
 1 

Abstract: In this paper, a new recursive algorithm and two types of circuit architectures are presented for 

the computation of the two dimensional discrete cosine transform (2-D DCT). The new algorithm permits to 

compute the 2-D DCT by a simple procedure of the 1-D recursive calculations involving only cosine 

coefficients. The recursive kernel for the proposed algorithm contains a small number of operations. Also, it 

requires a smaller number of pre-computed data compared to many of existing algorithms in the same 

category. The kernel can be easily implemented in a simple circuit block with a short critical delay path. In 

order to evaluate the performance improvement resulting from the new algorithm, an architecture for the 

2-D DCT designed by direct mapping from the computation structure of the proposed algorithm has been 

implemented in a FPGA board. The results show that the reduction of the hardware consumption can easily 

reach 25% and the clock frequency can increase 17% compared to a system implementing a recently 

reported 2-D DCT recursive algorithm. For a further reduction of the hardware, another architecture has 

been proposed for the same 2-D DCT computation. Using one recursive computation block to perform 

different functions, this architecture needs only approximately one half of the hardware that is required in 

the first architecture, which has been confirmed by a FPGA implementation. 

 

Index Terms — Discrete Cosine Transform (DCT), 2-D DCT, recursive algorithms, architecture, 

FPGA implementation.  
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1 Introduction 

 

The discrete cosine transform (DCT) [1] is widely used in the area of signal and image processing. In 

particular, in case of images with high correlation coefficients, DCT based coding can result in a good 

performance [2]. The 2-D DCT is used in many image/video coding compression standards such as 

JPEG [3], ITU-T H.261 [4], and MPEG [5]. To facilitate real-time implementations, the development 

of efficient algorithms for computing the 2-D DCT is of great interest.  

The computation of the 2-D DCT requires a large number of operations with a huge amount of 

data. This computation is usually decomposed into 1-D DCT/DST ones. Some of the most commonly 

used algorithms are based on the row-column decomposition scheme because of its simplicity of the 

calculation procedure resulting from the simple row-by-row and column-by-column 1-D operations [6] 

- [9]. Aiming at reducing the number of calculation cycles for fast processing, some other algorithms 

take less strait-forward decomposition methods than the row-column ones [10] - [13]. In these cases, 

the 2-D DCT computation is reformulated, by means of, e.g., conversions of variables, into terms of 

1-D DCTs and/or DSTs. It is important that the reformulated computation keeps its regularity and 

modularity to facilitate the implementation. 

Some of the 2-D DCT algorithms are designed for parallel processing for high speed applications 

[14] - [16]. However, in many applications, low cost and small circuit volume may be demanded. A 

2-D DCT algorithm featuring highly regular calculations can be implemented in a small number of 

circuit blocks for it to be performed in a recursive manner [17] - [20], which may help to achieve a low 

hardware cost. In general, such a recursive approach is related to a slow process, as the computation 

task is completed by means of cycle-by-cycle calculations. However, the penalty of such calculation 
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cycles on the processing speed may not be sever if i) a good decomposition method is used to minimize 

the number of calculation cycles, and ii) an optimized recursive kernel is designed to minimize the time 

required for each cycle. 

The objective of the work presented in this paper is to develop a system for the 2-D DCT 

computation with a very low circuit cost and reasonably fast speed. For this purpose, a recursive 

structure is designed. The computation algorithm proposed in this paper is based on that reported in 

[20] as it is one of the well appreciated existing recursive algorithms because of its small number of 

computation cycles. 

This paper is organized as follows. The description of the proposed algorithm is founded in 

Section 2. Section 3 is dedicated to the presentation of the two architectures implementing the proposed 

algorithm, including the structure of the recursive kernel and the circuit architectures for the recursive 

computation. Both architectures have been implemented using FPGA technology. The results are also 

presented in Section 3. 

 

2 Proposed recursive algorithm for the 2-D DCT  

 

2.1 Background 

For a set of 2-D data x (n1, n2) with 0 � n1 � N – 1 and 0 � n2 � N - 1, the 2-D DCT is defined as  
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where k1, k2 = 0, 1,…, N-1, u(k) = 2(-1/2) for k = 0, and u(k) = 1 for k � 0. The 2-D DCT is often 

reformulated as the sum of 1-D DCTs and/or 1-D DSTs. In [20], assuming that N = rp and any 

integer could be expressed as (d rp), with r being a prime integer, d relatively prime to r and d < N, k1 
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and k2 are expressed as k1 = d1r
p1 and k2 = d2r

p2, and the computation of the 2-D DCT is divided 

into two cases as follows. 

Case 1: k1 or k2 is prime to N. Let p = min {p1, p2}, �1 = d1, �2 = d2 and M = N.  

Case 2: k1 � 0 and k2 � 0, k1, k2 and N have a common divisor rp where p = min {p1, p2}, �1 = 

d1r
-p1, �2 = d2r

-p2 and M = Nr-p. 

In each of these two cases, (1) can be written as 
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where �1 = d1, �2 = d2, M = N for case 1, and �1 = d1r
-p1, �2 = d2r

-p2, M = Nr-p for case 2. m1 = �1n1 

+ �2n2 mod M, and m2 = �1n1 - �2n2 + 2M2 mod M. The computation of pre-addition xa(m1) and xs(m2) 

can be found in [20]. 

In the algorithm presented above, the computation of the 2-D DCT can be reformulated into terms 

comprising 1-D DCTs and 1-D DSTs. The recursive kernel for the computation is shown in Fig. 1. It 

can also be presented using a more compact format as illustrated in Fig. 2. The diagram of the structure 

of the recursive algorithm in [20] is shown in Fig. 3. In this approach, each computation cycle requires 

six multiplications with the DST and DCT coefficients as shown in Fig. 2. It would be desirable to 

further simplify the computation so as to reduce the number of multiplications in the recursive kernel 

while removing the DST calculation. 

2.2 Proposed recursive algorithm 

Based on the method described in Section 2.1, our work aims at developing a computation algorithm 

for the 2-D DCT using 1-D DCT modules with a reduced number of multiplications. The equation (2) 
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for the 2-D DCT computation involves multiple sine and cosine terms. Totally six multiplications are 

required in each cycle. A further simplification of the computation is to reduce the number of 

multiplications and to make the computation to contain only cosine (or sine) terms. 

Observing the equation (2), it is easy to see that, by using trigonometry identities cos(u + v) = 

cosu cosv – sinu cosv, the 2-D DCT computation shown in (2) can be expressed as [21]. 
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Comparing (3) and (2), one can find that the number of multiplications used in each cycle of the 

recursive computation in (3) is evidently smaller than that in (2).  Thus, the recursive kernel for the 

computation of (3) can be made much simpler than that of (2). Moreover, as (3) involves only 1-D 

DCT terms, the generation of 1-D DST is not needed, which permits a significant simplification of the 

pre-computation of the 2-D DCT. 

    Equation (3) can be written as the sum of Xac1 and Xac2 defined as 
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Observing (4) and (5), one can find that they differ form each other only in the angles (�1 + �2)/2 

and (�1 - �2)/2. It is thus possible to use the same structure to implement the computation of Xac1 or 

Xac2. Also, the computation procedure should be designed in such a way that this structure involves the 

minimum number of multipliers and requires the shortest delay for the computation.  

Assuming that � = (�1 ± �2)/2, m’ = M – 1 - m, and xa (m) or xs (m) is generalized as x (m), (4) or 

(5) can be expressed as  
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Making Y(�1, �2) = - Xac(�1, �2),  j = M – 1 and � = �/M, we have  
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As cos(m’ + 1)� = 2cos�cosm’� - cos(m’ - 1)�, (7) can be rewritten as 
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The transform function of the system for (8) is given as   
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It should be noted that (9) is applicable for both Xac1(�1, �2) and Xac2(�1, �2) as �= (�1 ± �2)/2. 

Based on (9), we propose a recursive computation kernel as shown in Fig. 4. The structure shown 

in Fig. 5 includes the proposed kernel and is for the same 2-D DCT computation as that of Fig. 3. 

Comparing the kernel shown in Fig. 4 with that in Fig. 2, one can see that the former needs only cosine 

coefficients, and involves four multiplications and three additions, whereas the latter requires both 

cosine and sine coefficients and employs six multiplications and four additions. It can be expected that 

the proposed algorithm can be implemented in a simpler circuit structure, with potentially shorter clock 

cycle-time.  

To verify the equivalence of the computation expressed in the recursive kernel illustrated in Fig. 2 

and that in Fig. 4, simulations using Simulink have been done and identical results have been obtained 

[21], conforming that the kernels can replace each other for the same computation. The option of 
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computing the 2-D DCT by the proposed recursive operation illustrated in Fig.4 can lead to an effective 

reduction of number of multiplications and additions. 

It should be mentioned that, similar to the recursive kernel reported in [20], the proposed one can 

be used not only for the DCT, bet also in the computations of the IDCT, the DST and the IDST, by 

means of adjusting the inputs and pre-addition procedures. 

 

3 Architectures and the FPGA implementations 

 

As described in the preceding section, the proposed algorithm of the 2-D DCT is based on the 

computations defined by (3), and a recursive kernel shown in Fig. 4 involving only the 1-D DCT 

computation has been developed. We propose a circuit block for the recursive kernel and two versions 

of VLSI architecture to implement the algorithm, aiming at improving the hardware usage and 

operation speed. Both versions of architectures are implemented in FPGA boards for performance 

evaluation. In this section, a 1-D DCT circuit block of the recursive kernel and the two architectures are 

presented, so are the results of the FPGA implementation. 

 

3.1 Circuit block of the recursive kernel 

The computation of the proposed recursive kernel, shown in Fig. 4, can be easily mapped into a simple 

circuit block as shown in Fig. 6. This circuit does not need sine coefficients and it is, in fact, a 1-D 

DCT block. Using the same mapping, another block for the recursive kernel [20] is also built, 

illustrated in Fig. 7, for the comparison purpose.  
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Comparing the structures of the two blocks shown in Figs. 6 and 7, one can have the following 

observations: 

• It is confirmed that the block shown in Fig. 6 requires four multipliers and three adders, instead 

of six multipliers and four adders in that in Fig. 7. Thus, a significant reduction of circuit 

complexity should be expected in the hardware implementation. 

• Besides the inputs of xa and xs generated by the pre-computation modules, both blocks receive 

other pre-computed inputs. The block shown in Fig. 7 needs six such inputs, namely a, b, c, d, e 

and f, whereas in that of Fig. 6 only four are needed. Therefore, the pre-computation operations 

required in the system using the block of Fig. 6 can be made much simpler than that of Fig. 7. 

• The length of the most critical delay path in a block determines the required duration of the 

clock cycle. One can easily see that there are three multipliers in the critical path of the block of 

Fig. 7, and only two in that of Fig. 6. The delay in the latter is obviously much shorter than that 

in the former. Also, taking the number of adders in the critical path of each of the two blocks 

into consideration, one can expect that the delay of the circuit block of the proposed recursive 

kernel can be made at least 33% shorter than that of Fig. 7. The proposed algorithm can, 

therefore, lead to a significant increase of the clock frequency. 

Having a smaller number of operators such as multipliers and adders and fewer input coefficients, 

the circuit block for the proposed recursive kernels can perform a smaller number of operations for the 

same computation as that shown in Fig. 7. It can thus be implemented with a smaller number of basic 

calculation units and shorter delay path to improve both hardware efficiency and processing speed. The 

VLSI architectures for the 2-D DCT with the proposed block shown in Fig. 6 are presented in the 

following sub-sections. 
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3.2 Architecture -1 for the proposed algorithm 

As mentioned in the previous sections, the 2-D DCT computation can be implemented by using the 

proposed circuit block of the new recursive kernel shown in Fig. 6. With this block, the computation 

structure shown in Fig. 5 can be easily mapped into an architecture illustrated in Fig. 8. In this 

architecture, two identical circuit blocks operate in parallel. However, it should be noted that one block 

receives the inputs � = cos((�1+�2)/2-1)�/M and � = cos((�1+�2)�/2M), while the inputs � = 

cos((�1-�2)/2-1)�/M and 	 = cos((�1-�2)�/2M) are applied to the other block. Hence, the former 

produces Xac1 and the latter Xac2. The final output signal X (k1, k2) is generated by an addition of the two 

outputs of the blocks.  

Using a similar direct mapping, a circuit architecture implementing the algorithm of [20] is 

obtained, as illustrated in Fig. 9. It includes two identical circuit blocks shown in Fig. 7. 

The architectures shown in Figs. 8 and 9 can be easily implemented with FPGA technology. To 

this end, one should first decide the target precision of the 2-D DCT computation. There is no limit for 

the precision in each of the two architectures except the number of bits of the modules employed, 

providing that the clock frequency is appropriate. However, a larger number of bits requires more 

devices in the modules, i.e. larger or more expensive FPGA boards. Most of 2-D DCT applications use 

inputs of 12-bit floating-point data [9] [22]. In the implementation of the two architectures, the inputs 

and outputs are also of 12-bit floating-point signals, of which the first bit is the sign, the next three bits 

are of the exponent, and the other eight bits are for the significand. 

In this implementation, VHDL is used for hardware description and the Mentor Graphics 

Precision RTL for the logic synthesis. The netlist files are of EDIF (Electronic Design Interface 

Format), and Xilinx ISE is used for the FPGA simulation. The FPGA boards used are Virtex-II Pro 
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Platform of xc2vp7, featuring the volume of 4928 slices and the maximum clock frequency of 500 

MHz. The input data applied to the two architectures are the same, and the same output data are 

obtained and verified to be correct. The hardware simulation results are presented in Table I. One can 

note the following points.   

• The architecture of the proposed algorithm requires only 75% of hardware consumption 

compared to that of [20]. This results from the smaller number of multiplications and additions 

in the proposed algorithm that involves only 1-D DCT computation. 

• Both architectures can be easily implemented in the FPGA board of xc2vp7. Obviously, the 

hardware utilization of the architecture shown in Fig. 8 is much less than that of Fig. 9, which 

means that the architecture of Fig. 8 permits the integration of more logic functions in the same 

board. Furthermore, this architecture can also be implemented in a small and low-cost board 

such as xc2vp4 that may not be suitable to implement the one of Fig. 9.  

• Because of the smaller number of operations in the critical path of the computation, the required 

clock cycle duration of the architecture shown in Fig. 8 is 7.61 ns, corresponding to the 

frequency of 131 MHz. It is only 83% of that of [20], which implies a speed improvement 

resulting from the proposed algorithm. The reduction of the cycle time can be more significant 

if the algorithm is implemented in a custom-designed integrated circuit.  

• The circuit architecture for the proposed algorithm and that of [20] dissipate almost the same 

amount of power in the FPGA boards. As the former has a simpler structure, when it is 

implemented in a custom designed circuit, its power dissipation is expected to be lower than 

that of [20]. 

 



 11

TABLE I 
FPGA  RESULTS OF THE ARCHITECTURES SHOWN IN FIGS. 8 AND 9 

 
Architecture 

shown in Fig. 9 

Architecture 

shown in Fig. 8 

Number 272 217 Slice Registers 

Utilization 2% 2% 

Number 4,008 2,997 Occupied Slices 

Utilization 81% 60% 

Number 7,710 5,777 4 Input LUTs 

Utilization 78% 58% 

Minimum Clock Cycle (ns) 9.103 7.611 

Power Consumption (mW) 472 472 

 

The throughput of the architecture shown in Fig. 8 is the same as that in Fig. 9, which is one input 

sample per clock cycle. Both of the architectures need N clock cycles to produce an output sample if 

the dimension of the 2-D signal is N � N.  By means of the input-folding method, the number cycles 

may be further reduced in the architecture shown in Fig 9 [20], and this reduction is done at the 

expense of increasing the hardware consumption.  

The simulation using Simulink was done with the input data of fixed-point. The FPGA results are 

obtained with the floating-point signals. As shown in Table I, the clock cycle can be as high as 7.611 ns. 

We can conclude that the circuit can operate correctly with a clock frequency of 130 MHz under the 

condition of the 12-bit floating-point data. 

In conclusion, the FPGA results agree with the expected performance improvement of the circuit 

architecture resulting from the proposed algorithm. The improvement, in terms of hardware 

consumption and operation speed, has been achieved at no expense of power dissipation. 
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3.3 Architecture -2 for the proposed algorithm  

The architecture shown in Fig. 8 employs two circuit blocks to generate Xac1 and Xac2, respectively, for 

the 2-D DCT computation. The two blocks execute, in fact, the same operation with partially different 

inputs. It is thus possible to use only one circuit block for both functions of Xac1 and Xac2, and the matter 

is to select the right inputs for the two functions. By examining the architecture shown in Fig. 8, it is 

easy to see that the calculation of Xac1 requires � = cos((�1+�2)/2-1)�/M and � = cos((�1+�2)�/2M), 

while Xac2 needs � = cos((�1-�2)/2-1)�/M, and 	 = cos((�1-�2)�/2M). One can use simple multiplexers 

to select the input signals (� & �) or (� & 	) in order that the circuit block produces the right output. In 

this way, the proposed algorithm can be implemented in the circuit using only one circuit block for all 

the recursive operations, as illustrated in Fig. 10, which can result in a significant reduction of the 

hardware consumption and enable an even-lower-cost circuit implementation.  

In the architecture shown in Fig. 10, the signal inputs via the multiplexers are synchronized with 

the clock signal, of which each cycle consists of two phases. In the first phase, i.e. CLK = ‘1’, xa, � and 

� are applied to the circuit block and during the second phase, xs, � and 	 are selected to be applied. The 

two outputs of the circuit block generated during the two phases are summed up to generate the final 

output signal X (k1, k2). In this way, the computation of the 2-D DCT can be realized by only one 1-D 

DCT block, instead of the two in Fig. 8.  

The architecture in Fig. 10 can also be used for other computation tasks if the main circuit block 

is replaced by another module. In many cases of signal processing, the computation can be decomposed 

into two parts, one by processing cores and the other by pre-computation blocks. It is possible to use 

only one processing core for different functions during different phases, while applying different 
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pre-computed inputs. In this manner, the required hardware can be considerably reduced, which leads 

to a reduction of the circuit cost in a great scale.  

The same method of using a single processing core can be easily applied to simplify the structure 

implementing the algorithm of [20]. In the architecture shown in Fig. 9, among the inputs a, b, c, d, e 

and f of each circuit block, b and e are not common for the two blocks. By means of multiplexers, the 

structure in Fig. 9 is converted to that illustrated in Fig, 11. It is evident that the conversion reduces the 

hardware to one half of that used for Fig. 9, as only one processing block, instead of two, is included in 

the circuit. 

The circuit architectures shown in Figs. 10 and 11 have been implemented in the same kind of 

FPGA boards as that presented in Section 3.2, i.e. Virtex-II of xc2vp7, under the same conditions of 

12-bit floating-point input signals. The FPGA results of the architecture shown in Fig. 10, with the 

comparison to those of Fig. 8, are presented in Table II to illustrate the difference in hardware 

consumption between the two architectures that employ the same recursive block and perform the same 

computation. Table III shows the results of those of Figs. 9 and 11. 

TABLE II
FPGA RESULTS OF THE ARCHITECTURES SHOWN IN FIGS. 8 AND 10 

Structures for the proposed algorithm 
Architecture shown in 

Fig. 8 

Architecture shown in 

Fig. 10 

Number 217 148 Slice Registers 

Utilization 2% 1% 

Number 2,997 1,709 Occupied Slices 

Utilization 60% 34% 

Number 5,777 3,241 4 input LUTs 

Utilization 58% 32% 

Minimum Clock Cycle (ns) 7.611 20.916 
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TABLE III
FPGA RESULTS OF THE ARCHITECTURES SHOWN IN FIGS. 9 AND 11 

Structures for the algorithm in [20] 
Architecture shown 

in Fig. 9 

Architecture shown 

in Fig. 11 

Number 272 172 Slice Registers 

Utilization 2% 1% 

Number 4,008 2,207 Occupied Slices 

Utilization 81% 44% 

Number 7,710 4,203 4 input LUTs 

Utilization 78% 42% 

Minimum Clock Cycle(ns) 9.103 25.592 

 

 

From the FPGA results shown in Table II and Table III, the following points can be noticed. 

• The proposed method of using a single processing core helps to reduce significantly the 

hardware consumption in all the aspects, including logic gates and memories. In the case of 

implementing the two different 2-D DCT algorithms, the reduction of the hardware is 

consistently at a rate of 43%. 

• As the result of the reduced hardware requirement, the circuit architectures designed using the 

proposed method can be easily integrated in a wide range of FPGA boards. 

• By using the proposed method, the recursive block used in each of the circuit architectures 

shown in Figs. 10 and 11 operates to compute Xac1 and Xac2 successively, not simultaneously, in 

each clock cycle. Thus the duration of the cycle is expected to be doubled, compared to that of 

the architectures shown in Figs. 8 and 9. However, Table II or III shows that the required clock 

cycle of the architecture illustrated in Fig. 10 or 11 is about three times of that in Fig. 8 or 9, 

which may be due to some redundant structure of the FPGA board.  
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The FPGA results provide a good confirmation of the significant reduction of hardware 

consumption by applying the one-processing-core method. This reduction comes with some increase of 

processing time and is good to use if the speed is not a critical issue. In any case, it provides a good 

trade-off of hardware and processing time. Also, as one of the experts in the area suggested, if the 

circuit of the recursive kernel is divided into cascaded stages to make the operations pipelined, the 

clock frequency can be increased, as its cycle duration will depend on the stage that has longest delay 

instead of the total delay of the stages. In this case, the synchronization of the Mux and Demux should 

be updated to suit the higher frequency of the clock. 

It should be mentioned that many 2-D DCT architectures found in literature are implemented in 

custom-designed VLSI. It is thus difficult to compare the implementation of our architectures with 

them. There are a few examples of the FPGA implementations reported. They are mostly about 

architectures designed for row-column decomposition. One such example can be found in [23]. In this 

architecture, the number of devices needed is almost doubled compared to that of the architecture-2, so 

is its clock duration. 

4 Conclusion 

In this paper, a recursive algorithm for the 2-D DCT has been proposed and two architectures 

implementing the proposed algorithm designed. The development of the new algorithm is based on a 

mathematical reformulation of the 2-D DCT computation. It involves only 1-D DCT calculations, 

eliminating 1-D DSTs. The recursive kernel of this algorithm requires a very small number of 

multiplication and addition operations for an easy circuit implementation. A circuit block of the 

recursive kernel has also been proposed. This block employs only four multipliers and three adders. 

Moreover, because of a small number of operators in its critical path, the required clock cycle duration 
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can be made short. Furthermore, with some variations of the pre-additions, the proposed recursive 

kernel can also be employed to compute the 2-D IDCT, DST and IDST. Based on the proposed 

recursive block, two architectures for the recursive computation of the 2-D DCT have been designed. 

One is obtained by a simple mapping of the computation scheme and includes two proposed recursive 

circuit blocks. The FPGA results show that, the proposed recursive algorithm leads to 25% of the 

hardware reduction and 17% of the increase of the clock speed. The other architecture, designed using 

a one-processing-core method, has also been presented. This architecture uses only the single recursive 

circuit block for the same 2-D DCT computation. It is shown by the FPGA implementation that this 

architecture needs only 57% of the hardware consumption of that required by the first architecture with 

some extension of the clock cycle. The FPGA implementation results of another recursive 2-D DCT 

algorithm show that the same method can be applied to implement other recursive algorithms to 

achieve effectively a significant hardware reduction. 
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Fig.1. Recursive kernel for 1-D DCT/DST [20]. 
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Fig. 2.  Recursive kernel for the computation of the 2-D DCT defined in [20]. 
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Fig. 3. Structure of the 2-D DCT computation according to the algorithm of [20]. It includes the units 

for the pre-addition and the recursive kernels for 1-D DCT/DST. The detail of the kernel is shown in 

Fig. 2.  
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Fig. 4.  Proposed recursive kernel. 
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Fig. 5. Computation structure of the proposed algorithm for the 2-D DCT using the proposed recursive 

kernel shown in Fig. 4. 

 

 

 

 

 

 

 

 



 23

ζ

η

κ
ε

( )x m
acX

 
 

 

Fig. 6. Structure of the circuit block for the proposed recursive kernel. In this structure, the coefficient 

inputs are mapped from the kernel shown in Fig. 4, i.e. 
 = cos(�-1)�, � = cos��, � = -2u(k1)u(k2)/N, 

and � = 2cos�. 
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Fig. 7. Structure of the circuit block for the recursive kernel of [20]. In this structure, the inputs, a = 

sin�, b = sin((�1±�2)�/2M), c = 2cos�, d = cos�, e = cos((�1±�2)�/2M, and f = -2u(k1)u(k2)/N. 
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Fig. 8. Proposed architecture for the 2-D DCT computation. The structure of the proposed 1-D DCT 

block is shown in Fig. 6. The inputs xa(m) and xs(m) are generated by a pre-addition block. 
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Fig. 9. Architecture for the 2-D DCT algorithm of [20]. The structure of the 1-D DCT/DST block is 

shown in Fig. 7. 
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Fig. 10. Architecture for the 2-D DCT proposed for further improvement of hardware consumption. It 

has the single processing core, the 1-D DCT block, to compute Xac1 and Xac2. In this structure, 

�=cos((�1+�2)/2-1)�/M, �=cos((�1-�2)/2-1)�/M, �=cos((�1+�2)�/2M), 	=cos((�1-�2)�/2M), 


=-u(k1)u(k2)/N, and �=2cos�/M. 
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Fig. 11. Architecture for the implementation of the 2-D DCT algorithm [20]. This structure includes 

only one 1-D DCT/DST block as the processing core. Its pre-computed inputs are a = sin�, b1 = 

sin((�1+�2)�/2M), b2 = sin((�1-�2)�/2M), c = 2cos�, d = cos�, e1 = cos((�1+�2)�/2M). e2 = 

cos((�1-�2)�/2M), and f = -u(k1)u(k2)/N. 

 

 

 


