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ABSTRACT 

 

        A Parametric Modeling Study of the Climate Change Impact on 

River Eutrophication and Water Quality  

   Xia Rui 

 

The potential impact of climate change on river eutrophication and ecosystems are 

emerging problems that are of great concern to international and domestic societies. 

Scientific research and developing methods to address these problems are challenging. 

This study aims to analyze the impact of climate change on algal bloom problems in 

large river systems by utilizing a parametric river eutrophication model that is 

established involving indicators of climate changes, hydrological regimes, water quality 

and nutrient loads. Specifically, the developed parametric modeling method is based on 

statistical and simulation methods including: Multiple Linear Regressions (MLR), 

Multiple Non-linear Regressions (MNR), Artificial Neural Network (ANN) based on 

Back-propagation (BP) algorithms, as well as an integrated river eutrophication model.  

 

The developed modeling method has been applied to the Wuhan section of Han 

River, which is one of major freshwater sources in China. The predicted probability of 

algal bloom occurrence for the next 40 years by the method is used to identify the 

impacts of climate change and human activities on the formation mechanisms of river 
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algal blooms under three scenarios. The principles of possible adaptation options are 

discussed in this thesis. 

 

The modeling results indicate the temperature is one of the direct factors 

contributing to river eutrophication and the change of river water quality. It has also 

been recognized that the climate change, which can alter water temperature and 

hydrological regimes, in conjunction with human activities can significantly influence 

water quality and the river ecosystem. The present study is expected to give theoretical 

supports and directions for further relevant research. 
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            CHAPTER 1 INTRODUCTION 

1.1 Overview 

The impact of climate change on water quality is of great concern to scientists 

and governments worldwide. With the economic growth and industrial development, 

‘greenhouse gases’, especially CO2, are emitted continuously to the atmosphere 

leading to global climate change (Rundgren et al., 2005; Lenihan et al., 2008). Global 

climate change is likely to have significant effects on the hydrological cycle (IPCC, 

1996). The hydrological cycle may become intensified, with more evaporation and 

more precipitation, but the extra precipitation is likely to be distributed unequally 

around the globe. Some parts of the world may see significant reductions in 

precipitation, or major alterations in the timing of wet and dry seasons (Arnell, 1999). 

Climate change can have far reaching consequences for water resources (Arnell, 

2003), water quality (Hejzlar et al., 2003; Webb et al., 2003) and the overall water 

ecosystem (Beaugrand and Reid, 2003; EA, 2005; Hiscock et al., 2004; Moss et al., 

2003; Sommer et al., 2004; Wilby et al., 2006). A strong climate and water-quality 

relationship was found between air and water temperatures and nutrient 

concentrations. The level of effective precipitation also appeared to exert a significant 

influence on water quality which is, in contrast with the influence of air temperature, 

less direct (Tibby and Tiller, 2007). Changes in water quality during storms, snowmelt, 

and periods of elevated air temperature or drought may exceed the thresholds of 
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ecosystem tolerance, and thus lead to aquatic ecosystem degradation. Continued 

climate induced stress would increase the frequency with which ecosystem thresholds 

are exceeded and thus lead to chronic water quality changes (Murdoch et al., 2000; 

Xia et al, 2010).  

 

The figure 1.1 indicates the interactions among climate change impacts on water 

cycles, water environments and ecosystems (Xia et al., 2010). It indicates that climate 

change impacts are shown in following major aspects: (1) climate changes will lead to 

variation of precipitations causing the change of hydrological regimes, and then 

impact the water quality; (2) climate changes will also lead to variation of 

temperatures causing degradation of water quality index coefficients and self 

purification capacity, and thus lead to the concentration of water quality changes; (3) 

climate changes will lead to extreme hydrological events and some unexpected water 

pollution may occur; (4) climate changes will lead to temperature increases, thus 

changing the algal growth rate which would cause the eutrophication problems.  
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Fig. 1.1 Interactions of “Climate Change - Water Cycle - Water Environment - 

Ecosystem” (Xia et al., 2010) 

 

Besides climate change impacts on water availability and hydrological risks, the 

consequences on water quality, eutrophication and the aquatic ecosystem are just 

beginning to be studied (Delpla et al., 2009). The existing and currently planned water 

projects as well as water resource programming in China do not account for the 

potential impact of climate change. One of major challenges is the lack of available 

and workable screening tools to assess such impact and thus adapt water management 

to include the potential impacts of climate change (Xia et al., 2010). Fortunately, 

climate change is increasingly recognized as an important regulatory factor, capable 
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of influencing water quality and the structural properties of aquatic ecosystems (Law 

et al., 2009). However, the impact mechanisms of climate change on water quality 

and ecosystem are still not fully understood.  

 

Currently, the dominant academic view seems to be that the main cause of water 

pollution and eutrophication is the large input of phosphorus (P) and nitrogen (N) that 

enters the aquatic ecosystem due to human influence (Elena et al., 2001; Klein et.al., 

2002). According to the European Environment Agency, “the main source of nitrogen 

pollutants is run-off from agricultural land, whereas most phosphorus pollution comes 

from households and industry, including phosphorus-based detergents.”(Klein et al., 

2002). Phosphorous is the primary agent in freshwater eutrophication, because many 

algae obtain N from the atmosphere so P is often the limiting nutrient (Sharpley and 

Sheffield, 2001). Thus, there has been a tendency that water eutrophication that leads 

to algal blooms is primarily caused by excess nutrients, particularly phosphorus 

(Gamini, 1997). However, an unhealthy water cycle and water temperature changes 

could also impact the internal loading of nutrients. For example, the sediments in the 

bottom of lake or river can act
 
as either sinks or sources for water-borne phosphorus. 

Sediments can increase water eutrophication risks due to variation of water 

temperature and water cycles even when external P sources are regulated (see Fig. 1.1) 

(Murdoch et al., 2000; Whitehead et al., 2009). Thus climate changes may also 

possibly impact water quality even if the external nutrient loads caused by human 

activity are taken into control. The Han River Basin (HRB) is a representative case 
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that water quality and the aquatic ecosystem are significantly impacted by both human 

activities and climate change. 

 

Generally, Algal Blooms (ABs) are common in motionless water such as a lake, 

fishpond or reservoir. However, algal blooms have occurred three times between 1992 

and 2000 in the Wuhan section of Han River which is the largest tributary of the 

Yangtze River in China. In recent times there also have been three reported algal 

blooms in years: 2002, 2008 and 2009 (Zhang, 2006). It is very unusual for algal 

blooms to occur in this kind of large and free-flowing water body. Some studies have 

shown that the cause of this eutrophication is the nutrient load due to human activities 

but also partially due to internal relationships between hydrological conditions and 

temperatures (Xie et al., 2004). Xia et al., (2010) also emphasized that the nutrient 

load, water temperature and hydrology regimes are the three main reasons that caused 

the Han river eutrophication. Zhang (2006) also pointed out the high variation of 

algae concentrations in the river is primarily caused by excessive nutrients, 

particularly phosphorus and sometimes nitrogen (Gamini,1997) though this can also 

be potentially impacted by sunlight and hydrological conditions. Therefore, the input 

nutrient load and climate change are the two key factors impacting on water 

eutrophication (Oberholster, 2009). However, China is known as a developing 

country with a large land area and population, and sometimes it is very hard to 

effectively control the nutrient load input or water pollution caused by human 

activities in a short time. This in turn makes it difficult to understand the impact 
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mechanisms of climate change on the river water quality and the river ecosystem. One 

of the key challenges of water resource management is to assess the impact of climate 

change on the water resource and the feasible adaptations to reduce adverse effects of 

economic and social developments.    

 

1.2 Research Objectives 

Accurately assessing the risks and liabilities related to the increased threat of 

algal blooms in rivers due to water pollution will be the key to provide the necessary 

information and support to policy makers. In order to make this information more 

useful for the prevention, detection and remediation of algal-bloom problems, it is 

necessary to predict the potential impact of climate-change caused by human 

activities such as pollution. Therefore, an integrated assessment of climate change 

impacts on river eutrophication and the aquatic ecosystem will be developed and 

performed as the following steps: 

 

1)  to establish a system modeling structure to the Han River algal blooms where the 

water eutrophication problem is terrible as a case study based on multiple inputs 

and a single output. Multiple inputs include: (a) nutrient loads, (b) temperatures, 

(c) hydrological regimes, and (d) water quality. The output is the total algal cells 

concentration which will indicate the severity of algal blooms. Corresponding data 

screening and preparation will be performed based on the historical pollution 

events and correlation analysis. 
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2)  to develop a parametric river eutrophication modeling systems which will include: 

(a) Multiple Linear Regressions (MLR), (b) Multiple Non-linear Regressions 

(MNR), (c) Artificial Neural Network (ANN) based on Back-propagation (BP) 

algorithms, as well as (d) an ecological (Dillon) model. All of the above models 

will be calibrated and validated using the monitoring data.  

 

3)  to quantify the contributions of impact of climate change and human activities on 

algal bloom problems in the large river systems based on the single-factor and 

integrated assessment under different scenarios. 

 

 4)  to make predictions in probability of algal bloom occurrence for the next 40 years 

based on the proposed modeling methods under three emissions scenarios. 

 

5)  to discuss the principles of possible adaptation options for how to solve the  

impact of climate change on water resources and what feasible actions should be 

taken to keep economic and social developments from causing adverse effects.   

 

 

1.3 Organization of the Thesis 

 

This thesis is organized in the following seven chapters: 
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The foreword has summarized the background and significance of the selected 

topic, as well as the objectives of this study; 

 

Chapter 2 reviews the traditional and most recent literature on climate change 

impacts on water quality. It then identifies some research gaps among published 

results and proposes what needs to be recognized in practice along with a detailed 

literature review of the previous research and models related to this topic. 

 

Chapter 3 introduces theoretical background and methodologies of parametric 

models, as well as a an empirical model related to water eutrophication.  

 

Chapter 4 provides detailed applications of all models described in Chapter 3 on 

real river algal blooms case studies. System model results will be analyzed and 

compared based on model calibration and validation.  

 

Chapter 5 demonstrates an single-factor and integrated climate change impact 

assessment based on the best available simulation results. In this section, not only the 

contribution of indicators will be computed but also the probability of algal bloom 

occurrence in the next 40 years will be forecasted, based on three emissions scenarios. 

 

Chapter 6 presents a discussion of overall result analysis; the contents and 
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principles of adaptation options and adaptability construction will be made.  

 

Chapter 7 concludes with a brief summary, a list of contributions and future 

research recommendations. 
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        CHAPTER 2 LITERATURE REVIEW 

2.1 Perspective of Climate Change Impacts on Water Quality and 

Ecosystem 

The impacts of climate change on hydrology have been studied extensively 

(Pfister et al., 2004; Middelkoop et al., 2001; Xia and Zhang, 2005; Xia and Zhang, 

2008; Xia et al, 2010). However, the focus of past studies has been on water quantity 

impacts (e.g., flooding and droughts) rather than on changes in water quality (Drago 

et al., 2005). Recently, the potential impacts of climate change on surface water 

quality and ecosystem have been increasingly acknowledged (Murdoch et al., 2000, 

Whitehead et al., 2009). The IPCC Fourth Assessment Report (Kundzewicz et al., 

2007) began to consider the impacts of climate change on water quality although not 

in great detail. The EU Euro-limpacs Project, a multi-partner, 20-million Euro 

research project, is investigating the impact of climate change on water quality and 

river, lake and wetland ecosystems across Europe (Battarbee et al., 2008). Also in 

China, one project funded by the Ministry of Water Resources is to analyze the 

impacts of climate change on Chinese water resources, including its impacts on water 

quality and water ecosystems. Results of previous studies have indicated that water 

quality can be directly affected through several climate-related mechanisms in both 

the short and long term (Tu, 2009; Park et al., 2009). These include the impacts of air 

temperature increase, as well as changes in hydrological factors amongst others 
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(Murdoch et al., 2000). The most immediate impact of climate change is expected to 

be in river and lake water temperatures which is influenced by air temperature 

(Hammond and Pryce, 2007). Hence, air temperature is the key variable affecting 

water temperature in most biological systems, and also strongly influencing water 

chemistry, biochemical reactions and growth and death of biota (Blenckner et al., 

2007; Malmaeusa et al., 2006). Tibby and Tiller (2007) analyzed over 15 years of 

water quality monitoring data from three lakes in western Victoria, Australia, and 

found that there are strong relationships between climate change and water quality in 

these lakes of varied size and salinity (Xia et al, 2010).  

 

Extreme events (e.g., floods and droughts), the frequency of which is predicted 

to increase, also modify water quality through direct impacts of dilution or 

concentration of dissolved substances. More intense rainfall and flooding could result 

in increased loads of suspended solids (Lane et al., 2007) and contaminant fluxes 

(Longfield and Macklin, 1999) associated with soil erosion and fine sediment 

transport from the land (Leemans and Kleidon, 2002). Lower minimum flows imply 

smaller volume for dilution and higher nutrient concentrations. Reduced dilution will 

increase organic pollutant concentrations, with increased biological oxygen demand 

(BOD), and hence lower dissolved oxygen (DO) concentrations in rivers 

(Prathumratana et al., 2008; Van and Zwolsman, 2008). Drought–rewetting cycles 

may impact water quality as it enhances decomposition and flushing of organic matter 

into streams (Evans et al., 2005). The impacts of climate change on water quality and 
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the aquatic ecosystem are getting more attention. However, there are still some 

problems that need to be improved in the future. There are a lack of studies 

differentiating the impacts of climate change and human activities. The impacts of 

climate change on water quality and the aquatic ecosystem through changing water 

regimes are still unclear, and most adaptations proposed before are idealistic or 

impracticable (Xia et al., 2010).  

 

Some recent studies (Xia and Zhang, 2008) have shown that human activities’ 

impact on water quality in China are very significant, largely due to population stress 

and economic development. Expansions in areas such as in urban and agricultural 

development, river development (i.e., water project construction), water use, and in 

particular overexploitation of ground water resources have caused an increase of 

human impact on water quality. The scarcity of water resources is aggravated by 

unequal spatial and temporal distribution due to huge population and booming 

economy. Recently, the deterioration of water quality and ecosystem health in rivers 

has become increasingly prominent. Changes in land use alter biological, physical and 

chemical processes in watersheds and thus significantly affect the quality of adjacent 

surface waters. In addition, sewage linked to human activities can directly destroy 

water quality and ecosystem health. Besides sewage, climate change can both mitigate 

and exacerbate the degradation of water quality. Moreover, when point source 

pollution is reduced in China, climate change is expected to result in increasing 

impacts in the future (Xia et al., 2010) 
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2.2 A Summary of River Algal Blooms 

Algal blooms are generally defined as eutrophication of water bodies due to a 

rapid increase or accumulation in the number of algae cells or phytoplankton in 

freshwater as well as marine environments (Yabunaka et al., 1997; Zheng et al., 2006). 

Algal blooms are often green, but they can also be other colors depending on the 

species of algae such as blue, yellow-brown or red and are most common in spring or 

early summer. According to the research from Environment Agency (EA), most of the 

algal blooms in water bodies are often diatom algae, blue algae (Cyanobacteria), 

green algae and etc.. This phenomenon is the result of an excess of nutrients, 

particularly phosphorus. Excess carbon and nitrogen have also been suspected as 

cause (Diersing, 2009). Algal blooms not only occur in freshwater but also in marine 

environments. Algal blooms may also include toxic events which are called Harmful 

Algal Bloom (HABs), such as “Red tide” which is often used to describe HABs in 

marine coastal areas. Those species are “a small subset of algal species that negatively 

impact humans or the environment” (Diersing, 2009). In some cases algal blooms are 

natural phenomena. However, in many parts of the world algal blooms are increasing 

due to human activities, and this can have a negative impact on wildlife as well as 

human health (Zheng et al., 2006) 

 

Freshwater algal blooms can also have a broad range of negative impacts on 

humans, animals, and aquatic ecosystems. The risks are as follows (Donnelly, 1997): 

 

http://en.wikipedia.org/wiki/Phosphorus
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Nitrogen
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1. Decaying algae depletes oxygen from the water, leading to low or no oxygen 

conditions where fish and other animals may be unable to survive. 

2. Some algae that contribute to blooms also produce toxins that threaten the safety 

of drinking water sources and can harm both humans and animals by 

contaminating the food chain. 

3. Algal blooms will also cause deterioration of water quality through the build-up of 

high biomass. They may degrade the aesthetic value of water bodies through 

floating algal masses and by generating an unpleasant odor. 

 

Although the threshold level of algal bloom is different depending the water 

body in question and environmental conditions, the threshold of an algal bloom was 

generally defined when concentration of chlorophyll in the water exceeds 30µg/L or 

when the number of algal cells exceeds 5 million per liter (Lu et al., 2000). 

Increasingly, algal blooms are a public health concern and an ecological problem in 

wetlands, waterways and oceans (World Bank, 2001). Biomass accumulation is an 

important process before the appearance of algal blooms, so the change of algal 

growth rate is of great significance for the early warning of algal blooms (Gamini, 

1997; Lu et al, 2000). 

 

As economic developments and human activities increase, there have been some 

studies indicating that river eutrophication and algal blooms have become a serious 

environmental problem. For instance, Australia experienced the largest recorded toxic 
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river algal bloom in history in November of 1991. In 1992 the first river algal bloom 

was formed in the Han River of China which is the largest tributary of the Yangtze 

River (Xie, 2003). The Department of Environmental Quality (DEQ) stated that in 

August 2007, an algal bloom occurred in the Potomac River off the coast of Colonial 

Beach in USA, and turned the water a reddish-brown color (Dunn, 2007). In 2009, a 

blue-green algal bloom occurred that extended some 1,000 km along the Murray 

River on the border of New South Wales and Victoria downstream from Hume Dam 

over a two month period. Recently, The Environment Protection Authority (EPA) has 

investigated several reports of a red substance forming slicks in the Derwent estuary 

in England. Despite the above events of river algal bloom occurring in different 

countries and environmental conditions, they all have similar circumstances of 

climate change and run-off of nutrients. For example, most of the above algal blooms 

occurred at a time of low river flow (around 200's ml/day) along with hot or still 

conditions. Therefore, the global climate change is likely to have significant effects on 

the hydrological cycle (IPCC, 1996), which is linked to potential river eutrophication 

problems.  

 

2.3 Previous Modeling Studies to Assess Climate Change Impact on 

Water Quality 

2.3.1 Statistical Models 

Multiple regressions analysis is a statistical method, the purpose of which is to 
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learn more about the relationship between several independent or predictor variables 

and a dependent or criterion variable. The general computational problem that needs 

to be solved in multiple regression analysis is to fit a straight line to a number of 

points. Over the past decades, the multiple regressions analysis as a “black-box” typed 

model has been widely used for analyzing and forecasting environmental problems in 

the social and natural sciences. It is a very useful and conventional statistical method 

which can be used to infer causal relationships between the independent and 

dependent variables in a proper mathematical expression. There have been a lot of 

water environmental cases studies applied for multiple regressions approaches. For 

instance, Biggs (2000) applied multiple regression model combining dissolved 

nutrient data for predicting the effects on algal biomass of streams and river 

eutrophication. He suggested that managing nutrient supply could not only reduce the 

magnitude of maximum biomass, but also reduce the frequency and duration of 

benthic algal proliferations in streams. Chesoh et al. (2007) applied regression model 

to predict the chlorophyll-A concentration as an index of potential occurrence 

eutrophication in Songkhla Lake in Thailand. A predictive statistical model has been 

developed for estimating when water quality conditions are conducive to high 

Chlorophyll-a levels, and the model provided a practical lake water management tool 

for eutrophication surveillance. Climate-change mediated eutrophication does not 

only apply to lakes and rivers. They emphasized that global warming will exacerbate 

water eutrophication. Most previous studies address these environmental problems by 

using multiple linear regressions or non-linear regressions approach. It is not common 
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to see these two models combined together to analyze the problems of river water 

quality. Moreover, the regression results from most of the above studies were not 

compared with another well-known simulation model which is the Artificial Neural 

Network (ANN) model. 

 

2.3.2 Simulation Models 

An Artificial Neural Network (ANN) is a powerful tool can be used to simulate 

any complex functions and nonlinear problems. A neural network usually consists of 

an interconnected group of artificial neurons, and it processes information using a 

connectionist approach to computation. ANNs are versatile tools to extract 

information out of complex data, and which have been implemented in diverse 

aspects such as in ecological modeling (Park et al, 2003; Lek and Gugan, 1999, 2000), 

predicting population and community development (Tan and Smeins, 1996; 

Recknagel et al., 1997; Chon et al., 2000), or patterning complex relationships (Lek et 

al., 1996; Tuma et al., 1996). Most of these studies used one of two ANNs: a 

self-organizing map (SOM) (Kohonen, 1982) for clustering input vectors, and a 

backpropagation algorithm (BP) (Rumelhart et al., 1986) for predicting biotic 

attributes with biotic and/or abiotic variables. The most well-known supervised ANN 

model solved this problem, which is the “back-propagation network (BPN)" 

developed by Rumelhart et al. (1974), Hinton and Williams (1986). The solution is 

that the errors for the units of the hidden layer are determined by back-propagating the 

http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Connectionism
http://en.wikipedia.org/wiki/Computation
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errors of the units of the output layer. It is a multilayer feed-forward network based on 

the error back-propagation training algorithm. This method used a steepest descent 

back-propagation training algorithm, and the error of the output signal of a neuron is 

used to adjust its weights such that the error decreases and the error in hidden layers is 

estimated proportional to the weighted sum of the (estimated) errors in the layer 

above. However, there have not been many studies applying BP network on river 

eutrophication problems, The potential impacts of climate change included changes in 

snowfall, snowmelt, rainfall amount and intensities. The ANN was capable of 

identifying complex nonlinear relationships between input and output data sets 

without prior knowledge of internal structure of a system. However, most authors 

proposed the use of regression analysis or ANN as simulation models to deal with 

environmental cases, but the proposed approach wasn’t explained by any conceptual 

and mechanism model. This meant that the final results are without any knowledge of 

its internal workings. In contrast, a statistical model such as multiple linear and 

nonlinear regression may be employed to approximate a nonlinear system (Chen et al., 

1990; Leontaritis and Billings, 1985). But physical significance or structural 

information of the system will be lost if such black-box models are attempted 

(Gawthrop et al., 1993; Gray et al., 1998; Tan et al., 2002). Therefore, an integrated 

assessment model combined with a half physical representation can verify those black 

box models. 
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2.3.3 Water Eutrophication Models 

Compared to the above statistical model, a empirical model or sometimes called 

“semi-physical” typed model usually provides a physical representation, but some of 

the physics is approximated (Tan et al., 2002). This model is usually a combination of 

stochastic and deterministic models (Jacobsen et al., 1996). For application in water 

environments there have been many water eutrophication models. Vollenweider (1969) 

first published a nutrient loading model which describes the relationships between 

mean water depth and various measures of water quality in the last century, and 

Dillon (1974) simplified this theoretical formula based on finding correlations 

between the phosphorus retention coefficient R and sedimentation rate coefficient Kp. 

Thus those are typical water eutrophication models which are commonly recognized 

as empirical models or white box model (also called glass box or clear box) systems, 

where all necessary information is available (Aris, 1978). This kind of empirical 

model contains parameters of water quality and hydrological regimes, but could not 

indicate any climatic parameters such as temperature and precipitation. There has 

been some pervious research that tried to include such factors. For instance, Straten 

and Keesman (1991) successfully developed stochastic first-order error propagation 

based on the extended Kalman filter (EKF), and robust Monte Carlo set-membership 

procedure (MCSM) which are applied to water quality assessment, generating a 

projective forecast of the algal dynamics in a lake in response to management actions 

that force the system into a different mode of behavior. They emphasized that the 

grey-box models have larger predictive capabilities than black-box models. Sjoberg 
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(1999) proposed a grey box stepwise algorithm to identify a nonlinear model of a 

rotational system, and the initialization algorithm of the study improves the changes 

avoiding similar kinds of problems with local minima for nonlinear black box and 

grey box models. Madsen et al. (2001) proposed a grey box model which was set up 

to describe concentrations of total nitrogen and inorganic nitrogen. Taking 

denitrification into account allows descriptions of generalized approximations for the 

dynamic physical and biological system and quantification of the uncertainty of the 

results. Carstensen et al. (2006) established a nonlinear time series grey box model 

based on knowledge of the waste water treatment processes. Tan and Li (2007) 

developed an evolutionary simulation model identification methodology that makes 

the best use of a-prior knowledge on a clear-box model with a global structural 

representation of the physical system under study, whilst incorporating accurate 

black-box models for immeasurable and local nonlinearities of a practical system.  

 

Most of above researches were only focused on solving the eutrophication 

problems in lakes, reservoirs and other fields, and there have not been many specific 

case studies describing climate change impact on the algal bloom of the river or other 

large bodies of water. Moreover, climate change impact on the river water 

environment is a very complex system, which contains human activity (e.g. waste 

load), hydrological conditions (e.g. water flow rate, water level), temperatures and etc. 

So far, many of the relevant studies have separately analyzed the effect of human 

activities and global warming from this complex water environment system, but there 
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is a lack of comprehensive research to formulize the interaction between human 

activity and climate change on the river algal bloom. Therefore, an integrated climate 

change assessment approach based on the combination of statistical and simulation 

models will be proposed in the following sections. 

 

2.4 Summary 

This Chapter reviews the most recent literature on climate change impact on  

water quality. Typical modeling approaches and techniques used for the analysis of 

climate change impacts on the water quality are addressed, emphasizing the statistical 

and simulation modeling system which includes multiple linear regressions, nonlinear 

regression approaches, ANN and a water eutrophication models.  

 

The literature review indicated that there is a need for more studies: 

 

1. The previous research has indicated that water quality can be directly affected 

through several climate-related mechanisms on both short and long term. However, 

scientific works on this important issue are still very limited, and the focus of past 

works has been on water quantity impacts rather than on changes in water quality. 

The impact of climate change on water quality through changing water regimes 

and temperature are still unclear, and there are a lack of studies on climate change 

impact on water quality, especially for large river systems in China. 
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2. The impacts of climate change on water quality are getting more attention in 

recent years, but there have not been many systematical assessments refer to the 

interactions between human activities, temperature, water quality and hydrological 

regimes. There are also a lack of studies differentiating between the impacts of 

climate change and human activities. Quantifying contributions from human 

activities and climate change on river water quality has not been identified so far.  

 

3. Most of previous studies related to climate change are more focused on solving  

eutrophication problems in lake systems such as fishponds, small lakes and 

reservoirs. There have not been many specific case studies describing climate 

change impact on water quality in the large river systems.  

 

4. The statistical models such as regressions and ANNs are powerful for simulating 

and forecasting environmental problems. However, there is lack of a 

comprehensive modeling which addresses the application of climate change 

impact assessment on river water quality. Furthermore, most of the statistical 

models just imports the collection data to calculate the outputs without providing 

some necessary physical meaning, and lack sufficient support from concept or 

mechanism models.  

Therefore, in this study, it is possible to extend previous studies in the following 

areas: 
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1. This study can not only point out the direct impact of climate change on water 

quality in both short and long term, but can also quantify the contributions 

associated with climate change and human activities, as well as different 

hydrological regimes.  

 

2. An parametric river eutrophication system model can be developed based on 

application of both statistical and simulation data models. All modeling results 

will be compared for their advantages and limitations for water environmental 

assessments. The final assessment result can be applied to a real case study to 

address climate change impact on river water quality and eutrophication problems.  

 

3. The comprehensive modeling result not only indicates the relationships between 

multiple inputs to outputs, but also can provide some necessary physical 

conceptions to explain the mechanisms of climate change impacts on water 

environments. 

 

4. The emission scenarios analysis will be applied based on the overall results, which 

can be used to predict the future occurrence of probabilities in the next 50 years, 

thus corresponding implications to climate changes can be made as well.   
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CHAPTER 3 METHODOLOGIES 

 

3.1  Multiple-linear Regressions Model  

A multiple linear regressions (MLRs) method is a multivariate statistical 

technique used to model the linear correlations between a single dependent variable Y 

and two or more independent variables (x1, x2, …. , Xn) (Sykes, 1999). In multiple 

linear regressions, there are i
th 

explanatory variables (observations), and the linear 

relationship between the dependent variable and the explanatory variables is 

represented by the following equation 3.1 : 

 

Yi = b0 + b1X 1i + b 2X2i + … + bkXki  + ui   for i = 1, 2, ..., n      (3.1) 

 

where b0 is the constant term and X 1to X2 are the coefficients relating the i
th

 

explanatory variables to the variables of interest. Note that in this equation, the 

regression coefficients (or coefficients b) represent the independent contributions of 

each independent variable to the prediction of the dependent variable (Sykes, 1999).  

The equation can be expressed in a form of linear matrix:  
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The multiple regression models in matrix notation then can be expressed as: 

                   Y = Xb +u                             (3.3) 

 

where b is a column vector of 1 (for the intercept) + k unknown regression 

coefficients. Recall that the goal of multiple regressions is to minimize the sum of the 

squared residuals. Regression coefficients that satisfy this criterion are found by 

solving the set of normal equations 

X'Xb = X'Y                           (3.4) 

When the X variables are linearly independent (i.e., they are nonredundant, yielding 

an X’X matrix which is of full rank), there is a unique solution to the normal 

equations. Premultiplying both sides of the matrix formula for the normal equations 

by the inverse of X’X gives  

 

(X'X)
-1

X'Xb = (X'X)
-1

X'Y                   (3.6)    

or 

b = (X'X)
-1

X'Y                         (3.7) 

The last result in the equation 3.7 is very satisfying in view of its simplicity and 

its generality.  

3.1.1 Data Screening for Regression  

(i) Linearity Analysis 
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An important step before applying the multiple regressions approach is to 

assume that there is a linear relationship between dependent variable and the 

explanatory variables. Scatter plots should be checked as an exploratory step in 

regression to identify possible departures from linearity. Scatter plots are two 

dimensional graphs. It involves two variables, which are explanatory variable or 

Independent variable and response variable or Dependent variable. 

 

(ii) Correlation analysis 

Pearson (1908) developed a correlation method can also measure the correlation 

of linear dependence between two variables. Suppose we have two variables X and Y, 

with means X  and Y , respectively, and standard deviations SX and SY, respectively. 

The correlation can be computed as: 

 

YX

n

i i

SSn

YYiXX
r

)1(

))((
1





 

                     (3.8) 

 

Thus, the result between -1 and +1 can measure the degree of correlation between two  

variables, a positive value implies a positive association and a negative value implies 

a negative or inverse association (Mike, 2008; Paul, 2008). Usually, we can determine 

the strength of correlation by range as: (a) very strong correlations between 0.8 ~ 1.0; 

(b) Strong correlations between 0.6 ~ 0.8; (c) moderate correlations between 0.4 ~ 

0.6; (d) weak correlations between 0.2 ~ 0.4 and (e) moderate correlations between 

0.4 ~ 0.6. 
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The purpose of the scatter plot and Pearson correlation is to determine if any 

relationship between the variables is possible. The scatter plotting is usually 

performed even before data analysis is considered or before testing the regression 

fitting model. If relationships are nonlinear, there are two recourses (Mark, 2008): (1) 

transform the data to make the relationships linear, or (2) use an non-linear statistical 

model. In this study, the correlation coefficients larger than 0.4 (moderate correlations) 

will be taken as sampling data. 

 

3.1.2 Goodness of Fit 

Once the regression model has been established, the goodness of fit of statistical 

model describes how well it fits a set of the observation data. Measures of goodness 

of fit typically summarize the discrepancy between the observed values and the values 

expected under the model in question. Some useful indicators such as residual 

variance and coefficient of determination (R
2
) can be used to estimate the modeling 

efficiency. 

 

 (i) Residual Variance 

The goal of linear regression is to adjust the values of slope and intercept to find 

the line that best predicts Y from X (Sykes, 1999). More precisely, it is to minimize 

the sum of the squares of the vertical distances of the points from the line. 

 

Several regression statistics are computed as functions of the sums-of-squares 
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terms: 

SST = 



n

i

i yy
1

2)(  sum of squares, total; 

SSR = 



n

i

i yy
1

2)ˆ(  sum of squares, regression; 

SSE = 



n

i

i yy
1

2)ˆ(  sum of squares, error.              (3.10) 

The regression equation is estimated such that the total sum-of-squares can be 

partitioned into components due to regression and residuals (Markus, 2009): 

 

                      SST = SSR + SSE                           (3.11) 

 

(ii) Coefficient of determination (R
2
) 

Coefficient of determination, R
2
 (Sykes, 1999; Ethington, 2005), is an indicator 

of how well the model fits the data, for example: an R
2 

close to 1.0 indicates that we 

have accounted for almost all of the variability with the variables specified in the 

model. The calculation of R
2
 is 1 minus the ratio of residual variability. When the 

variability of the residual values around the regression line relative to the overall 

variability is small, the predictions from the regression equation are good. The 

explanatory power of the regression is computed from the sums-of-squares terms as 

following equation: 

R
2 

= 
SST

SSE

SST

SSR
1

                        (3.12)
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However, the value of R
2 

is related to the size of sample “n”, and R
2 

also increases 

with increasing sample size. Thus the adjusted R
2
 is one of the several statistics that 

attempt to compensate for this artificial increase in accuracy (Markus, 2009). the 

adjusted R
2
 given by: 

1

1
)1(1 2






kn

n
RR

                        (3.13)
 

,where n is the observation value and k is the explanatory variables 

 

3.1.3 Significance of Regression Test 

(i) Test on the whole regression model (F –test) 

This test checks the significance of the whole regression model and it can be also 

used to simultaneously check the significance of a number of regression coefficients. 

The F statistic is the regression mean square (MSR) divided by the residual mean 

square (MSE). If the significance value of the F statistic is small (i.e., smaller than 

0.05), then the independent variables can explain the variation in the dependent 

variable. If the significance value of F is larger than say 0.05, then the independent 

variables do not explain the variation in the dependent variable, and the null 

hypothesis that all the population values for the regression coefficients are 0 is 

accepted. In other words, an F-test with a significance level less than 0.05 indicates 

that at least one of the variables in the model helps to explain the dependent variable 

(Sykes, 1999). 
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For example:                  
E

R

MS

MS
F 0

                        (3.14) 

If the null hypothesis H0 is the true then the statistic F0 follows the F distribution with 

k degrees of freedom in the numerator and n-(k+1) degrees freedom in the 

denominator. The null hypothesis H0 is rejected if the calculated statistic F0 is such 

that : 

 
)1(,,0  knkafF

                     (3.15) 

 

(ii) Test on Individual Regression Coefficients (t-test) 

The t test is used to check the significance of individual regression coefficients in 

the multiple linear regressions model. Adding a significant variable to a regression 

model makes the model more effective, while adding an unimportant variable may 

make the model worse. The hypothesis statements to test the significance of a 

particular regression coefficient βj are: 

                            H0: βj = 0 

                            H0: βj ≠0 

 

The test statistic for this test is based on the t distribution (Mark, 2008): 
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T






                         (3.16) 

This test can measure the contribution of a variable while the remaining variables are 

included in the model. 
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3.2 Multiple Non-linear Regressions Model  

In practice, a very stark multiple linear regression model is not normally seen, so 

sometimes we need a system tool to simulate the nonlinear problems. The nonlinear 

regression approach is a method of finding a nonlinear model of the relationship 

between the dependent variable and a set of independent variables. Nonlinear 

regression can estimate models with arbitrary relationships between independent and 

dependent variables. In order to fit this, the linear least squares can be adapted to 

create new nonlinear variables from data. If new variable properly is constructed, the 

curved function of original variables can be expressed as a linear function of those 

new variables, and this transformation is often called linearization (Baker, 2006). 

There are some nonlinear regressions problem that can be moved to a linear domain 

by a suitable transformation of the model formulation. For example, consider a 

non-linear equation which is commonly used such as the constant elasticity model, 

application includes supply, demand, cost, and production functions. The constant 

elasticity equation (Baker, 2006): 

Y=AX
β
u                           (3.17) 

where X is some continuous variable that’s always bigger than 0; A is constant 

determines the scale; β is the elasticity of Y with respect to X; u is the error has a mean 

of 1 and is always bigger than 0. 
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Consider the nonlinear equation which will be always complex to calculate for 

multiple x variables. If we take the logarithm of both sides of that equation, we will 

get ln(Y) = ln(A) + b ln(X) + ln(u). For this equation, if create the variable ln(Y) and 

also a variable for the base-e logarithm of X, written as ln(X), we can use the regular 

least squares method to fit the curve Y = AX
b
 to sampling data (Baker, 2006). 

 

When applying this approach to a environmental problem, if there is more than 

one X variable, we have a general form of multiple nonlinear equations (ignoring the 

error) with several inputs (for example, there are three input variables X1, X2, and X3). 

We take a logarithm for both sides,  

          Y1=β 0 X1
β1

X2
β2

X
β3                               

(3.18) 

It becomes:               ln(Y) = ln (β0 X1
β1

X2
 β2

X3
β3

)                (3.19) 

and,                ln(Y) = ln(β0) + β1ln(X1) + β2ln(X2) + β3ln(X3)      (3.20) 

          where  y = lnY,  a = lnβ 0 ,  x1 = lnX1,  x2 = lnX2,  x3= lnX3, etc. 

The equation can be finally transformed to a linear equation    

    y = a +β1 x1+β2 x2+β3 x3 +…+βn xn             
            

(3.21) 

As with the growth-decay model, when the prediction of y has been calculated, 

we need to convert it to Y. This is done by raising e to the y power, because Y = exp(y). 

The exp function in Excel can be used to deal with this problem. Thus, we can use 

multiple linear regressions method to deal with the non-linear regression problem and 

in order to determine the coefficients of regression equation.   
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3. 3 Artificial Neural Network Model  

This study focuses the most well-known supervised ANN model, which is 

“Back-Propagation (BP) network" (Rumelhart, Hinton, and Williams 1986), and it is a 

multilayer feed-forward network based on the error back-propagation training 

algorithm. This algorithm uses steepest descent back-propagation training algorithm. 

The error of the output is used to adjust its weights such that the error decreases, and 

the error in hidden layers is estimated proportional to the weighted sum of the  errors 

in the layer above. 

 

                       Hidden layer 

                             (Weights) 

    

X1 -Nutrient loads                   

                                             Outputs (Y) - Algal cells 

X2 -Temperatures                 

 

X3- Flow regimes                   

 

           

 

         Fig. 3.1 Three layers back propagation neural network 

 

A typical BP neural network (Fig. 3.1) consists of at least three layers of units: an 

input layer, at least one intermediate hidden layer, and an output layer. In puts are 

independent variables (e.g. Nutrients, Temperature and etc.), output is dependent 

variable (e.g. algal cells). When a BP network is cycled, an input pattern is propagated 

forward to the output units through the intervening input-to-hidden and 

hidden-to-output weights (Kohonen, 1997; Khalil, 2006). This algorithm is based on 
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the error correction learning rule. The errors propagate backwards from the output 

nodes to the inner nodes. Back-propagation calculates the gradient of the error of the 

network regarding the network's modifiable weights (Paul, 1994). The basic principles 

of the back propagation algorithm are: (1) the error of the output signal of a neuron is 

used to adjust its weights such that the error decreases, and (2) the error in hidden 

layers is estimated proportional to the weighted sum of the (estimated) errors in the 

layer above. 

 

The typical calculation producers of BP network are as follows (Thiang, 2010; 

Xie et al., 2004): Assuming the neuron nodes for the input layer, hidden layer and 

outputs layer are N1, N2 and N3, respectively, the transfer functions of neurons of input 

layer and hidden layer are the Sigmoidal functions: 
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If there are P
th 

training samples ),,2,1,,( PpTI pp  ， 1N

p RI   is the input of the 

P
th 

sample, and 3N

p RT   is the expected outputs of the P
th 

sample. Then, the process 

of the input signal which is forward propagated from the input layer to the output 

layer can be expressed in the following equations: 
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where i =1, 2, …, N1; j =1, 2, …, N2; k =1,2, …, N2. Also, I

inet , H

jnet , and O

knet  

represent the net inputs of a certain node “i” of the input layer, “j” of the hidden layer 

and “k” of the output layer, respectively. F

jiW and S

kjW  represent the weights of node 

“j” of the hidden layer to “i” of the input layer and node “k” of the output layer to the 

“j” of the hidden layer . H

j and O

k  are the threshold value of node “j” of the hidden 

layer and “k” of the output layer, respectively. I

piO , H

pjO , O

pkO  indicate the outputs 

of a certain node “i” of the input layer, “j” in the hidden layer and “k” of the output 

layer , respectively, when the P
th

 sample is imported in the feed forward network. 

 

Obviously, after importing the input vector Ip, the input vector O

pkO

（ 3,,2,1 Nk  ）is probably different from the expect output Tpk（ 3,,2,1 Nk  ）, 

because the variation of weights and threshold values ( F

jiW , S

kjW , H

j , O

k ). Thus the 

error function can be defined as:  
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When the network structure is confirmed，the error function E also called energy 

function which is consisted weights ( F

jiW and S

kjW ) and threshold values ( H

j and 

O

k ) with its major variables. If we expect to minimize the error function, it becomes 

an unconstrained nonlinear optimization problem after combining all the equations 

above. Thus, we can have the iterative formula for weights and threshold values by 

using steepest descent method, that is: 

 

               )()1( nWOnW xy

p

pypxxy                      (3.46)           

)()1( nn x

p

pxx                         (3.47) 

         )()1()1( nWnWnW xyxyxy                        (3.48)         

 )()1()1( nnn xyxyxy                          (3.49) 

 

where   is the learning rate and   is the momentum factor. )(nWxy  indicates the 

n
th

 iterative value of weights between nodes x and y of any two neighboring layers in 

the feed-forward network, and it can be expressed as )(nW F

ji or )(nW S

kj . Similarly, 

)(nx  represents the n
th

 iterative value of a certain node x in the hidden layer or 

outputs layer, and it can be expressed as )(nH

j  or )(nO

k . For node x in the output 

layer:                                            

)1()( O

px

O

px

O

pxpxpx OOOT                       (3.50) 

For node x in the hidden layer,        
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In the above equation 3.51, node x' is in the higher layer of node x, and it explains the 

processing of error back-propagation. 

 

3.4 An Integrated River Eutrophication Model 

It is known that the input nutrient load is the main cause of water eutrophication, 

and the some river that occurred algal blooms almost has the same hydrological 

conditions (i.e., low flow rate and low water level) as the lakes. Thus, the Wuhan 

cross-section of Han River could be consider as a large lake system. In order to 

establish a primary hydrological mechanism model to analyze the impacts of 

hydrologic conditions (water flow rate, water level) and input P load on the river 

eutrophication system, the Vollenweider model which is the most common model 

used for lake eutrophication problem can be applied for this river case study.  

 

Vollenweider (1969) first published a nutrient loading model which describes the 

relationships between the mean water depth and various measures of water quality. 

Numerous researchers have modified the basic model or developed new models in 

order to derive nutrient loading rate criteria for water quality management purposes.  

 

Vollenweider (1975, 1976) and Dillon (1975) discovered that a lake’s response 

to the P loading also relates to the water residence time and hydraulic loading rate. 

Then, Vollenweider (1976) describes the statistical relationship of areal annual 

phosphorus loading to a lake normalized by mean depth and hydraulic residence time 
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to predict lake phosphorus concentration.  

 

Vollenweider (1969) described the mass balance of phosphorus in a lake as: 

 

      V VPKQPPQ
dt

dP
p 11

                (3.21) 

 

where V is lake volume [L
3
]; P is lake phosphorus concentration [M/L

3
]; t is time [T]; 

Q is annual volume of water discharged [L
3
/t]; Kp is net sedimentary loss coefficient 

[T-1].
 

However, the most difficult problem with this model is the determination of the 

sedimentation rate coefficient. All other parameters could be determined directly. 

Dillon (1974) recognized there was good correlation between the phosphorus 

retention coefficient R and sedimentation rate coefficient Kp, which can be 

determined directly as: (Vollenweider and Dillon, 1974; Dillon and Rigler, 1974a) 

 

   I
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W

W

PQ

PQ
R 




 11                     (3.22) 

 

where PI is the input phosphorus concentration and WI is the inflow discharge; Pout is 

the output phosphorus concentration and Wout is the outflows discharge. The equation 

can be written as (Vollenweider and Dillon, 1974): 
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Hq

RL
P

)1( 
                           (3.23)   



where L is loading of total phosphorus; R is retention coefficient of total phosphorus; 

q = hydraulic eroding coefficient ; H = average water depth; P = average phosphorus 

concentration. 

 

     Compared to the statistical model, although the peculiarities of what is going on 

inside the system are not entirely known, a certain model based on both insight into 

the system and experimental data is constructed. This model does, however, still have 

a number of unknown free parameters which can be estimated using system 

identification (Nielsen, 2000). One example is the Monod saturation model for 

microbial growth (Wimpenny, 1997). The model contains a simple hyperbolic 

relationship between substrate concentration and growth rate, but this can be justified 

by molecules binding to a substrate without going into detail of the types of molecules 

or types of binding. This kind of modeling is also known as semi-physical modeling 

(Forssell, 2001).  

 

Fig. 3.2 Integrated river eutrophication model 

Eutrophication Model  

&  

Nonlinear Regressions 

 

Temperatures 

  (In Puts) 

Total Algae Cells 

  (Out Puts) 

http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/w/index.php?title=Monod_saturation_model&action=edit&redlink=1
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The Vollenweider or Dillon model in this study is an empirical model of water 

eutrophication with hydrological and water quality parameters, and it does not include 

any meteorological parameter such as temperatures. Therefore, in order to find its 

relationship to climate change impact on the basis of the mechanism model, a new 

integrated river eutrophication model (Fig. 3.2) which combines Dillon model and 

multiple non-linear regressions approach is established using following steps:  

 

First, general non-linear regression equation is: 

                    Y = α X1
β1 

X2
β2

 X3
2
 … Xn

βn
                      (3.24) 

Appling the indicators of phosphorus and temperatures into the nonlinear regression 

equation, we have:   

                         Yalgae = α P 
β1 

T
β2

  

Substituting Dillon (1974) equation, that is: 

Hq

RL
P

)1( 


                        (3.25)   

 we have an integrated river eutrophication model: 

                        Y algal =α 21]
)1(

[  T
Hq

RL 

                 (3.26)
 

Finally, an integrated river eutrophication model which combines multiple 

nonlinear regressions and Dillon method has been established, and it clearly identifies 

relationship between algal cells to hydrologic regime which are water depth (H), flow 

rate (Q), and waste nutrient load (L), also temperatures (T). Thus, the result could be 

considered a good explanation and validation to those statistical models. 
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3.5 Scenarios Analysis for Climate Change Impact Assessment 

Once the results of the regression models are established, finding how to analyze 

the climate change and human-mediated impact on algal blooms is a key step.  

 

 

     Fig. 3.3 Scenario analysis of climate change impact assessment 

 

The above figure (Fig. 3.3) shows the relationship between algal blooms and 

climate change, hydrological regime and human influences. In order to systematically 

analyze the impact of each indicator of the algal bloom, we need to determine the Δ L, 

ΔT and ΔQ to the output ΔA. Then the scenario analysis under different conditions 

can be applied to this model. It can then be divided into two stages which are the 

single-factor assessment and the integrated assessment. 
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3.5.1 Single Factor Assessment 

Single-factor assessment is where only one variable is changed while another 

two variables are fixed. Outputs are then analyzed so that the impact of that variable 

can be determined. For the Han River case study, there are several assumptions based 

on monitoring data and guidelines which are made during 1992 to 2000. Based on the 

yearly average of temperature (13.12°C) during 1992 to 2000, it is assumed that the 

temperature will increase by 2°C due to the global warming effect, which means the 

temperature will increase 15% regarding to yearly average value. In order to assess 

human activities and hydrological regimes, the based on this assumptions for the Han 

River case study, it was assumed that the flow rate will be decreased 15% which is 

approximated to 100 m
3
/s based on the yearly average flow rate due to evaporation 

increase, and input nutrient load will increase 15% which is approximately 1 

mg/m
2
.yr at same time because of economic and industrial development during 1992 

to 2000. In the worth condition, the climate change assessment will be applied on this 

case study as following steps: 

 

a) Assume the temperature (T) increases ΔT which is 2ºC during the years 1992 to 

2000, and the value of phosphorus load (P) and flow rate (Q) are fixed, then the 

impact of temperature on algal cells can be determined. The impact of flow rate and 

phosphorus load on algal cells can be also identified by fixing any other two 

indicators. 
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b) Assume the flow rate (Q) decreases. ΔQ which is -100 m
3
/s during the years 1992 

to 2000, and the value of T (temperature) and Lp  are fixed. Then, the impact of flow 

regime on algal cells can be determined;  

 

c) Assume Lp increases ΔL in 1 mg/ m
2
.yr during the years 1992 to 2000, and the 

value of T (temperature) and Q (flow rate) are fixed, then the impact of input nutrient 

loads on algal cells can be determined. Thus, this result will indicate the impact any 

single factor has on the river algal bloom. The same method can be applied on 

multiple nonlinear regression approach, ANN and Dillon models. 

 

3.5.2 Integrated Assessment 

In the most of situations multiple indicators will impact simultaneously, thus the 

integrated climate change assessment will be applied to the river eutrophication 

system. Similar to the individual analysis, integrated analysis changes two variables 

and another one is fixed. The analysis of the variation of the outputs can allow the 

impact of the variables to be determined. For example: 

 

a) Assume the temperature (T) and Lp phosphorus load both increase ΔT and ΔL 

which are 2ºC and 1 mg/ m
2
 yr during the years 1992 to 2000 respectively. The value 

of Q is fixed, then the impact of temperature and P load on algal cells ΔA1 can be 

determined.  
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b) Assume T and Q are both changing. ΔT and ΔQ are 2ºC and -100m
3
/s during the 

year of 1992 to 2000, respectively. The value of Lp is fixed, then the impact of 

temperature and flow regime on algal cells ΔA2 can be determined;  

 

c) Assume the Lp and Q are both variable. ΔL and ΔQ are 1 mg/ m
2
.yr and -100m

3
/s 

during the years 1992 to 2000, respectively. If the value of T is fixed, then the impact 

of flow rate and P load on algal cells ΔA3 can be determined.  

 

   If all indicators are changing at same time, the variation of total algal cells ΔA4 

can be finally defined. Therefore, the value of ΔA1, ΔA2, ΔA3, ΔA4 can be compared to 

qualify the comprehensive contributions of indicators.  
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3.6 Summary 

 

Fig. 3.4 Flow chart of multi-level climate change impact assessment  

 

As indicated in Fig. 3.4 (above), this chapter presents a development of multi-level 

climate change impact assessment model. In order to qualify the comprehensive 

contributions to the river water quality and ecosystems, a multi-level climate change 

assessment approach is developed to apply to this environmental problem based on 

following steps: (1) Establish a system modeling structure of a river eutrophication 

based on multiple inputs and a single output. Several inputs are possible in this system 

including: (a) nutrient load, (b) temperature, (c) hydrological regime, and (d) water 

quality. The single output is the total algal cell concentration which will be used to 
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indicate the level of algal blooms. Corresponding data screening and preparation will 

be performed based on the historical pollution events and correlation analysis. (2) 

Develop a parametric river eutrophication model that refers to modeling systems 

which include: (a) Multiple Linear Regressions (MLR), (b) Multiple Non-linear 

Regressions (MNLR), (c) Artificial Neural Network (ANN) based on 

Back-propagation (BP) algorithms, as well as (d) an integrated river eutrophication 

model. All of the above models will be calibrated and validated based on the 

monitoring data, the model with the best simulation result will be taken for individual 

and integrated assessment under different scenarios. (3) Quantifying the contributions 

of nutrient load indicators to river eutrophication. This method involves fixing the 

variables of hydrological regime and climate and then computing the output of algal 

cell concentration by changing the concentration of nutrient loads (e.g. TP, TN). (4) 

Quantifying the contributions of hydrological regime (e.g. water flow) to river 

eutrophication. This method fixes the variables of nutrient load and climate and then 

computes the output of algal cell concentration by changing the hydrological regime. 

(5) Quantifying the contributions of climate variation (e.g. temperature) to river 

eutrophication. This method involves fixing the variables of nutrient load and 

hydrological regime then computing the output of algal cell concentration by 

changing the climate (temperatures). (6) Quantifying the contributions of climate 

variations, nutrient load variation as well as  hydrological regime variation together 

to comprehensively assess their impacts on river eutrophication. (7) Forecast the 

probabilities of algal bloom occurrence in the Han river for next 50 years based on 
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three emissions scenarios. (8) Discuss the principles of adaptation strategies on how 

to solve the impact of climate change on water resources and what feasible 

adaptations should be taken to prevent adverse effects due to economic and social 

developments. In the following sections, this multi-level system approach will be 

applied to a real representative case study of the Han River in China in order to assess 

the impact of climate change and human activities on river water quality.  
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CHAPTER 4 A RESEARCH ON ALGAL BLOOMS OF 

THE HAN RIVER 

 

4.1 Study Area  

    The Han River (see Fig. 4.1) is the largest tributary of the Yangtze River. It 

originates from Ningqiang County of Shaanxi province, and covers approximately 

151 000 km
2
 with a total length of 1577 km (Yang et al., 1997; Shen and Liu, 1998). 

It is the most important water resource for industrial production and for people living 

in the Shan Xi and Hubei Provinces. The Han River goes through 14 cities, and 

receives about 700 million tons of industrial and municipal wastewater per year, of 

which 123 million tons is potable water before finally reaching Wuhan Yangtze River 

(Zhang, 2006). The Han River is one of major freshwater sources in China, and it 

plays a critical role in promoting the socioeconomic development of the Han River 

Basin (HRB). The rapid processes of urbanization and economic development 

brought about a swift deterioration of river water quality during the 1990s. The 

environmental capacity of the river is expected to decrease further and the water 

quality problem in the basin will become more prominent over time (Zhu et al., 

2008).  
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Fig. 4.1 Location of Han River in China (Lu et al., 2009) 

The Han River's water quality was considered to be consistently good in the 

1970s and 1980s. However, with recent population increases and economic growth, 

the development of water resources and hydropower resources on the Han River has 

been intensified by dam building. Consequently, the flow regime of the Han River has 

been altered to some extent (Lu et al., 2009). Since the beginning of the 1990s, 

regional development of industry and agriculture has seen a steady increase in 

industrial wastewater, agricultural fertilizers and domestic water emissions into the 

river. This has meant that water pollution has become a very serious issue in some 

parts of the Han River. In particular, the section of the river downstream of Wuhan 

has seen high algal cell density concentrations (Xie et al., 2004). Another important 

potential risk that could impact Han River water quality is the South-to-North water 

transfer project (see Fig. 4.2) 
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Fig. 4.2 China's South-to-North Water Diversion Project (Xie et al., 2004) 

The South–North Water Transfer Project is a multi-decade infrastructure project 

of the People's Republic of China to better utilize available water resources. This is to 

be achieved through the South-North Water Diversion Project (SNWD). Whilst the 

main thrust is to divert water from the Yangtze River to the Yellow sea and the Hai 

River, other spin-off plans are also loosely included. In China, Southern water is 

plentiful, northern water scarce, the Chinese Water Works Department conducted 

several studies on the project. After decades of study, the South-North Water Transfer 

Project settled on three different proposals for routes, and the Han River plays a 

critical role in the central route of SNWD project. Thus northern regions receiving 

water originating from the Han river would be severely impacted negatively if the 

source of the transfer water is seriously polluted.   
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Table 4.1 Status comparison of three algae bloom in Han River (Xie et al., 2004) 

 First algal bloom Second algal bloom Third algal bloom 

Time (y.m.d) 1992.Jan.14.～Feb.25 1998.Feb.16～Mar 2000.Jan.6～Mar 

Algae cells (10
4
/L) 1670 1900 1300 

The total density of algal cells has significantly increased in the Wuhan section of the 

Han River between 1992 and 2000 (Table 4.1) with algal blooms usually occurring at the end 

of winter and the beginning of spring. The most common algal species in algal blooms was 

found to be brown diatoms, followed by the green algae (Xie, 2004). It is more common for 

algal blooms in rivers to be made up of predominantly green algae. The unusual yellowish 

brown blooms on the Han river (Fig. 4.3) are caused by the high proportion of brown diatom 

algae, which also emit a characteristic foul smell.. 

    

  

            Fig. 4.3 Han River algal blooms (Xie et al., 2004) 
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The algal cell concentration (total numbers per liter) can indicate the intensity of 

an algal bloom. Lu et al. (2000) proposed that the level of algal cell concentration in 

the Han River should not exceed 500 x 10
4 

cells/L. The Wuhan section of the Han 

River was selected for this case study since it is important to the South-North Water 

Transfer Project, and its water pollution and eutrophication problems are serious. The 

Wuhan section of the Han River has the characteristics of a river bend. The width is 

400 meters in the high-water period, and it becomes around 100 meters in the drought 

period. Geographical coordinates of the Wuhan section of Han River are: East 

Longitude 113°56′21″ to 114°16′48″; northern latitude 30°40′11″ to 30°34′2″. The 

average yearly temperature is 16.3℃. January is the coldest month with average 

monthly temperature of 3.0℃, while the warmest month is July (28.8℃). Minimum to 

maximum temperature can be from -18.1℃ to 41.3℃. The annual precipitation and 

evaporation are 1204.5mm and 1449.5mm, respectively. The recent rapid onset of 

urbanization and economic development brought a swift deterioration of river water 

quality during the 1990s. The environmental capacity of the river is expected to 

decrease further and the water quality problem in the basin will be more prominent as 

time goes on (Zhu et al., 2008).  

 

4.2 Data Preparation 

    There were two sampling sites between the (A) and the (B) sections in a distance 

of approximately 7750m (Fig. 4.4). These two sections were selected because they are 
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located downstream of the Han River section where the algal bloom problem has been 

most serious in recent years. As it is also very close to the mouth of Yangtze River, 

the water quality in these sections will directly impact on the Wuhan city and the 

Yangtze River.    

 

 
                       Fig. 4.4 Sampling locations 

 

The monitoring indicators for this case study include: total nitrogen (TN), total 

phosphorus (TP), Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), NH3, 

NO3, Kjeldahl Nitrogen (TKN), N/P ratio, temperature (T), flow rate (Q), water depth 

(H) and total algal cells. The total P and N concentrations are converted to yearly 

average nutrient loads using following equation: 
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    (4.1) 

 

Once the input nutrient loads are determined, the other input variables can be 
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indirectly imported to the regression models. Sampling data were analyzed using 

Excel 2007 and SPSS (version 13.0). We have 11 input variables (i.e. P load, N load, 

Q, h, T, NH3, NO3,COD, DO, TKN and N/P ratio). First, using SPSS Pearson 

correlations method, the correlation values between Y (algae cell concentration) and 

other variables were obtained (Table 4.4). Comparing the input data (i.e. input P and 

N load, Q, h, etc.) to output data (i.e. algae cell concentration), we can find some 

useful relations as following table: 
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Table 4.2 Correlations of all indicators for climate changes impact assessment 

 

   The above table 4.2 clearly indicates that algal cell density only has a strong 

positive correlation with the input P load (0.748) and water temperature (0.648), and it 
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also has a negative correlation with the water flow rate (-0.684). However, there is at 

most a weak correlation between algal concentrations and the rest of the variables. 

Thus those variables should be removed from our regression equation in order to have 

a more accurate result. Thus, the Pearson correlations coefficient is shown as a direct 

relation of the independent variable to each of the dependent variables and the result 

can be also verified on a scatter plot (Fig. 4.5) for linear correlation analysis. The R
2
 

of the linear equation is only showing good correlation in P-load, T and Q except the 

water flow rate which is a little lower, but still in an acceptable range.   
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Fig. 4.5 Scatter plot diagrams for all input variables 

 

In the Han River case study, the Pearson correlation method and the scatter 

diagram analyses can be applied to remove the insignificant variables. If the Pearson 

correlation coefficient is less than 0.5 and there also wasn’t any correlation on the 

scatter diagram, the variables will be removed from the analysis. Moreover, since the 

algal bloom in the Wuhan section of Han River is mainly composed of diatoms, Qu et 

al. (2000) conducted an experiment to study the influence of N and P on population 
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constituent of planktonic diatoms in water. The experimental result shows the 

concentrations of P tend to affect the population constituent of diatoms more 

significantly. Therefore, the water level, TN, N/P ratio, DO, COD and TKN will not 

be entered into the linear regression equations. Thus, as shown in Fig. 4.6, the algal 

concentration is calculated as the output of y1, the load (P) as input x1, the flow rate 

(Q) as input x2 and water temperature (T) as input x3, the final ternary regression 

equation can be estimated in the following equation: 

 

 YAlgae = β 0+β1Xp+β 2XQ + β3XT                          (4.2) 

 

Input Indicators            Groups                 Output  

 

Fig. 4.6 Multi-level climate change impact assessment 
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4.3 Model Results 

4.3.1 MLR Model Results With Calibration and Validation 

The final input and outputs has been determined using the method described 

above to prepare the results. Some important results are as follows: 

  

Table 4.3 MLR descriptive statistics 

 Variables Mean Std. Deviation Samples (N)  

Algae (10
4
cells/L) 349.1926 509.45877 54 

P-Loads (mg/m
2
.yr) .9587 .39872 54 

Temperature.(°C) 14.6130 6.01291 54 

Flow rate (m
3
/s) 724.6030 311.41340 54 

 

Above table 4.3 shows the mean values, standard deviations and number of samples 

(N) for each indicator. 

  

Table 4.4 MLR model summary 

 

a  Predictors: (Constant), q, P-Load, t 

b  Dependent Variable: Algae 

 

The R
2 

values indicate the model shows a good result. The coefficient of 

determination R
2 

is 0.715, and the adjusted R
2
 is 0.698.  

 

 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 Sig. F Change 

MLR .846(a) .715 .698 280.07318 .715 41.789 3 50 .000 
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Table 4.5 MLR coefficients 

 

Finally, the unstandardized coefficients have been determined. The significance 

value of the F statistic is small (less than 0.5) meaning the independent variables can 

explain the variation in the dependent variable, but the Sig.t value of constant term is 

0.602 (greater than 0.5 for this linear regression). This means the constant term is not 

significant to impact the output. Hence it can be removed in the final equation. Also 

we have noticed that the collinearity statistics are both in an acceptable range (small 

than10) indicating there is no significant multicollinearity. Therefore, we have the 

final linear regression equation: 

 

     
)/(0 . 5 2 6 X)(89.19)./(13.598)/10( 3

F

24

. smCXyrmmgXLY TPCon 
                                                                      

                                                               (4.3) 

  The above linear regression indicated the contributions of each independent 

variable (X) to the dependent variable (Y). For example, if temperature and flow rate 

are fixed, when input nutrient load is increases by 1 unit, the algal cells will also 

increase 598.13 (104/L). Same result can be applied to the temperature (19.89) and 

flow rate (-0.526).  

 

Then, importing all of the observation data to the linear equation, the forecasting 
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result of total algal concentrations with the observed values in the Wuhan section of 

Han River from 1992 to 2000 is shown in the following figures. 

               

 

             Fig. 4.7 Multiple linear regressions modeling result 

            (*note: negative simulation results corresponds to zero) 

 

The above figure indicates the observed values and the simulated values of algal 

concentration are well matched (adjusted R
2
= 0.698). From previous research the 

threshold for algal bloom in the Han River should not exceed 500 × 10
4
/L of total 

algal cell numbers (Lu, 2000). By drawing a warning line on the graph, it is clearly 

shown that the algal blooms occurred in years 1992, 1998 and 2000. These algal 

blooms were very accurately forecasted by matching to the monitoring data. We have 

also noticed that some forecasting values returned negative, and this error can be 

ignored since it did not happen in the year of an algal bloom.  

 

In order to verify the forecasting ability of this multiple linear regression model, 

the data from the years 1992 to 2000 will be divided into two parts for model 
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calibration and verification. The first part which is from year 1992 to 1997 will be 

used for model calibration. A new regression equation is established based on the data 

of the first six years. Then, sampling data from year 1998 to 2000 will be imported to 

the equation to calculate the average algal cell concentration to establish the 

credibility of the model by demonstrating its ability to replicate actual traffic patterns. 

At the end, this result can be compared to the monitoring data to indicate the 

forecasting ability.  

 

Table 4.6 MLR model summary (calibration) result 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 Sig. F Change 

MLR .821(a) .674 .643 223.64090 .674 22.005 3 32 .000 

a  Predictors: (Constant), Flowrate.Q, Load.P, Temperature.t 

b  Dependent Variable: Algae 

 

Table 4.7 MLR coefficients (calibration) 

 

 

From the table above the adjusted R
2
 is 0.643 and the model is well established. 

The constant should also be removed because sig. t (=0.337) is greater than >0.05. 

Thus, the calibrated molding equation is: 
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                                                           (4.4) 

 

 

 Fig. 4.8 MLR calibration from year 1992 to 1997 

                (*note: negative simulation results corresponds to zero)
 

   

Fig. 4.9 Goodness of fit for MLR calibration 

 

The above figures are the results of molding calibration. R2 value is 0.6735 

which is in a acceptable range. Then sampling data from year 1998 to 2000 will be 

imported to this calibrated equation to calculate the algal cells (Y). 
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              Fig. 4.10 MLR validation from year 1998 to 2000  

 

    

              Fig. 4.11 Goodness of fit for MLR validation 

 

This result with a high R
2 

(= 0.7057) clearly indicates that the predicted value of 

algal cells is closely matched to the real data, accurately forecasting the algal bloom 

from the years 1998 and 2000. 

 

4.3.2 MNR Model Result with Calibration and Validation 

This gave a similar result to the multiple linear regressions method. The multiple 
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non-linear regressions equation can be converted to the linear regression equation to 

analyze the impact of climate change. The following is the result of the SPSS test for 

the final model in which a very good coefficient of determination has been obtained. 

 

Table 4.8 Model summary (MNR) 

Mo R R Square 

Adjusted 

R Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 Sig. F Change 

MNR .924(a) .853 .844 .51763 .853 96.619 3 50 .000 

a  Predictors: (Constant), Flowrate.Q, Load.P, Temperature.t 

b  Dependent Variable: Algae 

 

The R
2 

value is 0.853, the adjusted R
2
 is 0.844 and the Sig.F is 0.000 (<0.05).  

 

Table 4.9 MNR coefficients 

 

 

In the nonlinear regressions model, the constant and the coefficients both passed the t 

verification, and they can be applied for the following linear equation: 

            

Y` =8.967 + 0.749 X1'+1.281 X2'- 1.109 X3'          (4.5) 
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If, Y'= lnYalgae ,  β' 0 = lnβ 0 ,  X1'= lnXP-load,  X2' = lnXflow rate,  X3' = lnXtemp 

 

Equation 4.5 can be rewritten as： 

Yalgae= Exp (8.967) (Xp-load
0.749

Xtemp
1.281

Xflow
-1.109

)        (4.6) 

Finally, the non-linear equation will be: 

Yalgal= 7843.54 Xp-load
0.749

XTemp.
1.281

Xflowrate
-1.109    

       (4.7) 

The final nonlinear regression equation is: 

            
109.13

281.1749.02
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 (4.8) 

 

Fig. 4.12 Multiple nonlinear regressions modeling result 

 

    The final multiple non-linear regression equation is established and the degree of 

fit is better than the linear regression model with an R
2
 value of 0.844. Some negative 

forecasting values shown in the result of the multiple linear regression model have 

disappeared. By drawing a warning line on the graph, it can be clearly seen that the 

algal blooms that occurred in year 92, 98 and 2000 have been very accurately 

forecasted. 
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    The same calibration and verification method for the multiple linear regression 

models will also be applied to the nonlinear model in order to verify the forecasting 

ability of the model. The data from 1992 to 1997 will be used for modeling calibration 

and establishing a new linear regression equation. Then, sampling data from 1998 to 

2000 will be imported to the equation to calculate the average algal cell concentration. 

Then the results are compared with the monitoring data to evaluate the forecasting 

ability of the model. 

 

Table 4.10 MNR model summary (calibration) 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 Sig. F Change 

MNR .910(a) .829 .812 .49120 .829 51.534 3 32 .000 

a  Predictors: (Constant), Flowrate.Q, Load.P, Temperature.t 

b  Dependent Variable: Algae 

 

    As shown in the above figures, the model shows a very good result with a high 

R
2 

(= 0.829) and adjusted R
2
 (= 0.812).  

 

Table 4.11 MNR coefficients (calibration) 

 

Finally, the unstandardized coefficients have been determined: 
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                                                            (4.8) 

 

               Fig. 4.13 MNR calibration from year 1992 to 1997  

 

 

             Fig. 4.14 Goodness of fit for MNR calibration  

 

The above figures show the results of molding calibration with high R2 value of 0.887. 

Then the sampling data from 1998 to 2000 will be imported to the calibrated equation 

to calculate the final output Y. 
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                  Fig. 4.15 MNR validation from year 1998 to 2000 

 

 

                Fig. 4.16 Goodness of fit for MNR validation  

 

The result (R
2 

= 0.9644) clearly indicates that the predicted value of algal cells is 

closely matched to the real data from 1998 and 2000. 

 

4.3.3 ANN Model Result with Calibration and Validation 

    In order to have a comprehensive comparison analysis result with the previous 
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regressions approaches, a typical 3 layer feed-forward BP network with only one 

intermediate hidden layer is applied to the Han River case study, and the input and 

output indicators are same as the regression model. The model is based on ANN 

FORTRAN programming which developed by Xie (1997), and some modeling 

parameters are shown in the following tables: 

 

Table 4.12 Results of parameters setting for the BP networks 

Neuron nodes in input 

layer 

Neuron nodes in hidden 

layer 

Neuron nodes in output 

layer 

3 4 1 

Total group of samples Number of groups for 

calibrations  

Number of samples for 

validations  

54 36 18 

Increasing factor Attenuation factor Limiting factor 

1.1 0.9 0.005 

Learning factor Error sum squares Iterations 

1.296871E-01 2.974093E-02 2000 

 

  Table 4.13 Connecting weights of hidden layers between in & out put layers 

Input layers W1 W2 W3 W4 

1 3.73621 .07690 -.32005 -2.35745 

2 -1.631611 -3.419686 .258331 1.312475 

3 -8.917010 1.186531 7.511460 1.603760 

Output layer 10.127720 -3.636879 -3.134717 1.658183 

Thresholds 2.438784 .613407 -.792894 -.697273 

 

    After 2000 iterations, the threshold value of output layer is computed as 0.241597, 

the error sum squares between the expected output and the calculated output of this 

BP model is 2.97% which is in an acceptable range. 

    The same calibration and verification methods used for the multiple linear and 

nonlinear regression models will be also applied to the ANN model in order to verify 
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the forecasting ability of this mechanism model. A new linear regression equation is 

established based on the first six years which is from year of 1992 to 1997.  

 

 

                    Fig 4.17 ANN calibration from 1992- 1997 

  

                    Fig. 4.18 Goodness of fit for ANN calibration 

    The above figure indicates the ANN has an excellent calibration efficiency with 

R
2 

of 0.967 indicating the modeling outputs is very closely matched to the 

observations. Then, sampling data from 1998 to 2000 will be imported to this 

equation to calculate the average algal cell concentration. 
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Fig. 4.19 ANN model validation from 1998 to 2000 

 

      

Fig. 4.20 Goodnees of fit for ANN validation 

 

    The R
2
 (Fig. 4.20) is 0.586 indicating that the forcasting ability of ANN model 

for the period is much less good than its calibration. Here, a very common statistics 

phenomenon known as “over-fit” has occurred. Overfitting occurs when ANN fits 

random error or noise instead of the underlying relationship, and it will generally have 

poor predictive performance as it can exaggerate minor fluctuations in the data. 
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4.3.4 Integrated Dillon Model Result with Calibration and Verification 

The average P concentration is calculated using following Dillon equation: 

 

I

out

II

outout

W

W

PQ

PQ
R 




 11

                (4.9) 

 

                         HQ

RL
P

)1( 


                          (4.10) 

 

Then, the general form of non-linear climate eutrophication model is established as:
 

                      

Y algal =α 21]
)1(

[  T
HQ

RL 

                   (4.11)
 

Similar to the nonlinear regression model, it is converted to the multiple linear 

regression equation and the coefficients are calculated. 

 

Table 4.14 Dillon model summary 

Model R R Square 

Adjusted 

R Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 Sig. F Change 

Dillon .850(a) .722 .711 .70459 .722 66.214 2 51 .000 

a  Predictors: (Constant), temperature, TP 

 

    As shown in the above table, the model also shows a good result. The R
2 
is 0.722 

and the adjusted R
2
 is 0.711. 
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Table 4.15 Dillon model coefficients 

 

    Finally, the unstandardized coefficients have been determined, after taking exp 

1.925, we have 6.852 for the constant. A new nonlinear regression equation is 

established: 

 

056.2946.0]
)1(

[852.6' T
HQ

RL
Y




           (4.12) 

 

Fig. 4.21 Integrated Dillon modeling result 

 

    The integrated Dillon model is established, and this equation can not only 

indicate the relationship between total algal cells and temperature levels, but also can 

show the correlation between hydrological regimes and waste load. For example it is 
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negatively correlated with water level (H), water flow rate (Q), and positively 

correlated to waste load (L). This integrated model can provide more information than 

statistical models and the degree of fit is better than the linear regression model with 

an R
2
 value of 0.711. The model very accurately forecasted algal blooms that occurred 

in the years 1992, 1998 and 2000.  

 

    The same calibration and verification procedures in earlier sections will be also 

applied to the integrated Dillon model in order to verify the forecasting ability of the 

mechanism model. A linear regression equation is established based on the sampling 

data in the first six years. Then, sampling data from 1998 to 2000 will be imported to 

the equation to calculate Y. The following is the comparison of forecasted values with 

the monitoring data to indicate the forecasting ability. 

 

Table 4. 16 Dillon model Summary (calibration) 

Model R R Square 

Adjusted 

R Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 Sig. F Change 

Dillon .838(a) .702 .684 .63784 .702 38.833 2 33 .000 

a  Predictors: (Constant), T, P 

 

 

Table 4.17 Dillon model coefficients (calibration) 

 

    The result indicats that the R
2 

value for the integrated Dillon model is 0.702 and 
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adjusted R
2
 is 0.684 showing good fit of the model. After taking exp(0.583) = 1.791, 

the nonlinear regression equation is: 

037.2368.0]
)1(

[791.1' T
HQ

RL
Y




                    (4.13) 

 

Fig. 4.22 Intergrated Dillon model calibration from year 1992 to 1997 

 

     

Fig. 4.23 Integrated Dillon model calibration 

 
The above figures show the result of molding calibration. The R2 value is 0.646 

which is in an acceptable range. Then sampling data from 1998 to 2000 will be 

imported to this calibration equation to calculate the final output Y. 
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Fig. 4.24 Validation of Dillon model from year 1998 to 2000 

 

 

Fig. 4.25 Validation of Dillon model 

    The R
2 

value is 0. 647, and it clearly indicates the predicted value of algal cells is 

also well matched to the real data, accurately forecasting the algal blooms from 1998 

and 2000. 
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4.4 Model Results Comparison Discussions 

 

                      Fig. 4.26 Model result comparisons 

             (*note: negative simulation results corresponds to zero) 

 

Table 4.18 Model comparison results 

 

     

By comparing the simulation results of the four models, as shown in Fig. 4.26 

and Table 4.18 above, the calibration and validation R
2
 results for MLR is 0.643 and 

0.705, respectively, which is a good result for a statistical model. However, the MLR 

method can often shows optimal results only when relationships between the 

independent variables and the dependent variable are almost linear. The modeling 

Models 

 

 

Fitting 

 

Linear 

regressions 

 

 

Non-linear 

regressions 

 

 

ANN 

 

Dillon Model 

Calibration 

R
2
 

0.643
 

0.887 

 

0.967 

 

0.646 

 

Validation 

R
2
 

0.705
 

0.964 

 

0.586 

 

0.647 
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result is not reliable for making prediction because it is rare to see a stark linear 

relationships in real environmental problems. The MNR model has the highest R
2
 

value (0.964) for validation and a good calibration R
2
 (0.887) which is the best overall 

result, and this proves that the MNR model can be used to model non-linear 

relationships and is appropriate for most real case studies. The ANN model had the 

highest R
2
 value for calibration (0.97) which proves this simulation model is powerful 

to automatically resolve non-linear complex relationships and difficult multiple 

dimensions problems. However, the over-fitting problem also occurred in this case, 

thus the forecasting result is variable when compared to good calibration ability. This 

is reflected in the low R
2
 value for validation (0.59) which is the worst in all the 

models. Moreover, the ANN can not reveal the contributions from input indicators to 

output, so it will not be used for forecasting at this time. The R
2
 for Integrated Dillon 

model is less than 0.65 which is a so good result for a semi-physical model. The major 

reason for the low performance is the conditions of input parameters based on the 

empirical model being too restrictive, so the simulating efficiency can be less than 

those statistical models. Thus, the nonlinear regression model (eq. 4.8) which has the 

best result both on calibration and validation will be selected for the climate change 

impact assessment in order to forecast the future occurrence of algal blooms more 

accurately. 

 

 

 



80 
 

4.5 Summary 

    In this study, four system modeling approaches including Multiple linear 

regressions model, Multiple non-linear regressions model, ANN and intregrated 

Dillon model are combined together and applied on a river eutriphication case study 

in China. All modeling results are calibrated and validated based on dividing of the 

monitoring data from 1992 to 2000. A comparsion of all the models shows: the linear 

regressions approach is the most simple to use; the non-linear regressions approach 

has the best performance on result simulating; the ANN model has a good value of 

modeling calibration but lacks validation accuracy due to over-fitting; and the 

intergrated Dillon model provides some part of the physical meaning of mechanisms 

but the simulating result is not so good because of the potential errors from too many 

parameters and constraints. Therefore, the river eutriohication model is developed 

based on statistical methods and simulation method. The model with best simulation 

result is the mutiple non-linear model, and this will be applied to the climate change 

impact assessment under different scenarios analysis.  
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CHAPTER 5 CLIMATE CHANGE IMPACT 

ASSESSMENT 

 

5.1 Single-factor Climate Change Impact Assessment 

    Since the nonlinear regression model has been considered the best model for both 

calibration and validation ability, this model will be used for climate change 

assessment under scenario analysis. The probability of algal bloom occurrence is 

based on following equation:  

 

                                 

                                                              (5.1) 

where ma is the occurrence of algal blooms, and Nt is total number of outcomes                    

 

    Assuming the temperature increased 2 degree Celsius from 1992 to 2000 due to 

globe warming, and input waste load P and flow rate are fixed, the following diagram 

was obtained: 

%100
t

a

N

m
p
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  Fig. 5.1 Assessments result for an increase of 2 °C in temperature 
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Table 5.1 Algal bloom occurrence if temperature increases by 2 °C 

Date (month) Observations * Temperature + 2 °C # 

1992.1 0 0 

1992.2 1 1 

1992.4 1 1 

1993.1 0 0 

1993.2 0 0 

1993.4 0 0 

1994.1 0 0 

1994.2 0 0 

1994.4 0 0 

1995.1 0 0 

1995.2 0 0 

1995.4 0 0 

1996.1 0 0 

1996.2 0 0 

1996.4 0 0 

1997.1 0 0 

1997.2 0 0 

1997.4 0 0 

1998.2 1 1 

1998.2 1 1 

1998.4 0 0 

1999.1 0 0 

1999.2 0 0 

1999.4 0 0 

2000.1 1 1 

2000.1 0 1 

2000.2 1 1 

 SUM (times) 6 7 

Probability 22.22% 25.93% 

*1 means algal blooms occurred and 0 mean not 

# is the assessment result if observed temperature increases by 2°C 

    The above Fig. 5.1 and Table 5.1 indicate that if the temperature increases by 2℃ 

and the rest of indicators remain at the same value, there are insignificant changes of 

algal bloom occurrence according to our model (from 22.22% to 25.93%). It shows 

that an algal bloom will occur in Jan 2000, and for some algal blooms such as April 

92 and Jan 2000, the average algal cell count will reach the threshold. However, it 
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exceeds the warning line after the temperature rise and the peak value also shows 

moderate increases in 1992 and 1998. Compared with the observed data the 

probability of algal bloom occurrence increases by 3.7% after increasing 

temperatures. 

    Assuming the waste load also increases by 1 unit (mg/m
2
.yr) from year 1992 to 

2000, and temperature and flow rate are fixed, we have the following: 

 

           Fig. 5.2 Assessments result for an increase of 1mg/m2.yr in P-loads 
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Table 5.2 Assessment result if P-load increases by 1 unit 

Date (month) Observation *  Ploads
 
+ 1 (mg/m

2
.yr) # 

1992.1 0 1 

1992.2 1 1 

1992.4 1 1 

1993.1 0 0 

1993.2 0 0 

1993.4 0 0 

1994.1 0 0 

1994.2 0 0 

1994.4 0 0 

1995.1 0 0 

1995.2 0 0 

1995.4 0 1 

1996.1 0 0 

1996.2 0 0 

1996.4 0 0 

1997.1 0 0 

1997.2 0 0 

1997.4 0 0 

1998.2 1 1 

1998.2 1 1 

1998.4 0 1 

1999.1 0 0 

1999.2 0 0 

1999.4 0 0 

2000.1 1 1 

2000.1 0 1 

2000.2 1 1 

SUM (times) 6 10 

Probability 22.22% 37.04% 

*1 means algal blooms occurred and 0 mean not 

# is the assessment result if observed P-load increases by 1 unit      

 

   The above figure and table indicate that if the input waste load P increases by 1 

unit (mg/m
2
.yr) and the rest of the variables stay at the same values, and there is an 

increased probability of algal bloom occurrence from 22.22% to 37.04%. For example, 

the algal cell concentrations in April 1995, April 1998 and Jan 2000 reach the warning 
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line. It is been also noticed that the peak value is also highly increased in 1992 and 

1998.     

 

If input P load increases by 1 unit, the algal blooms will, according to our model, 

occur in year 1995 as well as 1992, 1998 and 2000. There is also a potential risk of 

algal bloom in April 1994 and April 1999. The peak value was found moderately 

increased particularly in 1992 and 1998. Compared with the monitoring data, the 

occurrence probability in these 9 years after increasing the waste load is 44.4% which 

is an increase of 10%. 

 

Assuming the flow rate is decreased by 100 m
3
/s from year 1992 to 2000, and 

temperature and waste load are unchanged, we have the following diagram: 

 

 

Fig. 5.3 Assessment result for an decreases of 100 m3/s in flow rate 
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Table 5.3 Assessment result if flow rate decreases by 100 m
3
/s 

Date (Month) Observations *  Q - 100 (m
3
/s) # 

1992.1 0 0.5 

1992.2 1 1 

1992.4 1 1 

1993.1 0 0 

1993.2 0 0 

1993.4 0 0 

1994.1 0 0 

1994.2 0 0 

1994.4 0 0 

1995.1 0 0 

1995.2 0 0 

1995.4 0 0 

1996.1 0 0 

1996.2 0 0 

1996.4 0 0 

1997.1 0 0 

1997.2 0 0 

1997.4 0 0 

1998.2 1 1 

1998.2 1 1 

1998.4 0 0 

1999.1 0 0 

1999.2 0 0 

1999.4 0 0 

2000.1 1 1 

2000.1 0 1 

2000.2 1 1 

SUM (times) 6 7.5 

Probability 22.22% 27.77% 

*1 means algal blooms occurred and 0 mean not and 0.5 mean there is a potential risk 

# is the assessment result if observed flow rate decreases by 100 m
3
/s  

 

The result is similar to the result of temperature change. With the flow rate 

decreased by 100 m
3
/s, there was a small change in algal bloom occurrence 

probability, which increases from 22.22% to 27.77%. It should be noted that the algal 

blooms occur in 1992, 1998 and Jan 2000 according to our model. Also, there is a 
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potential risk of algal bloom in January 1992 with a value very close to the threshold. 

After increasing Q, the probability of algal bloom increases by 5.56%. 

 

5.2 Integrated Climate Change Impact Assessment 

In practice, the impact of climate change, hydrological regime change and 

human activities usually occur at the same time. In order to see the comprehensive 

results of their influences on algal cell concentrations, two of the indicators will be 

changed at same time with the remaining one indicator fixed. First, assuming 

temperatures increase by 2°C but flow rate decreases by 100 m
3
/s from 1992 to 2000 

and the input waste load P is fixed, the following diagram will be obtained: 

 

 

Fig. 5.4 Assessment result if T & Q both changes 
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Table 5.4 Assessment result if T and Q both changes 

Date (month) Observation * T & Q both changes # 

1992.1 0 1 

1992.2 1 1 

1992.4 1 1 

1993.1 0 0 

1993.2 0 0 

1993.4 0 0 

1994.1 0 0 

1994.2 0 0 

1994.4 0 0 

1995.1 0 0 

1995.2 0 0 

1995.4 0 0.5 

1996.1 0 0 

1996.2 0 0 

1996.4 0 0 

1997.1 0 0 

1997.2 0 0 

1997.4 0 0 

1998.2 1 1 

1998.2 1 1 

1998.4 0 0.5 

1999.1 0 0 

1999.2 0 0 

1999.4 0 0 

2000.1 1 1 

2000.1 0 1 

2000.2 1 1 

SUM (times) 6 9 

Probability 22.22% 33.33% 

*1 means algal blooms occurred and 0 mean not and 0.5 mean there is a potential risk 

# is the assessment result if observed flow rate decreases by 100 m
3
/s  

 

These results indicate that if temperature and the flow rate both change but the P 

load is fixed, there is a change of algal bloom occurrence probability from 22.22% to 

33.33%. It is predicted that algal blooms will occur in 1992, 1998 and 2000 and there 

is a potential risk in April 1995 and April 1998.  
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Assuming the temperature increases by 2°C and the input waste load P increases 

by 1 unit (mg/m
2
.yr) at the same time (1992 to 2000) while the flow rate is fixed,  

then the following diagram is obtained:  

 

 
Fig. 5.5 Assessment result if P-load and T both changes 
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Table 5.5 Assessment result if Temperature and P-load both changes 

 

Date (month) Observation * T & P both changes # 

1992.1 0 1 

1992.2 1 1 

1992.4 1 1 

1993.1 0 0 

1993.2 0 0 

1993.4 0 0 

1994.1 0 0 

1994.2 0 0.5 

1994.4 0 0 

1995.1 0 0 

1995.2 0 0 

1995.4 0 1 

1996.1 0 0 

1996.2 0 0 

1996.4 0 0 

1997.1 0 0 

1997.2 0 0 

1997.4 0 0 

1998.2 1 1 

1998.2 1 1 

1998.4 0 1 

1999.1 0 0 

1999.2 0 0 

1999.4 0 0.5 

2000.1 1 1 

2000.1 0 1 

2000.2 1 1 

SUM (times) 6 11 

Probability 22.22% 40.74% 

*1 means algal blooms occurred and 0 mean not and 0.5 mean there is a potential risk 

# is the assessment result if temperature and P-load both changes 

 

These results indicate that if temperature and the water waste load P both change 

and flow rate stays the same, and there is a large change in algal bloom occurrence 

probability, from 22.22% to 40.74% as predicted by our model. The algal blooms 

were predicted to occur in 1992, 1995, 1998 and 2000, and there is potential risk in 
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April 1995, April 1994 and April 1998.  

 

Fig. 5.6 Assessment result if Q & P-load both changes 
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Table 5.6 Assessment results if T and Q both changes 

Date (month) Observation * Q & P both changes # 

1992.1 0 1 

1992.2 1 1 

1992.4 1 1 

1993.1 0 0 

1993.2 0 0 

1993.4 0 0 

1994.1 0 0 

1994.2 0 0 

1994.4 0 0 

1995.1 0 0 

1995.2 0 0 

1995.4 0 1 

1996.1 0 0 

1996.2 0 0 

1996.4 0 0 

1997.1 0 0 

1997.2 0 0 

1997.4 0 0 

1998.2 1 1 

1998.2 1 1 

1998.4 0 1 

1999.1 0 0 

1999.2 0 0 

1999.4 0 1 

2000.1 1 1 

2000.1 0 1 

2000.2 1 1 

SUM (times) 6 11.5 

RISK (Probability) 22.22% 42.59% 

*1 means algal blooms occurred and 0 mean not and 0.5 mean there is a potential risk 

# is the assessment result if temperature and flow rate both changes 

 

These results indicate that if the flow rate and the waste load P both change while 

the temperature stays at the same level, and there is a significant increase of algal 

bloom occurrence probability by 20.37% (from 22.22% to 42.59%) as calculated by 

our model. The model predicted an algal bloom will occur in 1992, 1994, 1995, 1998 

and 2000.  



94 
 

Finally, assuming the all of the variables change from 1992 to 2000, the variation 

of algal cell concentrations are shown on the following graphs: 

Fig. 5.7 Integrated assessment results if P, Q and T both changes 
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Table 5.7 Integrated assessment result if T, P-load and Q both changes 

 

Date (month) Observation Q & P changes 

1992.1 0 1 

1992.2 1 1 

1992.4 1 1 

1993.1 0 0 

1993.2 0 0 

1993.4 0 0 

1994.1 0 1 

1994.2 0 1 

1994.4 0 0 

1995.1 0 0 

1995.2 0 0 

1995.4 0 1 

1996.1 0 0 

1996.2 0 0 

1996.4 0 0 

1997.1 0 0 

1997.2 0 0 

1997.4 0 0.5 

1998.2 1 1 

1998.2 1 1 

1998.4 0 1 

1999.1 0 0 

1999.2 0 0.5 

1999.4 0 1 

2000.1 1 1 

2000.1 0 1 

2000.2 1 1 

SUM (times) 6 14 

Probability 22.22% 51.85% 

*1 means algal blooms occurred and 0 mean not and 0.5 mean there is a potential risk 

# is the integrated assessment result if temperature, P-load and flow rate both changes 

 

The integrated result shows that if all the indicators are simultaneously changing, 

there is an increase of algal bloom occurrence probability by 29.63% (from 22.22% to 

51.85%), as predicted by our model. The algal blooms are predicted to occur in 1992, 
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1994, 1995, 1998, 1999 and 2000, and there is a potential risk in April 1997 and 

February 1999. The final results are summarized in the following Table 5.8: 

 

Table 5.8 Comprehensive result of scenario analysis 

     Indicator        

     

 (%) 

△T △Q △P △T +△Q △P +△T △P + △Q △P+△Q +△ T 

Probabilities 25.93 27.77 37.04 33.33 40.74 42.59 51.85 

Contributions 3.7 5.56 14.82 11.11 15.82 20.37 29.63 

 

 

 

Fig. 5.8 Integrated climate change impact assessment result 

 

The above Table 5.8 and Fig. 5.8 show the impact of each indicator on the 

probability of algal bloom occurrence. For the individual impact change assessment, 

the indicator with the greatest impact is the input P load variation. This is followed by 

the flow rate Q (5.56%) and the temperature T (3.7%). For the integrated climate 

change impact assessment, the greatest impact condition is when the input waste load 

P and the water flow rate and the temperature all change at the same time (29.63%). 
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With fixed temperature and changed input P load and flow rate, the probability of 

algal bloom is increased by 20.37%. If the flow rate Q is fixed and the input P load 

and the temperature are changed, the probability of algal bloom increases by 15.82%. 

If the input P load is fixed, and only the flow rate and the temperature are changed, 

the probability of algal bloom will increase by 11.11%. 

 

5.3 Climate Change Impact Scenarios Analysis  

In order to predict the future occurrence of algal blooms in the Han River, a 

model to simulate the impact of climate change on algal bloom is used. The 

Intergovernmental Panel on Climate change (IPCC, 2000) has analyzed the difference 

between observations and simulations based on a great amount of historical climate 

change data. Then, the data was used to simulate future climate change. In order to 

assess future climate change, the Special Report on Emissions Scenarios (SRES) was 

prepared by the Intergovernmental Panel on Climate Change (IPCC) in 2000. This 

report was based on data developed by the Earth Institute at Columbia University. The 

emissions scenarios described in the report have been used to make projections of 

possible future climate. The SRES scenarios were used in the IPCC Third Assessment 

Report (TAR), published in 2001, and in the IPCC Fourth Assessment Report (AR4) 

(IPCC, 2000; IPCC, 2007). The SRES scenarios had been used in the earlier IPCC 

Second Assessment Report of 1995. When they were developed, the range of global 

emissions projected across all forty of the SERS scenarios covered the 5th to 95th 
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percentile range of the emission scenarios literature (IPCC, 2000). The SERS are 

often related to a lot of regulatory factors (e.g. growth of population, economic 

development, technological progress, environmental conditions, globalization, etc.). 

There should be different emission scenarios corresponding to the different status of 

social economy development in the future (IPCC, 2007), and the CSIRO modeling 

groups in Australia developed a model for simulating the future temperature and 

precipitation outcomes based on the three emission scenarios, A1B, A2 and B1, which 

is similar to the current situation in China. The predicted future climate data are 

provided by the CSIRO modeling groups, the Program for Climate Model Diagnosis 

and Inter-comparison (PCMDI) and the World Climate Research Programmers 

(WCRP's). 

 

          

Fig. 5.9 Schematic illustration of the emission scenario groups 

 

As shown in the above figure 5.9 (IPCC, 2000), the scenario families contain 

individual scenarios with common themes. The six families of scenarios discussed in 

the IPCC's Third Assessment Report (TAR) and Fourth Assessment Report (AR4) are 

A1FI, A1B, A1T, A2, B1 and B2. Scenario descriptions are based on those in AR4, 

which are identical to those in TAR (IPCC, 2007). Each storyline assumes a distinctly 
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different direction for future developments, such that the four storylines differ in 

increasingly irreversible ways. Some key future characteristics such as demographic 

change, economic development and technological change will be covered (IPCC, 

2000). In this study, three scenarios, A1, A2 and B1, are selected based on suitability 

to the study area, and the description of characteristics are shown as follows (IPCC, 

2000; 2004;2007): 

 

a. A1 emission scenario 

The A1 scenarios are of a more integrated world. The A1 family of scenarios is 

characterized by: 

• Rapid economic growth. 

• A global population that reaches 9 billion in 2050 and then gradually declines. 

• The quick spread of new and efficient technologies. 

• A convergent world - income and way of life converge between regions. 

Extensive social and cultural interactions worldwide. 

 

There are subsets of the A1 family based on their technological emphasis: 

A1FI - An emphasis on fossil-fuels (Fossil Intensive). 

A1B - A balanced emphasis on all energy sources. 

A1T - Emphasis on non-fossil energy sources. 

 

b. A2 emission scenario 
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The A2 scenarios are of a more divided world. The A2 family of scenarios is 

characterized by: 

• A world of independently operating, self-reliant nations. 

• Continuously increasing population. 

• Regionally oriented economic development. 

• Slower and more fragmented technological changes and improvements to per 

capita income. 

 

c. B1 emission scenario 

The B1 scenarios are of a world more integrated, and more ecologically friendly. The 

B1 scenarios are characterized by: 

• Rapid economic growth as in A1, but with rapid changes towards a service and 

information economy. 

• Population rising to 9 billion in 2050 and then declining as in A1. 

• Reductions in material intensity and the introduction of clean and resource 

efficient technologies. 

• An emphasis on global solutions to economic, social and environmental stability. 
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Fig. 5.10 CO2, CH4, N2O and SO2 emissions scenarios (IPCC, 2000) 

 

In this study, the probability of algal bloom occurrences in the Han River can be 

determined based on the above emission scenarios: 

                           %100
T

A

m

m
p                         (5.1) 

where p is the probability of algal bloom occurrence; Am  is the algal bloom 

months; Tm is the total months in 10 years. Since only 3 months have been selected 

for each year, which are January to March, the total months Tm in 10 years will be 30. 

 

Since the algal blooms have occurred in 1992, 1998 and 2000, the emissions 

scenarios analysis will be applied to the following 10 years to see if the algal bloom 

occurrence is matched.  
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                   Fig. 5.11 Base year from year 1991 to 2000  

 

The predict result in above figure shows that algal blooms occurred in 1992, 

1998 and 2000 showing that the scenario is capable of forecasting river algal blooms. 

During the years of 1991-2000 in the Wuhan section of the Han River, the average 

precipitation in February was 1087.3mm and the average temperature was 16.15°C. 

The probability of algal bloom occurrence in these 10 years is 12.9%. 

 

In the following sections, monthly surface water temperature and hydrological 

flow rate of the years 1991~2000 are compared with the 2000s (2001~2010), 2010s 

(2011~2020), 2020s (2021~2130) and 2030s (2031~2140) to assess the probability of 

algal bloom occurrence applying the emissions scenarios when the input nutrient load 

and the flow regimes are fixed. Analyzed results are shown in the following Table 

5.9: 
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Table.5.9 Emissions scenarios analysis for the Han River Basin 

Indicators  

precipitation

（mm/year）  

Temperature

（°C）  

Time & probability of 

occurrence  

Average  Variation  Average  Variation  Year  Probability  

observation  1087.3  
1.36%  

16.15  
3.80%  

1992, 1998,2000  19.35%  

Baseline 1102.07  16.77  1992,1998, 2000  12.90%  

 

2010s  
-  -  -  -  2002, 2008 2009  -  

(Observation)  

A1B  

2010s  1129.84  2.52%  16.88  0.66%  2002, 2007,2009  12.90%  

2020s  1360.99  20.50%  16.97  0.53%  2011, 2020  6.45%  

2030s  1240.26  -8.87%  17.19  1.29%  2029, 2030  9.68%  

2040s  1245.7  0.44%  17.94  4.36%  2,034,203,820,392,040  29.03%  

SUM     14.55%     6.85%     58.06%  

A2  

2010s  1025.64  -7.45%  16.86  0.54%  2009  3.22%  

2020s  1210.7  18.04%  17.27  2.43%  2012, 2019  9.68%  

2030s  1269.56  4.86%  17.26  -0.06%  2023,2026, 2027  16.13%  

2040s  1038.7  -18.17%  17.82  3.24%  2031, 2033, 2040  22.58%  

SUM      -2.73%     6.15%     48.39%  

B1  

2010s  1131.82  2.62%  17.4  3.76%  2002, 2009  6.45%  

2020s  1231.79  8.83%  17.3  -0.57%  2013, 2015  9.68%  

2030s  1385.03  12.44%  16.96  -1.97%  2026  3.23%  

2040s  1414.43  2.12%  17.34  2.24%  2039  3.37%  

SUM     26.02%     3.46%     22.59%  
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5.3.1 A1B Scenarios Result 

  

 

Fig. 5.12 A1B emission scenario result from year 2000 to 2040  

(*unit for the X-axis is month, for Y-axis is the total algal cells concentration 10
4
/L) 

 

During the 2010s, the average precipitation is predicted to be 1129.84 mm and 

the average temperature is predicted to be 16.88°C. Compared with the base year, the 

precipitation and the temperature are increased by 2.52% and 0.63%, respectively. 

The river algal blooms occurred in 4 months for three years (2002, 2007 and 2009). 

Thus the probability of algal bloom occurrence from 2001 to 2010 is 12.9%, as 

predicted by the model. This result is well matched with the real historical algal 

bloom years that are 2002, 2008 and 2009.  

 

During the 2020s, the average precipitation is predicted to be 1360.99 mm and 

average temperature is 16.77°C. Compared with the base year, this is an increase of 

precipitation of 23.5 % and a decrease of temperature of 0.05%. The river algal 
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blooms occur in 2 months of the year of 2012 and 2019 according to the model. 

Under this model, the probability of algal bloom occurrence from 2011 to 2020 is 

6.45%.  

 

During the 2030s, average precipitation is predicted to be 1240.26 mm and the 

average temperature is predicted to be 17.19°C. Compared with the base year, 

precipitation is increased by a predicted 12.154% and the temperature is increased by 

2.47%. River algal blooms are predicted to occur in 3 months in 2029 and 2030. Thus 

the probability of algal bloom occurrence from 2021 to 2030 is predicted to be 9.68%. 

 

During the 2040s, the average precipitation is predicted to be 1245.7 mm and the 

average temperature is predicted to be 17.94°C. Compared with the base year, the 

precipitation and the temperature increases are predicted to be 13.17% and 6.95%, 

respectively. River algal blooms are predicted to occur in 9 months in 2034, 2038, 

2039 and 2040. Thus the probability of algal bloom occurrence from 2021 to 2030 is 

predicted to be 29.03%. 
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5.3.2 A2 Scenarios Result 

 

Fig. 5.13 A2 emission scenario result from year 2000 to 2040 

(*unit for the X-axis is month, for Y-axis is the total algal cells concentration 10
4
/L) 

 

During the 2010s, the average precipitation is predicted to be 1025.64 mm and 

the average temperature is predicted to be 16.86°C. Compared to the base year, 

precipitation decreases 6.93% and temperature increases 0.5% in the model. River 

algal blooms only occurred in 1 month in 2009. Thus the probability of algal bloom 

occurrence from 2001 to 2010 is 3.22%. In this scenario, only the algal bloom year of 

2009 matches the monitoring data. 

 

During the 2020s, the average precipitation is predicted to be 1210.7 mm and  

the average temperature is predicted to be 17.27°C. Compared to the base year, 

precipitation is predicted to increase 9.86 % and temperature by 2.95%. River algal 



107 
 

blooms are predicted to occur in 3 months in the year of 2012 and 2019, respectively. 

Thus the probability of algal bloom occurrence from 2021 to 2030 is 9.68%. 

 

During the 2030s, the average precipitation is predicted to be 1269.56 mm and 

the average temperature is predicted to be 17.26°C. Compared to the base year, 

precipitation increases 15.2% and temperature increases 2.9% according to the model. 

River algal blooms occurred in 5 months in 2023, 2026 and 2027. Thus the 

probability of algal bloom occurrence from 2021 to 2030 is 16.13% in this model. 

 

During the 2040s, the average precipitation is predicted to be 1038.7 mm and the 

average temperature is predicted to be 17.82°C. Compared to the base year, 

precipitation decreases 5.17% and temperature increases 6.2%, according to the 

model. River algal blooms are predicted to occur in 5 months 2031, 2032, 2032, 2033, 

2035 and 2037. Thus the probability of algal bloom occurrence from 2031 to 2040 is 

predicted to be 22.58%. 
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5.3.3 B1 Scenarios Result 

 

 

Fig. 5.14 B1 emission scenario result from year 2000 to 2040 

(*unit for the X-axis is month, for Y-axis is the total algal cells concentration 10
4
/L) 

 

During the 2010s, the average precipitation is predicted to be 1131.82 mm and 

average temperature is predicted to be 17.4°C. Compared to the base year, 

precipitation increases 2.7% and temperature increases 3.73% according to the model. 

River algal blooms occurred in 2 months in 2002 and 2009 according to the model. 

Thus, in this system, the probability of algal bloom occurrence from 2001 to 2010 is 

6.45%. In this result, the algal bloom years of 2002 and 2009 matches the real 

monitoring data. 

 

During the 2020s, the average precipitation is predicted to be 1231.79 mm and 

average temperature is predicted to be 17.3°C. Compared to the base year the model 
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predicts that precipitation increases 11.7 % and temperature increases 3.16%. River 

algal blooms occurred in 3 months in 2013 and 2015 according to the model. Thus the 

probability of algal bloom occurrence from 2021 to 2030 is 9.68% in this system. 

 

During the 2030s the model predicts the average precipitation to be 1385.03 mm 

and the average temperature to be 16.96°C. Compared to the base year, precipitation 

increases by 25.67% and temperature increases by 1.14%, according to the model. 

River algal blooms only occurred in 1 month in 2026 according to the model. Thus, in 

this system the probability of algal bloom occurrence from 2021 to 2030 is 3.23%. 

 

During the 2040s, the average precipitation is predicted to be 1414.43 mm and 

the average temperature is predicted to be 17.34°C. Compared to the base year, 

precipitation increases by 28.34% and temperature increases by 3.78%, according to 

the model. River algal blooms are only predicted to occur in 1 month in the year of 

2039. Thus the probability of algal bloom occurrence from 2031 to 2040 is predicted 

to be 3.23%. 

 

 

5.4 Summary 

In this study, an integrated climate change assessment is performed under three 

emission scenarios. Table 5.9 in the previous section summarizes climate change and 
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probability of algal bloom occurrence in the 40 years from 2001 to 2040 for the Han 

River. The results indicated that: 

1. The algal bloom occurrence probability under A1 scenario is 58.06% from 2001 to 

2040, which is the highest among all three different scenarios. According to the 

characteristic of A1B model, the economy grows rapidly and the global 

population reaches 9 billion in 2050, and they would contribute to the climate 

change impact. The average temperature and precipitation will be increased by 

6.85% and 14.55%, respectively, which are the highest variation in those three 

scenarios during the 40 years. Therefore, the algal bloom risk is high in this 

integrated and well-developed word.  

 

2. The result of A2 scenario has the second highest risk of algal bloom which is 

48.39%. The temperature is increased by 6.15% and the precipitation is decreased 

by 2.73% during these 40 years. Since fertility patterns across regions converge 

very slowly, this results in continuously increasing global population. The 

economic development is regionally oriented primarily and the per capita 

economic growth and technological change are more fragmented and slower than 

in other storylines. Thus the areas with faster economic development would have 

more contributions to climate change than those more slowly developing regions 

under this scenario.  

 

3. The B1 scenario corresponds to a convergent world with the same global 
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population that peaks in midcentury and declines thereafter, as in the A1 storyline. 

This scenario predicts rapid changes in economic structures toward a service and 

information economy, with reductions in material intensity, and the introduction 

of clean and resource-efficient technologies. The emphasis is on global solutions 

to economic, social and environmental sustainability including improved equity, 

but without additional climate initiatives. Precipitation and temperature are 

increased by 26.02% and 3.46%, respectively, during 40 years which is the 

slowest of three scenarios 

 

4. These assessment results are useful for clarifying potential climate change and 

human activity effects on when the river system is eutrophied in the future, as well 

as providing support for related water pollution management and remediation 

decisions. 
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           CHAPTER 6 DISCUSSION 

 

    In the present research, the mechanisms and contributions of the main factors 

causing algal bloom in Han River have been studied, and an integrated climate change 

assessment has been performed based on monitoring data, collected information and 

investigation work. Contributions of key factors for the Han River’s algal bloom were 

analyzed by using a statistical model and simulation model of eutrophication. The 

results showed that nutrient loads along the lower section of the Han River is the 

predominant factor. Additionally, hydrological regime and temperature are also 

important factors affecting algal bloom. The Han River is characterized by slow water 

flow when its water level gets lower than the Yangtze River due to low precipitation 

and high temperatures. When the two factors happen simultaneously with higher 

temperatures in spring, algae grow quickly. The result of this case study indicates that 

the nutrient load, hydrological regime and temperature are key factors influencing 

water quality and the river ecosystem. Climate change is expected to affect water 

quality through influencing hydrological regimes. As a result, these changes lead to 

alteration of river water quality. Therefore, it is necessary and urgent to have a clear 

understanding of their contributions in response to climate change in scientific 

methods. 
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6.1 Model Analysis 

 A parametric river eutrophication model that is based on statistical and 

simulation methods is developed and applied to the Han River algal blooms case 

study. The final results show the multiple nonlinear regressions approach has the best 

calibration (0.828) and predictive ability (0.964), followed by the ANN (BP) network 

(calibration 0.967 and predictive ability 0.586). It is, then, followed by multiple linear 

regressions model (calibration 0.673 and predictive ability 0.705). The ecological 

model has the lowest calibration (0.646) and forecasting ability (0.647). All of the 

proposed models are able to predict to some extent the climate change impacts on 

river eutrophication assessment. The coefficients of each parameter clearly indicate a 

correlation between the dependent variables (Xn) and the independent variable (Y). For 

instance, it has been confirmed that river algal blooms are negativity correlated to 

hydrological regimes and positively correlated to temperature and the input nutrient 

waste load.   

 

This contribution analysis was not only performed using statistical system 

models, but also is verified by an integrated river eutrophication model. It can provide 

a part of basic conceptual mechanisms for researchers, although the simulating ability 

is quite unsatisfactory. This kind of model has too many constraints related to 

required parameters, so the final result would not be satisfactory if the initial data 

error is large. The statistical models have fewer or no constraints for inputs and 

outputs, so calibration and validation results are often better. Once the they are 
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validated by a physical or semi-physical model, it can provide reasonable results as 

well. Based on the final assessment result, the linear method usually only presents 

approximate results since it assumes the relationship for everything is linear and 

output results often show negative values. This is not reasonable in real-world cases 

because real time series data are mostly nonlinear due to the complicated nature of 

ecological systems. The nonlinear regressions model usually gives a better simulation 

result compared to the linear model since it is more reasonable in practice and the 

result can avoid negative values. On other hand, the ANN model is a powerful tool 

that is able to solve difficult pattern-processing problems involving non-linearity and 

multiple dimensions and it is usually good on molding calibration. However, 

sometimes it lacks accuracy for data forecasting due to its tendency to over-fit. In 

conclusion, the advantages and limitations of proposed models can be summarized as 

follows: 

 

a. Multiple linear regressions model 

Advantages are: 

 simple to use in application 

 often shows good results when relationships between the independent 

variables and the dependent variable are almost linear. 

 moderate calibration (R
2 

= 0.64) and validation (R
2 

= 0.7) results. 

Limitations are: 
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 needs data screening, the input parameters must be linearly correlated to 

outputs. 

 often inappropriately used to model non-linear relationships, thus it is limited 

when making predictions in real case studies.  

 a lack of explanation about what has been learned can be a problem. 

b. Multiple Non-linear regressions model 

Advantages are: 

 can be used to model non-linear relationships and is appropriate for most real 

case studies.  

 can be moved to a linear domain by a suitable transformation of the model 

formulation. 

 very good modeling result of calibration (0.89) and validation (0.97).  

Limitations are: 

 calculation process is much more complicated than the MLR, but some 

nonlinear equations (e.g. power functions) can be transformed to a linear 

formulation. 

 The major conceptual limitation of all regression techniques is that you can 

only ascertain relationships, but can never be sure about an underlying causal 

mechanism. 
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c. Artificial Neural Networks  

Advantages are: 

 able to automatically resolve non-linear complex relationships between 

variables without the need for prior assumptions about the nature of those 

relationships.  

 able to solve difficult pattern-processing problems involving non-linearity and 

multiple dimensions. 

 can be implemented in any application and allow fast processing of large 

amounts of information. 

 often good in model calibration (0.97) and has the abilities of promotion and 

generalization.  

Limitations: 

 It should be used with caution when developing predictive models because the 

prime disadvantage of ANN is that they are tend towards overfitting, also 

known as overtraining. This phenomenon can lead an investigator to 

misinterpret an ANN's good performance on a training/calibration data set.  

 It cannot indicate the exact contributions of each input indicator to the output, 

thus it is inconvenient for applying a single factor impact assessment; 
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d. Integrated river eutrophication model 

Advantages: 

 It is a semi-physical model that combines a empirical model and a statistical 

model, thus it can provide some physical meaning inside of the system already 

known. Results can explain the mechanisms of variables. 

Limitations: 

 Due to the conditions of input parameters being too restrictive, the simulating 

efficiency can be less than statistical models. 

 model requires more physical parameters related to water environments 

 

6.2 Discussion of Climate Change Impacts on River Algal Blooms 

The individual and integrated climate change impact assessment and the 

interactions and contributions of human activities, hydrological regimes and 

temperature to river algal blooms are determined. For the individual climate change 

assessment: the waste nutrient P load has the most significant impact (14.82%), 

followed by the flow rate (5.56%) and then by temperature (3.7%). For the integrated 

climate change assessment, it has been found that there is a significant impact 

(20.37%) when waste load increases and flow rate decreases at the same time. It is 

followed by increase of both waste load and temperature (15.82%). If temperature 
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increases but flow rate decreases, the impact is predicted to be 11.11%. Therefore, the 

interactions and contributions of each variable input to algal bloom can be 

summarized as follows: 

 

a. It is well proven that the human activity, which in this case is represented by the 

waste load, can play an important role on the growth and reproduction of algae. 

The impact factor for waste nutrient inputs into the system is 14.82% which is 

even higher than the sum of temperature and flow rate (11.11%). Also when the 

waste load is included in the integrated assessment, the impact of temperature 

(3.7%) is increased to 15.82%, and the impact of flow rate (5.56%) is increased to 

20.37%. If both temperature and flow rate are increased, the increased input waste 

load will increase the risk from 11.11% to 29.63%. Thus there is no doubt that the 

control of waste load is the key issue to minimize the probability of algal bloom 

occurrence. The primary source of phosphorus is industrial wastewater. In 

particular, where the Han River flows past a nitrogen fertilizer plant an excessive 

amount of phosphate is discharged to the river. Moreover, a large number of 

domestic water emissions reach the river. Relevant implications should be 

assessed and adaptations should be conducted.  

 

b. The hydrologic regime is the second most important impact factor in algal bloom 

formation, according to our model. The study result shows the flow rate is 

negatively correlated the total algal cell concentration, especially when the input 
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waste load and the flow rate change at same time, the probability of algal bloom 

occurrence will be significantly increased (20.37%). Moreover, with decreased 

flow rate and an increase in temperature, the impact is increased from 3.7% to 

11.11% and the impact of waste load is increased from 14.82% to 20.37%. Finally, 

if the input waste load and the temperature both change, the decreasing of flow 

rate will increase the algal bloom risk from 15.8% to 29.63%. The monitoring data 

clearly shows that when the algal blooms occurred in 1992, 1998 and 2000, the 

water level and the flow rate were low resulting in a localized, semi-stagnant 

environment. The water flow dilution effect was greatly reduced resulting in 

stagnation in the fixed total amount of nutrient load, causing an increase in the 

concentration of nutrients which in turn led to algal bloom conditions. In addition 

the accumulation of phosphorus in the river sediment (caused by settlement to the 

bottom and the formation of a river silt layer) which provides sufficient 

phosphorus to accelerate algal bloom formation. 

 

c. It is clearly shown that the impact of temperature (3.7%) does exist and is 

sufficient to increase the likelihood of algal blooms. When the temperature 

increases, the impact of flow rate on algal bloom formation (5.56%) increases to 

11.11%, and the impact of waste load (14.82%) also increases to 15.82%. 

Furthermore, when the flow rate and waste load both change and the temperature 

increases, the impact factor will increase from 20.37% to 29.63%. This indicates 

that temperature plays a key role in river eutrophication according to this model, 



120 
 

especially when the input load and the flow rate are both within a danger threshold. 

Compared with the historical data, the result of this study has confirmed that 

temperature has significant impact on the growth of diatoms. From the collected 

data, the water temperature in 1992 has increased significantly compared to 1991, 

and the highest temperature in 1998 and 2000 reached 32°C, which is almost the 

highest recorded in history for the Han river. Therefore, it is easy to see That 

increased temperatures can lead to an increased risk of algal bloom occurrence.  

 

6.3 Implications for Water Quality and Ecosystem Management 

Even though climate change could significantly alter water eutrophication and 

ecosystem, it is predicted under our model that human activities contribute much 

more than climate change to algal blooms in the Han river. This implies that adaptive 

management can minimize some climate-change impacts on not only water quality 

but also the aquatic ecosystems. Because many of impacts of climate changes are not 

predictable, in order to deal with the climate changes that are taking place now and to 

prepare for those that are likely to happen in the future, more flexible institutional 

arrangements are needed in order to adapt the changing conditions, a necessary tool is 

the water quality and ecosystem management plan. This should take into account all 

significant pressures and impact of human activities on the aquatic environment. 

Specific and practical management options should be chosen for different regions.  
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In order to avoid adverse impacts of climate change on water quality and aquatic 

ecosystems, certainly the most important and well-known method to protect aquatic 

ecosystems is reducing contaminant levels. Therefore, it is vital that both point and 

nonpoint pollution sources should be strongly restricted. The adaptation options 

should also improve the ability to moderate, cope with and take advantage of the 

consequences of climate change. Moreover, because of uncertainty over future 

climate variability, management responses should have built-in flexibility to ensure 

that current coping strategies are consistent with future climate change. Adaptability 

of this nature requires environmental change monitoring and modeling, and the 

strengthening of basic research and practice. Management innovation is also 

necessary for better adaptability. In addition, relevant education and training can raise 

awareness and encourage more people to pay attention to this issue.  

 

 

 

  

 

 

 

 

 



122 
 

 

 

 

            CHAPTER 7 CONCLUSION 

 

     In the present study, a set of parametric river eutrophication models have been 

developed for assessing the contributions of climate change and human activity 

impacts on river water quality. An integrated climate change assessment was applied 

to a real river eutrophication case study of the Wuhan section of Han River in China. 

This study has provided much data and information, including an overview of 

international research on this issue and some of my personal opinions related to 

climate change on water quality. A system modeling structure of river eutrophication 

based on multiple inputs and an output was established, in which variables include 

nutrient load, temperature, hydrological regimes, water quality, and total algal cell 

concentration. The statistical and simulation models were conducted based on system 

approaches of (a) Multiple Linear Regressions, (b) Multiple Non-linear Regressions, 

(c) Artificial Neural Network based on Back-propagation algorithms, as well as (d) 

the integrated river eutrophication (Dillon) model. All above models are calibrated 

and validated based on the monitoring data, the multiple non-linear regressions model 

is taken for individual and integrated climate change assessment under different 

scenarios since it has the best simulation result. The contributions of nutrient loads, 

temperature and hydrological regimes to the algal blooms are quantified by adjusting 

any of the variables. The final climate change assessment result indicates that the 
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input waste load has the greatest impact (14.82%) on river algal blooms, which means 

that human activity plays an important role on the growth and reproduction of algae, 

and control of the waste load is the key issue to minimize the probability of 

occurrence of algal bloom. The hydrologic regime is the second important impact 

factor (5.56%). The study result shows the flow rate is negatively correlated to the 

total algal cell concentration. The impact of temperature (3.37%) was low, but can 

have a high impact when input load and flow rate are both in a danger threshold. 

Finally, the probabilities of algal bloom occurrence in the Han River for next 40 years 

was forecasted based on three emissions scenarios.  

 

    Based on the climate change assessment result, it is proven that water quality and 

eutrophication can be impacted significantly by climate change. However, scientific 

works on this important issue are very limited. More and deeper scientific research 

should be conducted in the near future. Based on the Han River case study in China, it 

is concluded that the degradation of river water quality and eutrophication is mainly 

influenced by human activities, and can be exacerbated by climate change. Climate 

change can affect water quality through not only working on water temperature but 

also altering hydrological regimes. Finally, specific and practical adaptation options 

and positive ways to enhance adaptability should be proposed to decision-makers. 
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7.1 Contributions of the Research 

  The research contributions of this present thesis are summarized as follows: 

 

1) As we know, the effects of climate change on river water quality is a valuable topic 

but also very complex and full of challenges. So far most current research tends to 

be more focused on climate change impact on water quantity (e.g., flooding and 

droughts) rather than on changes in water quality. Relevant scientific research and 

practices are important for effective responses and management of water 

environments. In this study, an assessment framework related to climate change 

and human activities has been developed through examining  appropriate 

statistical and simulation modeling methods to comprehensively quantify their 

contributions to river water eutrophication.  

 

2) This study presents the application of statistical and simulation models, which 

include Multiple Linear Regressions, Multiple Non-linear Regressions, Artificial 

Neural Networks and an ecological model, in order to quantify the contributions 

of climate change and human activities impacts to river water quality based on a 

case study of algal blooms in a large river system in China. The new ecological 

model can be considered as a semi-physical empirical model and was considered 

useful for providing some necessary meaning of mechanisms compared to other 
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statistical models. Previously, this water eutrophication model has been only 

applied to water eutrophication studies in lakes and has never been used for rivers. 

Here, we see its possible applications in climate change impact on large river 

systems. 

 

3) The comprehensive modeling results indicate the overall relationships of climate 

change impact on water quality, but also individually evaluate the impact of 

human activities and variation of hydrological regimes on river algal blooms, 

based on an integrated climate change assessment.  

 

4) A single-factor assessment and an integrated climate change assessment has been 

conducted based on the modeling results. It can quantify the contributions of 

temperatures, hydrological regimes and human activities to river water quality 

based on the information of monitoring data in past, but is also able to forecast the 

probabilities of algal blooms occurrence in the Han river for next 40 years based 

on three emissions scenarios. This can provide useful and reasonable information 

about water environmental management for decision-makers in the future. 

 

5). This study discussed the principles of adaptation strategies on how to solve the 

impact of climate change on water resources and what feasible adaptations should 

be taken to keep economic and social developments from causing adverse effects. 

The present study is expected to give theoretical support and directions for further 
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relevant research, and this assessment approach can also be applied in other 

environmental problems, such as the climate change related water contamination, 

air pollution, solid waste management, etc.  

 

7.2 Future Studies 

   This section highlights the scope of future work which may be conducted on the 

basis of the work presented here. 

 

1. Although this study analyzed water quality and climate data of 9 years from 1992 

to 2000, only information in the spring time (January to March of each year) is 

available due to the nature of the algal bloom phenomenon. For further studies, 

long term continuous monitoring in different regions is still required to support 

basic data in order to give a more comprehensive analysis of climate change 

impact. 

 

2. More efforts should be taken to separate the impacts of climate change from 

human activities based on more long-term monitoring data, although it is 

complicated. Meanwhile, to get a better understanding of the issue, it is suggested 

to obtain more information about the alteration mechanisms of hydrological 

regimes by climate change. 
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3. The over-fitting phenomenon that has occurred in the ANN application in this 

study is problematic. In order to avoid this pitfall, validation of the ANN model 

with a data set not used during training is essential. Techniques such as early 

stopping, cross-validation and bootstrapping can be used to in future studies to 

minimize the modeling errors. 

 

4. A new integrated river eutrophication model was developed in this study, but the 

prediction ability is not satisfactory compared with the statistical model. Future 

studies should be applied in this direction to improve this empirical equation to 

yield better results.  

 

5. Only one statistical model, which is the multiple nonlinear regressions approach, 

has been used for forecasting the future climate change impact on the river water 

quality in 40 years. It is also suggested for the decision maker to combine the 

statistical model and simulation models to establish a comprehensive fuzzy risk 

assessment by taking a interval value of two models. 
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