

every MoreThanFiveThGoods also a ScannedItem?”. This also helps to

eliminate synonyms.

• A completion or negation. Ask the key question: “Something not a ... is ...”.

E.g. “Something not a TenPerDiscountPrice is?”. This helps to identify

incomplete/missing or disjoint entities.

• A connection in the form: “If I would/am ... and/or ... then I should/be ... and/or

...”. E.g. “If I am a PreferredCustomer, then do I get 10PerDiscount?”

Missing entities are first searched in the list of entities (in case of a missing relation in

the entity analysis diagram) or added if not present. Besides clarifying the meaning of

individual entities this process might also lead to new findings. In the previous example,

a Customer might also be a SalesPerson who, in that case, might be able to obtain

an additional discount. Relevant new findings are added to the task description. As a last

step in the entity analysis for ontology design, examples from the requirements revision

are included as part of the test catalog in the form of testable statements.

The entity analysis phase captures domain knowledge but cannot ensure that all facts

about the domain (captured from the user stories) are complete and correct. It is the task

of the knowledge engineer to discover missing gaps or contradicting statements. The SE-

ONTO methodology facilitates domain modeling by providing a concrete work product

(the entity analysis diagram) and a set of questions and rules that can help identifying

modeling problems. However, further modeling problems can arise while formalizing

knowledge (ontology development phase) and a refinement of the discovered statements

can be necessary.

54

As a knowledge engineer, it is important to emphasize that ontology design (and

Knowledge Engineering in general) is a process of creating information rather than sim-

ply retrieving information from a data store. During the requirements analysis phase the

following questions should be answered, as they encourage more complicated ontolo-

gies:

1. How can a reasoner enrich and/or complete the existing data?

2. How can a reasoner verify the correctness of the existing data?

3. How can a reasoner support or model an application problem?

This concludes the entity analysis phase of the SE-ONTO methodology. The inter-

connected user stories (with their part of the entity analysis diagram and list of model-

affecting entities) are added to the SCRUM product backlog together with their test-cases

and are ready to be transformed/formalized iteratively in the “ontology development”

phase. In case the number of inter-connected user stories is large and the resulting work-

load would exceed the maximum of 8 hours allowed by SCRUM, these large stories need

to be broken up. SE-ONTO suggests a cutting point with the least inter-connections be-

tween entity groups/user stories. The resulting separation of modeled knowledge can be

refactored incrementally.

3.4.2 Ontology Development

As SCRUM is an iterative process, the design, whether it is application or knowledge re-

lated, must be executed in an iterative and incremental way. This incremental application

development allows one to address ever-changing requirements and adapt an application

55

to the real needs of a customer. In SE-ONTO, the ontology formalization resembles a

programming/development task in terms of the produced output: a “working” ontology.

It is therefore also called an “ontology development” task in the SE-ONTO methodology.

This is in contrast to database or application design, which merely serves as a support-

ing by-product of development and is generally discouraged or limited in agile processes

(partly due to the overhead associated with design and the uncertainties of future devel-

opments). Ontology development is a building block of semantic applications and not a

supporting by-product. It is important, however, that the ontology design cannot dictate

the architecture of an application but must work together with program code.

In order to support an iterative knowledge-modeling approach that does not design

the complete ontology upfront, it is necessary to decompose the knowledge to be mod-

eled. For this reason, the entity analysis (described in the previous section) splits the

knowledge to be modeled into manageable parts (clusters in the entity analysis diagram),

which can be handled in sprint tasks. Each sprint task for ontology development starts

with a task description and an entity analysis diagram that contains a subset of the knowl-

edge to be modeled. This subset represents a number of user stories — an aspect of the

application under development. Figure 3.6 shows the steps performed during ontology

development.

Ontology design patterns play an important role in the SE-ONTO methodology and

individual patterns are described in Chapter 4. SE-ONTO makes use of so-called on-

tology reasoning design patterns, which are reusable ontology fragments, that are en-

abled by semantic web reasoners. In particular, structural reasoning patterns (domain-

independent architectural-modeling practices for ontologies) are used as refactorable de-

56

Sprint task (ontology development)

Match

patterns

Apply

patterns

Define data

mapping

Select connected

user stories

Formalize

entities

Test

ontology

Goals

Review

ontology

Test cases

EA-Diagram

Data

Patterns

Refactor

patterns

Figure 3.6: Sprint task for ontology development

sign solutions with a clear “solved-problem” description.

As discussed earlier, during the ontology entity analysis phase, a decision has been

made whether a user story is model-affecting and should be implemented in the ontol-

ogy (the ontology responsibility). The knowledge engineer should select (if possible) a

reasoning pattern depending on the goal of a user story. There exist different patterns

for different goals/responsibilities, such as “identifying the similarity between entities”

or ”modeling a hierarchy”. Once a suitable pattern is found, it is refactored in order to

fit into the current domain and the current ontology. Ontology design patterns can also

57

be helpful during the refactoring process. For example, the Property-Class Common-

ality pattern (see Section 4.3) allows of a concept class to be combined with an object

property.

In case there is no applicable ontology design pattern, the knowledge engineer must

formalize the entities of the user stories manually. SE-ONTO suggests a bottom-up (from

the most specific to the most general) process. In a first step, every entity that has not yet

been represented in the current ontology is added as an individual. Exceptions to this rule

are entities that form a hierarchy — they are represented as concepts. The knowledge en-

gineer then tries to complete the responsibilities of the user story by adding axioms such

as object properties (relations) and existential quantifications (restrictions). Ontology de-

sign patterns can be applied in the refactoring process to transform the ontology, while

the knowledge engineer has to ensure that the selected patterns do not impact perfor-

mance (or other constraints such as the selected ontology language and profile).

The formalization step is illustrated by revisiting the previous example from the en-

tity analysis phase (assuming no preexisting ontology that otherwise could be used as a

starting point):

“As a customer, when I purchase more than $5000 in goods, I become a

preferred customer so that I can receive a 10% discount on all prices.”

Customer and PreferredCustomer form a hierarchy and are created as con-

cepts. MoreThanFiveThGoods and TenPerDiscountPrice are added as indi-

viduals. In the example, the user story is responsible for identifying preferred customers

in the ontology and detecting the type of discount that is applied. One could therefore

58

add the following axioms:

PREFERREDCUSTOMER ≡ ∃purchased.{MoreThanFiveThGoods}

PREFERREDCUSTOMER ⊑ ∃receives.{TenPerDiscountPrice}

Note that the agile principle of modeling dictates only to add what is needed to solve

a concrete user story (and not more). One could easily argue for a presentation of

TenPerDiscountPrice as a concept class that represents multiple reduced prices,

however, this is not required by the user story and therefore not implemented. The use

of refactoring and structural patterns will result in the transformation of the individual

to a concept class if required (e.g. through the Restriction Generalization pattern, see

Section 4.3).

By applying the SE-ONTO methodology, the resulting ontology design will not be

directly linked to the design of the application logic. Ontology design should not be

confused with object-oriented design. Instead, the knowledge engineer has to define a

mapping between the ontology terminology and application objects/classes. For exam-

ple, the individual for TenPerDiscountPrice is most likely modeled (in applica-

tion logic/program code) as a class “Discount” which has an “Integer” attribute for the

percentage (following object-oriented design principles). A mapping can define one or

more individuals/concepts for every object in an application or group objects together. It

is also possible to store only the part of application data in the ontology that is relevant to

reasoning and use other storage solutions (e.g. a relational database) in the application.

Once a mapping is defined, a so-called ontology population process can convert concepts

59

from the application to the ontology.

As part of the best practices/techniques from XP, continuous integration is encour-

aged by SCRUM and therefore also by the SE-ONTO methodology. The ontology usually

is checked out from a version control system for a specific sprint and can then be modi-

fied. Upon check-in, an automatic build of the application using the ontology is triggered.

As the entity analysis defines tests for the ontology design, these tests are added to a test

repository together with other unit and integration tests. As the ontology is developed

together with an application, tests can be implemented in the application logic. The

ontology design is committed to the current development tree as often as possible.

Following agile principles, the ontology must be inspected for its design quality be-

fore finishing the sprint task. SE-ONTO suggests to use clarity, coherence as well as

minimal ontological commitment, as defined by Gruber et al. [Gru95]. The clarity and

minimal commitment criteria are thereby implicitly embodied in the methodology that

encourages “doing what is necessary (but not more)”. Furthermore, coherence should be

emphasized through the integration tests over the ontology. In contrast to Gruber et al.

[Gru95], extensibility and minimal encoding bias are of less importance. A commitment

to a certain use of the ontology is instead seen as beneficial to solving application goals

in the SE-ONTO methodology.

As suggested by most agile approaches, the ontology documentation follows the same

rules as the design: “as little as possible, as much as needed”. Examples which show

reasoning results on small parts of the ontology should be kept in a repository. In case of

large ontologies (if management of these ontologies becomes extensively difficult), more

documentation may be required.

60

Chapter 4

Ontology Design Patterns

This thesis introduces a library of ontology design patterns as part of the SE-ONTO de-

sign methodology. The methodology, as described in Chapter 3, focuses on an incre-

mental process of building ontologies, in which ontology design patterns are repeatedly

applied to create and refactor the ontology, until a problem within a domain is solved,

while ensuring a satisfactory design quality through continuous testing. As the main

contribution in this chapter, Section 4.3 introduces a set of ontology design patterns,

namely structural reasoning patterns. Ontology reasoning design patterns focus on the

creation of reusable patterns that are enabled by semantic web reasoners. Structural

reasoning patterns are domain independent, refactorable (can be adopted to specific pur-

poses), ontology design solutions with a clear “solved-problem” description that focus

on the (architectural) structure of the designed ontology.

All patterns are specified in the OWL2 EL profile, a subset of OWL DL with polyno-

mial time complexity that can be used to reason over large amounts of data. While the

primary objective of ontology reasoning patterns is to guide the development of an ontol-

61

ogy and provide best practices and common solutions, a secondary objective is to inform

the developer about the introduced impact a pattern has on the developed application.

Ontology reasoning patterns are tested fragments for which the runtime complexity and

impact on reasoners is known (see Section 6.1). By choosing design patterns based on

their performance, one can prevent ontologies which need extensive optimization after

the initial design.

This chapter starts with an introduction to the visualization and nomenclature of

patterns (Section 4.1) and then reviews the state of the art in ontology design patterns

(Section 4.2). In conclusion, a novel type of ontology design pattern called structural

reasoning patterns is introduced in Section 4.3.

4.1 Ontology Visualization

There is a need for a standardized visualization technique for ontologies. While UML,

as a standardized modeling visualization technique, is well-suited to describe the static

structure of concepts and their attributes, it was not developed to show graph-based struc-

tures. Although OWL-UML transformation systems are readily available, transformation

results produce overloaded UML diagrams for even relatively small ontologies. In a

recent survey by Katifori et al. [KHL+07], over 15 currently used methods have been

analyzed for their expressiveness in displaying ontologies. It is stated that the “issue

of coupling visualization and reasoning has not yet been sufficiently treated in existing

literature and very few methods support it”. OntoGraph [LN03] is mentioned as one of

the only tools supporting reasoners. Nevertheless, only editing problems detected by the

reasoner are taken into consideration and are displayed in red.

62

Layout Export Distinctiveness Reasoning License

OntoGraf Proprietary Graph Color, Symbols No GPL

OntoViz Proprietary Image Color No MPL

OWLViz Dot Image Color (no individ.) Subclasses LGPL

OntoTrack Proprietary Image Color Errors Proprietary

IsAviz Dot Vector Color, Graphics No Apache

Table 4.1: Ontology visualization techniques

In order to develop a representation suitable to display patterns together with related

reasoning information, some of the existing tools have been analyzed. Node-link and tree

visualizations are the most suitable ontology representations [KHL+07], offering more

descriptiveness than indented lists while maintaining ease of navigation compared to, for

example, 3D representations. Table 4.1 shows a list of some of the best tools available.

Graphviz1, and its Dot language for graphs together with its automated layout for-

matter, has seen some support in ontology tools. While the Dot language allows for

extensive attributes to differentiate between different classes of elements, tools often do

not make use of them.

In this thesis, the Dot language and layout format is adopted and a set of Dot lan-

guage rules to standardize the formatting of ontology graphs is introduced. This includes

explicit rules for the visualization of reasoning results. The following formatting rules

for ontologies are represented in Dot language and rendered into a vector format by the

Dot layout scheme:

• Concepts are shown in CAPITAL letters surrounded by ellipses. Words are sepa-

rated by underscores for readability.

• Individuals are shown as CamelCased words starting with a capital letter and are

1http://www.graphviz.org/

63

surrounded by boxes. To distinguish multiple similar individuals, numbers are

added to the end of the name.

• Relations are also camelCased words but start with a non-capital letter. They are

rendered in a smaller font size. Regular relationships are rendered as a solid line

with an arrow denoting the direction of the relation.

• The special relationship, “individual of”, is rendered as a dotted line without a

label while the relationship, “has subclass”, is rendered as a bold solid line without

a label. The “same as” relationship for individuals is rendered as a bold dashed

line without a label and direction arrow; the “equivalence” of classes is rendered

as a bold solid line without a label and direction arrow.

• Subclasses and individual relationships with the concept “Thing” can be omitted.

Any other omissions have to be explicitly stated.

• Results obtained through reasoning services are highlighted through a distinct ver-

sion of the graph. To establish a sense of what information has been inferred,

the original graph is grayed out. Trivial inferences (such as inherited membership

through subclass relationships) are omitted.

The Dot layout scheme tries to obtain the best possible (in terms of readability) lay-

out for a given Dot language file. In order to produce two distinct, but partially identical

versions (one with reasoning results and one without) the reasoning results are marked

as unconstrained (“constraint=false”) and set invisible in the primary graph. With this

method, they do not add to the overall layout of the graph and can be easily made vis-

ible in the secondary graph displaying the reasoning results. A tool that automatically

64

annotates Dot language files exported from Protege has been created for this purpose.

Listing 4.1 shows a simple exported graph with and without reasoning results:

Listing 4.1: Dot graph example definitions

digraph g {

”CONCEPT”

”OTHER CONCEPT”

” I n d i v i d u a l 0 1 ” [shape=box]

” I n d i v i d u a l 0 2 ” [shape=box]

”CONCEPT” −> ”OTHER CONCEPT” [s t y l e =bold]

”CONCEPT” −> ” I n d i v i d u a l 0 1 ” [s t y l e =dot ted]

”CONCEPT” −> ” I n d i v i d u a l 0 2 ” [s t y l e =dot ted]

”OTHER CONCEPT” −> ” I n d i v i d u a l 0 1 ” [c o n s t r a i n t = f a l s e co lo r = t ransparen t s t y l e =dot ted]

” I n d i v i d u a l 0 1 ” −> ” I n d i v i d u a l 0 2 ” [f o n t s i z e =10.0 l a b e l =” r e l a t i o n s h i p ”]

” I n d i v i d u a l 0 2 ” −> ” I n d i v i d u a l 0 1 ” [co l o r = t ransparen t f o n t c o l o r = t ransparen t f o n t s i z e =10.0

l a b e l =” r e l a t i o n s h i p I n f e r e d ”]

}

Figure 4.1: Design pattern visualization

While Dot visualizations can become hard to read for very large graphs/ontologies,

the purpose of the chosen layout scheme is to visualize patterns, which are compact

ontology fragments. Patterns tend to capture relatively small re-usable design solutions

for which the Dot layout scheme can automatically find a good layout. Bigger patterns

65

might have to be edited manually.

4.2 Design Patterns

The purpose of software design patterns is to capture proven solutions and best prac-

tices for reoccurring problems. Examples of such patterns are the Gang of Four (GoF)

patterns [GHJV94] (e.g. Composite Pattern). The core elements (axioms) used by soft-

ware design patterns are classes/interfaces, their relations as well as methods. Design

patterns can improve the structure and implementation/maintenance of software, and act

as a communication tool to convey implicit and explicit design decisions. There exist

structural, creational and behavioral patterns in software design. Generally, patterns are

known to provide reuse, guidance and communication benefits. Design patterns have

also been applied in other domains such as User Interface (UI) design and E-learning.

According to [SFdCB+08] the practice of using design patterns for ontologies is not

widespread because of little research in the area and the associated lack of education and

pattern repositories.

Ontology design patterns follow the same idea as software design patterns by cap-

turing reoccurring patterns of knowledge in concepts, relations and axioms. Patterns for

knowledge modeling have been proposed by Clark et al. [CTP00] in 2000. Since then,

catalogs of concrete ontology patterns have been suggested by various groups which are

summarized in this section.

Gangemi et al. [Gan05] have analyzed different proposed design patterns for ontolo-

gies and created a categorization similar to the GoF patterns in software design. The

following categories exist:

66

Structural Pattern: Such patterns include logical constructs that cannot be expressed

using axioms as well as architectural patterns that deal with the overall design of

the ontology (e.g. in terms of its computational complexity).

Correspondence Pattern: Patterns that cover mappings and transformations (defined

as mappings with changes to logical types) between different ontologies.

Reasoning Pattern: Patterns that have the goal to obtain certain reasoning results are

called reasoning patterns. Examples include: classification, subsumption, inheri-

tance, etc.

Presentation Pattern: A pattern that improves the readability/usability of an ontology

is called a presentation pattern. For example, certain entity naming conventions

fall into this category.

Besides these patterns, Gangemi et al. define content patterns as an instance of struc-

tural patterns for a specific domain with an explicit vocabulary for this domain. They

are examples of implementations that are reused by applying specialization, extension

and composition. Similarly, the lexico-syntactic patterns are an even further specialized

category for the NLP domain (e.g. to model word orderings). Unfortunately, the authors

blur the line between the different patterns here and do not specify a similar exemplifying

category for reasoning patterns.

Most of the work in [PGD+08] and [PG08] focuses on the above classification. A

list of ontology design patterns is provided, and an online platform for a collaborative

evaluation of ontology design patterns has been introduced under the “NeOn project”,

67

which is still actively maintained2. So far, no actual reasoning design patterns have been

proposed. Furthermore, the largest group of patterns (content patterns) introduced by

[PGD+08] carry only very little design information. While regular software design pat-

terns are very focused solutions to common problems, the patterns presented in the work

of the “NeOn project”, although following some of design quality criteria mentioned in

Section 3.2, are not targeting any solution space. Their aim is to be as general as pos-

sible to allow for reusability without the need for refactoring. This is in contrast to the

contributions of this thesis to provide reasoning patterns that are aimed to be refactored

for a specific domain.

As the work of the “NeOn project” is closely related to this thesis, two of their pat-

terns are analyzed to stress the difference between their contributions and the contribu-

tions in this thesis. Table 4.2 and Figure 4.2, taken from [PGD+08] and their website3,

show the Agent Role content pattern with its intended use as a link between an agent

(person, object, ...) and a role the agent plays. In Table 4.3 and Figure 4.3, a correspon-

dence pattern (taken from [PG08]4) is shown which transforms an adjacency list (the

representation of all edges or arcs in a graph as a list) into an ontology.

A critical analysis of the two patterns reveals some obvious shortcomings of the pro-

posed ontology design patterns. The Agent Role pattern contains too little information to

be reusable by itself. Clearly, one could argue for an alternative design of the agent and

role relations. The competency questions are general and could easily match other imple-

mentations. The separation of agent and role reflects a design decision, where an agent

can have multiple roles at the same time, but this is rather a property of object-oriented

2http://www.gong.manchester.ac.uk/odp/html/
3http://ontologydesignpatterns.org/wiki/Submissions:AgentRole
4http://ontolo.../Submissions:Classification scheme - adjacency list model - to Taxonomy

68

Figure 4.2: Agent Role pattern example [PGD+08]

Name Agent Role

Submitted by Valentina Presutti

Intent To represent agents and the roles they play.

Domains Management, Organization, Scheduling

Competency Which agent does play this role?

Questions What is the role that played by that agent?

Consequences This CP allows designers to make assertions on roles

played by agents without involving the agents that

play that roles, and vice versa. It does not allow to

express temporariness of roles.

Scenarios She greeted us all in her various roles of mother,

friend, and daughter.

Table 4.2: Example definition of the Agent Role pattern [PGD+08]

design principles and not captured in the ontology design pattern or its competency ques-

tions. The Classification to Taxonomy transformation pattern uses a non-ontological re-

source as an input and is therefore more clearly defined. Nevertheless, the transformation

rules are too simple to provide an added-value and, as with the content pattern, no con-

crete problem is solved by the pattern.

Patterns addressing concrete modeling problems have been introduced by the Se-

69

Name Classification Scheme to Taxonomy

Submitted by Boris Villazon-Terrazas

Intent Transformation of an adjacency list to an ontology.

Input A classification scheme is a rooted tree of concepts,

in which each concept groups entities by some

particular degree of similarity. A list of items with

a linking column associated to their parent items.

Ontology Each category in the classification scheme is mapped

to a class, and the semantics of the relationship

between children and parent categories are mapped to

subClassOf relations.

Table 4.3: Example definition of the Classification to Taxonomy pattern [PG08]

ID Name Parent

20000 Water area

21000 Environmental area 20000

24020 Jurisdiction area 20000

21001 Inland/marine 21000

Figure 4.3: Classification to Taxonomy pattern example Classification to Taxonomy

pattern [PG08]

mantic Web Best Practices and Deployment Working Group5. These patterns mainly

address limitations of the OWL/OWL2 language, such as with the N-ary Relations pat-

tern [NRHW06], or discusses different ways to realize a modeling problem in regards to

complexity and ramifications as described in [NUW04] and [Rec05]. Some of the more

concrete problem-patterns address time [HP06] and part-of relationships [RWNW05].

Egana-Aranguren et al. [EA09] have introduced ontology design patterns in regards

to bio-ontologies. A catalog of 15 patterns can be found online6. Their categorization of

patterns defines three main groups:

5http://www.w3.org/2001/sw/BestPractices/OEP/
6http://www.gong.manchester.ac.uk/odp/html/

70

Extension Pattern: An extension pattern by-passes the limitation of a modeling lan-

guage (such as OWL) in order to achieve a certain design goal. An example for

such a pattern is the N-ary Relations [NRHW06] pattern.

Good Practice Pattern: The goal of the good practice patterns is to create a more ro-

bust, cleaner and easier to maintain ontology. There exists many examples that fall

into this general category, such as Value Partition7 and Selector8.

Domain Modeling Pattern: Patterns, which propose a solution for a specific modeling

problem that is only applicable to a certain domain, are grouped into the domain

modeling pattern category. An example for such a pattern is the Cell Cycle Se-

quence9.

Both, the Semantic Web Best Practices and Deployment Working [NUW04] [Rec05]

as well as Egana-Aranguren et al. [EA09], propose meaningful ontology design patterns

that can be praised as a good example of reusable design that is widely applicable. The

domain modeling patterns are thereby closely related and can often be combined with the

work in this thesis. However, their suggestions do not focus on the support and effects of

reasoners on ontology design patterns.

Common to most of the existing ontology pattern approaches is that they lack a

methodology or an ontology life cycle for the use of design patterns. Although the

introduction of design patterns establishes design reuse, it does not eliminate the need

for a design methodology that can provide methodological and technological guidance

while minimizing reuse efforts. An ontology design methodology that incorporates the

7http://www.gong.manchester.ac.uk/odp/html/Value Partition.html
8http://www.gong.manchester.ac.uk/odp/html/Selector.html
9http://www.gong.manchester.ac.uk/odp/html/Sequence.html

71

design patterns, which are introduced in this chapter, as well as design patterns from

other sources such as the ones listed above, is introduced in Chapter 3.

4.3 Structural Reasoning Patterns

Structural reasoning patterns are a novel combination of structural patterns and reason-

ing patterns, two pattern categories previously defined in [Gan05]. The main idea of

structural reasoning patterns is to provide reusable definitions for logical constructs that

cannot be expressed trivially using axioms and require some form of reasoning to work.

In contrast to content patterns, they are domain independent. Each pattern is described

as an input pattern in DL and a textual description of the problem to be solved. Where

applicable, a non-ontological input is described using a UML diagram. A set of transfor-

mations is then applied to present a valuable solution (again in DL). Additionally, patterns

are motivated by an example for a concrete application domain that can be refactored.

4.3.1 Limited Transitivity Pattern

In large highly inter-connected ontologies, it is not uncommon to find transitive proper-

ties that cannot be allowed to “ripple” through all possible individuals or concepts. Also,

a full transitivity is sometimes not necessary, such as when the intent of the property is

to represent a degree of membership that declines with the distance to the originator. In

such scenarios, the transitive property can be replaced by the Limited Transitivity pattern

that specifies a fixed number of levels, which are realized through the use of a prop-

erty chain axiom. Given are the following sample definitions, using a transitive property

72

similarTo:

Tra(similarTo)

similarTo(Ind1, Ind2)

similarTo(Ind2, Ind3)

similarTo(Ind3, Ind4)

similarTo(Ind4, Ind5)

The ontology can now be transformed by replacing similarTo with the following non-

transitive property similarToNonTran by adding, in this example three, property chain

axioms (representing the similarity level/degree):

similarToLvl1 ⊑ similarToNonTran

similarToLvl2 ⊑ similarToNonTran

similarToLvl1 ◦ similarToLvl1 ⊑ similarToLvl2

similarToLvl3 ⊑ similarToNonTran

similarToLvl1 ◦ similarToLvl2 ⊑ similarToLvl3

similarTo(Ind1, Ind2)

similarTo(Ind2, Ind3)

similarTo(Ind3, Ind4)

similarTo(Ind4, Ind5)

73

The resulting inferred similarToNonTran relations for each individual are identical to

the original transitive similarTo relations (except for the missing relation between Ind1

and Ind5 that is out of the specified levels of indirection). An example of the Limited

Transitivity pattern is shown in Figure 4.4.

Figure 4.4: Limited Transitivity pattern example

The Limited Transitivity pattern can also be used in conjunction with a transitive

property (instead of replacing it) in order to identify the level of indirection in a transitive

chain. It can, for example, be used to identify components at a certain level in a partOf

relationship. A laptop might consist of “CPU”, “LCD”, etc. on the first level of the

partOf relationship, while one might find “Transistor” or “Silver” at higher levels. This

information can be crucial in answering certain queries (e.g. “to identify the immediate

sub-components to be ordered”).

74

4.3.2 Restriction Generalization Pattern

A rather general and therefore often reoccurring pattern in ontology development/refac-

toring is the transformation of a value restriction to a class restriction, in order to allow

for a more generic case. An individual might be selected at first during ontology devel-

opment (based on the used methodology), if it is assumed there are no further elements

to justify a class. Nevertheless, for extendibility reasons it can be beneficial to convert

such a restriction using the Restriction Generalization pattern. Thereby, the individual

is taken as one example of a (general) class. The restriction is then applied on the class

instead of the value.

As a concrete example the following axioms declare two simple value restrictions on

the class REGULATOR:

REGULATOR ≡ ∃makesRegulationsFor.{Country1}

REGULATOR ⊑ ∃getsPaidBy.{Country1}

hasV alue(Country, ExProp)

These axioms can be transformed into a class restriction by creating a new class where

the individual is the main “exemplifying” member. Any properties of the individual

become restrictions of the new class. New members that satisfy the conditions of the

new class can then be added. The transformed axioms are:

REGULATOR ≡ ∃makesRegulationsFor.COUNTRY1

REGULATOR ⊑ ∃getsPaidBy.{Country1}

75

COUNTRY1 ⊑ ∃hasV alue.{ExProp}

COUNTRY1(Country1)

In the above example, Country1 is the main individual of concept COUNTRY1. With

the transformation complete, one could now easily add additional members, for example

Province1 as a province, to COUNTRY1. This also allows for a partial overlap of the

transformed individuals and one could further imagine an individual Province2 which

is part of both concepts COUNTRY1 and COUNTRY2.

Many real world scenarios require the use of cardinality restrictions in order to model

the reality accurately. Unfortunately the OWL2 EL profile does not allow for the use of

cardinality restrictions. Nevertheless, the Restriction Generalization pattern can be used

to model a minimum cardinality of 1 for a certain individual. For this purpose, the indi-

vidual is transformed into a concept, as shown above. Any restriction using the concept

is then semantically equivalent to a minimum cardinality of 1. This modeling approach

allows one to express that a regulator makes “at least 1” regulation for COUNTRY1.

Otherwise one would have to define:

REGULATOR ≡ ≥ 1 makesRegulationsFor.COUNTRY1

The Restriction Generalization pattern is related to “Representing Classes As Prop-

erty Values” (approach 4) [Rec05] similar to the relationship of the Adapter and Bridge

pattern [GHJV94]; two inherently different problems are solved using a similar imple-

mentation.

76

4.3.3 Property-Class Commonality Pattern

During ontology design and refactoring, it is not uncommon to come across proper-

ties which are modeled as classes instead of object properties. This is usually not a

problem and can be even desired in situations when one wants to combine different at-

tributes. Nevertheless, in such cases combining classes and object properties can be

challenging. For example, the concept SCIENTIFICBOOK encodes the property

isScientific but this property does not necessarily explicitly exist; it is only implic-

itly represented through the class membership of an individual. Combining the con-

cept with an object property hasCitation, to create the derived commonality relation

hasScientificCitation, is therefore non-trivial. The ontological input for the pattern is

shown in Figure 4.5.

Figure 4.5: Property-Class Commonality pattern example

In order to infer a related inferredCommonalityRelation that depends on the

membership of an individual in PROPERTY CLASS in combination with the exis-

tence of the relation someRelation, first a relation must be added to every member of

PROPERTY CLASS using the OWL2 hasSelf constraint. Once the relation is estab-

77

lished, one can infer the commonality relation through a simple property chain axiom.

The definition following DL axioms describe the pattern:

PROPERTY CLASS ⊑ ∃addedSelfRelation.Self

addedSelfRelation ◦ someRelation ⊑ inferredCommonalityRelation

An example for applying the pattern to concept SCIENTIFICBOOK and the de-

sired relation citesScientific is given in Figure 4.6. The isScientific relation thereby

constitutes the addedSelfRelation.

Figure 4.6: Property-Class Commonality pattern example

Although the OWL2 EL profile allows for all axioms used in this pattern, most EL

reasoners do not support the Property-Class Commonality pattern due to the missing

implementation of self restrictions or general disallowance of any nominals.

4.3.4 Representative Individual Pattern

Ontology design differs from object-oriented design in respect to what constitutes classes

(concepts) and instances (individuals). While object-oriented design dictates a class for

each object in the modeled domain, ontology design is more flexible. For example, a

78

“Car” can be a concept or individual in an ontology, even when there exists multiple

instances (“Car1”, “Car2”,...) of the object. In order to strengthen this understanding of

ontology design, the Representative Individual pattern suggests the use of one individual,

to represent a group of data. This can be beneficial in a number of scenarios in which

there is no need to model an object as a concept. For example, one could define an

individual AllCountries to represent all possible countries instead of using a disjoint

class. This can have an impact on reasoning results and has to be evaluated carefully, but

is often a suitable alternative.

The example for all countries could be modeled as a relation publishedIn to the

concept COUNTRY (shown with Magazine1):

COUNTRY (CountryA)

COUNTRY (CountryB)

publishedIn(Magazine1, COUNTRY)

It can also be modeled as a a relation to all its individuals (shown in Magazine2):

publishedIn(Magazine2, CountryA)

publishedIn(Magazine2, CountryB)

Following the Representative Individual pattern, this scenario can be converted into a

single individual AllCountries such as (whereby AllCountries can be an individual of

79

COUNTRY to minimize the impact on reasoning results):

COUNTRY (AllCountries)

publishedIn(MagazineX , AllCountries)

Another use of the pattern is the representation of facts that cannot be modeled in the

knowledge representation language, or which are not part of the chosen language profile.

For example, “at least 5 elements” could not be modeled in the OWL2 EL profile (as it

has no support for cardinality restrictions). It is, however, possible to add a relation to an

individual AtLeast5Elements from all individuals, with the corresponding amount of

elements. The idea of encoding semantics in an individual has to be practiced with care,

as undesired side-effects can arise. If possible within the language or profile, a “correct”

modeling is always the preferred solution.

4.3.5 Subclass Disjunction-Like Pattern

Intersections and disjunctions of concepts are a common restriction that are often used to

form new concepts. However, in the OWL2 EL profile, disjunctions are not allowed due to

performance restrictions, which has led to ontology design problems. Nevertheless, it is

still possible to model a union of individuals (e.g. all individuals of a concept A and B to

be part of a concept C). For example, one could define EMPLOY ED as a disjunction

of the concepts PROFESSOR and ASSISTANT , in a university domain. For this

purpose, the Subclass Disjunction-Like pattern simply suggests the use of a subClassOf

relation to replace a unionOf . For the given example, the following definitions can be

80

stated:

EMPLOY ED ≡ PROFESSOR ⊔ ASSISTANT

PROFESSOR(Professor1)

ASSISTANT (Assistant1)

This can be refactored using the Subclass Disjunction-Like pattern through the defi-

nitions:

PROFESSOR ⊑ EMPLOY ED

ASSISTANT ⊑ EMPLOY ED

This results in Professor1 and Assistant1 classified as EMPLOY ED, and is fully

compatible with the OWL2 EL profile. It is easily provable that the new definition of

EMPLOY ED subsumes the original definition. However, the disjunctive information

about PROFESSOR and ASSISTANT is lost. Nevertheless, in case only a union

of individuals (as indicated by Professor1 and Assistant1 in the example) is required,

this can be an acceptable solution.

4.3.6 Subproperty Disjunction-Like Pattern

Similar to the Subclass Disjunction-Like pattern, subproperty relations can be used to

model a union of relations. For example, two properties propA and propB can be made

81

a subproperty of a concept propAOrB:

propA ⊑ propAOrB

propB ⊑ propAOrB

This is especially useful for the new OWL2 hasKey axiom. In OWL2 hasKey

conjunction can be specified easily, hasKey disjunction, however, can only be added

through individual keys. This individual declaration differs slightly from what most pro-

grammers expect under the short circuit evaluation10: While it is clear that for a key

conjunction all keys must be present (and identical) in order to determine whether two

individuals are in fact identical, short circuit evaluation dictates that for a disjunction,

only one of the keys must be present and identical. This is not consistent with separate

hasKey axioms implementation (as each key is required to be present).

Consider the following definition of two individuals and a concept CL:

CL(Indivdual1)

CL(Indivdual2)

propA(Indivdual1, ObjectX)

propB(Indivdual2, ObjectX)

The usual way to model a disjunctive key would be to add two individual keys for

10http://en.wikipedia.org/wiki/Short-circuit evaluation/

82

propA and propB:

Key(CL, propA)

Key(CL, propB)

Ideally, keys could be represented using the OWL2 unionOf axiom, but this is cur-

rently not supported in the OWL2 standard. In order to overcome this limitation, the

Subproperty Disjunction-Like pattern promotes the use of a common superclass property

(instead of the two individual keys) that combines the two properties, which can then be

used as the key for the class CL:

propA ⊑ propAOrB

propB ⊑ propAOrB

Key(CL, propAOrB)

With these definitions in place, Indivdual1 and Indivdual2 can be identified as de-

noting the same entity (sameAs) as expected from a disjunctive key over the two prop-

erties with short circuit evaluation.

4.3.7 Hierarchy Creation Pattern

When parsing large amounts of data efficiently, it is impractical to keep too many ele-

ments in memory. Ideally, elements are directly processed and written to disk. In case

of hierarchical structures within the parsed data, the creation of links between the indi-

viduals is of vast importance. However, the linking of individuals corresponding to a

83

object22314: SomeType

id: Long="22314"

parent_id: Long="24543"

object24543: SomeType

id: Long="24543"

parent_id: Long="23423"

object23423: SomeType

id: Long="23423"

object28843: SomeType

id: Long="28843"

parent_id: Long="23423"

object22365: SomeType

id: Long="22365"

parent_id: Long="..."

Figure 4.7: Hierarchy Creation pattern input

hierarchical structure (e.g. a tree), its root node and a container-class, is not trivial, as

each parsed element only contains the link to a child or parent node (but not a link to all

other individuals). This is shown in Figure 4.7 which visualizes independently parsed

child and root nodes. An application domain for the pattern is NLP.

In order to structure parsed elements and assign a hierarchy class to them, one can first

assign a random class to the root node (node without parent) and then define a concept

CHILDOFTREE to pull any child associations into the class. The following axioms

describe the idea for the tree example (in order of parsing):

TREE ⊑ ∃hasRoo.{Object23423}

CHILDOFTREE ≡ ∃childOf.TREE

CHILDOFTREE ⊑ TREE

TREE(Object23423)

84

childOf(Object22314, Object24543)

childOf(Object28843, Object23423)

childOf(Object24543, Object23423)

The reasoner successively classifies objects as being a CHILDOFTREE until the

complete structure is added. The resulting graph, shown in Figure 4.8, contains all ob-

jects which are part of the structure (the same class TREE).

Figure 4.8: Hierarchy Creation pattern example

The above pattern is especially important, since non-ontological data sources tend to

carry incomplete information, which can originate from poor modeling of an application

or a low quality of data being parsed. In hierarchical data sources modeled using the

Hierarchy Creation pattern, one can easily state knowledge that is applicable throughout

the hierarchical structure. The pattern example models a single tree hierarchy but mul-

tiple hierarchies could be created in parallel in a similar way (e.g. by having multiple

85

1: Entity

1-1: Sub-entity

hashCode: IdentifyingProperty="25425253"

1-2: Sub-entity

hashCode: IdentifyingProperty="45395723"

...

2: Entity

3: Entity

4: Entity

Figure 4.9: Unbound Key pattern input

TREE and CHILDOFTREE concepts).

4.3.8 Unbound Key Pattern

The OWL2 hasKey axiom allows the identification of identical individuals in a concept

with regards to a specified key. The axiom can, for example, be used to state that a social

insurance number (SIN) identifies a person uniquely. In the case of combined keys, a

key conjunction can be specified. The OWA however, leads to the requirement that all

specified keys must match for two individuals to become sameAs. An ontology design

problem therefore arises if individuals with a varying number of keys have to be found as

being identical. For example, to identify a PC by its components, one also has to consider

missing components: two computers without CPUs should still be identified as identical

if all other components are the same. In this case, the Unbound Key pattern suggests the

introduction of an Unbound individual for each of the keys that are unspecified.

The non-ontological input for the pattern is a set of objects with distinct properties

that are interlinked using a varying amount of relations (shown in Figure 4.9). This

common structure can be found in various domains that can be modeled as a graph.

86

Given below are the definitions for the example above including the key properties

hasRAM and hasCPU :

Key(PC, hasRAM, hasCPU)

PC(Comp1)

hasRAM(Comp1, Ram93742)

PC(Comp2)

hasRAM(Comp2, Ram93742)

In order for the reasoner to identify Comp1 and Comp2 as sameAs, the object property

hasCPU has to be set. As suggested by the Unbound Key pattern, a new individual is

introduced for this purpose:

hasCPU(Comp1, UnboundCpu)

hasCPU(Comp2, UnboundCpu)

This models the requirement of varying keys successfully and allows the use of the

OWL2 hasKey axiom to identify similarity for such individuals.

4.3.9 Equivalence Similarity Pattern

The ability of reasoners to classify (build a taxonomy for) large amounts of data presents

itself as a suitable candidate to be applied in the problem space of identifying similar-

ity between objects. The Equivalence Similarity pattern is an alternative to identifying

similarity using the OWL2 hasKey axiom (as shown in the previous section). This is

87

of importance, as most reasoners to this date do not support the hasKey axiom or have

not yet fully implemented it, according to the OWL2 specification. The pattern uses a

oneOf restriction in order to classify all individuals with certain properties p1, p2,... pn

as being the same. The following statements define two individuals Obj1 and Obj2 with

two identical properties that should be identified as sameAs:

p1(Obj1, P ropA)

p2(Obj1, P ropB)

p1(Obj2, P ropA)

p2(Obj2, P ropB)

Figure 4.10: Equivalence Similarity pattern example

The information about which objects are the same is not known a priori; Determining

it (based on the properties of individuals), is the responsibility of the reasoner. In order

for the pattern to classify the two objects as being sameAs, the following definitions

88

need to be added:

OBJ1 ≡ ∃p1.{PropA} ⊓ ∃p2.{PropB}

OBJ1 ⊑ {Obj1}

OBJ2 ≡ ∃p1.{PropA} ⊓ ∃p2.{PropB}

OBJ2 ⊑ {Obj2}

With this definition in place, the two individuals Obj1 and Obj2 are identified as de-

noting the same object (sameAs). In addition to identifying two individuals as the same,

it can be desired to only add a relation between similar individuals. It is sometimes also

not allowed to identify two individuals as being sameAs, as this can have implications

on other parts of the ontology design. In order to accommodate this requirement, the

pattern can simply be modified by adding a value restriction that infers a relation instead

of restricting every individual of the concept to be the same):

OBJ1 ≡ ∃p1.{PropA} ⊓ ∃p2.{PropB}

OBJ1 ⊑ ∃identicalTo.{Obj1}

OBJ2 ≡ ∃p1.{PropA} ⊓ ∃p2.{PropB}

OBJ2 ⊑ ∃identicalTo.{Obj2}

An example of the pattern is shown in Figure 4.10. In this case, Obj1 and Obj2 are

classified as being sameAs.

89

Chapter 5

Ontology Application Model

As much as design patterns are best-practice solutions for the development of an ontol-

ogy, “application models” are proven solutions for a specific application problem space.

As discussed in the previous chapters, the SE-ONTO methodology promotes the develop-

ment of ontologies for, and with an application. However, the methodology is indepen-

dent from the type of the developed application, and no application model is provided.

Similar to content management systems or Wikis (which can be considered application

models for the web), there needs to be application models for ontology-driven appli-

cations in order to ease development and lower the barrier for novice developers. Fur-

thermore, there is a need to incorporate non-ontological data sources as a starting point

for the development of applications. This is motivated through the fact that many data

sources, which are of interest to be shared and processed, are already available in some

(semi-) structured form. Therefore, this chapter introduces an application model for the

SE-ONTO methodology that transforms existing non-ontological data sources incremen-

tally into an ontology (through a mapping task). In contrast to other approaches, which

90

only convert data into an ontology once, the approach repeatedly reads and updates an

ontology with data (which remains primarily stored in a non-ontological source).

For the success of any modern technology, available tools are an important aspect

that should not be overlooked. In order for OWL and ontologies to become an integrated

part of application development, better tool support is needed. The vision that knowl-

edge repositories jointly and seamlessly work together with data storages to provide se-

mantic rich application is far from being solved. The use of application frameworks

that hide some of the complexity of developing such applications is a corner stone for

achieving this goal. Complexity-reduction through frameworks is inspired by the re-

cent development and popularity of web-application frameworks such as the Ruby on

Rails framework1, which advocates tools and conventions to simplify development. Be-

sides application frameworks, tools can also help developers to better comprehend the

used methodology, by becoming an integrated part of development tools and the used

Integrated Development Environment (IDE). Popular programming frameworks, such as

Spring Roo2, offer tight integration with an IDE that allows a simplified and streamlined

development process. One of the major challenges for any application model, therefore,

is the need to integrate various knowledge resources within an IDE in a consistent and

homogeneous representation that is beneficial to developers.

1http://rubyonrails.org/
2http://www.springsource.org/roo/

91

In this chapter, the SE-ADVISOR application model and IDE support are presented.

SE-ADVISOR has the following goals:

• Provide an application model for ontology-driven applications

• Provide an implementation of a framework for an ontology-driven application

model

• Provide support for SE-ONTO and its application model within an IDE

It must be pointed out that the SE-ADVISOR application model, while being applica-

ble to a wide variety of tasks, is only one of many ways ontologies can be incorporated

into applications. Furthermore, SE-ONTO is a generic methodology that is not limited to

the specifics of the SE-ADVISOR application model.

5.1 SE-ADVISOR Application Model

The SE-ADVISOR application model assumes the development of an ontology-driven ap-

plication, in which an ontology is not the primary data source, but rather gets incremen-

tally populated from existing data sources through the use of programming logic (e.g.

through a Java program). It is therefore fundamentally different from other ontology-

driven applications where the user is responsible for adding concepts/individuals/... man-

ually to an ontology (e.g. through an ontology editor). The model further assumes that

the population process is decoupled from the application usage (e.g. time- or event-

triggered). Data is incrementally added to the ontology. A reasoner is used to materialize

any inferences (taking into consideration the nature of OWA) before the current ontology

is provided to the application to be queried. No information is ever written back to the

92

Data

Reasoner

Mapping

Application

Queries

1.

2.

3.

4.

5.

IDE Support

Cache

Figure 5.1: SE-ADVISOR application model

ontology in order to discourage a direct mapping between object-oriented application

design and ontology design. Instead, any data updates are written to the original source,

and find their way back into the ontology through the ontology population.

By separating the ontology design and population from the application (and creating

a query interface for accessing information from the ontology), a clear separation of

concerns is achieved. Consequently, the ontology designer can act independently from

the application developer. The developer must only interact with a query interface and

does not need to know about semantic web technologies. The designer incorporates

responsibilities (originating from user requirements) in the ontology design and provides

results to be queried.

The application model can be broken down into the following individual steps: (1)

An event triggers the data retrieval. (2) This data is then transformed into axioms through

a mapping. (3) The axioms are added to the current ontology representation (persistent or

in-memory storage). (4) An event triggers the reasoner to load and infer information. (5)

The information is materialized (inference results are made explicit) back to the ontology

93

representation. This application model, in which the ontology is constantly modified and

incrementally extended, is shown in Figure 5.1. The data mapping is different from “pop-

ulating” an ontology that usually just refers to adding individuals and relations (ABox).

Instead, the data mapping can add also concepts or other axioms, and is done in a pro-

grammatic way. A Globally Unique Identifier (GUID) module is responsible for creating

unique identifiers for each data element. The mapping thereby is not limited to a direct

relation between data elements and ontology concepts/individuals. It can define one or

more individuals or concepts for every object in an application or group objects together.

For example, an object oriented design of an inventory system will dictate that an object

exists for every single item, while the same data is represented as a single individual in

the ontology.

The introduced application model is supported by a framework which is the SE-

ADVISOR application server. The server can execute tasks through time-triggered events

and in a context-aware manner. “Context-awareness” originated as a term, which sought

to deal with otherwise static linking changes in computer system environments. Schilit

et al. [SAW94] introduced the term context-awareness in the ubiquitous computing do-

main. Two important aspects of context-awareness are the “location of use” and “used

resources”.

Listing 5.1: Task interface for SE-ADVISOR application server

public void execute (JobExecut ionContext con tex t) throws JobExecut ionExcept ion ;

public void p e r s i s t (OWLOntology ont) throws OWLOntologyStorageException ;

In the SE-ADVISOR application server, mappings are provided as Java libraries that

conform to a task interface, as shown in Listing 5.1. The task context includes informa-

tion about the location of data that has changed since the last mapping process (“location

94

of use”) and requires an update, as well as a split of data to be processed in case mul-

tiple mapping tasks are running in parallel. It also provides a reference to the ontology

storage (“used resources”). It is the server’s responsibility to execute tasks, store and

reschedule them when needed. The server can write (persist) the ontology produced

by a mapping task to the ontology storage. As a secondary role, the server also facilitates

the storage of queries (e.g. SPARQL queries). The query storage assigns a unique ID

to every query that can be called by the application. Query results are cached until the

next task is triggered, in order to improve query performance. This operation is safe, as

modifications to the ontology can only be made through the defined tasks.

Taking into consideration the distributed work environment in which most systems

are deployed, a client-server architecture has been selected for the SE-ADVISOR applica-

tion model. In this architecture clients communicate over a network with the application

server. Communication between the clients and server is realized as a Representational

State Transfer (REST) web-service. The server application is deployed on a Tomcat3

server and secured through the use of Hypertext Transfer Protocol Secure (HTTPS).

The SE-ADVISOR differs from other semantic web frameworks, such as [BKvH02],

as it defines an explicit data-flow. Mapping and reasoning tasks are executed based on

time- or event-triggers, which limits the application model to problems that do not re-

quire “real-time” reasoning. Furthermore, data modified by the application is not written

directly to the ontology but instead, is updated in its original source (and written back

into the ontology through a mapping task). This requires that the mapping task is able to

identify what parts of the data elements have changed since the last run (a “versioned”

3http://tomcat.apache.org/tomcat-7.0-doc/

95

data source).

5.2 SE-ADVISOR IDE Support

The research community has realized that software engineers are tired of switching be-

tween environments in order to deal with the different sources of required information

[Sch02]. There is an ongoing effort in open-source development environments, to pro-

vide extensible plug-in architectures that integrate tools and artifacts. The idea of pro-

viding tool support with the SE-ADVISOR application model is rooted in the hypothesis

that such an environment has the potential to increase the productivity of software engi-

neers, and therefore, to reduce the overhead associated with learning a new methodology.

At the same time, guidance provided by such an environment should benefit the overall

quality of the produced software.

Most of the existing work in IDE support for application development has focused on

agile methodologies. The Mylyn (former “Mylar”) project4 integrates users, task and ar-

tifacts on an abstract level. The artifacts considered are bug-trackers and revision-control

systems, which are connected by providing a common editing user interface. Spring

Roo5 and the Spring Source Tool Suite6 provide an IDE for rapid web-development. Due

to its extensibility, Eclipse7 has quickly become the most popular Java IDE used in the

research community (and industry), reflecting the current state of the art of available tool

support. A recent survey [Ecl09] among 1500 developers showed that 60% of all Java

developers use Eclipse as their primary IDE. The SE-ADVISOR support tools have been

4http://www.eclipse.org/mylyn/
5http://www.springsource.org/roo/
6http://www.springsource.com/developer/sts/
7http://www.eclipse.org/

96

Figure 5.2: SE-ADVISOR in the Eclipse ecosystem

implemented as an Eclipse plug-in for the following reasons:

Accessibility: Eclipse is an open-source project with a large, established and still grow-

ing community. Its development is supported by multiple companies (such as IBM

and Borland) and it is used in countless commercial and non-commercial projects,

as well as in most universities.

Extensibility: Although Eclipse is known as an IDE, the Eclipse platform can be seen as

a micro-kernel, offering the possibility to load and combine plug-ins. The Eclipse

IDE itself is only a set of plug-ins extending the framework with a Java editor, com-

piler, etc. Eclipse supports both, the extension of the IDE, as well as the creation

of stand-alone programs. The Eclipse foundation has the goal to actively support

the rich ecosystem of Eclipse plug-ins that has evolved.

By integrating the SE-ADVISOR application model and SE-ONTO methodology in

an IDE, the initial burden associated with using a new technology and following a new

methodology is lowered. The following three goals have been addressed:

• Process guidance within the IDE

97

Figure 5.3: SE-ADVISOR query management and process guidance

• OWL2 profile checking for ontology design

• Java templates for ontology mapping tasks

• Query management

Figure 5.2 shows the integration of the SE-ADVISOR support tools within the Ecli-

pse ecosystem. SE-ADVISOR builds upon the Eclipse platform and the Standard Widget

Toolkit (SWT) and interacts with the Java Development Tools (JDT) to extend the Java

editor’s functionality. Three plug-ins have been developed: (1) A query storage plug-in

that can display queries stored on the SE-ADVISOR application server. (2) A process

plug-in that establishes the process context, by guiding the user through the SE-ONTO

activities, and (3) a query execution plug-in that can run parameterized SPARQL queries

and display results from the server.

98

The different plug-ins are shown in Figure 5.3. Configuration and choice are re-

placed by established best practice setups and conventions. The SE-ADVISOR tool sup-

port provides an ontology development framework, with a set of selected components,

to encourage a fast project kick-off. Figure 5.4 shows a new project dialog, which auto-

matically creates a Java project, with connector classes and interface definitions, for the

SE-ADVISOR application server. Further, the following utility libraries are provided for

each new project:

• CXF8 - A REST web-service communication framework used to connect to the SE-

ADVISOR application server. REST is a software architecture for stateless client-

server communication and is used as a simple and intuitive method to realize well-

defined create, read, update and delete (CRUD) operations through the standard

HTTP protocol.

• OWLAPI9 - An interface library used to interact with OWL ontologies. The Applica-

tion Programming Interface (API) supports creating, loading, changing and saving

ontologies whilst maintaining compliance with OWL2.

The provided libraries allow for a fast development of mappings which can be de-

ployed to the SE-ADVISOR application server. Each mapping is compiled and packaged

as a Java library (jar file), and transferred to the server where it is dynamically loaded

by the server (a plug-in architecture, similar to the one of Eclipse). In regards to the

ontology design, the SE-ONTO methodology is displayed as an interactive guide through

the process plug-in. The creation of ontology files within Eclipse is thereby outside the

8http://cxf.apache.org/
9http://owlapi.sourceforge.net/

99

Figure 5.4: SE-ADVISOR project template and login

scope of the SE-ADVISOR. Ontology files can, however, be managed within Eclipse, us-

ing plug-ins from the open source NeOn toolkit10, which allows editing and visualizing

OWL files.

SE-ADVISOR also makes use of the new OWL2 profiles in order to constrain a devel-

oper to a certain complexity. This has been suggested by Horridge et al. [HB09] and is

easily realized using the OWL API (OWLAPI) library (also available online11). Once the

OWL2 profile is set in the SE-ADVISOR configuration, it is enforced upon check-in of

the ontology.

10http://neon-toolkit.org/
11http://owl.cs.manchester.ac.uk/validator/

100

Chapter 6

Case Studies

In this chapter, the main contributions of this thesis, the ontology design methodology

(Chapter 3), reasoning design patterns (Chapter 4) and the application model (Chapter 5),

are evaluated through performance tests and multiple case studies. For each of these

studies, one or more reasoning patterns are used, which have been implemented using the

SE-ONTO methodology. Where applicable, the SE-ADVISOR application model is used

to guide the application design. The purpose of this approach is two-fold: On the one

hand, ontology design patterns are evaluated in terms of their performance using an array

of semantic web reasoners (Section 6.1). On the other hand, the SE-ONTO methodology

has been applied to concrete projects in order to validate its ability to produce problem-

solving ontologies (Section 6.2 and following).

In regards to the case studies, the following settings have been used: An initial case

study (see Section 6.2) has been carried out in a graduate software maintenance course.

The main goal of this case study was the validation of the SE-ONTO methodology in

regards to its feasibility. Further, two case studies have been carried out by the Ambi-

101

ent Software Evolution Group (ASEG) research lab which consists of 3 Ph.D. (including

the author) and 5 master’s students who are familiar with ontology development. The

first of those two case studies targets the analysis of bug quality and the problem of bug

triage for bug-trackers (see Section 6.3). It had the goal to test the SE-ADVISOR applica-

tion model and identify whether the SE-ONTO design patterns can be incorporated into

ontology design and serve as re-usable building blocks. The other implements a clone

detection system for source code (see Section 6.4) and had the goal to investigate the

influence of decisions by different knowledge engineers (using SE-ONTO) on the final

ontology design, as well as the comparison of ontology-driven application development

to traditionally implemented applications. It must be noted that the outcome of these two

case studies also resulted in contributions in their respective scientific domains [SRC08],

[SR10], [SRC11], [Sch11].

6.1 Reasoning Pattern Performance

The performance of the introduced ontology design reasoning patterns (as defined in

Chapter 4) is an important factor in the modeling of ontologies. During the design of

an ontology, specific patterns can be selected due to their effect on an application’s run-

time performance, or a specific semantic web reasoner can be selected for the application

because of a used pattern. Furthermore, the patterns also provide a baseline for evaluat-

ing different semantic web reasoners. A simple Java program can create ontologies with

increasing complexity. Each ontology comes in two versions: One pattern implementa-

tion and one comparable baseline version (which models the same problem without the

pattern in an ad-hoc manner). These two versions can then be compared in order to de-

102

Name License Type Language Algorithm Expressiveness

JFact LGPL Java Tableau DL

Fact++ LGPL C++ Tableau DL

HermiT LGPL Java Hyper-Tableau DL

Pellet AGPL/Commercial Java Tableau EL/DL

REL/TrOWL AGPL/Commercial Java CEL EL

Table 6.1: Used reasoners and their respective details

termine the performance impact of the pattern on the ontology design. At each point, the

same amount of individuals is produced in order to allow for an evaluation of the actual

impact of the pattern on the reasoning time. The runtime behavior of patterns and their

ad-hoc (baseline) implementation is expected to be similar. Derivations from this behav-

ior indicate a pattern that introduces an unnecessary complexity overhead and therefore

an undesired side effect. This performance evaluation, together with the analysis of the

re-usability and applicability of patterns in the following sections, determines the validity

of the introduced patterns.

For the performance evaluation, several state of the art semantic web reasoners have

been selected. A 2010 survey by Mishra et al. [MK10] has identified the following rea-

soners as relevant “modern” reasoners: DLP, FaCT++, RacerPro, Pellet, CEL, Cerebra

Engine, QuOnto, KAON2 and HermiT. The semantic web reasoners’ landscape is mov-

ing at a fast pace, and in 2011, the development of the following reasoners has stalled

or has been discontinued: Cerebra Engine (no longer available as the company has been

acquired by Software AG1), DLP (last development activity in 20012) and KAON2 (last

updated in 20083). Active development was an important selection criterion for the eval-

1http://www.softwareag.com/
2http://ect.bell-labs.com/who/pfps/dlp/
3http://kaon2.semanticweb.org/

103

Ontology Loading

Reasoning (ABox and TBox)

Saving Ontology

Class Axioms

Object Property Axioms

 ...

Reasoner Initialization

Performance

Measurement

Figure 6.1: Performance measurements for evaluating patterns

uation, as OWL2 constructs are being used in most patterns and support for this latest

version of the ontology language was required. QuOnto4 only supports the OWL2 QL

profile and therefore is not applicable to the patterns that are specified as part of the

OWL2 EL profile. It therefore has been excluded from the tests. The remaining reasoners

have been integrated in an evaluation environment based on the OWLAPI 3.0. RacerPro

currently does not support OWLAPI 3.0 bindings and the available OWLAPI 2.2 bindings

are insufficient due to the lack of support for the materialization of inference results.

Therefore, it has also not been included in the evaluation.

Three implementations for CEL, namely the original LISP implementation5, the Java

reimplementation6 and the newer (optimized) implementation REL/TrOWL7, as well as

two implementations for FaCT++ (the original C++ implementation8 and a Java port9)

have been considered, and were evaluated in an initial step. As stated by Weithoner et al.

4http://www.dis.uniroma1.it/quonto/
5http://code.google.com/p/cel/
6http://jcel.sourceforge.net/
7http://trowl.eu/
8http://code.google.com/p/factplusplus/
9http://jfact.sourceforge.net/

104

[WLLB06], the basic requirements for benchmarking an ABox/TBox are that “all rea-

soning results from any benchmark should always be checked for soundness and com-

pleteness [and] we suggest to start every ABox benchmarking session with a rigorous

check of the overall reasoning capabilities of the involved reasoners”. This check has

led to discarding the two CEL implementations for an incomplete implementation of the

OWL2 EL profile, in particular because they do not support ABox reasoning or advanced

OWL2 features, such as property chains. Only REL/TrOWL is conforming to the OWL2

EL profile and therefore has been selected as an representative CEL-based reasoner. The

remaining reasoners with acceptable results for OWL2 EL/DL (shown in Table 6.1) are:

REL/TrOWL (Version 0.7), JFact (Version 0.7), FaCT++ (Version 1.5.2), HermiT10 (Ver-

sion 1.3.4) and Pellet11 (Version 2.2.2). Except for REL/TrOWL which uses the CEL

algorithm, all reasoners use a tableau-based reasoning algorithm (with HermiT using a

specific hypertableau implementation).

All experiments have been performed on a Windows machine with the maximum

memory allowed (by the virtual machine), set to 2GB. Values ought to be seen holding

an inaccuracy of ±10ms due to the limitation of the system clock and scheduling of the

operating system. Results exceeding the memory limit are set to MEM. Incomplete results

(i.e. not all object properties were inferred) are set to INC. Results that exceed the time

limit of 600s are marked with >600s. Each test has been repeated three times whereby

the best value, rounded to one digit after the comma, is selected. As with other evalua-

tions, it must be noted that results always depend on the underlying implementations, and

can only represent an approximate guidance into how patterns affect the performance of

10http://hermit-reasoner.com/
11http://clarkparsia.com/pellet/

105

Limited Transitivity

10 100 1000

Reasoner Baseline Pattern Baseline Pattern Baseline Pattern

JFact 1.8s 2.2s 45.2s 226.5s >600.0s >600.0s

FaCT++ 0.5s 0.5s 11.3s 53.9s >600.0s >600.0s

HermiT 1.4s 1.5s 5.5s 5.8s 33.3s 34.2s

Pellet 0.7s 0.7s 1.6s 2.1s 6.9s 7.6s

REL/TrOWL 0.4s 0.4s 1.1s 1.6s 5.2s 7.6s

Table 6.2: Limited Transitivity pattern performance

different reasoners; no restrictions can be set on what specific steps are executed inter-

nally by a reasoner. While the saved end-result corresponds to a complete materialized

ontology (including all inferences), reasoners might, for example, optimize/index the on-

tology to improve query performance. Figure 6.1 shows the different steps taken for the

evaluation: reasoner initialization, ontology loading, reasoning (classifyng the TBox, re-

alizing the ABox, etc) and saving the ontology with the materialized inferences to disk

for inspection. For the evaluation, loading and reasoning times have been combined, and

adjusted by the initialization time for the different reasoners.

6.1.1 Limited Transitivity Pattern

The Limited Transitivity pattern replaces transitivity by a combination of property chains.

While it is clear from the example in Section 4.3 that this can limit the amount of tran-

sitive relations to be inferred and therefore can speed up an application, it is unclear

how the pattern compares against the same amount of relations created through transi-

tive relationships. Therefore, in this evaluation, the amount of individuals is gradually

increased for both transitive relations (in the baseline ontology) and the property chains

in the Limited Transitivity pattern ontology.

106

Restriction Generalization

10 100 1000

Reasoner Baseline Pattern Baseline Pattern Baseline Pattern

JFact 0.5s 0.7s 3.2s 3.9s 330.0s 530.1s

FaCT++ 0.2s 0.2s 0.3s 0.3s 73.3s 73.7s

HermiT 0.2s 0.3s 1.0s 1.1s 21.2s 65.0s

Pellet 0.6s 0.7s 1.3s 163.0s 22.8s >600.0s

REL/TrOWL 0.3s 0.3s 0.6s 0.7s 3.6s 8.2s

Table 6.3: Restriction Generalization pattern performance

As shown in Table 6.2, the pattern performs well on REL/TrOWL as well as Pellet

(which seems to be optimized for this type of inference). In contrast, JFact and FaCT++

do not scale well for this property chain and therefore the pattern should only be used

with reasoners that are optimized for the OWL2 EL profile. It is, however, a valid ontol-

ogy design pattern that can perform well.

6.1.2 Restriction Generalization Pattern

In this test, the baseline ontology contains a hasV alue restriction. The Restriction Gen-

eralization pattern transform such a restriction into a someV aluesFrom restriction with

a new concept. As shown in Table 6.3, Pellet does not scale well to larger ontologies

(number of concepts and individuals). In contrast, FaCT++ and HermiT perform much

better, handling significantly larger ontologies.

As the Restriction Generalization pattern remains in the OWL2 EL profile, it can be

handled by the CEL algorithm which shows a remarkable performance improvement for

larger ontologies. REL/TrOWL is an order of magnitude faster than any tableau-based

algorithms. The introduction of a new concept and the someV aluesFrom restriction

slows down reasoning results depending on the used reasoner. Applying the Restric-

107

Property-Class Commonality

10 100 1000

Reasoner Baseline Pattern Baseline Pattern Baseline Pattern

JFact 0.5s 0.6s 1.7s 2.0s 190.0s 289.3s

FaCT++ 0.3s 0.3s 0.6s 0.7s 50.s8 74.3s

HermiT 0.4s 0.5s 0.6s 0.6s 7.3s 9.4s

Pellet 0.5s 0.5s 0.6s 0.6s 2.8s 4.2s

REL/TrOWL 0.3s INC 0.6s INC 2.9s INC

Table 6.4: Property-Class Commonality pattern performance

tion Generalization pattern therefore has to be weighed against restricting reasoning to

the OWL2 EL profile (as opposed to the OWL2 DL profile). When using an OWL2 DL

reasoner the pattern should only be applied to a low number of individuals.

6.1.3 Property-Class Commonality Pattern

The Property-Class Commonality pattern adds a hasSelf restriction to an ontology,

which allows the inference of a new object property. In order to evaluate the impact

of the added restriction, the pattern is compared against an ontology where the new ob-

ject property is already present (and no inference is needed). It is therefore expected

to see a linear increase in reasoning time for the baseline version of the ontology. As

hasSelf is not implemented in REL/TrOWL and therefore yields incomplete results,

only tableau-based reasoners were compared in this evaluation.

In general, the run-time complexity of the pattern (shown in Table 6.4) is increasing

as expected, except for the JFact and FaCT++ reasoners, which perform poorly for larger

loads of object properties (with and without the hasSelf restriction and reasoning). This

indicates, that the FaCT family of reasoners might not be well-suited when one has to

deal with a large amount of interlinked data. The pattern performs well on both tableau-

108

Hierarchy Creation

10 100 1000

Reasoner Baseline Pattern Baseline Pattern Baseline Pattern

JFact 0.3s 0.4s 0.8s 1.3s 4.2s 25.8s

FaCT++ 0.2s 0.2s 0.3s 0.4s 1.2s 6.4s

HermiT 0.4s 0.4s 0.7s 0.7s 1.4s 1.5s

Pellet 0.2s 0.3s 0.4s 0.6s 0.9s 4.4s

REL/TrOWL 0.2s 0.2s 0.3s 0.3s 0.8s 0.8s

Table 6.5: Hierarchy Creation pattern performance

as well as CEL-based reasoners and therefore is a valid ontology design pattern.

6.1.4 Hierarchy Creation Pattern

Reasoning in the Hierarchy Creation pattern involves two steps: (1) Identifying that an

individual is part of a hierarchy (concept) through a someV aluesFrom restriction. (2)

Identifying recursively that another individual is part of the same hierarchy.

In contrast to the Restriction Generalization pattern, a single someV aluesFrom and

hasV alue restriction is “executed” multiple times on different individuals (instead of

introducing multiple restrictions). It is therefore of interest to evaluate the impact of this

“recursive” classification on the reasoning performance. The pattern is compared against

a baseline ontology in which individuals are asserted to be part of a hierarchy (and no

reasoning is required).

Results of the performance analysis are shown in Table 6.5. The pattern does not have

any major negative effect on the run-time performance of HermiT and REL/TrOWL.

Although the CEL-based REL/TrOWL implementation is slightly faster, it is overall on

par with the hypertableau-based HermiT. JFact, FaCT++ and Pellet do not perform as

well and the pattern should be applied with care when selecting those reasoners.

109

6.2 Software Maintenance Case Study

This initial case study was carried out in a graduate software maintenance course set-

ting (with a total of 18 students) that had been given an introduction into Knowledge

Engineering, and the development of ontology-driven applications, using the SE-ONTO

methodology. The students were largely unfamiliar with ontologies at the time of the

course and only a short introduction into ontologies and ontology design patterns was

possible. The following was described to the students:

• SE-ONTO requirements analysis

- Noun and adjectives analysis

- Entity analysis diagram

- Entity refinement

• SE-ONTO ontology development

- Ontologies as a form of knowledge modeling (subject:predicate:object)

- Outline of patterns and inference results through reasoning

The SE-ADVISOR application model was unfinished and thus not part of the evalua-

tion. The aim of the case study was to expose students to the requirements analysis phase

of the SE-ONTO methodology, and gather initial data on the feasibility of the SE-ONTO

ontology development phase. In order to evaluate SE-ONTO, the following quality crite-

ria, which are inspired by general Software Engineering quality criteria (as discussed in

[ISO01] and [Hoy01]), were selected:

• Thoroughness - Are different problems solvable using the methodology?

110

• Reliability - Do different users of the methodology reach the same (or similar)

goal?

• Effectiveness - Can the methodology support the knowledge engineer in building

an ontology (connecting the dots between requirements and design)?

• Comprehensibility - Are the individual steps in the methodology well explained

and complete?

For this experiment, students were split into groups that had to perform the following

assignment: “Develop a system that supports the IEEE maintenance process”. Groups

were initially provided with a set of user stories. This is in agreement with the SE-ONTO

methodology that starts with the collection of user stories with a customer. The following

is an excerpt from the list of user stories:

“As a user, I want to know the type of maintenance being performed.

There exists corrective maintenance, adaptive maintenance as well as per-

fective and emergency maintenance. ... As an administrator, I want to see

all maintainers working on a project. ... As a user, I want to see all methods

affected by a commit in the revision system. A method is part of a class. ...

As a user, I want to identify all methods that invoke another method (through

3 levels). ...”

The case study included an anonymous questionnaire, which was submitted online

by each of the students, in order to address the evaluation of the defined quality criteria.

The participants had to answer questions in the following categories: thoroughness (T),

reliability (R), effectiveness (E) and comprehensibility (C). As some students did not

111

follow the methodology, the results from the questionnaire were split: Questions marked

with * were answered by those students that were using the SE-ONTO methodology.

Question marked with Qa could be answered with “fully disagree” (FD), “somehow dis-

agree” (SD), “somehow agree” (SA), “fully agree” (FA) and “cannot say” (NN). Ques-

tion marked with Qb could be answered with “yes” or “no”. The following questions

were asked:

• T0a. Do you think there is a need for a detailed methodology in building an

ontology-driven application?

• T1a*. Do you think the provided patterns are sufficient to model the application

problem?

• T2a*. Do you think that additional ontology design patterns could be specified?

• R0b. Do you think there exist other solutions that are better suited to the specified

problem? If yes, what kind of solutions?

• R1b*. Did you at any point feel you could have made a different choice in following

the steps of the methodology?

• E0a. Did you find the application was built in a fast and straight-forward way?

• E1a*. Did you find the methodology helpful in transforming the requirements into

an application?

• C0a*. Did you find the individual steps in the methodology well explained and

complete?

112

T0a R0b E0a

0

50

100

P
er

ce
n

t
(%

)

T0a* T1a* T2a* R0b* R1b* R2b* E0a* E1a* C0a*

0

50

100

P
er

ce
n

t
(%

)

Fully Disagree/No — SD — NN — SA — Fully Agree/Yes

Figure 6.2: Software maintenance case study results

The collected data from the questionnaires is shown in Figure 6.2. Results from the

study show a consent on the need for a detailed methodology (T0), which was answered

“fully agree” by 89%*/67% of the participants. The answers to T1 show that the provided

patterns were not regarded as sufficient (44% answered “somehow disagree”), which is

explainable by the preliminary nature of the study that did not include many details on

patterns. However, most participants agreed on the possibility that more patterns could

(and should) be specified (T2). R0 was specifically encouraging as most participants sug-

gested an ontological approach as a good solution for the specified problem (89%*/78%

answered “yes”). R2 indicates that SE-ONTO is well-defined and has clear instructions;

although students noted that “the selection of patterns is left up to the user, which can

result in difficulties”. This is also reflected in C0 that most people (56%) answered with

“cannot say”. E0 shows a slightly lower satisfaction of users that employed the SE-ONTO

113

methodology (44% versus 67%), which can be attributed to the overhead of trying to ap-

ply an unfamiliar methodology. It is nevertheless a value that, together with question E1

(78%), can be seen as a positive indication for the effectiveness of SE-ONTO.

Although participants could only evaluate part of SE-ONTO, there was an overall

consensus that a methodological approach (like the SE-ONTO methodology) is needed

for application-specific ontology design. In the following sections, more complex ap-

plication problems are tackled, and the ontology development process of the SE-ONTO

methodology is further evaluated.

6.3 Bug Quality and Triage Case Study

In this section, a case study, which was performed in conjunction with the Defence Re-

search and Development Canada (DRDC), is presented. The DRDC thereby acted as a

customer for a system, which had the goal of identifying bug quality and facilitate bug

triage. The system was developed using the SE-ONTO methodology by two students of

the ASEG research lab. The application proposed by the DRDC was selected as a case

study since it fits the SE-ADVISOR application model (no real-time reasoning is used

and non-ontological data can be read incrementally). Results from the case study have

been published in the International Workshop on Semantic Web Enabled Software Engi-

neering [SRC08] and as an invited book chapter [SR10].

The following sections provide a short introduction into the research field of bug-

trackers, bug quality and triage before describing the ontology design and implementa-

tion aspects of the case study. The case study description finishes with a validation of the

achieved results.

114

6.3.1 Background

A bug-tracker represents a repository for reporting and retrieving error reports. Bug-

trackers store error reports in a structured form and offer advanced means to search within

them. While the original purpose of bug-tracking-systems has been to manage bug re-

ports, their usage meanwhile has shifted to include all kinds of data such as: feature

requests, improvements and general tasks [ZK02]. Due to their more general usage, bug

trackers are nowadays more appropriately referred to as issue-trackers. Key questions of

the research community in the area of issue-trackers are:

• How do we know what issue/bug to fix first?

• Who should we assign an issue/bug to (bug triage)?

• What information can be mined from issues/bugs?

Existing work on analyzing bug reports has shown that many bug reports contain in-

valid or duplicate information [AHM05]. For the remaining ones, a significant portion

tends to be of low quality [ZBPS09]. As a result, many of these bug reports end up

being treated in an untimely or delayed manner [BPZK08]. Providing an automated or

semi-automated approach to evaluate the quality of bug reports can provide an imme-

diate added benefit to organizations, which often have to deal with a large number of

bug reports. More recently, there has been work on bug reporting systems that can ex-

tract information from written reports through the means of text mining [BJS+08]. Text

mining (also referred to as “knowledge mining”) corresponds to the process of deriv-

ing non-trivial, high quality information from unstructured text that is typically derived

through the division of patterns and trends through means such as statistical pattern learn-

115

Quality

FixFirst

SomeItemization

GroupOfBugs

HighReproducibility

AtLeast2TimeClauses

Bug

GoodQuality

SelectionDecision

AverageQuality

GoodQuality
VeryGoodQuality

BadQuality

VeryBadQuality

Criteria

HighCertainty
...

HighReproducibility

SimilarBug

Bug

AssignedUser

Figure 6.3: Entity analysis diagram for bug quality case study

ing [FS06]. Unlike Information Retrieval (IR) systems [BYRN99], text mining does not

simply return documents pertaining to a query, but rather attempts to obtain semantic in-

formation from the documents using techniques from NLP and AI [MJ08]. Text entered

by users remains a primary source to locate and eliminate errors in a system [ZZWD05].

It is therefore of interest to analyze such text in order to identify bug report quality. Qual-

ity criteria (such as focus, reproducibility, etc.) can then be used to guide a maintainer in

selecting the next bug to fix. Additionally, bugs that share similar named-entities can be

identified as being similar to each other, in order to facilitate the detection of duplicate

entries. A bug that is similar to an already fixed one can be suggested to be assigned to

the same maintainer (bug triage).

116

6.3.2 Ontology Design

The ontology design phase of the case study was implemented by two members of the

ASEG research lab familiar with ontology development. In the following, the ontology

design process (using the SE-ONTO methodology and spanning across four iterations)

is described in detail. The SE-ADVISOR application model and server were used to

develop, test and deploy the application.

Iteration 0

In a first step, user stories were selected as being realized through application logic or

through ontology design (as the ontology’s responsibility). Most of the NLP related tasks,

such as named-entity detection and identification of textual quality, were selected to be

realized in application logic. The following are excerpts of the user stories created for

the application together with the DRDC, which show some of the relevant user stories that

were selected as the ontology’s responsibility:

“... (#2) As a user, I need to see what groups of bugs exist, in order to fix

one first. The program must be able to identify groups of bugs (parent/child

relationship)... (#5) As a user, I can display bugs in four qualities (very good,

good, average, poor and very poor) to make a selection decision. A very

good quality bug has certain criteria such as high certainty, high focus, high

reproducibility and high observability. ... (#6) As a user, I want to identify

bugs with high reproducibility. A bug with high reproducibility uses at least

two time-clauses or has some itemization. ... (#7) As a user, I should be

assigned a bug, if I have fixed a similar one. A similar bug is a maximum of

117

two levels of similarity away. ...”

Figure 6.3 shows the created entity analysis diagram (for the selected user stories)

that followed the noun and adjectives analysis. Each user story was further analyzed and

refined, and new vocabulary was added to the diagram when needed. The refinement,

partly shown in Listing 6.1, helped to clarify that there exists multiple instances for

certain entities (e.g. Bug or TimeClause). The refined user stories also formed the

basis for the unit tests that were performed later during the development. The refinement

tends to produce verifiable rules which also could be maintained in an expert system shell

but this was omitted to not complicate the case study.

Listing 6.1: Bug quality case study entity refinement

I f Bug1 has AtLeast2TimeClauses and SomeItemizat ion

then i t has HighReproduceab i l i t y

I f Bug3 has TimeClause1 and TimeClause2 and Bug2 has the same

then they are Simi larBug

I f Bug4 has HighReproduceab i l i t y and HighCer ta in ty and HighFocus and H ighObervab i l i t y

then i t i s VeryGoodQuality

I f Bug1 i s a c h i l d o f Bug3

then they are pa r t o f the same GroupOfBugs3

. . .

Iteration 1

In the first iteration, the user story #7 (with SimilarBug, AssignedUser and Bug)

was selected to be formalized. The refined user story already indicated that bugs should

be represented as individuals during the ontology design. The goal for the user story

was identified as “detecting similar bugs”. Based on the SE-ONTO methodology, a de-

sign pattern was selected to model this application goal. In this case, the Equivalence

118

Similarity pattern was selected, as it allows to add a similarity relation between different

individuals. This resulted in the following definitions (shown here for two bugs):

BUG1 ≡ HAS2PARTS ⊓ ∃hasPart.{T imeClause1} ⊓

∃hasPart.{Itemization1}

BUG1 ⊑ ∃similarTo.{Bug1}

BUG2 ≡ HAS2PARTS ⊓ ∃hasPart.{T imeClause1} ⊓

∃hasPart.{Itemization1}

BUG2 ⊑ ∃similarTo.{Bug2}

HAS2PARTS(Bug1)

HAS2PARTS(Bug2)

Once similar bugs were connected through this relation, the AssignedUser could be

modeled as an object property that is “moved” along the relation using a property chain

axiom:

similarTo ◦ assignedTo ⊑ assignedTo

assignedTo(Bug2, User152452)

The resulting ontology design modeled most parts of the user story, except the part of

task descriptions which mentions “two levels of similarity”. As suggested by SE-ONTO,

another design pattern was searched and applied. In this case, the Limited Transitiv-

ity pattern was used (as it can model levels using the existing similarity relation). The

119

similarTo relation was refactored into similarToLvl0 and the following definitions

were added to automatically infer the level of similarity through the reasoner:

similarToLvl0 ⊑ similarTo

similarToLvl1 ⊑ similarTo

similarToLvl0 ◦ similarToLvl0 ⊑ similarToLvl1

The newly refactored model successfully captured all the requirements from the user

story and completed the design iteration. The formalized statements were cast into a

mapping task and deployed to the SE-ADVISOR application server together with test

cases.

Iteration 2

As part of the next iteration, user story #2 (with entities GroupOfBugs, Bug and

FixFirst) was selected. Again, SE-ONTO suggested the identification of an appli-

cable pattern. The description “must be able to identify groups of bugs (parent/child

relationship)” was interpreted as a hierarchy and consequently the Hierarchy Creation

pattern was selected. As a concept for each possible (bug) group was already present,

the following definitions from the pattern were merged with the ontology (adding a new

concept per bug that acts as the hierarchy root):

BUG1CHILD ≡ ∃childOf.BUG1

BUG1CHILD ⊑ ∃fixF irst.{Bug1}

BUG2CHILD ≡ ∃childOf.BUG2

120

BUG2CHILD ⊑ ∃fixF irst.{Bug2}

With this definition, every child of a bug is also part of the same GroupOfBugs when

childOf relations are added (and also inherits the similarTo relation based on previ-

ous definitions). This facilitated the modeling of the “group requirement” of the user

story. Statements were again cast into a mapping task and deployed to the SE-ADVISOR

application server together with test cases.

Iteration 3

For the third iteration, user story #6 (with the entities HighReproducability as well

as SomeItemization and AtLeast2TimeClauses, etc.) was formalized. The

term SomeItemization can be designed by refactoring the ontology to differentiate

the hasPart property. The object property was split into multiple subproperties that are

called hasItemization, hasT imeClause, etc. The term AtLeast2TimeClauses

could be modeled in the ontology using OWL DL, but based on the possible large number

of bugs added to the system (and considering the performance analysis from Section 6.1),

it was decided to stay within the OWL2 EL profile. Therefore, the Representative Indi-

vidual pattern was selected and the responsibility of identifying a bug as having at least

2 time clauses (AtLeast2TimeClauses) was transferred to the application logic.

The application logic has to add X individuals and relations in the form hasAtLeast

2T imeClauses, 3T imeClauses, etc., depending on the number of time clauses de-

tected, yet bound by a user-definable maximum. The OWL2 EL profile also disallows ob-

ject unions. Therefore, the Subclass Disjunction-Like pattern had to be applied to model

the sentence “A bug with high reproducibility uses at least two time-clauses or has some

121

itemization”. Although, no concept disjunction is possible within the OWL EL profile, the

Subclass Disjunction-Like pattern allows for the classification of two individuals under

the same “union concept” (in the following HIGHREPRODUCABILITY) as shown

in the following exemplifying statements that group the NLP properties hasItemization

and hasT imeClause together:

hasItemization ⊑ hasPart

hasT imeClause ⊑ hasPart

SOMEITEMIZATION ≡ ∃hasItemization.⊤

SOMEITEMIZATION ⊑ HIGHREPRODUCABILITY

ATLEAST2TIMECLAUSES ≡ ∃hasAtLeast.{2T imeClauses}

ATLEAST2TIMECLAUSES ⊑ HIGHREPRODUCABILITY

These definitions, together with additional definitions for certainty, focus and observabil-

ity (as described in the following section), capture all knowledge described by the user

story and thus concluded the third design iteration.

Iteration 4

During a final design iteration, the definitions for VeryGoodQuality, as well as

GoodQuality, etc. from user story #5 were added as disjoint concepts of their re-

spective criteria concepts:

V ERY GOODQUALITY ≡ HIGHREPRODUCABILITY ⊓

HIGHCERTAINTY ⊓ ...

122

The fourth iterations successfully transformed the supplied user stories to a complete

ontology design by applying the SE-ONTO methodology. By passing all unit tests on the

application server, the SE-ONTO ontology design and development phase concluded.

Summary

In summary, the different applied iterations of the SE-ONTO methodology incremen-

tally transformed user stories into an application-centric ontology that can be consumed

through the SE-ADVISOR application server. As part of the presented case study, the

following ontological reasoning patterns were applied:

1. Equivalence Similarity pattern

2. Limited Transitivity pattern

3. Hierarchy Creation pattern

4. Representative Individual pattern

5. Subclass Disjunction-Like pattern

Based on selected queries (e.g. “Select all bug individuals that are of ‘VeryGoodQual-

ity’ ”), application logic can communicate with the ontology to display information about

bugs.

6.3.3 Application Logic

As discussed in the previous section, parts of the requirements extracted from the user

stories are captured by application logic rather than through the ontology design. For the

bug report case study, the responsibility of the SE-ADVISOR mapping task is to provide

the following concepts, individuals and properties for the ontology:

123

• An individual for each bug with a unique name

- childOf relation to any parent

- hasItemization (and others) for NLP quality attributes

- hasAtLeast relation for each time clause,...

- assignedTo relation for the assigned maintainer

• A concept for each bug with a unique name

- fixF irst relation

In order for the application to access different bug-trackers, code from the Eclipse

Mylyn12 open-source project was used. While most of the required information can be

simply extracted from bug-tracker database fields, the detection of quality attributes from

the textual description of a bug is more complicated; in order to analyze bugs for bug

report quality, the textual description of bugs has to be mined using NLP. NLP systems

are often implemented using component-based frameworks, such as Apache’s UIMA13

(Unstructured Information Management Architecture) or GATE14 (General Architecture

for Text Engineering), where the latter has been selected in this implementation. As the

developed approach is a novel technique and therefore a contribution in itself, details are

presented here.

Existing work on analyzing bug reports has shown that bug reports provide a number

of distinctive characteristics, which allow developers to judge their quality. The quality of

a bug report thereby largely depends on its helpfulness in identifying and understanding

12http://www.eclipse.org/mylyn/
13http://uima.apache.org/
14http://gate.ac.uk/

124

the reported problem. A survey performed by Bettenburg et al. in [BJS+07] shows

that the most important properties developers are looking for in a bug report are: the

steps to reproduce the problem, followed by stack traces, test cases, screenshots, code

examples and a comparison of observed versus expected behavior. Additionally, bug

report guidelines have been formulated to describe the characteristics of a high quality

bug report15:

• Be as precise as possible

• Explain it so others can reproduce it

• Only describe one bug per report

• Clearly separate fact from speculation

From the previously mentioned characteristics and suggestions published by Betten-

burg et al. ([BJS+08] and [BPZK08]), the following NLP activities for extracting quality

attributes from bug trackers have been defined:

Certainty: The level of speculation found in a bug description must be low. A high

certainty indicates a clear understanding of the problem, and often also implies

that the reporter can provide suggestions on how to solve the problem. Kilicoglu

et al. show in [KB08], [KB10] that hedges can be found with high accuracy using

syntactic patterns and a simple weighting scheme. The used gazetteer lists have

been provided by the authors and were utilized to identify hedges in this case study.

Focus: The bug description must not contain any off-topic discussions, complaints or

personal statements. Only one bug is described per report. Therefore, in this case

15http://www.chiark.greenend.org.uk/ sgtatham/

125

study, the focus of bug reports was assessed by identifying emotional statements

(such as “exciting”), as well as topic splitting breaks (such as “by the way” or “on

top of that”) through a gazetteer list.

Reproducibility: The bug report description must include steps to reproduce a bug, or

the context under which a problem occurred. By manually evaluating 500 bug

reports, time clauses used in bug descriptions could be identified as a reliable hint

for paragraphs describing the context where a problem occurred. For example:

“When I clicked the button” or “While starting the application”. Such statements

were annotated using a Part of Speech (POS) tagger and Java Annotation Patterns

Engine (JAPE) grammar. To identify the listing of reproduction steps, the standard

GATE sentence splitter was modified to recognize itemizations (characters “+” “-”

“*”) as well as enumerations (in the form of “1.” “(1)” “[1]”).

Observability: The bug report must contain a clearly observed (positive or negative)

behavior. Evidence of the problem, such as screenshots, stack traces, or code

samples, must be provided. To identify observations in bug descriptions, word

frequencies have been compared with the expected numbers from non-bug related

sources. For words appearing distinctively more often than expected, a categoriza-

tion in positive and negative sentiment was performed for the case study imple-

mentation. Table 6.6 shows a sample of identified words and their sentiments. A

gazetteer list was used to annotate both positive and negative observations.

126

Type Examples Total

Neg. Noun attempt, crash, defect, failure, ... 22

Neg. Verb disappear, fail, hang, ignore, .. 32

Neg. Adj. broken, faulty, illegal, invalid, .. 34

Pos. Verb allow, appear, display, found, ... 24

Pos. Adj. correct, easy, good, helpful, ... 16

Table 6.6: Sentiment analysis examples

6.3.4 Validation

In order to validate the modeled properties in this case study, the resulting application

was tested with an open-source bug-tracker. ArgoUML16, a leading UML editor, that

has since its inception in 1998 undergone several release cycles and is still under ac-

tive development, had been selected for this purpose. Its bug database counts over 5100

open/closed defects and enhancements. The validation of the case study was two-fold:

First, it was shown that the proposed NLP quality characteristics can be used to classify

bugs. For this purpose, manually annotated bugs were compared against automatically

classified bugs. Second, the performance of the case study had to be validated as suf-

ficient for a bug-tracker. This was measured through a performance comparison using

different semantic web reasoners.

Seven experienced Java developers (Master’s and Ph.D. students who have previously

worked with ArgoUML at the source code level) had been asked to participate in this

study and to complete a questionnaire assessing the quality of bugs. For each of the

selected bugs, the users performed an evaluation of the bug report quality using a scale

ranging from 1 to 5 (with 1 corresponding to “very high quality” and 5 to “very low

quality”). The evaluation was performed as part of a course assignment, with students

16http://argouml.tigris.org/

127

100 1000 5000

FaCT++ 35.2s 758.6s >1000.0s

HermiT 5.4s 120.5s 542.0s

Pellet 23.9s 731.0s >1000.0s

REL/TrOWL 3.5s 12.3s 19.3s

Table 6.7: Bug-tracker quality case study performance validation

being given one week to complete the assignment.

For the first part of the evaluation, 178 bugs were manually classified from having

“very good quality” to having “very bad quality” in terms of their textual description

of the bug. The results were then compared against the classification provided by the

implementation. The classification performance thereby reached 81%, which is high

enough to justify the use of the implementation as a supporting tool in bug-triage.

For a performance analysis of the implementation (shown in Table 6.7) the number

of processed bugs was scaled from 100 to all bugs in the bug-tracker (around 5000),

which successfully demonstrated the scalability of the implementation. Both HermiT

and REL/TrOWL were able to materialize inferences for the whole bug-tracker in under

10 minutes. The application developed for the case study is therefore valid in terms of

its performance.

The case study demonstrated the feasibility of using the SE-ONTO methodology for

the development of ontology-driven applications. The successful use of the defined on-

tology design patterns and reasoning services are indicators that the proposed guidelines

and work products of the methodology are sufficient to develop such applications. The

resulting ontology incorporates part of the business logic of the application which can

be easily modified (to change the runtime behavior of the application). This is a clear

advantage in comparison to traditional software development in which such business

128

logic is “hard-coded” into the application. For example, a change in what constitutes

a “high quality bug” can be performed easily without recompiling or re-deploying the

application. Further it is also possible to define new criteria that lead to such a high

quality bug without modifying the original application code. In the following section, an

additional case study evaluates whether an application developed using SE-ONTO and

the SE-ADVISOR application model can compete with applications developed without

ontologies.

6.4 Clone Detection Case Study

The clone detection case study, described in this section, had the goal to “develop a

clone detection approach that is capable of discovering inter-project source code clones

in open-source projects”. The study was performed together with (and for) the DRDC,

who provided the user stories and acted as a customer for the evaluation of the SE-ONTO

methodology. The DRDC’s goal was an application that was capable of reading and

parsing source code files (incrementally) from open-source repositories, and was able to

link information in a knowledge repository to identify source code clones.

The project was taken on by the ASEG research lab, as it fitted the SE-ADVISOR

application model; source code (structured non-ontological information) is transformed

into an knowledge repository (mapping) where it is processed to detect clones (through

the use of reasoning services) and can be queried. Moreover, it is an incremental pro-

cess that can make use of the OWA to not infer any information about the source code

that has not yet been parsed. The goal of the case study was the comparison of an

ontology-driven application developed using the SE-ONTO methodology with existing

129

non-ontological applications (clone detections tools). The assumption that an ontology-

driven application can be developed with less effort/complexity (measured in lines of

code) using the SE-ONTO methodology was evaluated. Additionally, the case study

investigated whether the SE-ONTO methodology leads to identical ontologies between

different knowledge engineers. For this purpose, the case study was developed by two

students of the ASEG research lab in parallel. Results from the case study have been

published in the International Workshop on Software Clones at ICSE’11 [Sch11] and the

IEEE Computer Software and Applications Conference (COMPSAC’11) [SRC11].

The following sections provide a short introduction into the research field of clone

detection before describing the ontology design and implementation aspects of the case

study. The case study concludes with a validation of the achieved results.

6.4.1 Background

A code clone is a source code fragment that is identical or similar to another one [Kap09].

Clone detection techniques can generally be grouped by their representation of source

code that is used to match code fragments [RC07]. String-based clone detection tools

compare files, without taking into consideration their underlying semantics, and therefore

have the advantage of working on any kind of file; strings are loosely matched in order to

account for changing variable names or missing code. Token-based approaches transform

text into language specific tokens that can be matched using distance measures. Similarly,

Abstract Syntax Tree- (AST) based methods include the semantics of the underlying code

by fully parsing its structure according to the language specifications and generating

an AST. Then, sub-tree matching is performed to identify potential clones. At a byte-

code (or machine-code) level, one can identify clones by comparing compiler optimized

130

instructions.

The following lists examples of implementations (ordered by granularity and repre-

sentation type):

• String (e.g. Simian [Har03], Duploc [DRD99])

• Token (e.g. JPlag [PMP00], CCFinder [KKI02])

• AST (e.g. CloneDr - approach by Baxter et al. [BYM+98])

• Byte-code (e.g. JCD [DG10])

Various studies exist comparing different clone detection methods. Burd and Bailey

[BB02] evaluated five clone detection techniques for use in software maintenance activ-

ities. Their findings suggest that CCFinder has one of the highest recognition rates of

token-based tools. Koschke [KFF06] analyzed various clone detection tools and found

that AST-based methods, such as CloneDr, have the highest precision, while token-based

approaches offer a better recall. In [WJL03], it is argued that clone detection studies

suffer from a lack of objectivity when annotating what constitutes a clone, since human

reviewers are used. This finding is also noted by Kapser in [Kap09] who gives an ex-

cellent overview of currently used techniques, and provides and empirical evaluation of

code clone patterns. In terms of large-size code clone analysis, a distributed CCFinder

has been implemented by Liverie et al. [LHMI07].

A crucial factor when trying to find duplicate code in large amounts of data is the

granularity of the target source code elements. The challenge is to find a compromise

between expressivity and size, to ensure that good precision and recall values are main-

tained (and to ensure that parallel processing is still possible). For the purpose of the

131

Figure 6.4: Clone detection approach

case study, functions/methods were identified as the most coarse grained element of in-

terest, and control-blocks (conditions and loops) as the most fine grained elements that

are compared against each other. The clone detection approach itself is based on the idea

of comparing used data types and called methods of a block, as a compact but distin-

guishing factor between code (shown in Figure 6.4). While this approach is similar to

AST-based implementations and also relies on building an AST, the information used to

identify what constitutes a clone is different. Instead of loosely matching AST identifiers,

operations and expressions over a complete class, the approach in this case study only

compares the control-block signature (the set of used data types and method calls as well

as the control-block type) to signatures in other classes. Although this method is simpler

than a full exhaustive search for code clones, the list of clones not covered by this proce-

dure remains manageable: (1) Clones larger than a method; these can only be indirectly

identified by determining that multiple blocks/methods are identical. (2) Clones smaller

than a control-block and (3) non-code clones.

The comparison of blocks in this case study is based on used data types and called

methods, and therefore has an immediate benefit — the automatic invariance to certain

code changes that are typical for code clones (type 1 and 2 [RC07]):

132

• Code order and the use of parentheses

• Renaming of identifiers

• Change of arithmetic operations and literals

• Formatting (spaces, etc.) and comments

Summarizing the detection approach, the following holds: If a block calls the same

methods and uses the same data types as another block, it is a clone of the other block.

Within control-blocks, switch and if statements are mapped together as “conditions”, and

for and while statements as “loops”, as they can be expressed interchangeably. This ap-

proach suggested an ontology design in which cloned methods and blocks are identified

as equivalent concepts (or identified as being the same individual).

6.4.2 Ontology Design

The ontology design phase of the case study was implemented by two students of the

ASEG research lab familiar with ontology development. The ontology was designed in

parallel in order to investigate the effect of selecting user stories and design patterns in

the SE-ONTO methodology. The two different iteration cycles are marked as S1 for the

first, and S2 for the second student. The students were asked to keep a log of their design

decisions for future comparison of the rational behind them.

Iteration 0 / S1,2

As a first step, user stories were collected and refined with the DRDC. The following

excerpts show some of the user stories created for the application:

133

CloneOfMethod

Method

DataType

Class

SourceCode

Block

ConditionBlock

LoopBlock

Method

DataTypeDataType

Block

Call
NestedBlock

Figure 6.5: Entity analysis diagram for the clone detection case study

“(#1) As a user, I need to see if a method is similar to (a clone of) another

method. A method consists of multiple blocks which can be conditions or

loops. The order of blocks does not play a role. ... (#4) As a user, I want

to see if a block is the same as another block. Each block can have multiple

uses of data types and calls (of other methods) as well as nested blocks. (#5)

As a user, I must be able to see the corresponding class and source code of a

method. ...”

As shown in Figure 6.5 the created entity analysis diagram was used to clarify syn-

onyms such as DataType and Class. For each user story, examples were created

and discussed in conjunction with the entity analysis diagram. These discussions lead

to a further refinement of the entity relation diagram, adding new entities and attributes

to it (e.g. multiple instances for Block and Method). The refinement, as shown in

Listing 6.2, prepared the user stories for the next iterations of the SE-ONTO methodol-

ogy where the formalization of entities into a knowledge representation language was

performed in parallel by the two students.

134

Listing 6.2: Clone detection case study entity refinement

I f LoopBlock namespace Test1 uses DataType java lang St r ing and

LoopBlock namespace Test1 uses DataType java lang St r ing

then CloneOfMethod

I f Method java lang Objec t ToSt r ing has Cond i t i onB lock java lang Ob jec t ToS t r i ng 1 and

Method Test ToStr ing has Cond i t i onB lock Tes t ToSt r ing 1 and

Cond i t i onB lock java lang Ob jec t ToS t r i ng 1 i s the same as Cond i t i onB lock Tes t ToSt r i ng 1

then Method java lang Objec t ToSt r ing i s the same as Method Test ToStr ing

. . .

Iteration 1 / S1

S1 started with user story #4 that covers the entities Block and NestedBlock, as

well as Datatype and Call. The user story mentions “[one] block is the same as an-

other block”. Therefore, the term Block, with its variable number of calls, conditions

and loops, was modeled using the Unbound Key pattern (that supports such an equality

requirement). An upper limit of five conditions and loops as well as ten calls was as-

sumed sufficient to identify a block (making the pattern applicable). The following key

definition was added:

Key(BLOCK, uses0, uses1, ...condition0, condition1, ..., loop0, ..., calls0, ...)

A new Block could then be defined using the following statements (example shows a

partial definition for individual Block1 which uses one data type and has a condition and

loop block):

BLOCK(Block1)

135

uses0(Block1, DataType1)

condition0(Block1, Block2)

loop0(Block1, Block3)

Any unused slots for data types uses, conditions or loops are set using the special indi-

vidual Unset as suggested by the Unbound Key pattern. For example:

loop1(Block1, Unset)

This modeled the user story successfully and concluded the iteration. The formalized

statements were cast into a mapping task and deployed to the SE-ADVISOR application

server together with the test cases.

Iteration 2 / S1

For the next iteration, user story #1 with Method, CloneOfMethod, etc. was selected.

Based on the sentences “[As a]...if a method is similar to (a clone of) another method.

... The order of blocks does not play a role.”, from the corresponding user story, the

Equivalence Similarity pattern was chosen to allow the grouping of different individuals

without considering the order of elements. The following example definitions show two

methods Method1 and Method2 that are clones of each other:

METHOD1 ≡ HAS2PARTS ⊓ ∃hasPart.{Block1} ⊓

∃hasPart.{Block4}

METHOD1 ⊑ {Method1}

136

HAS2PARTS(Method1)

And:

METHOD2 ≡ HAS2PARTS ⊓ ∃hasPart.{Block1} ⊓

∃hasPart.{Block4}

METHOD2 ⊑ {Method2}

HAS2PARTS(Method2)

Once the formalized statements were added to a mapping task, it was discovered that a

Method can also have calls and data type usages, and these were therefore allowed as

a range of the hasPart object property. Ultimately, the mapping task for SE-ADVISOR

was created and deployed to the application server.

Iteration 3 / S1

For the final iteration, user story #5 was selected. As a relation between DataType

and Method was already present, the only entity remaining at this point was the en-

tity SourceCode, which was added as a data property of Method. This successfully

transformed all supplied user stories to an ontology design, by applying the SE-ONTO

methodology.

Iteration 1 / S2

For the first iteration, S2 selected the smaller user story #5 with Method, Class and

SourceCode. No applicable ontology design patterns were identified but individuals

137

for Method and Class were added (as identified by the refinement). SourceCode

was not added to the ontology design because “[SE-ONTO sets] aside any properties

that cannot be identified as affecting the data-model”. Consequently, the only object

properties added, were uses and calls (to connect Method and Class as shown in the

following example definition):

uses(Method1, Class1)

This concluded the first design iteration and the formalized statements that were cast into

a mapping task and deployed to the SE-ADVISOR application server.

Iteration 2 / S2

For the next iteration, the user story #4 with DataType, Block and NestedBlock

was selected. Block and Method were identified as having similar properties, and

therefore modeled as the same individual MethBlock. No pattern was identified for the

user story. Instead, a concept was created for each individual in order to let the reasoner

find identical definitions by concept equivalence. The following definitions were added

(example showing two methods that are a clone of each other):

METHBLOCK1 ≡ ∃calls.METHBLOCK3 ⊓ ∃uses.{Class1}

METHBLOCK2 ≡ ∃calls.METHBLOCK3 ⊓ ∃uses.{Class1}

METHBLOCK1(MethBlock1)

METHBLOCK2(MethBlock2)

138

A mapping for the SE-ADVISOR application server was created together with tests,

which revealed that individuals with, for example, three calls relations could become part

of concepts, which required two calls relations. For this reason, the Representative Indi-

vidual pattern was used to add the number of “calls” and “uses” to each Method/Block.

The following example shows the refined definition of MethBlock1:

METHBLOCK1 ≡ ∃calls.METHBLOCK3 ⊓ ∃uses.{Class1}⊓

∃hasExactly.{2CallsAndUses}

METHBLOCK1(MethBlock1)

hasExactly(MethBlock1, 2CallsAndUses)

The newly refactored model successfully captured all the requirements from the user

story and finalized the design iteration. The formalized statements were cast into a map-

ping task, and deployed to the SE-ADVISOR application server together with the test

cases.

Iteration 3 / S2

In the last iteration, the entities LoopBlock and ConditionBlock from user story

#1 were picked up, and the object property calls was refactored to contain two call

types, one for conditions (conditionCalls) and one for loops (loopCalls). In addition,

the previously left out data property for SourceCode was made part of Method. The

deployment of the mapping task and the passing of all tests finalized the ontology design

phase.

139

Summary

Both S1 and S2 correctly transformed the supplied user stories into an application-centric

ontology design using the SE-ONTO methodology. Nevertheless, the order in which the

user stories were transfered varied, and consequently two different ontologies were cre-

ated. S1 applied the Unbound Key and Equivalence Similarity ontology design patterns.

Based on the designed ontology, Method and Block individuals were found to be the

same (sameAs) when they are a clone of each other, and an application can identify

clones by querying the ontology for such matching individuals. S2 modeled Method

and Block as the same concept/individual and applied the Representative Individual

pattern during the ontology design. In the resulting ontology, equivalent Method con-

cepts denote a clone of the method. An application can identify clones by querying the

ontology for such equivalent concepts.

6.4.3 Application Logic

As with the bug quality and triage case study (Section 6.3), some parts of the user stories

that are generated in the requirements analysis phase must be implemented by application

logic. The responsibility of the SE-ADVISOR mapping task is to provide creation rules

for all required concepts, individuals and properties for each formalization.

• A concept and individual for each method/block (S1,2)

- Relations for the keys (condition, etc.) for each block (S1)

- conditionCalls and loopCalls relations for blocks (S2)

- hasExactly relations and individuals for the number of uses/calls (S2)

- hasPart for each method (S1)

140

• An individual for each data type/class (S1,2)

- uses relation for data types (S1,2)

In order to create the concepts, individuals and properties stated above, source code

files are processed one-after-another by a mapping task at the SE-ADVISOR application

server. Each file is parsed using a Java parser (JAPA17), an AST is built and method calls,

fully qualified data type names and control-blocks (loops and conditions) are extracted.

Although the approach relies on identifying fully qualified type names of variables, it

is not mandatory that the source code is compiled; instead, an AST is constructed on a

file-per-file basis. This is a key aspect of the approach in terms of horizontal scalability

(multiple mapping tasks can work in parallel). In case data type ambiguities occur (e.g.

a protected variable of a super class), identifier names are used as opposed to the fully

qualified type names.

6.4.4 Validation

One intent of the clone detection case study has been the study of the development of

two ontologies, by different individuals using the same methodology, in particular with

regards to the effect of selecting user stories and design patterns. From the two distinc-

tive ontologies, it can be deduced that the SE-ONTO methodology cannot guarantee a

uniform output; there exists a certain degree of flexibility and freedom in ontology de-

sign. This conclusion is in agreement with the work of de Bruijn [Bru03]. Ontology

design, much like application design, can never be fully formalized and part of it re-

mains a creative activity. Notwithstanding, the SE-ONTO methodology has led to two

17http://code.google.com/p/javaparser/

141

functional ontologies that follow “minimal encoding bias” and “clarity”, two significant

ontology design qualities [Gru95]. As an observation from the case study, it can be noted

that not all user stories carry pertinent information for the design of the ontology, and it

can be valuable to take on such user stories in combination with others. Alternatively,

one can start with the larger user stories, which has the benefit of tackling harder design

problems on the outset (a proven agile principle [Sub05]). While the order of chosen

user stories plays a certain role in the ontology design, the selection of ontology design

patterns has a far greater impact on the quality of the developed ontology. Thus, the ex-

istence of well described re-usable design solutions such as ontology design patterns is

of high importance.

The main goal of the clone detection case study has been the comparison of an ap-

plication developed using the SE-ONTO methodology (an ontology-driven application)

with traditionally developed (non-ontological) applications. Four popular clone detec-

tion tools, each using a different internal representation model and granularity, have been

selected for this purpose: (1) Simian is a commercial String-based approach that is popu-

lar due to its integration in Eclipse. (2) The open-source CCFinder tool has shown com-

mendable recognition rates and is the best token-based approach available. (3) JCD (Java

Clone Detector) is a recent development from the University of Waterloo that matches

Java pcode and finally (4) DECKARD is a distributed implementation of an AST-based

approach.

Tests have been carried out to compare the performance of the developed ontology-

driven application with the non-ontological tools listed above. The performance analysis

of the implementation (shown in Table 6.8) has been scaled from a few hundred lines of

142

100 1000 10000

FaCT++ 501.3s >1000.0s >1000.0s

HermiT 65.5s 113.0s 254.1s

Pellet MEM MEM MEM

REL/TrOWL 3.6s 7.3s 21.6s

Table 6.8: Clone detection case study performance validation

code (LOC) to 10000 LOC to showcase the scalability of the implementation. Although

FaCT++ performed poorly and Pellet was not able to reason over the ontology at all, both

HermiT and REL/TrOWL were able to materialize inferences for the ontology in under

10 minutes. This is comparable to the selected “traditional” clone detection tools and

thus, the application developed for the case study is valid in terms of performance.

The complexity of the developed application (and effort that went into creating it) is

measured in LOC. This is, of course, only one indicator that can be influenced by many

factors, such as coding style or refactoring. Nevertheless, without the actual development

time of clone detection tools available, it serves as the only available approximation of

the complexity (that can be used to compare the ontology-driven and non-ontological

applications). The used tool for counting LOC across different languages is CLOC18. For-

matting, blank lines and comments are automatically ignored by the tool. The results

from the comparison are shown in Figure 6.6. As Simian’s source code is not available

publicly, it has been decompiled using JAD19 for the comparison. The case study ap-

plication (including the application logic and ontology) shows a lower complexity than

other comparable tools which indicates that ontology-driven development can produce

better maintainable applications.

18http://cloc.sourceforge.net/
19http://www.varaneckas.com/jad/

143

Case Study JCD Simian CCFinder DECKARD

0

0.5

1

1.5

2

·104

2,458

7,078

3,453

11,809

20,293

Figure 6.6: Clone detection application complexity comparison

In order to demonstrate that its lower complexity does not impact functionality neg-

atively, the developed clone detection tool has been tested with source code from the

Java Development Kit (JDK)20 and the open-source Apache Commons21 project (a com-

monly used library and building block of many applications). A random selection from

the JDK 1.4 swing package (97 files with around 10000 LOC) and the complete javax

and org packages from the JDK 1.5 (620 files with around 50000 LOC) have been used.

As mentioned earlier, the number of analyzed files is low, as the goal of the validation

is to demonstrate a similar functionality (not an improved clone detection performance).

The recognition performance depends on identifying the fully qualified type name of all

used identifiers. As asterisk import statements degrade the performance, only those files

not containing asterisk imports were selected. Although frequent within the JDK (around

380 in a sampled set of 1000), most modern Java programs do not have asterisk imports,

as their imported data types are now automatically managed by the IDE. This can be

observed in the second analyzed project, the Apache Commons library (containing 3348

20http://jdk6.java.net/
21http://commons.apache.org/

144

Ont.-Driven App. JCD Simian CCFinder DECKARD

Matches 1264 21 145 617 813

Blocks 1375 39 679 895 1263

Methods 603 0 337 473 663

Recall 0.79 0.02 0.40 0.53 0.74

Table 6.9: Clone detection validation JDK 1.4 (swing)

Ont.-Driven App. JCD Simian CCFinder DECKARD

Matches 3919 2037 3381 2002 2034

Blocks 4066 1219 1569 3152 3572

Methods 1838 70 616 1628 1751

Recall 0.68 0.21 0.26 0.53 0.60

Table 6.10: Clone detection validation JDK 1.5 (javax, org)

Java files with about 100000 LOC) where only 6 files contained such import statements.

To compare clone detection results from the case study and other tools, a parser for

the output of JCD, Simian, CCFinder and DECKARD has been developed, in order to

read file names and matching line numbers of each clone. The parameters of the tools

are based on the recommendations from the respective web-sites and papers. Table 6.9

and Table 6.10 show the processed blocks and methods. The number of matching blocks

thereby is higher than the number of matches, as one match might cover more than one

block. CCFinder and DECKARD both detect large clones that often span across multiple

methods. Once these clones are broken down to matched complete methods, the number

of detected clones in this case study and CCFinder/DECKARD becomes similar. The

algorithm used in JCD does not find clone blocks bigger than size N , and does not try

to expand a matching fragment until the maximum number of matching statements have

been found. As a result, it performs poorly when the detection criteria are completely

cloned methods. Simian only performs a String-based comparison of code fragments, so

145

Ont.-Driven App. Simian CCFinder DECKARD

Matches 16549 10250 7865 7980

Blocks 18078 6800 17092 16519

Methods 7729 2842 7374 8848

Recall 0.61 0.23 0.57 0.56

Table 6.11: Clone detection validation Apache Commons

JDK 1.4 Selection JDK 1.5 Selection Apache Commons
0.5

0.6

0.7

0.8

0.9

1

0.92

0.98

0.89

0.79

0.68

0.61

0.84

0.66

0.56

Precision Recall Agreement

Figure 6.7: Precision and recall for the ontology-driven application

a lower number of matching blocks and methods is not surprising.

Precision and recall values have been calculated by assembling an oracled set of

clones and manually annotating the source code, similar to the clone tool evaluation of

Bellon [Bel98]. The oracled set consists of a union of clone blocks detected by Simian,

CCFinder, DECKARD and JCD. For the manual annotation of source code, blocks from

the JDK selection and 15% of random blocks from the Apache Commons were selected.

The results gathered are comparable to [BKA+07] in terms of their recall. Obtained pre-

cision values are naturally higher, as an oracled set of clones is used (and not an absolute

“ground truth”). It has to be noted, that for the comparison only clones detectable by the

ontology-driven application were considered (the described blocks) and not all clones

146

detectable by other tools. This explains the high recall of the ontology-driven application

that even outperforms other tools for this type of “block-clone” (see inter-tool agreement

between the case study and all of the existing tools in Figure 6.7). Results of the vali-

dation indicate that the developed ontology-driven application is capable of identifying

source code clones with satisfactory performance and that its functionality is comparable

to that of non-ontological tools.

147

Chapter 7

Conclusions

The main objective of this thesis was an investigation into the use of ontology design

in modern Software Engineering processes, and how developers can leverage reasoning

services in order to develop ontology-driven applications. The contributions of this the-

sis are three-fold: (1) A methodology for the incorporation of ontology design into an

agile software process-skeleton. (2) A novel set of ontology design patterns that fos-

ter the development of reasoning-enabled ontologies; and (3) an application model that

takes advantage of ontologies (with reasoning capabilities) and enables its users to incre-

mentally develop and rapidly deploy ontology-driven applications. This combination of

providing a methodology, a set of reasoning design patterns and an application model,

creates an essential foundation for the adaptation of ontology-driven development and

for the incorporation of semantic web technologies into the product development and

maintenance cycles of modern applications.

The SE-ONTO methodology proposed in this thesis is an advancement compared to

other methodologies, such as Uschold and King’s methodology [UK95] or the method-

148

ology of Gruninger and Fox [GF94], as it allows for the integration of ontology design

into modern agile software processes, and for iterative ontology development through

design patterns. It differs from the On-To-Knowledge methodology [SSS00] and the XD

methodology [SFBD+09], which do not consider reasoning services in their ontology

design and fail to provide an application model for their methodologies. In comparison

to other approaches that have solely been applied to toy-ontologies or a single ontol-

ogy design study, the SE-ONTO methodology was tested in two case studies addressing

real-world problems:

• The implementation of an ontology-driven application for bug quality and triage.

• The development of a code clone detection system that is enabled by ontology

reasoning services.

Structural reasoning design patterns capture architectural solutions that solve a par-

ticular design problem by leveraging reasoning services. As shown throughout this the-

sis, reasoning design patterns play a fundamental role in how ontology-driven applica-

tions are built. The presented catalog of patterns differs from the work of Presutti et al.

([PG08], [PGD+08]) who fail to show how their proposed patterns can enhance the de-

signed ontology or application. The presented reasoning patterns can further be seen as

complementary to ontology design patterns exhibited in [EA09] and [NUW04], which

deal with different design problems.

The SE-ADVISOR application model introduced in this thesis, is a concrete solution

for a well-defined problem space: the incorporation of (semi-) structured non-ontological

data into an ontology-driven application. This approach differs from semantic web

frameworks, such as [BKvH02], that do not impose such a specific data flow on the

149

processed data. The lack of explicit data flow in traditional techniques is assumed to

be one of the reasons developers produce ontologies of low design quality, that is, on-

tologies with simple 1:1 mappings of existing data or ontologies that do not exploit the

advantages of reasoning services. The presented application model can be seen as a best

practice solution for developing ontology-driven applications where the primary data

source is non-ontological.

The findings of this thesis support the use of ontologies as an empowering technology

in the development of applications. Future work could introduce additional ontology rea-

soning patterns, which allow for the development of more extensive ontologies. It is also

imperative to further investigate if certain ontology design patterns are mutually exclu-

sive and cannot be combined. Although the work in this thesis has laid the foundations

for the incorporation of ontology design into modern agile Software Engineering, there

remains the need to advocate for the use of ontology-driven applications in industry. By

embracing Knowledge Engineering (ontology design, reasoners and semantic web tech-

nologies) as an integral part of a student’s Software Engineering curriculum, a future

generation of knowledge engineers will realize this goal.

150

Bibliography

[ABH+00] Klaus-Dieter Althoff, A. Birk, S. Hartkopf, W. Müller, M. M. Nick,

D. Surmann, and C. Tautz. Systematic Population, Utilization, and

Maintenance of a Repository for Comprehensive Reuse. Learning

Software Organizations - Methodology and Applications, 1756:25–50,

2000. → pages 27

[ABKD+02] Klaus-Dieter Althoff, U. Becker-Kornstaedt, B. Decker, A. Klotz,

E. Leopold, J. Rech, and A. Voss. The indiGo project: enhancement of

experience management and process learning with moderated discourses.

pages 53–79, 2002. → pages 11

[Aha91] David W. Aha. Case-based learning algorithms. In DARPA Case-Based

Reasoning Workshop, pages 147–158, 1991. → pages 13

[AHM05] John Anvik, Lyndon Hiew, and G. C. Murphy. Coping with an open bug

repository. In Proceedings of the 2005 OOPSLA workshop on Eclipse

technology eXchange, pages 35–39. ACM, 2005. → pages 115

[AJWH03] A. Aurum, R. Jeffery, C. Wohlin, and M. Handzic. Managing software

engineering knowledge. Springer, 2003. → pages 11

[AN04] Klaus-Dieter Althoff and M. M. Nick. How to Support Experience

Management with Evaluation - Foundations, Evaluation Methods, and

Examples for Case-Based Reasoning and Experience Factory. In Lecture

Notes of Computer Science Articial Intelligence. Springer, 2004. →
pages 13

[ASH+06] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. A. Welty.

Supporting Online Problem solving Communities With the Semantic

Web. pages 575–584, 2006. → pages 28

[AWWH08] A. Aseeri, Pornpit Wongthongtham, C. Wu, and F. K. Hussain. Towards

Social Network based Ontology Evolution Wiki for an Ontology

Evolution. In Proceedings of the 10th International Conference on

151

Information Integration and Web-based Applications & Services, pages

500–502, Linz, 2008. → pages 28

[BA96] Shawn A. Bohner and Robert S. Arnold. Software Change Impact

Analysis. Wiley-IEEE Computer Society Press, 1996. → pages 8

[Bas85] V. R. Basili. Quantitative evaluation of software methodology - Tech.

Report 1519. Technical report, University of Maryland, 1985. → pages

11

[BB02] E. Burd and J. Bailey. Evaluating clone detection tools for use during

preventative maintenance. Proceedings of the Second IEEE International

Workshop on Source Code Analysis and Manipulation, pages 36–43,

2002. → pages 131

[BCG01] A. Berardi, D. Calvanese, and G. Giacomo. Reasoning on UML Class

Diagrams using Description Logic Based Systems. In Proceedings of the

KI 2001 Workshop on Applications of Description Logics, 2001. →
pages 29

[BCM+03] Franz Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. P.

Schneider. The Description Logic Handbook. Cambridge University

Press, 2003. → pages 14, 16, 19, 21, 22, 23

[BCR94] V. R. Basili, G. Caldiera, and H. D. Rombach. Encyclopedia of Software

Engineering. John Wiley & Sons, New York, USA, 1994. → pages 11

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change.

Addison-Wesley, 1999. → pages 8

[Bec01] Kent Beck. Manifesto for Agile Software Development, 2001.

URL: <http://agilemanifesto.org/>. → pages 8

[Bel98] Stefan Bellon. Vergleich von Techniken zur Erkennung duplizierten

Quellcodes. Master thesis, Universität Stuttgart, 1998. → pages 146

[BJS+07] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiß, Rahul

Premraj, Thomas Zimmermann, A. Schroter, and C. Weiss. Quality of

Bug Reports in Eclipse. In Proceedings of the 2007 OOPSLA workshop

on eclipse technology eXchange, pages 21–25, 2007. → pages 125

[BJS+08] Nicolas Bettenburg, Sascha Just, A. Schroter, C. Weiss, Rahul Premraj,

Thomas Zimmermann, and A. Schröter. What makes a good bug report?

In Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of software engineering, pages 308–318, 2008. → pages

115, 125

152

[BKA+07] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore

Merlo. Comparison and Evaluation of Clone Detection Tools. IEEE

Transactions on Software Engineering, 33(9):577–591, September 2007.

→ pages 146

[BKvH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame : A

generic Architecture for Storing and Querying RDF and RDF Schema. In

Proceedings of the first Int’l Semantic Web Conference (ISWC 2002),

pages 54–68, 2002. → pages 95, 149

[BLHL02] Tim Berners-Lee, James A. Hendler, and Ora Lassila. The Semantic Web

- A new form of Web content that is meaningful to computers will

unleash a revolution of new possibilities. Scientific American,

(April):24–30, 2002. → pages 19

[BLP00] K. Breitman, J. Leite, and J. C. Prado. Scenario Evolution: A Closer

View on Relationships. In Proceedings of the 4th International

Conference on Requirements Engineering (ICRE’00), pages 95–105.

Published by the IEEE Computer Society, 2000. → pages 8

[Boe86] B. Boehm. A spiral model of software development and enhancement.

SIGSOFT Software Engineering Notes, 11(4):14–24, 1986. → pages 7

[BPZK08] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun

Kim. Extracting structural information from bug reports. In Proceedings

of the 2008 international working conference on Mining software

repositories, pages 27–30, 2008. → pages 115, 125

[Bru03] J. Bruijn. Using Ontologies - Enabling Knowledge Sharing and Reuse on

the Semantic Web. Technical report, DERI, Innsbruck, Austria, 2003.

URL: <http://www.debruijn.net/publications/>. →
pages 141

[BS05] Joachim Baumeister and Dietmar Seipel. Smelly OwlsDesign Anomalies

in Ontologies. In The Florida AI Research Society Conference, pages

215–220, 2005. → pages 35

[BYM+98] Ira D. Baxter, A. Yahin, L. Moura, M. Sant Anna, and L. Bier. Clone

detection using abstract syntax trees. In Proceedings. International

Conference on Software Maintenance (Cat. No. 98CB36272), pages

368–377, 1998. → pages 131

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information

Retrieval. Addison Wesley, 1999. → pages 116

153

[Cha01] S. K. Chang. Handbook of software engineering and knowledge

engineering. World Scientific, 2001. → pages 13

[Cre93] D. Crevier. AI: The Tumultuous Search for Artificial Intelligence. Basic

Books, 1993. → pages 10

[CTP00] Peter Clark, John Thompson, and Bruce Porter. Knowledge patterns. In

Proceedings of KR-2000, pages 591–600, 2000. → pages 66

[DBL10] Pete Deemer, Gabrielle Benefield, and Craig Larman. The Scrum Primer.

Technical report, 2010.

URL: <http://goodagile.com/scrumprimer/>. → pages 47

[DE05] J. Dietrich and C. Elgar. A Formal Description of Design Patterns Using

OWL. 2005 Australian Software Engineering Conference, pages

243–250, 2005. → pages 28

[DG10] Ian J. Davis and Michael W. Godfrey. Clone detection by exploiting

assembler. Proceedings of the 4th International Workshop on Software

Clones - IWSC ’10, (January):77–78, 2010. → pages 131

[DRD99] S. Ducasse, M. Rieger, and S. Demeyer. A language independent

approach for detecting duplicated code. In Proceedings IEEE

International Conference on Software Maintenance - 1999 (ICSM’99).

’Software Maintenance for Business Change’ (Cat. No.99CB36360),

pages 109–118. Ieee, 1999. → pages 131

[DWL00] D. Deridder, B. Wouters, and W. Lybaert. The Use of an Ontology to

Support a Coupling between Software Models and Implementation. In

Proc. European Conference on Object-Oriented Programming

(ECOOP’00), 2000. → pages 27

[EA09] M. Egana-Aranguren. Role and Application of Ontology Design Patterns

in Bioontologies. Phd thesis, University of Manchester, 2009. → pages

70, 71, 149

[Ecl09] Eclipse Foundation. The Open Source Developer Report - 2009 Eclipse

Community Survey. Technical report, 2009.

URL: <www.eclipse.org/org/press-release/>. → pages

96

[Fel98] Christiane Fellbaum. WordNet- An Electronic Lexical Database. The

MIT Press, 1998. → pages 39

154

[FLGPSS99] Mariano Fernandez-Lopez, Asuncion Gomez-Perez, Juan Pazos Sierra,

and Alejandro Pazos Sierra. Building a chemical ontology using

methontology and the ontology design environment. IEEE Intelligent

Systems, 14(1):37–46, 1999. → pages 38

[FNM+03] R. A. Falbo, A. C. Natali, P. G. Mian, G. Bertollo, and F. B. Ruy. ODE:

Ontology-based software Development Environment. pages 1124–1135,

2003. → pages 27

[FS06] Ronen Feldman and James Sanger. The Text Mining Handbook.

Cambridge University Press, 2006. → pages 116

[Gan05] Aldo Gangemi. Ontology design patterns for semantic web content. The

Semantic WebISWC 2005, pages 262–276, 2005. → pages 66, 72

[Ger92] German Ministry of Defense. V-Model: Software Lifecycle Process

Model. Technical report, General Preprint No. 250, 1992. → pages 7

[GF94] Michael Gruninger and M.S. Fox. The design and evaluation of

ontologies for enterprise engineering. In Workshop on Implemented

Ontologies, European Workshop on Artificial Intelligence, 1994. →
pages 36, 44, 149

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional, 1994. → pages 66, 76

[GL90] R. V. Guha and D. B. Lenat. Cyc: A Midterm Report. AI Magazine,

11(3), 1990. → pages 39

[GP94] Asuncion Gomez-Perez. From Knowledge Based Systems to Knowledge

Sharing Technology: Evaluation and Assessment. Technical report,

Knowledge Systems Laboratory, Stanford University, 1994.

URL: <http://oa.upm.es/6498/>. → pages 33, 38

[GP99] Asuncion Gomez-Perez. Evaluation of taxonomic knowledge in

ontologies and knowledge bases. In Proceedings of the 12th Banff

Knowledge Acquisition for Knowledge-Based Systems Workshop, pages

611–618. University of Calgary, Alberta, Canada, 1999. → pages 34

[GPFLC04] Asuncion Gomez-Perez, Mariano Fernandez-Lopez, and Oscar Corcho.

Ontological Engineering. Springer, 2004. → pages 15

[Gru93] Thomas R. Gruber. A Translation Approach to Portable Ontology

Specifications (KSL 92-71). Technical Report 2, 1993.

155

URL: <ftp://ksl.stanford.edu/pub/KSL Reports/>. →
pages 16

[Gru95] Thomas R. Gruber. Toward principles for the design of ontologies used

for knowledge sharing. International Journal of Human Computer

Studies, 43(5):907–928, November 1995. → pages 33, 36, 60, 142

[Gua97] Nicola Guarino. Semantic Matching: Formal Ontological Distinctions

for Information Organization, Extraction, and Integration. SCIE 97:

International Summer School on Information Extraction, pages 139–170,

1997. → pages 16

[Har03] Simon Harris. Simian Clone Detection Tool, 2003.

URL: <http://www.harukizaemon.com/simian/>. → pages

131

[HB09] Matthew Horridge and Sean Bechhofer. The OWL API : A Java API for

Working with OWL 2 Ontologies. In 6th OWL Experienced and

Directions Workshop, 2009. → pages 100

[Hep05] Martin Hepp. Representing the Hierarchy of Industrial Taxonomies in

OWL : The gen / tax Approach. In Proceedings of the ISWC Workshop

Semantic Web Case Studies and Best Practices for eBusiness

(SWCASE05), Galway, Irland, 2005. → pages 44

[Hep07] Martin Hepp. ProdLight : A Lightweight Ontology for Product

Description Based on Datatype Properties. In 10th International

Conference on Business Information Systems, pages 260–272, 2007. →
pages 18

[HJK+04] Maciej Hapke, Andrzej Jaszkiewicz, Krzysztof Kowalczykiewicz,

D. Weiss, and P. Zielniewicz. OPHELIA - Open Platform for Distributed

Software Development. In Proceedings of Open Source International

Conference. Poznan University of Technology, 2004. → pages 9

[HK87] D. Harmon and D. King. Expert Systems - Perspectives, Tools,

Exoeriences. Oldenbourg Verlag, Munic, Germany, 1987. → pages 13

[HKR09] Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Foundations of

Semantic Web Technologies. CRC Press Textbook, 2009. → pages 1

[HKST06] H. J. Happel, A. Korthaus, S. Seedorf, and P. Tomczyk. KOntoR: An

Ontology-enabled Approach to Software Reuse. In Proceedings of

SEKE, pages 349–354, San Francisco, 2006. → pages 27

156

[Hoy01] David Hoyle. ISO 9000: Quality Systems Handbook. Fourth edition,

January 2001. → pages 32, 110

[HP06] Jerry R. Hobbs and Feng Pan. Time Ontology in OWL, 2006.

URL:

<http://www.w3.org/2001/sw/BestPractices/OEP/>.

→ pages 70

[HPPSH05] Ian Horrocks, Bijan Parsia, P. F. Patel-Schneider, and James A. Hendler.

Semantic web architecture: Stack or two towers? Principles and Practice

of Semantic Web Reasoning, pages 37–41, 2005. → pages 19

[HPSH03] Ian Horrocks, P. F. Patel-Schneider, and F. Harmelen. From SHIQ and

RDF to OWL: The Making of a Web Ontology Language. Journal of

Web Semantics, 1(1):7–26, 2003. → pages 24

[HS03] Maia Hristozova and Leon Sterling. Experiences with Ontology

Development for Value-Added Publishing. In 3rd Workshop on

Ontologies in Agent Systems, page 17, 2003. → pages 41

[HSW91] W. S. Humphrey, T. R. Snyder, and R. R. Willis. Software Process

Improvement at Hughes Aircraft. IEEE Software, 8(4):11–23, 1991. →
pages 11

[HSW98] F. Houdek, K. Schneider, and E. Wieser. Establishing experience

factories at Daimler-Benz: An experience report. In Proceedings of the

20th international conference on Software engineering, pages 443–447,

1998. → pages 11

[IEE90] IEEE Computer Society. IEEE Standard Glossary of Software

Engineering Terminology (IEEE Std 610.121990), 1990. → pages 31, 32

[IEE98] IEEE Computer Society. IEEE Standard for Software Project

Management Plans (IEEE Std 1058-1998), 1998. → pages 31

[ISO01] ISO International Organization for Standardization. ISO Standard for

Software Engineering - Product quality (ISO / IEC Std 9126), 2001. →
pages 32, 110

[Jac99] P. Jackson. Introduction to Expert Systems. Addison Wesley Longman,

Harlow, UK, 1999. → pages 14

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software

Development Process. Addison-Wesley Longman Publishing Co. Inc.,

1999. → pages 8

157

[JC05] D. Jin and James R. Cordy. Ontology-Based Software Analysis and

Reengineering Tool Integration: The OASIS Service-Sharing

Methodology. In Proceedings of the 21st IEEE International Conference

on Software Maintenance, pages 613 – 616, 2005. → pages 27

[Kap09] C.J. Kapser. Toward an Understanding of Software Code Cloning as a

Development Practice. PhD thesis, University of Waterloo, 2009.

URL: <http://plg.uwaterloo.ca/ migod/>. → pages 130,

131

[KB08] Halil Kilicoglu and Sabine Bergler. Recognizing Speculative Language

in Biomedical Research Articles. BMC bioinformatics, 9 Suppl

11(1):S10, January 2008. → pages 125

[KB10] Halil Kilicoglu and Sabine Bergler. A High-Precision Approach to

Detecting Hedges and Their Scopes. In Proceedings of the Fourteenth

Conference on Computational Natural Language Learning

(CoNLL-2010), pages 70–77, 2010. → pages 125

[KCS01] G. Kadoda, M. Cartwright, and M. J. Shepperd. Issues on the effective

use of CBR technology for software project prediction. In 4th

International Conference on Case-Based Reasoning, pages 276–290,

Vancouver, 2001. → pages 12

[Kem87] C. F. Kemerer. An empirical validation of software cost estimation

models. Communications of the ACM, 30(5):416–429, 1987. → pages 13

[KFF06] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone Detection

Using Abstract Syntax Suffix Trees. In 2006 13th Working Conference

on Reverse Engineering, pages 253–262, 2006. → pages 131

[KHL+07] Akrivi Katifori, Constantin Halatsis, George Lepouras, Costas Vassilakis,

and Eugenia Giannopoulou. Ontology Visualization Methods - A

Durvey. ACM Computing Surveys, 39(4), November 2007. → pages 62,

63

[KKI02] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic

token-based code clone detection system for large scale source code.

IEEE Transactions on Software Engineering, 28(7):654–670, July 2002.

→ pages 131

[LD09] Alexander De Leon and Michel Dumontier. A platform for distributing

and reasoning with OWL-EL knowledge bases in a Peer-to-Peer

environment. In Proceedings of the 6th International Workshop on OWL:

Experiences and Directions (OWLED 2009). Citeseer, 2009. → pages 26

158

[Leh79] M. M. Lehman. On understanding laws, evolution, and conservation in

the largeprogram life cycle. Journal of Systems and Software, 1:213–221,

1979. → pages 8

[LHMI07] Simone Livieri, Yoshiki Higo, Makoto Matushita, and Katsuro Inoue.

Very-Large Scale Code Clone Analysis and Visualization of Open Source

Programs Using Distributed CCFinder: D-CCFinder. 29th International

Conference on Software Engineering (ICSE’07), pages 106–115, May

2007. → pages 131

[LN03] Thorsten Liebig and Olaf Noppens. OntoTrack: Fast browsing and easy

editing of large ontologies. In Proceedings of the 2nd International

Workshop on Evaluation of Ontology-based Tools (EON2003), 2003. →
pages 62

[M9̈6] Ralf Möller. A Functional Layer for Description Logics: Knowledge

Representation Meets Object Oriented Programming. In Proceedings of

the 11th ACM SIGPLAN conference on Object-oriented programming,

San Jose, 1996. → pages 29

[Mai91] N. A. Maiden. Analogy as a paradigm for specification reuse. Software

Engineering Journal, 6(1):3–15, 1991. → pages 13

[MJ08] James H. Martin and Daniel Jurafsky. Speech and Language Processing.

2nd edition, April 2008. → pages 116

[MK10] R. B. Mishra and Sandeep Kumar. Semantic web reasoners and

languages. Artificial Intelligence Review, 35(4):339–368, December

2010. → pages 103

[MM10] Raghava Mutharaju and Frederick Maier. A MapReduce Algorithm for

EL+. 23rd International Workshop on Description Logics (DL2010),

pages 464–474, 2010. → pages 26

[MVP92] T. Mukhopadhyay, S. S. Vicinanza, and M. J. Prietula. Examining the

feasibility of a case-based reasoning model for software effort estimation.

pages 155–171, 1992. → pages 13

[NM01] Natalya F. Noy and Deborah L. Mcguinness. Ontology development 101:

A guide to creating your first ontology (KSL-01-05). Technical report,

Stanford Knowledge Systems Laboratory, 2001.

URL:

<http://www.ksl.stanford.edu/people/dlm/papers/>.

→ pages 32

159

[NRHW06] Natasha Noy, Alan Rector, Pat Hayes, and Chris Welty. Defining N-ary

Relations on the Semantic Web, 2006.

URL: <http://www.w3.org/TR/swbp-n-aryRelations/>.

→ pages 70

[NUW04] Natasha Noy, Mike Uschold, and Chris Welty. Representing Classes As

Property Values on the Semantic Web, 2004.

URL:

<http://www.w3.org/TR/swbp-classes-as-values/>.

→ pages 70, 71, 149

[Obe04] Daniel Oberle. Semantic management of middleware. Proceedings of the

1st International Doctoral Symposium on Middleware, pages 299–303,

2004. → pages 16

[OHPDB92] E. Ostertag, James A. Hendler, R. Prieto-Diaz, and C. Braun. Computing

similarity in a reuse library system: an AI-based approach. ACM

Transactions on Software Engineering Methodology, 1(3):205–228,

1992. → pages 13

[PG08] Valentina Presutti and Aldo Gangemi. Content ontology design patterns

as practical building blocks for web ontologies. Conceptual

Modeling-ER 2008, pages 128–141, 2008. → pages 67, 68, 69, 70, 149

[PGD+08] Valentina Presutti, Aldo Gangemi, Stefano David, Guadalupe Aguado

de Cea, Mari Carmen Suárez-Figueroa, Elena Montiel Ponsoda, and

Maria Poveda. NeOn D2.5.1 A library of ontology design patterns:

reusable solutions for collaborative design of networked ontologies.

Technical report, NeOn Project, 2008.

URL: <http://www.neon-project.org/>. → pages 67, 68, 69,

149

[PMP00] Lutz Prechelt, Guido Malpohl, and M. Philippsen. JPlag: Finding

plagiarisms among a set of programs. Technical report, Universität

Karlsruhe, 2000. → pages 131

[Pol03] P. R. Polsani. Use and Abuse of Reusable Learning Objects. Journal of

Digital information, 3(4), 2003. → pages 28

[PPRB07] M. Petrenko, Denys Poshyvanyk, V. Rajlich, and J. Buchta. Teaching

Software Evolution in Open Source. Computer, 40(11):25–31, 2007. →
pages 27

160

[PRPB91] D. Premkumar, B. Ronald, G. S. Peter, and B. W. Bruce. LaSSIE: A

Knowledgebased Software Information System. Communications of the

ACM, 34(5):34–49, 1991. → pages 28

[PVSFGP10] M. Poveda-Villalon, Mari Carmen Suarez-Figueroa, and Asuncion

Gomez-Perez. Reusing Ontology Design Patterns in a Context Ontology

Network. In Proceedings Second Workshop on Ontology Patterns (WOP

2010) co-located at ISWC 2010. CEUR-WS, 2010. → pages 44

[RC07] Chanchal Kumar Roy and James R. Cordy. A survey on software clone

detection research (No. 2007-541). Technical report, Queen’s University,

Kingston, Canada, 2007. → pages 130, 132

[Rec05] Alan Rector. Representing Specified Values in OWL: ”value partitions”

and ”value sets”, 2005.

URL:

<http://www.w3.org/TR/swbp-specified-values/>. →
pages 70, 71, 76

[RJ00] Linda Rising and Norman S. Janoff. The Scrum Software Development

Process for Small Teams. IEEE Software, (August), 2000. → pages 47

[RN03] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, 2nd edition, 2003. → pages 15

[Roy70] W. W. Royce. Managing the development of large software systems. In

Proceedings of IEEE WESCON, volume 26, pages 1–9. Los Angeles,

1970. → pages 7

[RU89] H. D. Rombach and B. T. Ulery. Establishing a measurement based

maintenance improvement program: lessons learned in the SEL.

Technical report, 1989. → pages 11

[RWNW05] Alan Rector, Chris Welty, Natasha Noy, and Evan Wallace. Simple

part-whole relations in OWL Ontologies, 2005.

URL:

<http://www.w3.org/2001/sw/BestPractices/OEP/>.

→ pages 70

[SA77] R. C. Schank and R. P. Abelson. Scripts, plans, goals, and

understanding: an inquiry into human knowledge structures. Erlbaum

Associates, New York, USA, 1977. → pages 12

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing

applications. In Proceedings of the 1994 First Workshop on Mobile

Computing Systems and Applications, pages 85–90, 1994. → pages 94

161

[SBF98] Rudi Studer, Richard Benjamins, and Dieter Fensel. Knowledge

Engineering : Principles and Methods. Data Knowledge Engineering,

25(1-2):161–197, 1998. → pages 1

[Sch97] Ken Schwaber. Scrum development process. OOPSLA Business Object

Design and Implementation, (April 1987):10–19, 1997. → pages 4, 8, 46

[Sch02] Albrecht Schmidt. Ubiquitous Computing Computing in Context. PhD

thesis, Lancaster University, 2002. → pages 96

[Sch11] Philipp Schügerl. Scalable Clone Detection Using Description Logic. In

Proceedings of the 5th International Workshop on Software Clones

(IWSC’11) at ICSE’11, 2011. → pages 102, 130

[Sel92] Peter G. Selfridge. Knowledge-Based Software Engineering - Guest

Editor’s Introduction. IEEE Expert, pages 11–12, 1992. → pages 28

[SFBD+09] Mari Carmen Suarez-Figueroa, Eva Blomqvist, Mathieu DAquin,

Mauricio Espinoza, Asuncion Gomez-Perez, Holger Lewen, Igor

Mozetic, Raúl Palma, Maria Poveda, Margherita Sini, Boris

Villazon-Terrazas, Fouad Zablith, and Martin Dzbor. NeOn D5.4.2.

Revision and Extension of the NeOn Methodology for Building

Contextualized Ontology Networks. Technical report, NeOn project,

2009.

URL: <http://www.neon-project.org>. → pages 41, 149

[SFdCB+08] Mari Carmen Suarez-Figueroa, Guadalupe Aguado de Cea, Carlos Buil,

Klaas Dellschaft, Mariano Fernandez-Lopez, Andres Garcia, Asuncion

Gomez-Perez, German Herrero, Elena Montiel-Ponsoda, Marta Sabou,

Boris Villazon-Terrazas, and Zheng Yufei. NeOn D5.4.1. NeOn

Methodology for Building Contextualized Ontology Networks. Technical

report, NeOn project, 2008.

URL: <http://www.neon-project.org>. → pages 66

[SKRR97] Bill Swartout, Kevin Knight, Tom Russ, and Marina Rey. Toward

Distributed Use of Large-Scale Ontologies. In Symposium on

Ontological Engineering of AAAI, pages 138–148, 1997. → pages 39, 44

[SPSW01] Michael Q. Stearns, Colin Price, Kent A. Spackman, and Amy Y. Wang.

SNOMED clinical terms: overview of the development process and

project status. In Proceedings of the AMIA Symposium, pages 662–666,

January 2001. → pages 18

162

[SR10] Philipp Schügerl and Juergen Rilling. Chapter 9 - Enriching SE

Ontologies with Bug Quality. In Semantic Web Enabled Software

Engineering, pages 139–151. 2010. → pages 102, 114

[SRC08] Philipp Schügerl, Juergen Rilling, and Philippe Charland. Enriching SE

Ontologies with Bug Report Quality. In International Workshop on

Semantic Web Enabled Software Engineering (SWESE’08), 2008. →
pages 102, 114

[SRC11] Philipp Schügerl, Juergen Rilling, and Philippe Charland. A Semantic

Web-based Approach to Scalable Clone Detection. In Proceedings of the

35th Computer Software and Applications Conference, 2011. → pages

102, 130

[SS09] Steffen Staab and Rudi Studer. Handbooks on Ontologies. Springer, 2nd

edition, 2009. → pages 35

[SSS00] Hans-Peter Schnurr, York Sure, and Rudi Studer. On-To-Knowledge

Methodology Baseline Version. Technical report, Institute AIFB,

University of Karlsruhe, 2000. → pages 40, 149

[Sub05] Venkat Subramaniam. Practices of an Agile Developer: Working in the

Real World. Pragmatic Bookshelf, 1st edition, 2005. → pages 142

[TPO+06] P. Tetlow, J. Z. Pan, Daniel Oberle, E. Wallace, Mike Uschold, and

E. Kendall. Ontology Driven Architectures and Potential Uses of the

Semantic Web in Systems and Software Engineering, 2006.

URL: <http://www.w3.org/2001/sw/BestPractices/>.

→ pages 27

[TZ88] W. T. Tsai and I. Zualkernan. Expert Systems for Software Engineering?

Software and Applications Conference, pages 2611–2611, 1988. →
pages 10

[UG96] Mike Uschold and Michael Gruninger. Ontologies: Principles , Methods

and Applications. Knowledge Engineering Review, 11(2):93–136, 1996.

→ pages 16

[UK95] Mike Uschold and Martin King. Towards a Methodology for Building

Ontologies. In In Workshop on Basic Ontological Issues in Knowledge

Sharing, Montreal, Canada, 1995. → pages 37, 148

[WCDS05] Pornpit Wongthongtham, Elizabeth Chang, T. S. Dillon, and

I. Sommerville. Software Engineering Ontologies and their

Implementation. In Proceedings of the IASTED International Conference

on Software Engineering, pages 208–213, Innsbruck, 2005. → pages 28

163

[Wel97] C. A. Welty. Augmenting Abstract Syntax Trees for Program

Understanding. In Proceedings of the 12th IEEE International

Conference on Automated Software Engineering, pages 126–133, 1997.

→ pages 28

[Wel00] C. A. Welty. Ontologies: Expert Systems all over again?, 2000.

URL: <http://www.cs.vassar.edu/ weltyc/aaai-99/>.

→ pages 18

[WF99] C. A. Welty and D. A. Ferrucci. A Formal Ontology for Reuse of

Software Architecture Documents. In Proceedings of the 14th IEEE

international conference on Automated software engineering, page 259,

1999. → pages 28

[Win93] P. H. Winston. Artificial Intelligence. Addison-Wesley, 1993. → pages 9

[WJL03] A. Walenstein, N. Jyoti, and A. Lakhotia. Problems creating task-relevant

clone detection reference data. In 10th Working Conference on Reverse

Engineering, 2003. WCRE 2003. Proceedings., pages 285–294, 2003. →
pages 131

[WLLB06] T. Weithoner, Thorsten Liebig, M. Luther, and S. Bohm. Whats wrong

with OWL benchmarks. In Proc.of the Second Int. Workshop on Scalable

Semantic Web Knowledge Base Systems (SSWS 2006), pages 101–114,

2006. → pages 104

[ZBPS09] Thomas Zimmermann, Silvia Breu, Rahul Premraj, and Jonathan Sillito.

Improving Bug Tracking Systems bug tracking. Companion to the 31th

International Conference on Software Engineering, 2009. → pages 115

[ZK02] A. Zeller and J. Krinke. Essential Open Source Toolset. Wiley, 2002. →
pages 115

[ZSG79] Marvin V. Zelkowitz, Alan C. Shaw, and John D. Gannon. Principles of

Software Engineering and Design. Prentice Hall Professional, 1979. →
pages 7, 8

[ZZWD05] Thomas Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining

version histories to guide software changes. IEEE Transactions on

Software Engineering, 31(6):429–445, June 2005. → pages 116

164

