—

. v

o

ey

this research midstream and in the writing of the thesis. I

" under whom this work began.

R U S

v . - S

. : " | ACKNOWLEDGEMENTS

odd would

) . L4
hd v

(). . S
.supervisor, Dr. B.C. Desai, who picked up the ghidance .of

.

tgﬁ also. indebted to. Dr. J.J. Jue?gpns; my former supervisor,’ -

i

.
[

.

I

I would slike to thank Drs. -J.W. Atwood and C.Y. Suem for

their assistance during my research. ‘T would also like , to

express my gratitude to Miss Phoebe Pang and Miss Selina
Wong for their patience and love in pypipg up - part of my

[
4

.thesis.

"like to express ‘my apprediatibp to ﬁmy“”

, - TABLE OF CONTENTS . .
oL Title Page L _— ' T
Signature Page o . ' oo S
‘Abstract . . T . ‘ i
o Acknowledgements | - . g S .11
- Table of Contents . oo, ; iif | ‘
List of Abbreviations A . ’ vii
o . .List of Figures . o ‘ ' . ix
o ‘ List of Tables T . R &1

Chapter I INTRODUCTION -~ ' 1.
.11 DIFFERENCES BETWEEN FILE AND DATA BASE RECOVERY 1 - {7
4.2 . CODASYL DATABASE RECOVERY o 37 |

1.3 THE SCOPE OF THIS THESIS . .. a4 |

I Chapter II .BACKGROUND T 6 "
. 2.1 " THE DEVELOPMENT OF CODASYL DBMS ° o6 '

Ny
N

THE CHARACTERISTICS OF -CODASYL DBMS - 10

? 2.3 THE IMPLEMENTATION OF CODASYL DBMS ' R 13
- 2.3.1 Relation of the DBMS with ‘Application Programs
and the Operating System ‘ 13 :
. ~2.3.2 The Data Base ‘ o T Cre
2.3.2.1 Realm or Area ' : ‘ AT : }
: 2.3.2.2 Record ‘ : R : 18 o
| . 2.3.2.3 Set ' . 20 v
, 2.3.3 The Schema " " e 21 . '
é 2.3.4 The User Working Area S e 22
’ 2.4 DATA BASE REGOVERY .2 ‘ .23
K 2.4.1 Theory . c o .23
. 2.42 File Recovery) . et 24
ok '2.4.3 Salvation Program -~ - -1 . L 25 » :
T e 2.4.4 - Dumping ‘ . T 26 . !
i ;,':’*‘:’ 2.4!5 Journal ¥ e \ - g -
¢ C T 206 Careful Replacement < SRR Lo 28 ’
.) 2.4.7 Recovery Block " S 28 . //l
. - 2.4:8 Reverse Execution | e - o 30 . '
2.4.9 Industrial Recovery Systems LT .-, 30

t . - v R . * . ‘- o M
- . te d 1 % s [. . ! .

-

‘Chapter IIT GENERAL DBMS DESIGN + . . ' 32

3.1 BACKGROUND S e g
GENERAL OVERVIEW S

3.2 .
8§.2.1. - General Model Description g ' - "38
2.2 Comparison with DIAM II and-ANSI/SPARC - - 43

o v . . ' . o
..

&= s s EErrEEEEE SR PR ErFEFEEEEL&SE =

-
-—

¢ e« o s o ¢ e
O SEWWWW NN N -

¢ o e
I &Ny —

O O~ AU =W N -

® e & & o o & ® cu

(8] EEESrTEN S ErTFEEEEE [VNEVLRULIULE VN RS] MmNV

- b ek =2 —d e
T =W N - O

e e 2 s o -

v

.

W Ny =

GENERAL IMPLEMENTATIONAL CONSIDERATIONS'
DML Statements -

Levels and ‘Modules

Error Handling

Data Base key

Lihear’ and Paged Address’ Space

-

THE FILE SYSTEM

IV DETAIL -DBMS DESIGN

1

THE DATA BASE FILE STRUCTURE LEVEL &

THE LOCATION LEVEL ' “

Sublevel Zero

* Sublevel One

N —

Physical currency location table

Direct index directory - .

Sublevel Two v

Direct index

Storage”record . ..)
Data base page ' -
SubleveljsThree .- SR .
Sublevel Four & S '
Sublevel Five: _ '
Summary

THE ENCODING LEVEL

Sublevel Zero

Structural Level Record Hanipulation
Pointer Array Structure and Handling
Indekx Structure and Handling

Summary

THE STRUCTURAL LEVEL

Convention of Parameter Passing
Record and Set Representation
Record Type Directory ' :
Sublevel Zero !
Sublevel One) . ‘
Sublevel Two ' s

.Sublevel Three

Sublevel%Foqr

Sublevel Five ‘ -
Sublevel Six ' ‘
Sublevel Seven:

Sublevel Eight

Sublevels Nine and Ten

Sublevel Eleven

Summary PR T

THE SCHEMA AND THE SUBSCHEMA

- o —d kT
- » L]
[SUIE N Jery

3
o o o
s e o o o e .
W W NN = —
LN oo

N

1% oo (G RG R R RE R RS RS)] (S R IRV RS]

a + o
s s s

e .
N —

W NN DR

*

#

—t vd b b
- » .
w N -

e o o e

" o DR o o .o
s e o .
W) — N —

N =

AN ON OOV ONOVNOh AONONOh ROV On [+ We \Ne, Moy
N —

W -

GENERAL REMARKS ON THE Mcnems MODEL

¥
7

Chapter v ROLLBACK RECOVERY SUBSYSTEM

, BACKGROUND

Goals - <
Approeach]
Assumptions ‘

GENERAL CONSIDERATIONS

Data Structures for Rollback Recovery
Physical blocks |

Device directory '
Rollback Recovery Subsystem
Physical implementation

Logical implementation

Comparison on the two
implementations

Time-Stamp and Free Page Management
Time Stamp

Free page management) ;

e

OVERVIEW OF RECOVERY MODULES ‘
VI ROLLBACK RECOVERY SUBSYSTEM MODULES

ROLLBACK CONTROL MODULES IN THE MCDBMS
DBMS Control

Start and Termination Control

Logical Rollback Control
STARTING MODULES (
tgrting of a Run Unit '

Starting of a DML gqﬁﬁand -

. DML COMMAND OPERATING MODULES’

‘DML Command Access

DML Command Update . !
Summary ‘

TERMINATION MODULES
+DML Command Termination
Run Unit Termination

LOGICAL ROLLBACK RECOVERY
DML Command Rollback - C

~

Run unit Rolback .
PHYSICAL ROLLBACK RECOVERY
Physical Rollback.Kecovery Control
Failure during Command Termination
Failure during Run Unit Termination

'y

[S

121

119

" 126,

26
127
128

131
131 -
131
134
139
140
14%

O

147

147
148

150 °

154
154

154

156
157

158,

158
159

160

160

161

162 -

+ 162

162

163

164
164
165

166

- 167

168
168

4

«

ot vty

PR

T~

Chapter VII' CONCLUSION . ‘ s

yo
, B
v :
e
©
¢ R . L .
v i
o R 1
t f v
- ’

s B
F S .

7

.4 Failure with Contents of Ma}n Membky Déhaged

'SUMMARY AND COMMENYS

ooy O
—~—3—33 o

.71 Summary ° oo

T2 Pros' and Cons

.7.3 Limitations "
'

Bibliography . _ - . o . :
Appendix A ’ .

AW

169
170
170

172
174

175

179"
186

» {,1"?'} t "
» ‘d“? | :
’l .
| f"
o
o] \\\
¥ -
f N
, » \\\
4
s - ' . "\

:
5 , .t
RN
4 -
e
, v
L}
N Ny
H
s
’
4
'
\
, . \ ~ t
&
'
0
\ B
- ‘
. .
.
.
\: il
! . e
: , LN fl
N v
- "
. ¢
! AN
.
€ ’ -
.
[!
i »

vii

LIST OF ABBREVIATIONS be

- . AFT active file table

; ' . o cDD command device directory ; . o, . ,
‘ \ CFSS | DML ooﬁmandrfree space stéék g
CLT currency location table // o >
— CMV cunulative modified valué array

'QODASYL programming language comittee on Data Systems
L Languages .

CPU central 'processing u?gt c‘
o * CRU . céurrent record or'tﬁé run unit . -
,%; ! ~ DBA ‘: _date’base administrator & k
|) DBMS data base management system :

fp§ﬂ36. DBMS controi“module

DB STATUS data base status reglster

! DBTG Data Base Task Group
% , | Y. DDL .. data definition language)
; bDLC Data Description Ladgﬁégg Committee
f DFD device file directory
; DHFD =~ device head file directory. . . \; ', ‘ i\i
; : . : \
; . *DIAM , data independence access model -
%i o lDML) déta‘manipqlat&on language \\\k S ’
§ N DSDL dafa storag; de$cription 1anguage ‘ ,‘) ‘,“\‘;v}
% H dtes - date and time a DML command starts‘
. dtm ~date and time modified N
dtrs date and time run unit starts L T T # ;
. . ELB ‘ - encoding levél buffer. |
' - HISR = head index ‘storage record ‘ ?' SR

oM ¢ st A -

S

2

170

ISR
‘LFS

LLB
LRBC

MCDBMS -

MV.
0s .

. PASR

PCLT -
PFS

“PRBC

CRCT

RDD

. RFSS
"RTD

SCT
SLB
SLR
SPARC

"STC:

WA

input/output

index storage record

logical file-system

location level buffer.

logical rollback control module

multilevel CODASYL DBMS
:modified value array |
%perating system -y

’ pointer array storage record

phisieal curfency loEationjtable

physical file system

physical rollback control module

record curggﬁcy table

run unit device directory
run unit. free space stack”
reéqrd type directory

set curréncy tablé
structural level buffer

structural level record .

Standard Planniﬁg and Requiremenfs Committee

startrand termination modules

v

N -
user wo¥king area)

I
/ e

~ .

” ® ¥ .
/./ up e
. ix . ?
v i
LIST OF FIGURES |
Fig. 2.1 The Codasyl Family : . o 9 :
Fig. 2.2 COBOL ‘JOD DML Statements 12.
Fig. 2.3 The 1978 CODASYL Data DeScription ’
Framework , i -

. i ’ ‘,/ e ,
Fig. 2.4 Multiprogramming linked #ersion of PHOLAS ¢ 14 %
Fig. 2 5 Multlprogrammlng linked version of PHOLAS) §

with shared code . 14 é
Flg. 2. 6 Multiprogrammlng indEpendent version of 16
PHOLAS | _ R [
s - R . i"
Fig. 2.7 Multitasklng 11nked version of PHOLAS 16 i
' 1
Fig. 2.8 IDS I page header record *//) 18 J ;
Fig. 2.9 Storage structﬁre of PHOLAS 21 |
.
Fig. 3.1 M flevel CODASYL DBMS Model(&MCDBMS) 39 §
Flg 3. Comparlson of ithe Level structure of DIAM 11 . ~ |
and 'ANSI/SPARC > - HB i
Fig. 3.3 Structure>of the data base kez ‘ ‘, 52 . .
Fig. 3.4 Structure of the storage data base key . \ 'SExL‘ '
L . -

Fig..3 5 A six level file system . -c:\ -”A‘sg

Fig. 4,1 Five cases to consider. for a storage record (

search in a page . = T4 ;
Fig. 4.2 Modules 'in the location level 79
Fig. 4.3 Convention for INSERTION optigns of a set :

pointer array - 86
Fig. u. u Encoding level storage records to’ implement -

N v a two level index- 90.
L

Fig. 4.5 Modules of the encoding-level " 93

IFig 4.6 Forbidden set relations -of the 'schema record

' : types " \ kk . 116
Fig. 4.7 Modules of 'sublevels 5 to 11 of the structural ”

level 1§8
\ [

: .
‘ .
a ' . N
o S . T -
. . . . P
.o) . ‘

v . -~ ' -

Eg
’
\
R o N ST L

X . - , g
. : . T ,] =
’ﬁ;a Fig. 4.8 Modules of sublevels 0 to 4 of the structura '
' . . level | . : 126
st {
y Fig. 5.1 An example of the first five physical .. o
4! blocks of a storage device W 133
Fig. 5.2 An example of the first five Llocks of.? \ .
- storage device zero 137
) ng.‘5.3 A device file directory as a binary, tree 141 E
" §ig. 5.4 General overview of the, rollback recovery .
’ system ~ 152
Fig. 6.1‘Interaqtion of ‘the DBMSC module with ;
r other modules - 156
" 'Fig. 6.2 Interaction of the SRC module)]
‘ o " other modules- ' - 157 «
Fig. 6.3 Interaction of the LRBC podule w1th . T
. .other modules 158 o ;
’ Y : ’ ' ' ' “
7. Fig. 6.8 DML command aocess and update 162 -~
Fig., 6.5 Modules’ called by the PRBC module . 167 g
Fig. 6.6 Modules of the rollback recovery subsystem 171 !
Fig. 6.7 Pptential 1nf1nit lo in the rollback R
. ‘recovery subsyste , 172
o |
‘ {//" R - "4\-
\. - . - ’
i
- - , .? A
. ’ \\.
- - ¢
u " ' » Nt . ‘
. . |
iy SR
? i S - . , ¥ . 1} '
vt < - i ° -

-y e o e W

3
Lr

-~
[SR]

R N e . -

]

A g eny ThE yme 7

R 2y

RS

. xi ° ‘ ' ,

LIST OF TABLES ‘

e 4

Tabld 3.1 COBOL*JGD DML stetements-implemented

. N P L
Tabie 3.2 COBOL' JOD DML Qt:;@mgnts not implemented
Table 3.3 Representatibn of the coded data type

Table 4.1 Possible ways to implement the set concept
v, . ,) v €

L a
.
)
< 3 . Iy
4
f
¥
L3
L}
1l *
A r
.
- -
P .
Q, R P
1] B
\ . . -
A
L4 1 4
-
' \\\
‘
\ \
3)
t »
" ¢
1
! 4 y v
-
3
' ‘ ¢, N
1 N -
1 "
R 3 . .
. - . .
' 2 ¢ .) *~
R)
Ay
‘ .1 .
. N .
. .
v RY \ v
B
. .
¢ .
By ow
\ .
'
o " > v
=y
& t
® . \
e aen nn e e . RN C e
N L e __\: i Y

46

u7
53
.97

'™

#u,

O 5

LY

.

- topie. 4 i \ ‘ - ‘

' a

Chabtef I
INTRODUCTION

4 . ’ L
Data base technology has advanced by leaps and bounds: in

[y

,thé last decade.‘_ A signifipant number of research papefs

. have beeﬁ published on data bases. The industrial world is

not slow in their ‘implementation. However, one area in data
. kg

: ¥
base technology is still lagging behind. This area 'is the

[RN

recovety of data bases.

. . “ .
Recovery of data bases is a diffigult subject for

research. The unpredictable mnature of errors contributes “to

the \difficulty; "Rapid technological 4&dvances in other -

disciplines of data bases leave recovery - far behind’ the
frontier of dafa base research. Aﬁy research to push
recovery a step further is still way beybnd the current DBMS

s L3

technélogies and may not be abplicaﬁie“to currenf industrial

DBMS. This alone would discourage researchers to venture '

~into this field. This thesis is intended to improve some of

al

thé recovery techniques as applied to CODASYL data bases.

‘This may Serve as an invitation for further research on the

~

H

1.1 DIFFERENCES 'BETWEEN FILE AND DATA éASE RECOVERY

Each file is an isolated collection’of data. There 1is

. 'no relation between files in general. If a file is damaged

"due to a failure, reloading it from a dump of an earlier

version.would not affect the other fileés in a filing system.,

. .
s P S G B ATkt et b i 24 ik S8 B A S

i e b

"file. However, a record in file A and

.serves as a point 1n. time

E]

However, the case is much more complicéfed for data bases.
Assuming that the data base is stored iﬁ the form of files,
the data base filés\are interrelqted;-~Damagg‘to a'data base
file /é may 'rgdhire»réloagihg of an earlier version of the
another record in
file B may be related'to each ofher. Such a relétibn may

not have been established in thezeaflier version of fil§ A

but is 1indfcated. by the present version of file B. °

‘Inconsistency arises as a result of replacing file A'by its

earlier version alone.

.
n = 43
. d t

Therefore' the data base is seen as an integrated whole.

This is eppeciélly true for the CODASYL tybe of‘network data

‘bases where a relation can exist between®any two entitieé,

‘ If a portion of the data basé requirés rollback due to

. 3

damage, the entire data base has to be restored to a certain
consistent point in time. A checkpoint for ‘a data Sase

for ,rollback recovery.

' Unfortunately such recovery procedﬁre takes intolerably long

s i ot gt

time for most users and applications.

A busy DBMS with concurrent ?un'uﬁits or application

progfﬁms amplifies the diff}culty in recovery. Data

modified by a run unit may be used by othgr run units as a

basis,foF furfher modification of other ‘parts of the data

~ ~

base. Run units are no longer isolated units. They can be6 ‘

cdnsideréd as interacting with each other via the data base.

’

The well-know®? domino efffect may use up all the recovery.

£ bl s e

L.

.G

- points of the ﬁnteracting run units (Rand751]. if:a DBMS ‘is
operatiﬁg around the clock with concurrent run units, it may

be hard to establish a checkpoint common to all the run

®
LS

units.

. - ' i {
1.2 CODASYL DATA BASE RECOVERY

»

-

According to Datel , 'a transaction is definéd .as a unit

at

of work that is atomic from the point of view -of the
. aenterprise'. A bank clerk transferring an amounf X from
L | account A to accouqt B may ehte; the command |
| TRANSFER X=100;00, A=123456, B=65u4321. '
.orlthe commands ' |

\ WITHDRAW X=100.00, A=123456.

j - . DEPOSIT X=100.00, B=654321.."

s ‘ the.second one is regarded as two Aistinct transactiéns. If
the. sum has beéé‘;ubtracted from account A but not added to
'accpumt,B because of an grrof 'during execution, the data
base is‘“regérdeq as inconsisten£ for the former option but

is otherwise consistent for the latter.option.

:Tﬁe above analysis shows the similarity of the first

} : command. The first option. invalves modification of more

.
v .

than one account. Either the operation is to be pefformed
. \ ’

1 Date, C.J. An Introduction to -Database Systems, (2nd
Ed.). ‘Addison Wesley, USA, 1977, p.400. @

The first option is-regarded as an’atomic transaction while

6ption with ‘a CODASYL " Data Manipulation Languagé (DML)’

pro

o

PR
e

N

on both accounts or none-df them should be affected. By éhé‘ .

. r . \
same token a DML ¢omgandfmay imvolve modification of moré
\ ‘ ‘

than one record. Either the records‘infolved‘ aré"mod{figd.

or none of them should be affépted. \ S '

:
4

uf * The smallest unit of recovery is inherent in the bML

. specificatiorf. ‘Réllback of a DML command “yequiﬁes Yundoing

14

of all the work done prior to the error condition throughout

2

the execution of the DML command. The recovery must adhere
S -)

to thié'requirement.' S x

t
»

1.3 THE SCOPE OF THIS THESIS

%
[y

Basically two main types of damagg tosthe data base

-

could oEcur. . The, first type 1is . physical démage, for

example, a -disk head crash may cause‘a number of tracks Eo’

be inaccessible. The second is the erronous modification of
the data base due to bugs in the user program, the DBMS or
the Operatiqf §ystem‘(OS).

This thésis assumes that gene}al recovery téchniques aré
availéble. These techniques are deséribed in chapter: two.
Within tﬁé vast possibilities of damage and repair, tﬁis
thgsis aims at providing DML command rollback and run unit

rollback. If a DML command is wunable to proceed after

changing part of the data base; a command rollback is

needéd. If a run unit is unable to continue even gﬁ%er .a

.. command rollback, a run unit rollback is requirii;/fzpis

- \thesis also assumes a large comphter system with ' a 'general

. \ . , =

.

[

e S N b e n e i s s ot e L b i R AR e

. .
o -

.~

- , ‘ , N
purpose , operating system. In order to avoid tackling the

domino éffecp, a single user DBMS is assumed.

l.

The goal of this thesis is twofold. First, a multilevel

type CODASYL . DBMS is to be designed. Second, a rollback -

'recovgry system is to be constructed tﬁ improv; phe ﬁecpvef&
‘time and reliability of the two rollback options. The
rollback recovery system is produced by a combination of the
. careful 'replacé@ent and the differéntial- f?le fecovery

techniques,

L .
) o

1

Chapter 2 describes the background Waterial in two main
. N / o '
"parts, namely, a discussion on CODASYL DBMS and the recovery

.. Eechniqﬁes available to data bases. A general overview: of

1 7

the dbsigﬁed model is given in chaptgr 3. The multilevel
model is Qe§cribed in terms‘of the functions performeq by
its levéls. * Based oﬁ’ the functional deécription of the
model in the previous chapter, chapter 4 gives a ‘pa;ticular
implementational design of the model. The data structures
'and the modules required are listed. A rollback recovery
subéystem for fast DML command rollback and run ‘unit
rollbaék-is deSc;ibed‘in chapteér 5. Chapter ,6‘ provides a
fbncy}onal description . of the modules of the -rollback
recovery subsystem. Chapter 7 gives the .conclusion.
Appendix ,A contains a collection of tables which describés
the moduies implementing tpe proposed multilevel CObASYL
DBMS. . L . '

L

-

T

[oo s I el e e

0

ST e ww .

s s e

ol

. . .6 v . \
a— R . ot
) ‘ ‘ M . ! ', ’ K L »; 7)
VA ¢ Chapter II & . ° R
‘ : " BACKGROUND o .
' . = ey ‘ IS s - ‘\D\ N

This chapter first traces the,evblutfon of CODASYL:DBMS.

- . 2, : _\) “

The characteristics of shch “DBMS. afe described briefly,
followed by a survey of-‘the implgménfa;ion of. different

industrial systems.i After which. the recovery techniques

available to DBMS, iﬁclpding tebhniqueé borrowed from file

recovery and operéting' system recovery, are.summarized.
o ' ' 5 ¢ .
Finally, the recovery techniques . available in some

weilaknowp QdDA§YL DBMS are listed.

2.1 THE DEVELOPMENT OF CODASYL DBMS

Y

~

t

This section traces the development of . DBMS'™ with

/

_particuar emphasis on CODASYL DBMS. The .evolution of .DBMS

! ' 5
may - be royghly divided into thrfee overlapping stages
;

[(Fry761,; The first stage is the early developments prior to

1964. " The second stage is the evolution of families during

.

‘the period 1964 to‘ 1968.. The third stage ié the

vendor/CODASYL developments from 1§68'to thefprgsent.

The drive for' the development of DBMS in the first stage

comes mainly fyém users in the government, espeqially in the -

military and intelligence areas.. These isolated protofype

deveiopﬁents provided the 6 starting points for several

significant DBMS families.

S ki B ks

P "

»-

LY

P
§
13
I
3
5

b
¥
1
:

2 In the second stage isolated deyelopments féded away and

fulh;sdale'DBMS families . appeared. A family may AGRES

\

“organizational. boundaries because of the communication of

ideas. The.most signif{cant'ﬁamilies are the MITRE/Auerbéoh

family, the Postley/MARK IV family, the Bachmén/IDS,family

and the Formatted File/GIS family; The Integrated Data

Store (IDS} was developed by Bachman and his colleagues at

the Ceneral Electric Company in .1964. It combined random

access. storage technology with highly procedural languages

to providé a network data model. It has evolved into a new

version IDS-II marketted by ‘Woneywell in 1975. In 1966 Dodd

e 1

and his colleague's at General Motors Research developed APL

(Associated PL/I). This development is similar to IDS. It

provided data management functions for a computer-aided

environment. It also separates logical relagi@ﬁships o(/l‘w

2y

owner and member groups from their physical implementation.

The third stage moves from family-oriented activities to,
proprietary vendor develaqpment. Advances: are Kkept as

industrial secret. Literatures often confine themselves

with" the méﬁhemetical and theoreﬁ%cal aspects.of DBMS only.

Three major families appear in thistperiod: the CODASYL/DBTG
y

family for network data bases, the IMS family for

hierarchial data bases and the Inverted File family. The

Inverted File family is represented by SystemAZOOO of MRI

Corporation. _

€
B

e ..«%»-...wm&m.,“ RURS

-~

PR

PIVEEN

T

" (CODASYL) Started a task group to extend COBOL to ' handle ‘ ’

; teghhqlogy [Tayl761]. Later, 'a Data Description Languége_

Fd

i AR T

:The leftmost margin o} numbers denotes the yea;_ Next to

Having IDS and APL 'as its 4'stanting point, u the

Programming Language Committee on' bata Systems Languages

data bases. The first proposal was made by the Data Base
Tsak Group (DBTG) in 1969. A subsequent 'report with
improvements was .buplished« in 1971 [DBTG71]. This report

constitutes a landhark in. the development ‘of data base

Committee (DDLC) was formed to deal extensively with the .

N
3 .
data desecription. . The' DBTG evolved into .the data Base
. 4l h N .

Language Task Group (DBLTG) to deal Snlyvxwith " COBOL

‘

extensions. The DDLC published a report in 1978 [CODA78].

A Data Storagé Description Languéée (DSDL) is ‘al'so included-
: o B ‘ i
i™ the report. A number . of authors [Mano781, [0Con78],

[Stac78], [Toze78) welcqme the DSDL with great appreciation. e *

The develoﬁment of the.CODASYL family is shown in Fig. 2.1. ° T “

this margin as well as the rightmost matgin are the company oo

- .‘\...m..m,:.,c.-:m-w [

names which marketted the models shown in the middle of the S

figure. However, when the .name ' 'CODASYL' " appears, the -
middle part of the figure represents CODASYL specifications

or task groups. All entries on the s;he row belongs to the

’
A

same year.

\) —~

1964

1966

1968

1969"

1970

1971

12

1973

1973

1975

r

1976

1978

. 9
GENERAL 1IDS)
ELECTRIC ke
!
GENERAL - APL ‘
MOTORS
CODASYL - }
\ // /:////’/(%;
CODASYL - ' DBTG .SPECIFICATION :
B. F. 1DHs” DMS
'GOODRICH/ (IBM' (SIGMA
CULLIANE SYSTEM 5,7,9)
| 360) f :
CODASYL . DBTG 1971 \ DMS 1700
SPECIFICATION \ (UNIVAC
1100)
CODASYL . “DBLC' 1973 EDMS
’ SPECIFICATION (SIGMA
. ~ 75,7,9)
PHILLIPS PHOLAS
‘ ‘ ‘ (P 1000)
HONEYWELL | IDS-II | DBLTG 1975
. SPECIFICATION
B. F. IDMS-II COBOL 1976
GOODRICH/ (PDP SPECIFICATION -
CULLIANE 11/45) .
CODASYL DDLC 1978
SPECIFICATION
Fig. 2.1 The CODASYL Family

A

/ s o
LIST PROCESSING
TASK GROUP

XEROX DATA

SYSTEMS

UNIVAC

XEROX DATA
/ SYSTEMS

PHILEIPQ‘

 CODASYL

CODASYL

BN

'2.2 THE CHARACTERISTICS OF CODASYL DBMS

. 10 . L N

A number of papers [Tayl76]“ and ‘téxtbboks ‘[Date77],
[Kroe77], [Mart77], [Olle781, [Spro761], [Tsic77], (Ul11m80]

, , . , \ ‘ :
discuss tbe%gharacteqistiCSvof the CODASYL prdposal. The
A »

majority ?{;fauthors Jbase their description on the DBTG's-
kil S e

1971 report [DBTG71]. Among them Olle's textbook provideé a’

detailed tutorial on the subject. The DDLC 1978

" specification [CODA78] is the most recent publication for

the DDL proposal. Many concepts in the 1971 proposal are
retained in this specification. ~Manola ([Mano78] gives a

S[Qetailed discussion on the transition of the 1971 report to

the 1978 RDL proposal.

-

-~
” f » L)
ﬁ-CODASYL DBMﬁ.tontaiqs five main components as fbllows:
1. Schema Data DeScription Laiguage (DﬁL),
2. Subschema Data Description Language,
3. bata'Manipulation Language (DML),
4., Data Base Control System (DBCS),

. 5. Storage Schema - Data Description Language (DSDL),

formerly known as Device Media /control Language (DMCL),

? .
e

The schema DDL is wused to describe a data base

independent of the programming' languages wused for the

various applications’ to access the data base. Part or all

of the data base which 15’6f‘interest to a user is available

v

to him vié the subschema DDL. There is only one §cheﬁa for

a data base buﬁ/ﬁhere'can be many subschemas for different

’
'
b

i -
R B

»

-

R

users .accessing different parts of the data base. The DML

is the lapguage-empioyéd by a user to access an@l update the

*~ < data base. The storage schema DSDL is a storage device and
Jperating system independent language to describe a storage

- environment for the data_ .base and mapS the schema to the
storage environment. s

-

v

[y

Apart from the familiar COBOL terms of dhta item, data

R N
aggregate and record, the .schema DDL also contains the

concept of set. 'A set represents a named 1 to N link among

and one or more, member record types. A set can beﬂ ordered

. .. under plfferenggopt;ons. In otQ;r Wwords, the'memﬁer records
"within a given 'set occurrence have predetermined method of

j\ insertion into the set. K Each member record of a: set type
has a storage class ahd a removal class for insertion or

removal of a member record into ok from a sey/occurrence.

‘ The set selectﬁon criteria determines which oocurrence of.

the owner record type‘is to be the owner of a ‘member record
Each run unit has associated with it a set of currency

“indicators for the current set type and the current record

|

type. These ihd!cators play an ximportant role in DML

.

execut1on, -set selectioen and set insertion.

The data base 1is subdivided'info smaller~uniﬁs called

.,areas of realms. However, the CODASYL proposal doe¥ -not
1Y <
specify the way to subdivide the data base.
' TN

ma v Y e € e A Ao st s ot

record types. & set type consists of one owner reoord fype'

g e 8

S R e e 8

S Record only ' .
s |mmem——— il ——————— - o et e e v - - 1=

5 Record and item | GET, MODIFY 3
g"‘"""[IEE;;; """" ?'EB&&EE%’BE&EB&&EE%“'@
§'E;FF;;;;"E;EI;;ZS;;'? """"" ACCEPT
i Conditional T T T
N
i Someurrency 1 FREE,KEEP, REMONITOR i

; Fmmm - ————— +
. o, o /0 Subéchema 14
N [A s o e o i e +
3 \I P /)
%——-———--\—-’7-‘--4- A —— -+/ . e
ftorage. Schema }-->}"Schema | . . " .
T kit 3 W . !
\

\ ;-r--—--—----n{ln
N v, \{* Subschema n |
E R Y Sttt

. .

2.3 THE IMPLEMENTATION OF CODASYL DBMS

o)

Fig.” 2.2 shows the DML statements of COBOL 1976. These

smatements«manipulate . the data base records. The -.User
Horking Area (UWA) is a buffer for loading or unloadzng data

for the rug/,unlt. The 1978 CODASYL data description
framework ié‘shouﬂ in Fig; 2.3.

o4 « .
¢ N » . A

-

Due - to : industrial secrecy, there are few ﬁaper&;

. : \
describing: the physfcal implementation-of a data base based

on CQDASYU“‘ .Ahhendix A shows .the §ystems implementing.

. "

CODASYL type'Qaﬁa bases. Systems that img%ement CODASYL

- DBMS are’/ibaged on the DBTG 1971 report. The DBTG 1971 DDL

x . ;‘v K ~v

and DML,languages are used the ?ollowing descr1pt1on.:

The 1mp1ementat10n of 6/5ASXL proposals-will be dlscussed

under .the followxng sections: relatlon of the DBMS wlth the

and’ the USer .working area. SRR R

+” - f
2 v .
- 9 l
*

2.3.1 Relation of tHe DBMS with Applicatlon Pgogréms and

t e Operating System : -

4 ' ¢
] . <y

Schen .[Sche?ﬂ], gives a comprehensive' view on the.
relation i DBMS with application programs and the 0S. He

) suggested several possibilities as discussed below.

- .

2

appllcatlon programs and the 08, the data base, the schema‘

Case|’one. Here the application to which the DBMS is’

- ” t
linked Ean\“pe .an ~asychronous ggocess (letiﬁtasking).

L)

. -
However the host language has to support.the mp}%i;)asking‘

ta

[EETSwo -

e AaBesn

t
4
~
]
S~
[g
\Ib -

3

A\

s
TR RTNT F P v et

1
- y : ’ -
VI P
o R R -

k/ Fig.

: f
v i
g
, B {
.. . 14 | i
’ ’ . ‘ 2 | ;
' * Qa .l r)
and the data communigation facilities. This" is supported by
» . '_ . ' . . .
the multiprogramming version of.PHOLAS [Douq?S]h in which a
copy of the system is 1link-edited 40 each user program
‘ L . : :
requiring it. Fig. 2.4 shows the layout. Only the i
v ‘ t
EXCLUSIVE mode is allowed for the READY statement. IDS-I '3
[Bibb751], [John7§] alsonnpeds a separate non-sharable set of
ldé routines to be loaded wizh each program acpessing‘ the \
data base. Thg high cér% overhead is compensated By‘the
powérful CDC 6000 with fast roll-in and roll-out feature.
 Fmmmmee2d dmeneeeo + l ’ +;-r--——+ +--;-—--+
~{ user | | wuser | "} user | | |user !
iprogram{ |program| . | progtram| |program|
M| 1]] v i [} 1 4
| m—m———— jmm————— | m——e—mme——i | Bt [}
{ouwa)1 uwA | POUWA L uWA) :
|] 1 | I ‘o) t . . .
l"l'-"‘-"'-l [Batateniaiasieing i . jmm——_———— | e - N . B
‘I DBH i, } DBH | * ' 1BUFFERS! !BUFFERS!’ . P
“:.n..-._-_:...; | UL B ' ' +-‘:‘.-"IE,CI??+ mm———— ,
{BUFFERS| |BUFFERS] L0 ' o ‘ .
B DL Tl N N e it &) =) :
.) s bdnbuiial-tatndelnddutadabebadete —-+ i :
t _ "+ DBH: data | . DBH . . .
T S T LT Teis base +-w---e-o e ———— +
" | OPERATING SYSTEM | handler
b ——————e————— ——— it
X : T 4 e et + "
f $ P " | OPERATING SYSTEM ! ~N
- e i - - - . : L T R P c
= DATA BASE S - . - '
L iatainiebiebaiieieiiiriidebt S .
') . : . b L e Rt et +
o - : . v DATA BASE, - |
* ' . e Lt , +_-._..---_-_-,‘_d.--__--+
- .
.) ' 5 2 L. . .
Fig. R.4 Multiprogramming . »=Fig. 2.5 Multiprogramming
., .linked”version of PHOLAS | linked version of PHOLAS .

») : with shared gode - .

2.5 shows an* improved version of the first casew

'lThe mulﬁiprogramming 0S supports fheisharéd@@bde of the DBMS

4 . . . \ ,
routines. A number of applications may run’. simultaneously, :

.
- Coe ‘., o N
1] . N Ll : o
12 N . . v
.
.

£

o o e,

15

each of them hgving begn lfnkgd to éhei; own DBMS logically.
Actually the DBMS ‘is breéent ohly once in the core. The
use? programs are unaware of each other so that conourrency
problemg do arise. Two fﬁn units may update the same data
base record but the 0OS is unaware of the situation. \PHOﬁAé
also supﬁorts this case. The data base handler (DBH) ‘is a

Shared segment. ‘The 05 provides the segmentation.

Case 2. In this method the DBMS acts as an independent

Job under -the 0S. The concurrency problems can be solved fn/

this case by the 0S which provides locks for data base

recordé. Unfortunatély,'the transfer of control through the

+..0S and the amount of overhead involved is quite significant.

The control can be mainﬁained in three levels:

1) the 0S8 qpntrols ﬁhe programs running under it. The DBMS

acts as an application program as viewed from the 0S. This

choice encounters ' communication problems. No existing

system is known to implement its DBMS in this way.

~2) The DBMS controls the application programs running under

it "This is supported by the full central data base handler

version of PHOLAS. Several user programs interface with the

e L

. ' - 1
the central version option of IDMS [Hack75], [Peéck75] also

DBH. - The DBH has its own buffer pools and accesseés the data

base via the 03, as shown in Fig. .2.6. Apart from PHOLAS,

supports this option. The centralized access moniter
program (CAMP)- threads ‘requests to IDMS ' and rééulates -the

use bf the data base resources in the multiuser environment.

')

AT R i vy e e S s Y Norn g R e ks e A &

. e e

, 16
(tm—m———— + pemrme——- + e Tap y ——————+
| user | | user | H APM Main Task !
) tprogram! |program! e et '
' | 1 R 2 ' i H i | i
T S it I i parallel subtasks i
i UWA | UWA] i i 1 i i
~ tm————- + H-repe-m+ R ettt !
: “\N z/’ « | UWA | UWA | UWA | UWA |
| =————— mmmmem e n————— i
! e + H UWA '
“ ! DBH ! R 1
R ' ! BUFFERS i
| - BUFFERS. | m——— ——————————— ———
- —— +
. . L R et T +
FONIISSISSI SR + ! OPERATING SYSTEM |
| OPERATING SYSTEM, ! o ———————————— +
tomm e ——— ~—— ' I
b I +------;---e----7---+
tmmmmmm Y o + ! DATA BASE !
! BATA BASE H P e mmmm———————————
i hiniedainbainbindedeieinthebedd Tt
\' . . Fig. 2,6 Multiprogramming Fig. 2.7 Multitasking
independent version of linked version of PHOLAS
PHOLAS : o

p .
"3) The application controls taské if the 5synchron6us

processiqg technique is employed. The PHOLAS multitasking

linked version supports this approach. This multitasking is

not implemented at the operating system level but at the -

user ‘- program levél. A 'special package known as the
asynchronous\procesé monitor (APM) is linked upon request by
to the program.

the compiler This will pefform subtasking

within the program, as shown in Fig. 2.7. These subtasks

within a single module are inyisible to the 0S. .Because the

\ datra base handIEr is 1linked to the program, the COBOL

fl

compiler automqtically brovides. a UWA for each ‘subtask.

Each subtask can be considered és a run unit in the CODAS¥L

e

P

L ian St ot S S 4% e

proposals.

Case 3. Here} the DBMS is an integrated part of the,OS.

Up to the present, no 03 in wuse- can achieve this stage

becadse of the complexity of the problem involved.

Case U, In this scheme, the. DBMS is a back-end’

3

'combuter.~ This concept is éxplained in deatil by éanad%yaet
al [Cana?éj ‘and -is implemented . aE‘XDMS which stands for
Experimental Data Manégement system. .The/ DBMS ° is
. ‘implemented on‘a separate machine which has exclusive’ access
to the déta base. The back-end computer, as opposea to the
front-qnd computer, serves as an interface between the hoét
. ’ -

computer and its data baée. Canaday's paper also discusses
. £he~pfos and cons of this approach. .
P | :
2.3.2 - The Data Base .

Within the data base three .constructs can be
distingﬁished, Aamely ,reaim (area in ' the DBTG 1971

language), record and set.
2.3.2.1 Realm or area ‘ -

Realms ,are subdivisions of the . data pase. They are
requi}ed to be 1logically and phusically\’nonfoverlapping
compartments. Areas™ are Jguaily divided into a number of
physicél plocés or pages. In IDS-I [John75] a data base L&s
divided ~ jnto subfiles.. These subfiles are physical

subdivisions of storage devices. .

. .
.
. . . v
.
' v
‘

-,

e e st a0

PR,

18°

-

.+« IDS-I eﬁploys a paging technique for all aphysi??l I/0

and iogical maintenanee. - The 1IDS, program executing'the
STORE'commapd does not cause the record (that i§, page) to
be written back to the data base. A 'must write! switeh is
set in the page. Each page qf‘the data base contains a pagi
headef as shown in Fig.. 2.é. “.A utility maps the sfofage
devices into se@uéﬂtially numbered bages. i

. G D D D - —— D - — it = o > —— - -+

+ .
N { PAGE |RECORD| CALC}EMPTY] MUST }RECORD!
' +=>1 o 'CHAIN!SPACE! WRITE! 1.D. !
i\ ~ INUMBER{ TYPE | NEXT|{COUNT{SWITCH| FLAGS|
Ty ey Y +
1 iy
! .
{
i : . .
| S o
b —— 170177777 i o\ g ! ‘
] e e o e e et~ s = o = e o = o ! . N .
:- 1 ’] [} :
[} » |] [} i
[}]
o e T T S e e e e s e~]
' ! g |
. il ~ b,
H) AVAILABLE P !
: 5 SPACE x
. #mmme e e e c e e e m e e ——————— +
’ Fig. 2.8 1IDS-I page header record : ‘ﬁ”‘

The DMS-1100 [MagD75], [Robi75] .implemented on UNIVAC
1100 divides the data base into»;ﬁyeral named areas. Each
afea contaiﬁs a number~of‘paées.m, jfferent areas eaéﬁ have
different pagé'sizes and different number of pages. FORDATA
[Mack?7] implemepfed'on cDC 3600 and GPLAN/DMS (HaseT#7 also
use a paging scheme. \FORDATA contains map pages to acchﬁt

for the availability of data pages and whether & page has

been referenced previously. -

\
*

2.3.2.2 Record

o .

e

19

The CODASYL DBTG g;veé a ﬁreci;; specification for’a
record. The oniyﬁ problem 1is ' with the dgté base key.
Reorgdnization renders it {mpossible to assign the device
address as the data Base'key. Thé‘data base key is usually

implemented in three ways. The first method divides the

data base key into two main parts. The first part contains -

the record tybe identification.® The second part contains a
Swmber sequentially assigned By the DBMS per récord type. A
transformation table maps’' the value into the physical

address.

° ¥
[4

The second method used‘in %DS-I'assigni a line number to .

|) '
\Sifry record stored within a page. This line number is a

L

relative address with respebt to the page. ' A page .number

t

together with a line number uniquely identifies each storage

record withfn the data base. . The . combined values

7

constitutes a data base key. GPLAN/DMS also employs a

similar scheme which has a page number and an offset in
page. ’

'The third method is used by PHOLAS. The data base key

has~both—a }ogical and a physical part;. Tge physigal part

) alwa&s enables the file contaning the reggrd to be located.

The phjsical ad?reéa can b; fand via the a:"cviat,a base key

translation. table uéing thé’}ogical part. Apart from the

data base key, a- record can also be located by a seafch key

a‘in SIBAS [Lie75]. The search keys are index keys. They can’

be elementary or group data items. o 4 ' -

- s i

20

2.3.2.3.Set ‘ | - ,
o ‘ . | N o
Schenk suggests a better defifiition” of a sét as ‘'an

From the point of view of thsical implementalion,u;this

7 definition is quité'appropriate.) N .

- -’
¢

to the sequence and-level of indirection as’ shown in Fig.

'5.9 Trom D. Severarnice's thesis, The sequence "can be,
physical ;equential {PHS) or pointer sequéﬁﬁial (PTS).”- Tﬂe
user datalxcan be data direct (DD) or dat;'indifecf {bI).
The combinations of tﬂese mwake ﬁp techniqUés ‘}or. daﬁa '

. Sy o

storage in sets supported by PHOLAS,. O o

s

Bachman [Bach74] 1listed nine basic forms of set

implementation based on fourteen different set mantpulation
functicons. They aréqwginglé' level recg£8 frray,‘multiple
levél record ;rray,rpéinter‘aéray, booieah array (prohibit
orde;ing of S{t members), packed boolegn a}ray, list,'cha;n
or ring, binary tree and phantom. Bachman also gives a
table of bomparison for the performanéé characteristjcs‘of
these ninev basic forms. The nine basic forms can Be

- ¢

combined to form further structures for set implementation.

3 ™

[v3

Each record in GPLAN/DMS contains three pointer fieids,
‘previous?, “owner' and 'hegt' for member records, and
- 'first*, 'last', ‘'number' .(of members) for owner records.

“« , <
Py N -

access path through a number-of related records® [Sche?Nl.‘

‘Qbuque [Douq75] presents four basic primitives relating ,

i e e -

LG

[PV

[AS

i bk
PRV, " . B ver L -

—_

”

, 21 ‘
\)
+ra’ ------ + dmmeeemeed o
L ipk— \p+—> PTS/DD chain-
e ety _
o ————— - —— + Lo) o '
' A PHS/DD 1list y
+ _____________ + N . . . !
tomm—— + l ‘
n . ipipipl '

. . f L fmema- . '
4 ' .
s " \ - A
e ————— + - - - ,

S ! ! - ~ PHS/DI -pointer array
o ——— $ommmm—— + : : »
b T T

) ;PPN pipi—, L
rﬂw ‘ 4o+ tr-—t a ‘
® . ’ : " , T
’ | temm——— + ~+—-—JL-+ ' A ‘

]

I

: } PTS/DI nof useful
,//'/\ ,“) . , ‘\ ’
P -\poinbep ‘ . e

Fig. 2.9 Storage structure of PHOLAS

'The pointers are all data base keys. - The IDS-I chain is

Sy | .] .
ronly a -oné way chain. User of IDS-I and DMS 1100 can

specifyvlogically related records to cluster in the same or

‘ <]

ad joining pages.

Taylor [Tayl75] investigatéd three methods of

implementing dynamic pointer arrays.

™

2,3.3 The Schema.

;

The information describing wuser, data and storage

structires of the data base has to be interrogated

frequently at Eun time.” The lefficienéy of schema and °

.subschema storage is very importaht. . The schema oOf
. ;

GPLAN/DMS contains two tables generated by the DDL analyzer.

”
[.. S
.

~ — i ay

L Ty ——

- © 22

L : “
The record table contains. a group of concise record
q '

descriptions. The system also:incorporates the gurrency of
the record ‘lgpes into this table. These’ currencies aré the
only value that changes in this table during execution time.
The sét table ca?taink a group of set typé'Qgscriptions;

The current owner pointer and the current member pointer is

present in the .table for each set type. The schema is

S

stored in core during exectuion time. ¥

In FORDATA the schema is represented as a pollection of
records stored 1in area zero. It is §pored in the same way
as the'rest~of,ﬁhe data base. The schema 1is organized 1in

2 . .
the form of sets and records. However, since the schema is

a collection of records in an area, it may be 5wapped to the

2

backing store. It also incurs overhead bacause the §chem%

L]

contains currency indicators which have to be ungfted often.

2.3.4 The User Working Area (UWA) f

The UWA is a loading and unloading zone. This .is the
place whére data is transforﬁed'frbm the DBMS as a result of
program call. 5ata to be delivered to the DBMS is also
placed in the region. The UWA is set up for the subschema.

|
Locations in the‘UWK%are assigned to every data item that is

included in the subschema. ' \
\J

- Scheck suggests two methods of .implementation of the -

‘UNA. The static épprqéch determines the layout ofv the UWA

=

at subschema compile time. The disadvantage of - this

. e R

——ra e 2y

S ten "o e o b e

hr W

e e

L

(B,

»
Ve,

‘apprgach{is the possible waste of core space because not all
record areas are always required. -Moreover, a change in thé

subschema will require recompilatidn‘and relinking. e

~.

Thé dynamic approaoh‘dgterﬁines tﬁe layout of the UWA at.$

"rﬁn - time. ~ The édd}gss for a record to be delivered or
obtained by the DﬂMS is one of thetbarameters passed to the

. DBMS. The space’ allocatign ‘for the UWA is the
responsibility of the DBMS from 'the sStaft to:the end of a

DMﬁ‘command.

J

. . . | -~) : Y
2.4 DATA BASE RECOVERY . '

Recovery techniques are used to restore a system to a
usable stéﬁe. Recovéry data are redundant data maintaiﬁed
£ make‘rgcovery pos;ible. A recovery technique structures, .
; ganizes and manipulates data structures and recovery data

td make recovery Qossible. A failure is an event which

v

' causes the system not to perform 'aqdording to the

e

specifications. Failures can be caused by hardware faults,

software faults or‘human errors. The aim of recovery is’ to

restore the data baseh into a consistent state. ' The

consistent state consists of no spurious data,.qlthough some
" information may have been loét‘ -

2.&.1 Theory

[I !

Bjork and Davies have investigaped the theoretical

N ’ . ("
_ -aspects of data base recovery. They have worked out the

-

7

P

o et 8 St SR 5 Gl b s e e %
~ a—

concept of commitment . and Ephgre of éontrol {Bjor731,
\[Da;i73].‘ Commitment refers to the- guarantee that the
information previously(provided will ‘be available again,
unmodified. If a page is to be-updated, committing the page
to. modificatién requifes access to the original page if‘
tﬁe}é is a féilure during update, A sphere of control is ‘a
bound within: which a process can have'ekqlusiv; use of
information. It 1sjsim11ar to the criticalu rggion ‘bounded <
by thé P and . V operations of a sehaphore‘in an'operating
system. Hierarchial spheqes of control which fesﬁlt in
hierarchial recovery are also . discussed. fhe

characteristiecs of .classical - batch, multi-threa¢ . and -

interactive processing pertingnf to recovery and iﬁtegrity

t
N
.

are also surveyed.

2.4.2 File Recovery

-

A Bnumber of jhuthors [Dave77], .[EDP761, [InfoT71,
‘ [Verh78] have provided surveys of the literature on recovery

of data bases. Some of the techniques applied In file

recovery can be used in the recovery'of data bases. Drak
[Drak71] and Gibbons [Gibb76] give a comprehensive.
discussion of file recovery techniques..nOppenheimer and .
Clancy [0ppe68) survey thg technique for fi}e protection énd
recovery ”from hardwére failures in a nmultiaccess,
‘multiprogramming, single processor system. Smith and Holden
[SmitT72] 1nvestigated' several médels t6 compare 'I/0 and

recovery overhgad in file recovery. “Johnston [JohnT761]

v -

P
¢

kY

B w e

iyt T s

PROUE VPR

s ne,

) _ B 25 . .

‘////i/;;ve case studies. The Infotech report [Info76] reviews the
i . | ~

performance and‘reliability\trade—offs for various recovery

¥ “

techniques used in a number of on-line-systems.

\ .
-~ 2.4.3 Salvation Program T o '

5

A salvationiprpgram is used after a crash to restore the

, data base to some consistent stake. It sacrifices déletioﬁ £
of files or data for consistency. Th¥ HIVE system use’
.gglvation prog}gm for' recovery., ° Lo;kemann and- thtséﬁ
[Lock68] suggest a salvation program which provides recovery
‘of the contents of a volume on an IBM 2311 disk ' drive in
Ilésé‘t h one minute. Daley and Neumann [Dale65] sugée§t an

\ . oo , ,
" on-line storage procedure for mild failures. The procedure

v

-~ reads through directoriés and séoraée assigpmént tables to
information by maintaining two directory entries pointingdio
evef& file. Fraser [Fras69] mentipns af start-up procedﬁre

;forl the *Cambr{dge fil%ng system. The procedure is used ét
the start of-the.day'and after an error to ﬁake a thoFough

o consistency cleck of the file directories” and other
administrative data. Erronous file and fiié directories are

-, deleted. Once consistency has been achieved, the necessary

recovery procedures are invoked. The Multics system.

[Ster74] has a salvagﬁhg program which, apart from the above

.

, ! .
- sityation. : K coE

delete all erronous files and correct inconsistent L

_mentioned functions, also notifies the' users of the ~ ‘:

»

2.4.4 Dumping . ‘

-

)

. Incremental dumping involves the copying of updated

files onto ‘archival storége after a job has finished or at

regular intervals. It creates checkpoints for updated

fiies. «Backup copies of Tiles can be restored after = crash
to briné the files éb their previous éonéistent‘ state. A
secondary dump"coilecgs all files and d;reciories that have
péeﬁ incrsmentaily dumped }ater than éSﬁE specific- time" in
thg past. Only thé'lategt version of the incremental dumps
abpéfr in a Qecondary dump. A secondaryk‘dump ‘which

supersedes all previous incremental dumps is called a

complfete secondary dump; ' PR -

.The primary system of the.Cambridge filing s;stem makes
incremental dumps -on magnetic tapes every twenty ﬁinutig.
The secondary system maintain; a compact record of %&} the

files with° a delay .of one week. Bélgy and Neumann also

-

investigated the-time used for dumping.®

[

Stern's thesis [SterT4] proposes an efficient‘schghe for

]

~',1ncrehental and secondary dumping for the Multics;system '

b 3 v

with a hierarchial file directory. ‘His dumper can run as a
multiprogramming job: to dump files concﬁrrent'with-hormal

processing because'ﬁFshadow copy of a file can be created to

.

-—make sure that the incremental dumpen‘ddmps a consistent

~ version of the file." The dumper can évoid:;unnecessary

.qearching in phe file ifechory tree-becgusg of the use pof

N i

. ' rd]

N L) . . : . ‘\\s

/

e

»
. 1

J’ Gibbons [Gibb76] suggests grandfather' 'father' and 'son'f

tine stamps and a 'modified below' bit for all antestors of
+

a;medified file. %he reloading process ‘can%take place
concurreptiy with normal processing after the ffle directory

-has been restoTied. Only(users accessing fileﬁ that requires

reloading. are delayed A . 4

.

o .'/ . .
‘L System(ﬁ [Verh78] has a current page table and a segment

Qe shadow bits,

cu;nulativge shadow .bits’ Ignd ‘long term shadow bits. These

~bits are essential for, incremental and secondary dumpihg.

page table. - ‘Within the: page tables there a

3

versions of/}ile dumping

\ X
2.“.5 Journal

* .

the file after it. hag’ been modified by a transaction.

/-Befoigzénageljounnals or old copy 3ournals are copies of the/"

N

: sécfion%of‘ the file before‘it is modit‘ied by 2 transaction. "

A trznsactAOn journal is equivaleﬁt to. an audit trail. An- -

. audit trail records sequences of actions performed on files.

Audit trails can be uSed for rollback and rollforward} It

P can also be uséd to certify system integrity fBjor?S]

Gibbons '(Gigg76] has i?vestigated journals in' considerable

-~

detail. Hg also lists the data which is to be recorded in

the journals.. He combines different types of Journals for
-) . y ' L
recovery purposes. wiederhold [Hi€?77] sussghts using:

B 2

There are three« main tyﬁcs of journal. ‘After image\\u/d;;;j ;'
Journals or new copy Journals are copies of the \gection of }/

Fry

y o T ST
: activity thread as a transaction Iog -for a message. Wilkesfﬂ A~

- -

% % +

et

[Wilk721 even suggests record1ng keybcard strokes.-
e : 4 =

~

2.0p Careful Replacement) . ' -

N .
Careful reblaccméntvavoggs upcatihg .dﬁ€;$‘7in‘ clacei.'. B t
A “The' update is pesformed °cn a copf o} a component which
.replspes,tﬁé original only if the update is successful. The
<'\y\.\c‘opj{ is ‘kept unt}l; the replécement ss made successfully.
Twc;instaﬁces of the same data structure exist only durlng ' -

update. This technique is different from differeﬁ%TET/flle B

@ " Tseve76] which accumulatés update ;equcsts for unal}eﬁed

N e T W
-
3
a

< original. = The CMIC system [Gior76 eﬁbloys.the<carefu1

L

/ replacemént«technidue. This approach assumes a direcﬁory
tree’ structure iﬁ which new copies are made from leaf to
root for rebiacement. Such an updatlng sequence 1s known as , =
leaf first rule. - , - "
2.4.7 Recovery Block S »

¢ . -~ - ' i

P . .
e M] Y

Recbvéry block "is a concept borrowed from thé’recOVeryf

-,

ll

.
L) P A I WY T N BT " et
°
-

of operating ‘systems [HornT4], An ‘accectance test s
" » e R . " L
executed " on exit from the primary block:' to confirm

u

acceptable pé#formance If the primary block is accepted

.) the progﬁam control fs traﬁsferred‘ to the next recoVery

N

block. Otherwise a recursive cacaf machine itfokes anJ

. .. alternate block with-the initialqdafa values restored. On ~
P v e&tf from the alternate, the acceptance test: is again‘

. b Y 4
performed. This may result in further invocation of

A

- g

o TP 22 ST I T T

P

alternate blocks if the result is still undesirable. The’
recovery block can be considered as an implementation of the
spheres of control concept. " Verhofstad . EVerh77] finds

mechani§m§ to impigmént the recovery block scheme for a

filing system on a B1700 computer. ‘Randell [Rand75] extends .

the recovery block concebt to interacting processes and

. multilevel systems.

The system érror recovery policy‘of operatiﬁé systems
n[Denn?Gj can be apblied'to the ‘design of a DBMS. Procégses
within a level of théf multilevel system implément.new
operations for the ievel above. An error reéovery.'routine
éxigtghkithin each level. If level i discovers an errorland
the error has Qrop?ga§ed dqown to level 1i-1, the recovery

. . ﬁ
routine of leﬁé} i calls the recovery

‘to put the abstraét machine of level i-1 into aﬂ‘consistent
state. The recovery routine of 1dvel i then places the data

in its level™into a consistent égaté. It repdrts to 1its

—tr

caller in the level above ‘the degree of 'success in repairing
the error. The system error recovery policy ‘may///ge
considered as a particular implementation of the hierarchial

sphe}ezof control-or of nested recovery blocks.

Parnas [Parn72c] suggests the use of software traps when
‘an. error 1is detected. The error is reflacted upwards and

the control 1is 'passed to the level where the error

. originateé. This 1level is presumably the best place to

correct the error. Sugar [Suga76] has designed an error

] B

routfne of level 1'7.

“

i

W AR 475 i '

g

e S s A SUS N

N

tr

-

-

handling feature‘for a‘diskAI/O'syétem based on this system

error recovery concept.. ’
2.4.8 Reverse Execution , ' -
~ : ‘ :

Maryansi}’ [Mary771]: proposed- a rollback and recovery

scheme for istributed 'DBMS taking the CODASYL proposal as

an example. He suggests colleéting ?ecover&-daté,in such a

format as to enable the execution of reverse DML sbgtfﬁénts

to rollback the operations perfofmed. For example, a

CONNECT statement is performed for a previously executed .

DISCONNECT statement. .
2.4.9 Industrial Recovery Systems ‘

DMS 1100 [Foss?l‘], [Lava73] provides before look, quick

before look and after look for a page. The before‘look‘ and

aftér look store pages in a journal while the quick before

i

look stores a page in the random access storage device. The

DBMS ‘provides quick recovery for simple errors and long

recovery which needs reestablishmént of the data base from a’

previous dump. . Selective recovery is provided so that the

users accessing the undamaged areas can access ¢t dr ‘ data
along with the necessary recovery action. '
FORDATA: maintains _a transaction journal and a

before-image journal for _.recovery. IDMS has. backup

facilities forﬁ\system failure. . SIBAS has 16§ging' and

rollback facilities for recovery "as well as consistency

R

T e i s e N ek
s

-

‘E> .check for . errors., IDS-II contains quick rollback and

rollforward rebuild recovery capabilities.

5

-

Limited inférmation , is available concerning the

implementation of recovery strategies in industrial DBMSs.:-

Some recovery stfategy may depend on the structure 'ofﬁ the

3 DBMS. Therefore, a description of the DBMS in chapters 3

»

> T and 4 preceeds the discussion of ~the rollback recovery -’

' system in chapters 5 and 6. |

°

: b\‘ N

< Rowmtiie s ®

o e A e

B e el Sl R L

»

o
TG ok A A BTG (TN A

SR ST

32

.

Chapter III
GENERAL DBMS MODEL DESIGN

' . , .
.This chapter describes a model to implement -a DBMS:- with
.the specifications proposed by CODASYL. It also examines

the design goals of the model. The approach in the design

of the model is discussed, taking‘ into account the

assumptidn§ involved. A general overview of a multilevel

-

CODASYL DBMS (MCDBMS) model is presented together with some

general design considerations, including error handling

features. Finally, a description of the file system an
which the MCDBMS resides is given. .

3.1 BACKGROUND

\

e design goals of a CODASYL DBMS model are fourfold.
First, to progpgg a géneral model which can have the freedom
to allo@ different 1mp1ementationai strategies of the

functional specification of the model. Second, the model

" should be sufficiently specific to enable design and

specificatiod of recoveﬁy policies based on it. Third, the
r
model should allow further expgnsién of the DBMS to adopt

5‘_~“fpe(; features. Data independence is the fourth design goa%

»

for the model. The first two aims would result in a
compromise 1leading to a functional Qesign in the present

" chapter. ‘The next chapter contains a specific design of th§
’ .

model described in this chépter.

/ : , v

|83
/

T AR s ettt P300S

PR SR

33 p
The proposal By ‘the Data Base Task Group [DBTG71]‘for
schema data- definition language (DDL) lacks data

independence and has been Severely critized at this point.

The proposal in 1978 [CODA78] includes a data storage’ ' =3
description language (DSDL) along {?th the schema DDL. Th}s - ;

serves as a’significant step towards data independence. Toh-
eb al [Toh771 - distinguishes further logical data
independénce which 'means tﬁ%t applicatioﬁ programs are
stable from changes of data structure such as data itehs,
data attributes, déta arrangement and data relationshp 3
reprgsentatiqn. Physical data independence means that both
applicpti;n,progradﬁi aﬁd data strucéares are free from
changing Stg}age structures such as data placement
strategies anq index constructioﬁ methods. ‘The, proposed
modei is =dirécted to‘ achieve thése two‘ types of data

independence.

The relationship between the. DBMS and ~the Qperating
system has been discussed in section 2.3.1.° Two basie o ’
approaches to DBMS design are possible,-the first 'being to

design an operating system wﬁich facilitates handling of : ST

data base management requests. The other approach would be"
to design a DBMS to interface with an existing operating
- system in an installation. The, pros and cons of both N
approaches have, been studied by Bayer et.al (Baye78]. The
latter approach is taken for several reasons. First of all,

an aperating system is already a large énd complicated piece

'

S e e o e o r———— S8y W S S SAS .
o — el et i

: : SO U |
LTI L J

s> .
L .‘ ‘V 3u

"

of software. Addidg‘data base handling facilities into it
would make the dgsign and implementation difficult and e;ror
prone. Secondly the‘software for such a system would be

more expensive 'than merely adding a DBMS on top of an

© operating system. Thirdly, the problem of incompatibility

comes in when the system 1is switched to adapt data base
processing. An individual dinstallation may ‘have the OS

paékage modified to provide special features to its

non-détabase users. Changing to a new software of DBMS and

0S 1integrated together as a new package would require

modification of the software again to produce a compatible

"system for former non-database users. Fourthly,

conventional von Neumann type computers were designed fot

‘the préparatioh and execution of pomputé bound programs and

for very simple data processing only [Inf078aj, {Hsia78]. A
typical . conventional computer would utilize much of its

. ‘ . ~
pawer to interpret data base management requests instead of

actually executing them. This is aﬁ\inherent architectural ’

drawback rather than the problems associéted with the

" software design. Present research in data base machines is

directed to trhnsfer. data base management functions %o

specialized hardware to improve performance. Therefore it

dqés not néceésarily fpllow that writing a vastly superior

operating system would Significantly improve the performance

of data base application. A

Aagsiass,

L ' . 35
N .

. On the other hand taking.the second épproach is not free

T NG

from problem;. Therg are ﬁany operating systems available
commercially, .each with. its own Eharacteristieg " and
applicétions. A general purpose operatipg system broviding
minimum service essential to the opgraﬁion of the 'DBMS 1is
assumed. Basieally the madel ;;oposed .in ~this'chapteﬁ”

- -

assumes that the file system of the operating system can

-

T N

handle random access files. This assumption is justified

. - because most éxisting operating systems provide data

g hqndling facilities * much more s pgyéticated than this
i - \

- vl

“* . , ')
requirement.

-
v

P . The research isimited to designing a single user DBMS,

The singlé user DBMS is link-edite&\gf the user application ’

program requiring it. The routines imyithe DBMS model are %

. i
implemented as library subroutines and DEMS requests in the %

O Bt o LT
-

application program are transformed into subroutine calls by\

) ' a preprocessor.,

The structuring approach is used to build up the DBMS
model. There are two distinct hays of structﬁring a system
[Horn731. The 'first technidue is to regard the system -as

comprising of interacting subsystems, where’ each subsystem

is reponsible for part of she épgration of the total system.v

: ' 4
The second method is to represent the system by. a 'sequence

LR

_. of models, eaqh.cénveying details of behaviour relevént to a

chosen level of abstraction of.its operation;

»

s ama aleg o e

-

e

36
-

The first technique has been. discussed extensively :by .

Parnas [Parn72a];ﬁ[Parn72b} and also by Myers [Myer76]. It
is tgrhed modularization. A system is composéd of modules.
Each module.is specified ?y 1t$ input'aﬁd output paramete(s
and«the set of ‘their possible valueé} the initial values of
its 1local wvariables, the effect and the adtio“io‘be taken

when an error occurs. A module is therefore a black box

‘with sufficient information td inter;ct with the outside

‘world. This method allows one module to be written with

minimal knowledge ' of the code in another module. It also

dllows modules to be reassembled and replaced without

_affecting other- modules 'of the system. Apart from these
advantages, another major benefit provided by modularization
is that one can test the spécifications of the modules long

Hefore the programs for the modules are coded. However, as

Parnas remarked; the modularization approach is good for a

small piece of software only.

3

v

The second technique of structuring, termed incremental

~

design ‘or hierarchial structuring, is to build up a system

level by level, bottom~up.. This technique has. been

“discussed in detail by Goos [GoosT753. Each level defines a.

N .
virtual machine or abstract machine to, be used by higher
levels [Habe76]. A given virtual machine provides a set of
apparently atomic facilities which _grb used to construct

3 AR '
another set of facilities that constitute a higher level

virtual machine interface [(Rand75]. Therefore, each virtual’

|

e At S A . 25

i y ynw“

e Se T ebe e) A S A A M e oA e ki 4

decompogsil

37

maéhine is an aSstractidh of the virtual maching below it.
The system can be. designed and .understood separate1§' in
terms af xa single 1ev;l and two virtual machine interfaces
that bound the 1level. : Such a system increases its
comptehensibilaty. Furthermore, it enhances'system er}oF
recovery [Denn}6]. The THE [Dijk68], [McKeT6] and the BSM
operating system [Goos72] are examplgs of this fechnique.
Habermann fufther distinguishes the fact, that ﬁierarchial
structuring is bas;dlén functions/whereas the "THE systém is

based on processes. ‘The latter approach is not desiré‘le

3
because it increases execution time [Habe76].

. Informétion ﬁodules consist of some data Structures'%qd
a set of functions which. share the knowledge of a particular
design ‘decision, “for example, the detagls of the data
Qtructure;. A level is a set of function names which are
implemented by functions in lower 1eveis. As Habermann
points out, the two concepts are distinet. A modulé can
span - several levels and a level‘can contain a number of

4

modules [Habe76].

N

Some of the concepts discussed abovF aré for the design
of Sperating systems ghile'othefs ahe\for general‘ébftware
design: They are bérrowed and employed 'in the design of the
MCDBMS. he approach taken is to achieve a ne;rly

f{, hierarchial structure. ~ Within each level

fgrther functional spblevelg may be identified. ‘Within each

suﬁlevel modules are specified. A module can be a subsystem

¢

@ 3 8 ,
‘ and may be further decomposed into submodules performing

atomic functions.

The ‘model designed 1is . based on CODASYL's 1978
specification of the schema DDL [CODA78] and the USDL
DS

associated with it. The advantages and épplicatién of L

for data independence have been 1nvestigeted by Tozer,

[Toze781, 0'Connell [0Con78] and Stancey [Stan78l.

Multilevel structures of data” bases have been studied at -

"both the logical and physical 1levels [Senk731,, [Senk75al,
[011e751, [Mana76], (Toh77], [SDDT77]. 1In particular, the
:_\Data Independence Accessing Model (DIAM) "hds a strong

heinfluence on the present model. - .

3.2 GENERAL OVERVIEW

This section gives a general overview of the MCDBMS,

. »
model. It also compares this model with other models.

’
'

3.2.1 General Model Description

Fig. 3.1 shows a pictorial view of the HgDBMS model.
‘ ‘] N .

Rectangles represent constructs at various levels while

ovals represent interlevel mappings between constructs. Théf

six MCDBMS 1levels are 1labelled on the right while the

corresponding three levels of CODASYL levels are labelled on

the left. This representation of the model resembles that .

of DIAM II presented by Socket and Goldberg [Sock791].

3 3
»

.- . 4 S s S ——n 4, S LOIK B b o SRS AD S,

~
S

39‘

«

o A TN Pt T 2

o S i SR

A"{v‘ -
. o . L a ‘ .
CODASAYL 1978 MCDBMS constructs MCDBMS
LEVELS and mappings levels LEVEL
—”-—----\IQ. -------- -'-r ----------------------- ; —p— --------------
AN ‘ - _ :
SUBSCHEMA . . - SUBSCHEMA SUBSCHEMA
.t LEVEL 6
———— e —— - e - . . T - S " . — 5 = s = = o
SUBSET ANDj)
‘ RESTRUCTURING SCHEMA C
SCHEMA . w LEVEL 5
. . SCHEMA | . :
— . STRUCTURAL
»k LEVEL y -
- DATA STRUCTBRES .
AND ACCESSES
. . -
S e eseweseemmen e | on o an e o o o o o o o - - o o - o - oy - -
" STORAGE |)
DATA FORMAT ‘
STORAGE o ENCODING
DESCRIPTION ENCODED LEVEL | 3
‘ . STRUCTURES b .
LOGICAL
PLACEMENT v
’ 'LOCATION . .
PAGED ADDRESS LEVEL -2
SPACE .
, T FILE L.
MAPPING * DATA BASE FILE
: — STQUCTURE ‘
\ " .. |DATA BASE FILE LEVEL 1
. STRUCTURE « .
oo . . To operating system

Fig. 3.1-Multilevel CODASYL DBMS Model (MCDBMS)

also determined. ' ' _

1 L)
S

The multilevel structure of the MCDBMS model provides a

- -

'series of abstractions to the - level be51de "ft. The

subschema presents part of the sthema to a user, It is a

levell"

)

whiech 1is "morq abstract" than ‘the schema level

u

(Ul1m80]. For example,.a subschema field requiring age of

employees need not mean that thé~employee's age be stdred'in
the data basé: Otherwise this attribute'hbs'to be, updated

frequently. The schema may contain the birth date of

\

1ndzv1dual ;mployees. Slmple computatlon w1th the present

date’ can meet the requlrement of the subschema . Entitieé

and their relatlonshlps are descrlbed by the subschema DDL.

The schma: level contalns the CODASYL nétworkﬂ data

‘mpdel. " The . schema DDL defines the gattributes -and

?elationships among-them. It also defines the 1linkages

X

within a giJen'set type:. With the definition of 1inques,

the access, paths'}g@ependeht of- the set representation are

s A
' 1

Employing the definition' of Horowitz and Sahni’ [Horo76],
the structural level-is a representation of . the record and

set - data struetures of, the CQDASYL schema DDL. ~ The

-

structural level _DDL dgséribes the data structures in this

+ 3 ?

level. It corréesponds to tﬁe majority_-of_ clauses 1in fthe

7DSDL 1978 specification. Set relationships a;e usually

) representéd by chaiﬁ, pointer array or index. 6 Access ‘'paths

are most clearly seen at this level. The s%ructural level

'

among relétionShips, for example, the orderjing of members

L R

-

41 -

provides a level of abstraction to the level

user,
(4
in which a set is represented

A record.in this

%]
‘kﬁown as “a stryctural level record (SLR)
data’items specified in the schema DDL, a SLR also’

o

above.”

2

The

of the ‘level above need not be eoncerned with the waih‘“

level - 1is

Apaﬁk from the -

contains

rpointer

data

1tems

for

set

relationships. - Headery

info

record

ation §uch as yrecord deta base Key and

length,
Ty

?’-4%" -,

The encoding level reduces all

-

w

primitiv

array

es

and

structural iéVeI;‘namely reéorq, pointer

of th)[

index,

into a Dbasic daﬁa structure -- siorage recdrd;

This level

~

*

MO

~, ‘note
N

[y

'& therefore:

\S levgllbelow.
v

: wstagg

describes ‘how the ,data étrucﬁures .above é?e

i répresentéd in one d1mensiona1 bit stremnég The encodingy

" level DDL déscribes the data strugtures ‘in this level. " The

definitlon of storage records from schema records in DSDL

1978 i§ an example similar to the function of tfie encoding"

level DDL.

‘Starting from thisclayel the 1ogica1 aspecb\pf ,

!

5 the data base fa%;s away and the physical aspect comes. 1in.

”m&is‘ level provides an abstraction of the,implementation of

It is fascinating to

' . . B~
level also provides an:abstraction to the
"‘,“ ' B a
The level below handles a storage record as a

, °, » ; :
! bit string:which is an.atomic, unit. .)

. .

’ priqitiveg of the structural level.

that this

g

}ocation

The lebei maps the storage records to a paged

¥

addrii§”3péce. Cojceptually one can visualize this in two

‘A bit string is first, mapped onto a one dimensional

A

w”

v

2

o o S s

-~

O AR LN S

ot
T R i

L owiban,
o

€

w clause of the DSDL 1978°

42

s
-

address space. The one dimensional address .space 1S then
1] Vi .

\ . e
mapped to a paged address space. However, a restriction is
. .)

imposed on the second stége of mapping: no bit string can,

‘eross data base page boundarfeg. The composite mapping is

described by the 1location level DDL “which basically

_corresponds to the PLACEMENT clause of the DSDL 1978. The

. [IRY o &‘: o .
- next lowver level hanalesﬁbages without.izyawing what each
paged meang. The lower level is unaward’ of the DBM :ag;&e

: ¢
it. TRis is an abstr;\Fion—provided by the location 1level-

: <
to the level below.“ .

The . data bése file‘ Structure level serves as an
1nterface between the MCDBMS and the operatlng system. -1t
maps the paged address spacg into records of files so thaﬂ

‘the 'operating° system can recognize them. “Access “and

modification of data base:pages 1s reduced to reading and

-

writing of recordsfpf a‘file by‘a user program. The mapping

is described by the data bese file’ structure DDL, a subset

of which corresponds to 'the STORAGE " AREA ~-- INITIAL SIJZE

This level therefore abétracts

away the concept of data base pages A?rom the operating

sys%em. ’ The operating system cannot distinguish the

difference between the DBMS and other user prograﬁs.

Ll

It can be seen that requirements of a more eomplicated

nature have to be met at both ends of the MCDBMS. At the

top.the userfﬁeQUirements have to be satisfied. At the

bottom the operating system specifications have to be

s

. ‘ .
y . . . ,
vt !ﬂ' . . v W -

o

boa e

T ianil

R JRE W
T

Pl

R L

"

fulfilled. It is therefore reasonable to have a level in

betwéen the two extre%es te have:a basic data structure as a-
primitive buildiﬁgsblocki In the MCDBMS model this level is
the encoding level of gtofage’;ecords. Abstract machines
are added boﬁh upward: and dowhwaras as one proceeds in both -
directions. The model designed can be'considered as having

achieved the goal of hierarchial structuring.
' ' <

3.2.2 Comparison with DIAM II and -ANSI/SPARC

»

Fig. 3.2 compares the MCDBMS model with “the data
independent access model (DIAM II) model and the ANSI SPARC

specificatipns [Yoem76]. The end-user level of DIAM 1II is

A

‘not combatible with the -subschema level of MCDBMS, neither

is the information level compatible with the schema level.
3

-This 1is because the end-user 1level and the ihformation

N . 4
levels deal with entities and their relationships, for

example, employer and position, while the ﬁubschema and the
schema levels are specific -models. to repFZsent the ,entities

ol

and tbeir relationships. Records are used to represgnt
entities a;d sets are used to denote rel?tibnshipst‘ For
example, a position is an oﬁqer reqord whi1e all qmployées
are member records of th; set mapping position to embloyee;.

L3

The string level of DIAM ' If conéists of three

.primitives, .atomic strings (A-strings), entity sfrings

.(E-strings) and link strings :gL-§£rin;) ' [Senk731.. These

are representations Jusy{ as the use of data items, records

4

“

e - -

-t

N A,
g e = - oo e

1]
o)

+ .
A4 11 1 1 ' © 1
1 W [| @ 1 1 e 1
1 W [| £ 1 1 o I
| o> 1 i @ -
1w i1 1 o 1 1 I3) i
| 1 -1 11 1 I3 1 1 0 '
7 " 11 t .o@ i 1
1 (8} 1 \ 1 ! - 1
B] ~ 1 t —] ' ® 1
| ¢ 1 < i1 i «© 1 | =3 1
' - O 1) t = ! ! 2 1
”] (/5] | I o I | & 1 [} Q.]
1~ 11 ' o 1 1)]
|) 11 1 o 1 1 3] t
|) 11 (¢ 1 TR i
| 1t = 11 1 o 1 t le}]
1T o« 11 | 1 1 13} '
| mcmmm e 4 Fmmmmm f mmmm = d mm e mm d—m—m =}
A
' | — —
ol 1w 11 1 o i 1 (o
1A (] | > 1 ! — 1 >
] j€3 [| ! Q 1 i @ 1 @
t > - 11 | — 1 | > | —
1w Lt 1 1 i v 1
[~ _ 1t] (4] 1 } —~] —
=r i 11 1 g 1 i ' ©
= 1 0 11 |) 1 t @ \ el
1 = 11 1 = 1 1 e 1 3
| I7e) Tt I © 1 1 o 1 e
1 a 1l | 0 1 1 = 1 13)
S 1 ! o I | © 1 3
] = 11 1 2]] w_ | L
1 1 |] 1 1 1 3
' 11 (| ' i 17
=] | |)]]]
f cmremm F fomcmme o e d e me fom e ——
] [| [}] -t] 1
1 < 11 i | o 1 t
1 nl 1 - 1 1 > 1 |
A 11 v 1 ' @ 1 —~ '
1 w 1 > 1 | — 1 () 1
1 > 11 e 1 1 ' > i
1 [l 11 — 1 1 c] Q '
s 1.1 i 1 © 1 — 1
N <o 5. ' ! ot 1 !
' - 11 o | ' o]) 1,
N (o | 11 2] v] © 1 [wd [}
r Vo 3 1 i r-s | |
t =. 11] !) e 1 5. 1
] < 1| o 1 1 () T e]
' - 1 =]] Dt 1. wn]
' a 1 “ o 1 " = " "
] i] ot
I ™ 4 i 1 ¢ 1
§ e e - —————— = ——— . m— " — - - Sm e - e e e M e M am e e

-)

encoding

encoding level

internal

‘level

location level

. ———— ———— —— - w———- b ——

<

e e e e e e e e e o e i e

1
!
[}
1
t
1
1
1
1
!
1
[
3
|
1
1
}
'
!
[}
1}
|
1
1
|
1
]
I
|
|
[
|
|
|
1
|
|
i
1
1
3
I
[}
t
1
|
|
|
1
|
1
|
[]
1
]
|
1
1
'
3
!
1
!
i
[}
1
1
!
!
[}
1
1

et e . . ——— R s e s T G e e o -

]
!
]
[}
[}
]
1
1
1
[}
]
[}
1
1}
1
!

schema

data base file
structure
level

4

physical
device
level

\

+-——————-—--——-—-———_————----———;-—————-T-—--——;-—u—-—-—;

e

¥

Fig. 3.2 Comparison of the level structure of DIAM II,

[}

MCDBMS and ANSI/SPARC

Py

/ ‘ c o,) ‘45 ’,

L4

and sets’of the schema DDL. The subschema and the schema of .
MCDBMS correspond to the external schema and the conceptdal

-

. y -
[Bnhema of the ANSI'SPAR specifications.

AN 4

The encoding levei of the DIAM II, godel consists of

encoding the constructs of the string 1evei.and mapping them

onto a 1linear address space. This corresponds to the
L J .

'structural 1eye1; the encoding level and the location level

ot the MCDBMS model. o

The physical devicgulevel, which is furtﬁer expanded by
the SDDTTG [SDDT77I; would'correspond to the data base file
structu}é level and the operating system. The ANSI éPAhC
specrfications classify everything below its Wconceptual
échema as internal schema. This caﬁegorization is similar
@6 the CODASYL 1978 spécification of the DSDL, though the.

" DSDL does not include the operating system.

An overall view of the MCDBMS~has been presented. Wulf

says that to describe a multilevel model by the top—doyh '

.approach is to explain the higher level concebts, .which 1is

most abstract, in terms of primitives which await to be

defined as one goes top-down. Conversely, the bottom-up .

approach is to build a vocabulary without letting the reader
know where he is being led [Wulf75]. The reader ' has 'heen

given a bird's eye view ~on the functional aspects of

individual levels of the model, how two adjacent levels.

relate to each other énd how the model meets requirements at

o

- - s o i, 1, P
s ot

/)

P

f o aat

e

B e Ll R N U

46

both ends. The'next chapter gives a functional 'descriptlon

*
of the modules and thg;datiistructures assumed in each level

© of the MCDBMS. The description proceeds in a bottom-up

direction because the reader knows ™ where the

-

1mp1ementationql design is heading towards. However, before

the detailed description, some general

®egarding the model are given below.

3.3 GENERAL IM%LEMENTATIONAL CONSIDERATIONS
3.3.1 DML Statements

A 1
.J.P

A

The MCDBMS described'abbve only intends to implement a

subset of the CODASYL DDLC 1976 and 1978 proposals. The DML
statements that are to be implemented are shown in Table
3.1. They are typical operations of a DBMS. ' - <
o rr e r e m e e e mr e, ———————— +
| CATEGORY H COBOL JOD DML |
e e ——————— e —————————— +
1 record only . | FIND 1.
- I ERASE | .
} ! STORE H ¢
} Aemecccccccmccecca—a—- o ——————————— +
i record and item | GET !
! . ' MODIFY |
dmmmmccee e e ——— R e L P +
| linkage } CONNECT |
i ! DISCONNECT |
e e e e e e trmcc e cr e c—-—— +
{ currency indicators | ACCEPT !
L L LT T PP cmcmcecmca——— ,————t

Table 3.1 COBOL JOD DML statements implemented

The major features that are not 1ﬁb1emented‘are shown as
'COBOL JOD DML statements in Table 3.2. The

for realm and currency are

o rmm————— . . PR -

consfaeratiéns.

DML statements

not implemented because the

o AR

e e s baE T e Y

g AT T

ot T T T W O © T SR Y
]

[u 7 .) °
system is a single user system while these two categories

are _concerned with concurrent processing. The realm

category is also related to privacy':hich is not implemented

L 4

to simélify the model. The others are also-‘omitted for the
purpose of simplification of the model.

Frm————— - o o s e e e + ..
. | CATEGORY | COBOL JOD DML |
tommm e~ tm v mm - ———— +
! realm | READY H
1 ! FINISH H
R ettt tmmmmm e ——————— +
H set ' ORDER H
Fr e ————— - —————————— +
{ conditional | ; IF | ;
R i i St Frm—————— - - - - - +
| declarative | USE i
o ———— T Ty +
! concurrency | KEEP H
| . FREE i
! ! REMONITOR H
+ e et e +

Table 3.2 COBOL JOD DML statements not implemented

3.3.2 Leéels and Modules ~
' }

The“MCDBMS contains six levels. Each level is further
- subdivided into sublévels of abstraction. A sublevel
Eontains moduleé of the same or different classes. A élass
serves .as:‘a boundary 'Qithin:which modules share the déta
structures locél to its.:clasé only. (}his confinemeﬁt
ﬁhrtitions' qodules of th saﬁe‘sublevel

further because a

class is confined to modules of the same sublevel only.

> : : .
Services provided by a .sublevel to the sublevel above

can be classified as general and specific. Services of a

ééneral nature can be used by differeni classes of modules
£ . oL

B

e i

. ,
» N . !
a5 ‘ ’ St " '
A% @ N

u8 - AY

in the sublevel above. Services of a specific natﬁ?e can‘be
‘utiiized by only one class of modules. . Therefore the;e is
partitidning between modules of éifferent sublevels.
Modules in sublevel =zero of all 1levels are information
.providing modules, giving mainly the informat;on on the DDL
of the level. All modules in all sublevels of‘a levél are
allowed to «call thesé sublevel zero modules. 1In éeneral,
however, the aim of the design is that modules of a sublevgl
call modules of the sublevel immediately below them only.
Services provided b§ a level, which is iﬁblementéd in the
uppermost subievel of that levey, are 'aQailable to all

a

modules on all sublevels of the level immediately above it.

Each module is given a module number of five digits.
The most significant digit 1is the level number for “the

MCDBMS. The next two significant digits. constitute +the

. ©
sublevel number of the level within which the module
. /\ >) .
resides. Each suhlevel <can hold at most one - hundred

/ ‘ , . . N,
modules, ' indicated by the two leasc significant -digits of

the module number. The one hundred values, from QO to 99,

‘ g
are further subdivided into ten groups. Each group contains

ten modules. Group \gge modules have the two least

™

significant digits from dﬁ\go 09, group two (from 10 to, 19,

. . * \ ° .
and. so on. Moduleg;zf the same group belong to the same
class. ‘ ;

\

The modules - are not primarily designed for high

éfficiedcy processing; rather, they are devised to

;‘
B
|

© et S G PRI S T e T 1

[,

g .

kg

aa -

[

~

- ' o 49

demonstrate. that the model. proposed can satisfy the CODASYL

4

1978 specifications.

In general, modules exist as a necessary 'functional

component. ' They serve to provide abstractions to the level

'‘above. However, some modules exist not as an absolutely

necessary component but to reduce the size and complexity of

hlgher 1eve1 modules.

3.3.3 Error. Handling

It is assumed fhat syntactical errors and « other
compilation errors are checked‘out during prepgocessing and
compiiakion time. Execution time errorindication is still
an important aspect in the MCDBMS design. Eich sublevel has
a status .register _for error ingication; Tﬁe status
registers are n;med by their level name an& sublevel number.
For,exgmple, EL3-STATUS refers to the status ,r;gister of

b

sublevel three of the encoding level.

Each status register contains two components or flelds. .

The first field is a two digit namber which coincides with

the two least significant digdts of the m?dule number of the _

~executing module 1in the sublevel. The second field is a

four digit number indicating the error type upon execution

of that module. .

Error types of all modules are 1ndicated by powers of

two starting from zero, for example, 1, 2, U4, 8, 16,... up

a

N

4

e vex Y

R

_—

s

-

© e g AT A E R e =

.~

50

) “ ‘I
to 2048. A @odule'can have a maximum of twelve error types.
This number .serves tol set a llimit on the size of the
modules. Each module haé-its ownlpartfcular type undé} the
sgqe error number convention. Choosing erjpr numbers in
powers of two enables us to{accumulate error ﬁumbers for the
occurrence of more than one e}ror type during execution.

Mathematically,

n i | n+1
. z:% 2 < 2 for n > 0
S i= . ’ .

v

E;¥ors can be classified as fata% or non=-fatal." When a

‘-module encounters a non-fatal error, it attempts recovery
!

and resumes executior with the error recorded in the second

-

field of 'the status register. When a fatal error oécurs,

the error is indicated in the status feéister and control is

returned to the. higher level module,caliing ite '

A fatal error may or may not require rollback action.

If there is an attgmpﬁ to modi{fy a SLR, one or more’ storage

records ‘may have to be modified. If the SLR is mapped tq
two storage records, failure to modify‘rthe first sﬁorage
Erecord and write it back intq the data base wéﬁld éesglt ip
fatéf error but no réllback action is necessary. On the
.other hand, . failure .t° ,modify' the‘sécond‘storage record
after the first storage record has been successfully written
back resulés in- a fatal error which requirés rollback to

.

maintain the data base consistency. .

Ry

(R pp————E LT A

51

5Thé example in the preceeding paragraph gives us some
insight concerning rollback determination. The highe; level

module examines the conditions under which the " fatal error

-

B A T V. NUPS P S .

occurs in the 'lowen level module. It then determings

’

whether rollback is required or not. Conversely, if a lowér

Y

" level ‘module‘ makes two tyﬁes of modifications, it may aisb
determinefwhéther'rollback 1s.required. Once a module at a
certain sublevel qetermine$ that rollback is required, the
rollback requirement is propaggted hpuardé and controli is ?

" returned to higher level calling modules until the highest ' : 2[
level calling 'module receives "the meésage. © Rollback : i
indication is denoted by adding the value 4096 to the second
field of the status r;gister. This is why the error number
is up to 20&8‘ only. Any status register with the second .

: 'fiélﬁl.éxc‘eediné the valge 4096 signifies that rollback 'is
| indiépensablé.- In othér‘ words, a '1' in the twelth bit
(starting from bit zero) of the second field indicgtes, the

rollback requirement.

-~

The - modules are generalized - 80 sthat unsuccessful.

execution need not lead to an error condition. For example,
the search for a pérticula(record in a set sh&uld not give
rise to‘gn error if thé search is unsuccessful. The Search

: y have been infended to ensure that the record is not -
thfg:?;§§gy in the set beforeuinserting the record into it. Thg

result of execution/ is 1indicated as an output parameter, -

) which will be used by the calling module to decide uhether .

N

’ \

52

an error“condition;sxists.

DI l , | : Q~
If there are no errors the second field of the status

regiséer ;ill remain zero. The ‘firet field contains the
value of the module executed on the sublevel. Thus’'error
recording scheme enables the DBA to identify «precieely at
which calling sequence the error occurs . It .also 3
facilitates error analysis if all .values.of local variables,

parameters, and status registers of the modules in the

calling sequence are recorded in.an error report.
. : 4 , B '
o , | ‘
3.3.4 Data Base Key . .

Unique schema recorq -occurrences are identified by

- unique)\ data base keys. The DBTG specification. [DBTG71]

rquire‘ data base ﬁeye to be upique throughout the lizs
time of\ the DBMS. This policy is followed in the MCDBMS

model. There is a one to one mapping between schema records

and SLRs. Hence _gata Pase key alsc uniquely identifies &

SLR. The structure of the data base dey is as shown 1{in

Fig.3.3.

Fig. 3;i>h Structuremof the data baselkey

A "data base key consists of two parts. The first part
1s a coded data base key type. (cdbkt) which identifies the
record type of the S&R. Record types are represented

numerically in the compif d schema DDL. .The second part is

-

an accession number.° Thus number increases by one every
time a new occurrencé‘bf the record type is created. «’The

unique value of data base key 1is assigned to every SLR

during creation. T ‘ . 1

'}he data base key concept is extended to identify othég
data structures of the structural level, the pointér ;rray§
and the index. To'distinguish suchra convention from thaé
of the CODASYL DDLC 1978 specificatior [CODAT8], ‘data base
key is renamed logiéal data base key in the MCDBMS. . Pointer .
arra&s and indices are constructs in the logiéalﬁlevél\of a

data base. . The renaming is therefore consistent with the

data structures it identifies. . ‘. o , /“} ’
The data structure for a geﬁe§a1 logical data béseﬂkgwa A_;jﬂ_:%?
;. ,) , -
. is as follows:
01 rec-ldbk, PA-ldbk, IND-1dbk record, pointer ‘array or
b index logical data base key - ‘]
‘ 02 cdbkt coded data base key type ,
03 cdt © coded data type ﬁ : o)
03 erst coded record/set typé : * S
02 an accession number hd
The value of the coded data type determines which data
. structure the logical data %base key represents. For the'

_MCDBMS model the representation is as follows.

- ’

N) ' 0 | rec-ldbk '
- . . : 1 | PA-1dbk -
" -‘\\&;ﬁ{/"“\ 2 -l IND-ldbk |
N Le 3.3 Representation of the coded data type
: . in the logical data base key
7/ .)

f.

~

> bt - - - B B - L
—w", o > * S

= ' . e m e e A e e wemakear e mee [e Aner S Ses

3 54,

‘r/ S S
Two bits are sufficiént for-this subfield with a possible

expansion of adding one more data structure in the

) - ' *

structural level.
. ?

“

4 ¥

The coded record or set type (crst) is the record type
‘number or set.type number. Set types are. numbered as recoré

@ybes'in the coﬂpiledlschema DDL. If the value of this

subfield is 5§ero, the iogicaliaata base key identifies a

’ .
SLR. .If the\}he value of this subfield is one or two, -the

logical data base key identifies a pbintef array or an
(= . . 4) . L

index.

The accession number increments by one every time & -new

occurrence of a SLR is created. This value is shared by the

+

ﬁointer array and the index gs,weii. . The CODASYL DPDLC 1978
sbecificgtion requires gnélsét type to have\onq and only %ne
own%;Jﬁecord type. 0ne>po§nter array or‘one‘index is used
to ’implbment a set occurrence, therefore no problem of
non-uniqueness woﬁld occur. There is a one to one mapping
between ﬁhe owner record logical data bage key.and the
corresponding pointer array or index logical data base key.
"The y agcession numbén of the owner ;ecord occurrence
.coincideé with that of the pointer,. array or the index.
Knowing the value of the pointef array or index logical data
b;se key and the set type can enable us to ge;eretg‘.the
owner‘ recqrd logical dataF base key easily. ‘This-would

: \ ,
facilitate consistency check{ng.

¢

\ . . -
’ o

———

i

n o e L 4 e 0T ST R el

)i

*

»

—'-o
.

”~

“

B |

" increases stepwise by one.

. dccurrence.

r : s '
B \
L. "7_{\[. s .
) 4 \
.{.\, I, ‘ ° .
s A SLR can be split into two or more. storage records.

) The concept of logica}rdata'base key cannot. be carried into

storage régords, otherwise the problem of .non-uniqueness
y ' ~da .

would occur. A storage data‘base key is formed based on an

. , A :
extension of the logical data base key. A field of. Storage

code (sc) is concatenated ont? the logical.data base 'key), as '

shoun in Fig. 3. §, “) .
O T W ————— +
} CODED DBK TYPE | ACCESSION NUMBER | STORAGE CODE v

0

e i - ! -
When a SLR is split into two or more.’ storage recgids,

the ;storage records have the same logical data base key but - -

different nuneric value of the storage code. As

storaée
records for a pointer array are created, the storage code

, The accession numbers of/various
pointer array storage records representing the pointer arﬁay

coincides with that of’the pointer array occurrence, 30 does

the coded data base key type. An index oceurrence is a two

1e¥e1 structure. The upper level is an 1ndex header. The

storage code of the

stqrage data;base key of this index
header storage record is zero. oThe accession number of the

index header storage record is the same as that of tPe 4index
¢ ! . ‘

- The lower ‘level cdﬁtains index _storage
%

which .have their storage code increased stepwise by one ‘as .k

rechds'

they are created Just as that of the pointer array storage

¢

The accession number of the index storage records
‘ y PV

. .
e ' '
) B . ,
N \ ' . > . .
. . t
. R . v,
. . .
. - . '
: .

records.’

0

oS

e oA g e 5 g

PR B e LT T

are the same as that of the index occurrence.

3.3.5 Linear and Paged Address Space’ l Lo

-
3

Z‘The%e are_uyo'stfategies bo.}mplement the datsistructu}e.
central to the Location level. The first one is mapping
“storage records to a linear address space while /the"secondv
one is’ mapping them to_a ‘paged address space. Mappiné to a
1inearladdress space is conceptuaLly simple but mapping to a
paged address space is more suitable from a practical point

! .)
of view. -Ehe former strategy is_discussed first. . %’

9

An owner recofd may have many member records.’ If the
- placenent ,optidn of VIA SET NEAR OWNER is used for member

"T recordskqsing hashing, a significant -number of rehashing is

- - >

required. Moreover, a record may cross file‘buffer -boundary "

o

because different:-data base fecord ~types may diffeg in

Jdength, The linear address space approach is therefore not

-

desirable. - ’ ’ ’ C /

The probleﬁ*of locating che storage record; i3 idshedm
‘from the file system to the DBMS. In th%bMCDBMS model .this
is the location level. The :*?ficulty with a linear address

_‘space lies in the deoiqqqn of determining the record length
‘for access. Because different types of storage recoyds vary
%P length; “It.«1scvconceivable\xhat.a stcraée record..would

cross file record‘boundsrx. "Stcrége 'record syntdesis is

requiged. \ - , : "o .

’ . B . . ' .
Pt * - o . .- 13

F

“

\

ey v e

Ay o IR

57
A .paééd address space can bypass the problems mentionéd

o

above. The linear address space is subdivided into pages P
numbgred conSecutively. Storage records - are mapped onto

pages. No absolute 7addressing‘ is required \ to access a " '

storage record. ' Only the .page ‘pumber is\\required. A

-

routine to search for the presence of the ‘desired storage
@

record within a page solves the problem above. Another
*) , ®
routine to ageess neighbouring pages for searches . if ;ghe

search failed in ths\i:;tial target ﬁage,can implement the
(

VIA SET NEAR OWNER tion. ' Furthermore, with | the

requirement _ that no data base retord can ‘ cross page

boﬁndaries, .the complexity of -récord handling “can be

. A
reduced.

3.4 THE FILE SYSTEM

The file system is the foundation on which the MCDBMS is -

1

built. Thus'an overview of the file system is essential

. before giving the detail description of thé MCDBMS modules.

Madnick and Alsop wrote a classical paper on file system .
titled 'A modqlar approach to file system design' [Madn69].
Madnick and _D?rovan based their file system on the Madnick
and Alsos paﬁer and elaborated it in their book fOperating
Systems' [Madn74]. The file system described by the latfer
pair‘eisguthors will be discussed This model would act| as
the file system- to provide facilities to the DBMS. A slight

modification is made in command transfer ‘between various .

et

~

7

P S

58 - .
- . ' i

levels of }he file system. File system of the MCDBMS

requires a 'subset of the access methods of thier sYstem.K

The model is described below.

Fig. 3.5 shows the structuré‘of the file system, in
, .which six levels'can be identified. - The file system 1is
called by the'CALL éFS cgmménd, containing arguments of the
filéname;the function "required (read/write), T'ne)tt;' or
"rec#' for sequential or random access} the process number
_mgking the call and the main memory locati’ont7 to which the

1

logical record iS to be trarsferred.
. ; s
*The Symbolic File System (SFS) translates a filename
into a unique file identifier. A unique file identifier is
neeéed bécausé' diffefent users may access the same file
under different ﬁames and differept users can give the same
name¢ to different’ files. The Basic F{ie System (BFS)
"1oé:tes the file directory entry from the file identifier -
and puts it into the Active File Table (AFT). The Accels
-Control Verification (ACV)‘makes use of techniques such as
passwérd, "access control matrix; eryptography to check for

) <
"access rights.

‘ ! .
- The Logical File)Sys@em (LFS) is concerned with hapbing
the structure of logical recordS'onﬁo the linear b téfstring .
view of a file provided by &he Physical File System\>(BFS).
" The LF%‘ggﬁbports'sequential or direét access to both fixedl vt
and variable length records. Based on the ;\:fcord ‘

3 ° + v . \.\
1 . * -
.

«
.

Y

h
t
i

e -

N o |

] . ¢ \ _ - |
- ! CALL SFS(fln,fn, next ,p#,MMloc))
-V R rec# » ,
..... ---—-——-—--—---—-—----—‘———---———-———Q——-——n----——--7—--.- ‘
drmm———— +
{SYMBOLIC}- . : . ‘
{ FILE | ' ‘ .
| SYSTEM | ' - : T Y,
tmm—————— + i CALL BFS(fid,fn, next ,p#,MMloc) : - .
: : v rec# ba
e e e e e e e e o - - = = - - omon - :
m———- - + /
! BASIC! .
{ FILE | ! « ' o ..
ISYSTEM} o . p 4
tomm—— + i CALL AVC(AFTentry#,fn, next ,p#,MMloc)
' v ‘ rect ya
L +
! . ACCESS | ¢
' CONTROL |
{VERIFICATION]
L + | CALL LFS(AFTentry#,fn, next ,p#,MMloc) {
. v . - rec#
tommm——— + ‘
tLOGICAL} ' '
{ FILE { Y >
| SYSTEM! '
bmmm———— + { CALL PFSi(AFTentry#,fn,lba,lbl,p#, MMloc) -
* v . .
toem—————— + t =
}PHYSICAL! ~r
: FILE |
¢ SYSTEMi | '
-------- + | CALL DSMi(fn,dev#,pbn,buflptr],#blks,p#) //f
v
——————————————————————————————————————— :-— - v - — - — > " = - -
e ———— + dmmmm———— + 4 . -R i
:ALLGCATION: { DEVICE { | - I/0 { P DEVICE}
i STRATEGY |} {STRATEGY| |INITIATOR| |[HANDLER|
| "MODULEi | |V MODULELi} | . i A A S
$rme——m - + demmmmeced gemmmmme—a + demmcnaa + L
flnthr filename . fn -- function (READ, WRITE) C
rec# -~ record number p# -~ process number
MMloc =-- main memory location fld -- file identifier '
AFTentry# -- Active File Table ‘entry number :
lba -~ logical byte address ,- 1bl -- logical hyte 1ength -
pbn -~ physical block number: dev# -~ device number -
y #blks -- number of blocks to be transferred)
.]
y Fig. 3.5 A six level file system
. 3
» ¢ . . ' , - .
' ¢ Yy T .

- USRS SR

‘ 0
(L,/ ') 6

sﬁecification 'next' or 'reé#' and the fflefstructure from ‘ ‘l
the AFT, the LFS conye;ts a request fof a record into a'
request for a byte string. ' = -
¢ .
/ . A file is treated as a sequential byte string without
any explieit record format by the PFS. TI’I;FS uses file !
buffering to minimizéVI/O by keeping track of records in.the >
same unit of'I/0 transfer. If the fﬁpcﬁion (fn) 1is READ, ‘
the device vsends ‘data to a file buffer in'éhe PFS in the

unié of a physical block.. The logica{;record is tqansferred

. from the file buffer to the user buffer inhtheﬂﬁﬁiq memory. \

’ If the function ;S WRITE, the logical recgrd is transferred
from the user buffer to the r11é~bpffir a;d‘then the entire .*

physical block is written onto the storage device. All data
transfers: with Jlower 1levels/are via the file buffer. PFS
A

also allows the logical record $#ize to be independent of the

physieal block size. It also allows non-contiguous
arlécation of file space by chained blocks or file maps. It
'af;o transfers the appfqpriate bft‘ string to the user's

~ bu{fer once the bloék is loaded into the file buffer. ;

~

The PFS calls the Allocation Strategy Module (ASM) for

.assigning or releasing storage space. It also calls the
Device Syrategy Module (DSM),hInput/Oﬁtput Initiator (101).

and the Device/ Handler (Dﬁ). These modules function.as
- & .

‘follbws .) ‘ v “\\Jrl.“//”

N 1) mapping physical addréss to device address

. R

o

2) crpate chann@ programs

he e

at

3) Fequest input/output (I/O scheduler)

4) handle I/0 interrupts and error conditions.

" Modules implementiné the file system described above are
assumed to be avallable. The file system described here
serves as a starting point of tQU MCDBMS which uses it and
is described from the bottom up in the next chapte;XJ
~¢-< ‘0\
X - K . i '
— { \
.) R : !
" W
\
} ‘\ ’ ‘ B
, IRV
f i
N\
\ v g , \
/ N - t ——)
. . Ce &
e - v
.}."‘ ‘e ! -
. feo ' : J. e
“ M' - 4—‘_‘\'. $ n“J
S .) JIL
, o — ‘ - l
¢

e v et e — e = %

—— e o

'Y . .

Chaptér Iv
DETAIL DBMS MODEL DESIGN

This chapter describes the‘_implementaﬁional design\bof

the MCDBMS described in the previous chapter. The model is

described from the bottom, level by level. Some lévels are
subdivided into sublevels which are also described from the
bottom. The data structures required are described in the
form of eclar;tions {n— the WOrking Stérage Section of
COBOL.//égiy are followed by the syntax of commands ¢to

6¥erate on the data structurés. The mModules are described

in terms of thekfuqctions they perform in Appendix A. This

chapter only gives a brief description of the functions

performed by each class of modules within each sublevel.

The function of this chapter is to venify on paper that
[/Q N

-Ehe MCDBMS model described in thelpreceedingfchapter can bel

-

implemented. The. actual implementation would take an .

4

- g-enormous amount of time. Partial implementation of a small

" Subset of the system does not necessarily imbly that th9//\

entire system- can be implemented. ‘A pape} design of"the,

model is therefore given.

4.1 THE DATA BASE FILE STRUCTURE LEVEL

1 N . A
The data base file structure level is'the bottom level"

. ‘ *
of the MCDBMS. It interfaces the DBMS with the operating
system. The function of this level is two-fold. First, it

maps the paéed address space of the location level into

St 1omst e bt i B e b

et e e w

e

“files.

/ .) . “ ’ 63

P a4

i

O —— e e —— —_—

>

records of files. Second, it transforms data base page

manipulation requests to record manipulation requests of

This 1eve1. assumes two rbquests that can be

Eecognized by the operating sySﬁgm: a read request and a

write request. Both requests require the specification of

the file name gnd the record number intended for the

operation. .Upon receiving the command, the op@?a%ing-siétem
supplies the prdcess number and the main memory location to

which the record is to be transferreéz It then 9?5895 the

command to the filé system. >

The data base page size corresponds to the size of a

Pl a - R e
physical page. Different storage devices may have different
B . .4 ‘
physical page sizes. The inﬁical page size for a storage

device is constant.
A

integral number of physical pages is a unit of I/O ﬁransfer.

A physical page or a block of an.

The choice of the data 'base page size is intehded to
simplify the computation process for random accesses of the
physical records of a file. A file is restricted to reside

within a storage each data file

-~
contains fixed length records: °

.device and thenefore

Even though a number of

storage devices with different page sizes are used, the page

B4 Nl .
)

size of a file remains fixed.

This .level contains . two sublevels. Sublevel) zero

-contains the module DBF-MAP to.map the data base pages t6

th files and records. Sublevel one transforms a command to

load a data base page to a read request for the operétingl

L

e

PR

iR

s) :
. 64 ,
- ~ . , °

—_— ‘ L

!

‘ sysfem. Similarly, it transforms a command to store a data

base _page tp a write request fgf the operating system. The

modules LOAD-PG and STORE-PG perform. these functions. File

»

name and key are® supplied by the sublevel one modules as
parameters for the c¢all to the operating system. ~All

accesses to the storage records take place'in the level

above. The operating system is not burdened with the
. " o

identification of which file a starage record resides in and
where it resides within the file. .It is simply supplied
wilh ‘a file name, a record number and the function go be
performed by the’ data\ base file structure devel. The

modules for this level are shown in Appendix A, Table A.1.

Apart from ?rqviding an abstraction te the operating
system ﬁentioned in section 3.2, this level also provides an
abstraction to the- location level. The location level is
unaware of how the operating system héndles the data base>

pages qr where a data base page dwells.

£ - . *
1

4.2 THE LOC‘?}ON LEVEL . ‘ \,

1 0

* The location level 1is level two of the MCDBMS. There

are six sub&evels witﬁin this level. Hoduleé in this 1level

. share a common data structure, the location level 2ﬁffer

(LLB), which has its length equal to the lafgest bége size

_of the paged address space. Data structures local to a.

[y

sublevel are defined just before the functional descriptions

of the modules of the sublevel.

¢
K

£

sarrde ey v

P ke

*of these two modules.

\ ' : ‘ o
4,2,2 Sublevel One ' - ' P
This sublevel conta&ns two asses of modules. One
class of modules manipulates the fphysical currency table. (~ ‘\
.The other ‘class of modules performs operation on the direct o

N

65
+ . ‘y‘ U o . .?(‘
4,2.1 Sublevel Zero

- ' -
¢ . - . . i

-

Sublevel zero- contafis two classes of modules. Class.

one contains one module to provide information on placement. L

strategies of storage records as defined by the location
level DDL. The location 1level DDL spec1f1es that the) :Ey
poiﬁter array and index. storage records are to be placed as T ?

close as possible to the owner storage record occurrence to
1

7 =

which they belong. The 51ng1e module of f&ass two provides

free pages to the modules requesting one. Th? module -

DB-SPACE 1is in class one .yhiIe th; module LL-IN§5 is in ’
L 3

class two. 'Appendix A, Table A.2 showstthe characteristies .- . 1

\

index directory of storage records.

u.2.2;1 Physical currency location table L
|

e\

LY

A‘hhysical currency location table (PCQI) is' maintained
for different pointer array énd index storage record types.
An éxample of thé application of the PCLT is as follows. -9

pointer array storage record is accessed. The -DBMS obtains

a logical.data base key from a pointer array element.uh'The

SLR is loaded ‘'and the values of one or more of Its fields

%fe exémined. If the values do not satisfy the deslired

R Lo A RN
B S S ULk O A N

B
Y

Ao R

«

s

condition,

retrieved.

be

last accessed has its page number

search

/ &

retrieved fifst.

.of the®pointer array storage record.
record has
appropriate set is located.

i/é considerably.

66

-y

the next element of the

pointer

However, the pointer array storage retord has fo

. .

stored the PCLT,

Otherwise the

to be

The PCLT reduces the amount

Eatd

array, is
Slnce the pointer array storage record

of the PCLT is sufficient to obtain'the page number

owner

of

t

.a

located, then the pointér array for the.

- —— _
: o The above example shows the. advantage of storing the
- : . .
pointer array and index storage records in the 'data hase.
. 'Hougyer, SLRs do not have their storage recordg listed in
‘Z) the PCLT. Repeated accesses of the same SLR are much less
b common as compared with that of the’ pointer array and
indices. Continual update of the PCLT for AThs while
traversing the Ssearching path wastes procéssipg time;
The structure.of the PCLT is indicated beloﬁ =
& - . s ' .
‘01 PCLT physical currency location table
> 02 num-of-entries number of .entries in the table
o - 02 entry-pair , e
e , - - 03 sdbk . storage data base key
/ ’ . -+ 04 cdbkt coded data base key type $,
‘ ‘ 04 an . accession number ,
* e 04 sc . storage code V
v ‘ . 03 sdbk-pg# page number where the storage
; - ‘ record.resides
- - v ¢ .
(- The syntax of command?-to access the entr;&s of this table,
jf are as follows ' .
ET| num-of-entries [FROM} PCLT
PUT INTO :
. &«
- . \ \

~

e VU

(ehtry-num)TH ENTRY PAIR (sdbk, sdbkupg#) M] PCLT
PUT INTO

5 ~

uhere‘enf?y-num igs the entry number of the entry pair in the

table. ‘ : a | .
Three modules proviif/gggnaﬁé:ns on the PCLT. They are
\EELETE-CU§5}OC, INSERT~-CUR-LOC d SEARCH-CUR-LOC. They
serve to deiete, insert and search the table. These three -
gﬁmodules from a class of modules in sulnlevel one.K They are .
N—
- . shown as the first three modules in Appendix A, Table A. 3
,)“ 4,2.2.2 Direct index directory

"—
A
w

-7

. T -

NEAR SET VIA OWNER. The owner and member records defined in

redefined at the Jlocation level for torage records.

i] decating -a ‘storagé record with this placement option

record."ﬂowever, the required storage data base key may.not

& - Dbe availgble to the MCDBMS.
g ' 20 : L~

'~ In order to\EQJkle this problem, there 'is a direct index
;jor,ﬂfqphm:torage record type that requires an 1nd1éation of

[y Y ou;‘)"q ”n
theéﬁg p&iﬁ ‘o f 1ts storage records. Each entry ‘of the’

o
) ! direct index contains an identﬁfication of a.storage record’

and the page number where the storage record resides.

Record types with a placement option of CALC have their owm

. - » .
{) .‘w \ , . ' 7

- - .

A placement option of some storage record is CLUSTERED.

. the schema DDL have 'their relétionshigs carried down and.

requires the storage data base keyl of its owner storage

A
-

<

gm— v -

The DID is storad in the dita base. The data structure o? a

68- £
A

hashing algorithhs. They do not need direct indich. A T
direct' index directory (PID) is’néquineq to determine thg ‘ fo

page numbetr of each girect indgx} so as 'to locate the

-

»

approprlate direct index ~for a given storage record type.

[

.
DID page is

01 DiD PG ' direct index directory page
02 header info header inflormation
02 next-diry-pg# p?ge numbekr of the next page.
the DID . . e
02 num-of-entfies number of entries in the page
02 entry OCCURS max entries TIMES

03 cdbkt ’ ad- data base key type ,
03 sec . orage code . 3) ~
03. pgt page number of the first jdireect . ' \ w
index page of the storag -
record type "
'where‘ max-entries- is the maxinum number of entFies that a -
* DID page can hold. The syntaﬁ of ‘commands tok handle the-
level 02 data ibems other than the entry is
GET] data-name-1 W10 PG . " o
- |PUT INTO : ‘ _ .
%he syntax of commands to handle. the entry.is \)
GET.(entry-num)TH ENTRY (cdbkt, sc, pgg) F QID ¢ 7 L -
PUT . o .
where data-name-1. is the data name of, level 02 data items“ ’
without sublevel 03 items entry-num is the entry ‘number of [
X \
‘the entry within the DID page.) . .) . !
¢ \/"’ v&
*One- DID page occupies one ‘data base page. No other,
.
storage record is a116ued in this page. The DID’ pages _are.
chained tqgether. The first DID page. is preassigned in] -
7 o ' ,
physical storage. The entrigg are not' ordgfeh; Q - i

[

’ N « ., o . ‘ ¢ '

.)y . ' -

e s sequgntdal search ’ is, necessary for' finding a. speciftfc - ,
“' “) o Yo, . R v ‘) ‘
. storage record type A ‘equential seérch ‘could be

\

' sufficient for data bases that do not have many record-

n

types "'Deletion of an e¥try in a DID “page results in
overwrfting the entry to be deleted by Yhe last gncupied
entry. . The number of entries of the page is then reduceﬁ by ~..

x . E
R onec Insertion . results in entering the entry tnto the ’

. :location immediately following the last occupied engry. Tge .i

. number of entries of the DID page is tpcreased by one., If o

f" the DID page is fu ,'the next ﬁID page 1is accessed for .)
insertion. Search for an'empty entry space starts from the:

g first. DID page. “If all the DID pages are full, ‘a free page

is requegted frow the data baseﬁfor insertion. ~The new DID
page is inserted te the req&\oflthe DID. page chain. | Fiue
modules to handle the DID constitute‘ the cl¥ss. two moaules
ST hniof : sublevel ' one. They are 'vDELETEQDIRY{éNTRY,'
RN f&szRT-DIRY-ENTRY MODIF?sDIRY-EnfRY ‘RETRIEVE DIRY-ENTRY

Yo s

) ahd SEARCH-DIRY-ENTRY The last five modules of Appendéévf

C e . ,'Table A, 3 showd‘the modules of this suﬁlevel. o :
I, ﬂ Y . : s) ~
N T 4 . ‘ - t o+ *
L H.2.3 Subléuel Two Y " _
PO - L . o P , ‘ e,
2T A Sublevel two consists of three classes of modules. The :

\ / v

. single class one module CUR-LOC-OP makes use of the Jervice i A

wpro!}ded by’ sublevel ohe- to manipulate the PGLT." A1l
requests to the PCLT are channélled through- this moduIe. s

SN

.Class two modules provide five operat ons to manipulate) :‘A‘ o
storage. record ‘

v‘-dire . index which locates the page where al

.ﬁt:"~

. e
e s A R o R RIS 54 N

N

‘.

5

»
.

+ .
'X ‘
N
N\
& .
: J
8
/o
° v .
A
. R
L

~

.
vy

; currently in the data base. Each entry of the DID points}tq

‘.page <an adcomogﬂtef

:ngsidés. The ' single class three module Ses

searches 'for a -

- - ; . [-
\f;;orage record given a data ‘base page. : .

4 R ' , : ' . i
* 4.2.3.1 Direct index oo ’

I3
1]

) . B N
Class twd modules are repongible for manipulating direct

,findices. Each, direcx'indei'(DI) «contains the infoqmatioq of

all'storage redord occurren%g ‘of* a storage recorq type

the DI. Th; data. structure. for a DI page is as follows

01 DI ’PGi .. direct index page o J
02 header info header informatlon
- 02 next-ind-pg# . page number of the next DI page
* 02 num-of-entries number of, entries in the page

02 entry oceurs max-entries TIMES ' *

03 an storage regord-accession number
03 pg# ' page number where the storage
. . record resides

where max-entries is the qéximum-number of entries that a DI

L
4

. P a
'The data structure of a DI page is very similaf to that
-~y , * . IA ¢ 1 r .
of the DID page, so is the {gntac of commands to handle data

items within the DI page. For t

Tep téd herex The modules which operate on the DI also

g

, begr great resemb}ance to those of thé DID The searching

ca;\b ’Turther 1mproved from sequentiai to binary. Howevér,

for this rqsearch it is sufficient to retainv/xpis

is reason the s&ntax is not

*

I

inq{ficient struoture for reedvery consiﬂerations. The

~

2 modules which operate onw the * DI are’ DELETE-DIR-INDEX
INSERT-DIR-INDEX MODIFY-DIR-INDEX, J‘TRIEVE-DIR-INDEX and 2

B o L . v 4 Wy
. t . v S
' S | . L . ®
' - R S .t ‘.
BT o= P . .
Ve . - . ; e
N “

smncn-nxn INDE'X They are shown as the sec%x'd /to ‘the sixth .

. \‘L)
" “

» " . f . . N ‘

e . . b e enleie s Ab o T ————— s 4 oot § . [N et

-~ . N .

| ‘modules in Table A.4 of Appendix A. -
- /“;

. The data stcuéture for a storage record is as follows '

-

‘%.2:3.5 Storage record . *

v . -

storage record \
storage data base key of the
. storage record

- 02 rec-length’ length of the storage record
s 02 other header info other header information

) 01 sto~-rec .
1 : , 02 rec-sdbk

.

< .

where data-name‘is the name of the*level 02 data item of the # -

’ “.2.3.312ata\base page & o e , .

. e : ‘ »
~%" ‘ The 'size of the LLB is such that it can hold the largest

A

»F",' Co page of the storage deiices. Data base pages are stored as
A 7 <

.Accessiqg a

records of a file with one page per recordr
‘ Y

B

r

- ',recor’d..v of a file by

‘o . - o results. in the transfer of a recdrd which 1is a data base

S R 'page into the, LLB,

o _.considered as Operationa on the LLB. The data~strpcture_

of .

. Co T ‘a data base page is as-fo}lows

ey 01 data base page . - : o
B N 02.pgtheader - page eader . ,g;,**)
d ' 02. pg-number .data’ base page number S \j

£ 02 free space, 1ist header - 4
C gl 8§ :ize A aife of th:.free :gs;e lisffp

w003 1ink - points to the: nex ee space
o ek yﬁ‘ff‘~in the page. . 0

3‘

.‘." * 02 content . :
,“ Tﬂe syntax of commands to access the entries of the storage. ’ t
) " record ié o - ‘ . "
| ‘E}ET data-name[ROM ST0 REC o e
PUT INTOQ)

storage record. =~ -) . - ‘ .

‘t e datadbase file structure level .

Operations on the data base page can*be "

‘.lf, v e ' v R ﬂ'_, ’ ‘ ° -) e -
N .
- . ‘ ¢ ‘)ﬂ .
~ : - a 7 . :
2 .
5 6 T ‘ 1
e asta struotd s ook wtthtn o poge 14 s
The data struct®re of a free space block within a page is as ’) s
follows | ¥ -
.~ " | ‘ ’ S
;3 01 free space block] U
' 02 free space node R o
+. , 03 size .8ize of the free space q&ock)
o - 03 link . points to the next free space
. : block in the page
') " The syntax of commands to manipulate the data items aree , ¢
3 ' Format 1 data ~name-1 M| LLB L . \ T
‘| PUT INTO o
. Format 2 |GET dama-name-Z (var-name-1) |FROM LQB .)
« |PUT . INTO
where T . ’ i ‘ :
C' R . . . N .V ‘
data-name-1 is the data-name for level 02 ‘data items without
, further sublevels, s ‘ : v
data-name-2 is the data name ‘for level Q3 data items of the
. - o *
4 q S i
. 8 . free space list header or thed%ree space block,’
i ' var-name-1 is the variable ‘name wiﬁh\\value equal ‘to the LJ
stqqtiné address of the free space node or the free space
‘ 1istfheadej. I ot , ' ’ .
\ ' ~e
. The " 16cation of the: f?ee space 1list header 43 fixed.
? -
L, '
SR . The value‘of var-name-1 is known. As for free space blocks: r
» the value of . var-name-1 identifies the ‘free space block we A7
’are considering.. A11 space not idenbified by the free space _ ‘ e |
" ' list is Tilled. L S
".l\ N Lo 'A .) « .‘ ' + . a.\ ‘.

The'searching éigorithm for a storage record in a page

.

': must ensure that the storaghkreéord to be located is not a.

‘;Y.free spaee block and-that ‘the’ seafehing hae not- exoeeded the ﬂy“:fg,f;‘

f; page boundary" Thare are five oases‘that the seanchine

. , . -

algorithm has to be aware of. Thé five cases are shown 1in '
k ‘ ' ¢
% -Fig. y.1, The SEARCH-STRING-I PAGE module performs th
{ search. I:.\.is shown as the last module in Appendix A, Tablie Do
! : ‘ . .
% A.u. S .
! | B - ! .
i - S T oA ‘ . " ,
“ ! 5} . Coemy e
-~ .)
R 3 .
e > .

. .
. Cet e ¢ .
. . - .
] ¥ !
. . - !
v * ',
. - ’ ! *
. .
.] - . . “u
N S ' . o
N . ¢ . I RN . 4
. . a
. . v * P ' . .
I'4 - e < . -
. . N . . - v .
. ‘ “y ‘ w .
N \ .o
, . .
. ‘ L . .7 - N ’ . ov
Y [y . . .
' ML N . . . '
ta AN [N
R “‘ B ‘oo
Al FRNTY 0y - Tt M
v . 3 .“V » -~ A st
B . , 2
. [N s .
[P vy S R N
" . Sl e g, . 4ty
. V.:""‘"—\.’ . DN Iy v e
RIS v . . LR
.o . "'\: R
LN . .t LA,
s b
A o
ey L P
ol T Vo
5 ry “ ~ ' o
ot . Lo
Al . . » LT 1, w
~ PR T AT R . . i SR
I O L
s i ?‘-'.: o Gyt e T e
h e) A :
v iy e RO
Yoo . ST e
. “ N * i
L LIINN
. o, .
. e t

NESSS
ANNRY
ETp—— !
1 1
LT

- = - -

. % R
————— TR - — . A - v ER A G R ST b - -
«
e n o " —————— ———— i —— —— —— ———

+=-=4
AW
-t

-
K] '
[I |

i
4=t
N g
|
——

1471

. +-‘T
Fig.)
LS
in‘a page

O O

to————+
PN\
ANANNY
{-mee =

;

- ks o -

/7717
/71773
N111173
| == i
e

.

\11171)
17777/}
11117
Y
117771}

page header
free space

occupied

<

L

d
.
Pmrm—— + BT T T tmmm——t
ASSSAY A AN A S S W AN NN
E\\\\\L— E\\\\\L— ANANRY
jm———— | ———— o m———t
I
jrm————] | m————] | =i t
107020 vrrrri) iz
IITIRY V2270280 v r2007)
AN v1rris Y 017
VAN Y77 A YT
I 721 [PO i 1ys7/7)
e | e
boemmed [] Jomeem 77177
T T
g R R BYI777A
P—— B I I p— ARVt
1710008 1177071 ?§?//A?
V100231 V2223V irrr07)
N AR AR A Y IYI7E
|)]]]
Ryl BRI RV A
teemznd dyss22 K 777771
B VYV VAR MYV
: ; | 3/////:&J :55¢;/§
bt jem——- i i /i
AR R e VI VE
V1117 b emeee VYOI
V22V ZA T TN R Ve
VSN YYD
A B P R Vo7 0)
tom—— +“i+ ----- + b ———— +
. p 3 N
'

4.1 Fivg cases to

* -

-~
X x
- -
-
]
. .
R
; gttt
. e W
I + f
- ' . ‘)
M LI - v
L een 9
',f‘ \.
" - '
A AT =
W N b
N IR, . .
. s - s
: i hk-‘g‘ .
’ . . -
T
R h
p Lo v -
' + \ L
e
PR L - - - -

.
Co
. \

.‘, ~
o ;.‘,

+

Lt

LI

v . - . ‘ , . ‘ 2 \/“
. 4.2.4 Sublevel Three]) .

]

Jne modules in sublevel three all belong to “the same

class. The functions performed by them are the following:
Ve

Space allocation, alternate pagg‘ plaeement of .a storage

_\reoord, deéfinition of the boundary within which a storage

-

record type may reside and a first ‘estimate of the location

* of a s8torage record. . The modules are’ known as ALLOCATE,
ALT-PLACEMENT, APPROX PLACEMEﬁT\and BOUND. They are shown

in Appendix A, Table A.5. Th modules of this level serve

L]

toEsimplify the modules of sublevel four at the:next gher

sublevel. A . :
_f ; \ 1 .) .

4

- , ' 1, .
. The structure of the data base page is based on the one

"

-lproposed R{r Horowitz and Sahnil Free space manig;lation
el

P
;follows .t

-~

scheme. Consider a request ‘comes from a run

store a bit st g of a given length. The space

allocation algorithm assigns the first free space block withrj

sufficient size to hold a storage record during a search for

free space5 The remaining free space is reduced to. a free

space block of smaller size. If the remaining free space

cannot hold an entire free Space node, the free spaoe blo?k

is not-assigned and aﬁzther one must be chosen.

P
. !

« o "

L4 ‘. ! 2

If a[_page does not contain free space suitable for ,

- asasignment, an. alternative baie. ia//selected. Alternate

T '
v . 1 E
. . -~
% v - » - .
“ ' . . N
AN K . . .

Gombuter Scienoe Press, CA, USA,, 1§76, pp.: 1ls2-155

w

R

N 2 . Y P ; A .(.,,‘f},)‘-\
“ 1Horouitz yEig agid: Sahni 8. Fundamontals Qf Daeg Structures,r 33;?vm4~:y

. pages are selected on tde basis ‘of proximit&. The initial

target page is used as a focal point and’ neighbouring pages

are searched -as the radius inéreases stepwise by one in both

directions. .This strategy is used ' for both storing and-

searching of storage records. A module fh@lements this

strategy. ‘ ‘ 1)

If the storage record to be located' or lpiaced’ is of
placement option CALC, the"hashing function is d4pplied to

the storage data base key of the storage record .to obtdain -

the focal page number.' Searching for the storage record or

O

forﬂg free space block td accomodate the sé@rage regord

" starts from this focal page.

4

- s

A module to ‘supply a first estimate of the data base

page for a record first searches the currency location table

for the presence' of the ,storaée record if it is of type
. * [v] ’ . '
index or pointer array. If the search is unsuccessful or

the '_storage record 1s not of the above types, the page in

 the LLB is examined.‘ Tf\the result is still negative,_the

B

' location level DDL is checked to see,if the placement option

is CALC; If all of the attempts, above .yields -an

unsatisfaetory result the page number of the storage reoord

.‘13 retrieved via the direct 1ndex. - i

(5 v ‘
L]

' e
t“

; uf.zl:s' Sublevel Four- St

B

] . N . . 4

fa
1
&
¥

£

number of data base pages in order to fulfill their mission.

A module

storage record. Another module 1

record deletion, modification

ensure that the required data base

before they return control to

modules in the first class are

FIND<STRING.

%

_ The seeond ¢lass
between the ELB aﬁd the LLB without

The

this syblevel. The

‘COPY-LLBéfO-ELB.

S

invoked

or retrieval.
V v

page 1is

the\calling modules:
FIND-PAGE-SPACE

4

any data

»

‘updates *the free space list of a page to adapt a

for ‘etérage

Both modules

in the
-The

‘and

of ' modules transfer storage records

conversion.

~

transfer is merely a bit string transfer as viewed from

dules are known as COPY-ELB-TO-LLB and

There is a Single module in the thirg clase. ‘Previously

]

LLB .

occubied storage space is returned to the page in

the

LLB.

Merging of

free

&space

.blocks

place

Af there an

_class is known as HEALLOCATE.

;adjacent free sphc% block on

\

~storage space' to be released.

‘takes
one jor

The single module in this

£ om " K

the module; within this suBleveL{ﬂ

@

4:2.% Sublevel Five
. , -' y;*.. .

X Sublevel

,?

delete, modify, retrieve and store . a’

%
ﬁhe gtorage

J

hz"

both

Appepd}x A, Table

)

sides

:_of

£.6

s~y 0 i

storage recard.\

N

.the

shows

YV

Tne

five modules implement the basie primitives to '

.w. module to delete a stprage remord from the baSe deallocates '
oa énd ungates the PCLT if the re?ord isﬁ in

DN

PRI

e p— T

Ly p—

e w——

"-struct

. .
’ .
v N
.
. ‘ . . Y
PR . -
[N TR P e TE T VY © e PPTE LI .
. -
. at A .
.
. »
)

: .8 N

thek table. Modification jof a storage récord changes the

dontent of the storage record but not its length. The PCLT

may have to be updated for retrieving or storing a storage

record. Storing a stoxﬁge record requireS‘flnding a target
page where the record shoyld be placed.. .Then find a
neighbouring page to put the record if the target page does
not contain sufficient space. The space is allocated and
the °record‘ is transferred from thHe ELB to th; page.
Appendix A, Tabfe A.T is. transferred from the ELB to the
pege. The four modules of this sublevel ate DELETE S{P-REC
MdDIEY-STO REC, RETRIEVE- STO-REC and STORE-~ STO-REC /

Appendix A, Table A.7 shows the modules of this sublevel. i \\\?,~'

4.2.7 Summary

The modules of the location level are shown in . Fig Ns2.
The numbers at the left are sublevel numbers. There is-a
“total 6f twenty-nine modules in this level. Modules

‘enclosed “in the same reqgtangular box belong to the same
) .

class., S ' v - ’ T

. . . ¢
Ty . .

" The location level breseh}s an abstraction to the . data .

,

base file structure level, 1 details of ' the ;Sage |)
structure, the empty spaces inside a page, the number- of
'atorage records currently 1n the page are 1rrefevent 'to the

louer hevel. Modifiéation ‘of the storagé’ record placement

' t

stratejies doea not affect the modules of the datadéase file
re level if ﬁhe placement does not cross the boundary

&
o e -

.. |DELETE-STO-RECN | . .
/ . - MODIFY-STO-RE& ! "~ - ‘ a,
o METRIEVE-STO-REC! L b
. ISTORE-STO-REC ! |

- o - D - D P s T S N b I O TS S G 0 U i S G5 N S S A G A G GRS SD AR N S D S S e 6P A0 D 4P P oT oD av e o . -

FIND-PAGE- - . \
! SPACE | !COPY-ELB-TO-LLB} #=====-= — o
|FIND-STRING!- |COPY-LLB-TO-ELB!

o o S o o et temmcceremcacec—- +

+
L)

!

!

1

1

1

1

1

]

'

i
————t

-

. |ALT-PLACEMENT
A . IAPPROX{PLACEMENT
* {BOUND

s B \ S
n 'ALLOCATE ‘ .~ (

x

+
'T‘DELETE-DIR INDEX |

- : I INSERT-DIR-INDEX | .
. _ {MONFY-DIR-INDEX® | 4=-w-u- ——————— +
- 1

;

+

{SEARCH-STRING=|
o , IN=-PG{

{ RETRIEVE -DIR~-INDEX

~" |CUR-LOC~OP{, |SEARCH-DIR-SPACE
i

fﬁELETE DIRY-ENTRY

{DELETE-CUR-LOC |

4 |INSERT-CUR-LOC|
o - 1SEARCH-CUR-LOC
R S EERRE +

PRI VR -

+ " {DB-SPACE!

t INSERT-DIRY-ENTRY
iMODIFT-DIRY-ENTRY
{RETRIEVE-DIRY-ENTRY
| SEARCH-DIRY~SPACE

$ ommmmm————

'
-

"
- P LA
v

L

0y

of "files in 'which ‘the "storage record type is allowed to
oo A

‘reside.. s s . -

" 4.3 THE ENCODING LEVELI

s H
»

The encoding level defines how‘data ‘structures in " the
structur{lf~ dlevel are. encoded as bit strings_to be placed in
an address space; The placing of b;t strings is‘lconsidered

.3 N
fat the 16wer level . aqd as such it is not discussed here.

:

he skorage necordcétructure is superimpooed on the bit
. sbring, This name - coincides with that of the DSDL 1978
Spe ifications because theysshare simiiar functions‘\namely,
splitting record in the logical level to a number of
storég records‘and‘and-encoding data item. The 3difference
is that theée functions are performed on the schema record
for the DSDL 1978 definition while that of tie encoding

level ese performed on the structural records. On top of

b

tg}s, index and pdinter arrays are also reduced to storage

.records. ' . : Eﬁ

"

contains a modvle t provide information on the encoding

3-\1eve1 DDL Both subl vels one and twq.contain three ciasses '7

L" of moda}es each. . Th se sublevel _ofte’ and two modules

.,class\ one and\‘two modulea

the fcl ss .two - modulesloonstruct the

-’bointer array nd the claas thnee modules 1mplement the

#

=
7

. pernes |
SRR,

.

AN

R E o

o —————

~i
P

A
I
1

pol . fwd
where daﬁa-name is any of the level 02 elementary items.

The syntax to handle entry pairs in the ISR is as follows

[l(entry-num)TH ENTRY PAIR (key-value, ree-ldbk)E‘ ']Isa
PUT

»
.

. ,,Mhere entry-num is the entry number relative to the ISR 1in

the encoding level buffer. - .

The 1ISRs of a set form a doubly linked list. The two

ends -of the list have . zero pointer .value. A

max-min-key-value field is maintainen to reduce unnecessary
scanning through the ISR. The index is an ordered index.
If " the inaex is in ascending order of key values, tne field
conteins the maximumrkey value. Aveearch for.an entry pair

with, key value great:er than ‘the maximum key value of the ISR

retrieved would result in skipping over the present ISk to

ﬁhe hext ISR to cdntinue the search. The index is arranged
in ascending key values.allowing duplicate key values. The
ISRs can be considered as arranged in ascending key valuds.

If the key'is declaned to be in descending ke& values,

searching starts from the end with the the largest key .

value. The max-min-key-value field then contains the

smallest key value in the ISR. - .

‘o

")
The ISRs can be created and deleted depending on the

' number of elements in them and fhe operation to be performed

on then. Certain informafio% is requfred to handle an

.index. " The ISR containing the smallest key for ‘ascending

key 'or the ISR containing the largest key for descending

v s o

~

key;(ISecond, the mapping of "the indek logical data base key

to” aé index Storage record. This mapping will vary as ISR

‘beconmes empty ‘and is deleted.. A head index storage record

(HISR) 1is created to solve the two problems. It has a

.storage code value of =zero. Its data structure is as

-

folioﬁs: o .

01 HISR ' head index storage record

02 'HISR-sdbk. “‘storage data base key of the I-I ISR
02 HISR-<length 1length of the HISR

02 1-sdbk storage data baseé key of the ISR
- containing lowest key value
02 h-sdbk storage data base key of the’ ISR

‘containing highest key value K

The syntax to handle data items of the HISR is \

G data-name [FROM] HISR) .
INT :

., where data-name is any level 02 datégitem of the HISR.

The part of the logical dafa ba;é key of the HISR-sdbk

' is the logical data base key of the index. The HISR

contains two pointers pointing to both ISRs confaining the
1owest and. highest key vadlue. Changing the ordering of key
prm ascending to descending or vice versa does not alter

the data structure of the index ndr the modules managing the

) L

,ISB: The index structure in the encoding level is shown in

Fig. 4.4,

i

Appendix:. A, Table A.17T shows the modules used "to
implement index daﬁagement' in sublevels one and two.
-\xg')

‘Sublevel one -contains the modules DELETE-ISK, FIND-ISR ‘and

SPLIT-ISR. ' Sublevel two contains the modules CREATE-INDEX,

L s » i T

i
¥

A SR
3

r

DELETE-INDEX,

bomm—
------------ IHISR |~ memacacaaay
’ o H
'
‘ 1
- - '
.]
. v
e T T R, S S
1 ISR} !ISR} ©~ ... {ISR}

[.

R LY

S SIS (1_ [O S

implement a-two level index

DELETE-INDEX-ENTRY,

RETRIEVE-INDEX-ENTRY,

BETRIEVE-NP-INDEX-ENTRY

modules
structure.

depending

on

provide

the

storage record.

tbg
Duplicate key

spe

N (\option affects the médule to 1opk‘

3

operations to
values in an
cification of

for

v

and SEARCH-INDEX-CONTENT.
manipul ate

index

the schema DDL.

‘Fig. 4.4*Encoding level storage records to

INSERT-INDEX-ENTRY,

These

the index
can

This

the appropriate index

The Qmoduié‘contains a number of options.

" Before describing-the options, it is worthy to note that an

index

consists

of pairs

of Kkey values and data base key

value. » A key is the value of‘a data item‘of a record. The

RETRIEVE~F L-INDEX-ENTRY, |

oceur

first option requires a match of the key values. ‘The secodd_

option requires a match in the logical data base\key value.

The third option is to find an ISR with a key value which is

. just greater than the .input key

* ascending

Al

order.

A

for

1

value

insertion 1in

The fourth option is the counterbart of

‘the third one, 1. e.. an ISR with a key value which is just

smaller than the input key value for insertion in descending

order. The final option is to match both the key value

qnd

the;logical data base key value of an entry pair. Note that

" the 'search

can be 1

n the. direction

of ascending or

b L onesi

descending Eey values as specified By an input parameter. f

Duplicate Kkey sga}ches' are allowed' but the number of ,

. dublicates must be specified. A duplicate number m is the
o m'th entry pair with the input key. The above three modules
form. the' basis for - building sublevel two index handling

modules.
y
1

The length of the index can be varied dynamically by the
index storage record deletion and splitting modules. A’(
module to create the HISR and the first.ISR is callgd when

an owner record is created and the owner record contains a:

- set type implemented by index.

The owner record always maintains a HISR and an ISR - for .

' an index set throughout 1ts l1ifetime. Insertfon of an entry
&\\ 71r takes place at the rear of a list of entry pairs having ,
: N
o “the same key value in the direction of search depending on

< the key ordering. Thq next and prior entry pairs are ?

,//defined under the same sSchema so are the first and last-

¢) -
{ elements of the index. For example, if the key 1is defined
V/}q‘ in 'descending order,)the first entry pair contains the "
thhest key value and the prior‘'entry pair ‘has key larger

than or equal to the present key value.

4.3.5 Summary o]

L

S
o 5 o Ao o e
’

. - : - , .
There is a total of twenty-eight modules in the encoding
’ [
level.. They are shown in Fig. 4.5. The vertical

‘parhltioniﬁg shows the restriction of the upper sublevel

[PPSR ——- PEr—

[

|-

w e e et s g

(RPN

. records for r ords‘Splitting.
N

available to a subschema becausg some sets are

"the subschema description.

.outside the scope of the subschema.

¢ 92

Y

' modules of a class to bal} the lower sublevel modules of the

‘ sSame glass. The number on’the left are sublevel numbers.

Storage record i3 the construct 96 the encoding level.

‘Different applications access and update ornly certain parts

of the .séhema record. Partitioning' of a SLR may cause

additional processing for record creation and deletion. .

However, the policy improves performance for access. Tozer
\

[Toze78] has discussed the partitioning of schema records oq

theé DSDL 1978 proposal. T ; |

’” Y

Thé, encoding of SLRs is preferred to that of schem?

L -

‘Users do not access data
values only, tﬁey‘ would also issue DML commands to find

subschema records. The data structure in the structural

level includes access paths. Some access péths are not
' “ ¥

not within

Record splitting to form storage
‘0

records need not include the

pointer fields for the set

| Hence encoding of .

' structural 'records gives the designer a better picture of

the situation.
{ncreases the length of the schema record and =so gives a

better eonéideration for splitting.

The encoding level : provides a level of abstraction to

the 1level above. The data base .administrator (DBA)

concerned - with the logical aperations of the structural

v * __/;

’

7

Moreover, addition' of pointer —fields '

a

Fig. 4.5 Modules of the encoding level -

/

‘\} ’1.«1."
:a LA = / .
i | $=mm—- Y A +
R et + | |CREATE-INDEX |
| |CREATE-PA Vo 'DELETA INDEX |
| IDELETE-PA | | "DELETE INDEX- |
Hrmm——————————— + | IDELETE-PA- '} | ELEMENT!
|GREATE-STR-REC | | | ELEMENT} | 'INSERT INDEX~- |
IDELETE-STR-REC | | |INSERT-PA- | | | / ENTRY|
{REPLACB-STR-FLD | | | ELEMENT} | 'RﬁTRIEVE -INDEX-|
|REPLACE-STR~REC | | {RETRIEVE- I T B 1 ENTRYhI
‘IRETRIEVE-STR REE] | . ELEMENT{ | |RETRIEVE-FL- i
tom—r e ———— -+ | JRETRIEVE-FL=} 1} | INDEX-ENTRY|
. ! | PA-ELEMENT{ | !RETRIEVE-NP~ !
. *i ISEARCH-PA- § | | INDEX-ENTRY{ -
L P _ CONTENT! .| |SEARCH-INDEX- |
\ L e + | CONTENT|
1 s R et +
- on wn on on o - EL L L T e L T —-—-—--—-—+----;-; -------- L
| $ommmccmmaaaa + |- ettt
4+mem—mawe~eet | {CREATE-PASR{ | * . |DELETE-ISR|
|XFER-DECODE{ | |SHIFT-PASR-}{ | . {FIND-ISR |
| XFER-ENCODE | Pl ELEMENT| ! ' {SPLIT-ISR |
tom—————————— + | tmmem—aa ——— b ———————— +
- - - - - - Y - L] f;------::; ——————————————————
‘EL INFO'
; tormmee—y ®

¥

kb ot w2

™ oy cprrie o

i I SR oot

\.w-,v: g ez

- The' location level is concerned with these two fields to-

“ﬁﬁich is appended a third figld.of data. Interchanging the

‘figlds of the;;tructural level data structures would ngt ‘}v
‘affect the; location 1level statistieally, %he effect only

storage record. ‘It is the actual placement during the

. v b
R i dut e

9y

. ‘ ~ o .]
level is free from condideration of "how the structural =

record, pointer array and index are built. Moreover, the . .
DBA need not be concerned with the size of an index or a

pointer array, whether the conStructs'aré full or how many

i

levels does an index have. Variation of ‘the number of

£l
Y .

storage records to implement the three daté structures does.
not affect the modules or the data structures above, This

provides stabiiity to the structural letvel to a certaih

extent. . o
" .) g
The current level élso presents a level of abstraction
i . ! . ’
to the location level. All link fields and content fieldf

disappeared a§n viewed- from . the levei below. Oniy the

- - N ¥

storage data base key and the storage recorq,léngth remains,

L}

pqsition of the content and the link -fields would not affeét‘ -

any module of the level below. Even modifying the coding of ’

reveals 1tseﬁfﬁﬁyﬁamicalfyi' In other words no 1location
.) s .
level module is affected by the variation of size of

r

KON

execution of) the ;ocatfbn le¥el modules that results in the -

change. The [variation in size is limited by the page size
B N .

and hence there 1s a 1limit to_this change. Tfe storage

records whose-size have to be varied and are existing ihxfhe

~

L

95 . ‘A

)
~

data base require reorganization effort that is smaller for

. » M
a decrease in storage record size than for an increase in

(-]

size.

4.4 THE STRUCTURAL LEVEL - - , .

. The structural level 1is ‘the most complicated level of

0

the MCDBMS. The requirement to meet the specification of
CODASYL DDLC 1978 accounts for the complication. This is
because DML statements that act on records at tﬁis level can

be highly procedural. 2

/

E ' .
Several design decisions are made rconcerning sthe
DG |) ’ _ \‘
stﬁucﬁhnal level modules and the data structures. All
mddules in this level contain parameters belonging solely'to

this level. For example, a requesi to transfer*a field from

’

a record in thé UWA.to the schema record mentions the fleld

under its subschema defined, name. The rqu;st wis

. PR
- vy

K T s oA ~
t:g;sformed to one requiring transfer of an-gﬁdrass(}n a UWA

to a field under its SLR defined name. This transformation
. "

takes ‘place 'in the higher levels. ‘This policy reduces

interdependency between levels. ° .

y.4,1 Gonvention of Parameter Passing

)

The CONNECT, DISCONNECT, FIND RETAINING, MODIFY. and

STORE DML statements may involve specification of dne or
more set names to be operated upon. The subschema set names

are converted to schema set names in the subschema level.

9 . - AN

. ! .)

tr

iy, s TR

. _..4"

LR

PN

S

X
ﬁk’a‘

H
*

B et T R S

- 3 N
T i Lt s DI GBII A0 PN PO, ST Kt 3 AT o

3
L

%

.t
¥

.:’

Y
i

. , .
. ')

o

Passing these set names to the structural 1level modules

’requires a dynamic”‘data . structure. K‘ This is because the

number of set names to be ‘operated depends ‘on the DML
commanda

h R A

Set types are compiled and represented by‘increasing set

“Q numbers, a module in the schema leQer encodes the sets

involved 1into an accumulative set of set mumber n has its

encoded set number 2", Sumning the encoaed set numbers
g;ves' us the, accumulated set number. Passifgg this value to

the structural level is simpler. than a dynamic data

structure of a. link- of 1ist"of set names or set numbers.

[
w

Becoding is performed by the structural level modules.

‘Apart from specifying the nameS'of sets involved 1in : an

operﬁtion the CODASYL COBOL JoD 1976 [CODA76] specification

- o6f DML statements also allows the user tﬂ"specify the ALL

option of sets. .. séhema . sets are numbereg

P

chronologically from zero Onwards~ increasing by "steps ef

. ‘ore. Assuming ‘that N is the value of the accumulated set

]

. number, the minimum value of N is Zero. The value zero in N

‘ is used to represent the ALL option witho t biguity.- This

technique is also applied to an input of data identifiers of
™~ . T

a subschema record.
> . \ *

.

It is also assumed that the syntax of the DML statements

are checked during compile time. Whether or not the

)

operations 1ntended are within the boundary of the subschema‘

97

is also checked during this time. The schema level module
‘afaq, supplies appropriate parameters, for example, adqdress
of a field in UYA to be trahgferred, gefore.the call is made

to the structural level. ‘

.

4.4.2 Record and Set R:%reséntaﬁion

"‘ N .
Sets are implementeq by chain, pointer array or index,

. i : ' -
depending on the set ordering criteria. Table u.%lghows the

. : . ¥

”possible strategies for impfementation. .

B T e e e —————— ————cm———— ———
{SET ORDERING CRITERIA INSERTION'POSSIBLB IMPLEHENTATIONS'
R e e L L L LS PPt Fom e ——
K ; FIRST 4 chain, pointer array |
! - LAST ! chain, pointer array |
! v NEXT ! chain i
Vo - PRIOR - | chain !
H -SORTED BY DERINED KEYS { chain, index !
o - - - - - - - - - - o - = e o - - - - - o - <+ .

Table M.1.Possibxa’hays to implement the set; concept

4 .

B

The representatiée data structuie of aSLR/is as follows

01 SLR: . structural level record’
: .02 rec-1ldbk logical data base key of the SLR
02 rec-length’ length of the SLR
02 ec-info other - information of the SLR
02 fec rt-1 record type of the SLR
& 03 next-ldbk 1dbk of the.next record of the
same record type rt 1 o
02 set-flds . set fields
~03 set st-1. set type st-1 for owner record of
" a set chain
04 first-1dbk Ldbk of the first member
, record, in set st-1
04 last-1ldbk ldbk of the last menber
. record in set st-1
03 set st-2. set type st-2 for owner record of
o, a pointer array set
O4 PA-1dbk. ldbk of the pointer array
) 04 num-of-ele number of elements in the
. . : pointer array

03 set st-3. set type st-3 for owner record of

e

'pf J 13 either 1 or 2. The two values of J are carried down

' The syntax of command to handle data items of the content .

where , fld=-value is the value of the field,

L ek
’

,
98
|

L

" -an index set
K oy IND-ldbk 1dbk of the index

03 set st-4 - set type st-4 for member record A
. . of chain set
04 . prior-ldbk 1dbk of the prior member

" record of set st-U
04 next-ldbk ldbk of the next member
record of set st-4 - .

4

‘04 owner-1dbk 1dbk of the owner record
1

o ' : of set st-4
A 03 set st-5 set type st-5 for member record

of index or pointer array set
04 owner-ldbk. 1dbk of the owner record
of set st-§-
02 content-flds content fields
03 fld-name OCCURS num-of-flds TIMES
different field names within the
content fields

The syntax of command to handle the level 04 data items of }

£

the set type and level 03 of the record type are as follows -

|GET|data~name OF rec rt- 1 M| SLBj
|PUT - set st i INTO

where data-name is the sublevel data items of record or set,

the values of i is between one and five shown above, value

for 'alli the syntax of command for ‘data items 1n the SLR.

5

field is as follows

" [GET] f1d-value OF FIELD fld-name ‘ .
uny - - - HTO ’

—N

E]fld-—value OF FIELD NUM fld-num E‘Rqﬂ SLBJ
© lINTO]

ft

fld-name is the name of the field,

fld-num is the field number. ’ > ’ f
The syntax. of command to handle the first two fields is

[

99 : e
GET| rec-ldbk ' |[FROM] SLBj
PUT] rec-length (INTQ

The data . structure is only ‘representafivé# of a SLR

+

because it encompasses all types of set implementation ”éhd

the record is treated as both an owner record ahg a member
record of different sets. It is ‘not necessarw that all
level .03 1tem$ are ﬁresenf in the set fieids.“ Any level 03
item can oceur more -than once if several’ sets are
‘implementqd by the same structure. - The record type pointer

is a siﬁgly Linkedvlist‘of all records of the same record

type: It ia'absent when all records of the same record type’

‘is'impleméntdqby an. index or a pointer array.

w

! The &ata structure shows tﬁat each member record has a
pointer td its owner record for every set ‘it participates
in. This field enables fast access to the owner record. It

also 'indi&atesr whether the' member 'rgcpndﬂ is currently

'éonnected to a set of MANﬁAL insertion option. If the value

of the field is zero, it 1s not connected.

" The présent level h?s‘two buffers, SLB1 and SLB2. . These

"two buffers’ are of the 5émé siie, each can accomodate the

largest SLR 1in the data base. In general, SLB1 is used’as

if it were the only buffer in the structural level. SLB2 13.

used in three occasions. First, a subschema record is
always transferred to'the SLB2. "Second, when a. réeord//is
created, it is stored in SLB2. SLB1 is used as a buffer to

retrieve records so ‘as to determine ﬁhg owner records of

st kv

it
P N U TR

o = m e e L U
- I
JOT — RS S

O T

s

'
3

YR P SR RO SR

e L et R

"
-
F

100 . ;
o .

sets with 'yhicp the created record is‘an'AUTOMATIC’member.
The link'fields of the created .record in SLB2 is updated as
each éutomaticn set - ;wner s dptermined. Third, the set
sglection may reqﬁire comparison of certa{nl fields 6f5“the

- ‘ ”
member and owner records. ' v

o
<

The syntax to transfer the dontén; betweén SLB-1 and SLB2

1§ , L Lo
- TRANSFER [SLB1] To [sLB2)’
sLB2]. SLB 1

4.4,3 Record T&ge Direhtory \

A directory is “required . for various structural

rep%gsentation of the SLR type . occurrences. Such a

directory provides a means to’e?gmine all current existing

record occurrences of a particular record type. The owner

ﬂ?eqokd selection of a member record requires the MCDBMS to

'go through all owner record occurrences to see which one

sat;fies‘tbe set criteria. A record type directory is
q ,
therefore essential. This directory is accessed by modules

of class three and @odified by phe module of class four. It

i

T R e

PR R

T

Ak el

2 - : : <
~ 1is -assumed to be loaded in the main mempry. ‘A ¢opy of which
is also stored 'at preassigned pages in the data base. The
data structure 'of the record type directory (RTD) is as
foilows: ‘ L . ' . . e
01 RTD '}ecofd tybe directory
- 02 entry . OCCURS max-rec-type TIMES
03 rt record type . ' ,
03 rep representation of the record type
p———— L T R T e s — " o

g e pme S
4

TR AN AN I AT
.-

P

- 101

03 type-]dbk logical ‘data base key of a
. ' + header record, a pointer
N .' array or index.

where rep has value 0 for chain, 1-for ‘pointer array and 2

- for index,.ﬁax-rec-type is ;he’maximum number of reéerq type o

available .to the run unit:
The syntax of command to access an entry dT‘ghe'RTD is

GET (entry-num)TH ENTRY (rt, rep, type-ldbk) FROM| RTD
PUT INTO

The header record'for'the'chain represenﬁatidn has . the o

Y

_ following data structure

01 header-rec - record type header record

02 rec-1dbk logical data base key of the
header record

02 length length of the. header record '

02 header- infa header information ’

02 next 1dbk logical data base key of. the

next record

P !

' The syntax to access the lTevel 02 .data items 1is

data-name FROM SLB1 HEADER REC e
PUT INTO .

where data-name represent the level 02 data items

\\ ‘n

2 . N B * , . .
. The header 'record is’nequired‘tg’maintain the stability

" of the' RTD and modifications of the chain would |not' affect

the RTD entry. The RTD.is modified bnl& when a" new schema °

record type is added or an existing one is deleted%i
As can be seen from the header “record and , the data
structure of the SLR, the 1link field for the chain

representation of a record type ,is a singlyf.linked 1ist’

~instead of a doubly linked list. Whén a new record is

created, it is added to the first position of The chain to ~r

ety

Cewdes a

- : 102

minimize procéssingu

3 ‘

A.ﬂfﬂ'SubJevél Zero

Sublevel \zero‘ suppiies ihformaiion on the structure of,

the SLR;,.inQices and pointer arrays. A module in this

sublevel prgbides' such .inférmation. M;dules in higher

t levels aiso requi;e information of the content fields of the

- SLRs. However, tQ}s information is available in,the schema)

i- DDL. Another module provides se}viee to enquirtes to the

| content fields. Certain DML ;tatements require kndwlegge of
the subschema records résiding'in the UWA. A third module , |

§ e provides information to subschema records and ths;convefsion

. ~
of the the schema and subschema data identifiers.:

‘ Thg(module to supply subschema information should
T R theoretiéally reside in ,Sublevel zero of the schema level

y . with the dchema leyel buffer holding a schema record: By

. the same token, the module to supply subschema information

[VRS-

B _ iu . should reside in sublevel zero of the subschema level. The
schema 1level buffer ‘is unneégssary because the content
fields of the SLR coincides with the schema record, thus

“reducing both processing'time and memory éequirement. The

. " structural level ﬁodﬁles are responsible for direct transfer

bepwéen subschema 'records and SLRs. This adds to the,

3 o e complexity of the structural level but reduces processing

"time. The" three modules in this sublevel, S-INFO, SL-INFO

-

_ ‘and’ SS-INFO, are shown in Appendix A, Table A.12.

103

1 N o
. : ! . v . B ¢

4.4.5 Sublevel One ' , - SR T " '

Sublevel one contains ‘three modules respon51ble for “tne
transfer 'of a data identifier or a vdriable between ‘the
atructural level . and the UﬂA." ‘The modﬁies . are .
XFER-ID-FROM-UWA, XFER-ID-TO-UWA anld’XF.Eli-VAR-.FROM‘-UWA. ' ;
This sublevel provides the primitives of data transferreneej; ’ ‘
to’ be used -by modules of the sublevel above. ﬁppendi} A, |
Table A.13 deseribee‘the moduieslof this subleveis

. . s) L1, . i
4.4.6 Sublevel Two . " o - '

[

Sublevel’ two contains two classes of modules. The first |

class of modules are .supported ty the‘modules of the first

-~

_class in the sublevel below. They require the transfer of
an entire ’subschema record or a number of data identifierf/,—\\
“of the subschema record ‘between the UWA and the SLB2 ' These 1
o modules are called by modules in the highest sublevelvof the#f
h structural level. ”There are three first elaaa* modules.‘ | ‘ /‘ -
o , They are XFER- IDS FROM-UWA, XFER-REC:FROMLUWA and
T ' XFER-REC-TO Uwa.

‘The second class of modules provide totally different ' K
functions from that of the first. They perform compariaons

for various options of the set selection criteria as defined 1
in the schema DDL. The owner record of a set is assumed to .

i

reside in SLB1 and the member reeord in SLB2. A module
; . \ }

compares the values of certain fields of tne SLB1 record

‘ . with some fields of the SLB2 record or with some variables

)

- ey _.—'- ° ' Y] ' ’/\\ ’ v PP ‘, 3Tt W I I .'.'."."T“‘.,’.-,..‘J ‘

R T

" 104

supplied by the user in the UWA. It is assumed that a key

‘consists of a single data itemxénly.' Another module in the

second class matches a Kkey field of the subschema member

s

record with the key.field of the owner record. .The_ owner

record type has an index with the key values of all)its
owner record occurrences. Comparison takes placé with lthé
key values in the index ;nstead of loading ‘all such record
occurrences and retrieving its key field for matching. This
module is set aside instead of'being embodied-in the former
module because of a nuhber of reasons; First, no record is
required in SLB1 and SLB2 for comparison. -Second, it need

not call any sublevel zero modules-while the other module

.

requires such a call to get the address of the field for

comparison. Third, iﬁ“assudes'that an index (or_ithe owner

record type exists while the other module does not. The

al@orithms for the two modules differ significantly. The

‘two modules are MATCH-FLDS and MATCH-KEY. These two modules
' are supported by the second class modules of sublevél ~£ne.

Appendig A, Table A.14 .shows the modules of, this subleVel.‘

4.8.7 Sublevel Three

w .
Sublevel three contains ;Eeveral classes of modules.
Class one and two contain three modules edch., The Modules
within these ~two classes have similar algorithms. They.

provide facilitibs’to'handle currency tables. It is.assumed

that “two currency tables are present in the main memory.

They are the record curfency table (RCT) and the set ‘

/ * ';

currency table (SCT). It .is further assumed that the
5 currehcy taples are created during comp*le time. The tabies
i f _— cdntain ,Just sufficient space ‘to hold all eurrencies
requi}ed during\the éxecutioq time of\any runluniﬁ within a
subschema. All entry pairs’ have their second field
initialized to zero.

‘The data structures for the currency- tablés are as !

follows:
-01 RCT record currency table , L
02 entry OCCURS max-rec tides ’ ‘ : - :
03 rt-in-RCT record type . . ' :
03 an-in-RCT accession number : :
} 04 SCT set currency table ' ‘é
L ' . 02 entry OCCURS max-set TIMES. '
03 st-in-SCT : set type o . {
o . 03 1dbk-in-SCT logical data base key of the ;
» - . , " current record of the set type i

where max-rec and max-set are the maximum of schema record !
» .)

types and se€‘types avalilable to th& run unit. |

The syntax‘o(commands for handling RCT and SCT entries are

i ' [.';ET (entry-num-1)TH ENTRY (rt-in-RCT, an-in-RCT) E‘ROH] E;CT
’ PUT ' ‘ R ' INTO] ,
. and . . A: ;
- Em] (entry-num-2)TH ENTRY (st-in-SCT, ldbk,-i‘n-set)llfﬂoﬂ-]“SCT ' ;
t v . PUT ’ , o INTO| ;
where eptry-num-1 and entry-num-2 are entry numbers'. of the
£entry pairs in RCT and SCT respectively. The 1evél 02 items
i . ~ rt-in-RCT and an-fn—RCT éorrespond to those of cdbkt and an
: . " ofsthe logical data base key. ’

3 v
L R .
“ . . l
] . .,
[P

U ST ST TS SOy 1. 11 TN U SR
\

{
l_-
:
Iy
f},
£
¥
k
¢

106

1

[}

Clas§' one - modules are designed to deletg; modifxaigd

i
retrieve’ an entry pair in the RCT while class two modules
J » € M N N
provide the same three functions to an entry pair in the

‘SCT. Egch record type and each set type is associated with

a record typer ﬁdmber or“ set type number as described in

\

'section73:3.4.' Simple sequential search takes place for

.

accessing tﬁé. entries of the cufrency tables. 'The modules
DELETE-RCT-ENTRY, 'MObeY-BCT-ENTRY .and RETRIEVE-RCT-ENTRY
belong to ‘ the fifst class while the dodulés
DELETE-SCT-ENTRY, . MODIFY~ SCT-ENTRY _-and RETRIEVE-SCT-ENTRY

belong to the second class. S

, s
¥

) Besides the two eurrenéy tables, there 1is also a

currency indicator'for thp/current récérd of the run unit

-(CRU). This indicator contains the logical data base key of "’

the current record. The syntax to aécess ‘this value is as
follows |

cur-1dbk |FROM| CRU : " .-
PUT INTO ’ t

v

7

where cur-ldbk {is the logical data baf\ key of the current ‘

record of the run unit. , ' .

Classrthree contains three modules to implemént search
routines‘ to irace through the set membérs. These modules
are ‘used for'identificatién of the owner record ‘under the
set selection criteria. The three modules provide service
to traverse the chain, index or pointer array of the 6uner

record type. As they travel along, they call the module of

-

5\

e

- el

W ek ey L e - P

e s P

e

—== =

L e s IR
-

pae

107
L

the second class of sublevel two to deﬁermine “Whether the

record selected is the owner record.” Modules of the-second

‘class of sublevel two for field'comparlsohs are available to ‘

those of the third class of sublevel three only. These
three modules are REC-SEARCH-CHAIN, REC-SEARCH-IND and
REC-SEARCH-PA. °

. . ' ' o\ .
Updating the ,recogggmtype 13 chain, pointer arrayﬂeﬂ(/

e S - vy - ’
index are the functions performed by the modules in the

fourth class of this sublevel. 'When a record is .created or

-,

erased, ﬁﬁhe info}mation in the record type 1is to be

modified. - The modification involves either an insetion or

" deletion of a record type’ occurrence. The modules to

perform the operations of the fourth . class are
UPDATE-REC-CHAIN, UPDATE-REC-INDEX and UPbATE-REC-PA. The
mdﬁﬁ&es of dlass twd of sublevel twgﬁare avsilable to this
class of modules ;nly. Appendgg A, Table A.15 shows the

.

modules of the p;esent sublevel.
4.4.8 Sublevel Four .

' Sublevel four contains five classes of modules. The

] primitiwes\for index aﬁd' pointer ‘array manipulation have

‘Peen ‘}mplemented in the encoding leyel, but those for the’

set chain have not been'desfgned.. Class. one modules provide
service to connect a SLR to a set chain under various
options specified by the schema DDL. The five “mOQUles of

this c¢lass performs connection in the first, last, next,

¥

I

. .
. ot ' /
.
o, .
.
, . R

N
et v n S o Yo T Bt e X BB o Wb AT e S

P

I A

S

-

\ " 108

L4
¥ £

‘priof position‘and according to th sorted key ordering bf

the set chain. The modules are SET-CHAIN-FIRST-CON,

SET-CHAIN-LAST-CON, SET-CHAIN-NEXT-CON,

SET-CHAIN-PRIOR-CON

and SET-CHAIN-SORTED-CON. The modules implementing the

first two and the last connection types assume that the

owner SLR 1is in SL“BL.r Notice that the laSt choice allows

-

ordering to be in ascending or descending key values with or

without duplicates. All five modules oniy modifies ‘the link'
. e . - .

fields of £he/member records in the set c¢hain. The member

record itsely is not modified. The

performed by a higher Téxel.module.

The second class of modules.eXist to

the modules in the sublevel.above. . They retrieve the first

member and the next member in a set ofv/éhain, index or

remaining “job s
{

reduce th% size - of

pointer array 1mp;ementat£2n and to retrieve the last member !

-

of a set chain. 'They are known as FIND-LAST-SET-CHAIN;

RETRIEVE-F IRST-IN-SET and RETRIEVE-NEXT-IN-SET.

~The . third class - of modules implements three seiection

criteria of the schema DDL. The options

are selection ,z&,

structural céns;raint, "by key, and by matching some fields

*

of 'an owner recoFd with some fields of the member.reeérd or

with some variables. The three modules are CONS-SET-SEL, \

. KEY-SET-SEL and FLDS-SET-SEL. These

}upported b¥ the third class modules in
Class three modules of sublevel three is
th}ee moduies of sublevel four-only.

s - *

three modules are
) ¢

the, sublevel below.

avallable to class

pp———— o et

ra

109

v

-~
A single module, U?BﬁTE—REC-TYPE, exists in the fqurth
' <

class of this sublevel. It acts as a switech to determine.

which fourth class module to calls in sublevel three. Any
creation or erasure of a record would knvoke this module ¢to

update the record type information. !

The fifth class of module, BPDATE -CUR, updates the RCT
and the SCT. It is called tby some modules ' of the highest

. sublevel of the "structural levqbcfjﬁk allows specification

‘ 6f reéaining part or all of the currencies from 'bg}ng ‘

updatedL This module 'is supported by the modules of the
first and second classes in sublevel three. Appendix A,

Table A.16 shoﬁs the modules in this éublevel.

-

. L . \

4.4.9 Sublevel Five

3

Sublevel five contains two classes of amodules,.one

L3N8 .)
module in each class. .Both modules act as a ' switeh ¢to

determine which option of the schema DDL specifiéation is
required anq‘the appropriate lower . sublevel ~module to be

i

called.

v,

The module %/)the‘firqf class qonnects a member‘record

into a set chain.

.choice of lower level module to call depends on the mode of

'connectiop oft a member record to a set cﬁ&in aggrequired by

the schema DBL. Modules of class one of the sublevel below

“~

supporﬁs this module alone.

J ’\ . I3
~ .
, .

{Tt 13 known .ad SET-CHATN-ORD-CON. The

2

B I urrp)

P e 2o

<
H
I
i
H
[N

C modules of.plags:bne assume that thj},member ?ééord to be -

110
The other module aglects an owﬁer record .of a set fpﬁ a
B b . . .
given member record oecurrence. The THEN THRU oﬁ%ion in not .

“implemented. Olle fOlle?B]”dpubts the effectiveness- of this

o ¢ option and remarks that only few systemsfﬁave implemented ~

it. The modules of class three of'the ' sublevel underneath !
dedicates their service solely ' to this module, which is

known as SET-SEL. Aépendix A, Table A.17 shows these two
. ",‘ . . .) ' .’*a
modules.,, . . -

4. ' ’
L e .

AR

4.4.10 Sublevel Six B ’

fo

H
§

-Sublgvel ’six consists of tﬁreé classes of ﬁédules. /

Class one modules concern themselves with set connectlons

Ten
R

"according to. a, specifie set 1mp1ementapion.. All three .3

¥ o

¢

“'cdnﬂeéted resides in‘SLB2ﬂ To ensure that the member record
© 1s™not in the set aiready, its owner record pointer is

.examined before connection. The member+ record has its
; . . .

pbin;@r field updated-after connection but ‘it is not " stored

back into . the aqta base becaugﬁ?thg'memben record may be' .

-

reqbirg¢,to bexconnpctéd to.more than one set. -Storing the

; 'necord aafter ail thefnéeéssary'conneétibns‘arg mdde, reduces
1/0% ,The‘.three;'class one modules are jSET-CHAIﬁ-Cpﬁ,
|- SET-IND-CON and'SET-PA-CON. = .. ' |

Cipsses _;woc'hhd three contain one m®dule each. The

¢lass "two SET-CHAIN-DISCON. module simply ' disconnects' a
¥ B . -
member record from the set. chain.',DisconnegQiOQ of a member

. * . . N . A4 - , - *

VA Dmes e At s e
..

s s M A

o . 1]

* "record from a ‘set 'index and. sef pointer array is

—“/fgf .iﬁgT;mented at this level because they are aOailable inlthe

, . leYel below. Such a stategy is followed becapﬁ@_a set chain

; ' o is within. the: structural level viey.“ Connecti
disconnections a?e,done externally. A 'sét .index“br set

. S pointer array is Simgly a data structure allowing any number
of members in the structural level’ theoretiéally. Their

.; . - actial implepentation lies in the encgding level, so arethe
= modules ;mplgment;ngAﬁhemn Nevertﬁglsss, quulgs‘_ig any

sublevel of ‘the structural level can call these mbdule;.

The class phree médule SET-OWNER~SEL 8selects the owner

B <
récprd of a set given a member record. It provides the

: :
§O) : :
-

L ‘quuie'can_be avo{déd Rf?ause the Voyner record may be
" available in .the. SCT. - Appendix A, Table A.18,shous.the
: o ., modules of tﬁis sublévelz A o
, SN : , . - .
H.W.11 Sublevel Seven ‘

¥

‘& ’ o Sublevel seven ‘eohtains ‘two classes of modules. 'The two

.

'modules of the first class, SET-CON and SET- DISCON deal

B I RN modulé' identifies the 'owner record of the member record
. . within a set.' Itpthenif;nds out the set imglemeptation.

Next, it calls. appropriate modﬁles in the sublevel B4aow o

-

perfofm connection. _Modules of classes one and three of the

sublevel below are used to support this module, Thi%”module

ﬁeéesétry parametérs‘for calling the 'set selection module of.

sublevel five. Ip~also ch;cks,if calling ihe set seiection'

with set.gonnection‘and‘disconnectioh. The ' set connection\

L O oS -

R P R P

oo

‘ ' 112

o

"can be called under different occasions. It can be invoked

purposely for' connecting 'a member record to a set. It is
called wﬁen a record occurrence is created and connection of
the record to all sets'iﬁ‘which it participateé as AUTOMATIC
member,is’needed. Itncan'also be ca@lga if a field of a

’
record is modified .and the field value affects the 'set

membership. The member record in SLB2 has its pointer fielJi'

modified - but it is not stored into the data base after the

execupioﬁ 6f this module. This is because the member record

' may :have to he connected to. more than one set. Storing the
‘member record after modification of all its. pointer fields:

reduces I/0 and thus improving the DBMS performance. . T~

The,set'disconnectién module disconnects a member record.
from a set. It identifie§ its owner record from one of its
pointer fields. It also identifies. the set implementation

8trategy. - Disconnectioh is then begfqrmed. . As in set

IS

E]

connection, all modificationh are reflected in the data base

¥

echft storing the member record. The bagis for this'policy
is the same as that of the set connection module.

The class_ two module SET-QHNER creates an empty indei'or

pointer array when an owner SLR 1is first created. The

module first ideptifies the set 1mp1§méntation as defined in

the structural level DDL. Then the creation of the

construct ‘takes placé. Appendix A, Table A.T9 codtaiﬁsﬂa

description of the modules of this sublevel.

\

pdrgagt 0

eof e 225 e L oA Bt I - A

i e e

LAk Ny WL

TR VY 1 T Sty Yot

113

The modules of this sublevel provide an abstraction of
‘ . A ' 0

the ' set structure .to the sublevels above. All modules in

the sublevels. above consider the set as a ,data structure

‘with ordering but the implementation is unknown to them.

Altering the sét”implemehtation does not affect the dpper

sublevel modules,

4.4,12 Sublevel Eight

\J .
Sublevel " eight’ contains two classes of modules. The

first class contains.two modules, one to connect a member

record to a 'number of sets and the other to disconnect a

member record from a number of sets. The member record {s'

not stored into the data 'base after modification of its
. D ey , . |
pointer fields because it may be- further 'modified by the

mod\lés man;pﬁlating '1t._~> It remains in wﬁLBZ after

connecﬁiqn is performed. An output agaradeter of A both

I3

modules reflects the result of connection or disconnection.

Wwhen the connection’ 1is successful, the value of = the
. ’ AN

parameter is zero. Otherwise it‘cbntéinsfthe accumulative

set number of the sets in which the member record has

-already .been . connected or dispbnnected for a request for

connection or disconnection respectively. Thé modules ‘in -
, ;

this-class are 'ACC-SET-CON and ACC-SET-DISCON. -

The second class of ﬁodule ACC-SET-OWNER calls the same

> ¢ P
class of modyle in the sublevel below. It provides creation
’ . .

of structural. level set constructs;"to the set types in which

o

xh W ArEey A -

-

114

. ' ‘ SN
a new record occurrence participates as owner. It is

therefore called when a new record occurrence is created.

Appendix A, Table A.20 shows the modules of this sublevel.‘

4.4.13 Sublevels Nine ‘and Ten

Sublevels.pine and ten contain one wmodule each. They
are both.use rg/implement the module for record erasure in

sublevel eleven. The module of sublevel nine erases one SLR

from the data base. The record to be erased has no member ,

record currently. 'thn a record 1is erased, all the ¢set
implementational constructs, empty pointer barrays(?and
indices, are erased as well. This module also disconnects
thc"record from all sets in which it is currently a member.
Therefore the module to disconnect a record from a number,cf
sets 1is called. This exclains why this module is one

sublevel higher then the accumulative‘ set disconnection

' moduie. e . : - _ :

&

Sublevel ten is a recursive procedure to erase a record.

, The module traverses every set in which 'the record is an

owner. If the set 'is non-empty, each member record is to be

erased. Each member reco}d then becomes the input parameter -

of the recursive procedure and the procedure calls it;elf
again. If the record ccntains no member }ecords; the module
in the sublevel ih the sublevel /immediately below is cciled
tc erase the record. The module takes cére of the ERASE ALL

" option as specified in Codésyl JOD 1976 specification. The

14

S N A S

P T IR T

— e .

Sr R LT TR R N SRty ¥ Y
.

PR 2

| 1150)
\ /))

module ERASE-REC 1is 1in sublevél nine while the module’

RECURSIYE—ERASE is in sublevel ten. Appendix A,‘Tabie A.21 " \7

shows the modufés in these two sublevels.
4.4.14 Syblevel Eleven

.Sublevel eleven is the highest . sgblevel of the

-

strhcgpral ‘leveI., It implements the DML.-statement on the‘

structural level basis. The module names coincidé with the

module commands. The DML statements implemented have béen’

N _ -
listed in Table 3.1 of Section 3:2. Appengix A, Table A.22

describes the modules of this sublevel.
. . . [

' It is assumed that the current record of the run unit.is
in SLB1 both in the beginning and -at the end of the command ;

except when an error ocdury. ¢

-

. The ' member record is moved to SLB2 in modules to _

“
LAY

impleent the CONNECT and DISCONNECT statements before

. &
calling 1lower 1level modules. The member record is stored

Py .
the member record.

into the data base after all pointer fields are updated in

sfﬁnly two 6ptipns of the ERASE:-statement is implemented.
They are ERASE and ERASE ALL MEMBERS. The ffFEE‘“GﬁtI%n
requires that no member record is currently present in any

of the sets in which the record td be erased is an owner.

The othef option allows the presence of member records but

all member records will be erased.‘.Th§ other two -aptions..

rral e

N It DB UBNNTS ety

mher,

Gt

%
%
¥
o

'

116 \f
. R ‘

§pecified "in the CODASYL COBOL JODMdepend oﬁ, the
rém&va;;class. 0lle [011e78] criticizes thé @therA two
optigns to be semantically 5complex and expects them to
disaﬁbear soonér, or later. hThey are therefore- notf

implemented in the MCDBMS.

No gycle of sets 1s allowed. The tﬁo cases shown in
Fig. 4.6_arg forbidden. This is. due to'th? creation of an
infinite lqop with the reéurﬁivé erasure module in sublevél
tens It.isQEtﬁé'difficult'td determine whether other member

-

.records of C should bg'erased or not.

. tmm———— + tomm +
. ‘ N i i i v
. i v i v L
‘ | mcceee + | ey
N SRS y
‘ ! Amcemmeo + Ve
¥ : | . ' i o l
. i . { |
. i v] v
O + I e +-
LB toroB
| deccadaas I P +
1) [|
1)] |
fm————— -’ H v
A tmmeeeaa +
[S R
‘ Y -, +
| . N P
3 AR S
: case 1° case 2

'Fig. 4.6 Forbidden set relations’ of, the schema record

types. N

The seven formats of the FIND statement ‘'are b'quite

st?aigﬁfforward. They to modify a record may trigger a

SN 1;?§é amount of I/O. The module may modify the set

. Sy

I %

g
17

membership of a reéecord ‘or the contents of the record or

b3

both. If a-data item is used as the CALC key, it cannot be

.modifiedﬂ The record must be erased and recreated.

v

' Thg module to' implement ﬁhe\STORE gﬁatem;nt~stores‘a
record into the data base. Associated with the storage 1is.
phe creation of all‘péiptér arrays and indices”for set types
of whicﬁ,the record type is the owner. . The created ieéord
is ’also conneqted to all th; set occurrences in which it

participates as an . AUTOMATIC member. A new record

‘occurrence’ of .th¢ record type is entered into the record

type information apart from updating,thé currency inducators

involved.

‘i.4.15'8ummary\ ‘ . /
. . e ‘ . N

Fig. 4.7 and 4.8 show the modules of the structural

level. The numbers on the left are subf&vel numbérs. There

‘is a total of sixty-five modules in this level. The large..

number of sublevels in this level is partially attributed to’

" the highly procedural DML statements. Sublevels eight to .

_ eleven can be considered as breaking the DML statements into

smaller units that can ﬂ; handled conveniently. Ten modules

are specifically dedicated to implement the set selection

criteria. Connection of a record to a set also requires ten

‘:modules. . '

4

This level proyides a levélvof abstraction té the schema

levelv If the structural representation of a schema record

\

. \.

4

; +
' [}

. ‘ 1
t o ! CONNECT !
: . 'DISCONNECT:

. . 'ERASE |

: * JFIND1 b
AU . |FIND2 !
- ’ }/IFINDB :

- 'FINDY !

: > IFIND5 !

" ’ !FINDG6 !
'FINDT !
IGET. !

|

!

P —— -

,) t . (\xnl

AR ST s il TR R @z s e V4 B e

{ACC-SET-CON $oqmmmmmem ez L o
. |ACC-SET-DISCON| |ACC-SET-OWNER] L ,

ISETpCON I T ' .
ISET-DISCONI ISET-OHNER!

. [AU A Y o ' .
. % " |SET=CHAIN=CON| +=-ccewm== ——t bmmmmcmee——
" |SET-IND-CON | |SET-CHAIN-| |SET-OWNER-|}

. |SET-PA-CON | | DISCON} | SEL |

6 Bt Dt A, el Dl + tesemresse== + S e

bommm————— ¢«
{SET_CHAIN|* +=-==- ' . |
| ORD-CON| I[SET-SEL| - ‘ .

T - . .
Fig. /,7 Modules of sublevles 5 to 11 of .
the structural level ' ' a

or-'sét changes, the schema DDL is unaffected. Apart from "

B e T

o i

' SET-CHAIN-} L
! FIRST-CON| 4mmmim—mma- + dommmmmecmee +

!SET-CHAIN-} {FIND—LAST- ! CONS-SET- | . ! '
| °LAST-CON} | SETSgHAIN} | SEL} #~cacrm=est i
{SET~CHAIN-] !RETRIEVE-FI! }FLDS-SET-| |UPDATE-| 4-=-ca-a +
! NEXT-CON| } .RST-IN-SET{| }|' . SEL! |- REC-| !|UPDATE~-|
!SET-CHAIN~! !RETRIEVE-NE{ !KEY=SET~ | | TYPE} | CUR}
! PRIOR-CON} } XT-IN-SET} | SEL} #4-ccm==- + bmmm———— + -
ISET~CHAIN=}| #+mmecme=ea-- T S ~ : ,
' SORTED-CON | g
benomccane- + r N
bmmm—————— S B P o + bmm—————— +
. {DELETE-RCT| .DELETE-SCT' |REC-SEARC| |UPDATE-RE]
o -ENTRY} | ~ENTRY} | H-CHAIN} | C-CHAIN}
'MODIFY-RCT! IMODIFY-SCT! |REC-SEARC| |UPDATE-RE} ' ;
i ~ENTRY! | ~ENTRY}{ | H-INDEX} ! C-INDEX} ‘ .
{RETRIEVE- | |RETRIEVE- | %REC—SﬁARCl'{UPDATE-REI . '
4 RCT-ENTRY] | SCT-ENTRY} | B-PA} | ¢ C«PAj
3 femacmccaa- 4 Femema cement tmmmmmmaa + bmmmm————— +
fmmmm——- - ’ '
| XFER~I DS~ | : R
| FROM-UWA] "’ 4ccrec—mcce-- + . !
'XFER-REC~] [MATCH-FLDS| L
! FROM-UWA} |MATCH-KEY | ¢ . !
' XFER-REC=] #-mc=== —— " 4 , |
{ TO-UWA! o | Ce
I SR . .
e . , -
'XFER-ID-FROH: bommmpmm—— . : -t
-UWA| |XFER-VAR- t ¢ '
'XFER ID-TO- | | FROM-UWA|
| ~UWA! demmccmeea +
1 +=tcmeea ——— o
F I + e pomm——— - ot
I'S~INFO! |SL- INFQ{ 1SS-INFO}
0 +--ec-m= + R + tommm———— +

3 ' ~ o) s T N
. . . |
. . .
. . . , \)) L (:w.\\\‘ ia
. - ' . ‘ ' - . .
o . -

JEPT

© .

4.5 THE SCHEMA AND THE SUBSCHEMA LEVEL

‘ . 120
abstraction this level also provides stability to the schema

level module. <;

The schema level includes data types of set and record.
It provides a le\iel‘qf‘;abstract‘ion;l to the DBA. The DBA need ¢
not be concerned with the implementation of the data types.-
A' global view of the data'types is provided for subschema
’définition, monitoring, reorganiiation and ;recovery
purposes. Tﬁe sc¢hema DDL is unified language to define data
types of the entire data base. A very different sybschéqa ¢

DDL can‘- be used to describe the data relationShips in‘ihe

. subschema catered to the need of the particular applicatioqf

However, this would not affect th‘ schema DDL as.far as the
data and its relatiodships are cohqerned. If the data
representation ' changes, only the interface need be changed -

in encoding and decoding between transfers

Tﬁe schema level éontains the ﬁodule DMLP ¢to 'transfef

the sets and dat'a identifiers into accumulative set number

Y

‘gnd accumulative "field number for the structural level. The

module also classifies the data management requests to call

the aﬁpropriahe module of sublevel eleven' of the 1level

//*below. Appropriate parameters are supplied from ‘the

commands.
L4

The. subschema level has data types known as set and

record. Most operations Hare based on these data types.

i ' .

i e e v o Tomh o

@

B it . A

»4

121
8

i

~

There can be many sﬁbschemas~ for a single schema. This

level provides an abstraction to the user because he need

not be concerned with complex ‘data relationships of the

-

entire data Dbase. The - module iw’ this level merely’

transforms an operation from the user’'s view to the DBA's

view of the schema level abstract data types. . The module

transforms subschema data'identifier} record and set names

3 ¢
to their schema correspondences. The. module is known as

J

SS-TO-S-XFORM. Appendif A, Table A.23 shows the modules of

s

levelS five and six.
4.6 GENERKL REMARKS ON THE MCDBMS MODEL

There are three modules in the data base file structure

level, thirty in the 1location 1level, twenty-six' in the

Yencoding level, sixty-five in.the structural level and ongf

for both the schema and the subschema level, resulting in a

total of one hundred and twenty-six modules. In the design

[y

process, the lower level modules are implemented bottom up

becaﬁse the requirements to be met are well specified.r The‘

structural level modules areigimplemented as a result of

iterationé. The lower sublevel modules pro@ide the

primitives to the basic procedures so as to implement the

highly procedural DML. commands. The commands also

determines what particular type of modules are required,

such as the modules dedicated for set seleétion.

. o O B

a b LRSS o TR L oy

ol

. ,.:-‘
BN G = 2 At R

s

B ks

R

R

D s

Tty

&,
%
£
i

. modification of the operating system. Practically speaking,

\d 122 . °

//(///// + The advantages of levels of abstraction have been

applied éo the MCDBMS model from both the stabilify and the:

abstraction point of view. The stability’ concebt is
-

important ‘because the §6ftwa5e "and hairdware -technologies
advandes by ' leaps énd bounds toqay.' In particular, ﬁhe‘
subschema, ghe' schema and the data ’strubtures of the
structural level are independent of physibal devices on the

which the data base resides.
L] . ' ® . j . "
Storage records are stored page by page. This Jrenders

3

reconstruction an easy.'task. Free SPQFE can be gathered

¢

together and storage records can be closely packed on a page

byd page- basis. . Such page by paée relocation would not
affect the plz;?ment mapping algorithms, ‘
. ' L]

kY ' " M

. Theoretically speaking, intréducing'the DBMS requires no

“however, the CPU scheduling‘modyle may have to be modified-

to give hfghef priority to the DBMS or togalloﬁ a gréaﬂer
time slice to the DBMS. For an operatiné system supportigg
the ﬁuytituser environment, ‘the single-u;ﬁr _DBMS'dan,bg
considered as one of the application 'brograms; Security
mea3ures aQ applied tolthé(general file system would'suffice

if the other application programé are not allowed to acéess

data base files. -

~

L

‘With a multi-level structure, accesses can be slowed

down. by subroutinqé calling subroutines together with a

4

3

o~

<
- o . b 5 e T e
S TR T, B L < T T R S R R ey gt A s
» -

123
number! of table look-ups. However, this is the pfice paid
to achieve data independence. This is. precisely the reason
for . CODASYL DBTG 71 to be transformed to CODASYL DDD 78 with

the introduction of a Data Storage Descriptlon Language.

Aﬁ interesting'point‘conégrning the design process is
worth mentioning. Aﬁter specifying the function of each

level the modules of the MCDBMS is built bottom-up level bxa

level. Within each level, the interface- of the top sublevel .

Hw1th the level }bove is specified. _The data sbructure

¢ .
required for the level is'then45§signed. Modules starting

‘from sdbievel‘zero are then builﬁ upwérds to‘;satisfih the

)

requirements of th'e top sublevel modules. .This method works

well with the encoding level. “The sublevel‘modulés‘ of the

_ encoding Tevel -encounter a difficulty ih meeting the

i o \ .)
specifications . of the top. sublevel. q.me new -'data

structures’ have to be added and modules manipulating them

are built from sublevel one. The new data 8tructures are

the direct inde; and ' the direct index directory. - An

itqration is required to build up the modules instead of a

strictly bottom-up iﬁpiementation. A hu*ber\gf§£iiiat}ons
s , 3 ..

"is required to implement the sublevels of the struetufall

level. The aesign of modg;esvto.implément phe'set°se1eetion
eriteria consists of a detalled top-down. specification of
the. interface and a botEom-up synthesis of the modules to

meet. the need. The ERASE module is designed top down up to
the ERASE-REC module.’ ‘ £ ' . R

A : /

.
4
.

F

\) Ly

W —

v N A
N ~N ':'v *
i .) (
. (*1 - o, T F-U B .
ey “" . ‘ %1thothe MCDBMS des1gQ the more the number o sublevels
LENE B f -
Y A, within a leyel, the more .13 g the number of 1terations

.6&rf5rmed in the inplementetion."However, the general trend

| .~ 0T top-down design Yor the interf?ces ano the “ bottom-up
N ' [- - -
: {

. J
imple@g:tation with respect to

P . ﬁgDBMS model. The design process verifies tnet the level{of

\;s .':'~ - ob .
Py I abstfaction approach is a powerful tool to reduce

¢ . ~ . [

o R complexities, to reduce interdependencies between modules

o - Y

and to enforée a ‘clear interfacéPfor the highest subfevels

&

R . R Ehd Q" . F3 1~
”"%%ewﬁhnymmwmwwmwmmwﬁwﬁwﬁ?ﬁ“

WV

o
rgl:‘ -

slevel is greater'_than. the .total. number of modules in all
o other‘levels. The time,spent in designing the structural
> é’i: ‘ " 'levellsmodules is also greater xhan that spent in‘designing
’ }ﬁi" _modules of ell other levels. ¢ - o~ ~ AN

O e - ,)' . } 7 - S L.
'rf ‘!‘“‘q "t. , The MCDBMS design follows the hierarchial structuring
3.'“{’~~1 . ? . %pproach " fhe ng;ﬁles of the leyel apove can only call the

. Same level.; A module in a sublevel can call modules one or

m?re'.suQJevelsv beloyw it, provi:;p/%hey are within the same
be

level. Strict structuring’\ca ‘ achieved by puttlng

N ‘suct’ modules is to make the system look strictly

.
< ’

hierarcnial._ The fnefﬂiciency caused by their presence

'
« f -~

73\ ww\) A . \k

to meet the requirements. The class concept ‘also proviﬂeS'

a1

\

levels is wvalid for the

\ ' good parﬂétioning to reduce considerations of the modules of

a.sublével, ° The totak{number of modules in "the structural?

-
modules of the{levga immediately below it. * This" strNect -

strupturing policy 1s net followed in the sublevels ‘of the‘

[)) N
modules “in between sublevels. However, the sole function of R

g

N~

-

- . . . - 4 » ’)) P N , l‘
R i)) - . o ’ - .
. ’ - , Ad , . ' - [N
. 5 e ", ! ,'.‘ . _ oo ,;M
. v ‘ l : . ’ e
- o Ta ’ R . . B : S ' ')
. . : , , . \ o
. 125 o o ,
L . S * A Yo ’ : ’
would make one hesitate to put them into the MCDBMS. A
' 'Y : . = ol ‘ B
- S T g
') | .n ‘ . 0 .) . . . B ““_;’ ‘ u
- . .(. ' \ .
» LA ' b et
\ : v) :
3 v v) @
. . r
) . . ' ‘a ') T
] : . e . el | o | | ‘
I. ", , . . R)
L4 ° ' i ‘ N ‘
* . - . . o Y :

v ' _.)
. , [« (S .
. . 3 . !
’ - ¢ *
o s . ¢ *
> " » ' ¥
@. ¢ N
3 : ‘ ' ! 1 M
« oy 8 R , N .
r . ! 0
. . A . ‘ . .
. . » [
- . . N . ’ *
.
N 0 ’”
v . we A
' ‘
« - < . -
. . ‘ -
. R * = i
B .o . v t
., " PR - ' i te T \
v “
AN , v '
. . .) PR . .
. . ¢ “
. ¢ . ~ J i ‘ .
' . L !
i A . N .), ' . . o
. . 54 . o - . . h .
. .
l ”) . 4 . r
\ .
o N , o ’) . . re ra i
K. o B R Fa
N B ' ’ o M : ! !
! 0 . B
‘) N . v - . x L
ot . N » . R .
: gL « . * . |
L
- B . = . .
. s i “ .. .

. . . ' ' < N ‘.
) . - e N . ot T -
. . + . ®) . ¢ =" ' : N ?
3 \ . . - . o ' ' !
s . . . I '

. s ' . ' vy . B
E . t ' .] o oo ' . BER '

' .t N . e - '
\ : . N ", ») f . PP ‘v , .

’ . .) ., . . . ' . ‘\\ \ * T ‘

N . f . . ' ’

. - L - . . p N . '
2 - ' ! '

N “ﬁ " . N 4 - N vt ' v ' * '
. v ¥ M N
. v . I ! ¢ ‘- - ¢ ¢ 2 - L . N * :‘
4 . . i, L. C U - 3 P L . ‘
« ‘ " - . : f . . - {
. s . - + A . . L * ;' '
- .. ' . I Vs . - v, I ot e . 1

» L
Al
*y
g
,
N
gf -
Q
¥
i
“\
i
E, s
§ \
4 ’
&
5
&
k4
&
-
s
i
:
¥
n-
h
5
*
i
&
g v
Il ©
d
.
-
3
A
o ot -« .
3 . 2"
] L
3

modules

Chapter V

Y

»

o~

. ROLLBACK RECOVERY SUBSYSTEM

~
This chapter describes a fast rollback recovery
‘Subsystem. The? goals,‘ approach and aséumptions o[the

recovery system -are discussed. This 1s followed hy \a

e

description of the modified rollback strategy. . Two

imﬁlemehtétion strategies are listed and compared. The

»

the rollback recovery system is evaldated " and its
. : ’ Ty

limitations are listed.

23

‘
L\

P N

5.1 BACKGROUND -
5-1‘-1 Goals _“ .

The recovery aspect’ dealt with’ follows logically. from
the requirements of the 1&&? CODASYLZspec{fiéaﬁions of the

DML commands. When., a DML command éannot proceed -for sqﬂé

4 .

reason, all changes made to the data base gince the start of

the command . must be thone. This' type df command rollback :

P " . L1
is one of thé goals of the recovery subsystem.

»

-

" Expanding the command rollback cbncept would result in

run unit rollback. The run unit may have executed a number

aof .DML commands suéceésfully. These commands could result

[4) . .
in modification of part: of ‘the data base. The run unit

' comes. to a pdoint where a DML command fails 'to funct¥on as

expected. Several alternate paths are tried but the efforts

4 PRI . -
~ o
[}

of the ' rollback subsystem aPeodeécribed. Finally

A

*

127

© v 'Y

seems futile. The run unit cannot proceed any' longer. A
run unit rollback ia/required to undo a11 changes made to
'thf data base by the successfully executed ‘DML commands from ,'

th% start of the run unit. Run unit rollback is therefore

"another goal of the subsystem. '

. « ‘4 . n
The conventional‘methqd of command and run unit rollback

iS to dst;re thefbefore ihaggs into a before image journal

tape as described in sectioﬁ 2.4.5. * Rollback requires

rewindiné the tape and replacing the data bésé pages by the

before image pages. This process can be speeded up ﬁ}_\

“storipg the before image pages in a.random access storage {

device instead-of on a tapé. This is known as ,"dumping ©on

e R« o e ey e 3 e

the fly" [Téze??] The time for command rollback may be

tolerable but run unit rollback could take unacceptably long

P S

time. The goal of the .present rollback subsyspem is to
'"design a fast rollback subsystem for both’ ﬁhg DML' command

and the run unit.
5.1.2 Approach

. The - carefulv replacgmeﬁt techaique [Gior76], [Verh771,
[(Verh78) is chosen as the starting point for the desigd of
[the rollba;k recovery subsystem. Careful replacement is
applied.tq physical storqge 30 as .to keep ;ne upda : \
sequence as safe as possible. The probability of havi::~:§>?‘t .

inconsistent file 1ereduced to a minimum. The details, of

the careful replacement scheme have been described\,in

s o * ‘ \\

[, - e - g vee 4 ———

T T et ¢ e spame e

d.

' section 2.4.6.

.the termination of the. command.

128

If all updates from a DML command can be reflected 16
th data'base by complemeénting a bit, fast(éommand rollback"
can(be achieved by leaving the bit as before. If 5 DML

command executes successfully, the bit is coﬁplemented at
J - . L3

"By the same token, Iif thef' run unit terminates
Eéccessfdlly,' a bit is simply ‘complemented to pyt all’
changes made by the run unit into effect. This bit flipping

techniqueoprovides a fast way of recovery rollback.

However, any update to the data base:is not limited to a
single page but would affect a number of pages. WThese pages
constitufe a logical unit of,recovery;leiﬁﬁer for command or
run unit rollbgck. The.number of pages to be modifieﬁ by

each command is unpredictable. It is necessary'to extend

and modify the concept of careful rep;acemqnt from the

physical scope to the logical scope of application.

5.1.3 Assumptions ‘\;) . D

13

‘The goals of the proposeﬂ-rollﬁaek subéystem-have been
presented. The subsysteq, however, requires.an environment
within which it can operate. The enﬁironmenb assumed is the

MCDBMS and the file system described in the two preceeding

" chapters. The MCDBMS 1is assﬁgg} to g!'ab;e to detect the

\

11

. ﬂqr condition so as to ;nitiate rollback r\ecovery. The'

RS

e e am o "

4 i e A SRS R - it

N /

extension to adapt recovery modules. It is also‘\ésspmed‘ {

&
file implemented in chain blocks would propagate

129 . -

errors that the rollback recdvefy'subsystem is tackling are
logical/ﬁype”of errors caused by the execution of the DML
commands. Fallure of the MCDBMS to detect an error

condition would not give rise to rollback recovery.

Other techniques are assumed to be available to handle
other types of errors, such as a disk head crash. The
rollback recovery subsystem is not designed to tackle such

hardware failures.' M "o

The MCDBMS ‘ and the file system _assumed requires

that there are at least two file buffers in the PFS. Each *44
bu{fer cép be of’fhe size of a physical blogk or of a 'unit-.

of I/0 transfer.

ZTﬁe.¢description of the PFS described in section 3.4
allows non-con&igious allocation of file space Dby chained
blocks or file maps. ¢ Verhofstad [Verh781 remarks that a

)
replacements if the careful replacement technique is used.
If a block is ?o be replaced, the link pointing to it has to

be ubdated. Careful replacement requires that the link is

’
updated in a copy of the block cantaining the 1link.
ReﬁTEETﬁE’\h block would result in req}acing all preceeding

blocks in the link 1§st of blécks of a file. Chained block

file structure are therefore inhibited.

e e T > o o r o]

1 9 s —

TN
*
130 -

. i ’
‘The file system 1is assumed to have file directory

. similar to that of 0S '360/370, as described by Madnick and

Donovanl. Each storage device contains its own device file
directory (DFD). The DFD is a Rierarchial direei;ory for all
files‘stored'in the"storégé devices. A special storage
device - contains its own DFD with a catalog entry. Each
catalog 'entry contains a file 1dé§tifier and the

correspopding storage device number of the device on which

the file resides. The Active File Taple entry also contains

the - storage device number (dev#) where the file is stored.

The special storage device with the batalog entry is defined

as device =zero, DEV(0). The other storage devices holding

data base files are 1dent££ied as devices one to N, or.

EV(N).

abbrivated by DEV(1), ...,

~

A further restr}ction.is that there is no pointer from a
chi}d pagé to its parent page. This is because if a child
page needs careful replacement, its pareht needs to be
carefully replaced as well. A copy of the parent page 1is

made to update'the pointer to the new child page. All other

child pages of the updated parent would require a copy to be

made S0 as to update their parent pointers to point to the

new paignt page. This would result in replaceﬁent

propagation as described before. ' The res%riction is

therefore set to avoid the disaster.

[

1 Madnick, S.E.; and Donovan, J.J. Operating Systems,
McGraw-Hill, N.Y., pSA, 1974, pp. 520-523.

¢

P SR

e LI w1

S el AS b

e OTERLE DemnFe T s

g
X
v

o
e S

ST AT A PR I oy Yl

e e

- 131
‘With a separate DFD f6¢ eéga storage device, an inherent
restriction is that no file can cross storage device
'bqundaries. In the'event that- a file is too large for a

single. storage device, it is split intb two or more files.

. 4
5.2 GENERAL CONSIDERATIONS

This section 1lists the data structures used .for g

gecovery. Tt also describes the recovery strategy and two

B ” . s o
alternate ° implementations. The pros and cons of the

alt?rnatives are discussed. Further . data structures to
distinguishing whether a page is a copy of the original one

are described. ’ .
5.2.1 Data Structures for Rollback Recovery

5.2(1.1 Physical blocks

3

Each 'storage device has :a hiefarchial DFD. The root
page of the DFD is known as the device head file directory
(DHFD). According to the careful replacement poliey, when a

page‘is modified, a copy of the page is made. \Hodification

., takes’pladce on the copy. The directory page pointing to the

Therefore in a file hierarchy all ancéstors require careful

replacement, including the DHFD page.

. /

v

‘-tackle problems such as free space management and

~original pagé also’ requires-a copy to pointito the new page.

B PV .

N AP IORT T we S me

132
2

In order to maintain the stability of the catalog of
DEV(0), the catalog is not replaced. The entries in the

catalog only contains the device numbers corresponding to

+ found in the DFD of the device, As. long as replacement

takes place in the same storage device; the catalog need not -

be modified. o .
' . - ~

In tﬁe MCDBMS one physical block is wused. to ﬁold‘ one

data base page. Careful replacement gives rise to‘copies of'

the DHFD page.. A method is needed to indicate the location
| ‘ ', of the DHFD page. Viewed from the PFS, a st?ra e device is
composed of consecutive blocks. The first five physical
blocks are reserved for careful replacement of the DHFD

page. The blocks are numbered from zero to. four.

* Blocks two to four are udéd to hold different versions

of the DHFD page. One b}ock holds the DHFD page before the

start of the executing run unit. Aﬁotﬁer eblock holds the
DHFD page' after. the completion of the most recent DML
command bﬁt before the executioﬁ of the prisent one. The
third one holds 'the DHFD hage during the execution of the
current DHL'command. Block zero is used as a pointer to the
block containing the DHFD page before the start of the

executing run unit. Block one is another pointer to point

to the DHFD'pagd of the most recently completed DML command.:'

<

the file identifiers. The exact location of the file is °

A s oo m £

PO PR ggies

® | ‘ ‘ 9/ 133 . i
. (| A - N
’ BLK(0) BLK(1) BLK(2) BLK(3) BLK(4)
AV . +——-----------—--——---.---—-‘---v-u— ------ +
: . 1333333 44440y i ! § - C ,
- ~ 13333331444444) | ! i o~ ;
1333333444444) DHFD | DHFD | DHFD |} ;
1333333 1444444) page | page | page | ! :
' 1333333} 444444} : | ! 3
1333333144444 l{ i i
o - e il T +
" BLK(0) = points to the DHFD Qlock of .
the most recent run unit SR
BLK(1) - points to the DHFD block of .
. ‘ the most recent DML command
; : - BLK(2) - DHFD page of the current DML %
: : command ‘ ° . .
, . " - BLK(3) - DHFD page of the most recent - .
: : R run unit ,
; . BLK(Y4) - DHFD page of the most recent
s ~N ' * DML command

Fig. 5.1 An example of the first five pMysical

" o ' blocks of a storage device
- \ As *an example congider the situa?ion in Fiﬁ. 5.1.' "\‘;\
Block:- zero contains the repeated value th>ee. CEr’l‘l’nis value‘
indicygffls that block three _coﬁtains the DHFD page of the
most recent run unit. Block one contains the repeated value
four: This value indicates that block four contains the
DHFD page of the most reégnt DML command. The block that is

not'beinglgointed to is block number two and it contains the .

1}

-~ DHF D paée of the current DML command.

-

L e TRl AL

The syntax of command to'store or load a ﬁhysical block

& - | . is as follows:

[

S . LOAD BLK(i) OF DEV(j) INTO BUF (k)
z? .. STORE BUF(k) INTO BLK(1) OF DEV(j)

where)

BLK(1) is:block nqéberyi, 1 is the physical block number of -

PR

NIRITOS Y e T 2

e LT PAIY A N

138

f
[T,

the storagé.device,

DEV(J) is the storage‘device J, the value of j ranges from 0

~to N, ‘
BUF(k) is the file byuffer number k, the value of k is either

)

1 or 2.

The data structure for physical blocks zero and one " of"
storage devices O to N'is as follows:

01 PHYBLK o i physical- block
02 VALUE p OCCURS M TIMES .

wherer M is the maximum number of integers a‘physicél block

can hold.

-

-in other words, th; entire block is filled with repeated

numbers of the same value. This value is the physical black

number where the- DHFD page resides. . l

- ¥

\The syntax of commands to retrieve or store the Qalue of
p when blocks zero and one are loaded into the file buffer
are as follows: . - /\\f

~ GET VALUE p FROM BUF (k)
FILL BUF(k) WITH VALUE p

Note that blocks zero and one have to be in the buffer only

during the retrieval operation.

5.2.1.2 Device Directory (DD) . v

[o

Two arrays are used in the file system to indicate the

'}values=of ‘Dlocks zero and one of each storage device

containing data base files. The first array is the Run unit

Device Difebtory'array (RDD) of the most nrecent run unit.

[
- oy

- . ‘e,

PR re st

A\

i

s

=

2135 o

L

.The second array is the DML Command De{ice Directory array
.(CDD) of the most of the most recent DML command. RDD(1)
contains the value sto§ed in block zero’ “of device i.
Similarly CDD(J) contains the value stored in block one of
deyice J. Both arrays have N+1 elements for devices zero to

N.
~

The two ar}ays redﬁce I/0 considerably. Consider the
case when these two arrays are not included in thé rollback (:7
recovéry subgygﬁem; In order to locate the block number
conﬁaining th; DHFD page of the current DML Eommand, blocks
zero and one are loaded into the regovery subéystem. Values
in the iwo\blocks are~extractea. As 1in thglexample of Fig.
5.1, f;.block zero‘contains the value three iand block one
§ontains the value four, the remaining blo;k is blopk two.
Block two thgrefore cqntains the DHFD page‘ of \thé current
DML command.- .However,. ¥he RDD and .the CDD arrays contain

3 the values which blocks one and two contain. Examining the

appropriate elements of these two arrays would also give the

desiréd remaining block number. These arrays can be made to

occupy only a smail amount of the main memory space. Each

array element only requires a ninimum of tﬁo bits to
identify the three blocks involved. ' -
When a DML command finishes execution, each device with 3 ,
-

its data base page modified requires updating their block

one value. The value of block one ‘is switched to point to .

the block containing the new DHFD page of the terminating

i

.

136

PR

DML command. A Modified Value array (MV) for devices 0 to N

is used to indicate the devices‘ that haye been ‘modified

within a DML command. - The 'elements of ;ne MV array are
initialized to zero at the beginning of a DMl rommand.
Every time device is modified, MV(j) is incremented by

N\

S

one. At command terminé&ion time, all storage devices with

their corresponding MV array element greater than zero has

their block one value swifﬁhed to point to the new DHFD

block. .
! ¢

-

Similarly, an array is required to indicate the devices

which have been modified during the. lifetime of the run‘

.

unkt. The array is known as Cumulative Modifled Value\array

‘(CﬁV). The elements of the CMV array are 1initialized to”

ero when a run unit starts. Every time when a block of a
device is modified, the corresponding CMV element is

incremented by one together with the MV array element. When

the run unit terminatest all storage devices with the

corresponding CMV element value greater than zero have their
block zero modified to'point to the new DHFD block. Both MV

and CMV arrays have N+1 elements for devices 0 to N. When a

run unit terminates, block zero of 'a number, of ' storage

devices may require updating to point to the new DHFD block.

If a system crash occurs during this process of wupdate and

the content of main memory is 1lost, it is difficult to

determine which storage devices have their block zeros

updated and which ones _do not. The data base would be left

<

- Grt st vy A b - Q.

.
¢

S K ¥ A '

-

in an inconsistent.state.

. A - ;
The. problem described in the~pn\$eedin paragraph can be

u tackled by aintroducing some data structhres into device

zero. Blocks two to four of device zero are usedfhto hold
various vers;ons of the device directory.' One of the three
blocks. holds the RDD array for the most recent run ‘unltn
Aqother block holds the CDD erray of the most recent DML
command. The olock left is used for switehing. Block zero
contains the- block' number of(uthe» block holding'the RDD

array. Block-one contains the block number of the block

holding the , CDD array. Fig. 5.2 shows an example of the’
. \ %

w

BLK(O) BLK(}]) BLK(2) BLK(3) BLK(Y4)

o . - ————————— - —— e e *
S YR 12222221 ! ! '
: l4ubyyy 12222221 CDD | used | RDD |
(Auhuyy 12222224 - -} for | . i
a3 2222221 lswitch} 1
jUuylyy 222222 array 1ng !array P
LyuuLyy 2222 2' : ! .
Fm - = o el s e e ot - . - o VS 4 = o o +
BEK(O) - pointer to the RDD bloe£
BLK(1) - pointer to the-CDD block .
BLK(2) - block containing the CDD array - .
BLK(3) - block used for switching-)
BLK(4) - block containing the RDD array - !

Fig. 5.2 An example of the first five blocks of
storage device zero

‘first five blocks of storage device zero. . /

!

Basically, when a command terminetes, a module switches

block one to point to the new DHFD block for devices with MV

"element greater than zero. ﬁfter ﬁgi update is- completed,

" the new value of CDD\array is stored into phe buffer used

" : +

L

rE

‘138"

: o o . v - -

for switching An- device zero. Block one is then set jb

© - point to the new block containing the up-to-date CDD_ values.

.t

-"

éwhere CDD~ and RDD resides in main memory, ‘and the transfer

Iﬁ ah error occurs during updates of bloek one of? various
devices, the CDD values pointed to by block one of ‘device

zero are r@tﬁieved~and used to reset the. block one value&@pfg
I

various devdces for command rollback. ..
*» ' °)

-

The ’syntax of ‘conmandé for data traaner‘betqeen the

RDD,-CDD)arraysuand/ the Dﬁ, in the -file buffer are as

*follows: . Lo
4 Y/ %
TRANSFEK DD IN BUE(k) TO CDD
- . RDD" .
. .TRANSFER CDD TO BUF(k) i 3 .
: RDD -

»
s

w
13 the entire length of the DD directory. The'arrayz&engthe
L DD, CDD and RD\D are the same. . . .Y
C .
Ll ‘ el

E 1!% addition, block five of device zero'is used to hold
,the currency location table (CLT) before a Q@L command** is

.executed The syntax of fommand for CLT transfer is as

f llows 7 .

\CLT BUF(k)L | i oS
FROH | .

' the PUT command cbpies»the entire CLT #ntd buffer k and them™

T GET command-copieS‘the CLT stored in the buffer into the CLT

» , . . .
s in_main;membry%' We assume that a CLT can be seored by a

physical bldck. . If the size of a CLT is larger than a

. physical blbck,ntnig .command can easily be expanded to

- . -

L 4

I
¢
L
"
£
1

!

i
|

> “(. -.I . _
B 139 ,)
. satisfy the requirement. /
' " Block six of' device zero is used to hold the content of
C | - adata base record or a variable in the UWA if. the DML
' ‘ command requests data to be transferred to.the UWA. The
v ST dat¥ structure of block six of device =zero is as shown
) .+ below. ’ L
¥ 01 PHYBLK6 ~ . physical block six = ' -
11 o 02 - addr starting addre#s of ‘the dat®
i ’\< ‘ .transferred to the UWA .
o [o0 02 len length of data to be transmitte
r : . 02 content content of data -to be transmitt
"\ o : : . 4
. N Since a DML command transfer§ a record or a variablegat‘ia
. ’ . , . . . * -
. ; '\tihe, block six only needs to have a ma}imum length of one
* ' subschema record. S | Lo
. ‘ ’ -‘ . l v .
. ‘ “
Cer B : ‘ The syntax of command for transferring datd fFem the UWA
: _ to, the buffer is as follows £
f ' TRANSFER AﬁDR addr LENGTH len FROM UH@ TO BUF (k)
} :§9eie addr and len are the address and length of data to be
7 . & . - ' . '
é) transferred in the UWA. Note that the valués of addr and
T ’ ’ len are also stored on . BUF(k) together with the content
) spectgged by them. - L ’
r r ‘A ') ™~ a -
In order to reload the data back to the UWA, the
A . following commands are used. S —
n GET ADDR addr LENGT& len FROM BUF(k)
’ y ® TRANSFER CONTENT OF BUF(k) TO ADDR |
A . . .addr LENGTH len OF UWA ,
i ') ' . . \
, ' . 5.2.2 Implementation.Strategies -
¥ % o - . g ’
e . 8 e :

140 .

* 5.2.2.1 Physical implementation.

5

Jhe careful léepLacemenp scheme 1§equ1re3‘ that }every: ’

L P

update 1is performed on a copy ‘of the compone which

P

r#places the original only if the update is succes ful. Iﬁ

ordeh to achieve careful replacement on a number] of pages

3 modified instead of_on a single page, a c ina n of the ~ . -

‘ i “ careful replacement. and differential le techniques is ;
B © used. The differential file replacgs .the original by |
{ ? ' esreful .replacement.a The unit for the. differential file is - :
V % ,'. ' a DML command' or a run unit. | ‘

N | _ . :

\ ? . Under the careful replacement . scheme, whenever a page is
| E to be modified, a copy is made and modification takes place
\ ;_f L © on the,qopy. This strategy is modified such that only pages
‘ : ' R that are not modified within the same DML command needs a
{ % . . copy for update. ?ages that have been~mpdif1ed in the -"same
; %. ' - DML command would result in update in place on the modified
| ?’ ' - copies. o . " . . \
L o . SRR '
¢) , . Consider the device file directory as shown 1in Fig., ‘ j
l ? 15.3. The diagraﬁfshows a binary tree st;ucture. In reality a !
S ¢

the tree is'n-ary, whe}e n is the number of entries that can f ' i
be held\ in a directory page. For purpose of illuatration
the file hilerarcliy is assumed binary. Block A 18 the .DHFD

block. . Assume that when a DML command starts exeguting, the
data base page in block D is to bg modified. .A copy of .

" bloek D is created and,modificatidﬂ takes place on the copy.
' W '

e

N b AL R - (Y WM e s T apaTte e

TR T e

141

-t

Al

+=+

et

=4

E}g. 5.3 A device file directory as a binary tree
\ i

A eopy of block C is then created. The appropriate pé&nter

entﬂ&.is updated to point to the copy ofrblock D. Similarly"

e‘copy of block B is created to poent to the new bloeck . C.

Since the DHFD block is itseff a copy, update in p}ace on

block A is made to peint to the new block B. _Coples are

made from leaf to root accofding to the leaf first rule.

Coe

If block D is to be modified again within the same DML

. eommand the operation is' performed on the copy of block D

previously used in the DML .command. Update in place occurs

.. 'on the copy just as in the differential file technique.

Blocks A, B and € are not affected.

L]

%L

If bloeck F néeds modification within- the same DML

'cpmﬁand, a copy is created and modification ﬁakes place on

i
cesman w eme s o s et e -

h

; : , ‘ . : g
- - g , ” i
~,) - we
1~ 5 : 4 ' : - s j‘
‘ ‘ the copy. A oo y of block E is then-created and modified to :
| point to pew block F. The copy of block B, which was ™

‘ . ' o créated. before, is updgted in place to point to the new

block E.

3 - . N <

. : o flh thié\;xample it can be(seen that if strictly careful
k replaceméﬁt is to be used, a second update to block D within
. » LTy

the| same DML command would result in the creation of 'qppies

of blahks D, C, B 'and A as well. However, the Hodified .

t ' . scheme performs update in place on block D only. Blocks C, N
] - | .)

" .B and A are mot affected. An update to block F would result

e]

in duplicates of blocks F, E, B and A 1in strict careful

replacement while ohlyucopies of blocks F and E are created

B e o DRI

in the modified scheme. The modified careful replacément

-t

scheme reduces updates. It also explains the data

structures of blocks two to four for storing the DHFD pages

- e

of Q devicif Only one block is used to store the DHFD of an

. executing DML command. This block 1s always updated in

b place within the DML command. ‘ ' \

, .
¢

~ When a DML command terminates the MV artay is checked.

N

For all the devices with the MV element value non-zero, the

s o s T G T

pointer in block one is switched to point to the. DHFD block:
of:the terminating command. The corresponding CDD elemenpé
are also updated. After updating block one of the modified oo

' devices, the value of CDD is stored in device zero. Block

, one of device =zero is also switched to point to the block i | w\

\containing the new CDD arrai.

«

-
e n mema e svameen e e R

L.

w3 e b e 0w

e

g, o

e o ws

L et g

143

,) ’ . .
(, ———

-~

"The coﬁmand' termination procedure dgscriﬁed 'aQ8ve
(préqﬁces ;areful replacement of a DML command as a logical
unit. This means that al; blocks modifiedpnby the command
are carefully replaced. The>eareful replacement of blocks
modified by a DML commahd tékbé{g&ace~in two stages. First,
the DHFD bBlock of each device with modified blocks are
carefully replaced by switching block one of the device to
pﬁint to the new DHFD block. Seéond, the new block one
values'ére stored in the CDD. Thé new CDD 1is stored in.
device zeso and . block one of device zero is switched to
pdint to the new CDD blqgk. This last switching regulﬁs in
careful replacement of the blocks modified by the DML

command as A 1bgica1 unit.

Note that the modified careful replacement scheme can

also be applied to a run unit instead of a DML command. The

'rhn unit termination %récedure is similar to that of the.l

command termination. Updates are made based on the CMV
array instead of the MY array; Block zero is switched.
instead of block one. anally, bl?ck zero of device zero is

switched to point to the block containing the new RDD array.

5.2.2.2 Logical implementation -

+

There are basically two ways to implement the modified
careful replacement scheme. The previous section describes
an 1mpiementation that works in the 'physicél level.

Physical_ blocks of storage devices are used for éwitching.

/

S e o

14y ' o
J *

An élternati?e to the above is to perform modified careful

replacement in the DBMS level as described.below.

Peen o -

.

P

’

The file size .of every data base file is extended. A

reqdeSt to update a data base page results in transforming

-

the request to write'onté an empty page of theé same file so

e ST ng e e TR

~ as to create a modified duplicate. Extra space in the file‘/
.7a . is used as temporary pages for modified duplicates. This

T " adcounts for one of the two reasons for extending the length

‘of a data base file{ ‘ ' \

- S ea S e e ru————

Another reason to extend the file size is to allow space . '

i

for three tables. An example'-illustfateS' the situation

best. Consider the case when page 6 is to be modified. The {

PR T AT R

modified duplicaﬁe copi of page 6 may reside in page 22.

When the run unit terminates a table is required to keep the

o

reference of page 6 to page 22. This is because the CALC
algdr%thms map data base records to absolute page numbers in - 5
the MCDBMS. -If ﬁhge 6 is the absolute page number, the

operating System has to be directed to load page 22 instlead K

N 4§ g g, AT A A M BT S &~ T

of page 6 if a record in absolute page number 6 is required
. f)

~

"in the next run unit. A table is necessary to'consolidate
all duplicate pages with respect to the absolute page number

up to the last run unit. .

- Just as blocks two to four in storage devices fbr the

\ - DHFD page, three tables are neededkin the data base files

for -the logical' implementation; one d4s for the page

. »

e # M " . Ca ”'""'“"_”"'—-'_"“‘""” - ke

-]
BT T s Py e W

A o A S b et

145
,)

correspondence for the most recent run, unit, another for the

most recent DML command, and a third for the éxecuting DML

. command. Each entry of the tables céntains two integerst

One integér*is the ébsolute pagé'number. The other integer
is the page number where the page is actually stored. Two
more pages are neédéd_to act as bloéks zero and oﬁe to point

to the appropriate tables.
5.2.2.3 Comparison of the two implementations

The physical implementation lays the burden of the

modified careful replacement on the file sys%em while the

logical implemen%;tion lays the burden on the ﬂCDBMS. . The

‘physical implgmentation , requireg gddition of recovery
modules into the filing system while the logical one does
nét. The LFS has to be able to distinguish between a
database file an& -a non-database flle for appropriate
transfer of control. If the MCDBMS ‘15 delivéred‘as a
package iogether with its recovery facilities, "the 1logical
implemégzziionpis preferred. The- technical support group of
the cdméanies would not like to have any modules added 1into

their file system.in order to adapt the new package.w
- o

6n' the other lhand, éhe logical implementation has two
efficlency drawbacks as coﬁpaggd Nwith the physical . one.
First, extra searchiﬁg is involved in the MCDBMS level for
the appéopriate page-fbﬂlt:ading. Searching of a physicai

block takes -the same number of accesses in the file system

» -

-)

' ' o ' 146
N) ’for_:bgth implementations, 'assuming, a tree device file
direetory. However, the logical implementation adds onto it
Searches ;f which_ page correspond to the absolute page
number for loading or storing. Thislsearch méy require
loéding of a number of pages. Each page to_‘be retrieved
results iﬁ' searehing through the file hierarchy for the
_appropriate physical block. . Loading/ of a logical page

therefore gives rise to a ‘numper of accesses of file

i P, o x

diréctor& blocks. The search increase processing time and

o

the ioading increases I/0 traffic.

-

Secondly, considerable storage space can be utilized to

store the extended data ‘base files. This extension is

B T I

partly due to the storage of the three tables mentioned .

above and partly due to the necessity of pages for modffied

duplicates. A ‘simple - example 1s sufficient to illustrate
the situation.

-
.

G

e e e s ST A Vet

Assume that-f'storage device has storage capacity of

" 10000 units. Fifty data base files, each requiring 100

units for storing its contents, are stored in the, device. »

) ; |
" These files would occupy a total of 5000 units. Suppose one \ﬁ/

run unit would modify up to a naxinum of 100 upite of the R
’f ., ;;. date ‘nase. In order to inplenent ceref43\rep1acemenﬁ. each

file requires an extension of 100 units. This incgfease does

not° include the space for the three tables. The increase

'\ ° takes place in each file because a run unit can perform its

. ,
"updates all on a single_file or scatter its updates over a

¥ *

—_—
S S e

S

o
o an e e S JETEPITIAINR Sme ~Y xf n (et
a

147

number of files, Fifty Tiles occupying 200 units.each would

useé up the entire étorage device.
N ¥

-
"

in the physical ;mnlemedtation only 100 units of stdrage
n»gpace is redquired to hold the modified duplicates of a run
unit. Thig results in a total'saving of U49% of phe device
space. This illustrative examble pointS"out -the space

utilization of the two 1mp1ementatfcns.

Subseqﬁent design of the rollback reéovery system is
based op\fhe physical 1mplemeﬁtation . approach. This is
-Secausgg of ~ the above drawbacks of the 1logical
1mplementatio<. The inef}icienéy in- processing and 1I/0
;radgfer, outweighs the modi?iqation to .the file‘system from

an economic point of view.

+ v

5.2.3 Time Stamp and Free Space Management

(

distinguishes pages wh}ch are already a duplicate and which

This section déscribes how the recovery system

(X3

are not. The préblem of free space management 1is also

discussed. ' (l C
1 .‘ﬂ ‘

A\

" 5.2.3.1 Time stamp

Modified careful replacement of directony and data base

pages requires a means to distinguish uhether.cfg page to be

updated has been modified or not within the éxecuting DML

command. A time stamp is employed ‘to _serve- the purpose.

Each DFD page and each data.base page contains a time,stamp,

N

L e T A A NI P DL Bl AP TG SN e 02

v " 148 - o
: g ‘ \
.The time stamp indicates the date and time a page 1is 1last

modifted (dtm). o

%

Besides the time stamp the date and time at which™% DML
command starts (dtes) and, _a run unit starts (dtrs) are also

recorded. If the dtm of a page to be modified is greater‘

than that of dtcs, the page is (already a -duplicate and

update in' place can be pe(formed. If atm is ‘smaller than

both dtes and dtrs, a duplicate is dneated for .update. If

dtm 1is between dtcs and dtrs, the pége has been'modified by"

a previous DHL command but not by the,preseqt one. .It is
necessary to create a copy for the pfesent command.
. Otherwise command rollback is impossible because the before

image is overwritten.

Both the DFD.page and the data base page contains a page
header. L The time stamp is stored in the page header. . The

syntax of command to manipulate the time stamp is as

4
follows: . .
dtm] FROM PG-HDER OF BUF(J)
UT INTO

where PG-HDER is the page header and j has value either bne
or two. Note that the page is assumed to be in BUFR(J)

already. .

5.2.3.2 Free Space Management .

As duplicates of DFD pages ~and data base pages are

needeuyaatiggiafages are alloeated. The old pages cannot be

san

T T ST

A PN s

149

\

»

freed immediatély as copies are created, otherwise tRey

would be -‘assigned and overwritten. They have to'be kept

~until the commahd terminates. If the old page %as dtm

between dtrs 'and _ dtes, they are freed at command

. e . ’
termination. This is because they are already copies of old

pages with respect to the. present run unit. These paées are

entered ;%to a free space stack for the DML command known as

the Command frée Space Stack (CFSS). All elements of this
stack are integers formed by the conéatenétion of the device
number and the physical block number. All elements of this

stack are released at the .termination of the DML command.

In order to update.a page with dtm, smaller than both

-dtrs and ‘dtcs, a copy of the page 1s created. The device
) \

number and block number of the old page are concatenated and’
stored in a free space stack for a run unit known as the Run '

unit Free Space Stack (RFSS). The elements of this stack

A

are returned as free space at the termination of the run
) A . el
qnit. Note that whenever a DML command terminates, . an ‘end

marker is stored into this stack.

-

The syntax of command to access and update the elements

‘of the free space stack is as follows:

EE'FJ dev#//blk# [FROM] JCFSS[CT]

PUT INTQ] RFSSI[RT]

where dev# is the deviceﬁnumber; blk# is the block ’ngmber,

CT and RT are ﬁointers to the top of the stacks CFSS and

. RFSS respectively. J,Eﬁ; slashes between ' dev# and blk#

c

R

Ll

e ¢ gty £, ¢ -

L e — XU

-

150

-~

denotes concatenation.
{

5.3 Overview of Recovery Modules
\

Recovery modules can be divided into two main types.

One type is responSibie for nécovery data collection.. The '
other type <controls the rollback ‘action. Chapter 6

describes the recovery modules in detail.
S

Recovery data collection modules cap be furth?r-
subdivided into three types. The first~type of ﬁodulgq make
preparation for recovery data collection at ;hglstart of a'
run’ unit 'énd of a DML command. They are résponsible'for

resetﬁing values, {nitiation of variables etec. B

i

The second type of modules for fecovery data collection
deals with run unit and command termination. They are
responsible for switching old Dﬁ?D to new ones and to return

free space to the new DFD of eaeh'éevice. The first and

second type of modules are represented by the module 34T . in ..' -~

" Fig. 5.4.
)
The third type of modules for recovery dafgxfgalgction .
: v
provides service to access and update requests. Retrieval

requests \require traversal through the most current DFDs.
‘Update requests require examination of the DFDs and perform
modified careful replacement of the directory pages and the -~

data base pages. These modyles are represented by the

module {{3;izf§15** 5.4. ' ‘ | o

LR a)

-
~—

e

. T Ve

S S R R g, = o Y T S R A e - il T e T =

. rollbaek 1s more complicated than run unit rollback beoause

B 151
In general ail three iypes of}modules issue commands for

physical block manipulation. The PFS 1level of the file

system ﬂg‘ the one whf h views the device in terms of.

physical blocks. The LFS above this 1level “can only ‘see

Q

logical bit: strings. The physical blocks are abstracted

away. The three types of recovery data collection modules

AN

have to reside in-the PFS. The type three modules replace
the function of the PFS for data base files..

¢

In the MCDBMS, only read and write requests are issued

to the file system. T&e LFS therefore calls the access and

« % }

. , *
update modules only. A module is needed in the HCDBMS to
- >

issue - special .calls to the " 8$+T module via the operating\

system in terms of supervisor calls. The .module to 1ssue

such calls is known as STC.. The operating system is

 extended to recognfze these calls. Fig. 5.4 shows a brief

layoqﬁ of the recovery rollback system ;n:relatioh’to the
MCDBMS and the file system. Single arrows ‘show 'that‘ the
module poimted to is called ?y ﬁhe one directly above it.
Dogg_e arrows)@how that the mod

\

le can be called by more

than one module. ‘)

‘The. modules for rollback recovery are divided'imto
logieal rolibac?}andﬁphyeioay rollback, Log}cel rollback
control module (ﬁﬁﬁg) is initiated,by the‘DBMSC moule. The
1ogica1 rollback’modules‘(LRBM}yresid%ng in .then PFS level

provides command rollback and run unit rollbepk _Command

L4

- —————

KN N v .
1 ’ B
(. | N ¥
: s, : o .
8 DR -
% T 152 :
<.) va N . } . 1. A.
. |) \ . »> {
1 ' o - B *--‘--* » !
; . o -xnsnsc' -’ -
s ! . s e s -t
I) v +-i- ---n cmme—d --—+ ‘
>§-;;, ©» .0 fsscHL) t sTC | - ILRBC}\
R i B ol P dmmcemd bereed ’ SR
‘ , ‘ S i+ SCHip| T o ‘ a
B PR A . .,
“I = SLI%XN : ! ‘e
¢ - [] - * i
- ' ' ;__EE_’ o
' 4 LL| , oo .
e % - N [] . f . . ’
CF oA T | o—— . . ; .
PN . CADBESLE by Y
. . ’ "Jl_..g. N “ * R Co -5 .MCDBMS '
,‘ ¥ "., v 8 ‘: . dmeLamy T ., T 0s .,
I3 . ! SFS | ’ -)
e L-?--I
i BFS .| N -
N . . : ’ . v
. 1 acv ' . N
, ! Vo, LR =_-_-_1 q S N - 0’
- v T+ VLFS | g _— Eﬁb: , o
¥ - LS Y ' ") +—- oo
: PRI T Y e --\---0- U SUNTOLEL SO D ‘ / E
. - -, | PFS | 1a+Ul 'S «+ T.] ILRBM] |PRBM| e
. 1 0 T, dmesced beaep temcooe= +* tPommad booead
& " ' ’}v r ? ’ .
‘)_\) R ' N N T ‘}"’“--‘F + - -»----'0' -0--&--0, J) Lo) M
- e, | ASMi} IDSMI! I70 INITil | DHil - "
4 e s pm———— + bm——s $odemm- e pmm——t ’ ' -
{ B I ? T
. DBMSC - HCDB&g control module] ~ <
STC - Start and termination control module °® p\u
' LRBC -~ Logical rollback control module ' R
‘ SCCHL - Subschema level SFS - Symbolic file system -
) * SCHL - Schema level - BFS\~- Baslc file system
. SL - Structural level ACV -.Access Control Verif., -
. -(: o EL - Epcoding level LFS - Logical .file system_ . '
a . ¥ - LL " - Location level - PFS - Physical file sxgten .
DBFSL - Data base file structure lfevel ..
P - 7' A+U = Access and update modules s ‘ Lo
)) .. -« S+4F .= Start and.termination modules - L,
. e LRBN - Logical rollback .modules » s R
‘F= : ¥ PRBC =" Physical rollback control modules -
L . + PRBM = Physical rollback modules - oL .
7. AsMi £ Allocation strategy, module of DEV(1) ' ,
../ ‘DSMi " - Device strategy module of HEV(1) o
170 INITL -Input/output initiation module of DEV(4) 4
‘* Dﬂi -~ Device handler of DEV(1) _ P ',
! ' '.
Fig. 5.% Goneral ovcrvieu of the rollback recovery syatel -
N ' _ g . ! .,
| 3

gt s NI ,_..,,

< g b s o
- s .

I SN s gz s
. N

+

©

‘the Current Location Table has to be restored., lf’the UWA
has been modified by ﬁhe cdmmand its coﬁ ents are restored’

as well. Restoration of the CLT and the UWA buffer are not

+
g

necessary for run unit rollback. S '

-
-

\ If a failure occurs during the execution of the cémmand
termination module or the run unit terd&nation module, the
< ¥

operating system calls the physical rollback<control (PRBC)

-

' module. Tha PRBC moéule.iq_bhrn calls apﬁropriate modules

°

for rollback recovery, depending on hhethgr the content of".

atpe-main_pemony'is retained or lost.*. . ‘ L .

' . . . Lo
The DBMSC module acts as a eontrol module for the MCDBHS
and’recovery modules. When the MCDBMS detects an error and Q
. Ehe command cannot continue, the .error cpndition propagates
up ungil the BBMSC modple is reached.'q After analysis the
DBMSC module calls the LRBC module for rollback When a run
. pnit or a DML command starts or terminates, this module also

¢
invokes the STC module for appropriate action.

——

- .

b

R S YO

Chapter VI
ROLLBACK RECOVERY SUBSYSTEM MODULES

Thishchapteg gives the details of the recovery modules.
The ' functions of each recovery module are described. The
-modules of the rollback rgcovery subsystem are described
top-down... Finqlly, some qomhehts'are made concerning the‘

rollbéck recovery system.

4

6.1 RECOVERY CONTROL MODULES. IN THE MCDBMS®

~ . / s L=

6.1.1 DBMS Control)

The DBMS control (DBMSQE\Qsdule centralizes the. control

\
of the MCDBMS and the recovery modules. It interfaces the
MCDBMS with the run wunit. *~ When a run uniﬁ'.stgrts to

. #o
execute, the run unit transfers control to ‘the DEﬂSC module,.
) i

" This module calls the start and termination control (STC)

module which 'in turn calls the run unit starting (RU-START)
moduleu‘ The‘RUpSTART‘modulé performs initializations of :the

rud gnit. Control is fransferred back to £he STC module and

then to the DBMSC module. Finally, the bBMSC module returns

control to the run unit. - .

When a run iunit"encounters a‘bHL command, control is

-

A ~ N
stransferred to‘bhé DBMSC module agajn., ‘The DBMSC module
first checks that the run unit has reset 511 the grro?a .
_conditions before it executes the next DML command. - If

there is no error ¢ondition,-the DBMSEC module calls the STC

- K
r

¢

R e S T

WO R e e T

155

4

module which in turn calis the command starting (CMD-START)
module. The command starting module makes pfeparatioh fég

modified careful replacement. . N

' The DBMSC dodule thedjtransfers control to the MCDBMS
modules. If an error occurs, the error is probagatéd up to
a level which determines the nature and extent gf the error.
The error is-then propagated upwards until the DBM3C module
is re;ched, 'The _.DBMSC ﬁodule summari;ei’ the error
conditions | indicated by the status registers of various
sublevels of the MCDBMS. fhe'error summgry is rgcorded in

.the -DB-STATUS register.)
» -
If rollback is needed, the DBMSC module calls the

logical rollback control (LRBC) module to initiate rollback.

If no rollback is needed and there is a non-fatal error,

1oh£roldis passed back .toe the xun unit which can- examine the

DB-STAJUS register for error information. If the command
éxecutes successfully without error, contépl is passed back

to thg\DBMSé module. After confirming that.the executionris

successful by examining the status registers of varfous

sublevels, the_DBMSC module calls the STC module again. The

‘ N
STC module in turn calls the command termination (CMD-TERM)

mod§le to change block' one /poinﬁers of modified storage '

devices to point to the new DHFD blocks. oLt . :
A ‘

-

. When a run unit }erminates'the run unit passes .control

to the DBMSC mgg;;;. The DBMSC module‘ensugés that ‘'all
) . : " .

‘ . :)

v ' . <re

cy

P o SR

crwaoy -

L

156 .

error conditions are reset before the ;rn\neik is allowed to

terminate. If the DB-STATUS register indicates that there

"\

is no error, the STC module is called to inﬂtgate the .rpﬁ g

unlit termination, (RU-TERM) module. If there is an error the

LRBC module i3 called to initiate run unit rollback.

pmmm -
unit!

irun

{subschemai | STC | | LRBC |
! level | d-peemed teme——e- +

. | module | ‘
tremmmenae +

6.1 Interaetioh of the DBMSC module
* with other modules

Fig.

Fig. 6.1 shows the interaction of the DBMSC module\yith
. 2 ,
other modules. The DBMSC module interacts. with the run YE»
untt. It talls the subschema level module, the STC and Ehe\\ A
i -

LRBCImodules. These three modules are in

Val . . .~

6.1.2 Start and Termination Control' .
The start and termination (STC) module 7As .called
exclusively by the bBMSC"Qodule. Its functiod can be seen

clearly from the preceéding section. Basically it calls two

.
stiarting odules, RU~START and CMD-START, and two
termination modules, RU-TERM and . CMD-TERM. The starting

modules ﬁéke preparation for modified careful replacement of

phys&ealvbloeka. The terminatiocn no&ule puts the new cbpies'"

157

of modified blocks into effect. -

i (\\-—’" . ' T .
P - . tomem—d . N
L , | IDBMSC | - |
o < tmmr——y ‘ :
K +--I——+
{ STC | a
o - a :
4 f i O T + tememdle.o + Peeha- -—3 FoTWe——ey oL
{RU—START{ {CMD-START!| |CMD-TERM{ i RU-TERM|
$mmmmenea + dememmeee- 4+ mm—emmea P S — + 4
| . . ‘
' . Fig. 6.2 Interaction of the STC moduY¥e ’,
. -7 ' with other modules » ;
y 4 \ . ' i
. - R Fig. 6.2 shows the interaction of the STC module with 1

other modules. 'The STC modulg is in the MCDBMS and the four

. ' modules which it calls are in the PFS level. .

. : . J

6.1.3 Logical Rollback Control
. Co o ' ' ‘ e \\

The logical rollback control (LRBC) module resides 1in

the MCDBMS. It is responsible for rollback of a DML command

and a run unit. The request for rollbaék originates from

. N
the DBMSC module. This module deals with logical rollback ~ .

as opposed td physical rollback. Logical rollback is.
initiated by the MCDBMS. The MCDBMS 1is aware %f the
rollback action. Physical rollback deals with situations

where the\\rollback action is invisible to the MCDBMS.
. Physical rollback is initiated in the PFS level. The LRBC

-module is called exclusively by the DBMSC module.
: o N '

. ® o
a

" Fig. 6.3 shows the interaction bt;phe LRBC module with

: AR ’ ‘
. other modules. The LRBC module calls the CMD-RB and RU-RB .. .
N R L ‘ g . . : .

. . o \
M . ' , ‘. *
- . i - ‘ .

B Tl

158 - /.

tmdmamy

{DBMSC}
+--]--+

+odaey '
., {LRBC| B
| *=pxo+

to—alan + St T
. -1CMD-RB! !RU-RB]

Fig. 6.3 Interaction of the LRBC module.
with other modules

v

mbduies for command and run Lunit rollback. These two
. , L . \J '
modules reside in the PFS level. . \Q
. ' 44\ '
. a o
622 STARTING MODULES N
ht he K e

There are two starting modules 1n the rollback recovery

subsystem. They are~r1n unit ;nd ‘DML command starting

modules. These two modulps are cal)ed by the STC module - in

the MCDBMS.
.

.6.2.1 Starting of a Buﬁ Unit’ o o

The . RU-START modulée is responsible for initializations
when a Pun unit starts.‘ The date and time when a run unit
~s£arts (dtrs) is recorded when the ruh unit stafts
'execution. At this tihe block, zero of devices 1 to N points
to the DHFD-block of the mok§
of device zero points to the block containing the .RDD array.
-The RU-START module produces a copy of the CDD array from
Ehe RDD array as initialization in device zZero. The arrhy

Sy

copy ‘acts .as the DD array for the most recent DﬂL command.

. R

recent run unit.. Block zero

[T

WY TR .

B e N
o

P L

" 159 R

Block one of device zero is set to point to the CDD block.

Block zero of devices 1 to N po{nté to the DHFD block of
the most recent run Jnit. For all storage devices which, the
run unit can modify, two coplies of the DHFD block is made in
biocks two to four 6f the devices. Block one is made to
point to one of the copies. The copf whic; block one points
to serves ég‘the DHFD block of the most recent DML command.
The other copy acts as the DHFD block for the, current DML
command . The pointers for free space stacks RFSS and CFSS
are initialized to ziyo. The array element of the MV and
CMV arrays are /aiso initialized to .zero. The RU-START
module dealg with physical blocks and so it resides in the
PFS 1evef; After all initialization have been performed the
RU-START module returns control to the STC modu{e célling
it. ;-

6.2.2 Starting of a DML Command
~ N\

_The module DML-START 13 called by the STC module wnen'

éverﬁ'DML command starts executing. The date and time the-

command-igtarts (dtes) is recorded. The CLT is copied onto
. S :

block five of device zero. If the DML command involves'

tfan;ferring data to the UWA, the data to be overwritten is
first stored in block six of device zero ;n case rollbgck is
ngede . ' ‘ .
Devices 1 .to N ha§ been 1n1tia1rze§}so that block; two

d

to four %ontains the DHFD pages. Consi the .case when’ a

~ o F e L e eenreroma e imes ol s

b 160

‘device has some of its blocks modified in the last DML

v

s command. On command termination block one has been switched:
to point to the new DHFD block. Block zero still points to
.ﬁhe DHFD bleck of the mti recent rﬂn unit. The block 1left

‘ . ‘within‘blocks two to four has to be initiated By copying the ’
DHFD block of the most recent DML command opto it. If a

. A device has notuﬁeen modified by the last Dki command, then .
; ‘blocks two.to four are not altered. No creation of copiles

—

of the DHFD bagg is necessary. The former case is 1ndigated

X IR

by a positive value %p the corresponding element of the MV

TS v

' qrrm(:' After creation of copies of the DHFD blocks, the MV

. ¥ i
arrayfelements are reset to zéro. The latter case has vafae N

b

AR AIRLI o g T

. zero in the MV elements.

6.3 DML COMMAND OPERATING MODULES = = o

o

&

Two modules, one for access wh;i‘»tpe other .for update

| ‘ k‘, ' of the data base, are dgscribed ‘within this seﬁtion, The
s . ‘ < N .
~ modules performs operations on the data base using th

modified careful replacement strategy.

6.3.1 DML Command Access %

e i A L Y
“

The module CMD-ACCESS can be called many times within a
A\ : . : _) ‘
. DML™ command. Its function is purely to rptgie1e4L4nuwical g

. o block containiné tLe;requiréd data base page. Ié takes the-
9 . ' N ? ' -~ -

place of the PFS and,mépé a logical record to a physical

block. The data base is not modified by this module. This

- - o - mdéule performs the search of the reqdired bloek;fhrough the . = °

| .) . -
. .
' ’ : L i o ' .
| f - ; ' . -
|
|

‘ o
O : IR R ' et

a

DHFD of the executing DML command down thé DFD until . th

O T e 1t - s

g

.

- i

e

g gt

e e AR I AT R T o

. e f
PRSI - .
R PN .
- N L v .
’ 2 - 1
[EENS—— o v—— = e R [SN . -- -
B \ - el N [d e, .
. Syt I a . 8

physikgpal plock"is found. The LFS of the file system calls
this modulg‘wpe:zver the function (fh) is READ.and the file

. is a.datd base .file.
L X

6.3.2 DML Command, Update

A #DML command to update a data base page }equires a "
number: of operatio&s. If the block has .previouély been
\\ ' ‘ modified 'uiéhin ‘the current DML command, update iﬁaplace
ogceurs, ;f no changes were\previou§1y made on the block, a
- cop&'iq c;eaped and the update is pérformed on the copy. If
' the latter gondifion'ogcurs, copies of thq.DFD pages leading

to the data base page are maqF if no copiés exist already
within the same command. This ié similar to the 'situation

N q’descr;bed in section 4.2.2.1.

s

The CMD-UPDATE module assumes that the CMD-ACCESS module
'has beéinexecuted and the block containing the data bage
t

page be modified 1is in the file buffér. Modification

. ‘ takes %lace within the CMD-UPDATE ‘module. Note that every
time the CMD-UPDATE module is . called, the appropriate

elements of both tﬁé/nv and CMV arrays are 1incremented by

\

one.
f

As the modul% traverses down the DFD, copies of blocks
without duplicates are made. The existence of dublicates'
‘ddbends , on whether dtm is greater than dtcs OR'not; . If the

dtm value-of a

block is greater than dtes, a duplicate of
} - . ‘ '

L

[
o

«

Cinlicaaaiad ST S,

T T L ety
o

162
the block exists within the current DML compand. If dtm is
pe%ween dtrs ana dtes, the pf%%k hes been modified b;{former
DML -~ commqnds but nbt by the present one. Tpis block number
is entered into the free space stagk CFSS to be returned as
‘free space at the termination of the currenQyDML command. A
new block is assigned as duplicate for update. If dtm is
smaller than Qtrs, the block has not been modified within -
the present run unit. The block number is entered into 'the
free 'space stack BFSS to‘be retu}ned as free space at the
termination of the run unit. ~A new block 1is assigned es —
duplicate for update. . | ‘)gf

4

6.3.3 Summary . .
i T4 y

¢

The operations of the two quules for data base
\ * o

L4

Fig.. 6.4 DML command access anJ‘upde;e modules
operatios heve been described above. Fig. 6.4 shows the
o CMD-ACCESS and CMD-UPDATE modules are called by the LFS
above. (The access and update modules\takes the place of the
PFS for daé\ base file access and update. They reside ih
the PFS level of the file system.

6.4 TERMINATION MODULES ' : o

6.4.1 DML- Command Terminationd
¥) ‘

-

6ﬂu.é Run Unit Termination S . ‘

- storage

163

. .
v ¢

Thegretically spéaking, 4 command termination 1ﬁdicates

.+ that the MCDBMS has been transformed from one state to

another. This transition to a new state is indicated by-the

state varlables. The CMD-TERM module serves - to assign
values to the state variables to indicate that the new state
has been reacheh: " In other words, the module updatesth;»
data base to reflect -the succéésful completion of tpé - DML

command.

« The de-mth_module first returns all free space of the

z

CFSS array to the devices. For all devices. with modified
blocks,"their block one are set to point to the new DHFD ‘-

:blocks.’)ﬂﬁe free space stack poidter for DML command is

. 3 .
reset to zero. A " zero marker is added to the: free space

stack RFSS. This marker is used for rollback. Its function
is described in detail in section 6.5.1. The CDD array is

°

Efdated for the ‘command and stored into device zero. Block .

ne of device zero is switched to point to the new CDD
R | :

block.)
., —
\

The run unit termination module, RU-TERM, cénsoltdat?s
all . qhqngés made to the data base‘wibhiﬁ {he current run
unit. A copy of the most)fecent'DHFD page i% made for eaqh
device with modified blocks within ﬁh? run unit.

?

-The blocks in¢1cated by the’ %ree .spﬁée stack RF3S8 are

returned tb"theitdev;ces. Biock,zero of all the modified

- 7Y

P——

Sy Aroper

L 1t s

A

T T T upa——— [Pry—

—

L 1
.ngices are theén updated to point to the new Dﬂgpu block.
The new values of the RDD array are updated. The pointer
for the RFSS.array is reset to zero. The ngﬁéfbD array 1is

then stof@ﬂ',;;h device one. Block zero of device one is:

w

switched to point to the new RDD block.

. s o
6.5 LOGICAL ROLLBACK RECOVERY- ‘

Logical rollback recovery is visible and is initiated by

. the MSQBMS. The DBMSC module dete the error condition
. x N -)) .
‘and issues a commgﬁd to the LRBC module to perform either

command or run unit rollback. .

, \\~§: ' - ‘ ‘
6.5.1 DML Command Rollback *~\; .

'
4

()pﬁ DML command rollback is responsible to undo all changes

" switching actidh of the careful replacement strategy is

¢

" to replace tﬁgﬁ&(

made to the data base from the start of the command uﬁ “to

the point of request for ‘rollback. A command rollback

request 1s assumed to be issued in the process of executing

the DML command. In other words, the DBMSC discovers’ that

the command is unable to,pfoceed any longer. is situation

R , f . .
implies that the CMD-TERM module has not been called when.

the CMD-RB module. is called. /

& The command rollback action 1s ‘fast' because ‘the

sidiiy;not performed. \Tnis would retain the data base as it

was be%rgﬁ@gxé;g and was executeéd. The only work lefi is
R 2 . . Co) .
les thtf.'héve been modified by the

~

»

Yoy

e

]65

- ’ ’ > N ~

command. These variables “include the 'g}T, the buffer
contents of UWA, the MV and CMV arrays and the gree space

stack.

’

Thé function’ of | the end marker to distinguish blocks

[l

_~ returned by a DML command to the RFSS array/can be clearly

seen here. In general the recoveryfsystem does not know the

‘number of entries that the current DML command has entered

N

) 1Qto the RFSS array. The end marker is ‘inserted only by the

GMD-TERH moduié} The CMD-TERM 'module has not been executed
when the present rollback mjdule ia'galled. Therefore the
first end marker found in the RFSS array tracing down from
the top must. be: the one enzfred at the term;nation of the

. most recent command. If the top element is not the end

marker, enprieb must have 9een added onto the stack by the

' current DML command. Elements are popped from the stack

until the end markerf is reached. If the toplelemeﬁt is
already the end marker, the current DHL,cqmmand has fot push

any entry)int05the array.

' 6.5.2 Run. Unit Rollback \ o ’ -

4

Run unit rollback undoes all changes made to the data

base from the start of the run unit up to the point of

request for rollback,. This module is called exclusively by

the LRBC module. The LRBC module is in turn célled by tﬁe

— -

oy

e b

[l

e

1] N

"

DBMSC moduig. *Neither the CLT nor any buffer vaiup in the

"UWA need be reloaded. -As in the CMD-RB module, the

4

s ’

N Y b

4

- | L. VoL \166 L
SR - ' - . - ’ o o S) .
} B (8 ’ , ’ - - [\ K
R execution of the Tun unjt rollbaq& (RU-RB) modulé and the
3 ‘. ’ 2 : * ' .
P o RU-TERH -module are mLtually exclusive\ .
B o Lo | \ . :
v "~) Y . AN . T "X /"\
N L . The RU-R@ modnle 13 in genergl-calleq\after a successful .
:) : PO ,
DHL command exeeution when the MCDBMS cannot ‘proceed. This
: / .
~ situation is identified uhen an error copdition has not been
[. . . . ﬁ

SRR reset by aﬁvrun unit in thee DB-STATUS register and 1t

i g
.

attemptg “to. execute the next ‘DML command. The RUbgp modulgF §%

;may also be called just befOre run unit termination when the
7,L‘; error conditdon-in the' "DB-STATUS registér has not been '
reset. The - DBMSC checka the errof condition of the{v £
DP—SIATUS regiéter béféfe callfﬁg C;D—START or Rﬁ-TERﬁ ST
modble. The RU-RB modulé//;mply returns control to the run

unit without executing the RU-TERH module. This leaves

E blﬁck ~zero of a911 storage devices unfltered. Block zero

still contains pointers’ £ the DHFD blocks or the RDD block

. S with respect to the last run unit. ‘ LT . ’
s, B .o~ : ' . ‘, % + 3 y g - . ¢
9.6 PHXSICAL ROLLBACK RECOVERY .
¢ s B R i . .% RS
i * ,“,.‘ ' v . . ' ’ -
e ,7~' T Bhysical rollback recovery 1 invisible to- the HCDBHS.

- N . l ‘A failure can ocecur during’ the execution of the CMD-TERH or » ¢ «
= {’, o RU-TERM module. Tﬂts, type of . failure ‘o;cnrs.'in the 4 K
: & W : :

: . operating system ' level. Abnorﬁal‘ termihationz or?® .

o Einterruptibn of run unit execution can occur as a résult of . -
1~fff," LT power failure or the operating aystem crash It ' is - ¢.

;q w. necessary to restore the data base %tto a consistent state.-

Respmption exeeution\of the"run unit q%lthg " point _Mpené :

L S

e *»\\«!:r-z._,‘? PR

A e

Qe < A v e 2

¢
. ‘ N .
. E

* y ot . -) [t
off 1is perferred. . Such a rollforwaﬁd action is

it left
possible only if the content of“the main memory ﬂq not lost.

. ,This specific- type of recovery rollback 1is not of the
: logical natire visible to the MCDBMS. ‘
",' .)) [R
6.6.1 Phybicgl Rollback Recovery Control)
. 4 . . .

~) - . ' A
. 4 o Physical rollback recouery .takes place only in - the
‘opefating system. It .is invisible to the MCDBMS. The
physical recovery modules are called by the file system and
" “ not by the &CDBHS.‘ The physical -rollback recovery (PRéCl
module determines which type of rollback action‘is reduired.
o Error, during téﬁ execution of the CMD-TERM or RU-TERM

LY
modulﬁe would result 1n transfer of ‘control. to the operating

PRBC module. The

system. The operating system calls the -

f ' 'operating' system also sets tpe condition that determines’
. ‘.\\ . ! . . -

'\ ¢ . P T L) . : *)

P] PRBC ‘ N\) A ‘
g .
‘e ' " .

. : é

X . ;

. . \ r

. o Pj

e Fig. 5.5 Modules ciiled by the PRBC modyle
I uhether or 1o bhe conients of the main memory are retained.

Fig. 6.% hows ‘the modules called by the PRBC module.

N CHDT-RB module performs rollback on the command executed.

RUT-RB module attempts to rollback and then to, execute.
' The

. The
the RU—TERH module to complete the termipation process.

[e
bk
, x ”
- CL-RB module perronms rdllback when the contents of fﬁe main
» :.’ * : P 5 o Cy J
- e s y Tk -
» S, 2 : . -
R H»‘;‘ﬁ' .o " T D
- oo v ‘ 5 . ¥
g | e
S '. r? " L ' . .y . t -

.The

S

. »
© ke e bt s =
N B
-

P s

-
J S e L ey - e, g (ST N

e

memory are cleared. or ruined. ‘ .

: o , 4 - B
6.6.2,Failure During Command Terminatioﬂ"

. : ‘ SN
‘QIf a failure occurs during the execution of the CMD-TEBH

'Qodule, some storage devices may have their block one values

~ modified while others have,not; If the contents of the main

ﬁemo%y are 1lost, a run unit rollback‘is required., This is

because the operating dystem is unable to identify the DML

command it haS‘iast executed. If the contents of the main
memory are retained, a commanc rollback can be performed.and

the DML command is executed again.
< - .

~
o

, ’ N :
* The! block in dev@pe one containing the CDD array is

'geplaced by the modigied careful }eplacement'strat . This

ar?ay can be used as a reference point to compere block one
of all Qtorage devices. This array is 1oaded into main

memory. Block one of each storagg dew@ce whére the array MV

has, correspohdid% element value greater than zero ,is‘

examined. ‘ If the values differ, .the ‘value of the CDD

»

element is copied onto block one and stored. The array MV .

can be used in deciding which device to check because it is .

¥ e

iot altered within the CMD-TERM mddule. 4At‘ter restoring'
.blogg' e values of devices 1 to N, the-CMD-RB module is.

"

”caL}ed. ‘This module is-called because the CLT, the UWA-
. buffer value, cuvf MV,-ﬂfggjarnpys all need rollback.
+ " W \ e

'6;6,3«Failure'duf1ng Run Unit Termination voeoor

T
L

v % . I
PN T .. . ¢ Lo
oty s .) . .

N N .. v.oa -~
R i . . PR '
A LR S ¢ - A R ey v .
e wer .t HE v ' +

« oA . RO “

, e) .‘ . . 5 .
R " b 5 ¥
SR '.’a.&‘ i g‘ e ..«n-.mp.--n - -A-Mwm—’ W ooy

~

23 ’ - \
£ e , >
- J T O] e PV 4 e < ey e o e ve A :j
S N L.

The RUT-RB module for recovery of failure during RU-TERM

execution assumes that the last DML .command has been .

v

executed successfully;. otherwise .RU-TERM module 1is not
executed. It is necessary for the RUT-RB module to perform

roll\ack and then to execute the RU-TERM module to terminate

A A Y o S 8 ot e s et g

: tﬁe run unit. Rollback is required to brgng the data base~ .

—

K4 to the state Just before the RU-TERM module is callgp

m‘

Réllforward is required to conplete the run unit -

o R et

¥ {f the execution of the RU-TERM module has not come to
o o : the point to reset the pointer to the free space stack RFSS,
' \ : 3 the run'UNit.tecminatiSn, modude 1is executed agaip. The i
reexecation takes place after restoring the.RD? array to the
values of the last rdh’unit; If therexecution has' reached
the point where the 'RFSS pointer has been ;eset,‘it only

,remains to store the result of the new RDD into device zZero.

'@ K
6.6.4 Failure with Contents of Main Memory Damaged
t t . o . v (
F : . . . When the cqntents of the - main memory is 1lost or is

a

partially - damage , the run unit can no longer continue. It

2

v s impossible to. identify the DML command last .executed or
. the command the HCDBHS has ?een executing. A run unit T
‘rollback is needed In the worst case phe run unit ‘may . be :

*

-1 . '-'.exeeubing the RU-TERM module.. Some devices may habehthe

N

?

value of. their block zero updated while others are not yet

L)

altered.

-~
-

s E - ‘ | 170 .
! ' - ‘ ¢ RN . .
‘, . . N

/ ‘The CL-RB module performs recoverys for abnormal
¢ \

unreliable. The module performs a run gnit rollback based

]

¢
~—d
B R,
f.:

on block zero of device zero. The block (of device zero
containing the RDD array is first loéaed into the main
- < . .

memory. Block zerd. of device one to'N is loaded into file

buffer one by one...If the value of block zero of a device

S A e
P I

. : . \ .
~Jo action ii$taken. If the values differv the value of the
array element is stored into block zero of the device. The
module reduces the data base into the state of> the most

‘ . " recent runlunig . g

3 “ 4

‘/ 7

6.7‘SUHMARY AND COMMENTéJ ‘ " .

£ - / L . ot
. . 6.7.1 Summary

‘ . " \ ‘, . o 4

‘

A rollback recovery system Qgp been proposed for the

. ' ‘k C
3 o MCDBMS. The recovery system is based on a combination of

S . o
- techniques. "Three modules aﬁe‘ added onto the HCDBMS for
] M - -..
recovery {nitiation. Qpé f the three modules 1is deSigned
for centrallzed recovery g%ntrol. The second one 1nyokes

L . the recovery data collection and consolidation m&dules: ‘}he

third one issues commands for logical rollbeck.

ES

“ .
y A total of twelve modules are added on:f the file system

‘the‘ tueive modules,’six deal ui‘h rollback recovery. Four

‘-

4

terminations with' the contents of main memory lost or

is the same as thabfof the Eﬂrresponding RDD array eIEﬁéﬁt,'

e . both the careful - reblacement and the differential

for recovery data collection and recovery action.. Out of

¢
.
L)
.
t
H
g k]
{
¥
L
r
i +
B .
LN -
& Lo S
R
4
3
i
4
{
f
g 1
1
¢
|
[
H
{
3
4
P
L J
o
o
,
Y
- Lo
. ria
Vs
. . .o
. s
k w"é o7 Hlideds
"
—

‘modules out of six pre responsible for physical rollback

whiech 1is invisible toakthe MCDBMS. The ‘access and update y

modules replace the PFS of the file system for ‘datq base

-

-RU-RB module, T?e latte;*ndgdig’féétorqs.t e environment .
. N : . -l - PR

files. Fig. 6.6 shows the relationships of the modules imw

the rollback recovery system.

. , £
\ . oo '\\\
o o o + .
I DBMSC| : : “f
bo———— + . .
:-_-_..--..-_..--..---_---q-. / . o
! | ‘ .
v v o .
bm———t bmm———— + o
{ STC | "} LRBC |} . Ty, T
bm—tmimt : - +
= . z . oo
1, u A MCDBMS
. 4 - ! ot
----- ---o—--------—-.v----'.-—---—--—--‘h-‘---r—--——--e---- ,
’ % 3 “
' ' A . os h
4mmmt 4 | $omin
ILFS L. et | | PRBC
$mm—t \ 1. | i N Sttt .
' l .l - ‘ H ' = “ . &
v v - v v _

--------- -t pommmman tmmmmmdent pmpi=ads Hommmmend
1GMD-ACCESS| | ROZSTARTN | RU-TERM| | RU-RB| | GLERBI

| CMD-UPDATE| |CMD~START}' |CMD-TERM| |CMD-RB} | RUT-RB| -
S R M -4 4-o=cm=t |CMDT-RB

Fié. 6.6 Modules of the rollback reco;lry system

o " ' " . ’ 3 -

’

'Thgpe is one potential 1nf1nite loop hidden in the :
) a ’ .
rollback recovery system. It is: ahdwn 1n Fig. 6.7¢ When a

-~ 1

railure occyrs Juring the execution of the .run unit .

termtnatiqn mo@ple;_ftpg PRBC module ip invoked. After
checking the error condition, the PRBC module calls the

s L T

R e T

LT

i

N N

infinite loop and ' call CL-RB if

‘ @ .
T \ P
o . 172
. . o .
P ———— + f
: PRBC. = L LI 4 <
rommmTTT * : . ‘8
~ v A
}- . . e e +
| | RUT-RB |
i ? : "' ------ -
o . 1 B L
M + ! .
i RU-TERM 1 e ———— 4 .
A - - - - &-+ R \\

Fig. 6.7 Pote“ﬂal infinite\loopln the
rollback recovery subsystem
t
before execution of the RU-TERM module and calls the module

v

'again. if " the pointer to ‘the RFSS array has not ' been reset..

un unit cannot be

'Thg'operatigg 'system is responsible to ‘éheck out this
o'y

terminated properly. ° C S ‘
. \ ~ .

Whén ? failure occurs during the execution of* the CMD-RB

or RU-RB modules, the operating system tries to reexecute

the moduie for a numBer of times. If the execution sttlld

fails, the,HCDBMS is\\fopped for analysis. After the systemi//)

K

is restpred “the i:-RB module is executed..

6.7.2 Pros and Cons './ | -
‘ .‘ Y ' | 3 - \ . ’ l -
The advantages of’ the rollbck recovery subsytem are as
. J : - ‘ .
follows . o ' o e

1. Fast command rol;back;

-

2.. VYery fast run unit roilbéck.

-

3. Run unit rollback can be pertormed even~1f the run. unit

: "i}'tefhinates abnormally uith the oontents of the . main’ memory

' A'“ ggpgged.' The subsyten is cnash reslatgnt.:“,

3

- \4‘"“'\ i

N Y £
' b4

] | ¢
u If the content94§l the main émory aﬁf{retained during a

_crash rollback of the executing ’pHL commano can be
achieved. The run unit' does not have to start from the
beginning. | .
5{* The recovery subsybem can be 1bit1ated”by~the MCDBMé for
Tlogibal type of errors that "ariqe ;ﬁuring the.run unit
execution. g ')
6. The todules CMD-RB and RU-RB.qan be -execoteq again, if

aoother crésh or a failure arises during the execution o?‘

"these two modules. They do not create any ove’head or

4

X generate any 1nformation that has to be undone in ihe'

subsequent rollback | .

7. The rollbaok subsytenm - 15 f%ster, than -.pure careful

[

re ement as fewer pages‘nqed to be reblaced.’ This has
been explained, in section ¥.2.2, ..o, _: v

8}. The CL-RB module, uhich perforns run unit.rollback when

3

the contepts of the main memory is lost, i3 one which ong

A

oan always turn-to lf all attempts of ‘logical’ rollbpck

-

failed. \ , .

9; . The rollback subsytem replaces the old blocks by the new
ones as:E run unit execptea. ~This iaf\diffoteﬁt from the
'difrgrential rvfile technique “which accumulates modlgled
:blocks;f No separgte p?riod‘of'timo is needed tO»coniolidage

hd

the ﬂifferential fllo.into the master file. ‘ S

The disadvantagea of the rollback recobery subsytem are

as followa ‘L

+ o
A . 1Y
. - R . N
, o e e v 3 W N R g ey I s araret s e e e -
. = . .

ivl @ N "‘

' ' s . ® u N .0

.) 17 .

. R .

s -

. s {
1 Updating a page results ln updates of an

r of pages.

compared with a
v

The amount of 1/0- traffic is increased

- ” ‘ "subsytem with‘conventional rollback facilities. .y

i fmn

of the overhead ‘involved. The ' time taken wouid be even

° . '
e s

longer for commands that update a number of data base Pages.

modified at the

3. The file sytem has to be PFS level.

R o

o ‘Modification(of a large piece of software could give rise to

well and the

structuréd

~

Jerrors unless' the softwaré is.

interfaces are well defined.

- . ~

“ ‘.6:7.3 Limitations - S .
- ¢ . | |
The limitations of the rollback recovery subsytem are as

Y

Ll -

follows

1. The subsytemris designed for a single user

‘Noqconcunrenq pnocessing of %he run units is possiblé.

) »
L0 ‘ head crash. . ", ‘ A '~~LJ

3. . Th unit of rollback is either a DHL command or a

’ . . unit.

. ‘_ numben of DML commands once he finds tha a certain

command oannot function as expected..

to A former point 1n the application prbgram and to follou

e * :‘]/
.

) an alternate path. The rollback recovery,d%bsytem fails to

. . .
. ~ N N N) l (
[/) I K s g A

pfovide such a feature.

2. More time is nequired to execute a DML command becauseA

o ~

DBMS. only. '
2. The subsytem cannot han 1le Mardware. crashes such as disk

runA
There could be cases when a user wants to rollback a
DML'

He uay want to. retreat°

[S —

- v
I ——

e it

EEPRIENP?

LT s g

. . .
. .
. R . .
- . B . N
. . . M
" v - L.

; The subschema %evel interfaces with the userx-via the B

%

', level therefore proviﬂes a level of abstraction to the level

i b g # e 3y S wre aemn e

175 . . o '’

p , Chapter VII
l | CONCLUSTON

A multidevel CODASYL DBMS modelg h\as been desighed. " The.

model has six 1€v‘ei1$. Each Tevel acts as a virtual machine -

.

and provides abstraction to .the level above.

BN
DBMS control module, This level provides a local view of
"the data base to the user. The schéma: leuel "provides ‘a , *
. , . .. ke -
global view to the DBA. The two data structures in this~ : - ,'

- level are record and set. They represent entities and their ‘ -
» ‘ .

]

relationships in the real world." T v T
' ‘<° N \/ -: -
~'I'he structural level contains structural 1eve1 record ‘ . / .
" \
index and pointer array to implement the data struoctures -of \

"the schema 1eve1; - The schema level user is not-e'oncer.ned

with the way in whieh a set is implemented. ‘The structural

above. The, encodiqg level implement,s the data stryctures of .

+ the x-structura’l level by a primitive constru):t " the _storage ‘

Al

r'e‘cord‘; An occurrence’ of a struqtural level record, an .

[y

index or a,point{er arra"y‘can- be represe‘nted by one or more ﬁ .
L n\/Jﬁ. \.
" oceurrences- of storage recorda which may belong to diff'e,rent ’ .

an
» +
'

r.storage record types. =l'he encoding 1eve1 presents a level

6f‘abstraction'to" ‘the structural 1eve ' The:) struc-tural Y 4

The encoding level also provides a level of abstraction,

to the location level below. The location 5evei maps, bit .

strings onto a paged address space. The location level s

/

abstracts away the bit string contg\t of pages to the data
It requests accesses or P

N ~ . base file structure level below it
) updates to a page as aﬂunit rather than bit strings. The

data base (ile structure level interfaces with the operating

° system. It maps the paged agdress space to the records of a
‘3 - B j‘ file. - A recprd here is- equivalent to the physical block . .
' size of a device. . This level interfaces the MCDBMS with the . |
bperating system. ’ ‘ . C A ' {
S :I ;The‘rstructurall levelu Egeoding level and'the lod tiom
.) - n ’
: - level of the MCDBMS are an_expansion of the. data stbrage
S h " description of the CODASYL 1978 proposal. These three
levels provide flear and well-defined structuring of the

« . DBMS, 'The data base. file structure level provides an

: interface to the operating Eystem Just as - any - other wuser

':' ' process does. Fhe limitation of this design is to assume

that the MCDBMS .serves a single usek and' id link-edited to .

o !
o + the run unit requiring it. With respect to the design goals . ,//

set up, the MCDBMS has fulfilled the goals. . |

.

Y . Each sublevel of eaohAJevel of the MCDBMS has its own - P
[

.

!

v f ' . 'status register for error reporting. Error . cgnditioqs

. . / .
- ~% propagate upwards Until the DBMS control module s rbached.'
“;1 The .DBMS control module calls rollback modules’ if the i
N i ‘
TR ";DB-STATUS“ipdicates the neeq for rollbaqk.

ey -

-

T

" 0
TR O A (RIS ey
»

& N ‘177 -
NP : _ - . - : . .. T\
. .) /
The detail modular design of the MCDBMS model requires a
total of 126 modules. The possiollity of realizing the
MCDBMS design is verified using the modular gesign method.

{0
A Yollback recovery system has also been designed. .The

system is based on a combination of the carefll replacement

and the differential file techniques. , The system assumes

that file directories are in the form of a directory tree in

each storage’ device. The rollback recovery system can
‘provide fast commpmd rollback and ruyn unit rollback. Even
when the content of /the main memory is lost, run unit
rollback cgn still be achLeved‘ in a short:time. Three
recbverf=control,modu1es are added into the MCDBMS 1level.

Six recovery‘ data collection and six recovery rollback

modules are added into the physieal file system. The design

\.

AN
- goals of the rollback recovery system have been achieved.

,.Although the rollback recovery system is 1ntended to apply

. ,) d
to the MCDBMS, in principle it can be extended to other data
models using different data sublanguages. The DML 1is a
highly proceduraljlanguage capable ‘of updating more than one’
. Cetme. O\ S
page at a time. .

\
8 s '
‘The MCDBMS systemtand the rollback recovery system offer

a number of possibilities for further research. First, the
MCDBMS-can be Implemented to compare its performance with

'existing DBHSs. Second the rollbaok récovery system can be-
.

implem nted‘to compare the- performance with systéﬁs using .

caref‘ul,neplace.ent. The time requined, f‘er procescing,'

.
P

[TozeT8]
-w

Vi

" Iu11m803

- [Verh??]

[Vern78]
EWied77]
[Wilk72]

(Wulf76]

9 vy .
state of the art report on On-Line Data Bases,

Love2, Invited papers Infotech Intl. Lta.,
- Maideénhead, England, 1577, pp. 339-354, -

Tozer, E.E. "The -dat§ storage description.

language (DSDL)"™ in Infotech state of the art
report on Data. Base Technology, v.2, Invited
papers, Infotech Intl. Ltd., Maidenhead,
England, 1978, pp. 385-421. .] .

Ullman, J.D. ?Prinoiples "of Database ‘Systems;‘

Computer. Science Press, Maryland, USA, 1980, ch.
1.‘ i

R R v
N N

. Verhofstad, J.S.M. * "Recovery and . crash

resistance in a filing system"™ in ACM SIGMOD

Progs., D.C.P.., Smith : (Ed.), ‘"Aug 1977,

pp.158-167. . , L _

Verhofstad, J.S.M. ° "Recovery -.techniques .for
datdbase systems", ACM Comput. N Surv., 10,

" (June 1978), 167-195.

Wiederhold, G. Database: Design, McGraw-Hill,
Computer Science Series, MsGraw-Hill, . NY, -USA,
19770 ' i ’

Wilkes, M.V. "On preserving the integrity of
data bases", Comp. J., 15, 3 -(Aug 1972),

191194,

Wulf, W.A. "Structured programming in the basic
layers of an operating -system"” in Language
Hierarchies and Interfaces, F.L.. Bauer and K.
Samelson (Eds.), Lecture notes .in computer
science, v.u46, Springer-Verlag, Berlin, 1976,

pp. 293-344.°

Yormark, B. "The- -ANSI/X3/SPARC/SGDBMS
architecture™ in The ANSI/SPARC DBMS Model,
Progs. 2nd SHARE Working Conf. On . DBMS,

Montreal, Canada, Apr 26-30, 1976, D.A.. Jardine |

(Ed.), North-Holland, Amsterdem, 1976, Pp-
1"21. “ ‘ v . A .

°

NN QT FOROE ST YR RET ARTR W ST SU PR S

AR C 186 : : '
- . N
. ¢ . APPENDIX A ’
z ‘ . . . ! “‘* {) - ”" 5 '
4 -y ' . ‘; - ! »:.:
) /' i v ' . . ~
) P - i
s * " 1 / 3 o * ' 1
. . v l-----.‘;----‘----‘- -‘-—-.—an_----:—————-'--———-—l-‘-A--'--——-‘-‘——-——-+ ,\ , \y\
"~ 1" MODULE {MODULE! . L R U
‘. 1. NAME |NUMBER| Y+ Tt DESCRIPTION - . « 7+ .-~ | _- |
N '-‘--"--—--0-—---'——-}1-—-—"----'----—— = s b e -,—-—*v—: i :\ .
4 1 " |DBF-MAP |} 10000} Maps data base pages to records «df files | co
Pl S i SRR S S S /
s . |LOAD-PG 1.10100} Loads a data ‘base page from' the data base! . . '
; - i ! 7,7 | into the location level buffer. | R
R B SO O L WS ,,

E
ko PR 'STORE PG' 10101} Stores a data base page from thfe "1beation| L
: A N | .buffer into thé data bdse ® ... S

" \ ' +--—-—-—-——-—b-——-—.—-——-————-—---——-—---——-—,—----——------—--+ , T .
A . . L 1
R . Table A. 1. Modules of the data' base file struetural level RN YL
i . - ® - . . o . i
t el . : .
¥ \ ’
] w . . f . b
i 3 <L s -
B ;i;- - f ~ ' . ‘}’l‘ I3
¥ -
ot - < . T
L N
ﬁ ’) I)
E) . 3 . [- L . a . "
i Va ' ‘ x o :
: Ty)N : . . < - » .
., : S . -
hos E . . .
1 ' . T ® . R
- e
& 4 4 . .
(v 13 (R - s ! AN .
] - } s .\. -

. s .
. .
- '
. ' .
1 at
' ' [‘
s
s w N
- Y
e '
. R P :
' o ' B
A4 .
M v L v .
- v
o 1 i
» '
. ! .
- -

AN
.
.
F
.
i
:

N

Tablé A.3 Modules of sublevel one of the location level

.MODULE 'MODULE'
NAME JNUMBER]

DES&RIPTION

]
!
i
1
]
3
71
1
-
1
I
i
]
1
[}
+ -~
1
I
{
|}
1
]
]
i
|
|
!
]
|
I
l
1
1
|
t
]
)
i
i
i
|
1
!
\
]
]
|
|
1
1
i
1
]
1
]
!
I

DB SPACE. 20000}

LL-INFO

-

]
4
1
1
1
1
1
1
—— . - ——
[}
|
1
1
1
' 1
———— e m- - -

Thia module accepts an input logical data

base 'page number and outputs a free page

‘number closest to that of the input,

keeps track of all the page assignqﬁhts

of the data base internally

Provides information on the mapping of .

It

storage records into the paged address

space and the set relations between the
storageﬁrecordsl :

)

<

"

.
[]

e dmmmm e e —————— ————————————————— ~——pm———— +
! MODULE | MODULE | : H
! ‘NAME INUMBER | DESCRIPTION]
locaaa cerermmcrc et ————— e e
lDELETE CUR-LOC \ 20100} Deletes an entry from the PCLT |}
N O —— T T Tt Lr LT ——————— -]
:INSERT-CUR—LOC } 20101} Inserts an entry into .the PCLT |
R PR Sy Sy fmmmm—— tr———— g M HE
1SEARCH-CUR-LOC ! 20102} Searches ‘the PCLT for-all or H
' : 7 ' ! part of a given storage data |
! H ! base key !
e et e Rt et
IDELETE-DIRYWENTRY} 20110} Deletes. an entry from a DID H
| .o | page v . !
---------------- +-----—+--------------------------------l
INSERT-DIRY-ENTRYI 20111} Inserts an entry into a, DID 1N
H ! page 3
T - LT T el !
EMODIFY-DIRY-ENTRY: 201124 Modifies an entry of a, DLD pagei
Tt e bmm———— e ——— e ——— e ——————————-
IRETRIEVE-DIRY- ! 20113} Retrieves the page of the |
! ENTRY ! ! direct index om- the DID page
| N |- | given the storage record type -
[‘. ----- oo —--- LY Y et -&4—--.,-’- ------------------
:SEARCH-DIRY-SPACE} 20114} Searches for a DID page with ath
H ! ! least one empty entry space. If|
R ! | the DID is full, a new DID page|
H i ! is created |
e e e e e e e e e e e e e e e e e +

4 mmmmmmmmonmemmmmm e e e b

-

i

11

e g mees e v -

S

r

{188
-’-——————————-----’---‘- ————————————————————————— - -
) MODULE {MODULE} '
| NAME, {NUMBER |- DESCRIPTION
- o e o e e e - +-—-----------—---—-—-P-"---——-—‘— —————
UR-LOC-0DP ! 20200} Provides operation for deletion,’ |

|
!
"
d INDEX
]

|
i INDEX
]
]

{RETRIEVE-DIR-
v INDEX

' SEARCH-DIR-

- INDEX

L T)

—— . ——— o - ———

nSEARCH-ST ING-

| g INh

| 20220}

{ insertion and searching of the PCLT}_

{ Retrieves the page number of the
storage record in the DI given the
storage data base key .

Searches for a DI page with at’
least one empty entry space.
DI is full,
created
e m e e e — e — i e, — e —————————————— 1

Searches for a storage récord \
[]

/
e

\
N2

:
!
a new DI page is :
:
[}

If the

| within, a data base page in t

Table A MxModuIes of sublevel two of the location lewed

' he °LLB
T W

A -
R i e it 2
! MODULE |MODULE| ‘A[‘ !
| NAME 'NUMBERI' ESCRIPTION '
= ------------- et e s r e e - - - - - - o - o = - o - - ~ =
ALLOCATE ! 20300} Searches the free space list of the |
' ! .. | LLB for a block size sufficient to |
E | ! hold a storage record E
|m—ccmrcce———— m————— o e o e s e e e e o e {
{ALT-PLACEMENT| 20301/ Generates an alternative page number%
:) " | that the input storage record may |
i i | reside) . :
R 4o o e e m e ———— ———— i
{APPROX= i 20302} ‘Produces the focal.page number H
! PLACEMENT -} { around which the stirage record may '
4 ! | reside . i
o PR . b fmem e mccccmcmccccc e — e —m————n———— H
{ BOUND ! 20303} Gives the boundary within which a
v] i storage record may reside
¢ o > - e . T S S WS AR WD G > . W - G5 - S . - - - - - - - -+

Table A.5 Modules of sublevel three of the location table)

[}

.

)

m——— LR R

—— o ———— - ——

189 <

o o o o o o o e e e e = e o e e o o rl-""“‘"

! MODULE iMODULE | ‘

:' NAME 'NUMBER| DESCRIPTION . !

| o o o e = - - o ey - o - - -

:FIND PAGE- SPACE' 20400] Finds the page with free space to

H ' .} adapt the given size, loads the

i i, | page into the LLB and updates the

! -] i free space list to adapt the

E - | | string to be stored

[mmm———————— ———tee———— L L L L PP e T atatatate

{FIND=STRING | 204017 Searches for. a storage record with

i i i a given storage data base key and

i i | loads the page contalning it into

- ! | LLB .

e m e mcecem e pmm———— Fomm e “———————— cm—————

}COPY ELB-TO-LLB! 20410/ Copies a storage record from ELB

I 41 | to LLB P .

lememccc e ——- bomm——— +----------5f -----------------------

JCOPY-LLB-TO-ELB} 20411) Copies a storage record from LLB

! | | to ELB 1

|- - pmmm———— —————- - - - 2 o 2 o o
« '{DEALLOCATE | 20420| Returns. previously occupied space

1 [}
) I

to thes page as free space

! MODULE 'MODULE" 4
17 NAME 'NUMBER' DESCRIPTION L.
= e g e e — e e e e e e ——————— i
* \DELETE=~STO- REE' 20500' Deletes a storage recorfvﬁrom the]
1 i | data base .
| e mmeemmms PR O R rmmn]
y IMODIFY-STO-RET| 20501} Modifies a storage record in the |
o | | data base !
T tmm———— jommmamacnccannaal m———————— --------:
|RETRIEVE-STO~ | 20502} Retrieves - a storage record from the|
- . REC | i data base : . i
S N G bommmm———————————— [———- -
iSTORE-STO-REC E 20503 Stores a new storage record into . E
¥ .]

! the data base

?

L T A S aniseran b Cient S nelirrol A - -y
- . aee ee e s

)

D T

H e e A

e s

{ MODULE | MODULE}
| NAME 'NUMBER'

+ ———————————— - ey . ——
! MODULE |MODULE}
! NAME |NUMBER|
e bommm—t
{XFER~-, { 30100}
i DECODE | .
i T : i
|=mm——— e +
'\ XFER~ -1 30101}
! ENCODE, | |
P | {
] 1]
[} i i
{] t
1]]
] [] 1
} 1 3
|mmmm “mpmm—————
| CREATE- | 30200}
i STR-REC | !
HE T PP et s
- {DELETE=- | ,30201]
' STR-REC ' |
| semem e tomm——— +
{REPLACE- i 30202,
i STR-FLD | i
P P |
| mmm—————— fomm——— +
,IREPLACE- | 30203}
H STR-REC |]
| —— S it +
:RETRIEVE-} 30204}
! STR-REC| !
Vo ! i
[}]]
[|]
[} 1]
1 [} 1
-.:----f ————————————

Table A.9 Modules
level for structur

_structural level data structures to

i
i
==
EL~ INFO' 30000' Provides information on the mapping of \
H 1
l] 1
| | storage records !

- Ve T e e e A G G Y A G NS A e R L G A L D G - GE Gn GS @ e .

DESCRIPTION .

Transfers a storage record in the ELB to|
the appropriate fields of the SLR in the}
SLB1 with decoding if necessary |
e mm—e— e —— e ——————————— e ——— 1
Option one- trapsfers one field of a SLR|
to a correcponding field in a storage
record. Optioff two- transfers fields of
a SLR to 'all corresponding fields of a
storage. Both options may have encoding
if necessary.

Creates the storage records correspond-
ing to a new SLR

+
]
]
!
]
i

)
]
1
]
I
1
)
]
1
1
[}
[}
1
1,
1
]
)
1
]
)
]
)
|
]
[}
[}
[}
]
I
!
i
]
)
1
]
f
1
1
[}
1
]

Deletes all the storage records corres- |
_ponding to a SLR o
t

g
Replaces a field of the SLR resulting in}
the replacement .of a field of a.storage |
record with encoding if necessary !
_____ e mmtec e m e e e ———= |
Replaces the storage records correspond-|
ing to a SLR with encoding if necessary !

Retrieves a SLR by retrieving all |
storage records corresponding to the SLR!
and available to the subschema. of the |
run unit. Decoding takes place if !
necessary. |

- - - - - o e e o o o o e W o o - - e - > o +

.in sublevels one and two of the encoding

al level record (SLR) manipulation N\

—— . —— - —— - -

O P

e A g

PR

e *

g :]

N 191)
o m e ————————————— e e meem——————— +
! MODULE { MODULE} i
i NAME I NUMBER R DESCRIPTION | - E
i m o SR RSy Wiy
{CREATE PASR | 30110} Creates an gpcurrence of a PASR !
| R D e e e e T b
{SHIFT-PASR- | 30111} Shifts the elements of a PASR up one |
! ELEMENT | | element space H
|ommeaa Amcce oo P — e — e —sme s e e ————————— !
ECREATE -PA | 30210 Creates the pointer array P

N | A ot e o - - - L N e] e e e - " - - - - - - o — - C L T
{DELETE-PA 30211] Deletes a pointer array resulting in
]

i
' c
[}

\
t
!
deletion of all PASRs associated with{
the pointer array E

L]

Searches through the pointer array to!
find an element with value that "
. matches with the input i
e o v o e o e o - e - o > > > S = S P - - - +

- Tabke A.10 Modules {in sublevels one and two of the encoding .
level. to handle pointer arrays .

n) . ! .
" ' . | % }4 .)
\
.)

ELEMENT

i i
t 1
1 1
1]]
{]
- —————— - - - - o e = P - - —— - - ———--—-———————:—-——:——-l--
5 ({DELETE-PA- ' | 30212} Deletes an element from the pointer |
P ELEyENT 3 | array. ! a
e et e et L L L P L E P Vo
{INSERT-PA- | 30213} Inserts an element to the end of the |
! . ELEMENT ! | pointer array) . |
e Ll Tt L LT T (o — e e e o e e e am m m |
‘v * JRETRIEVE-PA-} 30214} Retrieves an element in the pointer |
' ELEHENT' | array |
=--——-————-—7+ ————— ,+é-——--——--—----——-———————;—--—6 ----- —-: »
IRETRIEVE-FL-{ 30215 Retrieves the first or last element ! A
! PA-ELEMENT| { of the pointer array . |
l-- -—- - e o e e - - - o -t .. s G e S Sp e . D RO IR A T GB R oh G L X T ¥ F ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ '
' i
1
1
|

+
LSEARCH-PA- | 30216
' 1] .
i

!
!
[}
1

e e et = L e

- s
o
)) 192~
) .
e ot e e ettt e e e 8 e e e - - - - - - - +
' MODULE }MDDULE]} ‘ !
. NAME {NUMBER} DESCRIPTION !
| mmm————— ————— e aas LI L LD L i
¢ %DELETE-ISR | 30120'Deletes an ISR from the data base Vo
’ | e e crcm————- fmm—— e o o s o om0 o o S o e e o D
}FIND-ISR } 30121}Finds an ISR satisfying the. input { -
' H ispecification and loads it into the |
' ! /.encoding level buffer. !
| === mm——————— e e e e e o e e o e 1
{SPLIT-ISR H 30122‘Sp11ts a fully packed ISR into two by|-
H ' lereating a new ISR and copying half |
H] {of the entry pairs of the original ' |
| | ISR to the new IS. L \
: ————————————— +—t—-=—v- ———————————————————— o v o o > ot ., |
‘ }CREATE-INDEX ! 30220'Creates t.he HISR and the first ISR ! T
|mmmmsee e ———— Fomm et e e ——————— —————— e ——————— |
4 . }DELETE-INDEX H 30221'De1etes all ISRs and the HISR '
§ : ! ! : .corresponding to a partieular fet 1
1 ! .occurrence ‘ !
: YT —. e e e e e e e o -] -
v {DELETE~- 1 30222'De1etes an entry péir of an ISR Thi ! 1
;3 - } INDEX-ENTRY | imay recult in further deletion of an | ‘ .
i H . H 1ISR if it’is empty except for the V-)
: . ! ! / lcase that it is the only storage i
A] H ifecord remain%d@ in the set !
H T D el s ST T Hemme———— et m———————————— '
) 1 INSERT- « | 30223|Inserts an entry pair into an ISR. g .
i { INDEX-ENTRY' { iThis may result in splitting of ISR]
;] ' ! . lif it is fully packed already I
. lemmemccmes T S S S B MO |
A {RETRIEVE=- | 3D224}Retrieves the entry pair of an index | *: °
« | INDEX-ENTRY | .with a supplied key value N N
B ettt o e e e e e e ey e e ! : .
L lRETRIEVE-FL- i 30225} Retrieves the first or last entry !
b | INDEX-ENTRY | Ipair lof an index - - -
‘ R it tom———— S e et —-——-]
IRETRIEVE-NP-) 30226'Retrieves the next-‘or’ prio; entry | '
{ INDEX-ENTRY | ipair of an index relafive to the ! '
! ! .supplied—logical data base key of an | ;
i i ientry pair ! '
et L L L L e e e e e e e e e -1, RS
’ ‘SEARCH- ! 30227!Tests whether a given logical’ data]) i;
{ INDEX-CONTENT | . ibase key is in the index | ; |
\ hihainindeddndeldadahdintsbatedelde bbb alndebed o it ndnieiadedadedetabeiateted 0 Vbbbt + N
H Table A.11 Modules in sublevels one and two of the encoding ‘
| level for index management : 3
v ‘) %
9 N\ ' %
. » s ! . ” B . B
- . o e
| | | | ‘ | 'l | ?gé
oo . 7 ‘ 7 ' .) ‘ jo) Lo A‘ e ‘ - ~---m’::;§q: N TR e :

[N

EE RN e

LA

b g s e 3

¢ ‘
[4 N
193 ')
v
et et e o 7 o e e o o B O o 2 e o e o T T e = o o -
| MODULE }MODULE} ST . . i
** NAME !{NUMBER | L4 DESCRIPTION
* | mm————— - +'.' --- : B
ES =INFO | 40000} Provides information of the sdhema DDL E
| =—————— = et ettt i

{SL-INFO} 40001 Provides information of the constructs of

158~ INFO' 40002' Provides information of ﬁhe subschema DDL |

o o o e o i o o 0 e - " - - - - - - " = - - - +

‘Q~ _Table A.12 Hodules of sublevel zero of the structural level

D et e L LT T T S P Py PR) -,
3 MODULE !MODULE{ |
H NAME INUMBER| . DESCRIPT ON !
T TS + ------ R v S ey !
@ :XFER ID-FROM~UHA 3 40100} Transfers an identifier from a 1
¢ o ! { record A to the corres-|
N i | pbnding of the SLR-in SLR2|
| mmmememe e e——a——e e e e m - ——————— i
}XFER ID—TO UWA ! 40101} Trénsfer a field-of the SLR in |}
H | " | S8LR2 to the corresponding data |
! . ' ! identifier of a record in the !
i , . i k UWA :
R tommmm— ocm e e et 1
{XFER-VAR-FROM-UWA| 40110} Transfers a variable or a data |
] H ! identifier of a record in the }
H ! ‘UHA to the strdctural level !
tommm e ———— P mmm ettt mn s mm s a e s s ———e——————— +
-Table 'A.13 Moduleg of sublevel one of the structural 1eve1
13 ‘ :
/’\\I a , ‘ ¢
. i N
. ’ 4 a T ‘\‘
. .) ' . s
~ a
_ »
0 ’ ~J' .
1 -~ .a , , . :
» -
.t | . .
LI “ ; e ‘. { . . I

]

l .
b] '} the structural level E
]

Pl o St 74 kit

5 . e

hnr s st

Lt ot s it

.
|
:
!

1
|
;
H

.

% - e R

e AT TN AN Y R ey gy (TP

3’

v

L4l

N
-
O
i —
i
 ieneaidn o il

e me oo Y -r,: ——————————————————— - e e e - .- . .- .- - - 1
1 v MODULE 'MODULE'? ’ '
H NAME {NUMBER' DESCRIPTION

e ccccc——— o e e o e e e e e e e o e o e e e e e e - -

XFER-IDS-FROM-UWA} 40200} Transfers a number of data ',

o |{.identifiers from a subschema
* ..| record in the UWA to SLB2

XFER-REC-FROM—UWA 40201} Transfers a subschema record
]

from the UWA to SLB2 -

L
—— 0 e - - G — TS L . T G S - - -

Transfers a record from SLB1 to
the corresponding record buffer
in UWA - .

i
|
1
|
§
{MATCH-F LDS
i
:

o g am e D e S S > S S S o S S S ey S

+

1

H

]

+ s

| Matches the fields of an’ owner
| SLR in SLB1 with certain fields
! of the record in SLB2 or with
| some variables in the UWA
+ I3
'

|

!

— —————— .y e - ——— — ————- —————————ae b

MATCH-KEY

40211

- - o - -

Matches an index of a SLR with a}
key value in a field of the - |
’ subschema member record H
L e L Lt L L L LA P L L L L L T - = - w0 - - +

Table A.1lU;Modules of sublevel two of the structural level ' i

R e e SR L S

AN

€y : ' ot ‘

195

o - .- .- - D D S GE G S S S D TGS T G R Gy ER G G G D G I WD b WS W D el S AR S S G G G G e

+
! MODULE | MODULE ! DESCRIPTION !
NAME | NUMBER | ~ ‘ , '
]
!
]
}
!

]
1
!
)
t
1
]
)
l
I
]
[}
)
t
1
]
I
+ -
]
|
1
-4,
¥
[
+ -
1
[}
[}
}
]
-
1
1
t
I
4
|
|
!
]
1
1
1
\
]
1
)
!
i
]
[}
1
]
s
K|
]
'
]
]

,DELETE,RCT-ENTRY uo3oo' Nullifies the currency indicator

| of a record type in the RCT -

 ———

]
]
]
]
i
i
e e e e m e e m e b e ————————————————————————— =
. |MODIFY~-RCT-ENTRY | M0301' Modifies an entry in the RCT for |
i T ! change of currency of a record !
i, | { type . - !
et i e |
{RETRIEVE-RCT-ENTRY! 40302. Retrieves the logical data base |
! ! ! key of the current record of a !
| H H given record type , !
| emmme e ——————— frmmmme e m—— e e — e — . ———————— - ——————— -1
{DELETE-SCT-ENTRY 1 403107 Nullifies the currency 1ndicator |
! ! of a set type in-the SCT !
----------------- T --—-------------------:
MODIFY¢SCT-ENTRY | 40311] Modifies an entry in the SCT -for |
i | } ‘change of currency of a set type]
L T T TP Y Y X X e o wn o e D G T G N G0 A WD OR S A T G A G O G R A SR D e -
RETRIEVE-SCT-ENTRY M0312‘ Retrieves the logical data base

! key of the current record of a

! given set type

- - - - - - - - - - - - - s - o - - - . - g . = - - -

!
| |
: !

[}]

| 1

+ 1

REC-SEARCH-CHAIN ! 40320} Searches through a record type !
] ! chain for matching of fields to |

! be used in set selection !

+ |

=

|

[}

)

index for matching of fields to

1
[]
]

-

40321} Searches through a record type

!
i be used in set selection
+

REC -SEARCH PA 40322} Searches through a record type
. ‘ .« | pointer array for matching of
{ fields to be used in set
v ! selection
b) e om e o e o e G e o o et i e et e 08 0 y -

|
|
!
|
uo33o' Updates the record type chain for|
| insertion or deletion of an |
{ occurrence of the record type H
i +—-----+’--------—-----—--—-f---L --------- !

: {UPDATE-REC INDEX ! uo331. Updates the record type indes for|
! . insertion or delebion of an }
! ! occurrence of the record type]
---------------- R R S NSO SR |
UPDATE REC PA | 40332{ Updates the record type pointer }

] | array for insertion or deletion |

| | of an occurrence of the record }

' 1 type . !

-- L---h-----_‘.

|
H
1
]
H
A
[}
i
!
-
Table A 15, Modules of sublevel three of the structural’level

N mmm wn s e

[SR RN A

o LIN-SET} *
- o o o fomm———
1 CONS-SET-SEL | 40422

H]
1 -]
l

]
[}
]

- 'RETRIEVE-NEXT-| 40412
S of 3 given set -
1 .-

Selects an owner record of a set
.| based df structural constraint

EFLDS-SET SEL

'

'

)

]

1]

]

- v e 8 o e [P W
KEY-SET-SEL | 40422!

]]

]]
R bommmem =
{UPDATE-REC=- 1. 40430)

- TYPE ! /
]] !
R bomwmm- -
}UPDATE-CUR | 40440}

] []

} S i
+-- ------------------

Table, A \16 Hodules\of‘ su

.mem§er record with the owner record

Selecté an owner recdrd of a ‘set
by.matching certain fields of the

ith some variables

- s o o e - = =

Selects an owner record of a set
with a specific key value

Updates the record type informationr/.

when a struatural record occurrencej
is created of erased : !
PRI ———ep SR P 1 2 H
Updates the currency table of the |
record and* all sets in which the: i
membership of the record changes

------——----———---—---——-—--——-—--—

blevel four of the structural level

+

o o 0 0 s - om0 - - - - - - - - - - - - - —- - 4+,
1 MODULE ! I ‘ ' |
i NAME {NUMBER! - f ® DESCRIPTIOCN .]
| == ——e—ceee———— trmcae- e 2 s !
1 SET-CHAIN- { 40400} Connects a member reocrd to the E
{ FIRST-CON ! | first position of a set'chain l
TP - . D T B e —————— ——=
{SET-CHAIN- | 40401} Connects a member record to the i
{ LAST-CON ! H last position of a set chain '
I pmmm—— 4mmmmme————— i 2 ———
{ SET-CHAIN- | 40402] Connects a member record to the i
E NEXT.-CON H | next record position of a set chaln}
jmmm e s e L e e e !
I§ET-CHAINJ, ! 40403} Connects a member record to the '
] PRIOR CON ! | prior-record position of a 3et B
4 ! | chain. i
% -------------- b mmwn- bmmmm—w—— - - - 5D o= = }
:SET-CHAIN— ! 40404} Connects a member record to a set |
| SORTED- CON ! { chain according to a predefined |
i d I ordering of the key |
B e tmm————— e i L L L Dty |
|FIND-LAST-SET-~{ 40410} Finds the last member in a set i
H CHAIN' . ! chain’ |
e pmm——— N L ER PP .
{RETRIEVE-FIRST| &0411} Retrieves the first element of a !
P ~IN-SET}] * {1 given set ‘ . i
-------------- +------+------------i--e----------——-——---—-}
! Retrieves the next member record
]
]
+
i
]
)
+
|
|
|
1
|
+

.
+——————---——--————-—-.--—‘- ---------- - - ‘---—-’- ------ “ ----- -+
} MODULE {MODULE | : !
! NAME 'NUMBER' : DESCRIP’I‘ION |
ettt b e B S Ll bt et 1
|SET-CHAIN-ORD- CON' 40500, Connects a member record 'into a |
| ! | set chain according to the set |
| i | ordering criteria as specified |
| A { in the schema DDL !
| e o om———— it ettt -1,
ISET-SEL ! 40510 Selects an owner record of a set}
! :] } for a given member record .o
. ! H occurrence !
R e E L e toem———— tmmmma——t—- T 2-+

Table A.17 Modules of sublevel five of the structural level.

H

D et ettt o e ——-————— +
! MODULE ! MODULE | T o !
H NAME 'NUMBER' DESCRIPTION\ | ,

o m——m——————— e e ettt ——— e |
'SET~-CHAIN-CON | 40600' Connects a member record into a set}
i o | .chain ~ A
jmomm e o e i ettt !
I{SET-IND-CON ! 40601 Connects a member recore into a set|
! ! { index ’ ' [
T LT T e N LT e s mmc e scece s ses————————— !
!SET~PA-CON ! 40602! Connects a member record into a set|
i ! i * | pointer array !

. e el e et E e e e e e e e - e - : ,\M

:SET-CHAIN-' ! 40610} Disconnects a member record from a |\ ‘
| DISCON ' | | set chain ' !
- ' ————————————— - o e o > - - — - - e e S = - - :
: -OWNER-SEL i u0620§-8e1ects the owner record of a set !
!

SE
] given the member record

O S - = - - - - - - - +

Table A.18 Modules of sublevel six of the structural level

i

. el

L amTR VBT

e il

A sl b . G

i v 13 Y va et

]
i
. EACC-SET-OHNER
]
E .o

-

- 198
+-—--—--—-.--—-—-————————————;;———\“———-, ——————— J—-—’ --------- n-+
MODULE |MODULE} , : . !
NAME 'NUMBER' . DESCRIPTION. y) }
SET-CON 40700, Connects a member record to' the appro-

priate owner record of a set
Disconnects a member from its owner

record in a set L ﬁ
]
1
40710} Creates the structural.level set 1
| constructs for an owner SLR. It is H

. .
SET-DISCON 40701

+ ——— -

]
]
]
1
]
]
[}
]
1
]
]
]
)
]
[}
)
]
i
1
]
]
1
'
r
]
1
]
1
|
}
1
]
)
1
1
]
]
1
]
]

1
|
'
]
i
]
!
[
I
'
1
]
t
[}
t
]
}
'
!

.

.construets for a number of sets of
.an owner record

KS
et e s e r e r— - ——————————— - e e e +
! MODULE {MODULE} . 1
! ' NAME {NUMBER | ' DESCRIPTION — !
T o —m—————— r————— o e e e e e e e e e I
JACC-SET-~CON ! 40800}Connects a member record to a number)
H ! lof sets ’ i,
L L LT T S el LT T - e '
‘:ACC—SET~DISCON} 40801}Disconnects a member record from a |
! inumber of sets . Ve
------------- R A e e E L LT L -4—-----------3
E 40810|Creates the structural level set
1
|
}

. Ny :
Table A.20 Modules of sublevel eight of the structural level

. +-_——----—-———-----——-—---—-—.- ----- - S - e - S - - - - + tt

. MODULE {MODULE | R 1
’ NAME {NUMBER | DESCRIPTION C]

ke ———————— O — brmmm e m e n e n e e e, - —————— !

ERASE-REC 40900}Erases a recqrd from the data base.}-

]
]
i iThe record ddes not contain any set]
i imembers currently . o

_______________ A o o e o o 0 w 2m o e 2 e - - -

]

]

1

]

lRECURSIVE ERASE! RIOOO'Erases ar rd/ Wi th recgrsive call}
I ldue to the pres e of member s

[}

]

!

4

]
|
1
[}
[}
}
]
|
[}
1,
1
t
!
}
|
1
|
!
|
]
1

]
i jrecords to be ¢gFased along with
H ithe owner

Table A.21 Modules in sublevels nine and ten of thﬁgifﬁﬂétural

level

e iee e aa B ‘- . - T e ssma e i Y g

o v . i NN .- v ——

[—

1
1
]
]
[}
|
' v
|
|
]
]
1
[}
l

T

’ ! 4
Jgg) . . i
et e e v e e e 2 e e e e et
! MODULE |MODULE!.
! NAME {NUMBER | DESCRIPTION
AR R o = = e o e
IACCEPT ! u11oo. Finds the logical data base key of the
i ! ‘| current record of the record type, a
i ! | set type or of the run unit
- rhe—————— bommm——— e i T T U
{CONNECT i 41101} Connects the current record of the run -}
i‘ - ‘{ unit to a number of sets ’ !
| T R — e T T T P AP R |
}DISCONNECT' H1102} Disconnects the current record of the |
i i { 'run unit from a number of sets !
o - $emmmmme e e e crecrec e e ccc e e m e ——————— H
{ERASE ! 41103 Erases a record from the data base. All}
i i 8 | its member records may be erased |
e Fmmm——— L L i T Ty ———. I
{FIND1 | 41104} Implements the first format of the FIND{
P i | statement., It alsosupdates the |
'l ! J-currencyCindicators as specified !
R B ——— T S mme————— '
IFIND2 | 41105} Finds a r ord with a given calculate |
| i ! key valueyand a record type . !
R S —— #ommm e e e il o '
JFIND3 (41106{ Finds a record with the same value as |
!] { some data identifiers of the current |
| N | record . of the run unit within a :
i < } given ‘set '
R i s et T P LT L LT LR PP
{FINDY ! 41107 Finds a record relative in position’ ;
i -1 | with respect to the current record of |
) ! } the run unit within a given set !
= e et e L L P P]
{FINDS ! 41108} Finds the current record of a given seti
jmw et e rcc e r e e e cem e r e e e e e e c e ————]
|FIND6 i 41109} Finds the owner record of a member \
H H i record within a given set. The member |
h i ! record is a tenant of the set and is '
1 ! ! the current record of the set type H
et LT Fom———— e D H
{FINDT * 41110} Finds'a record of a given record type |
| H | within a given set type based on !
H | *! certain user supplied conditions A
e cana—- ¥ W o cemm—ca e ccm e ————— S H
{GET ! 41111:~Transfers part of a SLR into ‘the ;
| 1 ! subschema record area !
jomem—a———— domeme e e e e m e m e m e ———— e ————————————— !
iMODIFY 1 41112} Implements the two formats of the !
| i | MODIFY statement as specified in the . |
! ' \ CODASYL COBOL JOD 1976 E
1)
| - - Fmn - —- +--1-—-————————---'- ---------- - > > o - o 1
|STORE ' 41113: Stores a'record into the data*base !
o e e e e e e e e e e +

‘Table A.22 Hodules of sublevel eleven of the structural level

P

I
o tuh M s o e

s

TN R GY daee . &

1Y

R

s s A She®

¢
AL
R

