
Characterization of the Line Configuration in Wired
Communication Networks

Kazi Moinul Islam

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University
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Abstract

Characterization of the Line Configuration in Wired Communication

Networks

Kazi Moinul Islam

This thesis presents an algorithm to identify the full configuration of a wired transmission

line from its frequency response. It is assumed that the line can have up to two bridged

taps. Each bridged tap divides the main line to two segments, and with two bridged

taps there will be at most three segments in the main line. Furthermore, each segment

of the main line and the bridged taps can have three different gauges. The problem of

characterizing the line configuration is concerned with identifying each segment (main

line segments and bridged taps) in terms of its length and gauge. The problem is solved

in two phases: initialization and optimization. The algorithm can be used as single ended

line testing, which means the line can be characterized by performing a simple test from

the central office. Simulations demonstrate the accuracy of the proposed method.
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Chapter 1

Introduction

1.1 Background

Telephone lines were originally installed for voice traffic. Since their original deployment

(which goes back as far as 1881) there has been a technological revolution in the commu-

nications industry. In particular, development of digital subscriber line (DSL) technology

in 1989 has opened up a new dimension in wired communication, enabling the transmis-

sion of megabits of data per second over the same twisted pair channel which is used

for plain old telephone service (POTS) [1], [2], [3], [4]. The operators are now generat-

ing revenues from voice service (at low frequency) and high speed data service (at high

frequency) using the same infra structure.
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DSL services can be classified as symmetric and asymmetric [1]. In a symmetric

DSL service, transmission of data in both downstream and upstream directions is per-

formed in the same frequency band. In an asymmetric DSL service, on the other hand,

a higher transmission rate is assigned to the downstream channel, and there is no over-

lap between the downstream and upstream frequency bands [1]. Each service type has

its own advantages and disadvantages in terms of quality of service (QoS), robustness,

etc. whose details are not in the scope of this report. However, they both suffer from

a number of issues related to the physical characteristics of the channel. For example,

some of the problems reported by the DSL customers are directly or indirectly related

to the line configuration, and in particular to the characteristics (location and length) of

any bridged tap which may exist in the line [4]. Bridged taps are open-circuited twisted

pairs which are used by the telephone companies to increase the flexibility in providing

service to customers [1]. However, they can potentially degrade the frequency response of

the channel, specially in high frequencies (which is normally used for DSL services) [4],

[5]. If the bridged tap is very long (e.g., the same length as the main line), it introduces

approximately a flat attenuation of 3.5 dB in the loops frequency response [48].

Many of the DSL service problems are related to the line configuration which was

implemented before DSL was invented. It is not feasible to make fundamental changes

in the telephone line network configuration in order to obtain a more suitable network

for DSL service. It is also not cost-efficient to hire technicians to run tests and find the

source of the problem after each trouble report, if it can be identified simply performing

a test from the central office (CO) [6], [7]. Characterization of the transmission line is

important for network monitoring and maintenance. It can also help increase the number
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of customers that can be provisioned for DSL, or increase the average bit rate of exist-

ing customers. Some of the new DSL services require higher bandwidths, bit rates, and

reliability, which can only be assured by having accurate knowledge of the lines [18].

In this work, it is desired to develop a program which can be used to fully character-

ize a transmission line, using some information (about the frequency response of the line)

which can be collected at the CO. The full characterization means determining the num-

ber of different line segments as well as the length and gauge of every one of them. Each

segment can have three different gauges, and each bridged tap segment has prescribed

upper and lower limits for its length. It is also assumed that each transmission line can

have at most two bridged taps (this assumption is in accordance with the DSL standard

loops). The proposed characterization algorithm performs in two phases: initialization

and optimization.

1.2 Frequency Response of a Single Transmission Line

Twisted-pair transmission lines can be modeled as a two-port (or ABCD) network as

shown in Figure 1.1 [1]. The voltage and current of each port depends on the source

and load impedances satisfying the following matrix relation:

V1

I1

=

A B

C D

 .

V2

I2

= Φ.

V2

I2

 (1.1)
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Figure 1.1: A two-port network model of a twisted pair transmission line.

where Φ is a 2×2 matrix of the four frequency-dependent parameters A,B,C and D. All

of these parameters depend only on the network and not on external connections, and are

given by:

A =
V1

V2

∣∣∣∣
I2=0

; B =
V1

I2

∣∣∣∣
V2=0

; C =
I1

V2

∣∣∣∣
I2=0

; D =
I1

I2

∣∣∣∣
V2=0

(1.2)

The parameters A,B,C and D are known as open-load voltage ratio, shorted-load impedance,

open-load admittance and shorted-load current ratio, respectively.

Now, consider the following function which depends on the load impedance connected

at the right side of Figure 1.1.

T ( f ) =
V2

V1
=

V2

A.V2 +B.I2
=

1
A+B. I2

V2

(1.3)

The load impedance is defined as follow:

ZL =
V2

I2
(1.4)
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Substituting the load impedance in equation (1.3) yields:

T ( f ) =
1

A+ B
ZL

=
ZL

A.ZL +B
(1.5)

Assume now that VS is the input voltage supply with finite internal impedance ZS as shown

in Figure 1.1, and VL is the output voltage across the load ZL. So, we can relate T ( f ) to

the transfer function H( f ) between input and output as given below:

VL( f )
VS( f )

= H( f ) =
VL( f )
V1( f )

.
V1( f )
VS( f )

=
Z1

Z1 +ZS
.T ( f ) (1.6)

where Z1 is the input impedance of the terminated two-port. The frequency response,

H( f ) generally depends on the load and source impedances. The input impedance of the

two-port is calculated by using the following equation:

Z1 =
V1

I1
=

A+ B
ZL

C+ D
ZL

=
A.ZL +B
A.ZL +B

(1.7)

1.3 Two-Port Characterization of Transmission Lines

The two-port model of a twisted-pair line can be derived from the per-unit length two-port

model as shown in Figure 1.2. The R, L, C, and G parameters indicate resistance, induc-

tance, capacitance and conductance per unit length of the transmission line, respectively.

Now, let a segment of the transmission line be regarded as the cascade of such sections

that are infinitesimally small in length. At any point y, the two-port voltages and currents

are related through the following differential equations at any given frequency ω = 2π f

5



Figure 1.2: Incremental section of the twisted-pair transmission line.

[1]:

−dV
dy

= (R+ jωL).I (1.8)

−dI
dy

= (G+ jωC).V (1.9)

where V and I are phasor quantities indicating peak amplitudes of sinusoids at frequency

f (the R,L,C,G parameters also vary with frequency). The above equations are also

equivalent to the following second-order differential equations:

−d2V
dy2 = γ .V (1.10)

−d2I
dy2 = γ .I (1.11)

In particular:

γ = α + jβ =
√
(R+ jωL)(G+ jωC) (1.12)

where γ is the frequency-dependent propagation constant for the twisted-pair, which is

used to characterize each segment of the transmission line. The solutions to the differen-

tial equations (1.10) and (1.11) are the sum of positive and negative-direction waves that

vary with position as e+γy and e−γy, where the sign of the exponent depends on direction.
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The real part α and the imaginary part β in equation (1.12) are called the attenuation

constant and the phase constant, respectively. For a lossless line (R = 0,G = ∞), the at-

tenuation constant is zero. The solution to the differential equations (1.10) and (1.11) are

as follow [1]:

V (y) =V+
0 .e−γy +V−

0 .e+γy (1.13)

I(y) = I+0 .e−γy + I−0 .e+γy (1.14)

By substituting either of these solutions into (1.8) and (1.9), the ratio of the positive-

going voltage to the positive-going current, and the ratio of the negative-going voltage to

the negative-going current are obtained, which provide a constat characteristic impedance

of the transmission line. Suppose that a transmission line of length d has the solution

VL =V (d) and IL = I(d), which leads to the following equations:

VL =V (d) =V+
0 .e−γd +V−

0 .e+γd (1.15)

IL = I(d) = I+0 .e−γd + I−0 .e+γd (1.16)

As the two voltage waves in each direction are related to the same direction current waves

by the characteristic impedance Z0, one can solve the above two equations for V+
0 and V−

0

to arrive at:

V+
0 =

1
2
(VL + IL.Z0).eγd (1.17)

V−
0 =

1
2
(VL − IL.Z0).e−γd (1.18)

Now, putting these constants into the solutions of (1.15) and (1.16) and evaluating voltage

and current at y = 0 in terms of those at y = d, the following ABCD representation for the

7



transmission line is obtained [1]:

V (0)

I(0)

=

 coshγd Z0 sinhγd

1
Z0

sinhγd coshγd

 .

V (d)

I(d)

 (1.19)

where γ and Z0 are the propagation constant and the characteristic impedance of the line,

respectively.

1.4 Two-Port Characterization of Bridged Taps

A bridged tap is an open-circuited twisted pair providing flexibility for future additions

and changes in service demands, and can be viewed as a three-port network. However,

one of the ports appears as a load impedance to the line between the two segments on

each side of the bridged tap. Thus, a bridged tap can be described by the following two

port characterization model [1]:

 1 0

1
Zbt

1

 (1.20)

where Zbt denotes the characteristic impedance of the line for bridged tap section.
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Figure 1.3: An example of a subscriber loop from the central office to the customer
premise equipment, with only one bridged tap connected to the main line.

1.5 Frequency Response of a Subscriber Loop with Mul-

tiple Segments

It is shown in this section how to derive the frequency response of a subscriber loop with

multiple segments. Consider first a transmission line with one bridged tap, which consists

of three segments as shown in Figure 1.3: segment #1 between the CO and the point O

where the bridged tap is connected to the main line; segment #2 which is the bridged

tap, and segment #3 between the connection point O and the customer premise equipment

(CPE). The main line or main channel connecting the CO to the CPE in this case consists

of segments #1 and #3, and is the primary contributor to the attenuation of the signal

passing through the line (both uplink and downlink). The effect of the bridged tap, as

discussed later, is the reflection of the signal passing through the main channel from the

connection point. Figure 1.4 depicts the line configuration for the case of two bridged

taps, and the five segments associated with it. The problem of the characterization of the

line configuration is concerned with identifying the length and gauge of each segment of

9



Figure 1.4: Subscriber loop with two bridged taps.

the transmission line (bridged taps and main-channel segments).

The frequency response of a subscriber loop with multiple segments can be found

by multiplying the corresponding two-port ABCD matrices of different segments, which

are, in fact, connected in series [1]. The matrices are multiplied in the natural order

of appearance from the CO to CPE. As an example, for the transmission line with two

bridged taps shown in Figure 1.4, one can write:

ϕ = ϕ1.ϕ2.ϕ3.ϕ4.ϕ5 (1.21)

where ϕi represents the frequency response of segment #i, i= 1, ...,5. The two-port model

for the voltage source, on the other hand, is given by:

1 ZS

0 1

 (1.22)

where ZS is the source impedance. Moreover, the output voltage and current are related

by the following scalar equation:

VL = IL.ZL (1.23)

10



where ZL is the load impedance. From the above equation, one can obtain the transfer

function of the transmission line as follows:

H =
VL

VS
(1.24)

Now, by using the ABCD model for every segment of the line, the transfer function of the

subscriber loop is obtained as [1]:

H =
VL

VS
=

ZL

(A.ZL +B+C.ZS.ZL +D.ZS)
(1.25)

The segment numbers adopted in Figures 1.3 and 1.4 will be used hereafter to specify

each segment of the line.

1.6 Frequency-Dependency of the RLCG Parameters

The parameters R,L,C and G are the primary constants, namely resistance, inductance,

capacitance and conductance, respectively, of the transmission line which are expressed

in per unit length. These parameters also depend on frequency, and are found for twisted-

pairs through measurement. Practical measurements, however, are subject to error; that

is why the measured RLCG values may not follow smooth curves with frequency [1].

Therefore, parameterized smooth fitting models are used to represent the measured values.
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Figure 1.5: Resistance vs frequency for a 26 gauge cable.

The parameterized model for resistance with the frequency dependency is:

R( f ) =
1

1
4
√

r4
OC+aC. f 2

+ 1
4
√

r4
OS+aS. f 2

(1.26)

where rOC and rOS are the copper and steel DC resistances, respectively. Furthermore,

aC and aS are the constants indicating the rise of resistance with frequency in the skin

effect. The frequency dependency of resistance are shown in Figures 1.5 and 1.6. From

these figures, it is evident that resistance is an increasing function of frequency, and at low

frequencies (typically from 0 to 10 KHz) its value is almost constant.

The parameterized model for inductance showing the frequency dependency is:

L( f ) =
l0 + l∞.(

f
fm
)b

1+( f
fm
)b

(1.27)
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Figure 1.6: Resistance at low frequencies for a 26 gauge cable.

where l0 and l∞ are the low-frequency and high-frequency inductance, respectively, and b

is a parameter chosen to characterize the transition between low and high frequencies in

the measured inductance values.The frequency dependency of inductance can be clearly

visualized from Figures 1.7 and 1.8. These figures show that inductance is a decreasing

function of frequency, and at low frequencies its value is also almost constant [1].

The parameterized model for capacitance is:

C( f ) = c∞ + c0. f−ce (1.28)

where c∞ is the contact capacitance, and c0, ce are constants used to fit the measurement.

13



0 200 400 600 800 1000 1200
5.6

5.8

6

6.2

6.4

6.6

6.8
x 10−4

Frequency in KHz

M
ag

ni
tu

de
 o

f I
nd

uc
ta

nc
e 

in
 H

en
ry

s

Figure 1.7: Inductance vs frequency for a 26 gauge cable.
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Figure 1.8: Inductance at low frequencies for a 26 gauge cable.
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The parameterized model for conductance is:

G( f ) = g0. f+ge (1.29)

where the constants g0 and ge are used to fit the measurement. The parameter values for

26 and 24 gauge twisted-pairs are given in Tables 1.1 and 1.2, respectively.

Table 1.1: Parameter values for a 26 gauge twisted pair cable
Resistance rOC rOS aC aS
(value) 286.17578 Ω/Km ∞ Ω/Km 0.14769620 0.0
Inductance l0 l∞ b fm
(value) 675.36888 µH/Km 488.95186 µH/Km 0.92930728 806.33863 KHz
Capacitance C∞ C0 Ce −
(value) 49 nF/Km 0.0 nF/Km 0.0 nF/Km −
Conductance g0 ge − −
(value) 43 nS/Km 0.70 − −

Table 1.2: Parameter values for a 24 gauge twisted pair cable
Resistance rOC rOS aC aS
(value) 174.55888 Ω/Km ∞ Ω/Km 0.053073481 0.0
Inductance l0 l∞ b fm
(value) 617.29539 µH/Km 478.97099 µH/Km 1.1529766 553.760 KHz
Capacitance C∞ C0 Ce −
(value) 50 nF/Km 0.0 nF/Km 0.0 nF/Km −
Conductance g0 ge − −
(value) 234.87476 nS/Km 1.38 − −

1.7 Objective

The objective of the present work is to develop an algorithm to identify the full configura-

tion of a twisted-pair transmission line from its frequency response. The algorithm can be
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used as a single-ended line testing. In other words, the line can be characterized using the

information collected at the CO by performing a simple test. The problem of identifying

the line configuration is concerned with determining each segment (main line segments

and bridged taps) in terms of its length and gauge. It is assumed that the line can have

up to two bridged taps. Each bridged tap divides the main line to two segments, and with

two bridged taps there will be at most three segments in the main line. Furthermore, each

segment of the main line and the bridged taps can have three different gauges (please see

Figures 1.3 and 1.4).

1.8 Contribution and Publication

The problem has been solved using a proper optimization technique (which finds the clos-

est configuration by minimizing the error in the frequency response). The core concept

to solve the problem has been explained in Chapter 3. The method used to determine

the lengths of the bridged taps has been explained in Chapter 2. The results of this work

appeared in the following conference:

Kazi Moinul Islam, Mohammad Salehizadeh and Amir G. Aghdam, ”Characterization

of the Line Configuration in Wired Communication Networks,” in Proceedings of ACM

Research in Applied Computation Symposium (RACS), Miami, USA, November 2011.
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Chapter 2

Determination of the Lengths of the

Bridged Taps and the Total Length of

the Line

2.1 Effects of Different Transmission Line Segments

Optical fiber is used in modern very high speed DSL (VDSL) networks to connect the

CO to an optical network unit (ONU). Up to about one mile of the existing copper-based

telephone network infrastructure is then used from the ONU to CPE [48]. When a signal

is transmitted through a twisted-pair, some of its energy leaks out from the main channel

and some is reflected back to the bridging location by the open circuited twisted-pair as

17



shown in Figure 2.1. The reflected signal (which is a delayed and distorted version of

Figure 2.1: The effect of a bridged tap in the transmission line.

the main signal) creates two types of interferences as shown in the figure and discussed

below:

i) The first component of interference is the one that travels in the same direction as the

main signal, which is added to it and will appear as noise to the receiver.

ii) The second component of interference is the one that propagates back and will appear

as an echo to the transmitter.

In addition to the above two interference components, there is another damaging effect of

the bridged tap, namely net loss caused by nulls (dips) in the frequency response of the

loop. In fact, for certain frequencies a sinusoidal wave reflected by the bridged tap can

arrive at the bridging location with a phase shift of 180 with respect to the corresponding

sinusoidal wave in the main signal. When this occurs, the two frequency components

subtract in amplitude and the result is a noticeable dip in the overall magnitude response of

the loop around this frequency. These dips occur at frequencies for which the bridged tap
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length dbt is equal to an odd multiple of one quarter of the wavelength of that frequency.

Let v( f ) = 1
τϕ ( f ) and λ ( f ) = v( f )

f , where v( f ) is the phase velocity, τϕ ( f ) is the phase

delay, and λ ( f ) is the wavelength. The first null occurs at [5]:

f0 =
v( f0)

λ ( f0)
=

v( f0)

4dbt
=

1
4dbtτϕ ( f0)

(2.1)

Other nulls occur at the following frequencies [5]:

f = (2 j+1) f0, j = 1,2,3, . . . (2.2)

The expression (2.1) is highly nonlinear; however, it can be solved by approximation for

bridged taps up to a certain length (less than 2 Kft). In such a configuration, the nulls

occur in a frequency range where the phase delay is approximately constant and equal to

about 8.7 micro sec/mile [5]. This leads to the following equality:

dbt =
150
f0

(2.3)

where f0 and dbt are in KHz and Kft, respectively.

2.2 Determine the Lengths of the Bridged Taps

Figure 2.2 depicts the magnitude response of a transmission line with one bridged tap,

where the segments are characterized as:
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Segment #1 (CO-side of the main channel): 2500 ft, 26 gauge

Segment #2 (bridged tap): 500 ft, 24 gauge

Segment #3 (CPE-side of the main channel): 1500 ft, 24 gauge

This figure shows the first null occurs approximately at 304 KHz (and the second one at
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Figure 2.2: The magnitude response of a loop with single bridged tap.

around 912 KHz, which is equal to 304×3). Thus, from equation (2.3) the length of the

bridged tap is obtained to be 494 ft, which is very close to the exact value.

By generalizing the method presented in the previous section, the lengths of multiple

bridged taps in a loop can be heuristically determined from equation (2.3). First of all,
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one needs to identify distinct groups of dips which meet the condition expressed by equa-

tion (2.2). The number of such groups is, in fact, the number of bridged taps in the loop.

The length of each bridged tap can then be obtained from the smallest frequency in each

group. However, such groupings can be made only if the length of a bridged tap is not an

odd multiple of the length of another bridged tap (because in such cases the corresponding

nulls coincide). Throughout this work, it is assumed that the length of a bridged tap is not

an odd multiple of the length of another bridged tap (note that the length of a line segment

is by assumption nonzero).

As an example, the magnitude response of a transmission line with two bridged taps
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Figure 2.3: The magnitude response of a loop with two bridged taps.

is given in Figure 2.3. The smallest null frequencies corresponding to these bridged taps
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are 183 KHz and 390 KHz. Hence, from equation (2.3) the bridged tap lengths are ob-

tained as 818 ft and 385 ft.

2.3 A Method to Determine the Total Length of the Trans-

mission Line

As shown in the previous section, the frequency response of a twisted-pair is a gradually

decaying function of frequency. It can be observed from Figure 2.2 that there are some

oscillations in the curve at high frequencies, which is, in fact, due to the presence of

the bridged tap. However, the curve is smooth at low frequencies, which contains very

important information. An estimation of the total line length can be made by fitting the

low-frequency curve with a smooth curve. Detailed procedure for this is given below in a

step-by-step manner.

i) Step 1: Fit the magnitude response with a polynomial of sufficiently high degree.

ii) Step 2: To obtain a rough estimate of the total line length, it is assumed that there is

no bridged tap connection. The frequency response of the simplified line is approxi-

mated subsequently by applying the two-port network model of communication line

as described in Chapter 1. The frequency response is a function of frequency with

unknown line length, i.e.:

H = g( f ,d) (2.4)

where f is the frequency and d is the total length of the line.
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iii) Final step: Now, there are two equations: one from the best fitted curve (which is a

function of frequency) and the other from the simplified line applying the two-port

network model. An estimate of the line length can now be obtained by using a proper

optimization procedure, e.g., Nelder−Mead′s simplex search method.

2.3.1 Simulation Result for Initial Length Estimate of the Main Line

In this subsection two different line configurations with two bridged taps are considered:

one with relatively short segments, and one with longer segments. The procedure given

earlier will be used to estimate the total length of the main line.

Configuration 1: Consider a wired communication line with the following character-

istics (see Figure 1.4 for segment numbers):

Segment #1: 1500 ft, 26 gauge

Segment #2: 700 ft, 22 gauge

Segment #3: 1000 ft, 24 gauge

Segment #4: 400 ft, 22 gauge

Segment #5: 500 ft, 22 gauge

Note that the total length of the main line in this configuration (segments #1, 3, 5) is 3

Kft. The magnitude response of this line along with the 10th-order fitting polynomial for

that obtained by MATLAB is given in Figure 2.4. Now, using the algorithm provided in

Section 2.3, the total length of the main line is estimated to be 3.0412 Kft, which is very
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Figure 2.4: The real magnitude response and the associated fitting polynomial of order 10
for Configuration 1.

close to the exact line length.

Configuration 2: Consider now a line configuration with longer segments as follows:

Segment #1: 4000 ft, 26 gauge

Segment #2: 1500 ft, 24 gauge

Segment #3: 2500 ft, 24 gauge

Segment #4: 1000 ft, 24 gauge

Segment #5: 1500 ft, 22 gauge

The magnitude response of this line is provided in Figure 2.5 together with the corre-

sponding 10th-order fitting polynomial . Using the algorithm given in Section 2.3, an
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Figure 2.5: The real magnitude response and the associated fitting polynomial of order 10
for Configuration 2.

estimate of the total length of the main line is obtained to be 8.0297 Kft, which means the

estimation error in this case is 0.371%.

2.4 Frequency-Dependency of the RLCG Parameters

Any technique used to identify the line configuration should take the frequency depen-

dency of the line model, namely resistance R, inductance L, capacitance C and conduc-

tance G, into account. This dependency is not the same for different line gauges, as noted

earlier. In this thesis, the frequency dependency of the parameters of the transmission line

is taken into consideration in the optimization procedure introduced in the next chapter.
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To improve the speed of the procedure, look-up tables will be used to compute the fre-

quency response of the line in the underlying procedure. The look-up tables for the three

line gauges are given in Tables 2.1-2.3.
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Table 2.1: RLGC values for a 26 gauge twisted pair cable
Frequency(Hertz) R(Ohms/mile) L(Henrys/mile) G(Siemens/mile) C(Farads/mile)
1 440.75 0.9861 0.0 0.083
5 440.75 0.9861 0.001 0.083
10 440.75 0.9861 0.002 0.083
15 440.76 0.9861 0.003 0.083
20 440.76 0.9861 0.004 0.083
30 440.76 0.9861 0.005 0.083
50 440.76 0.9861 0.008 0.083
70 440.76 0.9861 0.011 0.083
100 440.76 0.9861 0.016 0.083
150 440.76 0.9861 0.022 0.083
200 440.76 0.9860 0.028 0.083
300 440.76 0.9860 0.040 0.083
500 440.77 0.9859 0.063 0.083
700 440.78 0.9859 0.084 0.083
1000 440.79 0.9858 0.115 0.083
1500 440.81 0.9856 0.164 0.083
2000 440.83 0.9854 0.210 0.083
3000 440.88 0.9850 0.299 0.083
5000 441.01 0.9843 0.466 0.083
7000 441.15 0.9836 0.625 0.083
10000 441.39 0.9825 0.853 0.083
15000 441.87 0.9807 1.213 0.083
20000 442.88 0.9789 1.558 0.083
30000 443.88 0.9753 2.217 0.083
50000 447.81 0.9660 3.458 0.083
70000 453.09 0.9546 4.634 0.083
100000 463.39 0.9432 6.320 0.083
150000 485.80 0.9306 8.993 0.083
200000 513.04 0.9212 11.550 0.083
300000 575.17 0.9062 16.436 0.083
500000 699.61 0.8816 25.633 0.083
700000 812.95 0.8614 34.351 0.083
1000000 956.65 0.8381 46.849 0.083
1500000 1154.38 0.8146 66.665 0.083
2000000 1321.07 0.8001 85.624 0.083
3000000 1600.68 0.7823 121.841 0.083
5000000 2044.07 0.7638 190.021 0.083
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Table 2.2: RLGC values for a 24 gauge twisted pair cable
Frequency(Hertz) R(Ohms/mile) L(Henrys/mile) G(Siemens/mile) C(Farads/mile)
1 277.19 0.9861 0.0 0.083
5 277.19 0.9861 0.001 0.083
10 277.19 0.9861 0.002 0.083
15 277.19 0.9861 0.003 0.083
20 277.19 0.9861 0.004 0.083
30 277.19 0.9861 0.005 0.083
50 277.19 0.9861 0.008 0.083
70 277.19 0.9861 0.011 0.083
100 277.19 0.9861 0.016 0.083
150 277.20 0.9860 0.022 0.083
200 277.20 0.9860 0.028 0.083
300 277.20 0.9860 0.040 0.083
500 277.21 0.9859 0.063 0.083
700 277.22 0.9858 0.084 0.083
1000 277.23 0.9857 0.115 0.083
1500 277.25 0.9854 0.164 0.083
2000 277.28 0.9852 0.210 0.083
3000 277.34 0.9848 0.299 0.083
5000 277.48 0.9839 0.466 0.083
7000 277.66 0.9829 0.625 0.083
10000 277.96 0.9816 0.853 0.083
15000 278.58 0.9793 1.213 0.083
20000 279.35 0.9770 1.558 0.083
30000 281.30 0.9723 2.217 0.083
50000 286.82 0.9577 3.458 0.083
70000 294.29 0.9464 4.634 0.083
100000 308.41 0.9347 6.320 0.083
150000 337.22 0.9204 8.993 0.083
200000 369.03 0.9087 11.550 0.083
300000 431.55 0.8885 16.436 0.083
500000 541.69 0.8570 25.633 0.083
700000 632.08 0.8350 34.351 0.083
1000000 746.04 0.8146 46.849 0.083
1500000 902.84 0.7947 66.665 0.083
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Table 2.3: RLGC values for a 22 gauge twisted pair cable
Frequency(Hertz) R(Ohms/mile) L(Henrys/mile) G(Siemens/mile) C(Farads/mile)
1 174.27 0.9861 0.000 0.083
5 174.27 0.9861 0.001 0.083
10 174.27 0.9861 0.001 0.083
15 174.27 0.9861 0.001 0.083
20 174.27 0.9861 0.002 0.083
30 174.27 0.9861 0.003 0.083
50 174.27 0.9861 0.005 0.083
70 174.27 0.9861 0.006 0.083
100 174.27 0.9861 0.009 0.083
150 174.27 0.9860 0.013 0.083
200 174.27 0.9860 0.017 0.083
300 174.28 0.9860 0.024 0.083
500 174.29 0.9858 0.040 0.083
700 174.29 0.9857 0.054 0.083
1000 174.31 0.9856 0.076 0.083
1500 174.34 0.9853 0.110 0.083
2000 174.37 0.9850 0.145 0.083
3000 174.44 0.9844 0.211 0.083
5000 174.62 0.9833 0.341 0.083
7000 174.83 0.9821 0.467 0.083
10000 175.22 0.9804 0.652 0.083
15000 176.06 0.9778 0.954 0.083
20000 177.11 0.9744 1.248 0.083
30000 179.86 0.9672 1.824 0.083
50000 187.64 0.9491 2.943 0.083
70000 197.71 0.9372 4.032 0.083
100000 215.55 0.9237 5.630 0.083
150000 247.57 0.9055 8.229 0.083
200000 277.95 0.8898 10.772 0.083
300000 333.39 0.8642 15.744 0.083
500000 421.57 0.8309 25.396 0.083
700000 493.24 0.8123 34.796 0.083
1000000 583.59 0.7950 48.587 0.083
1500000 707.91 0.7783 71.014 0.083
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Chapter 3

Identification of Line Configuration

3.1 Finding an Initial Estimate for Line Configuration

Given the frequency response (magnitude only) of a transmission line, it is desired now to

characterize its configuration by finding the length and gauge of each segment of the line.

To this end, an optimization procedure is developed which aims to find a configuration

with the closest magnitude response to the given function (in the sense of integral of the

squared error in the frequency domain). As the first step of the underlying optimization

procedure, it is important to find an initial estimate of the length of each segment within

about 20% accuracy. If the initial estimate is not in a reasonable neighborhood of the

exact values, the algorithm can converge to different local minima, or even diverge. The

following assumptions will be used in the development of the procedure.
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Assumption 1: The length of each bridged taps is assumed to be either 0 or between

400 ft and 1500 ft.

Assumption 2: There can be only one or two bridged taps. In the latter case, both bridged

taps have the same gauge.

Assumption 3: The overall length of the main channel does not exceed 20 Kft.

Assumption 4: The frequency response of the line is given in a bin-by-bin basis (each

frequency bin is 4.3125 KHz), from the 6th bin (25.875 KHz) to the 256th bin (1.104

MHz).

It is to be noted that Assumption 1-3 are in accordance with the standard loop config-

urations [4]. Assumption 4, on the other hand, reflects the practical constraints in mea-

suring the frequency response of the line from the CO. To obtain an initial estimate for

the length of the bridged tap, the frequency of the first null caused by each bridged tap in

the frequency response will be used in equation 2.3, as discussed in Chapter 2. To check

different line configurations, 5 line segments are considered as the most general case (two

bridged taps and three main line segments). Note that the case of one bridged tap or no

bridged tap in the configuration, are special cases of a 5-segment line, where the length

of one or two segments is zero. The number of different combinations of line segments

which one needs to check is as follows:

i) Each segment can have 3 different gauges. Since both bridged taps are assumed to
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have identical gauges, the total number of possible gauge combinations for the five

segments is equal to 34 = 81 [29].

ii) In order to obtain a reasonably accurate initial estimate, the main line will be di-

vided to 12 units. It is straightforward to verify that the total number of differ-

ent combinations for this units (corresponding to a line with two bridged taps) is

1+ 2+ ...+ 12 = 78 [29]. Note that the real length of each unit can be obtained by

dividing the overall length of the channel by 12. Note also that using the above tech-

nique the minimum number of units for a segment is zero, and the maximum number

for it is 12.

The initial configuration search is accomplished by a MAT LAB code which finds the

frequency response of a total of 81× 78 = 6318 combinations in a bin-by-bin format.

The difference between the magnitude of this frequency response and that of the given

frequency response is then computed as a measure of error (integral of the squared error

over frequency). The combination corresponding to the minimum error will be chosen as

the initial condition for the optimization procedure.

3.2 Search for the Optimum Configuration

The initial line parameters generated in the previous stage will now be used in the main

optimization program to find the closest match for the line configuration. The perfor-

mance index is the numerical integral of the squared error (the difference between the
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magnitude responses of the real line and the configuration considered by the optimiza-

tion program in each iteration). The program uses Nelder-Mead’s simplex search method

[20]-[27], and examines different line gauges for different segments in a way similar to

the initialization program. If the performance index resulted by the optimization program

for a specific configuration is less than a reasonable margin, the program will stop and the

corresponding configuration will be the final result.

The problem solved here is, in fact, a constrained optimization problem, as the length

of each segment must be positive, and by assumption, should not exceed certain limits.

These constraints are implemented by considering a penalty function in the corresponding

MATLAB code. On the other hand, in order to avoid long execution times, reasonable

limits have been considered for the number of iterations and also for the accuracy of the

results in the optimization procedure, as the termination conditions.

Remark 1: If the initial estimates provided to the main optimization program are too

far from the exact values, they may not lie in the global optimum’s domain of attraction in

which case the algorithm does not converge to the desired configuration as noted before.

This shows the importance of the initialization phase. A similar problem also occurs when

the real line configuration does not satisfy required assumptions (e.g., has more than five

segments). In any case, the algorithm returns a configuration with the closest frequency

response to the real line.
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Figure 3.1: The flowchart of the proposed algorithm.
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3.3 Reducing Program Execution Time

An important practical issue in the line identification program is the execution time. Due

to the complexity of the equations, it can take up to a few weeks for the whole program

to run for a typical line with two bridged taps. Using different tricks, however, one can

reduce the execution time to about 30 minutes. To accomplish this, the following steps

are taken:

i) The MATLAB code generating the frequency response of the transmission line was

written in a way to avoid repeated time consuming command. This reduced the exe-

cution time about four times.

ii) Some of MATLAB commands in the optimization program were written to avoid

several function callings. This reduced the execution time about two times.

iii) By experiment, the most informative points in frequency were identified. By com-

puting the frequency response and error index over the identified points of frequency,

the overall execution time was reduced to about 70% of the normal execution time.

iv) Several programs were written to generate off line data, which can be used in the

main program to save some time in online computation. It takes about 10 days for

the off line data to be generated and it saves almost the same amount of time in the
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online algorithm.

3.4 MATLAB Programs

The main programs are called initialLineMatch and f inalLineMatch and the data files are

length coe f , lengthSimulationData 22, lengthSimulationData 24 and lengthSimulation-

Data 26. The data files are generated by lengthSimulation and initialEstimateTest 10000

programs. The total number of lines written in MAT LAB is about 1200 lines for the main

programs and 950 lines for the data generating codes. The steps of the program execution

are given in the following subsections.

3.4.1 Steps or Pseudocode of the Initialization Phase

This program obtains an initial estimate of the line configuration. This estimate needs to

be sufficiently close to the exact configuration in order for the optimization procedure (in

the next phase) converge. The steps of the algorithm are given below:

i) Finding the initial estimate for the bridged tap lengths.

ii) Using part of the low-frequency axis which is more informative.
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iii) Loading the primary constants (RLGC) files for the frequency response generator

program corresponding to different gauges.

iv) Loading the restored values from the data files for different lengths and gauges cor-

responding to different bridged tap gauges.

v) Choosing the lines corresponding to the approximately calculated bridged tap lengths.

vi) Finding the initial estimate for the line length (one estimate for each combination

of bridged tap lengths), considering segments with different gauges and different

lengths in the main line.

vii) Rearranging the gauges of the main line segments.

viii) Rearranging the gauges of the bridged taps.

ix) Generating the output of the initialization phase.

3.4.2 Steps or Pseudocode of the Optimization Phase

This program finds the closest line configuration for a given frequency response. It checks

three different line gauges (22, 24, 26) for each segment of a line with one or two bridged
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taps. The steps of the optimization phases are as follow:

i) Getting data for different gauge combinations.

ii) Setting the optimization Parameters.

iii) Defining the function that calculates the error to be minimized.

iv) Setting up a simplex near the initial guess. Iteration takes place until the diameter

of the simplex is less than a prescribed termination tolerance value, and the function

values are sufficiently close to zero (within a prescribed error margin) or the max

function evaluations are exceeded.

v) Using the f minsearch function to get the configuration with minimum error.

vi) Providing the optimum configuration for the given frequency response.
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Figure 3.2: Magnitude response for the transmission line of Example 1.

3.5 Simulation Results

Four examples are given in this section for the characterization of a transmission line

from the bin-by-bin magnitude response. In the first example a transmission line with

one bridged tap and in the second example a transmission line with two bridged taps is

considered.

Example 1: Consider a transmission line with three segments as follows (for segment

numbers see Figure 1.3):

Segment #1: 3000 ft, 26 gauge

Segment #2: 800 ft, 24 gauge
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Segment #3: 1000 ft, 24 gauge

The magnitude response of this transmission line is shown in Figure 3.2, and the cor-

responding information is provided in a bin-by-bin fashion to the initialization and opti-

mization procedures developed in this work. The outcome of the initialization procedure

is as follows (for segment numbers see Figure 1.4):

Segment #1: 2689 ft, 26 gauge

Segment #2: 768 ft, 26 gauge

Segment #3: 672.25 ft, 26 gauge

Segment #4: 0.0 ft, 26 gauge

Segment #5: 672.25 ft, 22 gauge

It can be verified that maximum discrepancy of the initial estimates from the exact values

is within 20%. These values are subsequently provided to the main optimization proce-

dure, which arrives at the following values:

Segment #1: 3002 ft, 26 gauge

Segment #2: 800 ft, 24 gauge

Segment #3: 996 ft, 24 gauge

This demonstrates that the procedure has converged to the exact values for this config-

uration. The initialization and optimization procedures for this example take 2.20 min

and 1.38 min, respectively, on a personal computer with a 2.33 GHz Intel Core 2 Duo

CPU and 2.00 GB RAM.

40



0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Frequency in KHz

M
ag

ni
tu

de

Figure 3.3: Magnitude response for the transmission line of Example 2.

Example 2: Consider a transmission line with three segments as follows (for segment

numbers see Figure 1.3):

Segment #1: 4050 ft, 26 gauge

Segment #2: 750 ft, 24 gauge

Segment #3: 5042 ft, 22 gauge

The magnitude response of this transmission line is shown in Figure 3.3, and the cor-

responding information is provided in a bin-by-bin fashion to the initialization and opti-

mization procedures developed in this work. The outcome of the initialization procedure

is as follows (for segment numbers see Figure 1.4):
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Segment #1: 3161.5 ft, 26 gauge

Segment #2: 768 ft, 24 gauge

Segment #3: 3161.5 ft, 26 gauge

Segment #4: 0.0 ft, 26 gauge

Segment #5: 393.2 ft, 22 gauge

It can be verified that maximum discrepancy of the initial estimates from the exact values

is within 20%. These values are subsequently provided to the main optimization proce-

dure, which arrives at the following values:

Segment #1: 4050 ft, 26 gauge

Segment #2: 750 ft, 24 gauge

Segment #3: 5041 ft, 22 gauge

This demonstrates that the procedure has converged to the exact values for this config-

uration. The initialization and optimization procedures for this example take 2.20 min

and 1.2 min, respectively, on a personal computer with a 2.33 GHz Intel Core 2 Duo CPU

and 2.00 GB RAM.

Example 3: Consider a transmission line with five segments as follows (for segment

numbers see Figure 1.4):

Segment #1: 5030 ft, 26 gauge

Segment #2: 1320 ft, 24 gauge

Segment #3: 2078 ft, 24 gauge
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Figure 3.4: Magnitude response for the transmission line of Example 3.

Segment #4: 709 ft, 24 gauge

Segment #5: 1013 ft, 22 gauge

The magnitude response of this transmission line is shown in Figure 3.4, and the cor-

responding information is provided in a bin-by-bin fashion to the initialization and opti-

mization procedures developed in this work. The outcome of the initialization procedure

is as follows (for segment numbers see Figure 1.4):

Segment #1: 4798.6 ft, 26 gauge

Segment #2: 1200 ft, 26 gauge

Segment #3: 2056.5 ft, 24 gauge

Segment #4: 768 ft, 26 gauge

Segment #5: 1371 ft, 22 gauge

43



It can be verified that maximum discrepancy of the initial estimates from the exact values

is within 20%. These values are subsequently provided to the main optimization proce-

dure, which arrives at the following values:

Segment #1: 5031 ft, 26 gauge

Segment #2: 1320 ft, 24 gauge

Segment #3: 2077 ft, 24 gauge

Segment #4: 709 ft, 24 gauge

Segment #5: 1012 ft, 22 gauge

This demonstrates that the procedure has converged to the exact values for this config-

uration. The initialization and optimization procedures for this example take 2.27 min

and 0.23 min, respectively, on a personal computer with a 2.33 GHz Intel Core 2 Duo

CPU and 2.00 GB RAM.

Example 4: Consider a transmission line with five segments as follows (for segment

numbers see Figure 1.4):

Segment #1: 3000 ft, 26 gauge

Segment #2: 800 ft, 22 gauge

Segment #3: 1500 ft, 24 gauge

Segment #4: 400 ft, 22 gauge

Segment #5: 2000 ft, 22 gauge
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Figure 3.5: Magnitude response for the transmission line of Example 4.

The magnitude response of this transmission line is shown in Figure 3.5, and the cor-

responding information is provided in a bin-by-bin fashion to the initialization and opti-

mization procedures developed in this work. The outcome of the initialization procedure

is as follows (for segment numbers see Figure 1.4):

Segment #1: 3544.1 ft, 26 gauge

Segment #2: 768 ft, 22 gauge

Segment #3: 1518.9 ft, 24 gauge

Segment #4: 393.2 ft, 22 gauge

Segment #5: 1012.6 ft, 22 gauge

It can be verified that maximum discrepancy of the initial estimates from the exact values
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is within 20%. These values are subsequently provided to the main optimization proce-

dure, which arrives at the following values:

Segment #1: 3000 ft, 26 gauge

Segment #2: 800 ft, 22 gauge

Segment #3: 1501 ft, 24 gauge

Segment #4: 400 ft, 22 gauge

Segment #5: 2000 ft, 22 gauge

This demonstrates that the procedure has converged to the exact values for this config-

uration. The initialization and optimization procedures for this example take 2.27 min

and 0.23 min, respectively, on a personal computer with a 2.33 GHz Intel Core 2 Duo

CPU and 2.00 GB RAM.
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Chapter 4

Conclusions

4.1 Summary

This thesis presents a technique to identify the configuration of a transmission line in a

wired communication network from its frequency response. The proposed technique aims

to find the closest match for the given magnitude response, using the integral of squared

error as the measure of closeness. The procedure consists of two phases: initialization

and optimization. The initialization phase provides a reasonable initial estimate of line

parameters for the optimization program which uses direct search method to find the

optimal solution. It is assumed that the transmission line consists of not more than two

bridged taps, and that the length of bridged taps and main channel are within certain

ranges in accordance with the DSL loop standards.
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Chapter 2 provides a technique to estimate the total length of the main line. To this

end, the magnitude response of the line is approximated by a polynomial of a sufficiently

high degree. A procedure is subsequently used to find an estimate of the line length,

mainly from the magnitude response in lower frequencies. While this estimate is not used

in the technique presented later in the thesis, it is very useful as it provides an estimate of

the distance between the customer and central office, which is very important for the DSL

service providers.

The main contribution of the work is provided in Chapter 3, where a technique is

presented to identify the configuration of the line (in terms of length and gauge of each

segment). An initial estimate of the line configuration is made first, and then an opti-

mization procedure is used to tune the parameters of the model to minimize the difference

between the real frequency response of the line and that of the model.

The results of this work can be used as a single-ended testing of the line from

the central office to characterize it and determine any sources of possible problems in the

signal transmission. Simulations demonstrate the effectiveness of the proposed technique.

4.2 Future Work

The proposed algorithm fully characterizes the twisted-pair transmission line with high

accuracy from its frequency response. The following issues can be considered for future

work:
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i) The overall performance of the procedure depends on the accuracy of the optimal

parameters, and how fast they are obtained. This, in turn, depends on the accuracy

of the initialization process and how fast it is completed. A more accurate initial

estimate would require a longer time, but leads to more accurate parameters (as the

output of the optimization procedure) in a shorter period of time. This introduces a

trade-off between the accuracy of initialization algorithm and the speed of the opti-

mization procedure, which needs to be addressed by simulations for a more efficient

algorithm.

ii) If the lengths of a bridged tap is equal (or very close) to the length of another bridged

tap, the initialization algorithm may not distinguish them. A different approach

should be used in such cases to estimate the number of bridged taps in the line,

before the initialization algorithm is performed.
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Appendix A

Appendix

A.1 MATLAB Code to Determine the Length of Bridged

Taps

%F i n d i n g t h e i n i t i a l e s t i m a t e f o r t h e br idged−t a p l e n g t h

l p c f g = [2000 26 0 ; 900 22 1 ;1600 24 0 ;500 22 1 ; 2300

22 0 ] ;

ZL = 100 ; ZG = 100 ; f1 = [ 6 ∗ 4 . 3 1 2 5 : 4 . 3 1 2 5 : 1 1 0 4 ] ;

[ Ay , By , Cy , Dy ] = g l o o p ( f1 , l p c f g , 1 ) ; H cb = ( ZL + ZG) . / ( ZG

. ∗ ( Cy . ∗ZL + Dy) + Ay . ∗ZL + By ) ; H = abs ( H cb ) ;

l p c f g r e a l = l p c f g ;

%
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%

%

s u b p l o t ( 2 1 1 ) ,

p l o t ( f1 ,H) , gr id on ;

t i t l e ( ’ lp−c f g =[900 26 0 ;1500 22 1 ;4000 24 0 ;500 22

1 ;5000 24 0] ’ )

%

Dif = d i f f (H) ;

fd = f1 ( 1 : l e n g t h ( f1 ) −1) ;

s u b p l o t ( 2 1 2 ) , p l o t ( fd , Di f )

t i t l e ( ’ d e r i v a t i v e o f t r a n s f e r f u n c t i o n ’ )

gr i d on ;

save Dif ;

save fd ;

j =1 ;

f o r i =1 : l e n g t h ( Di f )−1

i f ( ( Di f ( i ) ∗Dif ( i +1) ) <0)

f r e q ( j ) = ( ( f1 ( i ) + f1 ( i +1) ) / 2 ) ;

j = j +1 ;

end

end

di sp ( ’ ze ro−c r o s s f r e q s a r e : ’ ) ;

f r e q

di sp ( ’ Length o f 1 s t b r i d g e d t a p i s i n f e e t : ’ ) ;
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yy1 = 1 5 0 0 0 0 . / f r e q ( 1 )

di sp ( ’ Length o f 2nd b r i d g e d t a p i s i n f e e t : ’ ) ;

yy2 = 1 5 0 0 0 0 . / f r e q ( 3 )

A.2 MATLAB Code to Determine the Total Length of

Line

%E q ua t i o n g e n e r a t e d by t h e f i t t i n g c u r v e .

% f u n c t i o n y=CF( f )

% p1 = −5.9324 e−008;

% p2 = 2 .0479 e−005;

% p3 = −0.0043668;

% p4 = 0 . 6 4 2 9 3 ;

%

% y=p1∗ f ˆ 3 + p2∗ f ˆ 2 +p3∗ f + p4 ;

% % E q ua t i o n g e n e r a t e d by t h e o r y .

% f u n c t i o n h=LL ( f , x )

% l p c f g = [ x / 3 26 0; x / 3 24 0; x / 3 22 0 ] ;

% ZL = 100; ZG = 100;

% [ Ay , By , Cy , Dy] = g l o o p ( f , l p c f g , 1 ) ; H cb = ( ZL + ZG) . / ( ZG

. ∗ ( Cy . ∗ ZL + Dy ) + Ay . ∗ ZL + By ) ;

% h=abs ( H cb ) ;

% % F u n c t i o n g e n e r a t i o n f o r d i r e c t s e a r c h .

% f u n c t i o n F=LLF ( y )
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% f = [ 6∗4 . 3 1 2 5 : 4 . 3 1 2 5 : 2 0 0 ] ;

% F=0;

% f o r i =1: l e n g t h ( f )

% F=(LL ( f ( i ) , y )−CF( f ( i ) ) ) ˆ 2 ;

% end

% g1 =43∗10ˆ(−9) ;

% g2 =0 .7 ;

% G=g1 ∗ ( f ˆ g2 ) ;

%per u n i t v a l u e o f 24 AWG

% R=175;

% L=616e−6;

% C=50e−9;

% G=0.0 ;

%

% d1 =3;

% d2 =0 .1 ;

% d3 =1 .0 ;

% d4 =0 .1 ;

% d5 =1;

%

%

% gamma= s q r t ( ( R+i ∗6 .283185∗ f ∗L ) ∗ (G+i ∗6 .283185∗ f ∗C) ) ;

% Z= s q r t ( ( R+i ∗6 .283185∗ f ∗L ) / ( G+i ∗6 .283185∗ f ∗C) ) ;

% Zs=Z ;
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% Zl=Z ;

% ph i1 =[ cosh ( gamma∗d1 ) Z∗ s i n h ( gamma∗d1 ) ; ( 1 / Z ) ∗ s i n h ( gamma∗d1

) cosh ( gamma∗d1 ) ] ;

% ph i2 =[1 0 ; ( 1 / Z ) ∗ t anh ( gamma∗d2 ) 1 ] ;

% ph i3 =[ cosh ( gamma∗d3 ) Z∗ s i n h ( gamma∗d3 ) ; ( 1 / Z ) ∗ s i n h ( gamma∗d3

) cosh ( gamma∗d3 ) ] ;

% ph i4 =[1 0 ; ( 1 / Z ) ∗ t anh ( gamma∗d4 ) 1 ] ;

% ph i5 =[ cosh ( gamma∗d5 ) Z∗ s i n h ( gamma∗d5 ) ; ( 1 / Z ) ∗ s i n h ( gamma∗d5

) cosh ( gamma∗d5 ) ] ;

% p h i=p h i1 ∗ ph i2 ∗ ph i3 ∗ ph i4 ∗ ph i5 ;

% %p h i=p h i1 ∗ ph i3 ∗ ph i5 ;

% H=abs ( Z l / ( ( p h i ( 1 , 1 ) ∗ Zl )+p h i ( 1 , 2 )+p h i ( 2 , 1 ) ∗ Zl ∗Zs+p h i ( 2 , 2 ) ∗

Zs ) )

A.3 MATLAB Code to Deal with the Variable Nature of

RLCG Values with Frequency

c l c

c l e a r a l l

%per u n i t v a l u e o f 26AWG

%syms f

f = [ 6∗4 . 3 1 2 5∗1 0 0 0 : 4 . 3 1 2 5 : 1 1 0 4∗1 0 0 0 ] ;

r1 = 2 8 6 .1 7 5 7 8 ;

r2 = i n f ;
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a1 =0 .14769620 ;

a2 = 0 . 0 ;

R = 1 . / ( ( 1 . / ( r1 ˆ4+ a1∗ f . ˆ 2 ) . ˆ ( 1 / 4 ) ) + ( 1 . / ( r2 . ˆ 4 + a2∗ f . ˆ 2 ) . ˆ ( 1 / 4 )

) ) ;

p l o t ( f , R)

x l a b e l ( ’ F requency i n KHz ’ )

y l a b e l ( ’ Magni tude o f R e s i s t a n c e i n Ohms ’ )

l 1 =675.36888∗10ˆ( −6) ;

l 2 =488.95186∗10ˆ( −6) ;

b =0 .92930728 ;

fm = 80 6 3 38 . 6 3 ;

L=( l 1 + l 2 . ∗ ( f . / fm ) . ˆ b ) . / ( 1 + ( f . / fm ) . ˆ b ) ;

f i g u r e ( 2 )

p l o t ( f , L )

x l a b e l ( ’ F requency i n KHz ’ )

y l a b e l ( ’ Magni tude o f I n d u c t a n c e i n Henrys ’ )

% g1 =43∗10ˆ(−9) ;

% g2 =0 .7 ;

% G=g1 ∗ ( f ˆ g2 ) ;

%per u n i t v a l u e o f 24 AWG

% R=175;

% L=616e−6;

% C=50e−9;
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% G=0.0 ;

%

% d1 =3;

% d2 =0 .1 ;

% d3 =1 .0 ;

% d4 =0 .1 ;

% d5 =1;

%

%

% gamma= s q r t ( ( R+i ∗6 .283185∗ f ∗L ) ∗ (G+i ∗6 .283185∗ f ∗C) ) ;

% Z= s q r t ( ( R+i ∗6 .283185∗ f ∗L ) / ( G+i ∗6 .283185∗ f ∗C) ) ;

% Zs=Z ;

% Zl=Z ;

% ph i1 =[ cosh ( gamma∗d1 ) Z∗ s i n h ( gamma∗d1 ) ; ( 1 / Z ) ∗ s i n h ( gamma∗d1

) cosh ( gamma∗d1 ) ] ;

% ph i2 =[1 0 ; ( 1 / Z ) ∗ t anh ( gamma∗d2 ) 1 ] ;

% ph i3 =[ cosh ( gamma∗d3 ) Z∗ s i n h ( gamma∗d3 ) ; ( 1 / Z ) ∗ s i n h ( gamma∗d3

) cosh ( gamma∗d3 ) ] ;

% ph i4 =[1 0 ; ( 1 / Z ) ∗ t anh ( gamma∗d4 ) 1 ] ;

% ph i5 =[ cosh ( gamma∗d5 ) Z∗ s i n h ( gamma∗d5 ) ; ( 1 / Z ) ∗ s i n h ( gamma∗d5

) cosh ( gamma∗d5 ) ] ;

% p h i=p h i1 ∗ ph i2 ∗ ph i3 ∗ ph i4 ∗ ph i5 ;

% %p h i=p h i1 ∗ ph i3 ∗ ph i5 ;

% H=abs ( Z l / ( ( p h i ( 1 , 1 ) ∗ Zl )+p h i ( 1 , 2 )+p h i ( 2 , 1 ) ∗ Zl ∗Zs+p h i ( 2 , 2 ) ∗

Zs ) )
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Appendix B

Appendix

B.1 Modified Section of MATLAB Code for the Initial-

ization Phase

%M o d i f i c a t i o n subcode i n t h e i n i t i a l i z a t i o n phase .

% Using a p o r t i o n o f f r e q u e n c y p o i n t s which i s more

i n f o r m a t i v e

f f = 1000∗ f1 ( 1 : 1 : round ( l e n g t h ( f1 ) / 2 ) ) ’ ; % T h i s change o f

s c a l e i s n e c e s s a r y because g−l oop u s e s f r e q u e n c y i n KHz .

f1 = f1 ( 1 : 1 : round ( l e n g t h ( f1 ) / 2 ) ) ’ ;

H = H( 1 : 1 : round ( l e n g t h (H) / 2 ) ) ;

%s i z e (H)

f l e n g t h = l e n g t h ( f f ) ;
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% load t h e f i l e s f o r g l o o p c o r r e s p o n d i n g t o d i f f e r e n t

gauges

f i d = fopen ( [ ’ r l g c \ ’ ’ 22 ’ ’ p i c 7 0 . t x t ’ ] , ’ r ’ ) ;

[ y1 , cc ]= f s c a n f ( f i d , ’%f ’ , [ 5 , 3 7 ] ) ;

f c l o s e ( f i d ) ;

f i d = fopen ( [ ’ r l g c \ ’ ’ 24 ’ ’ p i c 7 0 . t x t ’ ] , ’ r ’ ) ;

[ y2 , cc ]= f s c a n f ( f i d , ’%f ’ , [ 5 , 3 7 ] ) ;

f c l o s e ( f i d ) ;

f i d = fopen ( [ ’ r l g c \ ’ ’ 26 ’ ’ p i c 7 0 . t x t ’ ] , ’ r ’ ) ;

[ y3 , cc ]= f s c a n f ( f i d , ’%f ’ , [ 5 , 3 7 ] ) ;

f c l o s e ( f i d ) ;

% S e t t h e e r r o r i n d e x t o a b i g i n i t i a l v a l u e

E r r o r = 1 . e10 ;

c o n f i g = [ ] ;

kk = 1 ;

f o r b g = 2 2 : 2 : 2 6 ,

% Load p r e s t o r e d v a l u e s f o r d i f f e r e n t l e n g t h s and

gauges c o r r e s p o n d i n g t o d i f f e r e n t br idged−t a p gauges

i f b g == 22 ,

load l e n g t h S i m u l a t i o n D a t a 2 2

e l s e i f b g == 24 ,

load l e n g t h S i m u l a t i o n D a t a 2 4

e l s e

load l e n g t h S i m u l a t i o n D a t a 2 6
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end

% Choosing t h e l i n e s c o r r e s p o n d i n g t o t h e above br idged

−t a p l e n g t h ( i n bo th l o c a t i o n s )

%y0 = min ( abs ( Y ( 1 : 8 , 2 ) − yy ) ) ;

i 1 = f i n d ( abs (Y ( : , 1 ) − yy1 ) == min ( abs (Y( 1 : 8 , 2 ) − yy1 ) )

& abs (Y ( : , 2 ) − yy2 ) == min ( abs (Y( 1 : 8 , 2 ) − yy2 ) ) ) ;

Y = Y( i1 , : ) ;

H0 22 = H0 22 ( : , i 1 ) ;

H0 24 = H0 24 ( : , i 1 ) ;

H0 26 = H0 26 ( : , i 1 ) ;

% Main l i n e segment gauges

g1 = [22 24 2 6 ] ;

g2 = [22 24 2 6 ] ;

g3 = [22 24 2 6 ] ;

g4 = [22 24 2 6 ] ;

g5 = [22 24 2 6 ] ;

% Bridged−t a p gauges

G y = [ b g b g ] ;

% F i n d i n g t h e i n i t i a l e s t i m a t e f o r t h e l i n e l e n g t h ( one

e s t i m a t e f o r each c o m b i n a t i o n o f br idged−t a p

l e n g t h s )

h0 22 = min ( abs ( H0 22 − H( 1 ) ) ) ;

f o r i = 1 : l e n g t h ( h0 22 ) ,
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d1 ( i ) = d ( f i n d ( abs ( H0 22 ( : , i ) − H( 1 ) ) == h0 22 ( i ) ) )

;

end

h0 24 = min ( abs ( H0 24 − H( 1 ) ) ) ;

f o r i = 1 : l e n g t h ( h0 24 ) ,

d2 ( i ) = d ( f i n d ( abs ( H0 24 ( : , i ) − H( 1 ) ) == h0 24 ( i ) ) )

;

end

h0 26 = min ( abs ( H0 26 − H( 1 ) ) ) ;

f o r i = 1 : l e n g t h ( h0 26 ) ,

d3 ( i ) = d ( f i n d ( abs ( H0 26 ( : , i ) − H( 1 ) ) == h0 26 ( i ) ) )

;

end

dd = [ d1 ’ d2 ’ d3 ’ ] ;

end
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