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ABSTRACT
A method for obtaining rigorous upper and lower bounds on an output of the exact weak solution
of the three dimensional Stokes problem is described. Recently bounds for the exact outputs
of interest have been obtained for both the Poisson equation and the advection-diffusion-reaction
equation. In this work, we extend this approach to the Stokes problem where a novel formulation of
the method also leads to a simpler flux calculation based on the directly equilibrated flux method.
To illustrate this technique, bounds on the flowrate are calculated for an incompressible creeping
flow driven by a pressure gradient in an endless square channel with an array of rectangular
obstacles in the center.

KEY WORDS
Stokes problem, output bounds, exact weak solution, three dimensional space

1 Introduction

When performing computer simulations, the presence of numerical errors in the solution leads to
uncertainty of the design quantities. In order to gain confidence in the prediction of these quantities,
spacial convergence studies are often performed, which can become computationally very expensive,
especially for three dimensional problems. For this reason, adaptive mesh strategies are often
performed. However, one disadvantage of adaptive methods is that a desired error reduction
target is not guaranteed. In order to obtain reliability in the numerical approximation, efficient
error estimators are necessary, but the questions “what error is relevant” and “will an adaptive
mesh refinement lead to a desired solution accuracy” must be answered.

Since the 1970s, error estimation based on either the a priori or a posteriori procedures have
been developed. An overview of pioneer work on estimation of the global error such as the error
in energy can be found in [1, 12]. Latter work on the investigation of possible extensions of error
norms [2] lead to the idea of error estimators associated with outputs (also termed goal oriented
error estimation) which was further extended in the late 1990s [14, 18, 19, 23]. These procedures
are motivated by engineering practice where the error must be related to quantities or “outputs of
interest” which are functionals of field variables such as displacements, velocity field, or pressure.
Initially applied to elliptic problems, including the Stokes problem [20, 13, 16], but more recently,
goal oriented error estimation techniques have been advanced in the study of transient parabolic
problems [10] and also acoustic wave propagation problems [15].

More recently, guaranteed bounds on exact outputs also called ”exact bounds” have been
∗EMAIL: zcheng@encs.concordia.ca
†EMAIL: s ghomes@encs.concordia.ca
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proposed in [24, 25, 21] and for time dependent outputs in [4]. The upper and lower computed
bounds, hold for all levels of refinement and are shown to approach the exact quantity of interest
at the same rate as its underlying finite element approach. This certificate of precision can then
determine the “best” as well as the “worst” case scenario in an engineering design problem. More-
over the method can be termed “cost effective” as it can be used to determine the size of the mesh
required to achieve a desired level of accuracy. This approach also answers the above question
where error in a design quantity is important.

The strategy involved in the computing of bounds on exact outputs of interest is similar to
the former hierarchical method [18], in that it involves decomposing the global mesh into several
elemental subdomains and relaxing the continuity requirements along the edges of each subdo-
main. A Lagrangian is first constructed so that the output problem is recasted as a constrained
minimization problem where the constraints are the continuity requirements along the edges of
the subdomains and the equilibrium equation. The gradient condition of the Lagrangian will then
lead to the primal-adjoint pair and the equilibration equation that will determine the candidate
inter-element continuity multipliers. The bounds are finally obtained through local subproblem
calculations. At this stage, the method differs from the former two-level residual method because
by exploiting the Lagrangian saddle point property, existence of such bounds on the exact solution
output is guaranteed, however the bounds are uncomputable in general. The key ingredient relies
on constructing a complementary energy functional chosen from a suitable finite dimensional set
that can be used to bound the infinite dimensional problem [24, 25].

Our goal in this paper is to extend the exact bound method for the Stokes problem based
on the above implicit procedure. The extension of the bounds on exact outputs to the Stokes
equations is similar to the Stokes hierarchical method [20] but aims at bounding the exact out-
puts. Similarly, the global primal-dual calculations derived from the minimization problems of the
augmented Lagrangian with the relaxation of the continuity requirements along the edges of each
subdomain and the primal-dual hybrid flux calculations for the inter-subdomain connectivities are
solved. Then the computed solutions for the primal and dual problems (velocities, pressures and
adjoints) and hybrid fluxes are interpolated from the low-order polynomial space (e.g. P1++ −P1

[3] as shown in the left picture of Figure 1) to a higher order polynomial space (e.g. P2+ − P1

[9, 3], as shown in the right of Figure 1). This process is different from the hierarchical method
in that the interpolation can be performed on the same mesh as the global and hybrid flux cal-
culations. Finally, the augmented Lagrangian is reformulated by implementing a complementary
energy functional chosen from a suitable finite dimensional set that can be used to bound the infi-
nite dimensional Stokes problem. This step is also different from the hierarchical method because
the upper and lower bounds are computed by finding the inf-sup condition of the complimentary
energy reformulated augmented Lagrangian on the decoupled subdomain so that they can bound
the exact Stokes output.

To illustrate the exact bounds method for the Stokes equations, we select a benchmark prob-
lem for a creeping flow in a channel [5] and derive the mathematical formulation and bounds
procedures as follows.

2 Review of the Exact Bound Method

2.1 Model Problem: Poisson’s equation

For clarity, before extending to the Stokes equations, we first review the exact bound method
presented in [24, 25, 21]. We consider Poisson’s equation for a three dimensional cube geometry
(Ω) with homogeneous Dirichlet boundaries, Γ = ∂Ω as it is the simplest model problem. The
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Figure 1: Tetrahedral elements for velocity field. • vertex nodes; ◦ mid-face bubble nodes; �

centroid nodes. (Left: P1++ − P1 [3]; right: P2+ − P1 [9, 3]).

formulation for the Poisson’s problem is then stated weakly as: find u ∈ U such that∫
Ω

∇u · ∇v dΩ =
∫

Ω

fv dΩ ∀v ∈ U (1)

where U ≡ {u ∈ H1(Ω)
∣∣∣ u|Γ = 0} and H1(Ω) is the space of all functions which are square

integrable and whose first derivatives are square integrable. This problem can also be written as a
minimization statement where the exact solution u, is the function that minimizes the total energy
with respect to all candidates in U ,

u = argmin
ω∈U

1
2

∫
Ω

∇ω · ∇ω dΩ −
∫

Ω

fω dΩ (2)

2.2 Output Functional

We now express the output s as a linear functional written as:

s =
∫

Ω

f◦u dΩ

where the field variable u is the exact solution to the Poisson’s equation in (1), and f◦ is some
function defined over the space of polynomials P

r with degree less than or equal to r. Therefore
we seek sharp bounds s± such that s− ≤ s ≤ s+.

2.3 Continuity Relaxation

The global domain Ω is decomposed into a mesh Th of non-overlapping open elemental subdomains,
T for which

⋃
T∈Th T̄ = Ω̄. Lagrange multipliers are introduced to enforce compatibility at the

interface nodes after relaxing the continuity requirements along the faces of each subdomain. The
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boundary of each elemental subdomain is denoted by ∂T , with faces γ, and ∂Th, denotes all the
faces in the mesh. In addition, we denote the broken space by

Û ≡
{
v ∈ L2(Ω),

∣∣∣ v|T ∈ H1(T ), ∀T ∈ Th
}
.

Explicitly enforcing continuity along the faces of each subdomain, will lead to the equation

∑
T∈Th

∫
∂T

σTλ ω̂ dΓ = 0 ∀λ ∈ Λ, ∀ ω̂ ∈ Û , (3)

where σT (x) depends on the arbitrary ordering of the elements and for any elements T , TN ∈ Th

σT (x) =
{

−1, x ∈ T̄ ∩ T̄N , T < TN ,
+1, otherwise.

The term on the left side of equation (3) also includes the Dirichlet boundaries of our problem.
Note that we do not have Neumann boundary conditions in the model problem. As we shall see,
equation (3) is then imposed as an additional constraint in the Lagrangian, where the λ’s can then
be computed through the gradient condition. The faces functions λ are members of the dual trace
space Λ =

∏
T∈Th H

− 1
2 (∂T ).

2.4 Constrained Minimization

We can now reformulate a variational statement of the Poisson’s problem with homogeneous Dirich-
let data, such that the minimization will lead to the linear output functional. Here the constraints
of the Lagrangian include enforcing the continuity along the edges of the subdomain, and the
equilibrium equation. To obtain both upper and lower bounds, two cases are considered which
vary by the sign in front of the first term (original output) in the Lagrangian below. We write the
following Lagrangian:

L±(ω̂±;ψ±, λ±) ≡ ∓
∫

Ω

f◦ω̂± dΩ (4)

+
κ

2

{∫
Ω

∇ω̂± · ∇(ω̂± − ū) dΩ −
∫

Ω

f(ω̂± − ū) dΩ
}

+
∫

Ω

fψ± dΩ −
∫

Ω

∇ω̂± · ∇ψ± dΩ

−
∑
T∈Th

∫
∂T

σTλ
±ω̂± dΓ,

for any ū ∈ U and any positive scaling parameter κ which is used to tighten the bounds and
to produce dimensional consistency. The output bounds are arrived at through the saddle point
property of Lagrange multipliers and from the strong duality of convex minimization which leads
to the inequality:

inf
ω̂±∈ Û

L±(ω̂±; ψ̃±, λ̃±) ≤ sup
ψ±∈U

inf
ω̂±∈ Û

L±(ω̂±;ψ±, λ±) = ∓s (5)

λ±∈Λ

for some candidate Lagrange multipliers (ψ̃±, λ̃±) ∈ U×Λ. The bound (5) is uncomputable in gen-
eral since it requires the solution of an infinite dimensional problem. We follow the work presented
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in [24] in order to procure computable upper and lower bounds on the bound in (5). This task first
requires the approximate solutions to the Lagrange multipliers λ(k)

h , and the decoupled solutions,
u

(k)
h , ψ(k)

h where the subscript k denotes the restriction of the field solution to a subdomain. These
approximations are then used in several subdomain calculations.

The approximation spaces we use for the finite dimensional problem are

Uh ≡
{
v ∈ U

∣∣∣ v|T ∈ P
p(T ), ∀T ∈ Th

}
Λh ≡

{
λ ∈ Λ

∣∣∣λ|γ ∈ P
p(γ), ∀γ ∈ ∂Th

}
for P

p(T ) being the space of polynomials on element T (in three-space dimensions) with degree less
than or equal to p, and P

p(γ) being the space of polynomials on element edge γ (in two dimensions)
with degree less than or equal to p. Moreover, the global representation of the broken space is
given by

Ûh ≡
{
v ∈ Û

∣∣∣ v|T ∈ P
p(T ), ∀T ∈ Th

}
.

The candidate Lagrange multipliers are obtained by solving the discrete form of the first variation
of the Lagrangian. Upon imposing the decompositions λ± = κ

2λ
u
h ± λψh , ψ± = ±ψh and u = uh

the gradient condition of the Lagrangian leads to two global calculations and two equilibration
equations which yield the hybrid flux approximations. These resulting set of equations are:

1. Global Approximations

(a) Primal Problem: Find uh ∈ Uh such that∫
Ω

∇uh · ∇v dΩ =
∫

Ω

fv dΩ ∀v ∈ Uh (6)

(b) Dual Problem: Find ψh ∈ Uh such that∫
Ω

∇ψh · ∇v dΩ = −
∫

Ω

f◦v dΩ ∀v ∈ Uh (7)

2. Hybrid flux calculations:

(a) Find λuh ∈ Λh such that

∑
T∈Th

∫
∂T

σTλ
u
hv̂ dΓ −

∫
Ω

∇uh · ∇v̂ dΩ = −
∫

Ω

f v̂ dΩ ∀v̂ ∈ Ûh (8)

(b) Find λψh ∈ Λh such that

∑
T∈Th

∫
∂T

σTλ
ψ
h v̂ dΓ +

∫
Ω

∇ψh · ∇v̂ dΩ = −
∫

Ω

f◦v̂ dΩ ∀v̂ ∈ Ûh. (9)

The hybrid flux approximations λuh and λψh in (8)-(9) may or may not require a priori knowledge of
u

(k)
h and ψ(k)

h depending on the approach chosen. The FETI based approach [17] does not require
the knowledge of the u(k)

h and ψ
(k)
h while the more classical approach proposed by Ladeveze and

Leguillon [11] does. One may also use flux-free approaches [22]. In this work we use the FETI
approach for the Poisson problem and the more efficient directly equilibrated approach described
in [8] for the Stokes problem.
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2.5 Local Dual Subproblems

In this section we will only present the main idea and results of [24] which relates to the con-
struction of the bounds on the exact outputs. Upon restriction to a single elemental subproblem
T ∈ Th the local Lagrangian is written as:

L±
T (ω±;±ψ̃, κ

2
λ̃u ± λ̃ψ) ≡ κ

2

∫
T

∇ω± · ∇ω± dΩ

−κ
2

{∫
T

(f − Δū)ω± dΩ +
∫
∂T

(σT λ̃u + ∇ū · n)ω± dΓ −
∫
T

fū dΩ
}

∓
{∫

T

(f◦ − Δψ̃)ω± dΩ +
∫
∂T

(σT λ̃ψ + ∇ψ̃ · n)ω± dΓ −
∫
T

fψ̃ dΩ
}

where Green’s identity: −
∫
T ∇u · ∇ω dΩ =

∫
T Δuω dΩ −

∫
∂T ∇u · nω dΓ is used to ensure that no

term other than the dissipative term κ
2

∫
T
∇u · ∇ω dΩ involves derivatives of ω±. ū is any element

belonging to the space U , and λ̃u,λ̃ψ , and ψ̃ are candidate Lagrange multipliers. The Lagrangian
can now be written as

L±
T (ω±;±ψ̃, κ

2
λ̃u ± λ̃ψ) =

κ

2

∫
T

fū dΩ ±
∫
T

fψ̃ dΩ + J±
T (ω±), (10)

where
J±
T (ω±) ≡ κ

2

∫
T

∇ω± · ∇ω± dΩ −
∫
T

f±ω± dΩ −
∫
∂T

g±ω± dΓ (11)

for

f± ≡ κ

2
{f − Δū} ± {f◦ − Δψ̃}

g± ≡ κ

2
{σT λ̃u + ∇ū · n} ± {σT λ̃ψ + ∇ψ̃ · n}.

For a positive functional

JcT (q) ≡ 1
2

∫
T

q · q dΩ

where q ∈ H(div;T ) it is shown [24] that

J±
T (ω±) ≥ − 1

κ
JcT (q±), (12)

provided that q± is chosen from the finite dimensional set

Q±(T ) ≡
{

q ∈ H(div;T )

∣∣∣∣∣
∫
T

∇ · q v dΩ −
∫
∂T

q · n v dΓ (13)

= −
∫
T

f± v dΩ −
∫
∂T

g± v dΓ, ∀v ∈ H1(T )

}
.

It is now apparent from (5) and (10) for the particular choice ū = uh and ψ̃ = ψh that the local
contribution of the output bounds are:

∓s±T =
κ

2

∫
T

fuh dΩ ±
∫
T

fψh dΩ + sup
q±∈Q±(T )

− 1
κ
JcT (q±). (14)
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We recall that the data uh, ψh, λuh and λψh in the right hand side of the dual feasibility
constraint (13) are polynomial approximations of order p, based on the local finite element basis
functions. Therefore a suitable approximation space for the dual feasibility constraint can be
chosen to be

Q±,q ≡ Q± ∩ (Pq(T ))3,

where the choice of the polynomial approximation q is summarized below and explained in Lemma
3.3 of [24]. The decomposition q±

h = κ∇ū+ κ
2quh ± qψh , in the minimization (12) leads to the two

independent subproblem calculations:

quh = arg inf
qh∈Quh(T )

Jc(qh), (15)

qψh = arg inf
qh∈Qψh (T )

Jc(qh), (16)

for the dual feasibility approximation sets:

Qu
h(T )≡

{
q ∈ (Pq(T ))d

∣∣∣∣∣
∫
T

∇ · q v dΩ −
∫
∂T

q · n v dΩ = (17)

−
∫
T

(fv −∇uh · ∇v) dΩ −
∫
∂T

σTλ
u
h v dΓ

}

Qψ
h (T )≡

{
q ∈ (Pq(T ))d

∣∣∣∣∣
∫
T

∇ · q v dΩ −
∫
∂T

q · n v dΩ = (18)

−
∫
T

(f◦v + ∇ψh · ∇v) dΩ −
∫
∂T

σTλ
ψ
h v dΓ

}
.

for the particular choice of ū, p̃si, λ̃u and λ̃ψ taking respectively the values uh, psih, λuh and λψh . The
existence of a solution is guaranteed by Lemma 3.3 of [24] for forcing functions f |T , and output
functions f◦|T a member of P

r(T ), with the candidate Lagrange multipliers λuh and λψh satisfying
the equilibration equations (8) and (9) respectively, and quh a member of Quh(T ), and qψh a member
of Qψh (T ), for q ≥ p, q > r. Moreover, it can be easily verified (see Lemma 2.5 of [24] for details)
that for test functions v ∈ Ûh, the equations (8),(17),and (9),(18) both imply the orthogonality

∑
T∈Th

∫
T

q · ∇v dΩ = 0 ∀T, quh
∣∣∣
T
∈ Quh(T ), qψh

∣∣∣
T
∈ Qψh (T ). (19)

The right hand side of (17) and (18) are localized residuals forms, and are non-zero only for the
appropriate choice of polynomial approximations of both the primal and dual variables. These set
of polynomial fields then allows for the certification of the bounds.

2.6 Bounds

With the splitting described above, summing the local contributions in (14), leads to

s±h = −
∫

Ω

fψh +
1
2

∫
Ω

q̂uh · q̂
ψ
h dΩ ± κ

4
Jc(q̂uh) ±

1
κ
Jc(q̂ψh )
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where we have invoked the orthogonality condition (19). Letting

s̄h =
1
2

∫
Ω

q̂uh · q̂
ψ
h dΩ −

∫
Ω

fψh dΩ, zuh =
1
4
Jc(q̂uh), z

ψ
h = Jc(q̂ψh )

we have for the optimal value of κ =

√
zψh
zu
h

the bounds:

s±h = s̄h ± 2
√
zuhz

ψ
h (20)

where s̄h is the bound average.

2.7 Numerical Examples

We now illustrate the method numerically, for the three-dimensional Poisson equation where the
output of interest is

s =
∫
T

f◦u dΩ,

using the FETI approach to obtain the hybrid fluxes and the local finite element solutions [17].
A cube is consider for two different forcing f functions. The output vector f◦ = 1.0 for all cases.
Results are obtained on a tetrahedral mesh and are reported in Table (1). The effectivity is

defined as Θ−
h = |s−s−h |

|s−sh| and Θ+
h = |s−s+h |

|s−sh| . Moreover, for a constant forcing term, we have obtained
results for two different approximations in which we consider a linear approximation for the finite
element solutions where u(k), ψ(k), λ(k) ∈ P

1 and q, v ∈ P
2, and a higher-order approximation

where u(k), ψ(k), λ(k) ∈ P
2 and q, v ∈ P

3.

2.7.1 Constructed Exact Solution

In this case we construct exact solution as a test for validation of the numerical results. We assume
periodic solution of the form

u(x, y, z) = sin(πx) sin(πy) sin(πz)

satisfying the homogeneous boundary conditions. This leads to the forcing function

f(x, y, z) = 3π2 sin(πx) sin(πy) sin(πz)

which we have used in order to achieve bounds to the exact output, s = 8
π3 . For linear finite

element approximation where p = 1, q = 2 both the finite element approximation, and the output
bounds asymptotically approach the expected convergence rate of O(h2) as seen in Figure (2).

2.7.2 Uniformly Forced Domain

In the second case we take f = −2.0 and compare our solution to the exact solution:

s = − 8
π7

∞∑
n=1

∞∑
m=1

[1 − (−1)n]2 [1 − (−1)m]2

n2m2(n2 +m2)3/2
×

{
4e−π

√
n2+m2

1 − e−2π
√
n2+m2

− 2(1 + e−2π
√
n2+m2)

1 − e−2π
√
n2+m2

+ π
√
n2 +m2

}
≈ −0.0403405
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Figure 2: Bounds for the constructed solution output (a) upper and lower bounds (b) convergence
of the bounds.

Note that for the optimal parameter κ, choosing a constant forcing will cause the finite element
solution to be equal to either the upper bound or the lower bound depending on the sign of
the forcing term. In this case, the upper bound is equal to the finite element approximation.
For p = 1, q = 2, Figure (3) shows again plots of the bounds and an asymptotic convergence
rate of O(h2). However we compare this case with Figure (4) where higher order polynomial
approximation, p = 2, q = 3 are used. The asymptotic convergence rate for both the output
bounds and the finite element approximation are of O(h4).

f = 3π2 sin(πx) sin(πy) sin(πz)
s = 8/π3 ≈ 0.2580122

h s−h s+h θ−h θ+h
1/2 0.038018 0.380210 1.0864 0.6035
1/4 0.148498 0.495173 1.1617 2.5157
1/6 0.197912 0.416287 1.2402 3.2661
1/8 0.220851 0.363288 1.2914 3.6585
1/10 0.232964 0.331964 1.3256 3.9136
1/12 0.240049 0.312650 1.3496 4.1049
1/14 0.244523 0.300063 1.3676 4.2633
1/16 0.247519 0.291445 1.3817 4.4024

f = −2.0
s ≈ −0.0403405

h s−h s+h θ−h θ+h
1/2 −0.121818 −0.009375 2.6312 1.0
1/4 −0.092205 −0.026951 3.8735 1.0
1/6 −0.071412 −0.033440 4.5028 1.0
1/8 −0.060518 −0.036211 4.8862 1.0
1/10 −0.054446 −0.037610 5.1659 1.0
1/12 −0.050774 −0.038408 5.3990 1.0
1/14 −0.048397 −0.038902 5.6006 1.0
1/16 −0.046772 −0.039229 5.7863 1.0

Table 1: Tabulated bounds results obtained for the tetrahdral elemental subdomains with p = 1, q = 2
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Figure 3: Bounds for the constant forcing problem (f = −2.0) with p = 1, q = 2 (a) upper and
lower bounds (b) convergence of the bounds.
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Figure 4: Bounds for the constant forcing problem (f = −2.0) with p = 2, q = 3 (a) upper and
lower bounds (b) convergence of the bounds.

3 Exact Bounds Extension to Outputs of the Incompressible

Stokes Problem

In this section, we extend the previous technique to bound outputs of the incompressible Stokes
problem.

3.1 Model Problem

Figure 5 shows the geometry of the benchmark problem which is a steady, incompressible (density
ρ =constant), creeping flow driven by the forcing term in an endless square channel with an array
of rectangular obstacles in the center [5]. The flow is assumed to be a Newtonian fluid with a
constant dynamic viscosity, μ. The geometry of the domain is represented by Ω and (x1, x2, x3)
denotes the coordinate system, with corresponding unit vectors �x1, �x2, �x3. The driving force is a
pressure gradient ΔP

L in the �x3 direction, where L is the scaling length of the channel section, and
ΔP is the pressure difference between the two reference points with the distance of L in the �x3

direction. The fluid velocity and pressure perturbations are periodic in the �x3 direction. Let the
fluid velocity be u = (u1, u2, u3) with ui being the corresponding component in the �xi direction
and p be the pressure fluctuation field divided by the viscosity μ. The governing equations for the
incompressible Stokes flow can be written in indicial notation as:

− ∂2ui
∂xj∂xj

+
∂p

∂xi
= fi in Ω, i = 1, 2, 3 (21)

∂ui
∂xi

= 0 in Ω, (22)
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with the boundary conditions:

ui|Γ1 = ui|Γ2 , (23)
ui = 0, on the other boundaries, (24)

where fi = ΔP
μL is a prescribed forcing term in the �xi direction. For this benchmark problem,

the following values are selected: f1 = f2 = 0 and f3 = 1. For simplicity, μ = 1 is selected
for the numerical experiments. Thus Ω is a bounded cubic domain ]0, 1[×]0, 1[×]0, 1[ with a
rectangular obstacle ]0, 1[×]13 ,

2
3 [×] 13 ,

2
3 [ inside. Ω =]0, 1[×]0, 1[×]0, 1[−]0, 1[×] 13 ,

2
3 [×] 13 ,

2
3 [. The

periodic boundaries are Γ1 =]0, 1[×]0, 1[ at x3 = 1 and Γ2 =]0, 1[×]0, 1[ at x3 = 0.
To ensure a unique solution for the pressure, an additional requirement is that the integral of

the pressure perturbation over the domain is zero:∫
Ω

p dV = 0. (25)
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Γ2

Γ2

Γ1

Γ1

x1

x2

x3

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

O

Ω

Figure 5: Geometry for the Stokes flow problem. Periodic boundary conditions are applied on Γ1

and Γ2 while homogeneous boundary conditions are enforced on ∂Ω(Γ1 ∪ Γ2)

The corresponding variational forms follow as: Given (f1, f2, f3) ∈ (H−1(Ω))3, find
(u1, u2, u3, p) ∈ Y such that:∫

Ω

∂ωi
∂xj

∂ui
∂xj

dV −
∫

Ω

p
∂ωi
∂xi

dV =
∫

Ω

fiωi dV, ∀(ω1, ω2, ω3) ∈ X, (26)

−
∫

Ω

r
∂ui
∂xi

dV = 0, ∀r ∈ Q, (27)
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where dV is a differential volume element. X , Q and Y are the function spaces defined as:

X = H1
0(Ω) ×H1

0(Ω) ×H1
0(Ω), (28)

Q = L2(Ω), (29)
Y = X ×Q. (30)

Defining:

a(v,w) =
∫

Ω

∂vi
∂xj

∂ωi
∂xj

dV, ∀(v,w) ∈ X ×X, (31)

b(v, r) = −
∫

Ω

r
∂vi
∂xi

dV, ∀(v, r) ∈ Y, (32)

�N (w) =
∫

Ω

fiωi dV, ∀w ∈ X. (33)

Then the weak formulation of the Stokes problem is:
Find (u, p) ∈ Y , such that

a(u,w) + b(w, p) = �N (w), ∀w ∈ X, (34)
b(u, r) = 0, ∀r ∈ Q. (35)

3.2 Output Functional

Engineering design is based on outputs which are functionals of the field solution. In this paper,
only linear functionals are addressed and bounds are calculated to these outputs.

For the Stokes equations (21), (22), the field solution is (u, p), or (u1, u2, u3, p) and the output
is defined by s = s(u, p) = s(u1, u2, u3, p), where � : Y → �. For the purpose of simplicity, only
the integral of the velocity in the flow direction, �x3 direction is considered. A quantity of interest
that depends on pressure can also be defined as in [20] but we do not examine this type of output
in this formulation. This quantity is a normalized flowrate where the flowrate is the output values
divided by the volume of the computational domain which is (24/27). The output is therefore
defined as:

s(u) =
∫

Ω

(α · u)dΩ (36)

where α is a unit vector which indicates the direction in which the displacement is evaluated is
a user defined coefficient: here α = (0, 0, 1). Thus, the linear functional of the output of interest
can be expressed as

�0(u) =
∫

Ω

u3 dΩ. (37)

3.3 Continuity Relaxation

3.3.1 Domain decomposition and tetrahedral elements

The bounds method for the Stokes equations is based on global and local calculations. Two
different discretizations on the same mesh are needed; a lower order discretization and a higher
order discretization. The computational domain Ω is divided into a mesh Th of k tetrahedra T .

The domain Ω is also decomposed into Nk subdomains Ω(k). Note that each element of the
mesh Th is not a subdomain. For the problem addressed herein, Ω is decomposed into Nk = 24
subdomains, Ω(k), each of which is a uniform small cube with the same dimension of (1

3 × 1
3 × 1

3 ),
as shown in Figure 6. Therefore each subdomain Ω(k) contains a small number of tetrahedral
elements. Figure 7 illustrates the Th before and after the domain decompositon. The thick lines
represent subdomain borders.
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Γ2

Γ1

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

O

Ω

Figure 6: The domain decomposition of a unit cube for the Stokes problem

Figure 7: The mesh before domain decomposition (left) and after the domain decomposition (right)

3.3.2 Finite element space

Two different order polynomial spaces are used to calculate the bound. A low order polynomial
space [3] and the well known Crouzeix and Raviart space [9] are defined below. The main difference
is that the low order space is a piecewise linear space enhanced with ”bubble” functions while the
higher order space is a quadratic piecewise space also enhanced with the same ”bubble” functions.

Therefore, the velocity of the lower order space is a member of P++, a linear piecewise
enhanced with “bubble” functions over the element, and the pressure is a member of a discontinuous
P1 space. This space satisfies the inf sup condition. Let the approximate velocity uh be in Xh

and the pressure ph be in Qh, where

Xh =
{
u ∈ X | ui|T ∈ P1(T ) ⊕ B4(T ), ∀T ∈ Th} (38)

Qh =
{
p ∈ L2(Ω) | p|T ∈ P1(T ), ∀T ∈ Th} . (39)

Here, B4(T ) denotes the space of bubble functions of degree 4 on T . Finally, the solution space is
defined as the product space Yh = Xh ×Qh.

Regarding the Crouzier-Raviart space, the velocity is a member of P+
2 , a quadratic piece-

wise space enhanced with “bubble” functions over the element, and the pressure is a member of

14



a discontinuous P1 space. This space is only used for the local decoupled problems. Let the
approximate velocity ûh be in X̂h and the pressure ph be in Qh, where

X̂h =
{
u ∈ X | ui|T ∈ P2(T ) ⊕ B4(T ), ∀T ∈ Th} (40)

Qh =
{
p ∈ L2(Ω) | p|T ∈ P1(T ), ∀T ∈ Th} . (41)

Finally, the solution space is defined as the product space Ŷh = X̂h ×Qh.
The discontinuous pressure is ideal for the bound method because pressure continuity must

not be enforced in the Lagrangian. Note that the global calculations use the lower order element
and only the local calculations use the more expensive Crouzeix-Raviart element.

3.3.3 The discrete problem

To calculate the discrete output of interest, sh, we need to find (uh, ph) ∈ Xh ×Qh such that

a(uh,w) + b(w, ph) − �N (w) = 0, ∀w ∈ Xh, (42)
b(uh, r) = 0, ∀r ∈ Qh; (43)

and then to compute the output,
sh = �0(u1h, u2h, u3h). (44)

3.3.4 Spaces for subdomain edges

The finite element edge space Γ(Th) denotes the set of open faces and edges γh between different
subdomains discretized on the mesh tetrahedra Th.

The “broken” spaces of each subdomain Ω(k) are defined as:

X̂ low
h = {v ∈ H1(T ) ×H1(T ) ×H1(T ) |vi|T ∈ P1(T ) ⊕ B4(T ), ∀T ∈ Th}, (45)

X̂high
h = {v ∈ H1(T ) ×H1(T ) ×H1(T ) | vi|T ∈ P2(T ) ⊕ B4(T ), ∀T ∈ Th}, (46)

If Ŷ lowh = X̂ low
h ×Qh and Ŷh = X̂high

h ×Qh, there exist Ŷ lowh ⊂ Ŷh.
The continuity of the three velocity components is enforced using a hybrid flux vector that

has three components t = (t1, t2, t3). The “hybrid flux” space associated to this vector is defined
as

Elow
h = {t ∈ L2(Γ(Th)) × L2(Γ(Th)) × L2(Γ(Th)) | ti|γh ∈ P1(γh) ⊕ B4(γh), ∀γh ∈ Γ(Th) }. (47)

Similarly, for the higher order discretization, it is defined as

Eh = {t ∈ L2(Γ(Th)) × L2(Γ(Th)) × L2(Γ(Th)) | ti|γh ∈ P2(γh) ⊕ B4(γh), ∀γh ∈ Γ(Th) }. (48)

where i = 1, 2, 3. It follows that Elow
h ⊂ Eh ⊂ H−1/2(Γ(Th)); the functions in these spaces can, of

course, be discontinuous.
The jump bilinear form H(·, ·) is considered here: X̂h × Eh → �,

H(v, t) =
∑

γh∈Γ(Th)

∫
γh

Jγhviti|γhds, (49)

where i = 1, 2, 3. Jγhvi is the jump in vi across γh when γh is an interior face, and the trace of vi
on γh when γh is on the boundary ∂Ω. Note that ti is defined only over the faces of the subdomain
and may, of course, be discontinuous; ti may also be defined as the flux associated with a function
in Eh.

The hybrid flux can be used to enforce continuity on functions in X̂ low
h and X̂h; in particular,

X low
h = {v ∈ X̂ low

h | H(v, t) = 0, ∀t ∈ Elow
h }, (50)

Xh = {v ∈ X̂h | H(v, t) = 0, ∀t ∈ Eh}. (51)

15



3.4 Constrained Minimization

Following the same procedure as in Section 2.4, we construct a Lagrangian where the constraints
include the Stokes finite element equilibrium equations and the inter–subdomain continuity re-
quirements such as L : X̂ ×Q×X ×Q× E → �,

L±(v, β,w, r, μ) = κ{a(v,v) + 2b(v, β) − �N(v) + a(ū,v) + b(v, p̄) + b(ū, β)} ± �0(ū + v)
+{a(ū + v,w) − �N (w) + b(w, p̄+ β) + b(ū + v, r)}
+H(v, μ), (52)

where the first line represents the quadratic “energy” reformation of the desired output, the second
line represents the original Stokes problem constrained by the Lagrange multipliers w and r, and
the third line represents the hybrid flux constraints that “glue” the subdomains together. Details
of the construction of this Lagrangian is given in Appendix A. Note that X̂ is defined as:

X̂ ≡
{
v |v ∈ L2(Ω), v|T ∈ H1(T ), ∀T ∈ Th

}
.

As for the Poisson problem, for the case ū = uh ∈ X̂h, p̄ = ph ∈ Qh,we introduce candidate
Lagrange multipliers obtained from the finite element solution w = ψ±

h = ±ψh ∈ Xh, r = θh
± =

±θh ∈ Qh, and μ = t±h = κtprh ±tduh ∈ Eh. The calculation of these Lagrange multipliers is detailed
in Appendix B. The Lagrangian can now be written as

L±(v, β,w, r, μ)
= L±(v, β,±ψh,±θh, κtprh ± tduh )
= κa(v,v) + 2κb(v, β)

+κ{a(uh,v) + b(v, ph) − �N (v) +H(v, tprh ) + b(uh, β)}
±{a(v, ψh) + b(v, θh) + �0(v) +H(v, tduh ) + b(ψh, β)}
±{�0(uh) + a(uh, ψh) + b(ψh, ph) − �N (ψh) + b(uh, θh)} (53)

From the Lagrangian (53), we can obtain the lower bound s− = η+ and upper bound s+ =
−η− by minimizing:

η± ≡ inf
v∈X̂h

κa(v,v) + L±(v, β) + C± (54)

where

L±(v, β) = 2κb(v, β) + κ{a(uh,v) + b(v, ph) − �N (v) +H(v, tprh ) + b(uh, β)}
±{a(v, ψh) + b(v, θh) + �0(v) +H(v, tduh ) + b(ψh, β)} (55)

C± = ±{�0(uh) + a(uh, ψh) + b(ψh, ph) − �N(ψh) + b(uh, θh)} (56)

As in [20], we observe that when we expand our Lagrangian in v for any β all the terms vanish
and the remaining are positive semi-definite terms in a(, ) which thus prove (54).

3.5 Local Dual Subproblems

Due to the continuity relaxation from our finite element choices of the Lagrange multipliers, we
can now calculate output bounds as sums of elemental contributions:

η± =
∑

Ωk∈Ω

η±Ωk (57)
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and the equation (54) becomes:

η±Ωk ≡ inf
v∈H1(Ωk)

κaΩk(v,v) + L±
Ωk

(v, β) + C±
Ωk

(58)

where

L±
Ωk

(v, β) = 2κbΩk(v, β) + κ{aΩk(uh,v) + bΩk(v, ph) − �NΩk(v) +HΩk(v, t
pr
h ) + bΩk(uh, β)}

±{aΩk(v, ψh) + bΩk(v, θh) + �0Ωk(v) +HΩk(v, t
du
h ) + bΩk(ψh, β)} (59)

C±
Ωk

= ±{�0Ωk(uh) + aΩk(uh, ψh) + bΩk(ψh, ph) − �N (ψh) + bΩk(uh, θh)} (60)

where the subscript Ωk denotes restriction to a single subdomain.
As seen in Section 2.5, the exact bound method is based on the complementary energy

functional that bounds a quadratic functional defined elementally which is obtained by select-
ing Lagrange multipliers in the Lagrangian. In this section we show how the complementary
energy function bounds the Lagrangian constructed for the output of the Stokes problem. We
then derive the subdomain problem needed to obtain q, which is a tensor: q = (q1,q2,q3) ∈
[L2(Ωk)]3 × [L2(Ωk)]3 × [L2(Ωk)]3.

By the expression of the scalar variables v = (v1, v2, v3), we introduce the inequality,
∑

i
1
κ

∫
Ωk

(q±
i −

κ∇vi)2dΩ ≥ 0, which can be rewritten as κ{aΩk(v,v)} ≥ − 1
κ

∫
Ωk

q±
i · q±

i dΩ + 2
∫
Ωk

q±
i · ∇vi dΩ.

Note that the repeated indices are summed unless specified otherwisely. We can now write the
inequality related to the Lagrangian (53):

L±
Ωk

(v, β,±ψh,±θh, κtprh ± tduh ) ≥ − 1
κ

∫
Ωk

q±
i · q±

i dΩ + 2
∫

Ωk

q±
i · ∇vidΩ

+κ{aΩk(uh,v) + bΩk(v, ph) − �NΩk(v) +HΩk(v, t
pr
h )}

±{aΩk(v, ψh) + bΩk(v, θh) + �0Ωk(v) +HΩk(v, t
du
h )}

±{�0Ωk(uh) + aΩk(uh, ψh) + bΩk(ψh, ph) − �NΩk(ψh) + bΩk(uh, θh)}
+κ{2bΩk(v, β) + bΩk(uh, β)} ± bΩk(ψh, β) (61)

The right hand side of (61) is an elemental contribution to the bound that, depending on the
sign, contributes to the lower and upper bounds to the exact output.

From the inequality (61) we define a new augmented Lagrangian J ±
Ωk

(q±, β,v) with the vari-
ables, β = ε± and v = ζ±, corresponding to the pressure and velocity perturbations, respectively:

J ±
Ωk

(q±, ε±, ζ±)

= − 1
κ

∫
Ωk

q±
i · q±

i dΩ + 2
∫

Ωk

q±
i · ∇ζ±dΩ + κ{2bΩk(ζ±, ε±) + bΩk(uh, ε

±)} ± bΩk(ψh, ε
±)

+κ{aΩk(uh, ζ
±) + bΩk(ζ

±, ph) − �NΩk(ζ
±) +HΩk(ζ

±, tprh )}
±{aΩk(ζ

±, ψh) + bΩk(ζ
±, θh) + �0Ωk(ζ

±) +HΩk(ζ
±, tduh )}

±{�0Ωk(uh) + aΩk(uh, ψh) + bΩk(ψh, ph) − �NΩk(ψh) + b(uh, θh)} (62)

To find the saddle point of the augmented Lagrangian (62), the functions denoted by q± + g
are substituted into the Lagrangian. That the variation of J ±

Ωk
with respect to g vanishes leads to

J±
Ωk

(q± + g, ε±, ζ±) − J±
Ωk

(q±, ε±, ζ±) = 0, with g → 0, (63)

or

− 2
κ

∫
Ωk

q±
i ·gidΩ+2

∫
Ωk

gi ·∇ζ±i dΩ = 0, ∀(g1,g2,g3) ∈ [L2(Ωk)]3× [L2(Ωk)]3× [L2(Ωk)]3. (64)
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Similarly, the variation of J ±
Ωk

with β vanishes: J ±
Ωk

(q±, ε± + β, ζ±) − J ±
Ωk

(q±, ε±, ζ±) = 0
which leads to

κ{2bΩk(ζ±, β) + bΩk(uh, β)} ± bΩk(ψh, β) = 0, ∀β ∈ L2(Ωk). (65)

The variation of J ±
Ωk

with v vanishes: J±
Ωk

(q±, ε±, ζ±+v)−J±
Ωk

(q±, ε±, ζ±) = 0, which leads
to

2
∫

Ωk

q±
i · ∇vidΩ + κ{aΩk(uh,v) + b(v, ph) − �NΩk(v) +HΩk(v, t

pr
h )}

±{aΩk(v, ψh) + bΩk(v, θh) + �0Ωk(v) +HΩk(v, t
du
h )} + κ{2bΩk(v, ε±)} = 0,

∀(v1, v2, v3) ∈ [L2(Ωk)]3. (66)

By definition q± = κqpr ± qdu, ε± = εpr ± 1
κ ε
du and ζ± = ζpr ± 1

κζ
du, equations (64)

(65) and (66) can be expressed without κ: find qpr ∈ [L2(Ωk)]3 × [L2(Ωk)]3 × [L2(Ωk)]3, qdu ∈
[L2(Ωk)]3×[L2(Ωk)]3×[L2(Ωk)]3, εpr ∈ L2(Ωk), εdu ∈ L2(Ωk), ζpr ∈ [L2(Ωk)]3 and ζdu ∈ [L2(Ωk)]3,
such that:

2{−
∫

Ωk

qpri · gidΩ +
∫

Ωk

gi · ∇ζpri dΩ} = 0, ∀(g1,g2,g3) ∈ [L2(Ωk)]3 × [L2(Ωk)]3 × [L2(Ωk)]3;

(67)

2{−
∫

Ωk

qdui · gidΩ +
∫

Ωk

gi · ∇ζdui dΩ} = 0, ∀(g1,g2,g3) ∈ [L2(Ωk)]3 × [L2(Ωk)]3 × [L2(Ωk)]3;

(68)
2bΩk(ζ

pr , β) = −bΩk(uh, β), ∀β ∈ L2(Ωk); (69)
2bΩk(ζ

du, β) = −bΩk(ψh, β), ∀β ∈ L2(Ωk); (70)

2{
∫

Ωk

qpr · ∇vidΩ + bΩk(v, ε
pr)} = −{aΩk(uh,v) + bΩk(v, ph) − �NΩk(v) +HΩk(v, t

pr
h )},

∀(v1, v2, v3) ∈ [L2(Ωk)]3; (71)

2{
∫

Ωk

qdu · ∇vidΩ + bΩk(v, ε
du)} = ∓{aΩk(v, ψh) + bΩk(v, θh) + �0Ωk(v) +HΩk(v, t

du
h )},

∀(v1, v2, v3) ∈ [L2(Ωk)]3. (72)

Equations (97) and (98) in Section 4.5 show the matrix systems used for solving the above equations
(67) to (72).

3.6 Bounds

Equations (64), (65) and (66) are substituted into the new augmented Lagrangian (62) to calculate
the elemental contributions to the bounds. Note that in equation (61), the right-hand side bounds
from below, therefore a finite element solution of the above equations will bound from below as
the quadratic term is −

∫
Ωk

q±
i ·q±

i dΩ. By introducing the subscript h for a finite element solution
of equations (67)-(72), we can now calculate η±h as described below.

From (64), we have − 2
κ

∫
Ωk

q±
ih · q±

ihdΩ + 2
∫
Ωk

q±
ih · ∇ζ±ihdΩ = 0. From (65), we have

κ{2bΩk(ζ±h , ε±) + bΩk(uh, ε
±)} ± bΩk(ψh, ε

±) = 0. From (66), we have 2
∫
Ωk

q±
ih · ∇ζ±ihdΩ +

κ{aΩk(uh, ζ
±
h ) + bΩk(ζ

±
h , ph)− �NΩk(ζ

±
h ) +HΩk(ζ

±
h , t

pr
h )} ± {aΩk(ζ

±
h , ψh) + bΩk(ζ

±
h , θh) + �0Ωk(ζ

±
h ) +

HΩk(ζ
±
h , t

du
h )} + κ{2bΩk(ζ±h , ε±)} = 0. Therefore, the bounds can be written as:
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η±h =
∑
Ωk

(
− 1
κ

∫
Ωk

q±
ih · q

±
ihdΩ − κ{2bΩk(ζ±h , ε

±)}

±{�0Ωk(uh) + aΩk(uh, ψh) + bΩk(ψh, ph) − �NΩk(ψh) + bΩk(uh, θh)}
)

=
∑
Ωk

(
− 1
κ

∫
Ωk

q±
ih · q

±
ihdΩ − κ{2bΩk(ζ±h , ε±)} + C±

Ωk

)

=
∑
Ωk

(
−κ
∫

Ωk

qprih · qprihdΩ − 1
κ

∫
Ωk

qduih · qduih dΩ ∓ 2
∫

Ωk

qduih · qprihdΩ

−κ{2bΩk(ζ
pr
h , ε

pr)}

− 1
κ
{2bΩk(ζduh , εdu)} ∓ {2bΩk(ζ

pr
h , ε

du)} ∓ {2bΩk(ζduh , εpr)} + C±
Ωk

)
(73)

By defining

zpri =
∑
Ωk

∫
Ωk

qprih · qprihdΩ, (74)

zdui =
∑
Ωk

∫
Ωk

qduih · qduih dΩ, (75)

z̄i =
∑
Ωk

∫
Ωk

qprih · qduih dΩ, (76)

b11 =
∑
Ωk

bΩk(ζ
pr
h , ε

pr), (77)

b22 =
∑
Ωk

bΩk(ζ
du
h , εdu), (78)

b12 =
∑
Ωk

bΩk(ζ
pr
h , ε

du), (79)

b21 =
∑
Ωk

bΩk(ζ
du
h , εpr), (80)

C± =
∑
Ωk

C±
Ωk
, (81)

we can express (73) as

η±h = −κzpri − 1
κ
zdui ∓ 2z̄i − 2κb11 −

2
κ
b22 ∓ 2b12 ∓ 2b21 + C±. (82)

κ can be optimized by solving

∂

∂κ
{−κzpri − 1

κ
zdui ∓ 2z̄i − 2κb11 −

2
κ
b22 ∓ 2b12 ∓ 2b21 + C±} = 0, (83)

which leads to

κ =

√
zdui + 2b22
zpri + 2b11

. (84)
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Therefore the optimized bounds are:

η±h = C± ∓ 2(z̄i + b12 + b21) − 2
√

(zdui + 2b22)(z
pr
i + 2b11) (85)

s+h = −η−h = −C− − 2(z̄i + b12 + b21) + 2
√

(zdui + 2b22)(z
pr
i + 2b11) (86)

s−h = η+
h = C+ − 2(z̄i + b12 + b21) − 2

√
(zdui + 2b22)(z

pr
i + 2b11) (87)

or

s+h = s̃h + 2
√

(zdui + 2b22)(z
pr
i + 2b11)

= s̃h + 2

√
{
∫

qprih · qprihdΩ + 2b(ζprh , εpr)}{
∫

qduih · qduih dΩ + 2b(ζduh , εdu)} (88)

s−h = s̃h − 2
√

(zdui + 2b22)(z
pr
i + 2b11)

= s̃h − 2

√
{
∫

qprih · qprihdΩ + 2b(ζprh , εpr)}{
∫

qduih · qduih dΩ + 2b(ζduh , εdu)} (89)

where s̃h is the average of the upper and lower bounds s̃h = 1
2 (s+h + s−h ):

s̃h = ±C± − 2(z̄i + b12 + b21). (90)

4 The Discrete Bound Procedure

The exact bound procedure for the Stokes problem is now expressed in a matrix formulation.
The first three steps are to inexpensively calculate the field solution and the Lagrange multiplier
candidates: adjoint and hybrid flux. These calculations are performed on the mesh Th. The last
step requires calculations of the local high order discretization problems on Ωk.

4.1 The primal problem

The primal problem is the original Stokes problem expressed by equations (34) and (35). The
resulting primal problem is trivial, reflecting the step to find the global field solution of the Stokes
equation: Find [u1h, u2h, u3h, ph]T ∈ X low

h ×Qh, such that⎡
⎢⎢⎣

Ah BT1h
Ah BT2h

Ah BT3h
B1h B2h B3h

⎤
⎥⎥⎦
⎡
⎢⎢⎣
u1h

u2h

u3h

ph

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Mhf1h
Mhf2h
Mhf3h

0

⎤
⎥⎥⎦ . (91)

Here Ah is the stiffness matrix, Mh the mass matrix and Bh the matrix related to the pressure.
All the matrices are constructed for the lower order approximation.

4.2 The dual problem

The dual problem is obtained from equations (34) and (35) , that is to find the adjoint solution
[ψ1h, ψ2h, ψ3h, λh]T ∈ X low

h ×Qh, such that⎡
⎢⎢⎣

Ah BT1h
Ah BT2h

Ah BT3h
B1h B2h B3h

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ψ1h

ψ2h

ψ3h

λh

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

0
0

Mh1
0

⎤
⎥⎥⎦ . (92)
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4.3 The hybrid flux problem

The hybrid flux vector, t±h = κtprh ± tduh , is the Lagrangian multiplier that enforces the inter-
subdomain continuity, and can be evaluated with two residual equations, one from decoupling the
primal problem and the other from decoupling the dual problem onto the subdomains. Note that
t±h is calculated in Elow

h and then interpolated on Eh.

4.3.1 The hybrid flux associated with the primal problem

The hybrid flux problem corresponding to the primal problem is to solve the following algebraic
equation: ⎧⎪⎨

⎪⎩
2A(k)

h e
pr(k)
ih +A

(k)
h u

(k)
ih +B

(k)
ih

T
p
(k)
h −M

(k)
h f

(k)
ih + h

(k)
h

T
tprih = 0,

∑Nk
k=1H

(k)
h e

pr(k)
ih = 0,

(93)

where H(k)
h is the boolean matrix related to the hybrid flux edge space. Note that the superscript

∗(k) denotes the decoupled subdomain with index k. Note that B(k)
ih u

(k)
ih = B

(k)
ih e

pr(k)
ih = 0 on

the global mesh. The above equation can be inexpensively calculated by the directly equilibrated
hybrid-flux approach [8]:

H
(k)
h H

(k)T

h tprih = H
(k)
h (M (k)

h f
(k)
ih − [A(k)

h u
(k)
ih +B

(k)
ih

T
p
(k)
h ]) (94)

4.3.2 The hybrid flux associated with the dual problem

Similarly, the hybrid flux equation for the dual problem tduiH is⎧⎪⎨
⎪⎩

2A(k)
h e

du(k)
ih +A

(k)
h ψ

(k)
ih +B

(k)
ih

T
λ

(k)
h +M

(k)
h f

0(k)
ih +H

(k)
h

T
tduih = 0,

∑Nk
k=1H

(k)
h e

du(k)
ih = 0,

(95)

where f0(k)
1h = f

0(k)
2h = 0 and f0(k)

3h = �
(k)
3h = 1.

It can be calculated by

H
(k)
h H

(k)T

h tduih = H
(k)
h (M (k)

h 1(k)
ih +A

(k)
h ψ

(k)
ih +B

(k)
ih

T
λ

(k)
h ) (96)

4.4 Local calculations

To start, all the variables u(k)
ih , p(k)

h , ψ(k)
ih , λ(k)

h , tprih and tduih are interpolated from the low order
approximation to the higher order approximation X̂h.

4.5 Subdomain error estimation calculations

The primal decoupled subdomain error estimation problem for equations (67), (69) and (71) are
written discretely as:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
(k)
h

D
(k)
1h

M
(k)
h

D
(k)
2h

M
(k)
h

D
(k)
3h

M
(k)
h

D
(k)
1h

M
(k)
h

D
(k)
2h

M
(k)
h

D
(k)
3h

M
(k)
h

D
(k)
1h

M
(k)
h

D
(k)
2h

M
(k)
h

D
(k)
3h

D
(k)
1h

T
D

(k)
2h

T
D

(k)
3h

T
B(k)T

1h

D
(k)
1h

T
D

(k)
2h

T
D

(k)
3h

T
B(k)T

2h

D
(k)
1h

T
D

(k)
2h

T
D

(k)
3h

T
B(k)T

3h
B

(k)
1h B

(k)
3h B

(k)
3h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q
pr
11h

(k)

q
pr
12h

(k)

q
pr
13h

(k)

q
pr
21h

(k)

q
pr
22h

(k)

q
pr
23h

(k)

q
pr
31h

(k)

q
pr
32h

(k)

q
pr
33h

(k)

ζ
pr(k)
1h

ζ
pr(k)
2h

ζ
pr(k)
3h

εpr
(k)h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0

A
(k)
h

ũ
(k)
1h + B

(k)T

1h P̃
(k)
h

−M
(k)
h

f
(k)
1h +H

(k)
h

t
(k)
1h

pr

A
(k)
h

ũ
(k)
2h + B

(k)T

2h P̃
(k)
h

−M
(k)
h

f
(k)
2h +H

(k)
h

t
(k)
2h

pr

A
(k)
h

ũ
(k)
3h + B

(k)T

3h P̃
(k)
h

−M
(k)
h

f
(k)
3h +H

(k)
h

t
(k)
3h

pr

B
(k)
1h ũ

(k)
1h + B

(k)
2h ũ

(k)
2h + B

(k)
3h ũ

(k)
3h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (97)

The dual decoupled subdomain error estimation problem for equations (68), (70) and (72) are
written discretely as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
(k)
h

D
(k)
1h

M
(k)
h

D
(k)
2h

M
(k)
h

D
(k)
3h

M
(k)
h

D
(k)
1h

M
(k)
h

D
(k)
2h

M
(k)
h

D
(k)
3h

M
(k)
h

D
(k)
1h

M
(k)
h

D
(k)
2h

M
(k)
h

D
(k)
3h

D
(k)
1h

T
D

(k)
2h

T
D

(k)
3h

T
B(k)T

1h

D
(k)
1h

T
D

(k)
2h

T
D

(k)
3h

T
B(k)T

2h

D
(k)
1h

T
D

(k)
2h

T
D

(k)
3h

T
B(k)T

3h
B

(k)
1h B

(k)
3h B

(k)
3h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qdu11h
(k)

qdu12h
(k)

qdu13h
(k)

qdu21h
(k)

qdu22h
(k)

qdu23h
(k)

qdu31h
(k)

qdu32h
(k)

qdu33h
(k)

ζdu
(k)

1h

ζdu
(k)

2h

ζdu
(k)

3h

εdu
(k)

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0

A
(k)
h

ψ̃
(k)
1h + B

(k)T

1h λ̃
(k)
h

+M
(k)
h

f
0(k)
1h +H

(k)
h

t
(k)
1h

du

A
(k)
h

ψ̃
(k)
2h + B

(k)T

2h λ̃
(k)
h

+M
(k)
h

f
0(k)
2h +H

(k)
h

t
(k)
2h

du

A
(k)
h

ψ̃
(k)
3h + B

(k)T

3h λ̃
(k)
h

+M
(k)
h

f
0(k)
3h +H

(k)
h

t
(k)
3h

du

B
(k)
1h ψ̃

(k)
1h + B

(k)
2h ψ̃

(k)
2h + B

(k)
3h ψ̃

(k)
3h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (98)
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4.6 The lower and upper bounds

We can write zpr, zdu, z̄, and bij (i, j = 1, 2) discretely as functions of q̂±
ih, ε

±
h and ζ±ih,:

zpr =
Nk∑
k=1

3∑
i=1

3∑
j=1

[
qprijh

(k)
M

(k)
h qprijh

(k)
]
, z̄ =

Nk∑
k=1

3∑
i=1

3∑
j=1

[
qprijh

(k)
M

(k)
h qduijh

(k)
]
,

zdu =
Nk∑
k=1

3∑
i=1

3∑
j=1

[
qduijh

(k)
M

(k)
h qduijh

(k)
]
,

b11 =
Nk∑
k=1

3∑
i=1

εpr
(k)

h B
(k)
ih ζ

pr(k)

ih , b12 =
Nk∑
k=1

3∑
i=1

εdu
(k)

h B
(k)
ih ζ

pr(k)

ih ,

b21 =
Nk∑
k=1

3∑
i=1

εpr
(k)

h B
(k)
ih ζ

du(k)

i , b22 =
Nk∑
k=1

3∑
i=1

εdu
(k)

h B
(k)
ih ζ

du(k)

ih .

Once the computed values for q̂±
ih, ε

±
h and ζ±ih are inserted into the Lagrangian (62), the

optimized upper and lower bounds follow the bounding properties and can be expressed in matrix
forms as:

s−h = s̃h − 2
√

(zdui + 2b22)(z
pr
i + 2b11) (99)

s+h = s̃h + 2
√

(zdui + 2b22)(z
pr
i + 2b11) (100)

where the average of the lower and upper bounds is

s̃h =
3∑
i=1

u
(k) T
ih M

(k)
h 1 +

3∑
i=1

Nk∑
k=1

[
u

(k) T
ih A

(k)
h ψ

(k)
ih + p

(k) T
h B

(k)
ih ψ

(k)
ih + λ

(k) T
h B

(k)
ih u

(k)
ih − f

(k)T

h M
(k)
h ψ

(k)
ih

]
−2z̄ − 2b12 − 2b21. (101)

Note that the bound gap, given by:

Δ = |s+h − s−h | = 4
√

(zdui + 2b22)(z
pr
i + 2b11) (102)

is made of positive contributions from each element so we can define Δ(k) as a bound contribution
in each element and used it in an adaptive mesh refinement strategy.

5 Numerical Example of Bound Calculations for Stokes Out-

put

Figure 8 shows the numerical results of the velocity field for the Stokes problem at three sections
defined by x1 = 0.25, x1 = 0.5 and x1 = 0.75.

Table 2 shows the lower bound (s−h ), upper bound (s+h ), the average of the bounds (spreh ) and
discrete output to the solution (sh) obtained on the mesh size h using the Exact Stokes Bounds
method. For the finest mesh, a half bound gap of 7.1% is reached. The half bound gap is the
bound gap divided by 2 and normalized with with the most accurate output value. Note that the
error between the finite element output value on the finest mesh and the most accurate output
values is 3.1% which shows that the bounds are quite sharp and just over-predict the error by a
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Figure 8: Velocity profile for the Stokes problem with the periodic boundary conditions (left)
velocity at x1 = 0.25 and x1 = 0.75; (right) velocity at x1 = 0.5.

factor of two. The most accurate output value s̃ = 0.007283 is obtained on the Crouzeix-Raviart
finite element space with mesh size h = 0.02. Note that for a relative coarse mesh (number of
elements per side N = 12, Nk = 6 × N3) the bound gap is quite large with a half bound gap of
22.5% but so is the finite element output on this mesh which has an error of 11.8%. The same
problem was examined with an hierarchical approach in [6]. Note that the hierarchical approach
bounds a fine mesh output and not the output of the weak finite element solution. For these
calculations a refinement of three (R = 3)was used which means that the fine mesh is only three
time finer than the coarse mesh. The lower and upper bounds for the coarse mesh (N = 12)
calculations were 0.0069617 and 0.0079325, respectively. This compares to 0.006425 and 0.009708
for the current method. The previous hierarchical bounds are three times shaper with a half bound
gap of 6.5%. Nevertheless these bounds do not provide the full certainty that the exact bounds
procedure provides.

N h s−h sh spreh s+h
3 0.333333 0.002616 0.002616 0.011605 0.020594
6 0.166667 0.005199 0.005199 0.008990 0.012781
12 0.083333 0.006425 0.006425 0.008067 0.009708
18 0.055556 0.006770 0.006770 0.007799 0.008828
24 0.041667 0.006921 0.006921 0.007679 0.008437
30 0.033333 0.007004 0.007004 0.007613 0.008221
36 0.027778 0.007056 0.007056 0.007572 0.008087

Table 2: The exact Stokes’ output bounds obtained on mesh h.

Figure 9a) shows the ratios of lower bound, upper bound and discrete output to our most
accurate numerical output value (s−h /s̃ ,sh/s̃ and s+h /s̃ ) with mesh size h. Note that the lower
bounds output value is the same of the finite element output value because the forcing term in the
Stokes equations and the output functional are constants.

Figure 9b) shows the convergence rate for each bound. Note that we assume that s̃ has a
negligent difference from the exact solution, s, and is used for the convergence rate estimations:
e−h = |s−h − s̃|, eh = |sh − s̃| ,and e+h = |s+h − s̃| . The corresponding convergence rates of are 1.22,
1.22 and 1.13, respectively. The convergence rates are consistent with the prediction of the Stokes
bounds method.

The effectivity of the bounds [24] indicates the sharpness by comparing the error in the upper
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and lower bounds to the error in the finite element approximation: Θ−
h = |s̃−s−h |

|s̃−sh| and Θ+
h = |s̃−s+h |

|s̃−sh| .
Table 3 shows that the effectivities of the upper bounds obtained on different mesh sizes are about
2.9 to 3.5, indicating that the exact bounds converge at the same rate as the finite element output
value. These values show that the bounds are sharp as they are just three times the error of the
finite element output error. Note that in this case the bounds for the Stokes output are behaving
better that for the Poisson output. We also define predicted finite element output solution, spreh ,
by the average of the lower and upper bounds spreh = (s+h + s−h )/2 and an error effectivity index
as: τpreh = s̃−spreh

s̃−sh . This index indicates that the average of bounds is not doing better or worst
than the approximation of the output by the finite element method but the bounds do provide the
desired certainty on the exact output. We define yet another effectivity index as τ±h = s±h −sh

s̃−sh to
measure the quality of the error estimator s±h −sh as compared to the error s̃− sh. For the output
considered here, the effectivity of the upper bound is close to 1.3 which indicates that the finite
element output on each mesh is about half way between the upper bound and the exact output
values. The effectivity of the lower bound is 0 which indicates that the finite element output value
is a lower bound.

N h Θ+
h Θ−

h τh τ+
h τ−

h
3 0.333333 2.85 1.0 −0.93 -1.35 0
6 0.166667 2.64 1.0 −0.82 -1.38 0
12 0.083333 2.83 1.0 −0.91 -1.35 0
18 0.055556 3.01 1.0 −1.01 -1.33 0
24 0.0416667 3.19 1.0 −1.09 -1.31 0
30 0.0333333 3.36 1.0 −1.18 -1.30 0
36 0.0277778 3.54 1.0 −1.27 -1.28 0

Table 3: Effectivity of bounds.
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Figure 9: Bounds for Stokes’ output (a) upper and lower bounds (b) convergence of the bounds.

6 Conclusion

In this paper, we present a new A Posteriori Finite Element Exact Bounds Method for the compu-
tation of guaranteed upper and lower bounds for the linear functional outputs of the exact weak
solutions to the three dimensional Stokes equations. The bounds method is based on a domain
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decomposition finite element technique exploiting the augmented Lagrangian bounded by a com-
plimentary energy functional. The stationarity condition of the reformulated Lagrangian leads
to the global and hybrid flux calculations on a low-order polynomial finite element space and to
the decoupled error estimation calculations in each subdomain on a high-order polynomial space.
Bounds on the flowrate for a flow over an array of square cylinders are calculated. We report that
these bounds are rigorous and provide a certificate of precision for a predicted output with full
certainty.

This methods is nevertheless restricted to computational domains with piecewise straight
boundaries to avoid accounting for the geometrical error arising from the finite disctretization of
curved boundaries. A method could be developed so that the error contribution to the output
for curved geometries is calculated and added to the existing bounds. In our model problem the
surfaces are aligned with the coordinate system though this is not a restriction of the method. The
extension of this method to bound outputs of the Navier-Stokes equation will require a linearization
of the Navier-Stokes equations as in [5] which will lead to exact bounds only when a fine enough
mesh is used in the calculations. These bounds are then called asymptotic bounds. A similar
technique should be used for nonlinear output functional. Clearly, for engineering practice these
extensions need to be developed.
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A Augmented Lagrangian construction

The construction of an augmented Lagrangian is presented in this appendix. A quadratic “energy”
based on error functions is reformulated for the desired output of the three dimensional Stokes
equations. The constraints in the new Lagrangian include the Stokes finite element equilibrium
equations and the inter–subdomain continuity requirements for the three dimensional space.

A.1 General residuals

To construct the augmented Lagrangian, let e = u− ū, εh = p− p̄.
Noting that e = u− ū ∈ X and ε = p− p̄ ∈ Q, equations (34) and (35) lead to the following

equations:

a(ū, e) + b(e, p) = �N (e), (103)
b(ū, ε) = 0. (104)

Rewriting the above equations lead to:

a(e, e) + b(e, ε) = �N (e) − [a(ū, e) + b(e, p̄)], (105)
b(e, ε) = −[b(ū, ε)]. (106)

The two right hand sides of Equations (105) and (106) suggest the general residuals to be defined
as:

�E1 (v) ≡ �N (v) − [a(ū,v) + b(v, p̄)], ∀v ∈ X̂ ; (107)
�E2 (β) ≡ −[b(ū, β)], ∀β ∈ Q. (108)

Thus, the energy equality can be written as:

a(e, e) + 2b(e, ε)− �E1 (e) − �E2 (ε) (109)

The specific choice of ū = u and p̄ = p lead to e = 0 and ε = 0 and the energy equality vanishes.

A.2 Quadratic-linear Lagrangian

Now introduce the set of functions S ⊂ X̂ ×Q,

S =

⎧⎨
⎩

v ∈ X̂ | a(ū + v,w) + b(w, p̄+ β) = �N (w), ∀w ∈ X ;
β ∈ Q | b(ū + v, r) = 0, ∀r ∈ Q ;

| H(v, μ) = 0, ∀μ ∈ E .
(110)

The third constraint H(v, μ) = 0, ∀μ ∈ E enforces velocity continuity and the homogeneous
essential conditions. Therefore, the space of functions S consists of two functions, e and ε. The
following trivial minimization statement can be written:

±sNSh = inf
v∈S

sup
β∈S

κ{a(v, v) + 2b(v, q) − [�E1 (v) + �E2 (β)]} ± �0(ū + v), (110)

where κ ∈ �+ is a non-negative parameter that will be used to optimize the computed bounds.
The constrained minimization problem suggests the formation of the quadratic-linear La-

grangian L : X̂ ×Q×X ×Q× E → �,

L±(v, β,w, r, μ) = κ{a(v, v) + 2b(v, β) − [�E1 (v) + �E2 (β)]} ± �0(ū + v)
+{a(ū + v,w) − �N (w) + b(w, p̄+ β) + b(ū + v, r)}
+H(v, μ), (109)
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where the first line represents the quadratic “energy” reformation of the desired output, the second
line represents the original Stokes problem constrained by the Lagrangian multiplies w and r, and
the third line represents the hybrid flux constraints that “glue” the subdomains together.

Equation (109) can also be written as:

L±(v, β,w, r, μ)
= κ{a(v, v) + 2b(v, β) − �N(v) + a(ū,v) + b(v, p̄) + b(ū, β)} ± �0(ū + v)
+{a(ū + v,w) − �N (w) + b(w, p̄+ β) + b(ū + v, r)} +H(v, μ) (108)

which leads to
±sNSh = inf

v∈X̂
sup

β∈Q,w∈X,r∈Q,μ∈E
L±(v, β,w, r, μ). (108)

30



B Calculation of candidate Lagrange multipliers

Prior to calculating the bounds to the output of interest, the Lagrange multiplier candidates,
adjoint and hybrid flux, are required and are calculated on the mesh Th.

B.1 Low order adjoint calculation

To find the saddle point of the augmented Lagrangian (108) in the subspaces X̂ low
h ⊂ X̂,Qh ∈

Q,Elow
h ⊂ E, the functions denoted by v = e±h + ν, β = ε±h , w = ψ±

h , r = θ±h and μ = t±h are
substituted into the Lagrangian for the specific choice of ū = uh and p̄ = ph:

L±(e±h + ν, ε±h , ψ
±
h , θ

±
h , t

±
h )

= L±(e±h , ε
±
h , ψ

±
h , θ

±
h , t

±
h ) + κa(ν, ν)

+κ{2a(e±h , ν) + 2b(ν, ε±H) − �N (ν) + a(uh, ν) + b(ν, ph)} ± �0(ν)
+{a(ν, ψ±

h ) + b(ν, θ±h )} +H(ν, t±h ). (106)

Thus, the variation of L± with respect to v vanishes leads to

κ{2a(e±h ,w) + 2b(w, ε±h ) − �N (w) + a(uh,w) + b(w, ph)} ± �0(w)

+{a(w, ψ±
h ) + b(w, θ±h )} +H(w, t±h ) = 0, ∀w ∈ X̂ low

h . (106)

Similarly, the stationarity conditions are obtained by requiring that other variations of L±

with respect to β,w, r and μ vanish.
Therefore, the stationarity conditions are: Find e±h ∈ X̂ low

h , ε±h ∈ Qh, ψ±
h ∈ X low

h ,θ±h ∈ Qlow
h ,

and t±h ∈ Elow
h such that

κ{2a(e±h ,w) + 2b(w, ε±h ) − �N (w) + a(uh,w) + b(w, ph)} ± �0(w)

+a(w, ψ±
h ) + b(w, θ±h ) +H(w, t±h ) = 0, ∀w ∈ X̂ low

h , (106)
κ[2b(e±h , β) + b(uh, β)] + b(ψ±

h , β) = 0, ∀β ∈ Qh, (107)

H(e±h , μ) = 0, ∀μ ∈ Elow
h , (108)

a(uh + e±h ,w) − �N (w) + b(w, ph + ε±h ) = 0, ∀w ∈ X low
h , (109)

b(uh, r) + b(e±h , r) = 0, ∀r ∈ Qh. (110)

Replacing e±h and ε±h for the specific choice of ū = uh and p̄ = ph into (109) and (110) gives:

a(u,w) + b(w, p) = �N(w), ∀w ∈ X low
h , (111)

b(u, β) = 0, ∀β ∈ Qh. (112)

These two equations are trivial from (34) and (35).
Substituting Equations (42),(43), (111) and (112) into (106) and (107) yields

a(w, ψ±
h ) + b(w, θ±h ) ± �0(w) +H(w, t±h ) = 0, ∀w ∈ X̂ low

h , (113)
b(ψ±

h , β) = 0, ∀β ∈ Qh. (114)

By constraining w to the continuous X low
h the term H(w, t±h ) is eliminated in (113) because X low

h

is continuous and therefore has no inter-subdomain jumps. Finally Equations (113) and (114) are
simplified as

a(w, ψ±
h ) + b(w, θ±H) ± �0(w) = 0, ∀w ∈ X low

h , (115)
b(ψ±

h , β) = 0, ∀β ∈ Qh. (116)

31



The adjoint can be evaluated as ψ±
h = ±ψh and θ±h = ±θh . Thus, the above equations about

the adjoint calculation are independent of stabilization parameter κ.

a(w, ψh) + b(w, θh) = −�0(w), ∀w ∈ X low
h , (117)

b(ψh, β) = 0, ∀β ∈ Qh. (118)

B.2 Low order hybrid flux calculation

Here, the hybrid flux vector is considered. Let e±h = eprh ± 1
κe

du
h , ε±h = εprh ± 1

κ ε
du
h , and t±h =

κtprh ±tduh . Substituting these parameters into (106) and (107) leads to Equations (117) and (118),
respectively,

κ {2a(eprh ,w) + 2b(w, εprh )} + κ
{
a(uh,w) − �N (w) + b(w, ph)

}
±
{
2a(eduh ,w) + 2b(w, εduh )

}
± �0(w) ± a(w, ψH) ± b(w, θh)

+κH(w, tprH ) ±H(w, tduh ) = 0, ∀w ∈ X̂ low
h , (117)

κ {2b(eprh , β) + b(uh, β)} ±
{
2b(eduh , β) + b(ψh, β)

}
= 0, ∀β ∈ Qh. (118)

Therefore, the hybrid flux calculations can still be separated into two parts that are independent
of κ. The first part is related to the residual of the primal problem, or the original problem on the
“broken space”: Find tprh ∈ Elow

h such that

2a(eprh ,w) + 2b(w, εprh ) +H(w, tprh ) = �N (w) − a(uh,w) − b(w, ph),

∀w ∈ X̂ low
h , (118)

2b(eprh , β) = −b(uh, β) = 0, ∀β ∈ Qh, (119)

H(eprh , μ) = 0, ∀μ ∈ Elow
h . (120)

The hybrid flux for the dual problem is: Find tduh ∈ Elow
h , such that

2a(eduh ,w) + 2b(w, εduh ) +H(w, tduh ) = −�0(w) − a(w, ψh) − b(w, θh),
∀w ∈ X̂ low

h , (120)
2b(eduh , β) = −b(ψh, β) = 0, ∀β ∈ Qh, (121)
H(eduH , μ) = 0, ∀μ ∈ Elow

h . (122)

The directly equilibrated hybrid-flux approach is applied to solve the above dual interface
problems.
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