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ABSTRACT

Control of Flexible~Link Manipulators Using Nonlinear H,, Techniques

Mohammad J. Yazdanpanah

Most engineering systems encountered in practice exhibit significant nonlin-
ear behavior. For control of systems exhibiting nonlinearities, the normal design
procedure is to construct a linearized approximation of the process model followed
by the application of a linear control methodology. This procedure, however, can
yield unsatisfactory performance, especially when the system is highly nonlinear
and undergoes large motions, that is, it operates over wide nonlinear dynamical
ranges, as is often the case in the problems of attitude control, advanced aircraft
control, and the control of robotic manipulators. Furthermore, most systems are
seldom completely known and therefore, their mathematical models should include
some uncertain parts. The control of an uncertain system is required to be robust
with respect to modeling uncertainties. Robust control strives to characterize the
uncertainty in the model of the plant and to evaluate the degrees of freedom left to
achieve the control task within specified bounds.

This dissertation is concerned with the control of a highly complicated and
nonlinear system, namely, a flexible-link manipulator. The general procedure taken
in this regard is to develop, design and analyze nonlinear H,, techniques applied to
flexible-link manipulators.

For the purpose of robust control of an uncertain model of the flexible-link
manipulator two types of modeling are studied. In the first type, uncertainty is

due to parameter variations of the manipulator while performing a task or when its

iii



configuration is changing. The uncertainties considered in this regard may be L,
bounded and/or constant. In the second type of modeling, a new look at the notion
of flexibility in robotic manipulators is presented. Based on this interpretation,
flexible structures exhibit two kinds of behavior, one of which may be treated as a
disturbance acting on the modeled dynamics.

For designing the nonlinear H,, controller, the approximate polynomial solu-
tion of the Hamilton-Jacobi-Isaacs (HJI) inequality for a general nonlinear system is
derived. Also by exploiting the stability properties of perturbed systems, qualitative

behavior of nonlinear H,, controllers is considered.
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Chapter 1

Introduction

The field of control theory has a rich heritage of intellectual depth and practical
achievements. From a simple temperature regulator, to the space probes and the
automated manufacturing plants of today, control systems have played a key role in
technological and scientific advancements.

In engineering and decision-making systems, the paradigm of feedback control
addresses the problem of using the information about the output (effect) to design
or modify the input (cause) for a given task. Tasks range from controlling a robotic
manipulator to grasping an object to stabilizing a large space structure. The com-
plexity of control for even a small-scale system such as a compact disk drive may be
due to the very stringent accuracy and speed requirements. In large-scale systems,
the task of meeting rigorous performance requirements is much more challenging
because of the uncertainty of the system model and its environment.

Most engineering systems encountered in practice exhibit significant nonlinear
behavior. For systems exhibiting nonlinearities, the normal design procedure is to
employ a linearized approximation of the process model followed by the application
of a linear control methodology. However, this procedure can yield unsatisfactory
performance, especially when the system is highly nonlinear and undergoes large

motions, and thus operates over wide nonlinear dynamical regimes, as is often the



case in the problems of attitude control, advanced aircraft control, and the control
of robot manipulators. During the past fifteen years, there has been considerable
progress in the understanding of nonlinear systems, primarily due to the application
of mathematical concepts derived from the field of differential geometry. There has
been substantial work on qualitative concepts, such as controllability and observabil-
ity for nonlinear systems. Techniques for the control of nonlinear systems described
by nonlinear mathematical models were difficult to find until a major breakthrough
occurred during the past decade with the development of solutions to such prob-
lems as disturbance decoupling, input-output decoupling, and feedback linearization.
Feedback linearization utilizes state and feedback transformations to transform a
nonlinear system into an equivalent linear system so that the standard well-known
linear control tools may be used for design. This technique has been successfully ap-
plied to very difficult problems such as controlling aircraft with multi-axis nonlinear
dynamics and tracking in robot manipulators that have highly nonlinear dynamics.

In addition to being nonlinear, most realistic systems are seldom completely
known. Control theorists are now challenged to expand their concepts and schemes
to be applicable to incompletely modeled nonlinear systems. A control theory for
incompletely known systems and systems described by non-traditional models will
produce a wider repertoire of control laws, algorithms, and strategies.

In the presence of model uncertainty and unmeasurable disturbances it has
been found that the use of feedback control can satisfy performance specifications,
whereas open-loop control simply cannot meet stringent command-following and/or
disturbance rejection requirements. Thus the most fundamental reason for using
feedback is to guarantee good performance in the presence of uncertainty; also, feed-
back is used to enable operating conditions, i.e., to stabilize unstable plants. Care
must be exercised so that feedback system is reliable, i.e., that it should continue to
operate in the presence of hardware and software failures.

Uncertainty and achievable performance tend to oppose each other, even though



the very reason for using feedback is to obtain better performance over open-loop
control. The controller is required to be robust with respect to modeling uncer-
tainty and to adapt to slow changes in the system dynamics. Robust control strives
to characterize the uncertainty in the model of the plant to be controlled and to
evaluate the degrees of freedom left to achieve the control task within specified
bounds. Considerable efforts have been made in the literature to satisfy the stabil-
ity robustness requirement, that is to guarantee closed-loop stability under a wide
range of plant variations and disturbances. Bounds under which stability can be pre-
served have been derived and a rigorous mathematical theory has been developed
to minimize sensitivity with respect to disturbances and norm-bounded uncertainty.
More research is under way to reduce the conservatism of available stability robust-
ness results. Specifically, the “directional information” [1, 2] should be exploited
to decrease the conservatism of results. The payoff will be improved performance,
because in the linear systems, for instance, stability robustness tends to limit the
bandwidths of the closed-loop system, and thereby deteriorate command-following
and/or disturbance-rejection performance.

A new and relevant topic in this respect is the notion of performance-robustness.
This issue is concerned with the characterization of and feedback design in the pres-
ence of the so called “structured” and/or “unstructured” uncertainties to meet pre-
defined performance specifications. Meanwhile, it should be guaranteed that these
performance specifications will be met by a fixed controller for any value of the plant
“structured /unstructured” uncertainty in a prior known plant set which is defined
in an appropriate topology.

One of the important classes of plants is the class of distributed parameter sys-
tems in which the variables of importance depend on both spatial and time varia-
tions. Such systems are usually modeled by partial or integro-differential equations.
Large flexible space structures and flexible robots are examples of such systems.

Although there has been considerable progress in understanding the stabilization



of distributed parameter systems, and in the development of fast algorithms and
computational schemes specifically for control of systems governed by partial and
integro-differential equations, there remains a number of theoretical and practical
problems that must be considered before distributed parameter control becomes a
systematic tool for the design of these complex systems.

The development of models specifically suited for control design and analysis is
an important area of current research. for example, the sensors and actuators which
may be used on flexible structures can strongly affect the dynamic performance of
the structure, and this must be taken into account both in the design of the structure
and in the design of the control system.

Due to infinite dimensional nature of distributed parameter models, and since
inherent damping is small in the applications mentioned above, it is essential to
develop new identification schemes, robustness criteria, and easily implementable
control algorithms.

This dissertation is concerned with the control of a typical example of a dis-
tributed parameter system, namely, a flexible-link manipulator. The general proce-
dure taken in this regard is the Hy, technique in its nonlinear setting. The disserta-
tion is organized as follows. The next section of this chapter presents a review of and
a general perspective on the related work that has appeared so far in the literature
on the control of flexible-link manipulators. Chapter 2 presents a dynamical model
of a flexible-link manipulator. Analytical models of a single-link as well as multi-link
flexible manipulators are derived. Chapter 3 introduces the problem of nonlinear
Ho, control. Connections of the topic to some basic notions like dissipativeness,
differential games, and the Hamiltonian function are discussed. An approximate
solution of Hamilton-Jacobi-Isaacs inequality is also obtained. In Chapter 4 the
domain of validity of nonlinear He, control is discussed. Using a Lyapunov tech-
nique, it is shown that the nonlinear feedback controller always results in a larger

domain of validity than its linearized counterpart. Uncertainty compensation for



a flexible-link manipulator is the subject of Chapter 5. For the purpose of robust
control, constant as well as Ls-bounded deviations of parameters from their nomi-
nal values are considered as uncertainties. Chapter 6 deals with a new methodology
for modeling a flexible-link manipulator with an arbitrarily large (infinite) number
of deflection modes. In this regard, a part of dynamics representing flexibility is
treated as uncertainty. In Chapter 7, nonlinear robust regulation based on the new
modeling approach is studied which is an extension of the results of the previous
chapter. Chapter 8 concludes the dissertation by specifying several directions for

future work.

1.1 Perspective

In many industrial applications, robots are designed to achieve precise positioning
of the end-effector with relatively simple control algorithms. For example, in appli-
cations such as welding, spray painting and laser cutting, the controller is typically
supposed to be capable of accurately reproducing pre-planned smooth trajectories
[3]. This accuracy is guaranteed by current robots at the expense of a rigid and
massive mechanical structures. Recently, the use of lightweight flexible arms has
been proposed as offering potential benefits such as increased payload-to-arm mass
ratio, faster executable motions and lower energy consumption [4]. Flexible mecha-
nisms are important in space structure applications, where large, lightweight robots
are utilized in a variety of tasks, including deployment, spacecraft servicing, space
station maintenance, etc. Flexibility is not designed into the mechanism; it is usu-
ally an undesirable characteristic which results from trading off mass and length
requirements in optimizing the mechanical structure of a robot [5]. Although a
robot with lightweight links has intrinsically compliant behavior allowing smooth
contacts, the flexibility of lightweight links cannot be neglected, and this makes the

control problem much more complex.



One of the early papers to discuss some fundamental issues in flexible structure
control is by Gevarter [6]. The paper illustrates the crucial role of the location of
the actuator and sensor in a flexible structure. In fiexible structure control parlance,
when the sensor and actuator are at the same spatial location, the setup is referred
to as colocated control and when sensing and actuation occur at different locations,
the scheme is called noncolocated control. In the noncolocated case, the system’s
zero dynamics (7] are unstable. If a linear version of the system is considered, this
situation corresponds to a transfer function whose inverse dynamics represent an
unstable system. Colocated proportional derivative (PD) control at either end of
the structure ensures stability to parametric variations within a certain bound. This
type of control, however, just adds damping to the rigid mode while other modes
remain relatively unaffected [8].

Different approaches are available for deriving the dynamics of flexible manip-
ulators. The model may be obtained from the distributed parameter model of the
flexible robot [9], from a discrete model in space and in time [10], or from a dis-
crete model in space and continuous in time as performed in the current literature.
This last method may be divided into four major categories: Euler-Bernoulli and
modal expansion [11], Lagrange equations and modal expansion [12], Hamiltonian
and energy equations [13] and finite elements [14, 15, 16].

In this dissertation, a dynamical model is considered for a single-link flexible
manipulator using the Euler-Bernoulli beam theory as studied in [17, 18, 19, 20, 21].
One way of minimizing the effect of the elastic displacements of large amplitude in
flexible manipulators is to choose, for instance, materials which are able to stiffen
the structure or to damp the vibrations [22]. Another solution consists of developing
open-loop elastic displacements of the structure [23, 24]. In these methods, however,
it is not possible to take disturbances into account.

A variety of control techniques have been used by researchers to control flexible

manipulators. The results vary in accuracy and robustness to parameter variations



and exogenous inputs. Among these techniques, one finds linear quadratic Gaussian
(LQG) and linear quadratic regulator (LQR) [11], PID [25], optimal control [26],
adaptive control [27, 28, 29, 30], singular perturbation {31, 32, 33, 34, 35] and H,,
[36, 37, 38, 39].

It is worth noting that in spite of its many attractive properties, the LQG
compensators do not yield good robustness and performance. In fact, it was shown
in [40] that LQG designs can exhibit poor stability margins. Moreover, even when
coupled with loop transfer recovery (LTR), the resulting LQG/LTR does not work
well with non-minimum phase systems [41].

It should be mentioned that the recent work in the area of two-time scale
(singular perturbation) approaches for vibration suppression in flexible mechanical
structures shows promise {42, 43, 44]. The control objective in this investigation and
the primary focus are on the rejection of small deflections after larger slew motions
are complete. In [42] a linear mathematical model of a flexible-link manipulator
is expressed in a standard singularly perturbed form. The concept of the integral
manifold is utilized to design a dynamical composite control strategy to guarantee a
minimum-phase closed-loop system restricted to the manifold, resulting in control-
ling the tip position to an arbitrary degree of accuracy by just measuring the hub
angle and the tip position. The authors of [44] develop a nonlinear control strategy
for approximate tip-position tracking of a class of flexible multi-link manipulators
based on the concept of integral manifolds and singular perturbation theory. The
development is along the lines stated in [42] and [43] which is applicable to the
linear dynamics of a single-link flexible arm. The approach is based on the more
appropriate nonlinear framework, and is applicable to a class of multi-link flexible
manipulators. The conditions that guarantee small tracking errors and closed-loop
system stability are given. Inherent in the singular perturbation technique is the
need for accurate models of the system dynamics.

Other recent approaches to the problem of flexible robot control include the



work in [45] for the use of linear (state feedback) techniques where a fast state
estimator is employed in small-angle movements and in [46] where gross-motion
movements for a single flexible-link are studied in the case of adaptation for payload
tasks. A different form of “output redefinition” by ”feedthrough” compensation
to assign transmission zeros and the experimental verification of the results are
given in [20]. In [47], the authors develop a nonlinear adaptive control scheme for a
discrete-time model of a single-link flexible manipulator. The discrete-time model of
the system is derived using a forward difference method (Euler approximation). The
output re-definition method is used so that the resulting zero dynamics is guaranteed
to be exponentially stable. It is assumed that the “payload mass” is unknown but
its upper bound is known a priori.

The controller developed in {48] uses a nonlinear inversion (feedback lineariza-
tion) control law for rigid dynamics, with separate loops for flexure effects. The
study in [49] investigated and compared time-domain and frequency domain identi-
fication techniques on a single-link robot, and the work in [50, 51] developed time-
and frequency-domain identification and control schemes for payload adaptation,
which were later employed on a two-link apparatus [52].

An inverse dynamics control strategy for tip position tracking of flexible multi-
link manipulators is presented in [53]. This paper presents an inverse dynamics
control strategy to achieve small tracking errors for a class of multi-link structurally
flexible manipulators. This is done by defining new outputs near the end points
of the arms as well as by augmenting the control inputs by terms which ensure
stable operation of the closed-loop system under specific conditions. In [54], the
authors present an observer-based inverse dynamics control strategy that results in
small tip-position tracking errors for a class of multi-link structurally flexible ma-
nipulators. The control strategy developed in [53] requires measurements of rates
of change of flexible modes with time that are not conveniently measurable. The

observer-based controller alleviates this difficulty. The work reported in [55] focuses



on the experimental implementation of an observer-based decoupling control strat-
egy for tip-position tracking of a class of multi-link flexible manipulators. Since the
rates of change of flexible modes are required, a nonlinear observer is implemented
to estimate these variables. Inverse dynamics sliding control of flexible multi-link
manipulators is reported in [56]. Motivated by the concept of a sliding surface in
variable structure control, a robustifying term is developed to drive the nonlinear
plant’s error dynamics onto a sliding surface. On this surface, the error dynamics
are then independent of parametric uncertainties. In order to avoid over excita-
tion of higher frequency flexural modes due to control chattering, the discontinuous
functions normally used in classical sliding mode control are replaced by saturation
nonlinearities at the outset. This also facilitates analysis by the standard Lyapunov
techniques.

In the recent work of [8], the authors present an LQG/H,, controller synthesis
for a flexible single-link manipulator with noncolocated sensing. In the inner-loop
an LQG controller provides adequate damping to the flexible modes while the outer-
loop H, controller provides stability in the face of unstructured perturbations.

In [57] authors report experimental results for the end-effector control of a
single flexible robotic arm using several approaches: PD, feedback linearization, lin-
ear quadratic regulator (LQR), singular perturbation and sliding modes techniques.
Comparison is made based on computational complexity, sensitivity to disturbances,
complexity of tuning and damping of the flexible variables. Although this study is
not concerned with theoretical issues, it roughly infers that singular perturbation
and sliding modes control result in better performance compared to the other meth-
ods.

A feed-forward design methodology to compensate for unstable zeros in linear
discrete-time systems with tracking objectives is considered in [58]. Based on this
methodology, an experimental study for end-point tracking of a flexible beam is

performed. The method exploits the fact that non-causal expansion of unstable



inverse dynamics is convergent in the region of the complex plane encompassing the
unit circle.

Another technique for flexible robot control is input command shaping, where
the system inputs (e.g., motor voltages) are “shaped” in such a manner that minimal
energy is injected into the flexible modes of the system [59]. Some results using
input-shaping with outer-loop disturbance rejection controller for a two-link robot
were reported in [60]). In [61] experimental verifications of input shaping schemes
for controlling the endpoint movement of a large two-link robot were addressed and
in [62] an adaptive algorithm was implemented on a single-link apparatus. In [63]
forcing functions are developed to produce vibration-free motions in flexible systems.
These forcing functions are constructed from ramped sinusoid basis functions so as
to minimize excitation in a range of frequencies surrounding the system natural
frequency. It is well known, however, that the primary difficulty of such schemes lies
in the fact that they are open-loop strategies and require relatively precise knowledge
of the system dynamics. Any attempt to improve robustness to uncertainties (such
as placing the shaper in the loop or increasing the filter order) results in delays in
the system response, which may or may not be tolerable.

While most of the work to date for control of flexible-link robotic systems has
used conventional control techniques, there has been recent interest in the literature
in using intelligent control strategies. Fuzzy logic and neural networks have been
investigated for flexible robotic mechanisms. For example the paper [64] uses fuzzy
logic for a fast-moving single-link apparatus, focusing on smooth, rigid body motion
control. In [65] a fuzzy learning control approach is used for the same laboratory
test bed. The focus there is on automatic synthesis of a direct fuzzy controller
and its subsequent tuning when there are payload variations. In [66, 67] a fuzzy
logic supervisory level is used for lower-level conventional controller selection and
tuning. Motivated by the success of these studies, the control schemes in [5] builds

on the idea of supervising lower level controllers in a hierarchy so as to improve on
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all previous results by using rule-based controllers at the lower level (this paper is
actually an expanded version of the work reported in [68]).

In the area of application of neural networks for controlling a flexible-link ma-
nipulator one may refer to [69] and [70]. The former presents a design methodology
for an on-line self-turning adaptive control of a single flexible-link manipulator using
back-propagation neural networks. The particular problem discussed is the on-line
system identification of a flexible-link manipulator using back-propagation neural
networks and the on-line self-turning adaptive control of a flexible-link manipulator
using a separate neural network as a controller. A finite-element model of a flexible-
link manipulator is used. The pseudo-link concepts developed in [71, 72] are used
to determine on-line angular displacement of the end effector of the flexible-link
manipulator. The object of the latter is to achieve tracking control of a partially
known flexible-link robot arm. It is shown how to stabilize the internal dynam-
ics by selecting a physically meaningful modified performance output for tracking.
The controller is composed of a singular-perturbation-based fast control and an
outer-loop slow control. The slow subsystem is controlled by a neural network for
feedback linearization, plus a PD outer-loop for tracking, and a robustifying term
to assure the closed-loop stability. Experimental evaluation of neural network-based
controllers for tip position tracking of a flexible-link manipulator is reported in [73].
The control is designed by using the output re-definition approach. Three differ-
ent neural network schemes are examined. None of the schemes requires full state
measurements.

It should be noted that although intelligent control techniques may present
some interesting results from an engineering point of view, their theoretical founda-
tions (e.g., stability and reachability analysis) need further investigation.

Having reviewed the above mentioned techniques for controlling flexible-link
manipulators, we may divide these methods into three major categories: Linear, in-

telligent and nonlinear. It is a fact that linear control techniques even for nonlinear
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plants, may result in some desirable performance. However, the convergence and
stability properties are restricted to a particular region in the state-space. Intelli-
gent control-based techniques, on the other hand, suffer from a sound theoretical
justification. Nonlinear control techniques offer more reliable results as compared to
the other methods. Although these results may not be global, the region of desirable
operation is larger than that provided by linear controllers. Exact knowledge of the
plant is one of the main limitations in applying most nonlinear techniques. If the
dynamics are not precisely known and/or the mathematical model for synthesis is
somehow different from that of the actual plant, the controller should be responsible
for operating in such a manner that can cover a variety of plants in a neighborhood
of the nominal plant with respect to the relevant topology. The above discussion
opens the avenue for developing robust nonlinear control which is the subject of the

present dissertation.
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Chapter 2

A Flexible-Link Manipulator
Model

The purpose of this chapter is to provide a dynamical model for a flexible-link ma-
nipulator. Although affine, the dynamical model for a flexible-link manipulator is
highly nonlinear. Therefore, the synthesis of a nonlinear controller based on such
model is very complicated. The design, however, may be simplified if certain state-
dependent functions are zero or constant. For this purpose, a nonlinear dynamical
model of a flexible-link manipulator that is more effective in designing nonlinear
controllers is derived. The methodology considered in this thesis can be applied to
a multi-link flexible manipulator. However, for the purpose of numerical simula-
tions, the design technique is applied to a single-link flexible manipulator. Towards
this end, the analytical model of a single-link flexible manipulator is derived in
configuration space. By using a nonlinear transformation, the resulting model in
state-space is transformed to a model which has a constant input vector field. The
resulting model is more suitable for design and simulation purposes as compared to

the conventional nonlinear model.
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2.1 Analytical Model of a Multi-Link Flexible
Manipulator

A robot arm consists of a number of links connected by rotational or translational
Jjoints, with the last link equipped with some end-effector. The dynamics of an n-link

rigid robot arm can be expressed by a set of n equations [74],
M(0) 6 +ny(8, 6) + F.(0) + Frf =u (2.1)

where 6 is an n-dimensional vector describing the joint positions of the robot, n;
represents the Coriolis and centrifugal forces, F. denotes the Coulomb friction, F},
is the hub damping, and u is the vector of joint torques.

The dynamics of a flexible-link manipulator can be derived by using the as-
sumed modes method [17]. By considering a finite number m of modal terms, the dy-
namic equations for the flexible-link manipulator are derived following a Lagrangian

approach:

é N ny(9, 9, 6,4)
$

M(8,6) { ] JU 0+ [ Fl0) + End + Eo(6,9) } = [u J (2.2)
n2(6,6,6,8) 0

K+ F.$

where M(0, ) is the positive-definite symmetric inertia matrix. Let n and m; (i =
1 ... n) be the number of joints and deflection modes of the ith link, respectively.
Then the inertia matrix M(6,d) would be an 7 x r matrix, where r = n + 3% m;,
& = [d& .. Jmi]T is the vector of modal amplitudes, n; and n, are Coriolis and
centrifugal terms respectively, F. denotes the Coulomb friction, F}, is the hub damp-
ing, Fy is the gravity effect, K, represents the stiffness matrix, F, is the structural
damping matrix, and u is the vector of joint control torques.

A simple comparison between (2.1) and (2.2) reveals that the number of control
inputs in a rigid manipulator, i.e., n is the same as the number of mechanical degrees
of freedom, whereas this is not the case in a flexible manipulator where the number

of mechanical degrees of freedom is n + 3%, m;. Hence, a flexible-link manipulator
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is an under-actuated system in which the control is to be designed so that the rigid
displacements as well as the flexible deflections have simultaneously certain desired
behaviors. This limitation makes the control problem of a flexible-link manipuiator
significantly more complicated than the same problem for a rigid manipulator.

In the next section the analytical model for a single-link flexible manipulator

is derived.

2.2 Analytical Model of a Single-Link Flexible
Manipulator

Similar to most contributions in the field, in this dissertation the control strategies
are developed for a single-link flexible manipulator as a first step towards general
multi-link flexible manipulators. As shown in Figure 2.1, the flexible-link is con-
nected to a motor at one end (hub) and is driven by a torque u. The other end is
free to move and has a small mass M, as a payload. The reference frame X, — Y,
is without any movement while the origin of X — Y frame is attached to the ac-
tuator. It is assumed that the length of the beam is much greater than its width,
thus restricting the beam to oscillate in the horizontal direction. The effects of ro-
tary inertia and shear deformation are ignored by assuming that the cross-sectional
area of the link is small in comparison with its length. Using the assumed modes
approach and Euler-Bernoulli beam theory the single-link flexible manipulator may
be modeled according to the equation [75]

0*w(¢, )
P

w(é,t) _

EI 2 =0

+ pLg

where £ = /Lo is the normalized position along a link of length Lo, Ao is the link
cross-sectional area and [ is the area moment of inertia of the cross section about
the z-axis, £ is Young’s modulus of elasticity of the material and p is the mass per

unit length of the link. Assuming separability in time and space [76], one may set
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Figure 2.1: Single-link flezible manipulator.

w(é,t) = $(£)d(¢),

where §(t) is the modal amplitude and $(€) is the normalized clamped-free eigen-
function as defined in [77] and [35]. Using modal analysis results in the following
general solution

BLEI

pL§
#(€) = Cisin(B.€) + Cacos(Bu€) + Cssinh(B,€) + Cy cosh(B.E) (2.4)

§(t) = &, W= (2.3)

The boundary conditions to the problem specify an infinite set of admissible values
for the parameter £, each of which determines an associated eigenfrequency w of
the beam. The following clamped-mass boundary conditions are imposed on the

eigenfunction ¢(&):

clamped : () =0, El%(f—)- =0 (2.5)
g=0 £=0
. 4%¢(8) _ JLBidg(é)
mass : dfz et - pLS df e=1
d>4(¢) _ Mg
| = a0 (2.6)
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where M}, and Jy, are, respectively, the load mass and the load inertia. The clamped
conditions at the joint yield C3 = —C, and Cy = —C; while the mass conditions at

the end-point lead to
C
[QB.)] [ ‘ } =0
C2

where the frequency equation is given by setting to zero the determinant of the
2 x 2 matrix Q(f.). It can be shown that the positive values of 3, are given by the

solutions of the equation
1 4 cos B, cosh G, = 0. (2.7)

Substituting the boundary conditions (2.5) and (2.6) into (2.4) yields the following

expression for ¢(¢):

(6) = Cx (sin(4.6) — sinb(8.g) — 20 £ IR (5. 5) — conne)

The individual mode functions ¢;(£) are found by substituting the values 8., de-
termined from the transcendental frequency equation (2.7) and by substituting the

coefficients ¢; for Cy:

sin(B.;€) + sinh(B.,;£)
Cos (,Bw‘f) + COSh(,Bw.'E)

The ¢;(€) are normalized by choosing ¢&; to satisfy [y ¢2(€)d¢, i=1, ..., m.
The dynamic equations for a planar single-link flexible manipulator (F, = 0)

$i(¢) = & (Sin(ﬂwi‘f) — sinh(B.,§) — [cos(Bu:€) — COSh(ﬂwif)])

are now given by (2.2) where the elements of the inertia matrix are as follows:

mu = Jo+Jp+ MLL2 + I + Mp(®T6)?

my; = MpLo®jre+Jibiy, +051, J=2, ., m+1

mi = my+ Mpdl o, + Jibl, ., i=2, .., m+1

mij = Mpdirebite+ Jobi1oPi1er =2, ey m+1l, j#i (2.8)
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with

QZ‘ = QT = [¢1 .o ¢m] i 3 = ¢t
, , = = p dqs (.f N
QeT = [ le b <bmc] ] :e - :
1
o = oL} [ ele)Ede, i=1, ...

where m; is the link mass, [ is the joint actuator inertia, and Jy is the link inertia
relative to the joint.
The interaction between the rigid and flexible dynamics may be studied through

the inertia matrix. The inertia matrix M(J, ) may also be partitioned as

miy mg
M(6,8) = M(8) = [ o }
msa 3

where
pL3 Jy #1(E)E dE + JLd1(1) + My Loy (1)
ms = :
PLE [ dm(E)EdE + Jrdm(1) + MpLodm(1)
is an m~tuple vector and M3 is an m X m matrix whose elements are given in (2.8).
With reference to (2.2), now suppose that the Coriolis and centrifugal forces are
negligible and mz defined above is zero. Then there is no coupling between the
rigid (@) and flexible (§) dynamics. As a result, one may realize that the vector my
represents the coupling between the rigid and flexible dynamics. From the expression
of my it is apparent that any increase in the value of parameters p, My, J; and Lo
will strengthen the coupling effect. This means that in the case of a strong coupling
any change in the joint variable will affect the behavior of the flexible modes. On
the other hand based on (2.3), increasing L for instance will lower the value of the
eigenfrequencies implying a more flexible system.
The nonlinear terms n; and n, can be computed by differentiation of the

elements of the inertia matrix resulting in
n1(8,6,8) = 2M 6(®T6)(®TH)
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n,(6,8) = —Mp6*(®.9T)s
The matrices K, and Fj are given by [17]

L _EI 1 [d%¢:(6)]°
K, = diag{ks, - kn}, k,-_—L?/U [T] de

F, = diag{fut -fin}  fu=0.2Vk

The Coulomb friction, F, is modeled as a sigmoidal function (instead of a pure
signum function which has a discontinuity at the origin). The sigmoid function is

given by

. 2
Fca =Ccou <—._1)
( ) { 1+e—n9

The value of hub damping F, may be obtained from an experimental test [78]. With
reference to Figure 2.1, the angle o formed by a generic point along the link can
be expressed with respect to 7 as

ar(n) = 0 + arctan (@)

For small deflections, the position of any point along the link can be given as the

linearized version of «y, , i.e.,

w(n)

m) =0+ 20 — g 4 20/ L, (29)

n
This parameterization is convenient, since for 7 = 0 the joint position is recovered

and for 7 = Lg the tip-position is obtained. It is worth noting that y(Lo) based upon
(2.9) is expressed in radians. To convert the position to meters, one may consider

Lo8 + ®T(1)4 as the tip-position.

2.3 Model Construction

The parameters used to construct a suitable model for the purpose of computer
simulations are all based on an actual experimental set-up in the Robotics Labora-
tory at the ECE Department of Concordia University. These parameter values were

determined in an earlier work [78]. The link data are given in Appendix A.

19



2.3.1 State-Space Model

For the purpose of design, we first derive a state-space model for the flexible-link
manipulator. By choosing [67,467,67,67]T = [4T,67,67,67)T as the state vector,

and the tip-position as the output, the state-space equations are obtained as
6, = 0,
6:1 = 52
62 = fa(61,62,61,8:) + gs(61,61) u

62 = fu61,02,81,62) + ga(61,81) u
y = O+ Kiup & (2.10)
where Ki;p = %:&.

A nonlinear design for the above problem is in general complicated. However,
the design may be simplified if certain state-dependent functions are zero or constant.
Specifically, we apply a nonlinear transformation so that the resulting model has a

constant input term. Namely, by using the nominal transformation

7| = M(8,9) (2.11)
o S

and noting that the (3, j)-th element of the matrix M may be computed as

: . oM | 6 OM;; b,
17 6 = —” —_ ____2.__ -1
MJ( b 51’ 02, 62) 5(91,51) [Jl :l 3(01,51)M [82 jl ’

and accordingly

6. [ 6.
;2 ~ |l M .2
& 89 8
. é
— MD .2 M fatgzu
2 fa+gau
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b2 = fa




where

D(Ol, 61) = M_I(gl, 51)
fl = Duéz + D12<§2
fz = Dzléz + D2232

we can obtain the state-space equations in the form

0, = f1(02,8,,61,8,)

6 = f2(61,0,,6,6,)

0, = f3(61,62.61,85) +u

fa(6y, 65,81, 85)

y = 6+ Kup 6, (2.12)

Sy
[X)
Il

which has a constant input term.
The dynamics of a single flexible-link manipulator were computed by a com-
puter code using MAPLE that automatically generates the corresponding M-File

for use in MATLAB [79]

2.4 Preamble to Control

The objective of robot control is to produce fast, efficient and robust transportation
of a payload. In a manipulator, the actuator acts by causing the tip to move from an
initial position to a specified destination position. For a rigid manipulator, the tip
trajectory is completely defined by the trajectory of the joint. Effective control of
the joint is synonymous with good control of the tip. In a flexible-link manipulator,
however, the situation is different. The system is characterized by a number of
flexible modes as well as rigid modes. If flexible modes are ignored in the control
design, they can lead to a significant deterioration of the closed-loop performance.

Specifically, the control design for a flexible-link manipulator is difficult for a number
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of reasons: Nonminimum-phase behavior, unmodeled and/or inaccurately modeled
dynamics, model truncation, control spillover and observation spillover.

In terms of the transfer function of the linearized model of the manipulator,
the tip-position zeros lie along the positive real axis [80]. This is the characteristic
pattern for a non-colocated system and the transfer function is clearly nonminimum-
phase. In time domain a non-minimum phase system introduces an undershoot in
the start of the response to a step input. Such a system would require careful control
design to avoid migration of the poles towards the right-half plane zeros resulting
in unstable behavior.

Control spillover is the excitation of the residual modes (those not considered
in the reduced-order model) by the control action and observation spillover is the
contamination of the sensor readings by the residual modes. The effect of spillover
on a pole placement regulator is studied in [80].

Another important issue in the control of flexible-link manipulators is the
speed of maneuver of the tip. Generally, manipulator motions may be divided into
two groups in terms of motion: 1) fine motion and 2) gross motion [81]. In fine
motion, the manipulator tip moves in a small region of the workspace. Despite
high closed-loop bandwidth, absolute velocities do not become very large since the
motion occurs in a small region. Therefore, the nonlinear dynamic forces (Coriolis
and centrifugal) are generally negligible. In gross motion, the manipulator tip makes
large rotational maneuvers in the workspace. Large rotation of joints relative to each
other are the main source of the complicated nonlinear dynamic coupling between the
generalized coordinates [82]. Absolute velocities may become large during the fast,
large maneuvers to the point that nonlinear dynamic forces become very dominant
[83]. Any given manipulator can be moved slowly enough so that structural flexibility
will not cause any significant deviation from the intended motion. Similarly, it can
also be moved fast enough so that structural flexibility will become very apparent

in the response of the manipulator (presuming the availability of actuators that can
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deliver sufficiently high torque/force levels.

The fundamental challenge in the control of industrial and space robots is
to provide high-speed, high-precision motion, despite large variations in payload
and other task conditions. It is desirable to have a controller that will achieve the

following performance criteria:
1. Good transient and steady-state tracking of a desired motion trajectory

2. High-speed and -precision manipulation in gross and fine motions (high closed-
loop bandwidth) relative to structural flexibility

3. Good performance and stability robustness against unknown task variations.
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Chapter 3

Nonlinear H, Control

The dynamics of a flexible-link manipulator are highly nonlinear. In practice, the
system parameters cannot be assumed to be known exactly a priori. For example,
the payload may vary while performing a task, or the coefficients of friction and
damping may change in different configurations. Therefore, there may be significant
uncertainty in a robot’s dynamic model. Robust control strives to characterize the
uncertainty in the model of the plant to be controlled and to evaluate the degrees
of freedom left to achieve the control task within specified bounds. Considerable
effort has been made in the literature to satisfy the stability robustness requirement,
that is, to guarantee closed-loop stability under a wide range of plant variations
and disturbances. A linear robust controller may yield unsatisfactory performance,
especially when the system is highly nonlinear and undergoes large motions, and
thus operates over wide nonlinear dynamical regimes, as is often the case in the
problems of robot manipulators. In this chapter the recent results on the subject of
nonlinear H, control are reviewed. Connections of the topic to some basic notions
like dissipativeness, differential games, and the Hamiltonian function are discussed.
An approximate solution of Hamilton-Jacobi-Isaacs inequality in the case of a general

nonlinear system is also obtained.
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3.1 Perspective

The development of H,, control has been one of the major concentrated activities
in the control theory in the past decade. This area addresses the issue of worst-case
controller design for dynamical systems subject to unknown disturbances including
the problem of disturbance attenuation, model matching and tracking; see [84] and
the references therein.

The mathematical symbol “Hy,” in its linear setting stands for the Hardy
space of all complex-valued functions of a complex variable, which are analytic and
bounded in the open right-half complex plane. The H,, control problem may be
stated as follows. Assume that we have a system with two kinds of inputs and two
kinds of outputs. The first type of input is an ezogenous input representing the
references (to be tracked) and/or disturbances (to be rejected). The other type of
input is the control input. The controlled output represents a penalty variable, which
may include a tracking error, as well as a cost of the control input needed to achieve
the prescribed goal. The other type of output is the measurement that is made on
the system. This is used to generate the control input, which in turn is the tool
we have to minimize the effect of the exogenous input on the controlled output. A
constraint we impose is that the mapping from measurement to control input should
be such that the closed loop system is internally stable. The effect of the ezogenous
input on the controlled output after closing the loop is measured in terms of the
energy and the worst-case disturbance. Our measure is the closed-loop H., norm
which is simply the L, induced norm (from the input time-functions to the output
time-functions for zero initial state).

Although, the H,, technique was originally proposed for linear systems, this
approach has also been studied for nonlinear systems. By appropriate formula-
tions, Ho, can provide the robustness property in controller design. By robustness,
we mean that the stability of the system (or other goals) will be preserved in the

presence of perturbations arising due to structured uncertainties (in the parameters
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value) or unstructured uncertainties (unmodeled dynamics). In the classic approach
to this issue i.e. the Linear Quadratic Gaussian (LQG) theory, the uncertainty is
modeled as a white Gaussian noise process added as an extra input to the sys-
tem. The major problem of this approach is that our uncertainties cannot always
be modeled as white noise. While measurement noise can be quite well described
by a random process, this is not the case with parameter uncertainty or unmod-
eled dynamics. The resulting error due to these uncertainties is deterministic but
unknown.

The first systematic use of the work of Hill-Moylan [85] on dissipative systems
in nonlinear Ho, control was by Van der Schaft [86] who gave a general theory of the
Hamilton-Jacobi-Isaacs equations for input affine systems with state feedback. In
the state -space formulation, the problem of reducing the H,, norm of the closed-loop
system is viewed as a two- person, zero-sum, differential game [87].

Although the direction of H., optimal control for nonlinear systems is very
new, it has attracted a lot of attention during recent years. The development of a
systematic analysis of nonlinear H,, control was initiated by Ball and Helton [88, 89],
Basar and Bernhard {87] and Van der Schaft [86, 90]. More recent contributions to
this area of research are the works of Isidori and Astolfi [91], and Isidori and Tarn
[92].

These papers all consider the necessary and/or sufficient conditions for solving
the problem of disturbance attenuation and robust regulation for affine nonlinear
systems. In the work of Isidori and Kang [93], however, the problem is studied for
general nonlinear systems. Before reviewing the final results in [93], we present the
basic definitions in H, control from a general viewpoint. The main concepts for
analysis and synthesis of nonlinear systems may be found in {7, 94].

For a vector-valued function z(t), we say that z : (0,7) — R* is in L,(0,T) if

I 12(¢)[ dt < oo where ||2(2)||> = 2T2z. Now, consider a smooth nonlinear system
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of the form
Tz = f(:c,u) u € R™

y = h(z) y € RP (3.1)

where z = (z,,...,z,) are local coordinates for a smooth state-space manifold de-
noted by M. We assume the existence of an equilibrium zo € M, i.e. f(z0,0) =0,
and without loss of generality we assume that h(zo) = 0.

Let v > 0. The system (3.1) is said to have L,-gain less than or equal to v if

T T
/0 ()| dt < +* /0 llw(2)|1? dt

forall T > 0and all © € Ly(0,7).

3.2 Connection to Dissipativeness

The nonlinear system (3.1) is said to be dissipative near (z,u) = (0, 0), with respect
to a given supply rate s(u,y), if there exists a smooth function V(z), which is non-

negative and vanishes at £ = 0 such that
|4
O flew) — s(u,h(z)) <0

for all (z,u) in a neighborhood of (0,0). If (3.1) is locally asymptotically stable (at
the equilibrium z = 0) and locally dissipative with respect to the supply rate

s(u,y) = 7 llu@)® - ly @) (3.2)

then its output response to any sufficient small input, from the initial state z(0) = 0,

satisfies
T
0 < V(z(t)) S/O Y2lu(s)I? ds — lly(s)]|* ds

for all T > 0. As a consequence, the following expressions for system (3.1) are

equivalent
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o the system has finite gain (or is dissipative with respect to (3.2)).

o the system has H, (or L; induced) norm less than or equal to .

3.3 Connection to Differential Games

Consider the system

z = f(z,w,u)
z = Z(z,u)
y = Y(zw) (3.3)

where w is the ezogenous input, z is the controlled output and y is the measured output.

For system (3.3), we want to design a controller of the form

é = U(f,y)
u = 0((y)

to achieve two goals: closed-loop stability and attenuation of the effect of the exoge-
nous input w on the controlled output z. Note that state feedback is a special case
of the above controller. Define T, as the map from w to z. Clearly, this map is a
function of z, w and u. Suppose the worst case disturbance, due to the maximum

effort of w occurs at w,, i.e.

1T (w, ») wi
[[20]]

Now, the control u has to minimize this value, i.e.

T (we.,u) := sup

T(w., u.) := inf T'(w.,u).
Therefore, we have the following min-max problem
T (W, uu) 1= infsup T'(w,u).
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It is seen that the problem has a game-structure with two players: u and w. The
first player , w, wishes to maximize 7'(w,u), while the second player, u, wants to
minimize it, or equivalently to maximize —7'. So, in a unified structure, the sum
of these two costs, i.e. T' and —7T is zero and hence such an optimization problem
is referred to as a two-player zero-sum game. Since this optimization is restricted
to a dynamical system characterized by a set of differential equations, the associate

game is a differential game. [95, 96]

3.4 Connection to Hamiltonian Functions
For system (3.3), now define the following Hamiltonian

H(:L‘,p, wvu) = pr(J:, w, u) - s(u, h’(x))

where pT = V, := ¥ is the costate vector, and V/(z) is the storage function (in the
context of dissipativeness) or is the value function (in the context of a two-person
zero-sum differential game). Now, if the finite gain property from w to z is sought,

then

H(:z:,p,w,u) = pr(:I:, w, u) - s(w,z)
= pl f(z,w,u) — ¥*||w|* + | =||%

So, if H(z,p,w,u) < 0, the system would have Ho, norm less than or equal to +.

Now, suppose the function V(z) is positive and satisfies the inequality
H(z,p, w.,u.) <0 (3.4)

for each z in a neighborhood of zero. Then the resulting closed-loop system based
on the control u. is dissipative and locally asymptotically stable [93]. The inequal-
ity (3.4) is called a Hamilton-Jacobi-Isaacs inequality and in fact has a partial differ-

ential form. Finding the closed-form solution for such an inequality depends on each
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particular problem and usually is too difficult. Thus a practical way is to approxi-
mate the solution up to a prescribed order by means of a polynomial approximation

method. For system (3.3), assume that f(0,0,0) = 0, and let

z = Fz+ Kw+ Gu
y = Jz+ Muw (3.5)

be its linearization about (z,w,u) = (0,0,0). Let V(:z:) be a negative-definite func-

tion and define
I:I(:c,p, w,u) = H(z,p,w,u) — V(z) =0. (3.6)

Therefore, the solution p? = V; of (3.6) satisfies that of (3.4) and hence to find the
appropriate V(z), we can proceed to solve (3.6). With an abuse of notation, for

simplicity, we write H, instead of H.

3.5 Approximate Solution of HJI Inequality

For affine nonlinear systems the approximate solution is given by Van der Schaft [90].
Here, we derive the approximate polynomial solution of HJI inequality associated
with a general nonlinear system up to a prescribed order. Without loss of generality,

we assume M = 0. Following [97, 93], set
Viz) = Y vil(z)
d=1
w. = 3 ul(z)
d=1
w = S
d=1

in which the superscript “[d]” implies that a function or the components of a vector

are polynomials of degree d.
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The function V(z) is determined by the linearized model of (3.5) , ie.
VPl(z) = £TPz , where P is the positive semi-definite solution of the following

algebraic Riccati inequality
FTP 4 PF + P(;IEKKT -GGTHYP+JTI <0 (3.7)

from which the first-order approximations of u and w may be computed as

S = %IGTP::: (3.8)
1 T
wll = WK Pz (3.9)

The higher-order terms of V(z) can be determined recursively. To this end, an

expansion of f about (u£1],w£1]) results in

1 -
H = pl[Fu+ K(w— _Q%KTPz) +G(u+ 3G Pz) + f(z,w,u)] +

llll® + [[ylI* = *[leo]l>. (3.10)
where F, = F + #KKTP ~1GGTP, z = [yT,uT]T, and f contains higher-order
terms. Now, a saddle point (w.,u.) of H(z,p,w,u) necessarily satisfies the condi-
tions

0H 0H

Ez—(w.,u,.) =0 a—w(w,,u,) =0

As a result, we have

%—5 =0 = GTp+fqu+2u =0 (3.11)
a .
-a—g =0 = Klp+ fpr - 2792w =0 (3.12)

where fq stands for the derivative with respect to q. Defining the value of H at the
saddle point (w.,u.) as H. in (3.10), and setting H, = 0 we get

—pTFz = pP[K(w. — -2%(—2—KTP2:) + G(u. + %GTPa:) + f(z, we, )] +

lleall? + llyll* — 7o
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The mfP-order terms V{™)(z) of V(z) can now be computed inductively for m, =

3,4, ..., as follows

_.V;:(mo)F‘z = R(z) (3.13)
where
me—1 )
R(z) = E Vz(k)[K(W. - 'é%;;KTP-’B) + G(u. + %G’FPz) + f(z, w., u‘)](mo-i-l—k) +
k=2

(lluall® + Nyl ~ 7w o)

Accordingly, by using (3.11), (3.12) and (3.13) the higher-order terms of « and

w may be updated as

k-1 .
R (Gprﬂ)+sz"’<x,w£k-u,u£k-ﬂ>p('=-f+l>) (3.14)
j=1
1 ot SN i
o = b (ke 5 70t ) (a1
j=1

Note that the function V(:z:) in (3.6) is an arbitrary negative-definite function.

One of the important issues in He, control is the amount of attenuation pro-
vided by the control. For different values of gain there may or may not exist a
positive semi-definite solution to the HJI inequality. As shown in [90], for a nonlin-
ear system the maximum attenuation of disturbance that corresponds to the smallest
7 has the same value as for its linearization. Therefore, the optimal H,, gain may
be computed by using a search algorithm similar to the one presented in [98].

The procedure of how to utilize MAPLE and MATLAB to design a nonlinear

H, controller is described in [79].
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Chapter 4

Domain of Validity of Nonlinear

H- Control

In this chapter, certain properties of controllers designed using nonlinear H,, tech-
nique are studied. It is well known that the explicit solution of the Hamilton-
Jacobi-Isaacs (HJI) inequality is generally not feasible. By applying the polynomial
approximation method, approximate expressions of the co-state and the two players
of the game are considered. Using a Lyapunov technique, we prove the conjecture by
van der Schaft [99] that the nonlinear feedback controller always results in a larger
domain of validity than its linearized controller. Effects of attenuation level and
weighting the controlled output on the domain of validity are also discussed. In this
connection, a fictitious autonomous system derived from the original system and its
HJI inequality is first introduced. The effect of approximation is then represented
by introducing a perturbation term. It is shown that the domain of validity for the
HJI inequality may be related to the domain of attraction of the equilibrium point

of the fictitious system.
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4.1 Introduction

In the time-domain formulation, the problem of minimizing the H., norm (or, equiv-
alently, the L, gain) of a closed-loop system is viewed as a two-person, zero-sum,
differential game and, thus, the existence of the desired controller can be related to
the existence of a solution of the algebraic Riccati equation arising in linear quadratic
differential game theory [100].

Although H, techniques were originally proposed for linear systems, the ap-
proach has also been studied for nonlinear systems. The development of a systematic
analysis of nonlinear H, control was initiated by Ball and Helton [88], and van der
Schaft [90]. In the nonlinear setting, the Riccati equation is replaced by a particular
type of Hamilton-Jacobi equation, the Hamilton-Jacobi-Isaacs (HJI) equation [91].
In particular, it has been shown that the existence of a solution to HJI equation is
a sufficient condition for the existence of a full-information feedback law providing
disturbance attenuation in the sense of the L, gain [86, 101]. In addition, it has
also been shown that under appropriate assumptions, the existence of a solution is
a necessary condition for the solvability of the problem [90]. The relation between
Zubov’s theory and the Hamilton-Jacobi equation is studied in [102].

In nonlinear H,, control, the goal is to attenuate the effect of an exogenous
input on the controlled output in a stable manner. Instrumental in this regard is
the solution of a PDE type inequality referred to as HJI inequality. The design
of a nonlinear He, controller proceeds by approximating the solution of the HJI
equation. Various methods have been proposed in the literature for solving the HJI
equation. Perhaps the most useful method is the power series method [90, 93]. The
approximate solutions of the co-state vector V;, the best control strategy u. and the
worst-case disturbance w. can be obtained up to an arbitrary prescribed order of
accuracy. Intuitively, using a low-order controller sacrifices certain features of the

closed-loop performance. In particular, we show in this chapter that a nonlinear
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feedback control law will always result in a larger domain of validity than its lin-
earized counterpart. Furthermore, it is shown that weighting the controlled output
and or changing the attenuation level can affect the domain of validity. In [103], nu-
merical simulations on an aircraft model show that the nonlinear H., control obtains
a more reliable domain of attraction.

Consider a nonlinear system modeled by equations of the form

= [(o)+ 9ol + k(a)w
S (4.1)

where z € R" is the state vector, w € R’ is the erogenous input, u € RP is the
control input and z € IR® is the controlled output. All the mappings introduced are
assumed to be smooth. We assume that f(0) = 0 and h(0) = 0. The notation used
in this chapter is the same as that in [90, 93].

4.2 Hamilton-Jacobi-Isaacs Equation

The goal of Ho, control is to design a state feedback controller to achieve two objec-
tives: Closed-loop stability and attenuation of the effect of the exogenous input w on
the controlled output z which in turn is equivalent to a min-max type optimization

problem
T
Jr= minmax/ =@l — Y*Ilw(@)3) dt <0, YT 20
u w 0
The HJI equation with the finite gain property associated with (4.1) has the form
1
H(z,p,w,u) = p" (f(2) + g(2)u + k(z)w) + 5 (ll2l1} ~ +*I[wl3) (4.2)

where pT =V, := Z—Z is the co-state vector, and V(z) is the storage function (in the

context of dissipative-ness) or is the value function (in the context of a two-person,
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zero-sum, differential game). A saddle point (w.,u.) of H(z,p,w,u) satisfies the

condition a—g‘—'%(w., u.) = 0, yielding
w==g"@VI@),  w= K @VIE)
Substituting u. and w. in (4.1) yields an asymptotically stable system [99]
i = f(z) + 9(z)un + b(z)uw. (4.3)

which we refer to it as the worst-case closed-loop system.
Let V(z) be non-negative in which case V(0) = 0 results in V;(0) = 0, which
in turn implies u.(0) = 0 and w.(0) = 0. The value of the Hamiltonian in the saddle

point is given by

H‘(xa P) = H(.’E, P, w,,u:) = ‘/z(f(.’l?) + g(:z:)u‘t + k(.’l:)w*) +
Ll 3+ IR~ lhenl?) (4.4

If H.(z,p) < 0, the system would have H,, norm less than or equal to 4. If in
addition the function V(z) is positive definite and

H.(z,p) <0 (4.5)

for each nonzero z in a neighborhood of zero, then the resulting closed-loop system
based on the control u. is dissipative as well as asymptotically stable [90, 93]. The
inequality (4.5) is referred to as the HJI inequality and in fact has a partial dif-
ferential form. An explicit closed-form solution for the above inequality is problem
dependent and is generally not feasible. A notion that is closely related to the HJI
inequality is that of domain of validity defined formally as follows.

Definition 4.1 A region of state-space that satisfies the HJI inequality and guar-

antees asymptotic stability of the system is referred to as the domain of validity.

Domain of validity may be related to the domain of attraction, i.e., a region in state-
space in which all trajectories originating there would evolve towards the equilibrium

point.
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A practical way for solving the inequality (4.5) would be to approximate the
solution up to a prescribed order by means of a polynomial method. Suppose the
exact solution to the H, control problem can be represented by an infinite series in
the form

oo o0 oo
Viz) =Y VIH¥l(z), w.=3 wl(z), v.=3 ul(z) (4.6)
d=1 d=1 d=1
where the superscript “[d]” implies that a function or the components of a vector
are polynomials of degree d.

Note that even the first order controller can provide local closed-loop stability
and attenuation of disturbances on the controlled output. However, the use of higher
order controllers, as shown in this chapter, can provide a larger domain of attraction
for the closed-loop system. Towards this end, we seek a suitable framework in which
the above advantage of nonlinear control laws may be demonstrated.

The approach in this chapter for analyzing the above problem is based on a
perturbation technique. Therefore, in the next section, we briefly review the stability

properties of perturbed systems.

4.3 A Perturbation Framework

In order to show the advantage of nonlinear feedback control over its linearized
control, we construct a nominal system with a perturbation term. Towards this end,
we review the asymptotic stability of a nonlinear system perturbed by a vanishing

perturbation. Consider the system
z = fi(z) + g1(z) (4.7)

where g;(z) may be considered as a perturbation on the nominal system z = f;(z).
Let g1(0) = 0. Suppose z = 0 is an asymptotically stable equilibrium of the nominal

system. Let V(z) > 0 be a Lyapunov function for the nominal system that satisfies
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the following condition in a ball with radius r.

Viz) = Vi fi < —c1 é(z)? (4.8)
[Vzllz < c2 &(z) (4.9)

for some positive constants ¢; and c;, where ¢ : R™ — R is positive definite and

continuous. Suppose the perturbation term g;(z) satisfies

lgr(2)ll2 < s &(z)

where c; is a positive constant. Then the equilibrium point of (4.7) is locally asymp-
totically stable in a domain specified by V, ¢;, ¢, and c3 [104]. As mentioned in the
Introduction, one of our objectives is to relate the domain of validity to the domain

of attraction. For this, we need the following lemma.

Lemma 4.1 [105]: Suppose that V(z) is positive definite for all z and V is negative
definite along the system’s trajectories in the vicinity of the origin. Let ¢ := Vinin be
the lowest value of V (z) on the surface V = 0. If the region about the origin defined
by

D={zeR"|V(z)<c} (4.10)

is bounded, then it is a conservative estimate of the domain of attraction.

Now, suppose that an estimate of the domain of attraction for the equilibrium
point of (4.7) is provided by the set (4.10). Since the nominal system is asymptoti-
cally stable, there is a ball B,, = { z € R | ||z||l2 < r; } in which V(z) is negative
definite. Given B,,, the set D is obtained such that D C B,, by choosing

¢ < min V(z) (4.11)

fizllz=r1
The value of ¢ is computed by finding a lower bound on the functional V(z). From

(4.6), we can write

IV(2) = V@)l < 3 adlelli

=3
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Since ||V(z) — VI(z)||, is a scalar we may re-write the result in the form

V) = V2N < 52 ol

||$”2 =2

from which we can conclude that

[V (z) — VE(z)|

lzli2

—0 as |z|>—0

By an argument similar to the one given in [104, pp. 131], it follows that for any

~1 > 0 there exists an r, > 0 such that
V(z) - VB(@)| < mnllells, VY llzllz <72
Consequently,
V() > VOG) ~ mllzlls > 222 oz —jiall, ¥ el <

where VP(z) = T Pz.

Now, let 1; < &fg‘@ where p > 0. It follows that

Amin(P) Amin(P) | 1 [X2:(P)
el = el > el ¥ ol <o = 22200 4 ;\[_16_ s

Therefore, we can choose ¢ such that
c<pr®,  r=min{r,r,rs} (4.12)

in order to construct the domain D in (4.10).

4.4 Domain of Validity

When the solution to the HJI inequality is obtained by using the approximation
method certain aspects of performance of the closed-loop system will be compro-
mised. In this section, we will show that the lower the order of the controller, the

smaller the domain of validity of the controller.

39



4.4.1 Effect of Approximate Solution

The purpose of constructing a perturbed fictitious system will be shown to be useful
in relating the domain of attraction to the domain of validity of the solution of
the HJI inequality. As we will see in the sequel, the domain of attraction of the
equilibrium of (4.7) is a subset of the domain of validity of the HJI inequality
of (4.14). Let us define a fictitious system of the form

& = fi(z) == f(z) + 9(z)u. + k(z)w. + -;-7'7%(3:)(“%”2 +1A@? ~ ¥?[lw.][?) (4.13)

where (z) is a function with the property that V; m(z) = 1 for each nonzero z
with V(z) such that (4.5) is satisfied. Note that constructing an rh(z) to satisfy
the above equation is always possible. To wit since the row vector V. (z) for each
nonzero z is not identically zero, we can assume that at least one of its element, say
the ith element, namely v; is non-zero. We can now define the jth element of n(z),

namely ; as follows

m;
L oifi=j

. {0 ifij

The time derivative of V(z) along trajectories of f is

G = V(@) + g(@un + ko) + S(Uuall? + 1A = ¥llenl?) < 0 (4.14)

The negative-definiteness of (4.14) follows from (4.5). Therefore, V(z) is an appro-
priate Lyapunov function that guarantees the asymptotic stability of the equilibrium
of (4.13), which is the origin by assumption. Consider (4.13) as the nominal system

that satisfies the following conditions in a ball of radius r,

V(z) = Vi (f(z)+9()ua + k(z)w.) + %(IIMH2 +lh(@)1? = ¥*lw.?)
< —c ¢(z)? (4.15)
IVall < e (=) (4.16)
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It is clear that (4.15) results in (4.14), i.e., the HJI inequality. Since a conservative
estimate of the domain of attraction is contained in the region satisfying condi-
tion (4.15) and Lemma 4.1, the domain of attraction is a subset of the domain of
validity for the HJI inequality. Let us treat system (4.13) as a nominal system on
which the following perturbation is acting

a@) = — (4(=)3 u + k(z) g wd)

d=s

I
— @) (lll® + 1R@)I* = Yllw.]?), s 22 (4.17)
The resulting perturbed system can then be represented according to

i = fole) = A) + ()
= (@) + g@)un + Ka)w. — g(z) S uld — k() wld, s>2 (4.18)

d=s =s
Note that the terms containing 72(z) are canceled out. Therefore, to study the
domain of attraction of the nominal system & = f;(z) perturbed by g,(z), it suffices
to consider the simplified model introduced in (4.18). Note that the role of m(z)
is to justify how the domain of attraction of the fictitious system is related to the
domain of attraction of the perturbed system.

In fact the perturbed system (4.18) represents the dynamics of the worst-case
closed-loop system with u. and w. being replaced by their first s — 1 terms. Setting
s = 2, for instance, cancels out all the nonlinear terms of w. and w. and gives
a closed-loop system based on a linear control strategy of the original nonlinear
controller. In other words, by appropriately setting the parameter s, it is possible
to obtain an approximation to the worst-case closed-loop system up to order s — 1.
Thus, the purpose of the perturbation term g;(z) is to cancel out certain parts of
the dynamics in order to yield a desired approximated system:.

Note that the perturbation thus introduced with s = 2 does not affect the
stability property of the perturbed system since the closed-loop system in the first

approximation is known a priori to be asymptotically stable. In fact in this case,
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theset { z € R" | ||z]|o < 7, V() >0, V() < 0 } -with r defined as in (4.12)-
is not empty. However the domain in which the trajectories approach towards the
equilibrium point is not specified yet. As we will see in the sequel, the effect of the
perturbation term in this framework is to change the domain of attraction of the
equilibrium point.

The following theorem presents the main result of this section.

Theorem 4.1 Let the equilibrium point of (4.18) be asymptotically stable. Then
the size of the domain of attraction D depends on the parameter s. In particular,
the smaller (larger) the parameter s, the smaller (larger) will be the domain D.
Furthermore, suppose the approzimate solution of the H,, control problem for ({.1)

is given by a power series expansion in the form
s—1 s—=1
w, = Ew£d](z), te = Y ull(z), s>2 (4.19)
d= d=1

Then, the domain of validity of the controller corresponding to s = sqo is larger than

or equal to the domain of validity for all s < sy.

Proof: The time derivative of V(z) along £ = fo(z) is given by

‘Z_‘t/ = Vo(f(z) + g(z)u. + k(z)w.) + V; g2(z) (4.20)

where g;(z) is defined as

5(2) = —g() S ul —k(x) S uld, s>2 (4.21)

=S =5

It is known that the vector field f(z) + g(z)u.+k(z)w. is asymptotically stable [99].
As a result, Vz(f(z) + g(z)u. + k(z)w.) < 0. This implies that there exists some
k1 > 0 and p; > 0 such that

Va(f(2) + g(z)un + k(z)w.) < —kuflzll3, V]2 < 1. (4.22)

Therefore, condition (4.8) is satisfied with ¢(z) = ||z|l. To see if (4.9) is also
satisfied, observe that it is possible to find an upper bound for the slope of ||V;]2 in
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the coordinates of (||Vz|[2, ||z]|2)- From (4.6), we have

(o]
[IVellz < enllzll2 + Y- asllzll;

=2
Therefore,
Vellz — aillz e .
[Vellz — aullzll <3 aillalf
l|[2 i=2

which results in

[Vzlla — aafiz|l2
llzll2

Consequently, for any ag > 0 there exists p2 > 0 such that

=0 as |z].—0

IVellz — arllz|z < aollzllz, VY lzll2 < p2
or
IVella < (a0 + an)l|zll2 :=¢2 ||zll2, Y [|z]l2 < p2 (4.23)

As a result, (4.22) and (4.23) are satisfied in a ball with radius r. = min{p;, p2}.
Now to get a condition on negative-definiteness of V along the trajectories of the
perturbed system consider the effect of V. g»(z). The contribution of this term can

be incorporated via its norm according to

o0

Ve @l < alel 3 llell, a>0, s>2 (4.24)
I=s-2

< alzli Y K, Vizlla<ko <p (4.25)
F=s-2

Consequently, equation (4.20) on a certain domain of state-space yields

V < —killz]® + Ve g2(2)l2
< (a X B—k)ll=ll3, Vel < ko (4.26)

J=s-2

In order to find the domain D, it is necessary to have,

a Y K<k, s>2 (4.27)

j=s—-2
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which may be considered as an inequality in terms of ky. Since the smaller the value
of s, the less precise is the approximation to the HJI inequality, therefore it follows
from (4.27) that the smaller the value of s, the smaller the radius ky. Let the least
upper bound on the values of kq satisfying (4.27) be represented by

ko(s) =sup{ ko | a i K<k}, s>2 (4.28)
j=s—2

Before completing the proof of Theorem 4.1, note that according to Lemma B.1
stated in the Appendix the function l::o(s) just introduced is a monotonic function
of s. Since ko determines the domain of attraction for a locally asymptotically stable
system without lose of any generality, we assume that kg < 1. This is due to the
fact that it is always possible to transform the state in such a way that ||z|| < a

(with @ > 1) results in ||[Tz|| < | where T represents the transformation.
Note that according to (4.26) the value of kg determines the largest ball in
which V < 0. Considering (4.12) and (4.28), we may express the estimate of the

domain of attraction as a function of s
D(s)={ze R"|V(z) <pkd(s)}, s>2 (4.29)

As a consequence of the above results, two important observations may now be

presented.

1. The dependency of D on s reveals that the higher-order approximations result
in a larger domain of attraction for the equilibrium point. This statement
is true regardless of the choice of Lyapunov function since the function l;:o(s)
resulting from the above analysis is a monotonic function of s. In other words,
a larger value of s, regardless of the choice of the Lyapunov function, always

results in a larger ko(s) which in turn results in a larger D.

2. After some algebraic manipulations it is possible to show that the nominal
system (f;) with the original perturbation term (g;) does also satisfy the con-

ditions of asymptotic stability of a perturbed system. Consequently, the above
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computations may originally be performed on (f;,g1). However, the compu-

tations in this case are far more involved than the ones developed above.

Based on Lemma 4.1, estimation of the domain of attraction may proceed in two
steps: First one finds a region in which V' < 0, and then constructs a set on which
V < c. Note that the expansion V = V,f; < 0 is exactly identical to the HJI
inequality of the original system. Hence, the relation (4.29) —which resulted directly
from V=V, f1 < 0- represents the HJI inequality. As a result, the larger the value
of s in (4.29), the larger the domain of validity of HJI inequality. Construction of
the domain of validity of the controller, on the other hand, also needs the second
requirement, i.e., V' < c. Therefore, the value of s also affects the domain of validity
of the controller, implying that the larger the value of s, the larger the domain of

validity of the designed controller. A

Remark 4.1 Our approach for qualitatively analyzing the behavior of the H,, con-
trolled closed-loop system is based on a Lyapunov technique. Given that in general,
Lyapunov methods can only provide an estimate of the domain of attraction for a
nonlinear system, therefore, it is not feasible to explicitly obtain the ezact domain of
validity of a nonlinear system by using this technique. In other words the purpose
of the chapter is not to explicitly compute the ezact domain of validity; rather, the
objective is to provide a methodology for comparing the estimates of domains of
validity obtained by using different approximations of the nonlinear system. The
result given in Lemma 1 does not provide a basis for explicitly computing the ex-
act domain of attraction. As pointed out above, although the study of domains of
attraction through Lyapunov methods is in general qualitative in nature; neverthe-
less, it should be emphasized that it is possible to compare the size of the estimated
regions, quantitatively. Note that the approach adopted in the proof of Theorem 1
uses the same Lyapunov function, the same value of k; for constructing the upper
bound for V, the same balls with radii p1 and p2, and the same c;. The only differ-

ence in the analysis is the order of the approximation that is used for the nonlinear
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system which is specified by the parameter s. The above remarks also apply to the

rescaling of the state vector of the system discussed previously.

Remark 4.2 The analysis used in the proof of Theorem 4.1 is based on the explicit
solution of V(z). This assumption, however, does not restrict the use of the above
analysis. This is due to the fact that as far as the approximate worst-case closed-loop
system is concerned, only the approximations of u, and w. are needed. Although
these approximations are related to the approximations of V'(z), nevertheless, V(z)
was considered for both the nominal as well as the perturbed systems, simultane-
ously. In other words, if we consider only the approximations of V(z) together with
u. and w., the above analysis holds, of course, with different values for ¢; and c,

in (4.15) and (4.16), respectively.

4.4.2 Effect of the Attenuation Level (v)

One of the important issues in Ho, control is the level of attenuation provided by the
control law. It turns out that different values of gain may or may not guarantee the
existence of a positive (semi)definite solution to the HJI inequality. As shown in [90],
for a nonlinear system the maximum attenuation of disturbance that corresponds to
the smallest v has the same value as for its linearized model. Therefore, the optimal
H, gain may be computed by using a search algorithm similar to the one presented
in [98]. In addition to the maximum level of attenuation other issues regarding the
role of this factor can be investigated. In fact one can investigate whether or not the
attenuation level can affect the domain of validity as well as the rate of convergence
in a nonlinear H,, control problem. In the following sections, these two issues are
further investigated. The following theorem states that higher attenuation of the

exogenous input may result in smaller domain of validity for the HJI inequality.

Theorem 4.2 Let the worst-case closed-loop system corresponding to (4.1) be given

by (4.8), in which the effect of the ezogenous input w on the controlled output z is

46



attenuated by «, t.e.,

)P de

Jo lw(®)?dt
Let the HJI inequality corresponding to this problem be given by (4.5). Then, the
larger(smaller) v, the larger(smaller) the domain of validity of the HJI inequality.

Proof: The HJI inequality can be written in the form

H.(2,p) = Va(f(2) + o(@)w) + 5 (ol + [16()IP) + 55 Veb ()b ()Y (2)

As before, let us construct a fictitious system to study the problem. Consider the

system z = f,(z) := fi(z) + g1(z) with f; and g; defined as

flz) = f(z)+9(z)u. + %ﬂ%(w)(lluwll2 + [[A(=)][*)

1
gi(z) = %;k(x)kT(x)Vf(x)

where m(z) is defined as before, i.e., V(z) m(z) = 1. In this framework, the nominal
system £ = fi(z) is asymptotically stable; since Vi(z) = V, fi(z) = Ve(f(z) +
g(z)u.) + 3(|{u.]|® + [|~(2)]|?) corresponds to the HJI inequality with no exogenous
input. Therefore, V;(z) = V; fi(z) < 0. This implies that there exists some k; >0

and p; > 0 such that
1 4 !
Va(f(2) + g(z)ua) + 5(llwall® + () < —killellz, VIl <py- (4.30)

Now, since g;(z) satisfies

llg1(2)ll2

[zl

it turns out that for any & > 0, there exists r, > 0 such that

—0 as |z]l2 =0,

lg@)llz < &llzllz, ¥ lzll2 <ra
By defining Vg(m) = V: g1(z), it is easy to show that

’

s—1
IVall < allzllz (ko) a >0, s>2, Vzl:<k (4.31)
d=1
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where s — 1 is the order of the approximation. The time derivative of V(z) along

g1(z) is then bounded by
1% @l < Slel3 g(k,',)d, V lizlle < K, < o, (432)
Thus we have
V=V f=Vit <G g(k;)d —Elzl3 Vel <E  (433)

By invoking the same reasoning as in the previous section, it may be shown that
for a given value of s, if a smaller value of v is selected, then a smaller value of %,
results. Consequently, decreasing « for the purpose of further attenuation yields a

smaller domain of validity. A

4.4.3 Weighting the Controlled Output

As in other optimal control algorithms the controlled output may be weighted with
respect to the disturbance to get a faster response. Given that the cost function is of
quadratic type, increasing the weighting on output would result in a more damped
response. More emphasis on rise time, however, may result in a smaller domain
of validity for the relevant HJI inequality. In this section we study the effect of
such weightings on the domain of validity of the HJI inequality. In this section,
we also construct a fictitious system to study the problem. Consider the system

z = fo(z) := fi(z) + g1(z) with f; and g; defined as

1,
h(z) = f(z)+g(z)u. + gra(e)((ual® = 7*|lw.]])
92
(@) = T @)k
where 2(z) is defined as before, i.e., V(z) a(z) = 1 and 8 > 1 is a weighting factor
on the first component of the controlled output. In this framework the nominal
system £ = fi(z) is asymptotically stable; since this corresponds to a controlled

output including only the control input . After some algebraic manipulation and
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using the arguments used in the proof of Theorem 4.1 (cf. equations (4.26)-(4.29)),
it can be shown that there exist some k; > 0 and k; > 0 such that

. . . 02 =t nd_1 " 2 ”

V=V fo=VitVi<(z ST Kl Viiele <k (430

d=1

Consequently, it now follows that the larger (smaller) 6, regardless of the value of
s, the smaller (larger) k,. As a result, weighting with a factor greater than one can
shrink the domain of validity. The result of this subsection is now summarized in

the following lemma. The details of the proof are omitted due to space limitations.

Lemma 4.2 Consider the problem of nonlinear H,, control for (4.1) in which the

controlled output is replaced by

z=A ( (=) ) (4.35)

where A is a weighting matriz. Then, the domain of validity of the HJI inequality
for the system having (4.835) as its controlled output is larger (smaller) than the
corresponding domain for the HJI inequality of (4.1) if ||A|l <1 (J|A]| > 1).

4.5 Example

The method of analysis posed in this chapter, as indicated previously, does not yield
an actual domain of validity of the HJI inequality. It qualitatively provides, however,
a good evidence and justification as to why nonlinear control is potentially superior
to the linearized control.

Consider the scalar system [99]

£ = u+4 arctan(z) w

- (1)
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It is shown in [99] that the ezact domain of validity for the corresponding HJI
inequality is |arctan(z)| < 4. By applying the linear controller, the HJI inequality
is shown to be valid for all z satisfying |arctan(z)| < %27. If we choose v = 1, the
linear controller results in the exact domain |z| < 0.85. By applying the procedure
proposed in Section 4 and by choosing v = 1 and k; = 0.5 in (4.28), the estimate
of domain of validity for s = 2 (linear control), s = 4, and s = 8 are obtained as
lz| < 0.71 < 0.85, |z| < 0.91, and |z]| < 0.96, respectively. This clearly shows that
as the order of the controller is increased the estimate of domain of validity is also
increased. Note that our result for the linear controller is conservative as compared
to the exact domain due to the fact that our analysis for the estimate of domain of
validity is based on Lyapunov theory. This conservative property is also present for

higher order approximations of the controller.

4.6 Concluding Remarks

Qualitative behavior of nonlinear H,, controllers was considered. The effects of (i)
the approximate solutions, (ii) attenuation level, and (iii) weighting the controlled
output on the domain of validity of the HJI inequality were investigated. It is
shown that (i) utilizing lower order approximations, (ii) increasing the attenuation
level, and (iii) weighting the controlled output may result in a smaller domain of
validity. The method used in this chapter has exploited the stability properties
of perturbed systems. Although the results of this chapter have revealed certain
performance properties of nonlinear feedback controllers, they cannot provide any

explicit quantitative measure for the above mentioned issues.
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Chapter 5

Uncertainty Compensation for a

Flexible-Link Manipulator

In a flexible-link manipulator, in general the effect of some parameters such as pay-
load, friction amplitude and damping coefficients cannot be exactly measured. One
possibility is to consider the above as part of the system uncertainty. In this chapter,
constant as well as L,-bounded deviations of parameters from their nominal values
are considered as uncertainties. These uncertainties make it difficult for a linear
controller to achieve desired closed-loop performance. To remedy this problem, a
nonlinear dynamical model of a flexible-link manipulator that is linear with respect
to the control input is derived. Based on recent results in nonlinear robust regula-
tion with an He, constraint, a nonlinear controller is designed for the flexible-link
manipulator. The contribution of this chapter is in demonstrating that the nonlin-
ear controller has a larger domain of attraction than the linearized controller. In
fact, for the single-link flexible manipulator considered in this chapter, the linear
He controller results in instability for step changes in the desired output greater
than 3.6 rads, whereas the nonlinear H,, controller yields desired step changes of
2m rads. Simulation results demonstrating the advantages and superiority of the

nonlinear H,, controller over the linear H,, controller are presented.
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5.1 Introduction

Flexible manipulators exhibit many advantages over rigid manipulators as they re-
quire less material, have less (link) weight, consume less power, are more maneuver-
able, require smaller actuators, and are more easily transportable. However, they
have not been widely used in industrial operations due in part to the fact that
manipulators have to satisfy strict accuracy requirements in the response of the ma-
nipulator’s end-effector to the joint control input commands. This task is severely
complicated by structural deformations in the manipulator. Traditionally, the vi-
brations have been eliminated by increasing the rigidity of the links. However, in
many situations, this option is not available especially if the advantages associated
with lightweight manipulators are not to be sacrificed. Consequently, this leaves us
with the only other available alternative which is to design effective and advanced
control strategies for these systems.

The control problem for a flexible-link manipulator is complicated by the fact
that the dynamics of the system are highly nonlinear and complex. The dynamics
are basically described by a system of partial differential equations where for the
purpose of control, the integro-partial differential type equations are reduced to

ordinary differential equations.

5.2 Uncertainties in a Flexible-Link Manipulator

As pointed out earlier, nonlinear control techniques offer more reliable solutions in
comparison to the above methods. Although, the nonlinear techniques may not in
general yield global results; however, the region of desirable operation is larger than
that provided by linear controllers. Precise knowledge of the plant is one of the main
limitations in applying most of nonlinear control techniques.

In particular for a flexible-link manipulator in general, the system parameters

are not known a priori. For example, the load may vary while performing a task,
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or the coefficients of friction and damping may change as the configurations vary.
Thus, there may be significant uncertainty in a robot’s dynamic model. These un-
certainties should be compensated for by designing an appropriate robust controller.
Applications of linear H,, control theory to rigid and flexible-link manipulators have
been studied in [39, 37]. To the best of our knowledge, nonlinear H,, control, on the
other hand, has been applied only to rigid-link robots [106].

5.3 Incorporation of Uncertainties in the Flexible-

Link Manipulator Model

The dynamics of a flexible-link manipulator were derived in Chapter 2. To in-
corporate the effect of uncertainties due to load variations, friction and damping

characteristics, one may rewrite (2.12) in the form

8, = fi(02,61,61,02,0)

b = fa(b1,02,61,55,0)
0y = fa(b1,02,81,02,0) +u
b = fa(by,04,8:,6,, %)

0, + Kuip 61

z = [yT7 uT]T (5.1)

<
Il

where 0 is the vector of uncertainties that represents the deviations of parameters
from their nominal values. For instance, the inertia matrix is a function of the
load mass M. Therefore, in deriving the state-space equations (5.1) , we need
to take into account that the uncertainty on the load mass does indeed propagate
throughout the system dynamics. Specifically, to consider this uncertainty, one may
assume that My = Mo(1+w;) where My, is the nominal value of the load mass and

wW; is an Lo-bounded disturbance acting on it. By a similar reasoning, we assume
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that
FP; = P;o(]. -+ ‘lf),) (5.2)

where P; stands for every parameter in the system (2.12) having an uncertain value.
Note that there could be a number of parameters that may have uncertain values.
For instance, the amplitude of a sigmoidal function that is commonly used to model
the Coulomb friction or the value of hub damping for each joint and/or the value of
structural damping due to link flexibility are some examples to name.

The design methodology in this chapter is based on the nonlinear H., control
technique where the objective is to attenuate the effects of disturbances on the con-
trolled output. Therefore, any bounded signal with a compact support can enter the
system as a disturbance. Consequently, in the non-affine model (5.1) with respect to
the exogenous input @, all deviations must be L,-bounded. Based on the assump-
tion of boundedness of @ one may apply the nonlinear H,, technique developed in
[93] to design a controller that attenuates the effect of W on the controlled output.
It should be noted, however, that not all parameter perturbations are necessarily
Ly-bounded. Constant deviations from the nominal values of the parameters are
very common in practice. Obviously, constant deviations are not L,-bounded. As
a matter of fact, model (5.1) cannot handle constant deviations from the nominal
values of the parameters. To circumvent this difficulty, one may rewrite model (2.12)

into the form
z=f(z)+Af(z) + (G+AG) u (5.3)

where z = [y, 67, ég', 8.{ |7, is a coordinate change, Af, AG denote the deviations of

f and G from their nominal values, respectively and

fi(=z) 0

Fay=| 2P, a=|° (5.4)
f3(z) 1
f4($) O
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Since f(0) = 0, the resulting model may be expressed in the form

t=f(z)+Gu+v (5.5)
where
v=(AG A=) ( v ) and Afz) = [ ' 9% dA (5.6)

and the formula on page 51 in [107] is used in defining (5.6). The main idea is
shown schematically in Figure 5.1, where z; = (uT,zT)7 and e = y — y,es, where
Yres is the desired tip position reference trajectory. Let A, represent the map from
z1 to v in Figure 5.1. Let also the L,-gain of the closed-loop system from v to z;
-with A, block disconnected— be 4. Then by virtue of the small-gain theorem as
used in [108], the overall closed-loop system subject to the presence of A, remains
stable for all A,’s having L,-gain less than or equal to 1/v. Note that as long as
|Aplleo is bounded, the setup introduced in Figure 5.1 can also handle Ly-bounded
deviations. It is clear that the possible range of uncertainties introduced by A, may
be extended by designing a controller that makes the value of 4 as small as possible.
This is indeed possible by utilizing the H, control technique to attenuate the effect
of von z.

The above proposed design technique is now applied to a single-link flexible
manipulator with one deflection mode. The dynamics of a single-link flexible manip-
ulator were computed by using MAPLE to automatically generate the corresponding
M-Files for use in MATLAB. In this chapter, we only consider set point regulation

by using the approach developed in [109].
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Figure 5.1: Problem setup for robust requlation in the presence of parametric uncer-
tainty.

5.4 Zero-State Detectability of the Flexible-Link
Model

Recall from [110] that system (2.12) is zero-state detectable if any bounded trajec-

tory satisfying z = 0, V¢ > 0, is such that lim; ., z(¢) = 0. In [100] it is shown that

the linear version of this condition is equivalent to

F—jwl G
J 0

rank L = rank [ =1+4+n, YWWeER (5.7)

where n is the model order, and F, G and J are the matrices of the certain linearized

model of (5.5) about (z,v,u) = (0,0,0), namely

Fz+ Kv+ Gu

z

y = Jz (5.8)

It is well known [80] that for a single-link flexible manipulator, the tip position zeros
lie along the real axis and are non-zero. As a result, the linear model [F,G,J,0]

does not have any transmission zeros on the imaginary axis. This indicates that
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condition (5.7) is satisfied for our system. The rank condition in (5.7) together
with cortinuity of f guarantee that the nonlinear model (5.5) is locally zero-state
detectable. The zero-state detectability property is a sufficient condition for the

existence of an asymptotically stable closed-loop system as stated in the next section.

5.5 Application to a Single-Link Flexible Manip-
ulator

As discussed above, the H,, control technique can be applied to design a robust
regulator for a flexible-link manipulator. Towards this end, we first augment the
dynamics of the exosystem with the manipulator dynamics, and then define the
error as the difference between the regulated output and the exosystem output.
Since in this chapter we only consider set-point regulation, therefore an integrator
can represent the dynamics of the exosystem as stated in [111]. For simplicity of
control design, the first state is taken as the output, i.e., the tip position. Following
[109] and by considering (5.5) and noting the definition of v from Figure 5.1, we may

write the dynamics of the manipulator augmented with the exosystem according to

t = f(z)+Gu+v (5.9)
é = =Y~ Yref = [1 O2xm+1] T — Yrey (510)
z = [e,u]” (5.11)

where £ denotes the state of the internal model of the exosystem. Note that the
error e is deriving the internal model of the exosystem. In the case of set-point
regulation, the dynamics of the internal model correspond to a pure integrator.
Using the above problem setup, robust regulation is now achieved by designing a
controller that renders ||T},,]|oo <7 while the regulated output e converges to zero

as time tends to infinity, i.e., lim; o, (t) = 0.
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5.5.1 Constrained Disturbance Attenuation

The dynamic equations (5.9)-(5.10) may be represented in the form
X=FX)+G v+ Gy u (5.12)

where X = (27, €)T and

F(X)=F(z)=(fi”)), G=(2) Gz=(f) (5.13)

where I is 2 4 x 4 identity matrix (model order n=4). The corresponding HJI

inequality (3.4) for this system becomes [91]
1 1
Weea F(2:6) +v* + ;Wi (G101 — G2G7) Wi < 0 (5.14)

where

— IW(z, W (z,
Wizs) —( podl 2L )

It is shown in [109] that the solution of (5.14) may be obtained in terms of V(z);
namely from the solution of the HJI inequality for (5.9), we get

VoF(e) 447 + Vs - GETIVT <0
In fact
W(z,€) = V(z) + ||§ — M=)II®
where A(z) is a solution of the partial differential equation

( g2a )F*(xvf)f=)u(z) =0, A0)=0

3z
with

f(z) + (% — GGT)VT )

Iy

F*(zvf) = (

58



After obtaining W (z,£), one can find the following feedback law that renders the
Ls-gain of the corresponding closed-loop system (5.9)-(5.11) less than or equal to

the prescribed number v, namely

1
u=—3(Wie G2)T

5.6 Simulation Results and Discussions

As mentioned earlier, the main objective is to robustly control the tip position of a
single-link flexible manipulator whose dynamic specifications are derived in (5.5) .
The data for the link are given in Appendix A. In this set of computer simulations
only the first deflection mode eigenfrequency is considered. In this section two
separate issues are considered. The first issue deals with parametric uncertainty

and the second one with compensating the hub friction.

5.6.1 Presence of Parametric Uncertainty

For the purpose of defining an uncertainty set, we consider parameter deviations ac-
cording to (5.2). In particular, four parameters are assumed uncertain, viz., payload
mass, hub damping, structural damping and the amplitude of the sigmoidal func-
tion used to model the Coulomb friction. The disturbances w; in (5.2) are taken
as sine functions with amplitude 0.2, i.e., the deviation from the nominal values of
the parameters vary in time by maximally 20%. Note that this kind of disturbance
is not L;-bounded. The simulation results presented here are based on the model
whose state vector is z = [y, 67,67,67]T. To relate the simulation results of these
states to the state vector £ = [y,dF,0T, 6717, it is sufficient to use the nominal
transformation (2.11).

The approximate solution of the HJI inequality is analytically given in ([90],
under expression (83)). It is worth noting, however, that the solution based on such

time integration is too time consuming in MAPLE. Therefore, we use a polynomial
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approximation to V(z) where the coeflicients of the expansion are determined re-
cursively. This is accomplished by first defining a polynomial for V(z) whose order
is the same as that of the approximation for V(z). Algebraic re-arrangement of
all the terms involved results in a linear matrix equality in terms of the unknown
coefficients.

Based on the results developed in the preceding sections a nonlinear controller
was designed to attenuate the effect of disturbances on the controlled output for the
flexible-link manipulator described above. The procedure of designing a nonlinear

robust regulator for a flexible-link manipulator is as follows:
1. Construct the state-space model as in (5.1).
2. Obtain the linear model of the system as in (5.8).
3. Solve the algebraic Riccati inequality (3.7) for P.
4. Compute the linear part of the controller from (3.8) and (3.9).

5. Solve (3.13) for V(™)(z) (m > 2) by means of the polynomial approximation

technique described above.
6. Obtain the higher-order terms of the controller from (3.14) and (3.15).

When solving the HJI inequality in Step 5 of the above procedure one finds that the
transformed model (5.1) can efficiently reduce the complexity of the HJI inequality.

It is natural to expect that if, instead of the exact solution of the HJI equality,
we use only its truncated polynomial approximation, certain performance features
will be compromised. In particular, the closer the controller is to its exact solution,
the larger will be the region of attraction of the equilibrium point. Note, however,
that increasing the order of approximation by one, may not necessarily result in
a significant improvement. In our specific application, it turned out that the per-

formance of the controller did not improve considerably from the linear controller
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by utilizing the second-order controller. The third-order controller, however, did
have a significant effect on the performance. The fourth- and fifth-order controllers
performed identically to the third-order controller. Simulation results revealed that
the third-order controller, in this application, has the ability of performing a 27 rad
maneuver in a stable manner. The complete rotation (27 rad set-point) of a flexible-
link manipulator, in our view demonstrates the advantage of the proposed nonlinear
controller over its linearized controller which becomes unstable beyond a 3.6 rad
maneuver. It turns out that the higher-order controllers do not make a significant
improvement in the performance of the closed-loop system. In other words, the
third-order controller in this application is a sufficiently good approximation to the
exact controller.

Note that near the equilibrium point, the results for both linear and nonlinear
controllers should be close to each other. This statement is verified in Figure 5.2
by showing the results for a step input with an amplitude of 0.1. It follows that
for small inputs, the results for the linear controller and a third-order nonlinear
controller are practically identical (indistinguishable in the figure).

The advantage of the third-order nonlinear controller over its linear counter-
part becomes apparent from the results shown in Figure 5.3. The main reason for the
difference between the results in Figures 5.2 and 5.3 is due to the larger amplitude
of the step input.

The attenuation factor, «, is one of the controlling parameters affecting the
performance of the closed-loop system. As pointed out earlier, the maximum level
of attenuation is limited. This is due to the fact that the algebraic Riccati equation
for the linearized model has a positive semi-definite solution for only a particular
range of v. Moreover, the higher the attenuation factor, i.e., the larger the value of
7, the smaller the region of attraction. Figure 5.4 shows the effect of the attenuation
factor on the performance of the closed-loop system.

As in other optimal control algorithms the controlled output may be weighted
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with respect to the disturbance for obtaining a faster response. Since the cost
function is of quadratic type, increasing the weighting on the output should result
in a more damped response. More emphasis on rise time, however, may result in
a smaller region of attraction. Figure 5.5 shows two cases with 10y and 5y as the
controlled outputs.

As mentioned earlier, the nonlinear controller has the ability of extending the
region of attraction. One particular feature of this region is the dependence of
the stability margin on the input amplitude. By using the same attenuation level
and weighting of the output, the linear controller fails to achieve a stable response
to inputs whose amplitudes exceed a certain level. In the simulations shown in
Figure 5.6, the maximum allowable amplitude for the linear controller is 3.6 rads.
Beyond this limit the closed-loop system becomes unstable. The nonlinear controller,
however, provides in a stable manner a complete rotation of the link, i.e., for inputs

with 27 rad amplitudes.

5.6.2 Compensation for Hub Friction

In this section, we show that the nonlinear controller is capable of handling the effect
of hub friction more effectively than the linearized controller. For this purpose, the
design procedure was repeated in the absence of friction while simulations were per-
formed where the Coulomb friction is present. It should be noted that for low input
torque amplitudes, the simulation results for the linear and nonlinear controllers are
almost the same. However, by increasing the torque amplitude the limitations of
both controllers become evident. Although, the nonlinear controller can still handle
much higher amplitudes as compared to the linear controller. Figure 5.7 depicts the
simulation results for the nonlinear controller. The linear controller, for this level of

torque amplitude results in instability.
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5.7 Concluding Remarks

A dynamical model that is linear with respect to the joint control torques for a
flexible-link manipulator was obtained. In general, in a flexible-link manipulator,
the system parameters may not be known exactly a priori. Consequently, this will
introduce significant uncertainties in the robot’s dynamic model. The uncertainties
considered in this chapter are due to deviations of parameters from their nominal val-
ues. These deviations may be Li-bounded and/or constant. The problem of robust
set-point regulation in the presence of norm-bounded uncertainties was formulated
as the problem of constrained disturbance attenuation. For the purpose of designing
the nonlinear H,, controller, an approximate polynomial solution of the Hamilton-
Jacobi-Isaacs inequality was used. The properties of the resulting controller were
also discussed. It was observed that the nonlinear feedback controller has a larger
domain of attraction than its linear counterpart (the size of this region for the non-
linear controller is almost twice that of the linearized controller for the application
considered in this chapter). Furthermore, it was observed that the nonlinear con-
troller is capable of compensating the hub friction more effectively as compared to
its linearized controller. Although the design technique used in this chapter is based
on full state feedback, the extension to the case of output feedback should be fea-
sible and is is a topic for future work. The proposed control methodology is based
on minimizing the effect of the disturbances on the tip position. It was found that
the performance quality is influenced by input amplitude, attenuation level, and
the relative weighting of the controlled output with respect to the disturbance. It
was observed that the above factors also affect the region of attraction. Therefore,
achieving a desirable performance may require a compromise among them. The
symbolic software package MAPLE was used to implement and design the nonlinear
controller with an arbitrary order of approximation. Simulations were carried out
using both linear and nonlinear controllers. The results clearly show the advantages

and superiority of the nonlinear controller over its linearized counterpart.

63



0.05

(a) (b)

0.1

= e -
S o085 f - RTEEEET R Beeseseeienns .

sec

0.2

O.15¢F- -

0.1

msec

0.05

-0.05
(o}

sec sSec

Figure 5.2: Comparison between the linear (dashed) and nonlinear (solid) controllers
for small inputs: (a) tip position y, (b) tip deflection &, (c) 02, and (d) 4,.
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Figure 5.3: Comparison between the linear (dashed) and nonlinear (solid) controllers
for large inputs: (a) tip position y, (b) tip deflection §, (c) 02, and (d) &,.
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Figure 5.4: The influence of gain on the performance: v = 3 (dashed) and v =
10 (solid): (a) tip position y, (b) tip deflection §, (c) 62, and (d) 6.
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Figure 5.5: The effect of weights on the controlled output: z = 5y (solid) and
z =10y (dashed): (a) tip position y, (b) tip deflection &, (c) 02, and (d) &-.
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Figure 5.6: Simulation results for a 2w amplitude step command using the third-order
nonlinear controller. The linear controller results in instability: (a) tip position y,

(b) tip deflection 8, (c) 62, and (d) &,.
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Figure 5.7: Robustness of the third-order nonlinear controller in the presence of
hub friction. The linear controller results in instability: (a) tip position y, (b) tip
deflection &, (c) 02, and (d) 4,.
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Chapter 6

Robust Regulation of a
Flexible-Link Manipulator Based
on a New Modeling Approach

In this chapter, a new methodology for modeling a flexible link manipulator with an
arbitrarily large number of deflection modes is presented where a part of dynamics
representing flexibility is treated as uncertainty. The synthesis is performed based
on only the certain dynamics of the manipulator. In other words, the proposed
approach to modeling actually characterizes (in some sense) a reduced-order model
of the system. It is shown that the uncertainty treated in this way is norm-bounded.
Control of the tip position is pursued by utilizing the multi-objective He, technique
on the certain part of the dynamics. Robust regulation is obtained by minimizing the
influence of the uncertainty on the tip position. The proposed strategy is applied
to a single-link flexible arm and the simulation results verify the effectiveness of
the analysis and design. Specifically, it is shown that using the proposed scheme,
regulation of the tip position is achieved in a stable manner while using the standard

approach, instability of the tip position occurs.
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6.1 Introduction

In this chapter, a dynamical model for a flexible-link manipulator is presented such
that a portion of the dynamics may be treated as norm-bounded uncertainty. In this
view, the synthesis is performed for only the dominant or certain dynamics of the
manipulator. This scheme, however, is significantly different from the conventional
approaches of order reduction for linear/nonlinear systems [112] and in particular
for flexible structures [113]. Specifically in this part, explicitly or implicitly, all the
dynamics of the system are taken into consideration. In other words, the portion
that is treated as perturbation is incorporated in the design by its maximum possible
gain (in the L, sense) over different values of the inputs.

The main observation that can be made in support of the present methodol-
ogy is the new insight and perspective that it provides by enabling a comparison
between the mechanical behavior of flexible-link and rigid manipulators. Clearly the
flexibility of a lightweight manipulator ~when the compliance behavior itself is not
the main objective— is not an inherent nor a desirable property of the arm; rather
it is to be treated as an undesirable feature to be compensated for. The flexibility
is basically due to the mechanical properties of the material used for building the
robot and the dimensions of each link. From another point of view, even the com-
mon rigid robots, to a certain extent, are flexible. The only difference is that their
flexibility may be ignored in modeling and control without introducing significant
errors in the performance. In other words, for flexible arms, the flexibility may be
interpreted as a perturbation acting on a rigid robot.

Since a flexible-link manipulator is a distributed parameter infinite dimensional
system, the conventional approaches to control design truncate the model up to a
certain number of deflection modes. This is also motivated by the fact that the
impulse response of a truncated model based on two or three deflection modes, in
general, is close to the impulse response of the actual arm. As a result, it might be

tempting to suggest that in most applications, a model based on two modes should
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be sufficient. However, the implication of ignoring the higher frequency modes which
lie within the bandwidth of the sensors and actuators is that these modes could get
amplified by the control system that could eventually lead to instability.

The modeling approach proposed in this section is motivated by representing a
part of the original dynamical system as unmodeled dynamics. To clarify this point,

consider the following system with the state vector X := (zT,vT)T

z = Asz+ A v+ Bz, (6.1)
v = Apz+ Ay v+ B, u, (6.2)

where (6.2) is norm-bounded. It will be shown that it is possible to treat (6.2)
as unmodeled dynamics interconnected to (6.1). In this way, one may synthesis a
controller for the system (6.1)-(6.2) based on only (6.1) in which the coupling terms
are treated as being unmodeled.

As pointed out above, in the standard way of modeling flexible-link manipu-
lators, the system is assumed to be finite dimensional, and the synthesis is directly
performed based on the corresponding model. In the modeling approach proposed
in this chapter, however, the system may have arbitrarily large number of deflection
modes. Although, the synthesis is performed on a finite-dimensional system, the
controller designed may actually be applied to control the real system which is an
infinite-dimensional system.

The objectives of this chapter are to provide a dynamical model for a flexible-
link manipulator with an arbitrarily large number of deflection modes and to design
a robust regulator based on the multi-objective H, control technique. The outline
of the remainder of the chapter is as follows. In Section 6.2, the new approach
for modeling a flexible-link manipulator is introduced. Properties of the resulting
model are investigated in Section 6.3. Section 6.4 presents the results of the multi-
objective He, control design. The framework for applying the proposed modeling

approach to a flexible-link manipulator is given in Section 6.5. Simulation results
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and conclusions are provided in Sections 6.6 and 6.7, respectively.

6.2 A New Approach to Modeling a Flexible-
Link Manipulator

The dynamics of an n-link rigid robot arm may be expressed by a set of n differential

equations [74],
M(8) 6 +ny(6, 0) + F.(8) + Fiub = u (6.3)

where @ is an n-dimensional vector denoting the joint positions of the robot, n;
represents the Coriolis and centrifugal forces, F. denotes the Coulomb friction, Fj
is the hub damping, and u is the vector of joint control torques.

Recall that in the case of a multi-link flexible-manipulator, the dynamic equa-

tions for a flexible-link arm can be derived following a Lagrangian approach [17]:

e}+{n1(0,0,&5) +[Fc(9)+F’*.0} =[”] (6.4)
K5+ Fyé 0

M(5,0) | .. :
n2(91 07 6)
where M(4,0) is the positive-definite symmetric inertia matrix. Let n and m; (¢ =

)

1 ... n) be the number of joints and deflection modes of the ith link, respectively.
Then the inertia matrix M(6,5) would be an r x r matrix, where r = n + Y%, m;,
6 =[8;, ... &m]" is the vector of modal amplitudes, n; and n, are Coriolis and cen-
trifugal terms, respectively, F, denotes the Coulomb friction, F} is the hub damping,
K, is the stiffness matrix, F; is the structural damping matrix and « is the joint
control torque.

A simple comparison between (6.3) and (6.4) reveals that the number of control
inputs in a rigid manipulator, i.e., n is the same as the number of mechanical degrees
of freedom, whereas this is not the case in a flexible manipulator where the number

of mechanical degrees of freedom is n + 3%, m;. Hence, a flexible-link arm is
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an under-actuated system in which the control is to be designed so that the rigid
displacements as well as the flexible deflections have simultaneously certain desired
behaviors. This limitation makes the control problem of a flexible-link manipulator
significantly more complicated than the same problem for a rigid manipulator. The
aim of this chapter is to provide new insight into the notion of flezibility of a flexible-
link manipulator. In fact, we show that it is possible to treat a part of the flexible
dynamics as being uncertain.

Towards this end, let us view some portions of the dynamics that could possibly
include flexible modes as unmodeled dynamics. Although the term unmodeled refers
to a subsystem whose dynamics are not known, it is used here to emphasize that
the complete characteristics of this subsystem will not be utilized in the synthesis.
If this is feasible, then the synthesis has to satisfy the design specifications for only
the known dynamics, hereafter referred to as the plant. The unmodeled dynamics,
on the other hand, may be considered as a subsystem that is connected to the plant.
In this section, our objective is to apply the above concept to a single-link flexible
manipulator. The extension to a multi-link flexible manipulator should in principle
be feasible and is a topic for future work. The modeling approach is applicable to
linear as well as nonlinear models of flexible-link manipulators. Since our proposed
synthesis is based on a linear multi-objective control strategy, therefore we consider
only the linearized model of a flexible-link manipulator in the modal coordinates.

The model is given by [11, 80, 62]

X = AX+Bu

y = CX (6.5)
with
X = (xg‘7zf1”'1xz‘n)T; To = (07é)T7 i = (6i18i)T7 i=1,...,m
, 0 1 0 1
A = dJa.g (AO,AI,...,Am); Ao= , Ai= ’
0 -« —w? —2&’6«),’,
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0
B = (Bg‘aBl?’a'-"Bi)T; Bozﬁ(1)7 B"

1

0
B ) ,
( #:(Lo) )
B = IoF Jo+ Jo % MLLZ)

C = (CoCure-sCmli Co=( Ly 0), Ci={( élLa) 0), (6.6)

where y is the tip position, m is the arbitrarily large number of flexible modes, «
denotes the corresponding pole of the rigid dynamics, (w;, &) are the frequency and
damping ratio of the 7th deflection mode, I is the hub inertia, J; is the inertia of
the beam about the motor armature (= %pLg), p is the mass per unit length, M} is
the payload mass, Lo is the length of the link, J;, is payload inertia, —é- is the total
inertia about the armature, and ¢; represents :th mode shape.

Note that the design technique used in this chapter is state feedback. Conse-
quently, for simplicity of design, the first state is taken as the output, i.e., the tip
position. Taking the output as the first state implies that the first row of A should
be changed and C is replaced by the first row of the identity matrix. The state-space

model in this case is given by (6.5) with state vector defined as
X = [yvo-afglagla--',&rzv(s-m]T (6-7)

The transformation that transforms X in (6.5) to (6.7) is given in Appendix C.
Now, let v = [4;, Siven, Jm’Sm]T, (z > 1) denote the part of the state that is

to be treated as uncertainty corresponding to unmodeled dynamics. The certain dy-

namics in this setting corresponds to the state vector z = [y, é, 61,61, .. ,0i1, Si_I]T.

Therefore, the state-space representation of the system is in the form (6.5) with

Az Az B,
A = y B = y C = ( 1 02xm+1 ) ) X = (zTa UT)T(G'S)
0 A, B,

z = [y,0,61,61,-..,8i1,6i4]T, v=1[656:...,6m,0m]T (6.9)
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where

— - ~

0 Lo 0 ¢1(Lo) 0 ¢i—1(Lo) 0 ¢:(Lo) 0 ém(Lo)
0 —«a 0 0 0 0 0 0 - 0 0
A, 0 y Agy = 0
0
I 0 Air ] i 0 .
A, = diag (Ai Aiv1,---, Am), Bz =(BJ,B{,...,BL))T
B,=(Bf,BL,,...,BE)T (6.10)

Therefore, the system can be represented in the form

(plant) z Acz+ Ay v+ B u, y: =z1 =y (6.11)

(unmodeled dynamics) @ Asv+Byu, y,=C, v (6.12)

where C, is the first row of Az,. In the above partitioned form, the subsystem (6.12)
may play the role of an uncertainty coupled to the certain subsystem (6.11) provided
that the Ho, norm of the uncertainty is bounded. The above representation is shown
schematically in Figure 6.1. The plant has two inputs (v, u) and two outputs (z,X).
The first input y, represents the disturbances to be rejected. The second input is the
control input u that is used for feedback design. The controlled output z represents a
penalty variable, which may include a tracking error, as well as a cost of the control
input needed to achieve the prescribed goal. Note that in the case of stabilization
the first component of z may be the output itself whereas in the case of regulation
the first component of z may be the difference between the output and the reference
signal which we denote by e. The second output is the measurement = that is made
on the system. This is used to generate the control input, which in turn is the tool
we have to minimize the effect of the exogenous input on the controlled output. A
constraint that is imposed is that the mapping from the measurement to the control
input should be such that the closed loop system is internally stable. The effect of

the ezogenous input on the controlled output after closing the loop is measured in
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terms of their energies and the worst-case disturbance of the closed-loop system. Our
measure is the closed-loop Ho, norm which is simply the L, induced norm. Suppose
the objective is to only stabilize the system, i.e., the system has no exogenous input.
By virtue of the small gain theorem, if the plant is stable, the overall system would
remain stable if the product of the L, gains of the plant and unmodeled dynamics
is less than one. It is clear that in the case of an unstable plant, one has to first
stabilize the system by designing the control law u based on the available states and

then apply the small gain theorem to ensure stability.

-
i i
! C )
: Yy unmodeled Z=[ ux !
! dynamics !
! ]
1 §
1 1
: ; - X
u ! . plant X=|-
, > v
1
)
1
]
1

Figure 6.1: Partitioning the flerible-link dynamics into two subsystems: plant

and unmodeled dynamics where z = [y,0,81,81,...,6i—1,6i4]T and v =
[6:,0¢,- -+ s 0my 6T (3 2> 1).

The next section examines the properties of the proposed model of a flexible-

link manipulator in view of the above discussion.

6.3 Properties of the Proposed Model of a Flexible-
Link Manipulator

As pointed out earlier the model represented by equations (6.11)-(6.12) can be used
to reformulate the problem in the framework of Figure 6.1. In this setting the

state vector is partitioned into two parts. One part represents the plant dynamics,
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while the remaining part represents the unmodeled dynamics. Consequently, only
the dominant part of the states in the model (6.11)-(6.12) will be considered for the
purpose of synthesis. Note that the unmodeled dynamics enter into the synthesis
only through their maximum possible gain —in the L, sense— over different values of
the inputs.

To show the boundedness of the unmodeled dynamics, recall the condition

under which a linear system has a bounded H,, norm:

Theorem 6.1 [114] The H., norm of a linear system is finite if and only if its

transfer function is proper and has no poles on the imaginary azis.

From the structure of A, = diag (A:, Ait1,-..,4m) it is easy to see that A, is
Hurwitz. This in turn shows that the dynamics represented by (6.12) are stable.
Moreover, since there is no through-put between u and y,, the input-output map
is stable and proper. Consequently, according to Theorem 6.1, the unmodeled dy-
namics represented by (6.12) have finite H,, norm. Let the mapping induced by
unmodeled dynamics be represented by A. The calculation of ||A||« is an iterative

process. This process for a system given by equations
i = Az + Bu
y = Cz

accounts for the search of that v such that the matrix
A v~2BBT
Rv)=| _ _ _
-CTC AT

has one or more eigenvalues on the imaginary axis. The procedure can begin with
an upper bound for v and search from there. It helps to realize that the matrix R(v)
is a symplectic matrix which has the property that its eigenvalues are symmetrically
located with respect to the j-axis.

In the following section, however, we compute the H,, norm of the unmodeled

dynamics by using a balancing technique for linear systems.
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6.3.1 Balanced Realization

The dynamical system given in (6.12) has in fact the dynamics of a flexible structure
that was studied in {115]. The H norm of a flexible structure may be computed
from its balanced realization. In this section, we briefly review the definition of a
balanced realization.

Consider the triple (A, B,C) representing an nth order linear system (6.5).
Let \; be the i-th eigenvalue of A and impose the condition ; + X; # 0 for every

1,7 = 1,...,n. The controllability and observability Grammians are defined as

follows [116]
W, = /ot eATBB AT dr, W, = /Ot AT CCreA™ dr,
These Grammians satisfy the equations
W.=AW,.+ W.A"+ BB*, W, =A"W,+W,A+C*C (6.13)

The stationary solutions of (6.13) such that W, = W, = 0 are determined from the

Lyapunov equations
AW.+W.A"+BB* =0, AW, +W,A+CC =0 (6.14)

Note that stationary solutions exist for both stable and unstable systems with the
difference that for stable systems, the solutions are positive definite. The sys-
tem (6.5) is said to be balanced if its controllability and observability Grammians

are equal and diagonal [116].

6.3.2 H, Norm of the Unmodeled Dynamics

Using the similarity between the unmodeled dynamics and the dynamics of flexible
structures, we exploit the relevant results from flexible structures to compute the
H, norm of the unmodeled dynamics. It is shown in [117] that the H,, norm of

the dynamics of a flexible structure is approximately equal to 2v2, where v, is the
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largest Hankel singular value of the system. Recall that the Hankel singular values
for a system whose controllability and observability Grammians are W, and W,,
respectively are defined as the square roots of the eigenvalues of W_.W,. Since the
Hankel singular values are in decreasing order, i.e., i > Y41, (¢ = 1,...,m — 1),
the H,, norm of the unmodeled dynamics can be determined by simply inspecting
the block corresponding to mode # 1, i.e., by computing the Ho, norm of the system
(A;, B;, C;) where 7 is the index of the first state of the unmodeled dynamics. In the
following theorem we show how the H,, norm of the unmodeled dynamics may be

related to the parameters of the unbalanced system.

Theorem 6.2 Let A be the operator that maps the input to the output of the unmod-
eled dynamics defined in Figure 6.1 with state vector v = [§;, 6;, ... ,8pm, Sm]T (z>1).
Then an upper bound for the H,, norm of A is given by

[8¢i(Lo) ¢i(Lo)| (6.15)

iw?

Proof: As pointed out earlier, the Hy, norm of A is approximately 2vZ, where 7;

1Al <

is the largest Hankel singular value of the system [117], i.e. [|A[lo & 272 where
71 = max; \/Ai(I'2) and I'? = W, = W, in the balanced coordinates. Let the triple
(As, B;, C;) be the system matrices corresponding to mode # ¢ in modal coordinates,

(see (6.6)), i.e.,

0 1 0
A,‘ - y Bi = 3 Ci = n
( o ) 5 ( st ) (¢zo) 0)

It is shown in [118] that the balanced system is approximately given by

Ay = (wq_/f—ii—"f? “w‘_‘éz—’_&?) By = ( _11 ) ,Cp = sgn(&)ﬁ( 11 ) (6.16)

where



This follows from the results of [119] where the balanced and modal coordinates
are almost the same if damping is small and all frequencies are widely separated.
Referring to (6.14) and adding the left (right) sides of the equations together, we
get

(As + AT) T2+ T2 (As + AT) = —(BsBf + CICy)
Noting that both I" and (A; + A7) are diagonal, we obtain

(Ao + A7) T2+ T2 (A + A])l| = 2|IT?||[|4s + AF || = 4&w: ||T|I?
||BbBbT + C;I‘Cb” < BbTBb + CbCz,T

As a result

BbTBb + CbC;r
4&;w;

T <

Consequently, the inequality (6.15) follows by substituting the matrices B, and C}
from (6.16) in the above expression. A
Note that one may evaluate the H,, norm of the unmodeled dynamics by using

any of the following three methods:

® By considering the full system matrix A, consisting of sub-blocks #i,...,#m

to compute the norm based on the general procedure given by, e.g., [98].

e By considering only the first sub-block of system matrix A,, i.e., sub-block #:

to compute the norm as in [117].
¢ By computing the upper bound using (6.15).

The first method is probably the most obvious way of computing the H., norm.
However, because of the large dimension of the full block matrix, the method is
computationally very time consuming. In the second method, we need the balanced

realization of the system, whereas in the third method, the H,, norm is computed
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for the original model of the system that may be unbalanced. Figure 6.2 shows the
H, norms for the unmodeled dynamics of the flexible-link arm described in Tables

A.1 and A.2 in Appendix A. by using the above three methods.

‘on R R R SR IR 3

107k

107 E

107

Infinity norm of unmodeled dynamics

10~ M i i
1

2 34 s 6 7 8 9 10
Number of last modes treated as uncertainty

Figure 6.2: Norm of the unmodeled dynamics of a flexible-link manipulator with
ten eigenfrequences based on: block #1 (solid), blocks #1i,...,#10 (dashed), and the
upper bound given by 6.15 (+).

Two observations may be made from Figure 6.2. First, the relevant norms
based on block #: and blocks #t,...,#10 are considerably close to each other
implying that for computing the infinity norm of the unmodeled dynamics, it suffices
to compute the norm based on only the first block. The second point is that this
norm has an upper bound that can be easily computed by using the original model

of the flexible-link arm.

6.4 The Design Technique

It is widely accepted that no mathematical representation can exactly model a phys-
ical system. Very often the plant to be controlled is not exactly known or more pre-
cisely is only known to belong to a certain class of systems. In this case, we say the
plant is uncertain and denote the set which the plant belongs to as an uncertain set.

For this reason, the designer must be aware of how modeling errors might adversely
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affect the performance of a control system.

6.4.1 Multi-objective H,, Control

In this section, we review the results of [120, 111] concerning multi-objective Ho,

sub-optimal control with the controller constrained to achieve robust closed-loop

regulation.

Let A denote the map from z to v and Pa be as shown in Figure 6.3. Assume
that the L, norm of A is bounded by some positive number. The Problem of Robust
Regulation in the presence of Gain-Bounded Uncertainty (RRGBU) may be stated

as follows: Given a real number v, > 0, design a controller such that for all gain-

bounded A with ||Alle < 1/74,
e the controller internally stabilizes Pa,
o the regulated output e converges to zero as t — oo,

e the convergence property holds for all plants in some neighborhood of P, in

the sense of the graph topology.

Throughout. this chapter, the finite-dimensional linear time-invariant system

z = az -+ bju; + baus

y1. = caz+dnu +dizus
Y2 = car+d2iu; + dazus
is represented by
a b; bs
Tyu ~ Cc1 di; di2 (6.17)

c2 d21 da22
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exosystem

controller -

Figure 6.3: Setup for the problem of robust regulation in the presence of gain-bounded
uncertainty (RRGBU).

where Ty, is the transfer function mapping input u to output y. According to this

representation, the plant (6.11) may be expressed as follows:

Az Az, 0 B;
B~ C]_ 0 o0 D12 (618)
I 0 —I 0

where the controlled output z and the output e are defined by

C; 0 Crz
z = Ciz+ Dyyu:= z+ u=
0 I u

€ = T — e (6.19)

where C; = [1 O2xm+1]-

Note that our proposed design technique is based on state feedback. However,
since the first state was defined as the output, therefore, the z..; is defined as
[Uref O2xm+1]. By the Internal Model Principle [121], any controller that solves the
output regulation problem, internally incorporates a model of the dynamical system

generating the reference trajectories. In other words, a copy of the ezosystem is
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augmented as a subsystem in the compensator dynamics. In view of the above, the
following definition characterizes the dynamics of the exosystem for incorporating
in the synthesis. The frequencies wy, ...,wn are associated with the reference input

trajectory where w = 0 corresponds to a step input.

Definition 6.1 (Internal model matrices) [111]: A and B are internal model matri-
ces associated with the robust regulation problem determined by wy, ...,wn if these

matrices satisfy
1. spec(g) = {*+jwy, ..., £Jwn},
2. every eigenvalue of A has multiplicity 1,
3. A is diagonalizable, and
4. (A, B) is controllable.

As an example, if the regulation against say w, is sought, we may set A and B as

follows

We are now in a position to address the solution to the robust regulation
problem for the setup shown in Figure 6.3. It is shown in [111] that this problem is
equivalent to the problem of Robust Regulation with an H,, Constraint (RRH,C).
The setup for RRH,,C is obtained from Figure 6.3 by removing the unmodeled
dynamics block. The design of the robust regulator for both setups, i.e., RRGBU
and RRH.,C requires the results of the following theorem. The notation T3, denotes

the operator that maps v onto 2.

Theorem 6.3 [111]: Assume (Az, B;) is stabilizable and (C1, Az, Az) has no un-
controllable/unobservable modes on the imaginary azis. Assume also that DL,C, =0

and DE, D12 = I. Then the following statements are equivalent
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o There exists a controller that solves the robust regulation problem from w to

e at the frequencies wy,...,wy while also making ||[T,||lo < v (the RRH,C

problem).

o There ezists a controller that renders ||T:y|oo < v and
v*TeB.BIT; > T A, AL T; (6.20)
forallk=1,...,N, where T, and A are defined from

Te: = [1 02xm+1] (jwkl —Z)_l
— 1
A: = A+ (5AnAL — B.BI)P (6.21)
7
and P 1is the stabilizing solution to

ATp 4+ PA,. + P(’Y—IL,ANAZ,, ~B.BOHP+CIC, =0 (6.22)

Moreover, if either of these conditions hold, then a controller that solves the robust

regulation problem from w to e at the frequencies wn,...,wn is given by

| ] o]
K. ~ 2xml | . (6.23)
BILTW-' | —-BTP — BTLTW-1L

where L is the unique solution to
[A-AL=B [ L Opemen ] : (6.24)

the internal model matrices A and B satisfy Definition 6.1, and W is a positive

definite matriz that satisfies the Lyapunov inequality
AW + WAT + %LA,,,,AZULT — LB, BTLT <. (6.25)
Y

Remark 6.1 The coupling condition (6.20) has an intuitive interpretation in the
frequency domain. Referring to the definition of T%, one finds that T: B, and T Az,
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are the open-loop transfer functions from u to e and v to e, respectively (see Fig-
ure 6.3). Therefore, T B.BI T and T AzwAL TF may be considered as the square
of the magnitude of the corresponding frequency responses. Consequently, the in-
equality (6.20) provides the ratio of the above magnitudes which in turn yields the

attenuation provided by the controller.

To synthesize the controller (6.23), one must solve a Riccati equation for P, a linear
matrix equation for L, and a linear matrix inequality (LMI) for W. A solution
for L always exists, since A and A have no eigenvalues in common [111]. In the
simple but important case where the only frequency of interest is w; = 0, W may
be computed easily. Specifically, in this case, A = 0 so any positive-definite matrix
is an acceptable choice for W. The general case is also tractable, since the LMI is a

finite-dimensional convex feasibility problem [122].

6.4.2 Robust Regulation Based on Partial State-Feedback

In Section 6.2 we observed that it is possible to partition the state equations of
a flexible-link manipulator such that part of the state is treated as uncertainty.
As seen from Figure 6.3, in this case the plant is interconnected to the unmodeled
dynamics. In this section we study the problem of designing a robust regulator for
a system that is interconnected to unmodeled dynamics.

By virtue of Theorem 6.3, the robust regulator is designed for a linear inter-

connected system described below. Specifically, consider the stable linear system

v = A,v+ B, u,
Yo = Cv v (6.26)

By assumption A, is Hurwitz. According to Theorem 6.1, the H,, norm of the
system is finite. This norm may be evaluated from the algebraic Riccati equation

as shown in [123]. It is the smallest positive parameter v, such that the algebraic
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Riccati equation below has a positive-definite solution
1
ATP, + P,A, + ?P,,B,,B:f B,+CTC,=0 (6.27)
Furthermore, consider now a linear system

X = AX+Bu
y = CX (6.28)

X=(z),,4=(f;= iﬁ),g:(i’:),c*:(c:o) (6.29)

with z as the state of a finite-dimensional linear system, v the state of system (6.26)

where

and A;, Az, B and C; matrices with appropriate dimensions. Using the above

definitions, the main result is now stated by the following theorem.

Theorem 6.4 Consider the linear systems (6.26) and (6.28) with definitions given
in (6.29). Let (A, B:) be stabilizable and (Cy, Az, Azy) with Cy defined in (6.19)
have no uncontrollable /unobservable modes on the imaginary axis. Let the H,, norm

of (6.26) be v,. Suppose the Riccati equation
AP+ PA; + P(%AWAZ,, -B.BNYP+CTC, =0 (6.30)

has a positive definite solution P for some v < 7—1" Then the controller K. given

by (6.23) solves the robust regulation problem for the system (6.28).

Proof: Let us first partition system (6.28) into a plant and an unmodeled
dynamicsas in (6.11) and (6.12) with the difference that the output hereis y, = C; z.
Let the dynamics of the plant be described by

z = Arz+ A, v+ B u
vy = Crz (631)
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Consider the dynamics of v given by (6.26), represented in the form

C: z
13=A,,v+B,,u=A1,v+[0 Bu][

u

Let the controlled output of (6.31) be given by (refer to (6.19))

Cz 0 C: z
z2=Ciz+ Dyp u:= T+ u= (6.32)
0 I u

Note that the above definition satisfies the conditions szCl = 0 and D1T2D12 =1
in Theorem 6.3. Therefore, (6.26) may be represented by a system having a finite

Ho, norm that is
v=A, v+ B; z (6.33)

where By = [0 B,] and B,Bf = B,BT. By invoking Theorem 6.1 it follows that
(6.33) has a finite Ho, norm denoted by +y,. Therefore, system (6.33) may be treated
as unmodeled dynamics to be coupled to system (6.31). Consequently, we might
subsequently ignore this part of the dynamics in (6.28) and perform the design
based on only the dynamics governed by (6.31). Towards this end, the only required
knowledge from (6.33) is its Ho, norm. Hence, by reformulating the problem into
the framework of Figure 6.3, the result now follows by applying Theorem 6.3 to
system (6.31). A

Remark 6.2 Although the controller uses all the states of the system (6.31), i.e.,
z, with respect to the full order system (6.28), it utilizes partial state feedback of
X. Therefore, robust regulation for (6.28) is actually achieved by only partial state
feedback.
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6.5 Framework for Application of the Proposed
Modeling Technique

The multi-objective Ho, control technique based on the modeling approach devel-
oped in this chapter may be applied to many physical systems. The principle behind
the proposed methodology is that the system under control should possess a two-
time scale separation, namely, low and high-frequency subsystems. The restriction
imposed is that the high-frequency subsystem should be stable to result in the norm- .
bounded property. The design based on the multi-objective H,, technique proceeds
by considering low-frequency subsystem while treating high-frequency subsystem as
unmodeled dynamics. One of the practical applications that fits into this framework
is the flexible-link manipulator which is studied in the next section. In fact the rigid
dynamics that characterize the dominant motion of the joints correspond to the
low-frequency subsystem and the deflection dynamics due to flexibility of the links
correspond to the high-frequency subsystem. Assuming that all damping including
the flexural damping, are positive and nonzero, the high-frequency subsystem is

stable and hence norm-bounded.

6.5.1 Application to a Flexible-Link Manipulator

As discussed above the multi-objective Ho, control technique can be applied to a
flexible-link manipulator. The conventional use of Hy, technique proceeds by first
finding a mathematical description of the uncertainty set. The uncertainty set is
constructed based on the nominal plant. Towards this end, one has to define the
uncertainty set in such a way as to cover all possible plants in the corresponding
topology. In the modeling approach of this chapter, the uncertainty arises from the
plant itself. In fact, the plant is partitioned such that some of its dynamics are con-
sidered as being uncertain. Consequently, it is possible to show that a flexible-link

manipulator may be represented by (6.11) and (6.12). The uncertainty constructed
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in this way includes some of the deflection mode dynamics. However, what remains
to be established is the dimension of the uncertainty dynamics so that the design
conditions are satisfied. It appears that an infinite number of modes have to be

considered for this purpose. This issue is addressed by the following corollary.

Corollary 6.1 Let the flezible-link manipulator with m deflection modes be de-
scribed by (6.11) and (6.12). Let also the deflection modes #i onward be considered
as uncertainty, i.e., v = [5,-,5;,...,5;,,5,,]7' where the number of modes, p, can be
arbitrarily large (p — o0). Consequently, the problem of multi-objective Hy, design
for system (6.11) based on v = [6;,6;, ... ,JP,SP]T s equivalent to the same problem

based on v; = [8;,6:]T in (6.12).

Proof: In Section 6.3.2 it was shown that to compute the infinity norm of the
unmodeled dynamics it suffices to compute the norm based on only the first block.
Hence, based on the upper bound obtained in Theorem 6.2, it follows that to design
a controller for compensating the deflection modes #, #(i+1), #(: +2), ... it suffices
to design a controller to compensate for only the deflection mode #i. A

For the purpose of design, we have to specify the value of ¢, i.e., the index of the
state after which it is considered as uncertainty. It is clear that the smaller the 7, the
smaller is the size of plant, i.e., the dimension of z in (6.11). Therefore, it is desirable
to choose the smallest possible value of i. From a physical point of view the problem
is to determine the number of deflection modes that can be treated as uncertainty.
Intuitively, for very flexible manipulators the first few modes should be taken into
account in the plant representation. This is due to the fact that flexibility is an
inherent feature of such manipulators and hence cannot be treated as uncertainty.
Nevertheless, even for very flexible manipulators, it is always possible to treat some
higher elastic modes as uncertainty. The following procedure illustrates the steps to
be taken for finding the minimum value for i. The algorithm for designing a robust
tip position regulator is based on the proposed model of a flexible-link manipulator

described in Section 6.2. The procedure is as follows:
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Step 1. Specify the dynamics of the exosystem based on Definition 6.1.
Step 2. Setz = 1.

Step 3. Construct equations (6.11) and (6.12).

Step 4. Find the upper bound of v, using (6.15).

Step 5. Check if (6.22) has a positive-definite solution for some v < :}J

e If yes, go to Step 6.

e [f no, set 2 =7+ 1 and go to Step 3.
Step 6. Compute A from (6.21) and solve (6.24) for L.

Step 7. Solve inequality (6.25) for W, e.g., by means of MATLAB based softwares
lmitool [124] and SP [125].

Step 8. Construct the controller (6.23) from the information obtained above.

Since the above procedure begins with i = 1, it will always result in the minimum

value for 7 such that all the conditions of Theorem 6.3 are satisfied.

6.5.2 Presence of Parametric Uncertainty

In many applications of flexible-link manipulators, the system parameters are not
known exactly a priori. For instance, the load may vary while performing a task, or
the coefficients of friction and damping may change depending on the configurations.
Thus, there may be significant uncertainty in a manipulator’s dynamic model. To
study the effects of this parametric uncertainty, consider the linearized model of

(6.4) in configuration space

QA -
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where F' and K are damping and stiffness matrices, respectively. Following [38],

consider the following perturbations:

e uncertainty in the inertia matrix due to load changes (AM)
e uncertainty in the matrix F' due to friction changes (AF)

e uncertainty in the matrix K due to configuration changes (AK)

In other words, the matrices in (6.34) may be represented by the sum of a nominal

part and a perturbed part, specifically
M:=My+AM, F:=Fy+ AF, K:=Ky+ AK

where Mo, Fo and Ky are the nominal matrices that are assumed to be known,
whereas the parameter perturbation terms AM, AF and AK are assumed to be
unknown. By considering the above perturbations, the dynamic equations for the

manipulator become

0 9 U
(Mo +AM) | | |+ (Fo+AF)| . | +(Ko+ AK) = (6.35)
) 5 ) 0
Let q; := [07,67]T. Therefore, 7 := —(AM §+ AF ¢+ AK q) may be taken as

the total disturbance due to parametric uncertainty. Therefore, using the above

definition, the dynamic equation of the manipulator may be represented in the form
Mogi+Fogqi+Koqg =Gu+r1 (6.36)

where G = [I 0]7. Note that the dynamic structure of (6.36) is different from
that of (6.11). As a matter of fact, the perturbations AM, AF and AK are more
appropriately explained in terms of the mass-spring structure of (6.34). However,
the model of a flexible-link manipulator used in this chapter is in the state-space
form (6.11). There are two possibilities for representing the perturbations in state-
space form, namely, independent and fractional representations. In the former, the
perturbations appear as an independent exogenous input to the system. In the

latter, the perturbations are stated in terms of the states and inputs.
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6.5.3 Independent Representation

By defining g = [¢7,¢1T]7 as the state vector, the following state-space representa-

tion of (6.36) is obtained

. 0 I 0 0
qg= q+ u + T (6.37)
-M'K —-M-'F -M-G -M-1

The above system can be transformed into (6.11) by using an appropriate similarity

transformation T such that X = T'q (for details refer to Appendix C).

6.5.4 Fractional Representation

In view of (6.11) and (6.12), parametric uncertainty corresponds to the following

structure

g = (A2+AA;) z+ (A%, +AAL) v+ (B +AB,) u (6.38)
v = (A2+AA)v+(B°+AB,) u (6.39)

where (.)° denotes the nominal value of (.). Since the control is applied to only (6.38),
any perturbations AA, and AB, that satisfy the conditions of Theorem 6.4 may be
considered as admissible perturbations for the uncertain part of the dynamics. The

certain part of the dynamics, i.e., (6.38) may be written as

z
t=Alz+ AL, v+ B2 u+ (AA, P AAL, P AB,) | v (6.40)

u

Note that Ap := (AA; : AA,, : AB;) may be considered as a linear operator hav-
ing a bounded norm. In fact, the co—norm of A4 may be computed as ||[Aap|lc =
max; 0;(A4B), where o; denotes the singular values of A,g. Since the elements
of Asp even for constant deviations of parameters are bounded, hence |AaB|leo is

bounded for constant parametric uncertainties. The representations (6.37) and (6.40)
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both contain terms representing parametric uncertainty. There is, however, an im-
portant difference between these two representations. In (6.37), the exogenous input
T enters the system independent of the states and/or the control input of the system.
If the H,, methodology is to be used as a design technique, then 7 in (6.37) must
be L, bounded. In other words the independent representation does not tolerate
constant parametric deviations from nominal values. In the fractional representa-
tion (6.40), however, the uncertain part due to parametric uncertainty depends on
the state X = [zT,vT]T and the control input u. Schematically one may modify
Figure 6.1 to obtain Figure 6.4 where the parametric uncertainty may be treated
as an extra block interconnected to the whole system. In terms of the results of
Theorem 6.4, the stability of the closed-loop system may be ensured if the operator
that maps Z to V (see Figure 6.4) is norm bounded. Consequently, for the purpose
of design, the configuration shown in Figure 6.4 will be utilized.

— et . - - . wn m - - E— e e o - - - — - -

i 1
I |
1 I
I 1
I A A !
: 4 parameter z I
.o - . X
: V uncertalnty Z :
I I
: ~v_| unmodeled z :
: dynamics :
: A {
J !
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I I
! [
: } X
" , plant L X =]
T - T gl Vv
| !
t I
i i
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Figure 6.4: Treating parametric uncertainty as unmodeled dynamics, where Z =
(2T, uT,vT)T, 2 = (2T, uT)T, 5 = Aup 2, and V = (6T,vT)T. The variables z and
v are defined as in Figure 6.1 .
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6.6 Simulation Results

In this section the methodology proposed in the previous sections is applied to a
single-link flexible manipulator with six modes of deflection (m; = 6). The objective
is to design a regulator so that the tip position robustly tracks a reference signal
with a specified frequency w,. Note that set point regulation is included in the above
formulation by setting w, = 0. The design proceeds by utilizing the eight steps in-
troduced in Section 6.5.1. The link parameters as well as the natural modes and the
corresponding damping ratios used for design and simulation are given in Tables A.1
and A.2 in Appendix A. Table A.3 in Appendix A gives the pole-zero locations of
the 14th-order model of the single-link flexible manipulator considered in [19]. By
utilizing the procedure of section 6.5.1, the minimum value for 7 was found to be
three. In other words, three deflection modes (m; —i = 6 — 3 = 3) are eligible to be
considered as uncertainty. To verify and illustrate the effectiveness of the proposed
method and to establish a comparison between the results of the design based on
our approach and a standard modeling approach, the design is also performed for
a 3-mode system, i.e., a system without unmodeled dynamics. In other words in
our proposed method the controller is capable of handling the unmodeled dynamics
as well as the uncertainty due to parametric deviations. In the standard modeling
approach, however, the controller handles only the effects of parametric uncertainty.
The details of the system and controller parameters for both the proposed and con-
ventional methods are given in Appendix D. To represent the effects of parametric
uncertainty, the elements of the system matrix were corrupted by randomly selected
values. Specifically, if the perturbation matrix, denoted as Ay in Appendix D, is
modified to 1.17 A4, unlike the proposed scheme, the standard model becomes un-
stable. Figures 6.5-6.16 depict results that demonstrate the superior performance
of the controller designed based on the proposed model as compared to the con-
troller that is designed based on the standard model. By adjusting the weights on

the controlled output and the controlled input, it is, in general, possible to tune
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the controller to achieve a given set of desirable performance specifications. Conse-
quently, for the sake of comparison, in both cases, all the weights are selected to be
identical. Figures 6.5 and 6.6 depict the different states of the two controlled sys-
tems in response to a step input. The control inputs are shown in Figure 6.7. As can
be seen, the controller that is designed based on the standard model requires higher
effort as compared to the controller designed based on the proposed model. Let us
define the value of the controlled output energy over the disturbance energy for the
proposed model and the standard model by v; and 7;, respectively. A comparison
of the attenuation levels may be made by evaluating their ratio, which is shown in
Figure 6.8. It is clearly observed that the controller based on the proposed model
has resulted in a higher attenuation of disturbances as compared to the controller
designed based on the standard model. Figures 6.13-6.16 depict the simulation re-
sults for a sinusoidal reference trajectory with w, = 4. It can be observed that the
controller based on the standard model results in instability whereas the controller

based on the proposed model has successfully ensured regulation in a stable manner.

6.7 Concluding Remarks

In this chapter, it was shown that for a flexible-link manipulator the dynamics
corresponding to the high deflection modes may be treated as uncertainty. Using this
methodology, one may robustly control the system where the order of the original
model can be considered arbitrarily large. The controller design is performed for
the known part of the model. A multi-objective H, technique is utilized to design
a robust regulator for the resulting system. The maximum number of deflection
modes that should be taken into account in the plant is obtained through a well
defined procedure. The proposed methodology is applicable to a manipulator with
arbitrary flexibility. It was also shown that the effect of parametric uncertainty may

be represented by a disturbance that is acting on the torque input. Throughout this
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chapter it was assumed that all the states of the plant are available for measurement
(cf. (6.5), (6.8), (6.11) and (6.12)). Obviously some of these states are available via
standard sensors (such as hub angle, hub velocity and tip position). However, most
of the states should be obtained in practice by means of sophisticated sensors or
observers. Finally, simulation results illustrating the effectiveness of the proposed

modeling and design methodologies were presented.
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Figure 6.5: Tip position along with other states of the system in response to a step
input; (solid) proposed model, (dashed) standard model.
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Figure 6.6: Absolute values of the Srd-6th deflection modes in response to a step
input; (solid) proposed model, (dashed) standard model.
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Figure 6.8: Fraction of attenuation levels in the case of step input; (v;) proposed
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Figure 6.9: Tip position along with other states of the system in response to a sine
input (w =1 rad/sec); (solid) proposed model, (dashed) standard model.
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(solid) proposed model, (dashed) standard model.

99



25 T H T T T T T T T

Control Input

10 12 14 16 18 20
Time (sec)

K :
2 4 6 8

Figure 6.11: Control input for a sine input (w = 1 rad/sec); (solid) proposed model,
(dashed) standard model.

Time (sec)

Figure 6.12: Fraction of attenuation levels in the case of sine input (w = 1 rad/sec);
(11) proposed model, (v2) standard model.

100



2 15
§1_5 ......................................... 1
g : : : 1% l.l " gf'\
= b B SRR R R 5 ......... _;..; <AL 0.5
g : i aannny] 38
Los N-paaA >3 o
e 28
= o : T -0.5f :
0.5 . Y SUTOURTR S B9 % N1 NN S
—_1 M - M M N
¢} 5 10 15 20 150 S 10 15 20
Time (sec)
,,S, .E 0.04
a_ a_
£8 E8 o
sS= ==
= -
- : -
é g 0.02
: : : 2} !
-2 ; - ; -0.04 H : :
[s} 5 10 15 20 o S 10 15 20

Time (sec) Time (sec)
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input (w =4 rad/sec); (solid) proposed model, (dashed) standard model.
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Chapter 7

Nonlinear Robust Regulation

Based on the New Modeling
Approach

The purpose of robust control is to design a controller so that the feedback system
behaves in a desirable way for each possible plant in the uncertainty set. Although

controller design is the ultimate goal, typical robust control progresses in three

stages:

1. Description of uncertainty: Construct a mathematical description of the un-

certainty set.

2. Robustness analysis: Determine if the feedback system behaves in a desirable

way for each plant in the uncertainty set when a controller is given.

3. Robust controller design: Design a controller to satisfy the robustness require-

ment(s).

The robust control of a servomechanism problem for linear time-invariant mult-

variable systems was presented in [126, 127]. Two common ways for describing
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uncertainty are parameter uncertainty and norm bounded uncertainty. The former
embeds the uncertainty set into a Euclidean space by assuming that the uncertainty
is caused by a collection of uncertain parameters in the system model. The latter
characterizes uncertainty in terms of a norm bounded operator based on the as-
sumption that the uncertainty is caused by a bounded operator perturbation that
enters the system in an additive, multiplicative, or more generally fractional way
[128].

This chapter begins with a treatment of two types of control problems based
on which a multicbjective H,, control is defined. The problem of robust regulation

for a general nonlinear system is then posed.

7.1 Nonlinear Multiobjective H,, Control

In this section, we study multiobjective H,, sub-optimal control with the controller
constrained to achieve robust closed-loop regulation. The linear and time-invariant
version of the following setup is addressed in [120, 111].

Consider the feedback system shown in Figure 7.1. Here the nonlinear plant

w[ ==t . l— 2 7
w nonlinear
2 =t —- 7,
plant
u Yy
controller

Figure 7.1: Setup for the problem of robust regulation with an H, constraint
(RRH,C).

is assumed to be finite-dimensional and time-invariant, w; and w, are exogenous
inputs, and z; and z; denote regulated or controlled outputs. The controller is said

to be admissible for this plant if the resulting closed loop is well-posed and internally
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(asymptotically) stable.
The controller synthesis problem addressed in this section is to design (if possi-

ble) an admissible controller that simultaneously solves the following two problems.

1. The robust regulation problem.

Design (if possible) an admissible controller such that
(a) For all inputs w, with w; =0,

lim 2,(t) =0, and,

t—roo

(b) the above property holds for all plants in some neighborhood of the plant
in the graph topology.

2. The Hy, constrained problem.

Design (if possible) an admissible controller such that with w; = 0, the He,
norm of the closed-loop map from w; to z, namely, T%,,, is less than one,

ie.,
1Tz lloo < 1.

The problem of simultaneously solving (1) and (2) will be called the robust reg-
ulation problem with an Hy, constraint (RRH,,C). It is a multiple objective problem
in which the controller is required to meet two separate design objectives simulta-
neously.

The H constrained problem in the linear setting is the standard problem of
He control theory initiated by Zames [129]. The robust regulation problem with
an Hy, constraint (RRH,C) is also equivalent to a particular robust performance
problem. To make it more explicit, consider Figure 7.2 which is a rearrangement of
Figure 7.1 after interconnecting an unmodeled dynamics block between w; and z;.

Let A denote the map from z to v in Figure 7.2, and Pa be as shown in the same

figure. Assume that the L, norm of A is bounded by some positive number. The
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Figure 7.2: Setup for the problem of robust regulation in the presence of gain-bounded
uncertainty (RRGBU).

problem of robust regulation in the presence of gain-bounded uncertainty (RRGBU)
is as follows: Given a real number k > 0, design a controller such that for all

gain-bounded A with ||A||e < 1/k,
e the controller internally stabilizes Pa,

e the regulated output, e, converges to zero as time tends to infinity, i.e.,
tliglo e(t) =0,

e the convergence property holds for all plants in some neighborhood of P, in

the graph topology.

It can be shown that the problems of RRH,,C and RRGBU are equivalent. In
other words, the Ho, technique that is basically used to solve the RRH,,C problem
can simultaneously solve the RRGBU problem and vice versa. Therefore, if in the
model shown in Figure 6.1 the L, gain of unmodeled dynamics is bounded, then
we may design a robust regulator for the flexible-link manipulator by posing the
corresponding RRGBU problem whose solution is the same as the RRH,C problem.
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7.2 Nonlinear Robust Regulation for a General

Nonlinear System with Gain-Bounded Un-
certainty

In this section we study the problem of robust regulation for a general nonlinear
system, i.e. non-affine with respect to control and exogenous inputs, in the presence
of L, gain-bounded perturbations. The linear and time-invariant version of this
problem is addressed and solved in [120, 111]. The nonlinear version, but affine
with respect to both control and exogenous inputs, was recently addressed in [130].
Here we pose this problem for a general nonlinear system. Consider a nonlinear

system modeled by equations of the form (see Figure 7.2)

z = f(z, u, v, w)
z = hi(z, u, w)
e = hy(z, v, w) (7.1)

with state z € IR", where u € R™ is the control input, w € R is a disturbance

input generated by an exosystem
W = Sw (7.2)

while e € IRP is a regulated output. The additional input v € R’ and the additional
output z € IRP represent the effect of perturbing unmodeled dynamics, namely a

nonlinear system of the form

£ = a(¢, 2)
v = c(€) (7.3)

with unknown dimension and unknown parameters and whose L, gain, however, is

known to be bounded by some positive number p.
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It is assumed that the system is well-posed along trajectory z, i.e., for every
t 20, f is well defined. Without loss of generality, we assume that f(0, 0, 0, 0) =
0, hi(0, 0, 0) =0, h2(0, 0, 0) =0, a(0, 0) =0, ¢(0) = 0. For this system we
study the problem of robust regulation. In other words we want to find a feedback

law which in general is a dynamical system modeled by equations of the form

n = 1!’(777 6)
u = ,3(771 6)

with state n € R”and in which %(0, 0) =0, £(0, 0) = 0. This controller is to yield a
closed-loop system which has a locally exponentially stable equilibrium at (z,£,n) =
(0, 0, 0) and is such that, for every initial condition (z(0), £(0), n(0), w(0)) in a
neighborhood of (0, 0, 0, 0), the regulated output converges to zero as time tends
to infinity, i.e. lim; o e(t) = 0. As discussed earlier, the problem in question can
be recast as a problem of robust stabilization, in the presence of norm-bounded
uncertainties, for a suitable augmented plant, in which the regulated output e drives
an appropriate internal model of exosystem (7.2). This approach leads to the study
of the problem of robustly (and locally exponentially) stabilizing an augmented plant

described by equations of the form

z = f(=z, v, u, 0)
1 = Fn+ Ghy(z, v, 0)
z = hi(z, u, 0) (7.4)

(in which F' and G are appropriate matrices depending on the exosystem) in the
presence of unmodeled dynamics of the form (7.3). Robust stabilization will be
pursued, using a version of the small gain theorem presented in [131], by seeking a
feedback law which solves a suboptimal problem of disturbance attenuation, in the

sense of an L, gain, for the augmented plant thus introduced.
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7.3 Output Regulation

In this section we review some basic principles underlying the design of a feedback
law for the purpose of achieving output regulation in the presence of plant uncer-
tainties. The analysis of this problem for an affine nonlinear system can be found

in [132]. Consider a system modeled by equations of the form

z = f(z, u, w)
e = h(z, w)
y = k(z, w) (7.5)

with state z € R", in which v € R™ is the control input, w € IR" is a disturbance

input, generated by an exosystem
w = Sw (7.6)

while e € R? is a regulated output and y € R® is a measured output. All the map-
pings involved are assumed to be smooth and f(0, 0, 0) =0, A(0, 0) = 0, £(0, 0) =
0. We assume that the matrix S is a skew symmetric matrix, wiu'ch is equivalent to
assuming that the exogenous inputs generated by (7.6) are linear combinations of a
finite number of fixed sinusoidal functions of time. The problem of output regula-
tion is to find a feedback law, which in general is a dynamical system modeled by

equations of the form

n = ¢(777 e)

u = ﬁ(TL e) (77)
in which n € R”, yields a closed-loop system which has a locally exponentially
stable equilibrium at (z, n) = (0, 0) and in which, for every initial condition
(z(0), n(0), w(0)) in a neighborhood of (0, 0, 0), the regulated output converges

to zero as time tends to infinity, i.e.

tllg'é e(t)=0 (7.8)
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It should be noted that the results of [132] cannot be directly used to deal with
the presence of plant uncertainties which is the problem addressed in the previous

section.

7.3.1 State and Error Feedback

In this subsection we consider the case in which both the full state z of the controlled
plant and the full regulated output e are available for feedback. We then examine

the problem of when a controller of the form

n = Fn+Ge

(where F' € R"*” is a matrix playing the role of an internal model of the exogenous
inputs) induces robust regulation.

The basic principles underlying output regulation can be summarized as fol-
lows. Suppose F and G in (7.9) are fixed matrices and there exists a feedback law
u = (B(n, =) which locally exponentially stabilizes the equilibrium (z, 1) = (0, 0)
of the corresponding closed-loop system (when w = 0).

In this case each (sufficiently small) exogenous input produces a well-defined
steady-state response. In fact, following [132], observe that system (7.5), controlled
by (7.9) and driven by the exosystem (7.6), is the composite system

z = f(z, B(n, z), w)
= Fn+ Gh(z, w)
w = Sw (7.10)

which has a center manifold at (z, 5, w) = (0, 0, 0). The latter can be expressed

in the form

M= {(z, 1, w): = =m(w), 1=o(w)}
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i.e., in the form of the graph of a map w — {w(w), o(w)} where 7w(w) and o(w)
satisfy certain partial differential equations. The manifold in question is invariant
and locally exponentially attractive for the composite system (7.10), which means
that for every initial condition (z(0), n(0), w(0)) in a neighborhood of (0, 0, 0) the
response of (7.10) converges, as time tends to infinity, to a uniquely defined steady-
state response which is determined only by the trajectory w(t) of the exosystem and
has the form z(t) = 7(w(t)), n(t) = o(w(t)). Consequently, the regulated output

converges toward a steady-state response of the form

e(t) = h(m(w(t), w(t)).

In particular, asymptotic output regulation occurs if and only if the map h(z, w)
vanishes on M.. It is deduced from this analysis that the main problem of achieving
robust regulation is to choose F" and G in (7.9) in such a way that the mapping m(w)

associated with the invariant manifold M, renders
h(m(w(t), w(t)) =0. (7.11)

As discussed earlier, it is usually quite difficult to have this condition met in the
presence of plant uncertainties for a nonlinear system. Thus, it is more practical to
seek approximate versions of the latter, for instance, to require that only the first
few terms of a polynomial approximation of the left-hand side of (7.11) vanish. This
yields the concept of approximate regulation of order k, introduced in [133] and
[134] to deal with the case of plant uncertainties.

In the (robust) approximate output regulation problem the objective is to
choose matrices ' and G (and subsequently the stabilizing feedback u = (5, z))
in such a way that the identity (7.11) holds modulo a residual function of w which
vanishes at w = 0 together with all partial derivatives of order less than or equal to
a fixed integer k. To describe how the matrices in question can be determined, some
auxiliary notations are needed. Let k be a fixed integer and let P denote the set of

all polynomials of degree less than or equal to & in the variables w;, wo, ..., w, with
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coefficients in R. P indeed is a finite-dimensional vector space over JR. Consider

the map
Dk:'Pk — Pk,
P — a—p.S'w. (7.12)
Jw

Let u denote the degree of the minimal polynomial of Di, and let My € R*** be
a matrix having the same minimal polynomial as Di. It can be shown that it is
always possible to choose M} to be a skew-symmetric matrix [130]. Moreover, it
is possible to find a vector gr € R**! such that the pair (M, gx) is controllable.
Using the pair (M, gi) thus determined, set

T Mk 0 0 Gk 0 ... 0
0 M., ... 0 0 ... 0

n=| ™|, F= - , G= I (7.13)
T 0 0 .. M 0 0 .. g

in which n; € R**! for i = 1,..., p (recall that p denotes the number of the regulated
output e).

Then it can be shown that if the feedback law u = 8(n, z) locally exponentially
stabilizes the equilibrium (z, 1) = (0, 0) of the closed-loop system, then the desired
property of approximate regulation of order k is achieved.

Proposition: [130] Suppose u = B(n, z) locally exponentially stabilizes the
equilibrium (z, n) = (0, 0) of (7.5)-(7.9), and let 7(w), o(w) define a center manifold
for (7.10) at (z, 7, w) = (0, 0, 0). Then the map m(w) is such that

h(m(w)) + q(7(w))w = Re(w)

where Ri(w) is a residual function of w which vanishes at w = 0 together with
all partial derivatives of order less than or equal to k. If in particular, A(7(w)) +
g(m(w))w is a polynomial of degree less than or equal to k, then necessarily Ry(w) =
0 and the steady-state response of (7.10) to any exogenous input w(t) generated by

the exosystem (7.2) is identically zero.
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7.3.2 Pure Error Feedback

The results of the previous subsection can be extended to the case in which the
measured output y coincides with the regulated output e. To this end, it suffices to

consider a feedback law having the form

1:]0 = F7]0+G6
7:11 = ¢‘1(770, N, 6)
u = PB(no, m, €) (7.14)

where F' and G are exactly as defined in the previous subsection, and (70, 71, €)
and B(mo, 71, e) are such as to locally exponentially stabilize the corresponding

closed-loop system.

7.4 Nonlinear Robust Regulation Against Gain-
Bounded Perturbations

As shown in the previous section a controller of the form (7.9) (respectively of
the form (7.14), in the case of pure error feedback) is able to induce asymptotic
regulation so long as the feedback B(n,z) (respectively, the additional dynamics
m = ¥1(no, M1, e) and the feedback law u = B(no, 71, €), in the case of pure error
feedback) locally exponentially stabilizes the equilibrium (z, 5) = (0, 0) of the
corresponding closed-loop system. Thus, to achieve robust regulation for the class
perturbed systems described earlier, it suffices to solve a problem of robust (local

exponential) stabilization for a system of the form

t = f(z, v, u, 0)
n = Fn+4+ Ghy(z, v, 0)
z = hy(z, u, 0) (7.15)
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in the presence of unmodeled dynamics of form (7.3). Robust stabilization will
be achieved, as suggested in [108], by computing and imposing the feedback law
which solves a (suboptimal) problem of disturbance attenuation. The Hamiltonian

function associated with the unmodeled dynamics is defined as
H(&, pum, v, u) = pfma(f, z) + CT(E)C(E) - pzsz (7.16)

where p,;, = Ug and U(€) is a functional of £&. By invoking the version of the small
gain theorem presented in [131] and the notion of L, gain of a nonlinear system
studied in [90], it is assumed that the perturbation (7.3) is such that an equality of

the form
H.(§, pum) := H(£, 2., Pum) = Uga(§, 2z.) + cT(€)c(€) — p?2Tz. <0 (7.17)

has a positive definite proper solution U(&), where p is a given number and z, is the

solution of the equation

0H daT (¢, z)
9z 0z

Uf —20%27 =0. (7.18)

Then a feedback law will be sought which attenuates in the sense of the L, gain the
effect of the input v on the output z of system (7.15) by a factor (1/p). If, in addition,
the other hypotheses involved in the analysis of asymptotic and local exponential
stability are satisfied, a feedback law of this type renders the corresponding closed-
loop system robustly stable for any perturbation whose L, gain is bounded by p and

the regulation properties outlined in the previous section holds.

7.5 Disturbance Attenuation for a Class of In-
terconnected Nonlinear Systems

Motivated by the analysis illustrated so far, we now focus our attention on the

solution of problems of disturbance attenuation with internal stability for the class
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of nonlinear systems which can be modeled by equations of the form

(z) = F(z, 1, v, u)
n

z = hy(z, u)

y = ha(z, v) (7.19)

with state (z, n) € R™™”, where u € R™ is the control and v € IR is the disturbance
input, while z € RP? is the controlled output and y € RP is the measured output.
The matrix F in (7.15) is a skew-symmetric matrix. The class of systems thus

defined includes, in particular, composite systems in which the output
e = ho(z, v)
of a nonlinear system of the form
z = f(z, v, u) (7.20)
drives a linear system of the form
n=Fn+Ge

L.e., those interconnected structures considered in the previous section [see (7.4)].
The Hamiltonian function for this problem is a function H : R™ x R” x R" x

R™ — R defined as
H(z, 0, p, v, u) =p' F(z, 3, v, u) + 27z — 42T, (7.21)
Suppose the system described by (7.19) satisfies the following hypothesis.

Assumption 7.1 The penalty map h;(z, u) is such that the matrix

o,
Dy = —-(0, 0)

has rank m.
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Then it turns out that in a neighborhood of the point (z, 7, p, v, u) =
(0, 0, 0, 0, 0), the function H(z, 1, p, v, u) has a unique local saddle point
in (v, u) for each (z, n, p). More precisely, there exist unique smooth functions

v.(z, 1, p) and u.(z, n, p), defined in a neighborhood of (0, 0, 0), satisfying

0H
%‘(iﬂ, n, P, 'U,.(:B, 7, p)) u.(z, 17, P)) = 07
oH
E(za n, P, v*(-t’ n, P), u*(z’ 7, P)) = 07
v.(0, 0, 0) =0, u.(0, 0, 0) = 0.

and such that

H(z, n, p, v, u.(z, n, p)) < H(z, n, p, va(z, 1, p), u.lz, 1, p))
< H(z, n, p, vi(z, 1, p), u) (7.22)

for each (z, 1, p, v, u) in a neighborhood of the point (z, 7, p, v, u) = (0, 0, 0, 0, 0).
The existence of these functions and (7.22) can be deduced from the observation that
H(z, n, p, v, u), viewed as a function of (v, u), has a Hessian matrix which at

(z, m, p, v, u) =(0, 0, 0, 0, 0) is equal to

-2y 0
0 2DTD,

where DT D, is positive definite by hypothesis.
Let W : R* x R —+ R be a smooth function defined in a neighborhood of
(z, m) = (0, 0) and such that W(0, 0) = 0 and W, , =0, set

H.(z, n, p) = H(z, 0, p, vu(z, 1, p), u.(z, 1, p))
al(x’ 77) = ‘U,.(:B, 7 W(Z:-, 71))’ Clz(:v, 77) =u*(x7 7, VV(Z, 'fl)) (723)

and observe that (7.22) implies in particular
H(z, 7, Wg,-, n)r Y az(z, 1)) < Hu(z, n, VV(Ta:, n))' (7.24)
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Now, suppose that the function W(z, ) is nonnegative (in which case W (0, 0) =
0 implies W(z, (0, 0) = 0) and renders the inequality

Ho(z, 7, WE ) <0 (7.25)

satisfied for each (z, 1) in a neighborhood of zero. This shows that the system
(7.19) has the dissipative property.

Inequality (7.25) is the Hamilton-Jacobi-Isaacs inequality. If W(z, 1) is posi-
tive definite and satisfies a strict inequality, i.e., the left hand side of (7.25) is negative
for each (z, n) # (0,0), it can be shown that the feedback law u = a3(z, 1) is also

locally asymptotically stabilizing.

7.6 Application to a Flexible-Link Manipulator

The procedure described in the previous sections may be utilized for the purpose
of nonlinear robust output regulation of a flexible link manipulator. The output

usually consists of the tip position of the manipulator.

7.6.1 Nonlinear Modeling Based on the New Approach

The state-space equations for a flexible-link manipulator are given by (2.10). By
applying the transformations introduced in Appendix C and similar to (6.5), the
nonlinear model of a flexible-link manipulator may be represented by
X = F(X)+G.(X)u
y = CX (7.26)
where X and C are defined as in (6.6). Using (7.26), one may write the nonlinear
version of the equations (6.11) and (6.12) in the form
(nonlinear plant) z = F(z,v)+Gz(z,v)u, y =z =y (7.27)

(unmodeled dynamics) o = F,(z,v)+ Gy(z,v)u, yo=C,v  (7.28)
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where C,, is defined as in (6.12). In other words, (6.11) and (6.12) represent the first

order approximations of (7.27) and (7.28).
Now, consider the setup shown in Figure 7.2. Define

C: 0 C: z
zZ = C]_IB+D12'LL:= T+ u =
0 I u
€ = Y —Yref= [1 02xm+1] T — Yref (729)

where C is defined as in (6.19) and y and y,.s are defined as in (5.10). Note that
the definition of z in (7.29) satisfies the condition of Assumption 7.1. In order to
design a nonlinear multi-objective Hy, controller we have to compute the H., norm

of the unmodeled dynamics which was introduced above.

7.6.2 Boundedness of the Unmodeled Dynamics

In this section we show that the boundedness of the unmodeled dynamics defined
in (7.28) is related to the boundedness of its linearized model. Consider a nonlinear

system with the input © € R™ and the output y € IRP of the form:

i = filz,u) A0, 0=0
y = hie) ha(0) = 0 (7.30)

The L, gain of this system is related to the L, gain of its linearization at z = 0, i.e.,

r = FRz+Ga

where F} = 24(0, 0), G, = 801(0, 0) and H; = 28:(0). The following result is

oz 3z
from [99)].

Theorem 7.1 Consider the nonlinear system (7.80) with its linearization (7.31).

Assume Fy is asymptotically stable. Then the following statements are equivalent:
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e The linearization (7.81) has L, gain < «.

e The nonlinear system (7.80) has locally L, gain < v.

The condition under which a linear system has bounded H., norm was stated
in Theorem 6.1.

In the light of the above results, the boundedness of a nonlinear system is
determined by observing whether or not its linearization is bounded. Consequently,
we may turn our attention to the linearized dynamics of (7.28), i.e., (6.12). In Sec-
tion 6.3, however, it was shown that the unmodeled dynamics represented by (6.12)
have finite H,, norm. Consequently, the nonlinear unmodeled dynamics represented
by (7.28) have also finite H.,, norm. Based on Theorem 7.1, this norm may be

computed by the approach presented in Section 6.3.2.

7.6.3 Design of Internal Model of the Exogenous Input

In order to design a regulator based on a particular exosystem, it is necessary to
compute matrices F' and G introduced in Sections 6 and 7.3. Based on the first
or linear approximation, these matrices can be realized as follows. Suppose that
we are interested in regulating against signals with frequencies wy,...,wy. With
every frequency wy to be regulated against, associate system matrices Fy and Gy. If

wr = 0, choose integrator dynamics
F,=0€ RP*® and Gi =1 € RP*?.

If we # 0, choose the dynamics

F, = 0wl € R**?® and Gr= 0 € R%Px?p

—wel 0 I
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Now set
F1 Gl
F = and G= :
FN GN

After computing matrices F' and G, we may easily form equations (7.4), where

z = [y,é, 51,51,--- ,0in1, Si—l]T
v o= [6‘-’ Siv"'aé.m, 5m]T
Cz 0 C_—_._- z

z = Ciz+Dyu:= T+ u

0 I u

and f is taken from (7.27). The resulting equation thus formed from (7.4) will be

referred to as the augmented system.

7.6.4 Disturbance Attenuation for the Augmented System

In this subsection a robust controller is designed so that the tip position tracks
the exogenous input. The controller is supposed to minimize the influence of the
disturbance, i.e. v = [6;,4;,. e es8m,6m]T (: > 1) on the controlled output z given
by (7.29). The design procedure is similar to the one presented in Chapters 3 and 5.
In fact, one has to find the control (u.) in such a way that the HJI inequality (7.25)
in its strict sense (<) holds. To this end, the approximation technique presented in
Section 3.5 may be utilized and an approximate solution in the form of a polynomial
up to a prescribed order can be computed. The importunt difference in this case is
that the attenuation level of v in (7.21) must satisfy two constraints. First, it should
be such that (7.21) or its linear counterpart in the form (3.7) has a positive-definite
solution. The second constraint was discussed in Chapter 6, i.e., it should satisfy
the relation v < 1/p. Consequently, the design procedure begins with that given in
Section 5.5 yielding the linear part of the controller. The higher order terms can

also be found by utilizing a polynomial approximation technique.
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7.7 Simulation Results

In this section the methodology proposed in the previous sections is applied to a
single-link flexible manipulator with six modes of deflection (m; = 6). The objective
is to design a nonlinear regulator so that the tip position robustly tracks a reference
signal with a specified frequency w,. Note that set point regulation is included in the
above formulation by setting w, = 0. Since the regulation for nonzero frequencies
was considered in Chapter 6, in this section we only consider set point regulation. In
fact the simulation results in this section will show that using the new modeling ap-
proach for a flexible-link manipulator it is possible to get a larger domain of validity
compared to the corresponding linear framework. The link parameters as well as the
natural modes and the corresponding damping ratios used for design and simulation
are the same as in Section 6.6. The nonlinear controller was computed approxi-
mately up to the third-order. Similar to the design results in Chapter 5, the second
order controller did not improve the performance considerably. The third-order con-
troller, however, did have a significant effect on the performance. The advantage
of the third-order nonlinear controller over its linear counterpart becomes apparent
from the results shown in Figures 7.3 and 7.4. These simulations correspond to a
m rad rotation of the hub. Simulation results in Figures 7.5 and 7.6 reveal that the
third-order controller, in this application, has the ability of performing a complete
rotation of the hub in a stable manner. The linearized controller, however, results

in instability.

7.8 Concluding Remarks

The objective of this chapter was to design a nonlinear regulator to robustly control
the tip position of a flexible-link manipulator. Based on a new modeling approach,

the original dynamic equations were shown to be partitionable into two sub-systems,
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namely, plant and unmodeled dynamics. It was shown that for a flexible-link manip-
ulator the dynamics corresponding to the high deflection modes may be treated as
norm-bounded uncertainty. Using this methodology, one may design a robust non-
linear controller where the order of the original model can be considered arbitrarily
large (infinite). A nonlinear multi-objective H,, technique was utilized to design a
robust nonlinear regulator for the resulting system. It was shown that the maximum
number of deflection modes that should be taken into account in the plant can be
obtained from the linear version of the problem which was studied in Chapter 6. It
is worth noting that similar to the scenario in Chapter 6, the effect of parametric
uncertainty may also be represented by a disturbance that is acting on the torque
input. In fact all issues posed in the previous chapter can also be extended to the
nonlinear case. The main objective of designing a nonlinear regulator, however, is to
enlarge the domain of attraction of the controller. Consequently, only this direction
was followed in this chapter. Throughout this chapter it was assumed that all the
states of the plant are available for measurement. Some of these states are available
via standard sensors (such as hub angle, hub velocity and tip position). However,
most of the states should be obtained in practice by means of sophisticated sensors
or nonlinear observers. The simulation results illustrating the effectiveness of the

proposed modeling and design methodologies were presented.
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Figure 7.3: Tip position along with other states of the system in response to a w rad
rotation of hub; (solid) nonlinear controller, (dashed) linear controller.
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rad rotation of hub. The linear controller results in instability.
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Chapter 8

Conclusion and Directions for

Future Research

For the purpose of robust control of a flexible-link manipulator, two types of model-
ing were studied. In the first type, the uncertainty is due to parameter variations of
the manipulator while performing a task or when its configuration is changing. The
uncertainties considered in this regard are due to deviations of parameters from their
nominal values. These deviations may be Li-bounded and/or constant. By using a
nonlinear transformation, a dynamical model which has a constant input vector field
(¢ in £ = f(z) + g(z) u) was obtained. This coordinate change was shown to be
effective in designing nonlinear controllers that are normally complicated in nature.

To compensate the above mentioned uncertainties nonlinear H,, control tech-
niques were employed. It was shown that this method provides the attenuation of
disturbance effects on the penalty variable with a prescribed level of attenuation (7).
The maximum attenuation, i.e., the smallest possible v, is not arbitrary and may
be computed from the corresponding linear Riccati equation. The relationships be-
tween the problem in question to some basic notions like dissipativeness, differential
games, and the Hamiltonian function were discussed. For designing the nonlinear

Heo controller, the approximate polynomial solution of the Hamilton-Jacobi-Isaacs
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(HJI) inequality for a general nonlinear system was derived.

By exploiting the stability properties of perturbed systems, the qualitative
behaviors of nonlinear H., controllers were considered. The effects of (i) the ap-
proximate solutions, (ii) attenuation level, and (iii) weighting the controlled output
on the domain of validity of the HJI inequality were investigated. It was shown that
(i) utilizing lower order approximations, (ii) increasing the attenuation level, and
(iii) weighting the controlled output may result in a smaller domain of validity.

In the second type of modeling, uncertainty appears as in a norm-bounded
perturbation. Based on this interpretation, flexible structures exhibit two kinds
of behavior, one of which may be treated as a disturbance acting on the modeled
dynamics. The principle behind the methodology proposed in this thesis is that
the system under control should possess a two-time scale separation, namely, low
and high-frequency subsystems. The restriction imposed is that the high-frequency
subsystem should be stable in order to result in the norm-bounded property. The
design based on the multi-objective H,, technique proceeds by considering the low-
frequency subsystem while treating the high-frequency subsystem as unmodeled dy-
namics. One of the practical applications that fits into this framework is the flexible-
link manipulator. In fact the rigid dynamics that characterize the dominant motion
of the joints correspond to the low-frequency subsystem and the deflection dynamics
due to flexibility of the links correspond to the high-frequency subsystem.

To design a robust controller for the model whose high-frequency subsystem
is treated as uncertainty, the problem of multi-objective Ho, control was posed. It
is composed of two separate problems. The first problem is the robust regulation in
which the tracking of the reference input for the disturbance-free system is sought.
The second one is the Hy, constraint problem where the goal is the attenuation
of disturbances on the penalty variable. The problem of simultaneously solving
these two problems is called the robust regulation problem with an H,., constraint.

In the case of linear systems, the problem in question can be recast as a problem
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of robust stabilization in the presence of norm-bounded uncertainties for a suitable
augmented plant in which the regulated output drives an appropriate internal model
of the exosystem. In the present work, the problem was approached in a similar way.

The above generalizations to the case of nonlinear systems were shown to be
valid. The formulation leads to the study of the problem of robustly (and locally ex-
ponentially) stabilizing an augmented plant in the presence of unmodeled dynamics
whose L, gain is bounded. It was shown that for the proposed model, the nonlinear
unmodeled dynamics are norm-bounded. After designing the internal model, the
problem of disturbance attenuation for the resulting augmented plant was consid-
ered. The synthesis proceeds through the solution of a Hamilton-Jacobi-Isaacs (HJI)
inequality for the augmented plant.

In this dissertation we investigated both theoretical as well as simulation re-
sults for robust control of a flexible-link manipulator. Based on the knowledge and
the experience gained in this respect, the following routes may be pursued for further

enhancement of the analytical results and control design strategies.

Mixed singular perturbation/multi-objective H,, control

The methodology of modeling proposed in this thesis was based on the fact that the
system under control possesses a two-time scale separation property, namely, low-
and high-frequency subsystems. In this connection, one may exploit the method of
singular perturbations for modeling the system possessing the two-time scale behav-
ior. Application of singular perturbation theory [135] to such a system results in the

following set of equations:

z = Fyz, z, u, € (8.1)
ez = Fy(z, z, u, € (8.2)

where z is the state of the slow subsystem, z is the state of the fast subsystem,

and ¢ is a singular perturbation parameter of the system. Now, it might be observed
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that the strategy of adaptively controlling the system (8.1) by just neglecting the
flexible dynamics (8.2) and considering z as a disturbance to the system is likely to
fail, since no assumption on the boundedness of the disturbance can be made. This
is due to the fact that, the synthesis in the present setting is only based on the slow
subsystem and in fact the fast subsystem is neglected. In the composite control
strategy of the form u = u; 4+ uy, however, the control has a partitioned structure.
Part of the control (uy) has to take the fast states towards an equilibrium boundary
layer, and the other part of control (u;) works on the slow manifold to provide the
desired behavior. The idea of multi-objective Hy, control can be used in designing
the controller for the slow subsystem, i.e., u, where z is treated as uncertainty. It
now becomes apparent that the other part of the control, i.e., u; only has to stabilize

the fast subsystem yielding the norm-boundedness property.

Real domain of validity of nonlinear H,, control

Our approach for qualitatively analyzing the behavior of the H, control based
closed-loop system uses a Lyapunov technique. Given that, in general, Lyapunov
methods can only provide an estimate of the domain of attraction for a nonlinear
system, it is not feasible to explicitly obtain the ezact domain of validity of a nonlin-
ear system by using this technique. In other words the purpose of Chapter 3 is not
to explicitly compute the ezact domain of validity; rather, the objective is to provide
a methodology for comparing the estimates of domains of validity obtained by using
different approximations of the nonlinear system. A more comprehensive treatment
of the subject would require the comparison of the real domains of validity instead
of their estimates. One possible approach in this regard might be incorporation of
Zubov’s theory [102]. This is due to the fact that for studying the stability property

of a dynamical system, Zubov’s theorem considers the exact domain of attraction.
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Rate of convergence of nonlinear H., control

In addition to the domain of validity which is essential in the field of nonlinear
He, control, there are some other issues that are related to the performance of the
controllers designed using Ho, techniques. One of the important issues that needs
to be investigated is the rate of convergence. By applying the Gronwall-Bellman
inequality it might be possible to construct a relationship between a Lyapunov

function of the system and its time derivative.

Extension to a multi-link flexible manipulator

The new modeling approach proposed in this thesis was applied to a single-link
flexible manipulator. A possible extension of the results is to consider a multi-link
flexible manipulator and treat the dynamics of the higher frequency modes of each

link as uncertainty.

Design based on measurement feedback

Throughout this dissertation, it was assumed that all the states of the plant are
available for measurement. Obviously some of these states are available via standard
sensors (such as hub angle, hub velocity and tip position). However, most of the
states should be obtained in practice by means of sophisticated sensors or observers.
Control of flexible-link manipulators based on measurement feedback should then

use strategies similar to the ones presented in [91] and [92].
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Appendix A

Link Data

Lo 1.2m
Ao .000976 m?
me 1.356 Kg
p 1 Kg/m

Io 0.27 Kg.m?
Jo 0.109 Kg.m?
ML 45 g

Jr | 0.00852 Kg.m?
EI 2.44 N.m?
F, 0.59 N.m.s
Ceout 4.77 N.m

[ 15

Table A.1: Link parameters

wi 3 rad/s || & | 0.1125
wy | 21 rad/s || & | 0.0863
w3 | 60 rad/s | & | 0.0833
wy | 118 rad/s || & | 0.0827
ws | 196 rad/s || & | 0.0828
we | 293 rad/s || & | 0.0832

Table A.2: Frequencies and damping ratios of the first siz deflection modes
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Poles Zeros

0 -8.3334

-135.71 -117.27
-0.37745 + 3.3345 20.187
-1.8337 £ 21.1695 30.308

-4.9834 + 59.624; | -69.519 + 32.3945
-9.7455 £ 117.375 | 73.184 £+ 96.891y
-16.186 + 194.835 | -112.63 £ 194.175
-24.391 + 292.225 | 93.015 + 225.37y

Table A.3: Pole-zero locations of the 14t*—order model
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Appendix B

Monotonicity of Function ky(s)

Lemma B.1 Suppose ko < 1. Then ko(s) defined in (4.28) is a monotonic function
of s.

Proof: For notational simplicity we write &, instead of % Since k¢ < 1, then

oo . k3—2
2 M=t >0, 522
j=s-2 — Mo

For any value of s, we now show that l::o(so) < l;:o(so-{—l). Towards this end, we have

to obtain the least upper bound on the values of yo and 2, satisfying the following

inequalities:
o'~ !
0< <k, and 0< < k (B.1)
— Yo — 20
or
yf,“"l < kl yo(l — yo) < k]_ Yo 1= kz < kl
227l < ki(l-2) <k
As a result,

1 1
Yo < k™' and 2z < Kk
which implies that sup{yo} < sup{z0}. This completes the proof of the Lemma. A
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Appendix C

State-Space Transformations

Transformation for setting the first state as the

output
The transformation that transforms X in (6.5) to (6.7) is given by
(L0 &) 0 - gal) O
0
Tx =
lam+1)
- 0 -

Note that Tx A T;l =TxA and Tx B = B.

Transformation between configuration-space and
state-space

The transformation 7' that transforms the state-space equations from g defined
in (6.37) to X defined in (6.6) coordinates may be obtained as follows. Let n and

m; (z =1 ... n) denote the number of joints and deflection modes of the ith link,
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respectively. Let 7 := n + m where m = Y | m;. Suppose ¢; is the i—th row of a

2rth order identity matrix. Define

€; S €nti

Ei= ) Ei=

€rii Cntitr—1

Then, the matrix T is given by T' = T,T; where
T T T T AT T T
T = [E],E],...,EL, ET ET, .. ET)

and T3 is a matrix that diagonalizes the resulting representation.
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Appendix D

Simulation Data

System data

[0 00015 05204 -1.5131 01341  1.4687  1.0600
0 -135.5185 0.0000 0.0000  0.0000  0.0000  0.0000
0  0.0000 -0.3774 3.3346  0.0000 —0.0000 —0.0000
A = 0 00000 -3.3346 =-0.3774 —0.0000 —0.0000  0.0000
A 0 ~0.0000 -0.0000 —0.0000 ~1.8338 21.1698 —0.0000
0 —0.0000 -0.0000 -0.0000 -21.1696 -1.8338  0.0000
0  0.0000 -0.0000 —0.0000 0.0000 —0.0000 —4.9862
| ¢ —0.0000 -0.0000 —0.0000 -0.0000 0.0000 —59.6316
[ 08268 08514 —1.0557 -0.0335 08783 —0.2318 |
0.0000 —0.0000 0.0000 ~—0.0000 —0.0000 —0.0000
0.0000 —0.0000 -0.0000 —-0.0000 —0.0000 ~0.0000
A = —0.0000 0.0000 ~0.0000 0.0000 —0.0000 ~0.0000 B
o 0.0000  0.0000  0.0000 —0.0000 —0.0000 -0.0000 |’ ~ %
0.0000 —0.0000 0.0000 —0.0001 0.0000  0.0000
0.0000  0.0000 0.0000 -—0.0000 —0.0000 —0.0000
| 0.0000  0.0000 0.0000 —0.0000 =—0.0000 ~0.0000
—9.7598  117.4250 —0.0000  —0.0000 —0.0000  ~0.0000 |
~117.4250 -9.7599  -0.0000  0.0000 0.0000 0.0000
A = —0.0000  0.0000 —16.2488 195.0503  0.0000 0.0000
v 0.0000 0.0000 -195.0501 —16.2487  0.0000  —0.0000 |’
—0.0000  0.0000 0.0000 0.0000  —24.5282 292.7370
0.0000 0.0000 0.0000  -0.0000 —292.7361 —24.5287 |
C, = 0.8268 0.8514 —1.0557 -0.0335 0.8783 —0.2318]

135

—0.8021
0.0000
-0.0000
0.0000
0.0000
0.0000
59.6315
—4.9862 |
[ 0.0000 1
—4.5272
0.0639
0.0122
0.0632
-0.0077
0.0226
0.0560

[ 0.0501
—0.0100
0.0303
—0.0242
0.0141
~0.0142




Perturbation on matrix A (same for both cases), A4 = diag ( Ag, Ay, ) with

AA = dia.g (2.2822 0.5262 2.3847 1.3504 1.3570 1.7491 0.5164 2.0552)

-

Ay

v

diag (2.9595 2.0654 3.3439 1.9465 0.5185 3.4416)

Controller data for the proposed model

<p

C., = [—19.1391], D

P

A=[o],Bcp=[1ooooooo]
= 10 [—4.5852 —0.0000 —1.7261 3.8459 0.2997 0.6245 —0.1226 0.1580]

cp

Controller data for the standard model

A, = [0], Bc,=[1 000 00O o]

C., = [-3.3333 ], D., = 108 [—3.6022 ~0.0000 -3.3549 6.0303 -1.6145 0.6905 —0.0661 —0.0666]

S
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