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ABSTRACT

Linearly Separable Stack-Like Architecture for the Design of Weighted
Order Statistic Filters with Application in Image Processing

Cristian Emanuel Savin

In this thesis, the problem of designing a weighted order statistic (WOS) fil-
ter which is approximately optimal in the mean absolute error (MAE) sense, for
estimating a signal from the noise-corrupted observation of the same, is consid-
ered. A stack filter configuration described by a linearly separable positive Boolean
function (LSPBF) and referred to as linearly separable stack (LSS) filter, has been
traditionally used for this design. The design of WOS filters in the domain of LSS
filter architecture is a constrained design, in the sense that the weights defining the
LSPBF can assume only positive or zero values.

This thesis introduces a new approach for the design of WOS filters which are
approximately optimal for estimation in the MAE sense, by defining a more general
type of filter configuration than that of LSS filters. This new type of architecture
is characterized by a linearly separable Boolean function (LSBF), and is designated
as linearly separable stack-like (LSSL) filter. In the case of LSSL filters, the weights
may assume any value, positive or negative. It is shown that LSSL filters satisfy a
new property referred to as generalized stacking property. It is established that due
to this property, the fundamentals of the optimality theory that has been developed
for the class of stack filters, remain valid in the framework of LSSL filters as well.

It is demonstrated that in the multilevel signal domain, an LSSL filter architecture
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performs the operation of WOS filtering.

An adaptive algorithm for the design of WOS filters in the domain of LSSL
filter architecture is derived. Since the filter weights in this architecture can assume
any real values, the algorithm is less constrained than that in the case of LSS filter
architecture. Cousequently, the proposed design is expected to give better results
in the sense of mean absolute error in signal estiination problems. An implementa-
tion of the proposed design algorithm is constructed by using a binary-level LMS
algorithm.

The proposed design and implementation is applicd to the problem of restoring,
images corrupted with impulsive noise. Simulation results show that the WOS lilters
designed with the new method provide better results compared with those obtained

by using the LSS filter architecture.
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Chapter 1

Introduction

1.1 General

Linear filters have long been considered as the primary tools for signal and image
processing. They are easy to implement and analyze, and they are well-suited for
the design under the mathematically tractable mean square error criterion. How-
ever, this design can be used only when the input signal is corrupted with additive
Gaussian noise. It has been experimentally observed that even a small deviation
from the Gaussian assumption may sometimes lead to severe deteriorations in the
performance of linear filters [GW81].

Currently, in view of the increasing technological demand, belter and more
specialized tools are needed, for processing signals which are severely corrupted
with different types of non-Gaussian noise, such as speckle noise and salt and pepper
noise. It has been shown that in this type of applications, nonlinear filters constitute
a much better alternative than the linear ones [GW81]. Specifically, when the input
signal is corrupted by speckle noise or by salt and pepper noise, rank-order based
filters have proved to be especially attractive [GCG92]. However, there are several
classes of rank-order based filters, and the task of choosing the right one is itself a

challenge.



Two main types of rank-order based filters have been traditionally given a
special attention. The first type iucludes filters in which rank order operations are
combined with linear operations in some fashion. It has been shown in [Gab89] and
[GCGY2], that this type of rank-order based filters has a major drawback, in that the
optimization over such classes of filters is mainly reduced to optimizing the linear
part of the filter. The class of stack filters is the second major type of rank-order
based filters. They perform nonlinear rank-order based operations, and have been
introduced in an cffort to correct the drawback of the first type of filters [WCG86].

In 1985, a very powerful theoretical tool for analyzing rank order filters was
developed by Fitch et al [FCG85]. They showed that these filters possess a limited
superposition property, which states that the rank order filtering of an arbitrary
multilevel sequence is equivalent to decomposing the signal into binary sequences
by thresholding, filtering each binary sequence by a binary rank order filter, and
then reversing the decomposition process. This equivalence, reduces the analysis
of multilevel sequences to that of binary sequences. The configuration in which a
multilevel sequence is reduced to binary sequences is called threshold decomposition
architecture.

In addition to the above mentioned limited superposition property of rank
order filters in the threshold decomposition architecture, another property, called the
stacking property, was identified by Wendt et al [WCG86]. The stacking property
is an ordering property which referes to the outputs of the binary rank order filters.

The definition of stack filters was given by abstracting the properties of rank
order filters in the threshold decomposition configuration [WCG86]. Specifically, in
a stack filter architecture, the binary rank-order based operator is characterized by
an arbitrary positive Boolean function (PBF). An optimality theory for the design
of stack filters under the mean absolute error (MAE) criterion was later developed
by Coyle and Lin [CL88]. Based on this theory, it is possible to determine the

stack filter which minimizes the MAE between its output and a desired signal, given



a noise-corrupted observation of the latter. This optimality theory for nonlincar
rank-order based filters is as analytically tractable as the theory of optimal linear
filtering.

It has been shown that an optimal stack filter can be determined by using
a linear program (LP) [CL88]. The complexity of this LP increases exponentially
with the size of the filter window. For instance, even for a relatively small window
size of 4 x 4, the required LP contains over cne million variables and constraints.
Since all the methods which have been developed for the design of stack filters are
LP-based optimizations, they all inherit the drawback of being computationally very
expensive [GC90], [LSC90], [GCIl1], [ZGNI1].

In order to overcome the difficulties related to the computational complexity
in the design of stack filters, a new approach has been initiated in the work of Coyle
and Gallagher [CG89] and Harja et al [HAN91]. The main idea of this approach is
to substantially reduce the computational burden at the expense of considering only
some specific classes of stack filters, that have known practical significance in signal
processing. Such an example is the class of stack filters which are characterized
by linearly separable PBFs (LSPBF's). These filters, called lincarly separable stack
(LSS) filters, perform the nonlinear functions of weighted order statistic (WOS)
filtering [HAN91]. The WOS filters have been successfully nsed in a wide varicty
of signal and image processing applications. Well-known filters like the median, the
weighted median, and the rank order operators, are special cases of WOS filters
[HAN91]. In the design of WOS filters, the number of optimization variables is

equal to the window size of the filter.



1.2 Existing Techniques for the Design of WOS
Filters Using LLSS Architectures

At present, because of the difficulties involved in imposing the constraint of linear
separability for the PBFs, there does not exist a closed form solution for the design
of WOS filters by using LSS architectures. Thus, the current practice of designing
such filters is based on adaptive techniques [YAN92], [AHL92], [YAN93].

Based on the work of Harja et al [HAN91] and Coyle and Gallagher [CG89)],
a heuristic configuration of stack filters in which the PBF in the threshold decom-
position architecture is replaced by a neural network, was proposed for the design
of WOS filters [YAN92], [AHL92]. With the help of this configuration, the design
is performed by using a constrained LMS algorithm for adjusting the weights of the
neural network. These weights are allowed to assume only positive or zero values,
such that the ncuron performs the function of an LSPBF. It has been shown that
this heuristic approach gives satisfactory experimental results. Recently, a theoret-
ical formulation for the adaptive design of LSS filters has been developed [YAN93],
by using a procedure that is similar to Widrow’s derivation of the LMS algorithm
[WS85). This design involves a least mean absolute error (LMAE) algorithm. In
the adaptive LMAE design of LSS filters, the weights which become negative during
the training procedure are reset to zero. This is a constrained optimization, in the
sense that the weights can assume either positive or zero values, but they are not
allowed to assume negative values. However, there could be situations in which the
mean absolute error could be further reduced if the weights were allowed to assume

any value, positive or negative.



1.3 Scope and Organization of the Thesis

In this thesis, a new approach for the design of WOS filters which are approximately
optimal for estimation in the MAE sense is proposed, by defining a more general
type of filter configuration thaun that of LSS filters. This new type of architecture is
characterized by a linearly separable Boolean function (LSBIF), and it is referred to
as linearly separable stack-like (LSSL) filter. In the case of LSSL filters, the weights
may assume any value, positive or negative. It is shown that the fundamentals of the
optimality theory which has been developed in [CL88] for the class of stack filters,
remain valid in the framework of LSSL filters as well.

An adaptive algorithm for the design of WOS filters in the domain of LSSL
architecture is derived. Since the filter weights in this architecture are not restricted
and can assume any real values, the algorithm is less constrained than that in the
case of LSS filter architecture. Consequently, the proposed design is expected to give
better results in the sense of mean absolute error in signal estimation problems. An
implementation of the proposed design algorithm is constructed by using a binary-
level LMS algorithm.

The thesis is organized as follows. In Chapter 2, a review of the stack filter
theory and the relevant background material is presented. The emphasis is placed on
the problem of designing stack filters that are optimal for estimation under the MAF
criterion. A new and direct approach for the formulation of the linear program which
gives the optimal filter is proposed in this chapter. In Chapter 3, the L5SL filter
architecture is defined based on introducing a new concept of generalized threshold
decomposition of an L-level signal in a window of size M. It is demonstrated that in
multilevel signal domain, an LSSL filter architecture performs the operation of WOS
filtering. It is also shown that, in a stack-like filter architecture, although the binary
input signals do not satisfy the stacking property in the strict sense, the binary
output signals do. Based on this property, in Chapter 4, the fundamentals of the

optimality theory developed by Coyle and Lin [CL88] are extended to the class of
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stack-like filters. An adaptive algorithm for the design of WOS filters in the domain
of LSSL architecture is derived, and an implementation of this design by using a
binary-level LMS algorithm is proposed. The proposed design and implementation
is applied to the problem of restoring images corrupted by impulsive noise. Finally,

Chapter 5 summarizes the work of this investigation.



Chapter 2

Stack Filter Theory

2.1 Introduction

A stack filter is a sliding window nonlinear filter whose output at cach window
position is the result of a superposition of the outputs of a stack of positive Boolean
functions operating on thresholded versions of the samples appearing in the filter’s
window. It will be shown that, for instance, instead of performing a direct median
filtering with a window size M = 3 to a multilevel I-D sequence, it is possible to use

a stack architecture and apply the binary function
S(xo0, X1, %2) = XoX1 + X1Xz + X2X) (2.1)

on each threshold level of the input sequence. The function f given by (2.1) is
a positive Boolean function (PBF), which refers to the fact that the expression
XoX1 -+ X1X2 + X2X; contains no complements of the input variables (i.c., %o, X1, or
X2).

In what follows, the main concepts that are used in stack filter theory are
introduced by considering only the case of 1-D signals, as their 2-D extensions are
straightforward. We begin with the definition of a positive Boolean function [Mur71],

and then introduce the concept of threshold decomposition of multilevel signals



[FCG84], [FCG85] and the stacking property of binary signals [FCG84], [FCG85],
[WCGB86]. The stacking property of Boolean functions, which is essential to the
understanding of stack filtering, is described in terms of the stacking property of
binary sequences. Having introduced the above mentioned concepts, the architecture
of a stack filter is described, in which the multilevel input signal is first decomposed
into a set of binary signals by threshold decomposition, then a positive Boolean
function is performed on each of these threshold signals, and finally, all the binary
results, which have the stacking property, are added together yielding the multilevel
output.

The theory of optimal stack filtering which is based on the use of the minimum
mean absolute error (MMAE) criterion is also introduced in this chapter. The
formulation of the optimal filtering problem as an integer linear program is presented
[CL88], [LCI0], and the adaptive approach in optimal stack filtering [LSC90] is

briefly reviewed.

2.2 Definitions and Properties

2.2.1 Positive Boolean Functions

In the following, using the terminology related to switching functions as proposed
by Muroga [Mur71], a brief review of some basic definitions of Boolean algebra is
given. A binary function is symbolically denoted as f{x), using a vector notation x

for the set of input variables, (xo,x1,...,Xy).

Definition 2.1 A literal is defined as a binary variable or its complement. A con-
Jjunction (i.e., a logical product) of literals in which a literal for each variable appears
at most once is called a term or a product. In a special case, a conjunction may
comprise a single literal. Similarly, a disjunction (i.e., a logical sum or alternation)

of literals in which a literal for each variable appears at most once (including the case



of a single literal) is called an alterm. A disjunction of terms is called a disjunctive

form or normal form. A conjunction of alterms is called a conjunctive form.

For example, x; and ¥; are the literals of the variable x;. Both x;x2 4 x; + x2 and
X1 +X1X2 are disjunctive forms which are equivalent to the Boolean function xq + x,.
However, the expression x; + x3(X; +X,) is not a disjunctive form, although it is also

equivalent to the same function.

Definition 2.2 [f there exists a disjunctive form for a Boolean function [(x), such
that the variable X; (x;) does not appear in any term of this form, then [ is said to

be positive (negative) in the variable x;.

Definition 2.3 If a Boolean function f(x) (or a disjunctive form of [) is either

positive or negative in a variable x;, then f is said to be unate in the variable x;.

The concepts of unate functions, positive Boolean functions, and negative

Boolean functions as defined in [Mur71] are given next.

Definition 2.4 If a Boolean function f(x) is unate in all its variables, then f is
said to be a unate function; a Boolean function which is positive (negative) in all its

variables is called a positive (negative) Boolean function.

For example, the function X +X;x2 is a unate function and the function xo 4 % xz is
a positive function. We notice that the function [ = x¢+Xox; is a positive function
because there exists the disjunctive form xo +x;, equivalent to f, which is free of the
complemented variables ¥p and X, although the particular disjunctive form xo 4 Xox;
itself is not positive in xp '. Function xox; + %1%z is positive in xo, negative in xy,
and this disjunctive form is neither positive nor negative in x; (i.e., it is not unate

in X]).

INote that there is a difference between a disjunctive form of a function being positive and the
function itself being positive in a particular variable.



In order to introduce a theorem given by Quine [Qui53], which suggests a
method to check whether a Boolean function f(x) is unate or not, we recall the

concept of minimal sum-of-product form of a binary function as given in [Mur71].

Definition 2.5 Let f(x) and g(x) be two Boolean functions. If for every b, for

which f(bs) =1, we also have g(b,) = 1, we write

J(x) S g(x), (2.2)

and we say that [ implies g. If, in addition, there exists at least one bg for which

f(bg) = 0 and g(bg) =1, we write
f(x) Cg(x), (2.3)
and say that f strictly implies g.

Definition 2.6 If an implication relation holds between two binary functions f and
g, e, either f C g or g C f, then f and g are said to be implication comparable;

otherwise, they are implication incomparable.

An example of implication comparable functions is given by f = x; 4+ x2x3 and

g =X + X2, 1.e., X1 + X2X3 C X3 + Xa.
Definition 2.7 An implicant of a Boolean function f is a term ? that implies f.

For instance, Xq, X0X1, XoXi, XoX3, X1X2 are examples of implicants of the function

Xo + X1X2.

Definition 2.8 A term P is said to subsume another term Q if all literals of Q are

literals of P as well.

For example, the term x¢x,X; subsumes the term x;X;.

ZNote that a term as well as an alterm are also Boolean functions.
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Definition 2.9 A prime implicant of a binary function [ s defined as an implicant

of f such that no term subsumed by this implicant can be an implicant of f.

Definition 2.10 A minimal sum-of-product form of a Boolcan function f is a dis-
Junction of prime implicants such that removal of any of them makes the remaining

expression no longer equivalent to the original f.

The following theorem given by Quine [Qui53] shows that in order wo determine
whether or not a Boolean function f is unate, one has to find a minimal sum-of-
product form of [ and check if this forin is unate. If this minimal sum-of-product
form of f is unate, then f is unate, and we can immediately say in which variables

the function is positive and in which ones it is negative.

Theorem 2.1 A unate function f has a unique minimal sum-of-product form and

this form is unate.

As a consequence of this theorem, a positive Boolean function has a unique minimal

sum-of-product form in which there are no complements of the input, variables.

2.2.2 Threshold Decomposition of Discrete-Time Signals

Threshold decomposition of a discrete-time signal may be formally defined as follows

[Gab8g9).

Definition 2.11 LetR = (R(0), R(1),...,R(N—1)) denote an L-level discrete-lime
signal of N samples. The threshold decomposition of R is the sel of (L 1) binary

sequences, called threshold signals, vy, rq, ..., ru-1, whose elements are defined by

if R@)2>1¢
re(j) = 1 f (J.) 2 (2.4)
0 if R(7)<?

for£=1,2,...,L—1,and3=0,1,...,N—1.
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Figure 2.1: An example of threshold decomposition of a discrete-time signal R with
N=10 and L=8.

Based on Definition 2.11, we can express R and R(j) as follows:

L-1
R = E re , (25)
=1
L-1
R(j) = Y rfj) for j=0,1,...,N-1. (2.6)
=1

Note that the binary signals r,’s are Boolean vectors. An example of threshcld
decomposition of a multilevel sequence consisting of N = 10 samples with L = 8 is

shown in Figure 2.1.
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2.2.3 Stacking Property of a Set of Binary Signals

In order to introduce the stacking property of a sct of binary signals (Boolcan

vectors), each of the same finite length N, we first define their ordering relation

[Mur71].

Definition 2.12 If two Boolean vectors a = (ag, a1,...,an~1) andb = (by, by,...,bn_y)

satisfy the condition that
a, 2b; Vj=0,1,...,N—-1,
then a is said to be greater than or equal to b, i.e.,
a>b.

In particular, if there exzists a j for which a; > bj, and ag > by for all k # j, then

a is said to be greater than b or b smaller than a, i.e.,
a>b.

Definition 2.13 When for two binary vectors, ¢ and d, nonc of the relations ¢ > d,

c <d, orc =d holds, then c and d are said to be incomparable.

The stacking property for a set of binary signals can now be stated as follows

[Gab89).

Property 2.1 A set of L—1 binary signals of length N, {ri, r2, ..., vy}, is said
to have the stacking property if the following relation holds:

ry2ry2...2rL-1.

By the definition of threshold decomposition of an L-level discrete-time sig-
nal (see Definition 2.11), the threshold signals ry, ra, ..., ri—3 will always satisfy
the stacking property. For instance, the binary signals of the example shown in

Figure 2.1, obtained as a result of threshold decomposition satisfy the stacking
property. )
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2.2.4 Stacking Property of a Boolean Filter

The stacking property of a Boolean filter is stated in terms of the stacking property

of its binary input and output signals as given below [FCG85], [WCG86], [Gab89].

Property 2.2 An M-input Boolean filter (function) f(xo,X1,...,XM-1) is said to
satisfy the stacking property if and only if

f(by) > f(bs) whenever b, >bg , forall o,f8€ {1,2,...,2M} .

The necessary and sufficient condition for a Boolean function (or filter) to

satisfy the stacking property was stated by Gilbert [Gil54], [Mur71].

Theorem 2.2 A Boolean function satisfies the stacking property if and only if it is

a positive Boolean function.

Stacking property of PBF's is suggestively highlighted by the so-called Hasse
diagram [She69], which is also referred to as the stacking diagram [GC91]. A brief
description for the construction of such a diagram is now given.

Let us partition the total number of 2 possible input binary vectors b, (a =
1,2,..., 2M) to a Boolean filter of size M with respect to the number of 1’s in each

binary vector, as given below:
sz{balb(,-lMﬂ:k} f07' k'——_—O,l,...,M, (2.7)

where 1pgx; is a column vector of size M whose elements are all 1’s. The vectors in
each group V), are incomparable. Each vertex in the stacking diagram represents a
binary vector, and the number of vertices in each group Vi is given by the binomial
number (Il\(/l) The set of all binary vectors is denoted by V:
M
V=|JV:. (2.8)
k=0

The distance between two vectors b, and by is defined as
d(bmbﬁ) = lba *IMxa — bﬂ : lMxll . (2.9)

14



For instance, if b, € V, and by € Vi, then d(ba,bg) = |) — k. Therefore,
V = {Vg,Vi,..., Vu} is an ordered set of the groups Vi's of binary vectors, such
that the distance between a pair of vectors taken from two consecutive groups of V
is one, and the first group is always V. Once the set V has been determined, the
groups Vs are stacked on top of each other in the same order as in V, and the
vertices of each pair (b, bg) for which b, and by are comparable and d(b,, bs) = |
are connected by an edge.

Figure 2.2 illustrates the stacking diagram for the function S (X0, X1, X2, X3) =
X; + XoX2X3, which is a PBF, and therefore it satisfies the stacking property. For in-
stance, because f(0100) = 1, we also have f(1100) = 1, f(0101) = 1, and f(0110) =
1. Analogously, as f(1001) = 0, we also have f(1000) = 0 and f(0001) = 0, since
in general, if a binary function [ satisfies the stacking property, then for cach edge

[(p,0,q), (p,1,q)] of the stacking diagram of f the following relation holds:

f(p,1,q) > f(p,0,q) . (2.10)

Stacking diagram might be formally described as given below [GU91]:

Definition 2.14 The stacking diagram for a Boolcan filter of size M s the undi-
rected graph G = (V,E), where V is the set of all binary veclors of size M, and the
set of edges, E, consists of

E = {(ba,bs)| ba,bs € V, are comparable, and d(by,by) =1 ). (2.11)

Note that if two Boolean functions f and g are implication comparable (see

Definition 2.6), then
f(ba) < g(bg) whenever b, <bg, forall o, € {1,2,...,2M} .

For example, functions f and g for which the stacking diagrams arc shown in Fig-
ures 2.2 and 2.3, respectively, are implication comparable. Specifically, [ strictly

implies g, i.e., f C g.
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Figure 2.2: Stacking diagram for a Boolean filter f(xq,x1,X2,X3) = X1 + XoX2Xs,
where a shaded ellipse surrounding a binary vector b, signifies that f(b,) = 1, and
an unshaded ellipse indicates that f(by) = 0.

Figure 2.3: Stacking diagram for the Boolean filter g(xo, X1, X2, X3) = X1 +XoX2+X2X3;
note that for the function f of Figure 2.2 we have f C g.
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2.2.5 The Definition of a Stack Filter

A stack filter is defined by an architecture in which its multilevel input signal is first
decomposed into a set of binary signals by thresholding, then a filtering is performed
via a PBF on each of these threshold signals, and finally, all the binary results are
added together yielding the filter’s multilevel output. As an example, Figure 2.4(b)
shows a stack filter architecture that performs the operation of median filtering given
in Figure 2.4(a).

As the Boolean filter used at each level ¢ (€ = 1,2,...,L—1) of the stack filter
architecture is a PBF, the Boolean filter has the stacking property. The binary
outputs at each time instant n have a structure in which a stack of 0’s is piled on
top of a stack of 1’s. In other words, the binary output signals also satisfy the
stacking property.

The mathematical expression for the output of a stack filter operating on an
input process can be derived following the procedure given in [GCGI2). Let R(n)
be the process at the input (the received process) of a stack filter, and assume that
R(n) takes on integer values in Q = {0,1,2,...,L — 1}. The reccived process R(n)
is assumed to be a noise corrupted version of some desired piscess S(n). A window
of size M is slid by increments of one sample across the input process R(n). At cach
time instant n, the stack filter S;(-) maps the samples in the window, which arc
given by

Ru(n) = { Rn-M+1), ..., R(n) } (2.12)

to some integer Sy(Rm(n)) in Q.> Thus, a stack filter is a mapping Si(-): QM - Q

3Note that in image processing applications it is a common practice to consider noncausal
windows such as

;w(n)={R(n_M2+1), . R(n), . . R(n+M:l)},

instead of Ry(n) as defined by (2.12).
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defined in the framework of the threshold decomposition architecture, i.e.,
L—1
Si(Rum(n)) = Y [(te(Rm(n))) (2.13)
=1
where f(-) denotes the Boolean function used at each level of the architecture, which

is assumed to posses the stacking property, and

teo(Rm(n)) = ( te(R(n —M+1)), ..., te(R(n)) ) : (2.11)
with

1 if R(j)>¢
0 if R(j)<¢

te(R(7)) = forall j=n—-M+Il,n-M+2,...,n. (2.15)

The stack filter architecture exhibits a so-called weak superposition properly
[FCG84], [FCG85], since when the input multilevel signal is decomposed by thresh-
olding, we have

ll_l

L-1
Sp(Ru(n)) = 8;(X_rem(n)) = 3 f(rem(n)), (2.16)
=1 (=1
where Ry(n) denotes the multilevel input sequence which appears in the filter’s
window of size M at the time instant n and rem(n) represents the corresponding set
of threshold signals (rem(n) = te(Rm(n))). For convenience, in what follows we will

not use the subscript M for the threshold signals of Ru(n) anymore. Therefore, we

denote
re(n) = to(Rm(n)). (2.17)

A stack filter is completely characterized by a positive Boolean operator which
is used at each level of the architecture. This is the reason why this Boolean op-
erator is sometimes referred to as a Boolean stack filter. Notc that, in general, a
stack filter architecture can be allowed to consist of different Boolcan filters oper-
ating at different levels of the structure, with the restriction that the Boolean stack

filters should satisfy the implication relation (see Definition 2.5) in an appropriate
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sequence. If f, denotes the binary stack filter which is used at level £ of a stack filter

architecture, then the following implication relation should hold

i€ foaC...CiC...CH. (2.18)

However, in this thesis we are concerned only with those stack filters that are char-
acterized by a single PBF.

As shown in [GCG92], a stack filter architecture characterized by a single
positive Boolean function f inherits some very attractive features due to the stacking

property of f. They are listed below.

1. This architecture allows efficient VLSI implementations of rank-order filters
directly in the threshold decomposition architecture [Fit87]. A rank order
operation applied to a binary signal does not require sorting, as all possible
ranks can be determined from the sum of the input bits, with the desired rank

being selected by comparison of the sum with a threshold.

2. It makes possible to perform the summation of the outputs of the Boolean
functions by using a binary-tree search technique for the threshold level of the

highest 1 in the stack.

3. Due to the stacking property, the level-crossing decisions made by the binary
filters at different levels are constrained to be consistent with each other, i.e.,
the filter at level £ will not decide that the signal is less than ¢, by putting out
a 0, if the filter at level £ + 1 decides that the signal is greater than or equal
to ¢ + 1. Therefore, the stacking property of a stack filter architecture can
be interpreted as a consistency condition in the context of estimation [CL88],

[LSC90).

4. Any operation from QM to Q (where Q denotes the set of multilevel input

values) has a correspondence in the threshold decomposition architecture with
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the Boolean operators at all the threshold levels satisfying the implication

property relative to each other (see (2.18)) [L(190].

2.3 Stack Filters and MMAE Estimation

The main interest in stack filter theory lies in the existence of an analytical technique
for finding the stack filter which is optimal for estimation under the mean absolute
error (MAE) criterion [CL88]. The attractive feature of using MAE criterion for the
design of a stack filter is that the stacking property of PBFs allows the decomposition
of the estimation error of the filter into the sum of the decision errors incurred by

the Boolean operators at each level of the stack filter architecture.

2.3.1 MAE Criterion and Stacking Property of PBFs

The estimation problem for the class of stack filters can be stated using Iigure 2.5.
The process R(n) which is received at the input of a stack filter is assumed to be
a corrupted version of some desired process S(n) through an operation g(-,). The
corruption may be caused either by a noise process N(n) or by some intentional
operation, such as a modulation scheme. At each time instant n, the stack filter
output is an estimate, called §(n), of the desired process S(n). This cstimate is

based on the sequence Ryi(n) observed in the input window of the stack filter
§(n) = S;(Rm(n)) - (2.19)

The mean absolute error between the desired signal, S(n), and the estimated
signal, 5(n), at the time instant n, is defined to be the cost of using the stack filter

Sy at time n, and it can be expressed as
Ca(Sy) = EH S(n) — S;(Rm(n)) H : (2.20)

If we make the assumption that the signal and noise processes arc jointly stationary,

then the cost function C,(S;) has the same value at all time instants n. Therefore,
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Figure 2.5: The structure of the estimation problem for the class of stack filters.

in the subsequent discussion, the subscript n is not used for the cost function. The
optimal stack filter for estimation under mean absolute error criterion is the filter
for which C(Sy) is minimum.

The rationale of choosing the MAE criterion for the design of a stack filter, is
that it allows to express the estimation error of a stack filter as the sum of the decision
errors incurred by the Boolean filter al each level of the stack filter architecture. By
substituting in (2.20) for §;(Rm(n)) as given by (2.13), and decomposing the desired
signal S(n) by thresholding (see Eq. (2.5)), we have

C(Sy)

E| s(n) - 5;Ru(m) |]

| L-1 L-1
= E gsg(n)—gf(tt(RM("))) ”

= E| lil [ se(n) — f(t:(Rwm(n))) ] H : (2.21)

=1
Due to the stacking property of the binary operator f, all the nonzero terms of the
sum in (2.21) have the same sign, and therefore, the operations of summation and

taking the absolute value may be interchanged as

L-1
C(Sy)=FE g se(n) — f(te(Rp(n))) l ] : (2.22)

The operations of finding the expected value and summation in (2.22) can also be

interchanged, since the mean value of a sum of random variables equals the sum of
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their mean values [Pee80]. Thus, (2.22) becomes

L-1
OS) = 3| B setn) = ftdBa(m) | |
=1
L-1
= Z_J: [ E| s¢(n) - f(rz(n))'l ] \ (2.23)

where we have used the notation given in (2.17), that is re(n) = te(Rm(n)).
The £th term of the summation in (2.23) is the mean absolute error incurred at
level £, E[]es(n)|], when the Boolean operator f is used at that level. Therefore,

(2.23) can be written as

L-1
C(Sy) = 1\; E[ledn)|] , (2.24)
where e;(n) is given by
ee(n) = se(n) — f(te(Rm(n))) . (2.25)

Figure 2.6 illustrates the errors incurred in signal estimation using a stack filter
architecture, for two possible cases, §(n) < $(n) and §(n) > S(n). In conclusion,
the mean absolute error estimation using a stack filter architecture is equivalent
to a massively parallel decision making process, in which, at each level ¢, it is
determined whether or not the estimated signal is less than ¢, when these decisions

are constrained to be consistent with each other as required by the stacking property

[CL8S).

2.3.2 The Optimization Problem to Determine an

MMAE Stack Filter

As shown in Section 2.3.1, when [ is restricted to be a PBF (i.c., when [ satisfies
the stacking property), the cost function C(Sy) defined by (2.21) can be expressed

as in (2.23). The problem of designing a stack filter which is optimal for estimation
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Figure 2.6: An illustration of the errors incurred between the desired and estimated
samples in a stack filter architecture, for the two possible cases (S(n) < S(n) and
S(n) > S(n)). (a) When the desired sample is greater than the estimated one, the
binary errors at the various threshold levels can assume values of only 0 or 1. (b)
When the desired sample is less than the estimated one, they can be only 0 or -1.
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under the MAE criterion is concerned with minimizing this cost function, and this

problem can be formally stated as follows.

i Optimization Problem
Determine a Boolean filter f € Fu, where Fy 1s the sel
of all Boolean filters of window size M, which achicves
C(8;)= min Ty E [[se(n) — f(re(n) |] (2.26)

f€Fm
subject to the constraint that f should satisfy the stacking property.

\

Note that the total number of Boolean filters of window size M is 22, while the total
number of PBFs with M variables is known to be approximativelly g™/ [CLRY].

A Boolean filter f of window size M is completely determined by the vector

F =(f(b1), f(b2), ..., S(by), ..., J(bam) ), (2.27)

where {bjlj = 1,2,...,2M} is an ordered sequence of all Boolean vectors of size
M. The jth entry in (2.27) represents the output of the filter, when the binary
vector in the filter’s input window is b;. Therefore, in order to solve the opti-
mization problem as formulated above, we have to first find an explicit expres
sion for E[|sy(n) — f(re(n)) |] as a function of the variables f(b,) € {0.1} (7 =
1,2,...,2M).

Let us consider the experiment of observing different realizations of the desired
threshold process at the level £ of a stack filter architecture at the time instant n,
se(n) € {0,1}, and the corresponding realizations of the binary input vector process
to the Boolean filter f at level £, ry(n) € {by,by,...bem}. The sample space (i.c.,

the set of all possible outcomes) of this experiment is given by
{ (Oabl), (Oab2)a ey (07b2M)a (lvbl)) (lab2)a ey (], sz) } ) (228)

25



where a pair (0,b,) denotes the outcome (s¢(n) = 0, r¢(n) = b,), while a pair (1, b;)
corresponds 1o (se(n) = 1,rs(n) = b,). The expected value of an arbitrary discrete

random variable Y, defined on a sample space with K possible outcomes, is given
by
E{Y]= ZyJ (4,) (2.29)

where y, denotes a particular value of Y, having the probability of occurrence
P(y,) [Pce80]. Therefore, for the expected value of the random variable | e((n) | =
| se(n) — f(re(n)) | (which is a real function of the elements in the sample space

(2.28)), we have

E [ledn)|] §(|0—f(bj)|-P[sg(n)=0,r¢(n)=b,-]

+ |1 = f(bj) |- Plse(n) = 1,re(n) = bj])

oM

= 3 (P(0,b,16) - f(b,) + P(1,b;0) - F(b,)

=1

= X_:I(P(O, b;l¢) — P(1,b,]0)) - f(b;) + P(1,b;]€)] , (2.30)

where the notations P(0,b;|¢) and P(1,b;|€) imply, respectively, P [s¢(n) = 0,r(n) =

and P [s(n) = 1,re(n) = b;]. Therefore, the decision error E [|es(n)|] at each
level € of a stack filter architecture is a linear function of the variables f(b;,)

(G =1,2,...,2M). Using (2.30), the cost function C(Sy) in (2.23) becomes

M L-1 _ L-1
C(S) = 3 [f(bg) ~ (Z P(0, bjlf)) + f(b;) - (; P(l,bjlf))]

J"l =1

Z[QJ f(by)+ B, - ( b,)}, (2.31)

where a, = ¥k P(0,b;]¢) and 8, = £i=] P(1,b,]¢). Denoting v; = a; - f;, (2.31)

can alternately be written as
Z[% )+ B,]. (2.32)
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Finally, the optimization problem can be stated as:

{

~

Determine a Boolean filter f of window size M, which achicves

C(5) = min  35[y - f(b) + 4] . (2.33)
f€Fm
j subject to the following constraints in the stacking diagram :
for each vertez b, : f(b,) € {0,1} , (2.34)

and for each edge [(p,0,q),(p,1,q)] - f(p,1,q) 2 f(p,0,q) .  (2.35)

The set of inequalities (2.35) imposes the constraint that f should satisly the stacking
property, that is, it is a PBF.

Assuming that the probability models of the signal and noise processes are
given, one can determine the joint probabilities P(0,b,|€) and P(1,b,]¢), and then
calculate the constant coefficients a;’s and f;’s. In general, it is a diflienlt task
to determine the joint probabilities P(0,b;|¢) and P(1,b,]¢). However, in [CL8S],
Coyle and Lin have discussed this problem in the context of the specific case when
the signal and noise are independent Markov chains, and they have developed some

techniques which might be helpful when other modelling assumptions are considered.

2.3.3 The Solution to the Optimization Problem

Using a Linear Program
Coyle and Lin [CL88] have observed that a Boolean stack filter obtained throngh the
solution of the optimization problem discussed in Section 2.3.2 can be determined

efficiently by using a linear program (LP). In order to formulate this LP, we define

the concept of a randomizing Boolean vector function and introduce its stacking

property.
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Definition 2.15 A randomizing Boolean vector function, Py, of a vector Boolean

variable b of size M is defined as
P; = ( Pi(by), Ps(bs), ..., Pi(b,), ..., Ps(bam) ),
in which P;(b,) €[0,1] Vj = 1,2,...,2M,

(iiven a randomizing Boolean vector function P, a Boolean function (which, in this
context, is sometimes called nonrandomizing Boolean function) f can be determined

as

1 if Pyb;)>T
f(bJ)z ! j( J)— ! Vj=1’2a"'12Ma (236)
0 if Pj(bj) <T]'

wherc T, € (0,1). For instance, a simple correspondence from P; to f can be

defined by taking T, = 0.5 Vj = 1,2,...,2M.

Property 2.3 A randomizing Boolean vector function Py is said to satisfy a stack-

ing properly if and only if
Pg(by) > Ps(bg) whenever b, > by, forall a,f€{1,2,...,2M} .
Let us now consider a cost function
oM
C'= Z [, - Pr(b;) + Bl (2.37)
e

and observe that ¢’ = C(S;) in the special case when Py(b,) € {0,1} Vj =
1,2,...,2M (see (2.32)). Having introduced the concept of a randomizing Boolean
vector function, and having defined the cost function C’, we can formulate the

follow ing optimization procedure {CL88].
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LP Optimization Procedure

Determine a function Pj which achieves the following

minimize Z?:, [, - Pr(b,) + 8] (2.338)

< subject to the following constraints in the stacking diagram :
for each vertezb; : 0< Py(b,) <1, (2.39)
L and for each edge [(p,0,q),(p,1,q)] : Pr(p.1,q) 2 Pr(p,0,q) . (2.40)

It has been shown in [GCI1] that all the solutions of the LI optimization problem
(Eqns. (2.38-2.40)) must be integer. Besides, as 0 and | are the only possible integer
solutions, each variable P;(b,) will be either 0 or 1. Therefore, any solution using
the LP opimization procedure is a nonrandomizing Boolean filter. Conscequently, the
LP optimization procedure gives the solution to the original optimization problem
given by (2.26) for designing an MMAL’ stack filter.

The solution to the optimization problem is not necessarily unique. When
there are multiple solutions, it means that there are "don’t care” situations giving
more than one Boolean stack filter.

As shown in [CL88], in the LP design of a stack filter of window size M there
are O(M - 2M) variables and constraints. Even for a relatively siall window size, e.g.
4 x 4 (M = 16), the number of variables and constraints is greater than one million.
The computational complexity of the LP approach as well as the assumption that
we shouid have an apriori knowledge regarding the values of the coefficients ~,’s and

B;’s render this solution extremely iripractical despite its theoretical importance.

29



2.3.4 The LP-Based Adaptive MMAE Design
of Stack Filters

As previously discussed, the LP design approach requires a knowledge of the coeffi-
cients ,’s and f3,’s which appear in the expression of the cost function that has to
be minimized. As a more practical alternative, an algorithm for the adaptive design
of stack filters has been proposed [LSC90]. In this algorithm, an optimal filter is
determined by applying a. training procedure given a reference (desired) signal and
its noise corrupter! version. In this approach, even though the computational com-
plexity remains as involved as in the LP design technique, the knowledge of v;’s and
B,'s is not required. This is accomplished by recognizing that when no stacking con-
straint is imposed on the variables Py(b;)’s, then the minimum of the cost function
C’ given by (2.37) is achieved, if Py(b,) =1 for 4, < 0 and Py(b,) =0 for v, > 0
(v, = Ttz [P(0,b,|6) = P(1,b,]0)]). Therefore, in order to control the drift of P(f")
(i.e., the randomizing Boolean vector functicn at the time instant n) in such a way
as to move closer to the optimal P, one can update PS") based on counting the
difference between the frequencies of occurrence of each binary vector b; when the
desired signal is 1, and when it is 0. Specifically, Ps(b;) is increased or decreased
when this difference corresponding to b; is negative or positive, respectively.

The adaptive algorithm starts with an arbitrary initial guess for the function
Py, P(fo). Then, at each time instant n, P}") is updated as mentioned above. After
each updating, the stacking constraint given by (2.40) is enforced by making sure
that the vector P(j") remains always inside the polytope described by (2.39) and
(2.40). At the end of the training procedure, a Boolean function f is determined
from the optimal function P; by using (2.36) with T; =0.5 Vj =1,2,... ,2M,

The computational complexity of the adaptive algorithm, however, remains

high as in the case of the LP approach, and the resulting optimal filter is useful
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when the statistics of the corrupted and desired signals are close enough to the

statistics of the reference training sequences.

2.4 Summary

In this chapter, a review of the stack filter theory and the relevant background
material has been presented. It has been shown that a stack filter architecture is
completely characterized by positive Boolean filters. The stacking property of PRI
allows the development of a theory for optimal design of a stack filter based on the
MAE criterion [CL88]. The fundamentals of this thecory have been introduced, and it
has been shown that in a stack filter architecture, the multilevel mean absolute error
can be decomposed into a sum of the mean absolute errors incurred by the Boolean
filters at each level. The problem of designing a stack filter which is optinnun for
the estimation under the MAE criterion was stated in {CL88] as an integer lincar
program (LP). A new and direct approach for the formulation of this LP has heen
proposed in this chapter. Finally, the LP-based adaptive technique [LSC90] for the
design of a stack filter has been described.

The large number of variables in the LP-based design methodologics, which
increases exponentially with the window size, makes them very impractical. In
order to reduce the computational expense, new design techniques are needed, with

a smaller number of optimization variables.
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Chapter 3

Linearly Separable Stack-Like
Filters

3.1 Introduction

As shown in Chapter 2, the LP-based design methodologies of stack filters are com-
putationally very expensive, since the number of variables and constraints increases
faster than exponentially as a function of the filter’s window size. If the design is
restricted to the class of stack filters described by linearly separable positive Boolean
functions (LSPBFs), the number of variables becomes equal to the window size of
the filter. Harja et al [HAN91] have demonstrated that, in the multilevel signal do-
main, a stack filter described by an LSPBF performs the operation of the weighted
order statistic (WOS) filtering. Moreover, the class of WOS filters includes many of
the median-related filters of recognized importance in image processing such as rank
order filters and the weighted median filters. Therefore, it is reasonable to study
tl. design of WOS filters by using a broader class of stack filter architectures. The
goal of this chapter is to extend the class of stack filters described by LSPBFs, and

define a stack filter architecture which is described by a linearly separable Boolean
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function (LSBF). The properties of this new stack architecture as they relate to

WOS filtering, are studied.

3.2 Linearly Separable Boolean Functions

The concept of linearly separable Boolean functions, also referred to as threshold

functions [Mur71], is defined as below.

Definition 3.1 An arbitrary Boolean function f(Xo,Xi,...,xm-1) is called a lin-
early separable Boolean function (LSBF) if and only if there exist real numbers
Wo, Wi, ..., WM=1, and wt such that

M-1
Lif > wyx, = wr
f(Xo,Xl,..-,XM_l) = 1=0 (:;l)

0 otherwise.
The numbers wg, wy,..., wM_1 are called weights, and wr is called threshold. The

expression (3.1) can also be written in a vector form as

1 if wix>wr N
f(x) = , (3.2)
0 otherwise,
T T
where w = (wg, W,...,Wm—1) , and X = (X, X1,...,XM=1) .
Based on the Definitions 2.4 and 3.1, an LSBF f(x¢,x1,...,xM~1) which is
positive in all its variables is called a linearly separable positive Boolean [unction

(LSPBF). The next theorem, which was stated by McNaughton [Mur71], establishes

that any linearly separable Boolean function is a unate function.

Theorem 3.1 A linearly separable Boolean function f(x) is a unale function; also,
when f is dependent on a variable x,, we have w; > 0 (w, < 0) ir. every struclure

<w,wt > for f, if  is positive (negative) in x,.
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As a consequence of this theorem, we can formulate the following necessary

and sufficient condition for a linearly separable Boolean function to be an LSPBF.

Theorem 3.2 A lincarly separable Boolean function f(x) is a linearly separable

PBF if and only if all the weights are positive real numbers (i.e.,, w, > 0 Vj €
{0,1,...,M —=1}).

Proof:
Necessity (Proof by contradiction): Let us assume that there exists a linearly sep-
arable PBF f(x) for which some of the weights are negative (i.e., w; < 0 for some
x;). Based on Theorem 3.1, it follows that f is negative in those variables x,, which
is in contradiction with the definition of a PBF.
Sufficiency: Assuming that all the weights of an LSBF f(xo,X1,...,XM~1) are pos-
itive real numbers, we have to prove that f is an LSPBF. By Definition 3.1, the
LSBF f can be expressed as

M-1

1if ) wix; > wr
f(xovxla""xM—l)= Jj=0 a (33)

0 otherwise.

We will prove that when all w;’s are positive real numbers, then f satisfies the
stacking property, and therefore it is an LSPBF (see also Theorem 2.2). Let us
consider two binary vectors of size M, a and b, with a > b. We can have the
following two cases for the vector a.

Case 1: ;?’l:‘o' w;a; > wr, and therefore f(ag,ai,...,am-1) = 1. In this case, we
sce that f(a) > f(b) Vb.

Case 2: E?‘:Bl wja; < wr, and therefore f(ag,a1,...,am—1) = 0. Asb; < a; Vj €
{0,1,...,M—1} and w,’s are all positive, it follows that "Y' w,b, < FM wia; <

wt . Consequently, in this case, f(b) = f(a) = 0.
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Lanearly separable
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Lincarly scparable Boolean functions
which are not PBFs (1e., for which

there cxists at least one k s wy<0)

Figure 3.1: A necessary and sufficient condition for a linearly separable Boolean
function to be a PBF is that all w;’s should be positive.

Now, we can conclude that function f(x) satisfies the stacking property, i.c.,
f(a) > f(b) whencvera > b,

and therefore it is a PBF.
O

Figure 3.1 illustrates the result of Theorem 3.2. As a consequence of Definition 3.1

and Theorem 3.2, an LSBF can be expressed as given by the following theorem.

Theorem 3.3 Any linearly separable Boolean function [(x) gwwen by (3.1) can be

expressed in the form:

M-1
L 2w (G 0%,) 2 wh
f(XO,X],...,XM_]) = 1=0 ? (34)

0 otherwise,
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where all the weights w; are positive real numbers, that is w; = |w;j|, the gate
coefficients g, ’s arc related to the signs of w,’s by g, = sgn [w, |, which means that
g, is equal to | when [ is positive in the variable X;, and it is equal to 0 when f is

negative in x,, and the threshold is given by wh = wy — }:?4___},1 g,W; .

Proof;
Without restricting the generality, the proof can be reduced to the case when f is
negative in only one variable, say xi. If f is positive in some variable x; (w, > 0),

then, in (3.1) we take wa- = w, and replace x; by g; @ x, with g, = 1. We have:

g D x; =g;X;, +8,x;, =X, .

From Theorem 3.2, when an LSBF [ is negative in the variable x;, wix < 0. Then

( M-1
) 1 if ( Z w;xj) + WiXy 2> Wt

J=0,3#k
0 otherwise

f(Xo,X],..-.Xk,-.-,XM-l) =

( M-1
1 if ( ) w}xj) + (—wi)%e + we(xe + %) > wr
1=0,3%k

0 otherwise

i (W X
_ Do wWixg) + (—we)Re = wr + (—wi)

J=0,j#k

0 otherwise,

and therefore we have:

M-1
Lo [' > w]f--(gj@xj):l +wl- (B @xk) > wh
f(x(hxl,"')xk,-“va—-l)= =0 ,j#k

0 otherwise,
(3.5)

where g, =1 Vj e {0,1,...,k-1,k+1,....M =1}, g =0, w}:=—w;c > 0, and
wl = wr — wi. Now, (3.5) can be expressed in the sanie form as (3.4).
T

0
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As an example, the function

1 if X0-2X1+2X2—3\';;“X.| 2 -1 o
S (%0, %1, X2, X3,%4) = ) (3.6)
0 otherwise,

can be expressed as

—

if Xo+ 2% +2x+X34+%y > 3
f(xoa X1,X2, X3, X4) =
0 otherwise

I if 1®xe+2-(0hx))+2- (I DOx2)+0Dxa+0hxg > 3

0 otherwise.

In view of Theorem 3.3, an LSBF can be equivalently defined as follows.
Definition 3.2 An arbitrary Boolean function f(x) is said to be a lincarly separable
Boolean function if it can be expressed in the form

M-1
Lif > wh (g 0%) > wh
,X=(:> SR ! (3.7)

f(XO)xh"'axM-]) =
0 otherwise,
where all the weights w; 's are positive real numbers, and the gale cocfficienls, g,'s

have values of 0 or 1.

Muroga has shown in [Mur71] that any LSBF can be converted into an LSPBF.

Using Theorem 3.3, we can restate the result of Muroga as given helow.

Theorem 3.4 Any linearly separable Boolean function f(xg, X1,...,%XM~1) which is
not a PBF (i.c., for which there erists al least one g, which is cqual lo () can be

converted into an LSPBF ft(yo,y1,---,¥YM=1) by the transfornation:

f*(yOvYIa SR ,}’M—l) = f(XOa xlv"'axM—l)
X, =0y, Y5 € {0,I,...,M~1}
(3.8)
Proof:
By substituting for x; = g, @, in the expression (3.7) of f(xg,%xi,...,%xm-1), we

obtain
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M=1
Lif Yw,-((gi®e)dy,) > wh
SYyoy1,..yym=1) = < i=0 ( J)
0 otherwise

M-1
1 if ZWJ-(O@XJ) _>_w3;~
vl

0 otherwise

( M-1

1 if Z W;iy; > W%-
= 9 3=0

0 otherwise.

0

As an example, the function

1 if yo+2y1+2y2+ys+ysa =3

0 otherwise

ff(yo,)'lo,y%)'&yfl): { (3'9)

is the linearly separable PBIF obtained from f(xo,x1,%2,X3,X4) given in (3.6) by
applying the transformation described by Theorem 3.4.

3.3 Stack Filters Characterized by LSPBFs

It has been shown that in multilevel signal domain, a stack filter described by an
LSPBF performs the operation of the weighted order statistic filtering [HAN91]. In
the following, the definition of WOS filters is given, and it is shown that rank order,
weighted median and standard median filters can be realized using special cases of
lincarly separable stack filter architectures [HAN91].

In order to give a mathematical description for WOS filtering, an operation
called replication and denoted by "{” has been introduced in [HAN91]. The repli-

cation of a real number R; by the positive integer w; is defined as a vector
w, times

R, =R, 0w, = (R,,Rj,...,R;) . (3.10)
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Now, a formal definition of a WOS filter can be given as follows [ITAN91].

Definition 3.3 The output of a WOS filter at the discrete time n is obiained by the

following procedure:

(a) Replicate each input sample, R(n —j) (j = 0,1,...,M = 1), appearing in the
filter’s input window (which is assumed to be of size M) al time n, by a given

positive integer w; called weight.
(b) Sort the resulting vector of E?”:BI w, elements.

(c) Choose the wr-th largest value (where wy denotes a positive integer called

threshold) from the sorted vector.
In view of the above definition, the output of a WOS filter is given by

WOS(n) = wr-th largest element in
{R(n)Owo, Rn—-1)0wi1, ..., Rm=M+DOwm_y }. (3.11)
In the following, it is shown that rank order, weighted median, and standard
median filters can be realized using special cases of linearly separable stack filter

architectures [HAN91]. For each case, the format of the corresponding LSPBE is

specified.

A. Rank Order Filters

Definition 3.4 In the multilevel signal domain, the oulput of a rank order filler
is obtained by sorting the input samples Rm(n) and then choosing the wyth largest

sample.

Thus, the class of rank order filters is a special case of WOS filters for which all the

weights w;’s are set equal to 1, and only the threshold wr can be varied. A stack
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filter defined by a positive Boolean function f(x) performs the operation of rank
order filtering, if and only if there exists a threshold wt such that

M-1
I if ) x,>wr
f(xo,xh“-,xM-l): =0 ! (312)

0 otherwise.

B. Weighted Median Filters

Definition 3.5 In the multilevel signal domain, the output of an weighted median
filter is obtained by replicating each sample R(n — ;) appearing in the input window
Rm(n) by the number of the corresponding weight w,, then sorting the resulting array

1

of Zh'lo w, elements ', and finaly choosing the median value of the sorted array.

Thus, weighted median filters are a special case of WOS filters, where wr = (1 +

MIw;)/2 and Z,—o w, is odd. A stack filter defined by a PBF f(x) performs the
operation of weighted median filtering if and only if there exista weights w;’s such
that can be expressed as

1 of Z:w]xJ l+z:wJ

f(Xo, X1y - .,XM..]) = j=0 1=0 (3-13)
0 otherwise.

C. Standard Median Filters

Definition 3.6 /n the multilevel signal domain, the output of a standard median
Jilter is obtained by sorting the samples in the input window, Rym(n), and choosing

the centermost value, the number of input samples being odd.

The standard median filter is a special case of a WOS filter, where all the weights
w,’s are equal to 1 and wr = Mt A stack filter defined by a PBF f(x) performs

't is assumed that Z =!'w, is an odd number.
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the operation of standard median filtering if and only if

i Z*{ (1 + M)/2
(%0, X1, ., Xpot) = ’ (3.14)

0 othcrunsr .

3.4 Linearly Separable Stack-Like Filter

Architectures

In this section, the definition of a linearly separable stack-like (LSSL) filter is for-
mulated based on introducing a new type of threshold decomposition of an L-level
signal appearing in a window of size M. It is shown that in an LSSL filter architec-
ture, although the sequences in the binary input windows do not satisfy the stacking
property in a strict sense, the binary output signals do. Due to this property, the
fundamentals of the optimality theory that has been developed in [CL88] (see Sec-
tion 2.3) still remain valid for the class of LSSL filters. Finally, it is shown that in
the multilevel signal domain, an LSSL filter architecture performs the operation of

WOS filtering.

3.4.1 Generalized Threshold Decomposition of a

Multilevel Finite Sequence

The generalized threshold decomposition of an L-level sequence of size M is defined

as follows.

Definition 3.7 Let Ry(n) = (R(n), R(n - 1), ..., R(n =M + 1)) denote an L-
level discrete-time sequence appearing in the window of size M al instant n. Given a
binary vector g = (go, &1,--- ,gM_l)T, the corresponding generalized threshold decom-

position of Ry(n) is the set of (L — 1) binary sequences called g-threshold signals,
gr,(n), g1y(n), ..., By (), wilh

gry(n) = (grn), gr(n—1), ..., gn—M+1))", (3.15)
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whose element gry(n — j) is defined by

gre(n—j)=g, ®re(n —j), (3.16)
where
1 ¢«f Rln—3)2>¢
wm—j)=1 1 Y Re=D)2 (3.17)
0 if Rn—j)<¢,

Jort=12,....,L—1,and j=0,1,....M = 1.

An example of the generalized threshold decomposition of a multilevel window se-
quence with L = 8 and M = 5, given the template g = (1,0,1,0,0), is shown in
Figure 3.2.

As the elements of the g-threshold vector gr,(n) are given by (3.16), it is

convenient to use the following simplified notation
gre(n) = g ®r(n), (3.18)

where @ denotes a vectorial exclusive Oi. operation, in which every element of the
resulting vector is given by the scalar exclusive OR operation performed between
the corresponding elements of the vectors g and r¢(n). The binary vector g @ r,(n),
is understood as the vector obtained by taking the complement of each element of
g ® re(n). In (3.18), re(n) denotes a vector whose elements are given by the binary
samples at the level ¢ in the threshold decomposition of an L-level window sequence

of size M, that is,

re(n) = (re(n), re(n=1), ..., re(n =M +1))T.

3.4.2 'The Definition of a Linearly Separable Stack-Like
Filter Architecture

It was seen in Chapter 2, that a stack filter is characterized by a PBF. In the case

when the PBF is linearly separable, the corresponding architecture can be called
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grl(n) :

Figure 3.2: Generalized threshold decomposition of a multilevel sequence with L = 8
and M = 5, given the template g = (1,0,1,0,0).
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linearly scparable stack (LSS) architecture. Now, we will develop an architecture
characterized by an LSBF that will be called linearly separable stack-like (LSSL)

architecture. Starting from an LSBF

M-1
1if
Sy =4 J_Z—;) W 2V (3.19)

0 otherwise,

in this architecture, a multilevel input sequence Ry(n) appearing in the filter’s
window of size M at the discrete time n is first decomposed into a set of binary

scquences gry(n) £ =1,2,...,L — 1, by using the template
g = (sgn[wo], sgn[wi], ..., sgn[wm_1])T, (3.20)

then a filtering is performed via the LSBF given by (3.19) on each of the L — 1
g-threshold signals, that is,

M-1

1 if W, - gr(n—7j) > wr
f(gr,) = ,>=:o 7o (=12,...,L-1, (3.21)

0 otherwise

and finally, all the binary results are added together yielding the multilevel output.
Denoting by S¢;(Rm(n)) the output of a stack-like filter operating on an input

process Ry(n), we have

L-1
St;(Ru(n)) = ; J(gre(n)) . (3.22)

As an example, Figure 3.3 illustrates a stack-like filter architecture described by the

linearly separable Boolean function given in (3.6).

3.4.3 Generalized Stacking Property of Boolean Functions

As stated in Section 2.2.4 (see Property 2.2), a Boolean filter f(x) of size M is said
to satisfy the stacking property if and only if

f(ba) > f(bs) whenever b, > bs , forall a,8 € {1,2,...,2M} ,
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Figure 3.3: An example of a stack-like filter architecture described by a lincarly
separable Boolean function f(xo, X1, X2, X3, X4), which takes a value of 1 if and only
ifX0—2X1 +2X2—X3—X4 2 —1.
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where b, and bg denote Boolean input vectors of size M. It has also been mentioned
in the same section that the necessary and sufficient condition for a Boolean filter to
satisly the stacking property is that the filter function be a PBF [Gil54], [Mur71].In
Section 3.2, it has been shown that the necessary and sufficient condition for an
LSBF to be a linearly separable PBF is that all the weights be positive. Therefore,
if an LSBF is not a PBF, then it does not satisfy the stacking property. As a result,
if the PBF in a certain stack filter architecture is replaced by an LSBF which is not
a PBF, the binary output signals will no longer satisfy the stacking property. This
is illustrated by the example of Figure 3.4, where the LSBF given by (3.6) has been
used on cach level of the architecture. The input sequence satisfies the stacking
property, but the output sequence doesn’t, since the filter function is not a PBF.
However, il can be seen from Figure 3.3, that in a stack-like filter architecture,
although the binary input signals do not satisfy the stacking property in a strict
sense, the binary output signals do.

In this section, the generalized stacking property of a Boolean function with
respect Lo a given template vector g is stated, and it is shown that any LSBF satisfies

this property with respect to the template

g=(sgn{wo], sgn[w1], ..., sgn[wM_l])T.

Property 3.1 Given a template vector g = (go,gl,...,gM_l)T, a Boolean filter
(function) f(xo,X1,...,Xm=1) of size M, is said to satisfy the generalized stacking

property with respect to g if and only tf

f(g®b,) > f(g®bg) whenever b, > bg, forall o,8€ {1,2,...,2M},

Theorem 3.5 Any linearly separable Boolean function

M—1
1 if Z W;iX; Z wT
f(X0, X150 oy XM—1) = =0 (3.23)

0 otherwise

46



R(n-4) R(-3) R(n-2) R(-1) R

r (n): [ 0

i

| | I | |
r](n-4) rl(n-3) rl(n-'l) rl(n-l) r(n)

’_—_ I'X4I'X3 |+2X2|'2X1|+X0 I

Figure 3.4: An example showing that if in a stack filter architecture the characteristic
PBF is replaced by an LSBF which is not positive, then the binary output signals
no longer satisfy the stacking property.



salisfics the generalized stacking property with respect to the template
T
g = (sgn[wal, sgn [wi], ..., sgn [t ] )T (3.24)

Proof:

By Theorem 3.3, any LSBF f(x) can be expressed in the form (3.4), i.e.,

M-1
Lif Yw(gox) > wh
f(xO) X1, - '-7XM—1) = 3=0 ! ’ (3-25)

0 otherwise,

where the weights w; are given by w;[ = |wj|, g; = sgn[w;], and the threshold is

given by wh = wp — Zg’f__;‘ g;w; . Substituting for x = g @y in (3.25), we get

(

M-1
il Y ow (505 0y;) > wh
=0

fedy) = |
| 0 otherwise
( M-1 . .
_ 1 if j;)wjijWT

{ 0 otherwise.

Therefore, since all w,’s are positive, we have that f(g @ b,) > f(g ® bg) whenever
b, > by
]

As shown in Section 2.2.5, due to the stacking property of PBF's in a stack filter
architecture, the binary outputs at each time instant n will have a structure in which
a stack of 0’s is piled on top of a stack of 1’s. As a consequence of Theorem 3.5, a
stack-like filter architecture defined by an LSBF also preserves the stacking property
at the filter’s output. Therefore, the fundamentals of the optimality theory based
on the MMAE criterion, that has been developed for the class of stack filters [CL88]

(see Section 2.3), remain valid for the class of LSSL filters as well.

48



T

3.4.4 WOS Filtering in a Linearly Separable Stack-Like
Architecture

In this section, it is shown that each stack-like filter architecture which is charac-

terized by an LSBF is equivalent to some stack filter architecture described by an

LSPBF.

Theorem 3.6 A stack-like filter architecture which is described by the LSBI

M=1
1 if D owx, > wy

f(x) = 7=0 (3.26)

0 otherwise,

is equivalent to the stack filter architecture characterized by the LSPBIE

M-1
i Ywix, > wh
—~

fix) = (3.27)
0 otherwise,
where,
wh=|w;], j=01,...,M—1, (3.28)
and
M-1
wh=wr— Y gw, (3.29)
=0
with
g, =sgn[w;], Jj=0,1,....M—1. (3.30)
Proof:
The output of a linearly separable stack-like filter is given by (3.22) as
L—1
St/ (Ru(n) = ¥ [E@Tn)). (3.31)
=1
By Theorem 3.3, the LSBF (3.26) can be expressed in the form
M-1 t .
1 if w (g dx,) > wy
J(x) = ;0 R ! (3.32)

0 otherwise,
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where w = |w,], wh = wp — ZM_O g;w,, and g, = sgn[w;]. Substituting for
x = g @ re(n) in (3.32), we have

( - —
) 1 if Zw;-(gj@gJGBre(n—j)) > wh

J(g®re(n)) =
‘O otherwise

(

1 if —wt-r(n—j > wl
J 2wt =g) 2wy (3.33)

0 otherwise.

The output of the stack filter described by f1(x) in (3.27) is given by (2.16) as

Sﬂ RM Z f1 Pg(n)) (3.34)

with

M-1
if wh. - 1
T T P Ph A (3.35)

0 otherwise.

From (3.31), (3.33), (3.34), and (3.35), we conclude that
5¢,(Ru(n)) = 51 (Ru(n)) (3.36)

a
For example, the stack-like filter architecture shown in Figure 3.3, which is described

by the function f given in (3.6), i.e

1 i xo—2%x1 4+ 2% —x3—-%4 > —1
f(Xo,Xl,X2,X3,X4)={ eomm e (3.37)

0 otherwise,

is equivalent to the stack filter architecture describea by

1 if +2%X1 + 2% + X3+ x4 > 3
ft(XOaxlaX%Xa,X«q):{ HoXorBaE ekt (3.38)

0 otherwise,

and illustrated in Figure 3.5.
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Figure 3.5: A stack filter which performs the same filtering operation as the stack-
like filter shown in Figure 3.3. Note that a stack filter described by an LSPBI is
also a particular case of linearly separable stack-like filter for which the template
vector g has all the elements equal to 1.
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Since stack filters described by LSPBFs have the physical interpretation of
WOS filtering, based on Theorem 3.6, we conclude that the stack-like filter architec-
tures described by LSBFs have the same physical interpretation. Although linearly
separable stack-like filters do not perform a filtering operation other than that of
WOS filtering, it will be shown in the next chapter that this new type of archigecture

is very useful in the design of WOS filters.

3.5 Summary

In this chapter, in the framework of generalized threshold decomposition of multi-
level sequences, a new type of filter configuration called linearly separable stack-like
architecture has been developed. An LSSL filter architecture is characterized by an
LSBF, and has been shown to preserve the stacking property at the binary-level out-
put. This feature stems from the generalized stacking property of linearly separable
Boolean functions. The LSSL filters have been shown to perform the operition of
WOS filtering. In Chapter 4, an adaptive algorithm for the design of WOS filters
using the LSSL architecture of this chapter will be developed. It is expected that
this design would yield better results, since the weights in an LSSL architecture are

not restricted to assume only positive or zero values.
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Chapter 4

The LMAE Adaptive Design of
WOS Filters Based on the LSSL
Architecture and Application to

Image Processing

4.1 Introduction

The theory of linear FIR adaptive filtering is well developed [WS85], {Hay91], and
its powerful results constitute an attractive theoretical framework for the design
of median-related filters. For instance, Bovik et al [BHM83] have combined the
properties of averaging and median filters in a class of nonlinear filters called order
statistic filters or L-filters, whose output is a linear combination of the order statistics
of the input sequence. The theory of order statistic filters and their relationship to
linear FIR filters were investigated by Longbotham and Bovik [LB83}. A design
algorithm in which the goal is to find an order statistic filter which minimizes the
mean square error criterion has been developed in [PB88]. The order statistic filters

combine the rank order operations with linear operations. It has been shown in
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[Gabg9] that the design of such filters has a major drawback in that the optimization

is in fact reduced to optimizing the linear part of the filter. The definition of stack
filters was an effort, to correct this situation [Gab89).

The class of stack filters is better suited for estimation under MAE criterion.
A heuristic configuration of stack filters in which the PBF in the threshold decompo-
sition architecture is replaced by a neural network has been proposed for the design
of WOS filters [YAN92], [AIIL92). With the help of this configuration, the design
1s performed by using a constrained binary-level LMS algorithm for adjusting the
weights of the neural network. These weights are allowed to assume only positive or
zero values, so that the neuron represents an LSPBF. It has been shown that this
heuristic approach gives satisfactory experimental results. Recently, a theoretical
formulation for the adaptive design of LSS filters has been developed [YAN93], by
nsing a procedure which is similar to Widrow’s derivation of the LMS algorithm
(WS85], {HHay91]. This design involves a least mean absolute error (LMAE) algo-
rithm. It is to be noted that this approach is referred to as the LMAE design instead
of MMAE design, since the cost function that is minimized is not strictly the mean
absolute error as given by (2.23). In the daptive LMAE design of LSS filters, the
weights which become negative during the training procedure are reset to zero. This
is a constrained optimization, in the sense that the weights can assume either pos-
itive or zero values, but they are not allowed to assume negative values. However,
there could be situations in which the mean absolute error could be further reduced
if the weights are allowed to assume any value, positive or negative.

In this chapter, a theory for the adaptive LMAE design of linearly separab..
stack-like fiiters is developed. The LMAE criterion is introduced following an ap-
proach which is similar to that given in [YAN93]. It is shown that the LMAE of
an LSSL filter is close to the minimum mean absolute error. An adaptive LMAE
algorithm for the design of LSSL filters is derived, and the implementation of this

new design by using a binarv-levcl LMS algorithm is discussed. Experimental results
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in image restoration are provided in order to demoustrate the performance of the
algorithm. The significance of the proposed approach is that within the framework
of stack-like filters, it is possible to develop a less constrained adaptive LMAE design
algorithiu than that given in [YAN93], and which still enjoys the implementation
simplicity of stack filters. The less constrained design is achieved by allowing the
weights to assume real values instead of just positive or zero values. This flexibility
in the weight values is used to explore the possibility of lowering the mean absolute

error compared to that given by LSS filters.

4.2 The LSSL Fiiter Architecture and MMAE
Estimation in WOS Filtering

The fundamentals of the optimality theory which has been developed for the design
of a stack filter based on the MAE criterion [CL88] still remain valid for the case of
LSSL filters. Following a procedure similar to the one developed by Coyle in [CL8S]
and summarized in Section 2.3.1, the estimation problem for the class of lincarly
separable stack-like filters can be stated using a scheme shown in Figure 4.1, The
process R(n) which is received at the input of an LSSL filter is assumed Lo be a
corrupted version of some desired process S(n) through an operation g(-,-). The
corruption may be caused either by a noise process N(n) or by some intentional
operation, such as a modulation scheme. At each time instant 2, the output of
the LSSL filter is an estimate, denoted by S(n), of the desired process S(n). 'This
estimate is based on the sequence Rp(n) observed in the input, win.low of the LSSL

filter architecture and it is siven by

A~

$(n) = S€;(Ru(n)). (4.1)

The mean absolute error hetween the desired signal, S(n), and the estimated

signal, 5(n), at the time instant n, is defined to be the cost of nsing the LSSL fiter
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Figure 4.1: The structure of the estimation problem for the class of stack-like filters.

S’y at time n, and it can be expressed as

Cu(St5) = B[] $(u) - st;Ru(n) |] (4.2)

If we make the assumption that the signal and noise processes are jointly stationary,
then the cost function C,(S¢y) has the same value at all time instants n. Therefore,
in the subsequent discussion, the subscript n will not be used for the cost function.
The optimal LSSL filter for estimation under the mean absolute error criterion is
the filter for which C(S¢;) is minimum.

By using the technique given in [CL88] and described in Section 2.3.1, the
cost function C(S¢) can be decomposed into the sum of the mean absolute errors

incurred at each binary level ¢, that is,
L-1
C(Str) = D E[|ee(n)]]
=1

L-1
= 2 Ellse(n) = J(gran)) ] - (4.3)

Now, the procedure proposed in Section 2.3.2 can be used in order to express the

cost function C(S¢;) into a form similar to the one given by (2.32), which is

2M

C(ng) = 2[71 ) f(bJ) + :BJ] s (4'4)

J=1
with 7, = TS [P(0,b,10)~ P(1,b,]0)] = Si[P(b,]6) —2P(1,b;]0)], and B; =
Yot P(1,b,]0). Note that P(0,b,|0)+ P(1,b,]¢) = P(b;|¢), and based on the
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definition of an LSSL filter architecture, we have
P(1,b,|0) = P(L.g ®b,|€) and  P(0,b,|0) = P(0.g D b,]0), (1.5)

for all 2M possible g-vectors. Since P(1,b,|6) = P(1|b,,6)P(b,|€), we can also

express v, as
7, = P(b,|0)[(L—1) = 28¢5} P(ilb,, 0)]
= 2(L—1) [} - g5 o P(ilby,0) - (1.6)
The optimization problem to determine an MMALE WOS filter using an LSSL

architecture can be stated as to determine a Boolean filter [ of window size M,

which achieves

C(S¢;) = min Sl f(by) + 4], (4.7)
f e Fum =1

subject to the constraint that f should be lincarly separable.

In order to obtain the solution to this optimization problem, the constraint,
of linear separability has to be imposed. In view of the difficultics mvolved in
imposing this constraint, alternative solutions for the design of WOS filters using
LSSL architecture must be found. The LM AE design using LSSL filters introdneed
in the next section is one suboptimal solution to this problem. It will be shown
that this design would yield a filter that is close to the solution of the unconstrained
problem of minimizing the cost function C(S{;) given by (4.4) It can be shown

easily that the solution to the unconstrained optimization problem is given by

1 if 4, <0
f(b) = !

0 otherwise
1 if (TI_T) Yo P(1b,,8) > 4

= (1.5)
0 otherwise,
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for all b;’s. Another advantage of the LMAE approach is that it is well suited for
adaptive design of WOS filters. This point will be further discussed in the next

section.

4.3 The LMAE Criterion and the Design of WOS
Filters Using the LSSL Architecture

In the LMAE design of WOS filters using linearly separable stack-like architectures,

the cost function that is minimized is given by

L-1
Cw) = ;E[m(n) ”]
b )
- l;E[Is,(n) - wTgr(n) | ] , (4.9)
where
w = (wo, Wi, ..., WM_1 )T, (4.10)

and gr,(n) denotes the vector

. T
gr,(n) (go Dre(n), g1 ®re(n—1), ..., gm-1 @re(n — M + 1))

= gdrn).

Since the absolute value of the binary level error in (4.3) can assume only values of
0 and 1, the quantity under the expected value operator in (4.3) can be squared as
in (4.9). Therefore, there is a similarity between the cost functions C(S¢) given by
(4.3) and C(w) given by (4.9). However, in view of the fact that the term f(gren))
in (4.3) has a binary value, while wTgr,(n) in (4.9) can assume real values, the two
cost functions are essentially different.

It has been shown in [YAN93] that an LMAE stack filter is always sufficiently
close to an MMAE stack filter. Following an argument similar to the one given in

[YAN93], we will now demonstrate that if the minimum of C(w) is achieved for a set
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of weights w, = (Wo0,Wo1,....Woni—1), then the LSSL architecture characterized
by the LSBF
. 1
1 if wix> -
J(x) = 2 (1.11)
0 if otherwise,
is close to the function f given by (4.8), which achieves the unconstrained minimum
of the cost function C(S¢;) given by (4.3). The WOS filter using an LSSL architec-
ture characterized by the Boolean function (4.11) is designated as an LMAE WOS
filter.

The binary random variable s¢(n) specifies the desired output corresponding,
to the input re(n). For a given ry(n) = by, there is a probability P(i|b,,¢) that
se(n) = 1 and a probability P(0|ba, ) =1 — P(1|bq,¢) that s¢(n) = 0. The expected

value of the random variable s¢(n) is given by
E,, [se(n)] = 1- P(l|bs,€) +0- P(0lbg,?)
= P(1]ba,?), (4.12)
where E,[]] denotes the expectation over the distribution of s, for the given b,,.
Hence, as outlined in [YAN93], s¢(n) may be regarded as being given by the sum of
a deterministic component, P(1|bg,#), and a zero-mean random component, 1¢(n),

i.e.,

se(n) = P(1|ba, ) + ne(n) - ’ (4.13)

Indeed, we have that E,, [n¢(n)] = Es, [se(n)] — P(1|ba, €) = 0. We also note that

E, [(se(n)?] = 1% P(1[ba, &) + 0% - P(0]be, 8)
= P(l|bs,0). (4.14)

By expressing 7¢(n) as in (4.13), and then taking the expected value of its squre, we

get
Eq, [(ne(n))?] = Eu, [(se(m))?] = 2P(1ba, €) By, fse(m)) + P2(1bay ) (4.15)
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Substituting from (4.12) and (4.14) in (4.15) yields
Ene [(1(n))?] = P(1]ba,€) = P*(1]ba, ?). (4.16)
The cost function C(w) can be expressed as
i L-1 . )
Cw) = > E {[sz(n) -w grt(n)} }
=1
L-1 5
= > Ep, E, {[sz(n) - ngbn] } , (4.17)
=1
where gb, = g @ b,. Substituting for s¢(n) as given by (4.13) in (4.17), we get

C(w)

L~1 2
>~ Bv. Bn {[(P(11bas) = Wby () +nu(m)]”}
2

=1

L-1 2
= Y B, { [P(1[ba, &) — wTgb,] }
=1
L-1
+23 B, {[P(11ba, &) — wTgb,) By Ine(n)]}
L-1
+ 3 B [(nem))"] (4.18)

Taking into account that E,, [7¢(n)] = 0 and substituting for E,, [(m(n))z] as given
by (4.16) in (4.18), C(w) becomes

. L-1 2
C(w) = ;Eba{[P(llba,Z) -~ngba)]}

L-1
+ 3 [P(1]ba, &) ~ PX(1]bg, 0)] . (4.19)
=1

In order to obtain an LMAE WOS filter, the weight vector w must be evaluated
for which the cost function C(w) given by (4.19) is minimized. Note that in the
expression for C(w) in (4.19), the second term does not depend on w, and therefore,
the minimum of C(w) is achieved when the first term in (4.19) is minimum. Since
the expected value in the first term of (4.19) is given by

B, {[Pl11ba, 0 - wTgb,)]'} = > {[Palb,,0) - web)]"- P10}, (4.20)

=1
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it can be stated that the absolute minimum of C(w) is achieved if there exists a set

of weights w, = (Wo0, W5 1,-..,WoM-1) 5O that
wigb, — P(l1lb,,0) =0, forallj=1,2,....,2% and (= 1,2,....L— 1 (1.21)

Adding the relations (4.21) for all £ = 1,2,...,L — 1, and then dividing by L - 1,
we obtain
T 1 L=

w, gb; ~ L—_Té P(i|b,,€) , forall j=1,2,...,2". (1.22)
Consequently, an LSSL filter which is characterized by (4.11) with the weights w,
given by (4.22), achieves the absolute minimum of C(w). In view of (4.22), this LSSL
filter is also close to the function f given by (4.8) which achieves the unconstrained
minimum of C(S¢;) given by (4.3). The LMAE design yiclds a lincarly separable
Boolean filter. When this filter is used for signal estimation, the mean absolute error

is close to the minimum absolute error when the signal is estimated by a Boole

filter designed without imposing the constraint of separability.

4.4 Adaptive LMAE Design of WOS Filters
Using the LSSL Architecture

In this section, an adaptive LMAE algorithm for the design of WOS filters using
the LSSL architecture, in which negative weights arc allowed, is developed. This
is a less constrained design method as compared with the design of WOS filters
using the LSS architecture, that has been proposed in [YAN93]. A binary-level

LMS implementation of the new design algorithm is also discussed.

4.4.1 Derivation of the Proposed Algorithm

In order to derive an adaptive LMAE algorithm for the design of WOS filters using

the LSSL architecture, a procedure which is similar to Widrow’s derivation of the
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LMS algorithm [WS85], [Hay91], is followed. The cost C(w) in (4.9) is a quadratic
function in w,’s, as given by

L-1

Cw) = S E[la) P
£=1
L-1 2
= ; E [ (s,(n) - ngrg(n)) ] ) (4.23)
where
W = (Wo, Wi, «..y WMy )T, (424)

and

gr,(n) = (go Bre(n), g1 @re(n—1), ..., gu—1 Ore(n — M + 1))T . (4.25)

Therefore, the dependence of the cost function C(w) on the elements of the vector
w can be visualized as a bowl-shaped surface with a unique minimum. An adaptive
algorithm attempts to find this minimum by applying succesive corrections to w in
a direction opposite to that of the gradient vector of C(w). Denoting this gradient

by VC(w), we have

L-1
VC(w)=-2)E [ (s,(n) — wlgr,(n) ) gr,(n) ] . (4.26)
£=1
The weight vector is updated by using the following recursive relation

w(n+1) = win) — %p (vEw)] - (4.27)

In (4.27), p is a positive real-valued constant called step-size, and the factor 1is

used merely for convenience. Substituting for VC(w) as given by (4.26) in (4.27),
we get

L-1
w(n+1)=w(n)+pu ; E [ (Sg(n) —wTlgr,(n) ) grl(n)] . (4.28)

Since we do not have the knowledge regarding the value of the mathematical expec-

tation on the right side of (4.28), we use the instantaneous value at time instant n of
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the quantity under the E operator as an estimate of the expected value. Therefore,
wa get the following expression for the adaptive LMAF algorithim:

L-1

w(n+1) =w(n) + p Z [(S((?I) — wl(n)gry(n) ) gl'((rz)] . (-1.29)

=1

In (4.29), gr,(n) denotes the estimate of gry(n) at the iteration n, that is,

) i _ i T
gr(n) = (Bo(n) B rdn), &1(n) D re(r— 1), .-, Gt (n) D re(r = M T ) .
(1.30)
with
g,(n) =sgnw,(n)], i=0,1...,M—1, (4.31)
Based on the discussion in Section 4.3, the estimate of an optimal lincarly

separable Boolean { 'ter at time n + 1 is given by

M-—1 l
. 1 if w(n+1)-x, 2 =
foen+1) = J;o ’ P72 (4.32)

0 otherwise,

and in view of the result of Theorem 3.6, the equivalent optimal lincarly separable

Boolean filter is given by

. 1 if T(n+l > whin+ 1)
flx,n+1)= E " (4.33)
0 othcrw:se,
where
wln+l)=|W%0m+1)], Ji=01,...,M-1, (1.34)
and
M-
v"vjr(n+1)-—-2——z (n+1)-w,(n+1), (4.35)
with
giln+1)=sgn[W,(n+1)], J=01,....M=1. (4.36)

Figure 4.2 depicts a functional illustration of the LMAE design of WOS filters using

the LSSL architecture. In this figure, each radius of the larger circle, represents
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Figure 4.2: Illustrations of the correspondence between the LSSL and LSS archi-

tectures, and of the steps of the adaptive design of a WOS filter using the LSSL
architecture.
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a subclass of LSSL architectures which are characterized by the same g template
vector. Bach dashed circle represents a contour connecting all the LSSL architectures
which are equivalent to a certain LSS filter architecture, and thus they all have
the same MAE. These contours are assumed to be arranged such that the MAE
decreases while moving towards the centre of the larger circle. The set of all WOS
filtering operations can be obtained simply by taking all the LSSL architectures
corresponding to any one of thic radii. The domain of the LSS filter architectures
is shown by the smaller circle. All the points on a given dashed contour in the
bigger circle map to a single point in the smaller circle, in the sense that all the
LSSL filter architectures corresponding to the points involved give the same MAL
and perform the same WOS filtering operation. The bold line (1),(2),(3),(4),(5),. . .,
represents the trajectory of a design in the domain of LSSL architectures. The points
(1),(2%),(3"),(4"),(5"),. . ., are the images of points (1),(2),(3),(1),(5),..., during this

design process.

4.4.2 An Implementation of the Proposed Adaptive
Design by Using a Binary-Level LMS Algorithm

In this section, it is shown that the adaptive LMAE algorithm (4.29) can be imple-
mented by using the LMS algorithm at each binary level in the generalized threshold
decomposition architecture, and by imposing the constraint that at cach time in-
stant the weights should assume the same values at all the levels. This observation
could be very useful for a hardware implementation of the adaptive LMAK design
of WOS filters using the LSSL architecture.

In order to minimize the cost function C(w) given by (4.23), we use the LMS

algorithm of Widrow and Stearns [WS85], [Hay91] at each binary level £, that is,

We(n+1) = We(n) + po €e(n) gry(n)

= Wi(n)+po (se(n) — W) (n)gr,(n)) gry(n), (4.37)
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for£=1,2,...,L—1. But, since at itcration n in a stack-like filter architecture the

samne LSBF is used at each level €, we must impose the condition that
Wy(n)=w(n) VI(=1,2,...,L-1. (4.38)
Therefore, (4.37) becomes
Weln+1) = W(n) + o (se(n) — WT(n)gr,(n)) gro(n), £=1,2,...,L—1. (4.39)

Adding up the equations (4.39) for £ from 1 to L — 1, and taking into account that

the weight-vector W is the same for all £, we get
L-1 L-1

Yo We(n +1) = (L= 1)W(n) + po 3, [(seln) — W (n)gr,(n)) gre(n)] . (4.40)
= £=1

Dividing both sides of (4.40) by L — 1 and using the notation

Ho
= 4.41
Il‘ L - 1 b ( )

we obtain the following expression for the adaptive algorithm:

L—-1 L-1
e S el + 1) = () +p 2 (o) — g m) gre)] - (142)

Consequently, by taking
] L=t

w(n+1) = i—_—lgm(nu), (4.43)
it is possible to implement the algorithm (4.29) by using the serial procedure (4.39).
Note that the derivation of the LMAE algorithm given in this subsection is not only
justifying a serial imple.mentation for the algorithm, but also suggesting an approach
for proving the convergence of the algorithm (4.29). Specifically, it can be stated
that the algorithm (4.29) converges if the LMS algorithm converges at each binary
level, under the constraint that, at each time instant, the weights have to assume
the same values at all the levels. Therefore, a procedure similar to that given by

Widrow and Stearns [WS85], [Hay91] can be used for proving the convergence of
(4.29).
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4.5 Experimental Results

So far, we have restricted our discussion of WOS filtering and stack architectures
using 1-D sequences. This has been done in order to keep all the derivations simple
and to make the exposition clear and concise. However, as it is the case with almost
all median-related filters, an important application of the LSSL filter architecture
is for the problem of image reconstruction from the observation data corrupted by
impulsive noise. Since the experiments reported in this section are concerned with
this specific type of application, we will first bricfly introduce the notations that are

used in extending the 1-D concepts to the 2-D case.

4.5.1 The Extension of 1-D LSSL Filtering to the 2-D Case

In this subsection, the extension of 1-D LSSL filtering to the 2-D case is presented,
by considering 3 x 3 filters. We will also be considering the 2-I computational
procedure for which the input and output masks are as shown in Figure 4.3, Thus,

the binary samples in the input window at the time instant n are given by

x(n+1l,n-1) x(n,n—1) x(n—1,n-1)
x(n+1,n) x(n,n) x(n —1,n) ,

x(n+1l,n+1) x(n,n+1) x(n—1,n+1)

and are denoted as

Xo X1 X2
X3 X4 Xs
Xe X7 Xs

The output at each time instant n is calculated by using an LSBI

M-1 1
1if Y wx, > ¢
=0

f(x) = T2 (4.44)

0 otherwise.
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Figure 4.3: (a) Input and (b) output masks corresponding to a computational pro-
cedure which realizes a 3 x 3 2-D filter. This type of computational procedure has
been used in all the experiments reported in Section 4.5.2.

When using the design method developed in Section 4.4.2, we determine the optimal
w,’s in the LMAE sense. In order to conform the notation of the filter’s weight with

that of the input samples in the window, the weights are denoted as

Wo Wi W
W3 W4 Ws

Wg W7 Wg

The LSS filter architecture which is equivalent to an LSSL architecture characterized

by (4.44), is described by an LSPBF for which the weights are given by w;‘ = |wy|

(=12..,8), and wh = 1= T Ew, (g, = sgnlw;]).

4.5.2 An Application of the Proposed WOS Filter Design

in Image Ruconstruction

In this section, some experimental results are presented to illustrate the performance
of the new adaptive LMAE design method developed in Section 4.4.2. An appli-

cation of this design for restoring images that are corrupted by impulsive noise, is
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considered. The WOS filters designed using the LSSL architecture are compared
with those obtained by using the LSS architecture. In the latter case, the common
practice of resetting to zero, the weights which become negative during training,
has been followed [YAN92], [AHL92], [YAN93]. It has been observed that by using
the LSSL architecture, it is possible to achieve lower, or at least the same errors, as
compared to those obtained with the LSS architecture.

Two test images, each corrupted with a different type of impulsive noise, are
considered. The performance of the optimal filiers is specified in terms of the space
average of the absolute error between the pixel values of the uncorrupted image and
those of the corrupted or estimated version of the same. Inspite of being a space
average, it is common practice to denote this performance measure by MAE. In
each experiment, the samples in the upper left quarter of the original image and
its corrupted version have been used for the training of the LSSL and LSS filter

architecture.

Experiment I. In this experiment, the problem of finding an LMAIE WOS filter of
window size 3 x 3, for filtering a test image which is corrupted by both positive and
negative impulsive ncise is considered. Figure 4.4(a) shows the original Bridge image
used in the experiment. The size of the image is 512 x 512, and the nnmber of grey
levels is 64. The image in Figure 4.4(b) is a 22% corrupted version of the original
Bridge image in Figure 4.4(a). The noise is additive and uniformly distributed in
the interval [—22, 44], and the saturation at 0 (black) and 63 (white) gives 5% black-
level impulsive noise and 11% white-level impulsive noise. The mean absolute error
in this corrupted image is MAE=6.950352. A value of p = 0.004 is used in the
implementation of LMAE algorithms. The samples in the upper left, quarter of the
images shown in Figures 4.4(a) and (b) have been used for training the LSSE and
LSS filter architectures.

The results of filtering the image of Figure 4.4(b) nsing the optimal LSS1L and

LSS architectures, are shown in Figures 4.4(c) and (d), respectively. The MAE in
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Figure 4.4: Filtering a test image of size 512 x 512 with 64 grey levels that is
corrupted by both positive and negative impulsive noise, using 3 x 3 filters. (a)
Original Bridge image. (Continued on nezt page.)
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Figure 4.4: (Continued.) (b) A 22% (MAE=6.950352) corrupted version of Bridge
image. The noise is additive and uniformly distributed in the interval {-22,44]. The
saturation at 0 (black) and 63 (white) gives a 5% black-level impulsive noise and a
11% white-level impulsive noise. (Continued on nezt page.)
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(c)

Figure 4.4: (Continued.) (c) The filtered image by applying the optimal LSSL
architecture on the image shown in (b); MAE=2.294079. (Continued on nezt page.)
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The filtered image obtained by applying the optimal

Figure 4.4: (Continued.) (d)
(b); MAE=2.432912.

LSS filter architecture on the image shown in
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the filtered image using the proposed design is 2.294079, whereas it is 2.432912 when
the image is filtered using the LSS architecture. Thus, the former architecture gives
an improvement of 6% over the latter one. The weight values of the optimal LSSL

architecture are obtained as

0.170512  0.098603 0.130514
0.142961 —0.225842 0.149439
0.089436  0.058104 0.098706

Wt = 0.5 y
whercas those of using the optimal LSS architecture are found to be

0.130396 0.119378 0.092875
0.150569 0.280302 0.109578
0.043546 0.021386 0.030245

wt = 0.656531 .

Experiment IL In this experiment, the problem of finding an LMAE WOS filter
of window size 3 x 3, for filtering a test image corrupted by positive impulsive noise
is considered. Figure 4.5(a) shows the original Lenna image that has been used.
The size of the image is 256 x 240, and the number of grey levels is 64. The noise
is additive and uniformly distributed in the interval [0,63]. Five different cases of
noise-corruption have been considered. For each case, the design of a WOS filter
is performed by employing the LSSL and LSS architectures with ¢ = 0.002. The
samples in the upper left quarter of the uncorrupted and corrupted images were
used for training the LSSL and LSS filter architectures. The results are summarized
in Table 4.1. It is seen that for higher levels of noise-corruption in the input image,
the WOS filters designed by using the LSSL architecture yield increasingly better

results than those obtained by using the LSS architecture. For instance, when the
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Table 4.1: Comparison of the results of WOS filtering by using the LSSL and LSS

architectures.
Mean Absolute Error (MAE) Pereentage
Input image | Optimal LSS Filter | Optimal LSSL Filler | Improvement
17.283 3.873 3.025 22 ]
12.364 3.791 2.972 2
9.756 3.623 2.958 18
6.117 3.256 2.935 9
4.231 2.943 2.931 3

noise level in the input image is increased from MAE=4.231 to MAE=17.283, the
filtering capability of the WOS filters using the LSSL architecture increases from
3% to 22% over the WOS filters using the LSS architecture.

Figure 4.5 shows the images illustrating the results of a WOS filtering of the
Lenna image corrupted with an MAE=17.283 by using the optimal LS5L and Ls5
architectures. For this noise level, the weight values corresponding to the optimal

LSSL architecture are

0.172580 —0.133225  0.105357
0.176109  0.206681 —0.146193
-0.031987 —0.002175 —0.039405

WrT = 0.5 y
whereas those obtained from the LSS architecture design are

0.223461 0.145476 0.151923
0.250592 0.266648 0.151680
0.086436 0.046997 0.055393

wr = 1.060690 .

If the designed LSSL architecture is converted to the corresponding LS5 architecture,

all the weights in the latter will be positive, with the same magnitude as those of
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Figure 4.5: Filtering a test image of size 256 x 240 with 64 grey levels that is
corrupted by pusitive impulsive noise, using 3 x 3 filters. (a) Original Lenna image.
(b) A 65% (MAE=17.28274T7) corrupted version of Lenna image; the noise is additive
and uniformly distributed in the interval [0,63], and the saturation at 63 (white)
gives 47% white-level impulsive noise. (Continued on next page.)
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Figure 4.5: (Continued.) (c) The filiered image by applying the optimal LSSL
filter architecture on the image shown in (b); MAE=3.025345. (d) The filtered
image by applying the optimal LSS filter architecture on the image shown in (b);
MAE=3.873452.
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the former. However, the wr will be changed from 0.5 to 0.852985. Note that the
weight and the threshold values in the converted LSS architecture are very different

from those of the LSS architecture designed using the traditional approach [YAN93].

The above experiments show that by using the LSSL architecture, it is possible
to achieve lower, or al least the same errors, as compared with those obtained with
the LSS architecture, in which the weights are restricted to assume positive or zero

values only.

4.6 Summary

In this chapter, an adaptive LMAE method for the design of WOS filters has been
developed. It has been shown that the proposed design using the LSSL architecture
yieldsa WOS filter that is approximately optimal in the MAE sense. The new design
method is less constrained than the method given in [YAN93], while it still enjoys the
implementation simplicity of stack filters. The implementation of the new adaptive
LMAE design of WOS filters by using a binary-level LMS algorithm has also been
discussed. In order to demonstrate the performance of the new design method,
experimental results in image restoration from the observation data corrupted with
impulsive noise have been provided. From these experiments, it has been seen that
by using the new adaptive design method it is possible to achieve lower errors than
those given by the method using the LSS architecture [YAN93]. As a final remark,
we note that the work of this chapter can also be helpful in understanding the
problem of finding the relation between stack filters and neural networks, that has

been recently posed by Gabbouj, Coyle and Gallagher in [GCG92).
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Chapter 5

Concluding Remarks

5.1 Conclusions

The primary contributions of this thesis have been the development of a new fil-
ter configuration called linearly separable stack-like (LSSL) architecture, and the
derivation of an algorithm for the adaptive design of the class of WOS filters real-
ized by using the LSSL architecture. It has been shown that this adaptive design is
less constrained than the adaptive methods which have been used in the past that
restrict the design to the domain of LSS filter architectures only. As a result, it has
been shown that by using the new design, lower errors can be achieved.

The LSSL filter has been defined based on introducing a new concept of gen-
eralized threshold decomposition of a multilevel finite sequence. It has been shown
that in a stack-like filter architecture, although the binary input signals do not, sat.-
isfy the stacking property in the strict sense, the binary output signals do. 'This
property of the LSSL architecture has been called generalized stacking property.
Due to this property, the basics of the optimality theory developed by Coyle and
Lin [CL88] for the class of stack filters, still remain valid in the case of LSSL filter
architectures. It has been demonstrated that in the multilevel signal domain, an

LSSL filter architecture performs the WOS filtering operation.
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An adaptive algorithm for the design of WOS filters using the LSSL archi-
tecture has been derived. Since the filter weights in this architecture can assume
any real values, the algorithm is less constrained than that in the case of LSS filter
architecture. An implementation of the new design algorithm has been proposed,
by constructing a binary-level LMS algorithm.

The proposed design and implementation has been applied to the problem of
restoring images that are corrupted with impulsive noise. Simulation results have
shown that the WOS filters designed with the new method provide better results
compared with those obtained by using the WOS filters designed with the LSS

architecture.

5.2 Scope For Future Investigation

It has been shown that the algorithm for the adaptive design of WOS filters within
the framework of the LSSL architecture is less constrained than the one using the LSS
architecture. A theorctical study of the convergence of this new adaptive algorithm
can be carried out.

An investigation can be undertaken for finding a closed-form solution to the
problem of the MMAE design of the WOS filters using the LSS, architectures.

It has also been observed that any unate Boolean function satisfies the gener-
alized stacking property. Consequently, the concept of stack-like filter architecture
might be extended to the more general case of unate Boolean functions. In turn,
this could bring new insights for further research in the theory of stack filters.

Finally, it may be worthwhile to look into the possibility of developing neural
network implementation for the LSSL architecture of WOS filters, proposed in this

thesis.
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