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ABSTRACT

LIMIT PROPERTIES OF THE “ALMOST LACK
OF MEMORY™ DISTRIBUTIONS

FAIZ AHMAD

Limit behaviour of a new class of distributions having the * Almost
Lack of Memory” (ALM) property is derived, when some of its pa-
rameters are close to their boundary points. The effect of combined
closeness of the parameters on the distribution is also shown. Results
obtained have been verified by simulation. Graphical illustrations

have also been included with simulated and real distributions.
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INTRODUCTION

The exponential distribution is frequently used as a model for the distribution
of times between the occurrence of successive events such as customers arriving at
a service facility or calls coming on a switchboard. The reason for this is that the
exponential distribution is closely related to the Poission process.

Another important application of the exponential distribution is to model the
distribution of component lifetimnes. A partial reason for the popularity of such
application is the “memoryless”™ property of the exponential distribution.

While the memoryless property can be justified at least approximately in many
applied problems, in other situations components deteriote with age or occasionally
improve with age ( at least to a certain points ). More general life time models are
then furnished by the gamma, weibull, or lognormal distributions. Recently a new
class of models has been introduced by Chukova and Dimitrov (1992) which also
models the general life time problems. They named this class of distributions as
“Almost Lack of Menrory” (ALM) class of distribution. It has some properties simi-
lar to the exponential distribution and hence it has some potential applications. An
important question arises about the closeness of this class of distributions with that
of the exponential distributions. In the present thesis the closeness between these
two distributions by investigating the limit behaviour of ALM class of distributions
has been studied.

The thesis consists of four chapters. The first chapter deals with the properties



and important results concerning the “Almost Lack of Memory™ distributions. In
the second chapter the limit properties of the “Almost Lac . of Memory™ distri-
butions have been established. In chapter 111, the results of chapter II have been
Justified by simulation. Finally chapter IV is devoted to discussions and conclusions

of the work presented in this thesis.
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CHAPTER |
PROBABILITY DISTRIBUTIONS HAVING
THE “ALMOST LACK OF MEMORY"” PROPERTY

In this chapter we have summarized some properties and important results on
the“Almost Lack of Memory™ probability distributions from the recent works of

Chukova and Dimitrov (1991.1992) and Dimitrov et al. (1992).

§1. Properties of the “Almost Lack of Memory” Distributions

The following definitions introduce two probability distributions which play im-
portant roles in many practical problems of reliability, quening theory, statisties

and a lot of other practical situations.

Definition 1.1.1: A non negative random variable X has the lack of memory

property iff the equation

P{X 2 b+ z|Y > b} = P{X > 7} (1.1.1)

holds for all 4 > 0, > 0.

This definition implies that X has either exponential (if X is continous) or

geometric distribution (if X is discrete).



Definition 1.1.2: A non negative random variable X has the almost lack of
memory (ALM) property if there exists a sequence of different constants {an}5%,

such that the equation
P{X>b+2|X>b}=P{X2>r} (1.1.2)

holds for a sequence

b=a,, n=12,..
aud for all r > 0. 1If (1.1.2) holds for given b = ¢ and all » > 0, then it is said that
X has the lack of memory (L.M.) property at the por  c.
The following Lemma has been proved by Dimitrov et al. (1992).
Lemma:1.1.1 If a random variable X" has the lack of memory property at a point
¢ > 0, then X has the ALN property over the sequence {a, = nc}sy,.
A characterization theorem established by Dimitrov et al. (1992) by using Lemma

1.1.1 1s as follows.

Theorem 1.1.1. A random variable X has the ALM distribution at a point ¢ > 0,

iff its c.d.f. has the formn

Fy(o)=1- alt/d 4 qlrld(1 — )Py (2 - [r/c].c), =0, (1.1.3)
where [r /] denotes the integer part of v /e, o € (0,1) and Fy(y) is any c.d.f. with
support [0,c).
Proof: Sec Dimitrov et al. (1992)

Definition 1.1.3: We say that distribution Fy(r) of the random variable X

belongs to the ALM(a. e, Fy-(.)) if X satisfies the Theorem 1.1.1 Here a,c¢ and

4



Fy-(.) are the parameters of the ALM distribution Fy (o). It can be denoted as

X e ALM(a.c. Fy (1))

A decomposition theorem has also been proved by Dimitrov et al. (1992), which

is an equivalent representation of Theorem 1.1.1. We state it without proof:

Theorem 1.1.2. A random variable X has the A.L.M. property at a given point
¢ > 0 in the sense of Definition (1.1.2) iff X is decomposable into the form
X =Y. +¢Z, (1.1

where Y. and Z are independent r. v.’s. Y. with probability 1 is concentrated on
the interval [0.c) and Z has a geometric distribution on the set 0,1,2,3,.... with

parameter a = P{X > c}.

Theorem 1.1.2 is a characterizaton theorem for the distribution of randomn vari
ables having the ALM property. This is very useful for simulating random variables
of this type. In chapter (111). we used this representation theorem for our siimulation

results.

§2. ALM property for the bivariate distribution
In this section we summarize the results of bivariate distribution having ALM

property. (Dimitrov and Chukova (1991))
Definition 1.2.1: The random vector Z = (X, Y') with nonnegative components
X and Y has the bivariate ALM property iff the following equation
PX>a+2.Y 204yl X2a,Y 20} =P{X2>aY >y} (1.2.1)
holds, for any * > 0,y > 0 and for all a > 0,b> 0.

The following result has been proved with the following assumptions:

[whi ]



Theorem 1.2.1. Let P{X > a} =a € (0.1); and P{Y > b} = 3 €(0,1).

If (1.2.1) holds for some o > 0,b > 0, then the following result holds;

P{X >na+z.Y 2nb+ylX >na,Y >nb} = P{X >z,Y 2 y}. (1.2.2)

Definition 1.2.2: The random variable X and Y are said to be almost indepen-

dent iff

P{X>na+2Y 2y} =P{X 2na}.P{Y 2y} (1.2.3)
and

P{X 2o Y 2mb+y}=P{X >2}.P{}Y >mb}
hold for arbitrary # > 0,y > 0 and for n =0,1.2,..,,m=0,1,2...

Definition 1.2.3: The distribution Fz(z.y) of the random vector Z = (X,Y")
belongs to the class of Bivariate distributions having ALM property iff its survival

function is given by the equation
P{X > r.Y >y} =al/4d30/%(1 = a)(1 - B)G(x — [z/ala,y — [y/b]b)

+8(1 — )Gy (r —[v/a)a) + a(l - B)G2(y — [y/b)b) + af). (1.2.4)

Here {t] denotes the integer part of the argument ¢ > 0;G(r,y) is the survival
function defined over the rectangle {{0.a).[0,b)}, G,(z) and G2(y) are its marginals

and a € (0.1). 3 € (0.1) are arbitrary given and fixed numbers.

The following results are the consequences of the above properties.

G



Theorem 1.2.2. The random vector Z is decomposable into
Z =27 +(Na13), (1.2.5)

where Z; = (\X,,1)) is independent of (X,,Y}) and has G(r, y) as a survival function
and with probability 1, takes value in the rectangle {[0.q).[0.b)}. X, and X, are
independent random variables geometrically distributed over the set {0,a,2a,....}

and {0,b,2b...} with parameters a and j respectively.

Theorem 1.2.3. The p.d.f. of Z (if it exists) has the form
fzlry) = alr/a /b1 — q)(1 - Ag(r = [x/ala,y = [y/b]b), (1.2.06)

r>0.y2>0,

where g(u.v) is the p.d.f. of the survival function G(.x,y).

The proof of the above results can be found in Dimitrov and Chukova (1991).

Extension of the Lack of memory property over the real line is also discussed by

Dimitrov et al. (1992) in details .

§3. Multiplicative ALM property (MALM)

Multiplicative lack of memory property is the result of replacing the plus sign by
a multiplication sign in equation (1.1.1). We summarize the results of Multiplicative
Almost Lack of Memory property as given by Dimitrov and Von Collani (1991) and

Dimitrov et al. (1992).

Definition 1.3.1: It is said that a random variable X > 0 has the MALM

property iff cither

-~1



( a) for a given sequence {b,}2%, of different values of b, € (0,1) and for any

r€(0,1)

P{X <ab,|X < b,} = P{X L 1} (1.3.1)

or

( b) for infinitely many different b,, > 1 and for any r > 1 the relation

P{X > zb,|X > b,} = P{X >z} (1.3.2)

holds.

Definition 1.3.2: If the equation (1.3.1) or (1.3.2) holds for some b,, = ¢, where

c # 1, then it is said that X has the MALN property at the point c.

If equation (1.3.1) is true for all ¥ and b,, € [0,1), then it characterizes the uniform

distribution U[0.1].

If (1.3.2) is true for all * and b, € [1,00), then it characterizes the Pareto distri-

bution Fx(r)=1—=ur"7,4 > 0.

The above result from Galambos and Kotz (1978) shows that the MALM property

characterizes the uniform and Pareto distribution.

Theorem 1.3.1. The following is true:

Let X be a non-negative random variable with c.d.f Fx(x) and X has the MALM

property at a given point ¢ # 1, then

(1) The random variable X has the MALM property with the sequence of the

formb, =c".n=0.1.2,...:



(2) The c.d.f Fx(x) of X has the form defined by either the equation
Fx(z)=a"(1-a)a+ (1 = a)Fy(x.c™™), (1.3.3)

forO<c<landre(c"t,c"], n=0.1,2.

or

1-Fx(r)=a"(1-a)la+(1=-a)l - F(xr.c” ™)
forec>1and x € [c". "), n=0.1,2,..,
where Fy(y) is defined by the relation

F(y)=P{X <yX <c}, if e¢>1, ye[l,c) (1.3.4)

Fy(y)=P{X <y|lX >c}, if e<1, ye(e]]

and

a=P{X2>c} for ¢>1,

or
a=P{X<c} for c<1.
(3) The random variable X is representable in the form
X =VY.c?%, (1.3.5)

where Y is independent of Z, Y is defined by Fy(y) and Z has a geometric

distribution over the {0,1,2,...} with parameter .

9



4. Characterization of the ALM distribution with a periodic failure rate
function

The failure function was first introduced by Barlow and Prochan (1965).

Let F(z) be the distribution function of the time to failure random variable X,

with probability density function f(z). Then the failure rate function is defined by

flo) _ _Fa) > 0. (1.4.1)

M) =TT F@ " T=Fley *2

For the discrete case

p(k)

=, k=1,23... . 14.2
Zu:kp(l/) ( )

AMP)=P{X =kX >k} =
The failure rate function may be described as the conditional probability of an

cquipment failing at operating age r, having survived to age r.

Definition 1.4.1: A random variable X' has a periodic failure rate function
(PFR) Ax(r.t) with period c. if there exist a positive constant ¢ > 0 such that for

any integer n 2 0 and any » > 0 following holds

P{X €zr.x + ]}
P{X>z2}

Ax(ne+a.t)= Ax(r,t) = (1.4.3)

Theorem 1.4.1. (Dimitron ot al. (1992))

(1} A non-negative random variable X has periodic failure function of period

c > 0 iff X has the ALM-property with b, =ne, n=1,2,..;

(2) The PFR Ax(a.t) and the ALM distribution Fx(r) are related by

Fx(r) = cxp[~A(x,1)].

10



The failure function is expressed by equation

(1=a)Fy(t+x—[(t+2)/0)
1-(1-a)FRy(r—[r/de) )

Ax(2.4) = 1 — alt+sd=lerd 1= (1.4.4)

where
Fy(y)=[1-e¥])/(1-a). ye[0,c)a=c")
with
Ax(y) = Ax(y.0) = ={y/cllna = In[1 = (1 = a)Fy (4 — [u/c]e);

(3) If Ax(@) or Ax(F) and a, fy () or py-(k) are the attributes determining the
random variable X as PFR and having the ALM property, then the following

relation holds:

( a) In the continuous case

(1—a)iy(r)

Ay -r) = —
x(netr) (1- (')Jn fy(u)ydu 4+ a
= Ax(r),n=0,1,2,..., (1.4.5)
where
a= c.rp[——/ Ax(w)dul;
0
and
fy(r)= AX(T)(J‘J)[—/ Ax(u) dul
1 - 0

for € [0,¢) and fy(z) is a p.d.fon [0,¢) of random variable Y;

( b) In the discrete case, ¢ Is an integer and

(1= a)py(m)
(1—a) 2! b+ 0
=Ax(m) n=0,1.2,.; (1.4.6)

Ax(nc+m)=

11



where

c-1
a= [J01-Arx(k),
k=0

Ay m-1
py(k) = XTI 0 yw)), for m=0,1,2, 00— 1,

v=0

and
{PY(m) fn—=lo

is the p.d.f of a discrete random variable Y.
For the proof of the above results see Dimitrov et al. (1992).

Theorem 1.4.2. (Characterization theorem): A random variable X has a periodic

failure rate function with a certain period iff X can be decomposed as a sum
X =9n+¢, (1.4.7)

of two independent components 1 and €, where § has a geometric distribution of

the form

P{{=nc}=a"(1-a), n=012..

with arbitrary ¢ > 0, and 3 is distributed either on the set {0.1,2,...} (with ¢ an

integer in the discrete case) or the interval [0, c).

Proof: The proof can be found in Chukova and Dimitrov (1993).

* * *



CHAPTER Il
LIMIT PROPERTIES IN
THE “ALMOST LACK OF MEMORY” DISTRIBUTIONS

§1.Introduction

In this chapter, we will examine the following question: What is the limit he-
haviour of the distribution of X' € ALA (¢, a, Fy(.)), when some of its parameters
are close to their boundaries. e.g. a close to 0 or 1; ¢ close to 0 or oo with proper
assumption on the behaviour of Fy-(.) in the last case. We will also answer an
important question about the effect of combined closeness of o, ¢ and Fy-(.), when

they are close to their boundaries and how this reflects on the distribution of X.

Various kinds of normalization for X exists. We now study the following two

normalization cases:

Case I : Scale Normalization

X

—_—) 9
(&5 ) (2.1.1)
Case II :Standard (scale and location) Normalization
X -EX
X —EX (2.1.2)

)

On the basis of the results in chapter (I), we have established the limit behaviour

of the above normalized random variables X

13



52. Limit behaviour of the distribution of X when o is close to its boundaries

Theorem 2.2.1. Let the random variable X have the ALM property at a point ¢
given by (1.1.3). If the parameter o tends to 1 then the distribution of the random

variable X/EX tends to the exponential distribution.

Proof: By the decomposition Theorem 1.1.2 of the random variable X, we have
X=Y.+4+cZ, (2.2.1)

where Y, has an arbitrary distribution function on [0,¢) , for ¢ > 0; Y. and Z
are independent variables. We know that with probability 1 ¥, is concentrated on
the interval [0,¢) and Z has a geometric distribution on the set {0,1,2,3....} with

parameter a = P{X > ¢}.

In our present work we use (2.2.1) to determine the limit distribution of the
random variable T\'\' The representation (2.2.1) can be rewritten in the following
form

X Y +
T = - T C
FX EX

EX’

From (2.2.1) the expectation of random variable X is

EX = EY +c¢EZ; 2.2.2)
ac
=FY ) 2.2.
EY + T—= (2.2.3)
Therefore,
. . . . ) ac
(11_1_1}1 EX = (I,Lm; EY + 31211 T—a (2.24)

14



Also
lill}](l -a)EX = lixul(l —a)EY + liml ac,
i.e.

liml(l ~a)EX — ¢, (

to
o
(4]
v’

Taking the Laplace-Stieltjes Transform of the random variable I—\—\— we obtain:

b (s) = ELFX)

1—-a
¢¥ (E\ 1— aei'f""
Thus
_ ) 1 —a
lim ¢ () = Jim oy (). Jim ———.

and since

hm by (E ) =1,

X

we have
l—a

hm P (a)— lim —
a—1 1 —¢Ex

Here
sC k 1

1—(\07‘_~1—(1+OZ(

and substituting it in (2.2.6), we obtain

l—a

lim aﬁ.éxx s) = lim

3 1
o—l a—1 (1 —a)[l + 0 0nr)l vt (l-—n)l \(’(—\')]
1
= lim — ; T
a=—1{1+ —a)Ex T (I=alEX o g% )]
1
= lim

b

N ase
@ '[1’*'(1 “a)EN +(1-(.)1\°(1\)]

15



where

O(_l__) = 200: _ﬁ__i(_l)k“___. 0
Ex) T ZEX)T | '

Hence, by (2.2.5)
. 1
o P8 = T
Since —1- is the Laplace Sticltjes transform of the exponential distribution with

149

parameter one, the theorem has been proved.

Theorem 2.2.2. Let the random variable X have the ALM property given by
(1.1.3) at the point ¢. If the parameter a tends to 0 then the distribution of the

random variable 7;\—\ tends to the distribution of the random variable fy

Proof: Here, we use the decomposition theorem 1.1.2 for the random variable X .
X=Y.4+cZ,

where Y, and Z are the same as defined earlier. Taking expectation of random

variable X, we have equation (2.2.5). Therefore ,

b

lim EX = lim EY + lim
a—0) a—0 o—0 -

lim EZ = lim —— = 0, (2.2.7)
a—0 a—01—aqa

and

lim EX = EY.
a—0
If a = 0, it follows that Z 0 Indeed, for any € > 0,

16



1.e

P(Z>¢)=a—0. (2.2.8)
Therefore in
X=Y+4+cZ

from (2.2.7) and (2.2.8), we have

cZ—P—» 0.

By using the to Slutsky’s theorem, i.e

if {or
X, =Y, +2Z,.
Y, 5 vz, Do
n-—0o0 1n—00
then
X, 5y

We obtain
X Y ¢Z a4 Y

Ex EXTEX B

This proves the theorem.

Theorem 2.2.3. Let the random variable X have the ALM property with the

distribution function given by equation (1.1.3). If the paramcter e tends to 1, then

the random variable 7\—"& has the limit distribution
Var(X)

0, t<-1;

e‘“'“’, t>-1.



Proof: By the decomposition theorem, the representation

X=Y+¢cZ
holds.
i BRI . X-EX
The characteristic function of m 15
-HEX- t
¢o_x-ry (1)= c;"""-‘"q&,\((——-——— )
Variny Var(X))
and
EX = EY 4+ —<
1—a

Therefore, it is easy to sce that

lim EX — oo;
a—~—1}

Iim](l - a)EY — c.

Morcover, we have
ac?

far(X) =1’ N .
Var(X) ar())+(1_a)2,

4 ECEY 2
‘]'i'l'l‘ll Var(:X) = clulf.ll \/Var(y) + (1 ica)z

Using the normalization coeflicient (1 - a), we observe that
liml(l —a)y/Var(X) — ¢
-

Combining (2.2.10) and (2.2.12), we obtain

lim —-—E—?-\—— =1,
a-] "'01'(.\ )

18
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i.e. this limit will not depend on the value of a.

Further, since {/Var(X') — oo, and ¢ is fixed. ¥ remain bounded. Thus

Iim ¢y (————=) = ¢y(0) = 1. 2214
lim v ( Var(_\’)) ¢y(0) ( )
Moreover
1—a _ l1-a
_ —1lc - te (1tc)?
l—a e:rpm 1—-a(l- \/me‘\_) + ey )
_ 1
- [ iea |

7 .
(l—n)\/\'nr(.\') + (l—n)\/\ ur(.\')‘)( \/\'uv(\) )]

1

Here o denotes the resi st
r (m) notes the residual sum

1 1te

) - S+ ...
¥ VVar(Y)

Var(X) 3!

—1tc

in the expansion of ¢ Viaron | In view of (2.2.12), (2.2.13) and (2.2.14), we obtain

, l1-a 1 1
lim — =
a—1 1_0.(T====\’nr(.\)

Hence, from (2.2.9) and (2.2.14), we obtain

(,'—ll
lim ¢_x_ex_(t) = ——
a1 ¥ TR 1+ it

’

which is the characteristic function of a shifted exponential at (-1).

Theorem 2.2.4. Let a random variable X have the ALM property with the dis-

tribution function given by equation (1.1.3). If the paramncter o tends to zero,

19



then the randon variable 7\‘715:7‘;—) tends to the distribution of the random variable
arg .,

T =FY
- A—

Svaryy’
Proof: From the decomposition theorem, we have (2.2.1). The expectation and

variance are given by (2.2.10) and (2.2.11). Therefore, the following is true

lim EX — EY;

a—0

limo Var(X) — Var(Y),

and

lim EZ — 0.

a—(
P .
Moreover, for a — 0, we have Z — 0. Now referring to Slutsky’s theorem and

using the above result we obtain,

X Y Z P Y
= + S —
\/Vur(.\' ) \/Var( X) ¢ vVar(X) — Var(Y)

The following results are well known, see e.g. C. R. Rao (1973):

If

Y. 5x vt (2.2.15)

then it implies that

X, +Y, L X4c

as well as

X, ¢« X
e— _—) —.
Y, c
In our case, we have,
Y EX Y EFX Z EX

Jrar Xy Jrarx)  Jar(X)  JVar(x) T e ey
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Since

X P Y
Srar(x) o0 Sar(y)

EX — EY,

a—0
VVar(X) = /Var(Y),

it follows that
X —-FEX d Y - FY

VVar(X) - VVar(Y)’

Therefore, if ¢ is fixed (1.c. does not vary simultaneously with a), the limit

(2.2.16)

behaviour of Z leads to the limit distribution of the random variable X =Y + ¢Z.
But (2.2.16) shows that after the limit (0 — 0) is taken, the limit behaviour of X,
when cis large (¢ — oo0) or small (¢ — 0), will be determined by the corresponding

limit behaviour of ¥".

§3: Limit behaviour of X with respect to c, when it is close to its boundaries
0 or cc

In this section we study the behaviour of an ALM(e, ar, Fy-(.)) variable X', when
the parameter ¢ is close to its boundaries and assuming the other parameter o is
fixed. Fy(.) is a distribution with support over the interval [0, ¢), varying simul-
taneously with ¢. Therefore a proper assumption on the distribution Fy(.) is also

important in determining the limit behaviour of X.

Theorem 2.3.1. Let X have the ALM property at a point ¢ given by (1.1.3) or
X € ALM(c, Fy(.).a). Assume the parameter c tends to its boundaries i.c. either
to 0 or to oc, the distribution of Fy(.) is uniform over [0, ¢) and EX is known. Then

21
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the random variable ?—\-\- also has an ALM distribution, with Y ~ Uniform over

- . 201~
[(),21,1—:-;-] and Z ~ geometric over l.‘.#_;;“-)-,k =0,1,2, ...

Proof: Using the decomposition property (2.2.1), we have
X=Y.+cZ,

where Y, and Z are the same as defined earlier. Taking the expectation of X under

the given assumptions, we obtain.

EX = EY + cEZ;

C .
27 1-a’
c(l+a)
2(1 - a)’

Hence
c 2(1-a)
EX ~ (14+a)’

Thus the Laplace Stieltjes transform of 'Lli" is given by

¢J_(s)=Ec(:ﬁ€)

L\

s l—-a
EX '] - qeE¥

—-Cs

l1—-a eEX —1

= ¢y (

—scC 2 4
1-aeEY  E¥

Moreover
2s(1—a)
. 1—a 1~ erp—
—ul"}}—- ¢ (8) = “2s(1~0) YT
c—lor 0o l1—a e.rp———Ha “ST1Ta
~24(1
_14a l-erp=ioel 2
=T ~2:(1-a) (231
<8 1—-aqa €T P %o
) (1-a) (D 261 ) <
1_a eil.p—z.;(;a—n) Pt k! I+a



2l -a)
I+a

Therefore. ¢ belongs to the class of ALM with ¥ ~ Uniform over [0, ] and

. . 2 -
Z ~ Geometric with parameter a, over the numbers l\"(,‘_H:'). k=0,1,2..... Thus

the theorem is proved.

Theorem 2.3.2. Let X have the ALM property at ¢ given by (1.1.3). Assume the

distribution of Fy (.) is uniform over [0,c). Then the random variable ‘{ = ‘\",“""(‘\\_)
has an ALM distribution, which does not depend on c.
Proof: The expectation of X under the given assumption is casy to get
c ac
EX =- ,
2 + l-a
and the variance is
N 2 1— 2 92 2
Var(X) = c( a) +1' ac
12(1 — )2
Therefore.
EX V3(1 4 a)
- = = - = b, (2.3.2)
VVar(X)  (1-a)?+12a
1e.
EX . .
——=——==— = s a constant, which does not depend on .
v Var(X)
And
12(1 -
¢ = = \/_ ( = O) = 1)2 (233)
VVar(X) /(1 -a)? +12a
is also a constant, which does not depend on c.
. tabd : X-EX .,
Therefore the characteristic function of TS is:
-t EYX t
$_x-£x (1) = eV D) gy (—mm=—
7\'"(.\')( Var(X ))
t l—-«o
= ¢ "M gy : 2.3.4
‘ i Vm‘(.’\'))1 — ac'th: ( )
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From equations (2.3.2) and (2.3.3), we have

b
¢ X—EX (f):e-“bl ell 2 -1 l—-a
;;Vur‘('.\') 2’1)2 1 - a’e"b:

Therefore,

b
¢ X_EY (t):c""bl et -11-a

. 2.3.
P T = aciits ith, (235)

does not depend on ¢, but represents the characteristic function of a random variable
A" having an ALM distribution, shifted to the left at the point b;, with ¥ uniformly
distributed over [0, ] and Z- geomietrically distributed with parameter . Thus

we have

X-FEX ~ ~

e =Y + b Z — by, 2.3.6
Var(X) ? : ( )
where
g EX __ Vi(l+a)
' Var(x) Jl-a)F +12a’
9 —
St 2 (2.3.7)

by = = = .
2T Var(x) J1-a) + 12

We conclude that when ¢ varies, it does not affect the distribution of the normalized

random variable

X—-FEX
\/Var(X),

and this distribution remains the same, whatever the value of ¢ is. Therefore, other

normalizations must be considered.

§4:The limit behaviour of X when both o and ¢ vary

Now, using the result (2.3.1), we can prove the following combined result.

Theorem 2.4.1. If X € ALM(Fy-(.).a,c) with Y-uniform over [0, c),then

-

(}1}_1}1 P{E"}f >} — erp(—r),

<= vord

24



and

0, for <O

.\'

. I
—_— — - . 9.
a—-O,lclfx-looorO { Zyv < r} = 5 for r€[0.2):
1, for r>2.
Proof: From (2.3.1) , we have,
' _1+01—e-2;+1«-_a
¢-E\\—(s) - ‘)Q —2(l~a) "’
“ 1—ae T+a
Hence
l1+a l—ar'-zw«:"'
lim ¢ (s) = lim —— lim —o
a-—1 . a—1 28 a—l 1—ae 150
Let
1- .
€= 0, lim ¢ — 0;
l1+a a—l
1-—
a = 6; lima —1;
1+4¢ €~
Therefore
(1—6 y _ —(1+e)-(1-¢) -2
1+¢ (1+e¢)° (1+¢)*
1 .. 1-— ¢~ 290
N
10 ) , .
=30 Now, using L'Hospital rule
s
2se21¢
= ~ lim
s =0 [( .L+_ )2se =2 4 (1=t = L)1 =2ne]
—2s¢
= lim[ ]_'e e —20¢ ]
—0s(13:) + e
1
T 1+

(]
1]



Which is the Laplace Stieltjes Transform of the exponential distribution with pa-
rameter one.
Further we have
1— e—2a

lim ¢ (5) —5

which is the L.S.T. of the uniform U[0, 2]-distribution. Hence the theorem is proved.

Now, using the result (2.3.5) and (2.3.7), we can prove the following combined

result.

Theorem 2.4.2. If X € ALM, with Y uniform over [0, ¢), then

0, :r<—\/§;

. X-EX T
lim P{—=——< = —_— - : 2.4.2
am0 {\/17(11'(.\') <) V12’ €l v, \/51’ ( )

1, z>V3

Proof: From (2.3.5) and (2.3.7) in the proof of Theorem 2.3.2, we have
by — \/5, by — 2\/§

Further Z, in (2.3.6) tends in probability to 0, since

N

Zo— 0
is equivalent to

~ d

Zo__—) 0
Moreover

Sod s

Y — Y,



which is uniformly distributed over [0, 2\/5]

Indeed, we have

eub, -1 f‘112\/.'-3- -1
¢=(t) =

ithy  itay3
Apply the limit a — 0 in (2.3.6), we obtain

~

X=-b+Y+2Z— Yy— 3 (2.4.3)

which is U[—v/3. V3].

The theorem is proved.

Theorem 2.4.3. If X' € ALAI, with Y uniform over [0,¢), then

(2.4.4)

\/—_\'

X E\ . = {r— 3’, r > —1;

Proof: From (2.3.5) and (2.3.7) in the proof of theorem 2.3.2, we have

th
¢.\-_s,\-(t)=e-ub|€' 2-1 1-a

V. aEy ithy 1 — actths’
where by and b, are given by (2.2.23). Thus
et ellbz -1
hm (ﬁ?\‘ (F\\) (1) = _l—t— clrl—l-nl 1— aetth:’
Let
1- :
€= - a lim e — ().

VI =a)? +12a’ o=l

27



Then

e U 62\/5111 -1
liml dx-ex(t) = ” lin(ll " — P
a— VK] ¢ — - =
v ;;(1—6)24'12(6
e 2V/3ite?V3ite

1
it ‘Er(l) —(]—‘)2‘/§i"2ﬁ"‘ _( (1—¢) )162\/51!(
V(1-6)2+12¢ V(1=0)2+12¢)
e 2/3it
it —23it+6
:'17_(-:‘1
- 3

= o
l*vslt

This is the characteristic function of the distribution (2.4.4). The theorem is proved.

§5. Normalization by the parameter c

The Normalization

o
It

(2.5.1)

S P

in the case of Y € U[0,¢] gives in some sense a better “standardized ” form of

the ALM (a.c,Uf0. ¢]) class of distribution.

On the basis of the representation (2.2.1). the following holds

0 .
X=—+42Z,

with
6y = bx(D62(1




0
Therefore, whatever the constant ¢ is , the “normalized™ random variable, X in the
case of uniformly distributed Y over the interval [0,¢) is an ALM random variable
from the class ALM (@,1,U[0,1]). Therefore, in this case the variation of ¢ does

0
not affect the distribution of .X.

Remark : If Y is not uniformly distributed then the equation

65(t) = 6x(1):62(1)
i l—a
¢l —~aet

= ¢y ( (2.5.3)

0 ) 0
will control the limit distribution of X. Obviously, if 35- — Y, regardless of ¢ — 0

0 0
or ¢ — oo, then the limit X is also an independent sum Y and Z, where Z has

0 o
geometric distribution i.e. X =Y + Z.

Example 2.1:

In this representation

0 X
X==+2Z
¢

where Z is the geometric distribution and let us suppose Y has an exponential

distribution over (0, ¢) with parameter A,
Ae~™Y
() =1——=x vE[00)

0
Hence the characteristic function of X is

85 (1) = $1(1)-92(1)

1 -
= </>v(f/C)—'1—_—£7-
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Here
A et~ 1
ov(t/e) = T Grje— )
cA(eM—r 1)
Tl — e (it/c~ )
C/\(C“—C'\ - 1)
T it —ch— e~ At + Acem A

Therefore
. . c/\(elt-—cA - 1)
ll_r.r(l) oy (t/c)= ll_f}}) (c — ce—xe)(it/c — \)
. _ Acl(e=A —cde My X
iy v (/) = i N eXit § Me=o3 — che—a)'
_ (xl -1
it
For
lim ¢y (t/c)
C— 0
we have
/\ c!l—f\c -1
¢y (t/c)=

1—e~?¢ gtfc— X~
Let ¢ = %, then

.1
lim - — 0;
C—0 €

A eit—Me_1q
1—e=Me qte— )\

lim ¢(t/c) = lim ;
c=— 00 €—0

= e,
Hence, the representation
0 0
> kg
X=Y+27
still holds.
* * L 4

30



CHAPTER 1l
“SIMULATION RESULTS”

In this chapter we have justified the results of chapter (II) by simuladon. To

generate the random variable 7;—\7. we usc the following algorithm.

(1) From the decomposition property (1.1.4), the random variable —,—l\— can be

written as
X Y 4o VA
EX EX EX

where Y and Z are same as defined carlier. Here in doing simulation, we

assumed that Y is uniformly distributed over (0, 1).

(2) Generate the uniform random nmumber U = uni form(0.1).

o et _ [LogQ1=U)
(3) Generate the geometric vanate Z = [‘—Ijmﬂ—)—-]

(4) Compute EX.
(5) Divide X by EX to get the simulated random variable T\'\’

(6) Find statistical estimate F(z) of Fy(x).

The generated random variable Z depends on different values of a. Sinee Z s

geometrically distributed with parameter o, simulated random variable 'l_\T also

depends on a.
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The difference

sup|(1 = F(z)) - e™*| = é(a)

is investigated for different values of « as the following table shows.

Table 1
a é(a)
0.10 0.1677
0.20 0.0891
0.30 0.0721
0.40 0.0461
0.50 0.0393
0.60 0.0352
0.70 0.0024
0.80 0.0097
0.85 0.0088
0.90 0.0083
0.95 0.0079
0.99 0.0067
0.995 0.0017
0.999 0.0011

Thus we find that when the value of a increases (close to 1), 6(a) decreases to

zero. The value of a and 8(a) are plotted. From the graph between a and é(a), it

32




can be said that the relation between a and ¢ is almost expouential, when a tends

to 1. (see Figure 3.18)

The Empirical cumulative distribution function P(X/EX < r) has been also
estimated for the value of a = 0.90. The values of the c.d.f is based on 1000
simulated values of the random variable X/EX. These values are plotted and the

trend is found to be almost exponential. (sce Figure 3.1)

A frequency histogram is also plotted for the simulated random variable X/EX
for different values of a. We found that when a increases, the trend in the frequeney

histogram closes to exponential. (see Figure 3.14 and 3.15)

Hence from all these simulated results, we conclude that when ais elose to 1, the

distribution of X/EX is close to exponential.
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value of empirical distribution
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Figure 3.1: Comparison of the theoretical exponential (1) with empirical
distribution for simulated random variables (X[EX).
- Dotted Line: Empirical c.d.f
Solid Line: Theoretical c.d.f
The graphical comparisct in figure shows a close match between theoretical and
empirical distribution.
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Dotted Line: Simulated r.v (X/EX)
Solid Line: e™*
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i A 1 1 A
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Figure 3.2: Comparison of frequency plot of simulated random variable

X/EX with an exponential(l) at a =0.01 and c=1.

¥
=

i

=0
=3
11 L]

o
F.N
T

Qn
ND
T
P S B |

Figure 3.3: Comparison of frequency plot of simulated r.v. with an

exponential(1) at a =0.1 and ¢ = 1.

Figure 3.2 and 3.3 does not show any closeness between two plots.
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Figure 3.4: Comparison of frequency plot of simulated random variable

(X/EX) with an exponential(1l) at a = 0.2 and ¢ = 1.
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Figure 3.5: Comparison of frequency plot of simulated r.v X/EX with
an exponential(1) at a = 0.3 and c= 1.

Figure 3.4 and 3.5 does not show any closeness between two plots.
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Figure 3.6: Comparison of frequency plot of simulated random variable

(X/EX) with an exponential (1) at a =04 andc=1

Figure 3.7: Comparison of frequency plot of simulated r.v X/EX with
an exponential(l) at a = 0.5 and ¢ = 1.

Figure 3.6 and 3.7 shows a slight trend towards exponential.
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Figure 3.8: Comparison of frequency plot of simulated r.v X/EX with

exponential(1) at a = 0.6 and ¢ = 1.
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Figure 3.9: Comparison of frequency plot of simulated r.v X/EX with
an exponential(1) at a = 0.7 and ¢ = 1.

Figure 3.8 and 3.9 shows a trend towards exponential.
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Figure 3.10: Comparison of frequency plot of simulated r.v X/EX with

a exponential(1) at a = 0.8 and ¢ = 1.

15 6 20 8 25 1(RO 33

Figure 3.11: Comparison of frequency plot of simulated r.v X/EX with
an exponential(1l) at a = 0.85 and ¢ = 1.

Figure 3.10 and 3.11 shows that a close match between two plots.
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Figure 3.12: Comparison of frequency plot of simulated r.v X/EX with

an exponential(1) at a = 0.90 and ¢ = 1.
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Figure 3.13: Comparison of frequency plot of simulated r.v X/EX with
an exponential(1) at a = 0.95 and ¢ = 1.
Figure 3.12 and 3.13 shows a very close match between plots. which is almost

exponential.
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Figure 3.14: Comparison of frequency plot of simulated r.v X/EX with

an exponential(1) at a = 0.99 and c = 1.
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Figure 3.15: Comparison of frequency plot of simulated r.v X/EX with

an exponential(1) at a = 0.999 and ¢ =1.

Figure 3.14 and 3.15 shows almost similar exponeutial trend.
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Figure 3.16: Comparison of frequency plot of simulated r.v X/EX with

an exponential(1) at a = 0.1 and ¢ = 1000.
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Figure 3.17: Comparison of frequency plot of simulated r.v X/EX with
an exponential(1l) at a = 0.90 and ¢ = 1000.

Figure 3.16 and 3.17 shows that variation in parameter ¢ does not affect the limit

distribution.
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Figure 3.18: Plot between a and é.
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CHAPTER IV
Discussion and Conclusion

4.1 Discussion

In our present work. we have investigated the limit behaviour of ALM class of
distribution in two normalization cases (1)X/EX and (12)—\7\-‘3% Theorem 2.2.1
and 2.2.2 show the limit behaviour of X' when o reaches on the boundaries 0 and 1.
When a is close to 1, the limit behaviour of X tends to exponential one. A graphical
comparison in Figure 3.12 and Figure 3.13 shows a close match between simulated
random variable (X/EX) and y = €77 at a = 0.9 and a = 0.99. But when a is
close to zero the limit distribution of X will be controlled by the limiting behaviour

of Y. Figure 3.1 and Figure 3.2 clearly indicates that the limit distribution belongs

to the same class of ALM distribution.

Theorem 2.3.1 shows that a Variation in the parameter ¢ does not change the
limit distribution of X'. Figure 3.17 and Figure 3.19 confirms the results. But when
a also varies at the same time, then a controls the limiting behaviour of X. If
a is close to 1 (a = 0.90) the limit behaviour of X tends to exponential (Figure
3.17). If a is close to zero (a = 0.10) then limiting behaviour of ¥ controls the limit
distribution of X (Figure 3.16). Theorem 2.4.1 also states the same result in case,

when a and ¢ both are varying.
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84.2 Conclusion

The results obtained in chapter (1I), can be used to generalize the limit behaviour

of the distribution X € ALM(e, a, Fy-(.)).
The three cases, we have considered are:

( i) when c is fixed and a varies.
( ii) when a is fixed and c varies with assumptions on the distribution of Y.
( i11) when a and ¢ are both varying.

In case (i). limit behaviour of the distiibution of Z plays a role in determining,

when a tends to 1 limit distribution of Z determines the limit distribution of Y.
But when a tends to zero then the distribution of Z converges to zero in which

case, limit distribution of ¥ determines the distribution of X.

In case (ii). variation in ¢ does not affect the distribution of X for both the nor-
malization ﬁ and 7\-='-:{(=‘\=) cases. In both the normalization cases the distribution
of Y is assumed uniform [0,c). If X is normalized by ¢ then the limit distribution
remains of the same class of ALM distribution. Also, if ¥~ is not a uniform distribu-
tion then the distribution of X'/c converges to some distribution which again belongs
to the same class of ALM distribution. Hence, we can state that for any value of ¢

, the limit distribution of X always belongs to the same class of distribution ALM

and will hold the following representation

0 0 0
X=Y+cZ.

45



Where,

( 'd - ‘e

z\)'=X/EX, or -é—-i-'\—, or X/¢
vVVar(X)

0 — '

Y=Y/EX, or L__E_?_:X_, or Y/c;
vVar(X)

U — Id

Z=2ZJEX, or Z_EX or Z/e

VVar(X)'

In case (iii), when both the parameters ¢ and « are varying, then the limit be-
haviour of X depends on the values of a. For example, in equation 2.2.16, if we take
the limit o — 0, the limit behaviour of X will be determined by the corresponding
limit behaviour of Y, for ¢ — 0o or ¢ — 0. If the limit a — 1 is taken then limit
behaviour of X will be determined by the distribution of Z, for both, ¢ — oo or

¢ — {).
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