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Abstract

Production and Decay of WR Gauge Bosons in Left-Right Symmetric

Models at the Tevatron and the LHC

Alper Hayreter, Ph.D.

Concordia University, 2012

In this thesis we study the production and decays of WR gauge bosons in several

left-right symmetric models. We first use experimental constraints on the branching

ratios of b → sγ, b → ceν̄e, and B0
d,s − B̄0

d,s mixing to restrict the parameter space

of the model. We then analyze the branching ratios of WR and look for signals in

pp→WR t→ t (dijet) and show that the LHC could find a significant resonance for

new gauge bosons. Finally, we analyze the top pair production and forward-backward

asymmetry, and show that while the cross section at the Tevatron and the LHC are in

agreement with the predictions of the model, the asymmetry observed at the Tevatron

is inconsistent with LR model predictions, while the small asymmetry observed at the

LHC is compatible with the model.
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Chapter 1

STANDARD MODEL

1.1 Introduction

We are living particularly exciting times right now. High Energy Physics, which

attempts to provide a cohesive picture of the fundamental forces and particles gov-

erning the structure of matter is less than a century old. During this time, it has been

extremely successful in explaining some of the basic underlying laws of nature. The

crowning glory is the Standard Model (SM) of elementary particles, which encapsu-

lates some of our knowledge of the field. Most of the particles and interactions it

predicts have already been confirmed experimentally. Perhaps the only piece missing

is the Higgs Boson, responsible for giving masses to fundamental particles and for

electroweak symmetry breaking.

However the experimental success of the Standard Model is slightly overshadowed

by its limitations. The model suffers from some theoretical inconsistencies, and cannot

be a complete picture at higher energies. But the Large Hadron Collider (LHC) , the

most ambitious project ever in experimental physics, is in the process of finding the

last missing piece of the SM, and give some indications of what lies beyond it. In

fact, even as I write this, the blogs are full of expectations that finding the Higgs is

only weeks of data analysis away.

The theorists have been waiting with particular excitement to the findings of the

LHC, but not while being idle. Many scenarios of physics Beyond the Standard Model

(BSM) have been proposed, and many papers produced, which describe signatures

that various models will have at the LHC. Supersymmetry (a theory proposing a

1



symmetry between bosons and fermions) remains the favorite model; yet the LHC

has so far failed to see any signals for low-lying supersymmetric particles. A symmetry

which treats left- and right-handed particles and interactions on an equal footing is

perhaps the simplest extension of the SM. In this thesis I analyze a definitive signal for

left-right models: a right-handed charged vector boson, the right-handed equivalent of

the chargedWL vector boson in the SM. I concentrate on restrictions on the parameter

space of the model, as well as characteristic signatures of production and decays of

the boson, complete with simulation of signals which experiments at the LHC would

see.

Finally, I investigate whether signals which have been observed already at a pre-

cursor of the LHC, the Tevatron experiment at Fermilab, which cannot be explained

within the Standard Model, could be accommodated in the left-right models. Thus

this thesis is a contribution to possible signals of BSM physics at hadron colliders,

and in particular at the LHC.

1.2 Model Description

The SM of particle physics is an elegant description of elementary particles and their

interactions at low energies. Incorporating three of the four fundamental interactions

of nature and precisely explaining the dynamics of all experimentally known sub-

atomic particles, the SM is an extremely successful theoretical framework. It covers

three generations of leptons and quarks as elementary particles, electron (e), muon

(µ) and tau (τ) lepton with their associated neutrinos (ν) in the lepton sector and

up (u), down (d), charm (c), strange (s), top (t) and bottom (b) quarks in the quark

sector. Having half-integer spin (s = 1/2) all the leptons and quarks obey to Fermi-

Dirac statistics and therefore they are called fermions. Besides gravity, which appears

to be the first handicap of the SM, all fundamental forces of nature are described

by the exchange of force-carrier particles, that is, the photon (γ) is responsible for

electromagnetic interactions, weak forces are transmitted by Z0,W± and gluons (g)

mediate the strong forces. Since all these force-carrier particles have integer spin

(s = 1) they obey Bose-Einstein statistics thus called as bosons.

The SM is based on a gauge principle in which the exchanged bosons are gauge

fields of corresponding symmetry groups. Concerning electromagnetic, weak and

2



strong interactions, the symmetry structure of the SM is

SU(3)C × SU(2)L × U(1)Y (1.1)

where all gauge bosons are related with the number of generators of the corresponding

gauge group. There are 8 gluons Ga
µ of SU(3)C color (associated with 32 − 1 = 8

generators), 3 weak bosons W i
µ of SU(2)L isospin (associated with 22 − 1 = 3 gener-

ators) and Bµ boson of U(1)Y hypercharge (associated with a single generator). The

gauge structure of the SM is chiral sensitive, that is, it exhibits a built-in left-right

asymmetry which means that left-handed and right-handed components of fermion

fields are treated in a completely different manner. Having ±1/2 weak isospin quan-

tum numbers the left-handed fermion fields reside in doublet structure whereas the

right-handed fermion fields take place in a singlet structure with no weak isospin

quantum numbers at all. The field content of the SM and the quantum numbers are

given in Table 1.

At high energies the gauge bosons of corresponding symmetry groups are mathe-

matically seen to be virtual massless fields, however at low energies the spontaneous

breaking of symmetries

SU(3)C × SU(2)L × U(1)Y −→ SU(3)C × U(1)EM (1.2)

gives rise to physical massive gauge bosons i.e. neutral Z0 and charged W± bosons.

This symmetry breaking at low energies relates the corresponding quantum number

electromagnetic charge (Q) of the U(1)EM gauge group with the weak isospin (T ) of

the SU(2)L group and the hypercharge (Y ) of U(1)Y . This relation is formulated in

the so called Gell-Mann-Nishijima formula

Q = T +
Y

2
. (1.3)

The interactions and dynamics of SM fields are prescribed by the Lagrangian

density

L = LGauge + LKinetic + LHiggs + LY ukawa , (1.4)

where each term respectively refers to the Gauge, Kinetic, Higgs, and Yukawa sectors

of the theory.

3



Fields Components SU(3)C × SU(2)L × U(1)Y

Fermions

L





ν

e





L

1 2 −1

E ecR 1 1 +2

Q





u

d





L

3 2 + 1

3

U uc
R 3̄ 1 − 4

3

D dcR 3̄ 1 + 2

3

Gauge bosons

Bµ B0
µ 1 1 0

Wµ W+
µ ,W−

µ ,W 0
µ 1 3 0

Gµ Ga
µ (a = 1...8) 8 1 0

Higgs

Φ





φ+

φ0



 1 2 +1

Table 1: Field content of the Standard Model and respective quantum numbers in

SU(3)C × SU(2)L × U(1)Y gauge structure.

The Gauge Lagrangian density includes the interactions of gauge fields by means

of field strength tensors

LGauge = −1
4

∑

FµνF
µν ,

LGauge = −1
4
Ga

µνG
µνa − 1

4
W i

µνW
µνi − 1

4
BµνB

µν , (1.5)
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where the field strength tensors for SU(3)C ,SU(2)L and U(1)Y are, respectively,

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν , a, b, c = 1...8 ,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gLǫijkW j
µW

k
ν , i, j, k = 1...3 ,

Bµν = ∂µBν − ∂νBµ , (1.6)

gs and gL are gauge coupling constants, fabc and ǫijk are generators in the adjoint

representation of SU(3)C and SU(2)L respectively. These terms contain the gauge

boson kinetic interactions as well as the three- and four-point self interactions of the

Ga
µ and W i

µ gauge fields.

The gauge-covariant kinetic interactions of fermions with gauge fields are encoded

in the Kinetic Lagrangian density

LKinetic = i
∑

ψ γµDµψ ,

LKinetic = i
3
∑

j=1

(

Ljγ
µDµLj + Ejγ

µDµEj

+ Qjγ
µDµQj + U jγ

µDµUj +Djγ
µDµDj

)

, (1.7)

in which the covariant derivative (Dµ) takes the following forms for each term

LγµDµL = Lγµ
(

∂µ −
igL
2
σ ·Wµ +

igY
2
Bµ

)

L , (1.8)

EγµDµE = Eγµ
(

∂µ − igYBµ

)

E , (1.9)

Q
α
γµDµQ

β = Q
α
γµ
[(

∂µ −
igL
2
σ ·Wµ −

igY
6
Bµ

)

δαβ −
igs
2
λαβ ·Gµ

]

Qβ , (1.10)

U
α
γµDµU

β = U
α
γµ
[(

∂µ +
2igY
3

Bµ

)

δαβ −
igs
2
λαβ ·Gµ

]

Uβ , (1.11)

D
α
γµDµD

β = D
α
γµ
[(

∂µ −
igY
3
Bµ

)

δαβ −
igs
2
λαβ ·Gµ

]

Dβ . (1.12)

where α and β are color indices for quarks, σ and λαβ are the 2×2 Pauli spin and 3×3
Gel-Mann matrices, respectively (generators of SU(2)L and SU(3)C in fundamental

representation).

The scalar Higgs part of the Lagrangian density is

LHiggs = (Dµφ)†Dµφ− V (φ) , (1.13)
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where φ is a complex scalar Higgs field and the covariant derivative reads

Dµφ =

(

∂µ −
igL
2
σ ·Wµ −

igY
2
Bµ

)

φ . (1.14)

The square of covariant derivative leads to three and four-point interaction terms

between the gauge and Higgs fields. The Higgs potential V (φ) is restricted by the

renormalizability and the invariance of SU(2)× U(1) to the form

V (φ) = µ2φ†φ+ λ(φ†φ)2 . (1.15)

For µ2 < 0 the spontaneous symmetry breaking occurs and the non-zero vacuum

expectation value (VEV) of 〈0|φ0|0〉 generates masses for W and Z bosons.

The Lagrangian density of the Yukawa sector is

LY ukawa = −
∑

y ψLφψR

LY ukawa = −
3
∑

i,j=1

(yeij Li φEj + yuij Qi φ
c Uj + ydij Qi φDj) + h.c. , (1.16)

where yeij, y
u
ij, y

d
ij are 3×3 Yukawa matrices, which ultimately determine the fermion

masses and mixings, and the charge conjugate of the Higgs field is

φc = iσ2φ† ≡
(

φ0†

−φ−

)

. (1.17)

These terms represent the Yukawa couplings between Higgs fields and fermions, which

are necessary to generate fermion masses by the spontaneous breaking of the chiral

symmetries.

1.3 Spontaneous Symmetry Breaking

Gauge theories do not allow bare mass terms for gauge bosons because they would

break the gauge invariance and destroy the renormalizability of the theory. Without

Spontaneous Symmetry Breaking (SSB), the SM predicts the existence of a number

of massless particles which is actually not realistic. In reality, most of the fermions

and some of the gauge bosons are real massive particles. To overcome this ambiguity,

the Higgs mechanism which triggers the SSB is introduced. The Higgs field is defined
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as a two-component complex SU(2) spinor in order to properly interact with weak

gauge bosons in the SU(2)L × U(1)Y sector;

φ =

(

φ+

φ0

)

=
1√
2

(

φC + iφD

φA + iφB

)

. (1.18)

The minimum of the Higgs potential, Equation (1.15), occurs at 〈φ〉 = v√
2
instead

of 〈φ〉 = 0 which is a local maximum of the potential, thus at the vacuum, i.e. at

the minimum energy configuration, having a non-zero VEV, the Higgs field spans the

space-time as a fluctuating background field.

〈0|φ|0〉 = 〈φ〉 = 1√
2

(

0

v

)

with v =

√

−µ2

λ
. (1.19)

At high energies, above the electroweak scale (∼ 100 GeV), the Higgs field resides

on top of the local maximum (v = 0) and preserves the symmetry of the system.

However, when the energy falls below the electroweak scale the v = 0 point becomes

unstable and the Higgs field cannot stay on top of the local maximum anymore.

Choosing an arbitrary direction it falls into the minimum energy configuration thus

spontaneously breaks the electroweak symmetry SU(2)L × U(1)Y to the electromag-

netism U(1)EM and in consequence generates masses for the gauge bosons and the

chiral fermions. The energy configuration of the Higgs field is pictured in Figure 1.

Figure 1: Energy configuration of Higgs field on real-imaginary plane.

Theories with SSB imply massless Goldstone bosons. In fact the SSB of the

underlying local symmetry triggers conversion of the components of the scalar Higgs
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field to Goldstone bosons. Instead of existing as a massless scalar particle, the degree

of freedom carried by the Goldstone bosons manifests itself as the longitudinal spin

component of a gauge boson which interacts with the other fields in the theory and

produce mass terms for the gauge bosons (it is also said that the Goldstone boson

has been eaten by the gauge boson). In the choice of unitary gauge, the scalar Higgs

field is transformed into a basis in which Goldstone components are set to zero and

can be expanded around the vacuum in terms of physical components,

〈0|φ|0〉 = 〈φ〉 = 1√
2

(

0

v +H

)

, (1.20)

where H is a Hermitian scalar field, the physical Higgs boson.

1.3.1 Mass Generation of Gauge Bosons

Gauge fields acquire their masses kinetically interacting with the Higgs scalar. There-

fore they arise from the kinetic part of the Higgs Lagrangian

|Dµφ|2 =

∣

∣

∣

∣

(

∂µ −
igL
2
σ ·Wµ −

igY
2
Bµ

)

φ

∣

∣

∣

∣

2

, (1.21)

and the SU(2) part of the covariant derivative can be written as

σ ·Wµ = σ1W 1
µ + σ2W 2

µ + σ3W 3
µ =

(

W 3
µ

√
2W+

µ√
2W−

µ −W 3
µ

)

, (1.22)

where complex charged gauge bosons W±
µ mediate the charged current interactions

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (1.23)

We obtain

g2Lv
2

4
W µ+W−

µ +
v2

8
(gLW

µ3 − gYBµ)(gLW
3
µ − gYBµ) . (1.24)

the mixing of neutral fields (W 3
µ and Bµ) can be removed by an orthogonal transfor-

mation
(

Zµ

Aµ

)

=

(

cos θW − sin θW

sin θW cos θW

)(

W 3
µ

Bµ

)

(1.25)
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where the θW is the Weinberg angle which is responsible for the mixing

cos θW =
gL

√

g2L + g2Y
, sin θW =

gY
√

g2L + g2Y
, (1.26)

then the compositions of physical neutral gauge bosons become

Zµ =
gLW

3
µ − gYBµ

√

g2L + g2Y
and Aµ =

gYW
3
µ + gLBµ

√

g2L + g2Y
, (1.27)

they are responsible for neutral current and electromagnetic interactions respectively.

With all these physical states of gauge fields, the kinetic part of the Higgs Lagrangian

in vacuum takes the following form

g2Lv
2

4
W µ+W−

µ +
1

2

(g2L + g2Y )v
2

4
ZµZµ + 0AµAµ (1.28)

and the tree level physical masses of gauge bosons are predicted to be

MW =
gLv

2
, MZ =

gv

2
=

MW

cos θW
, MA = 0 , (1.29)

where g =
√

g2L + g2Y and the photon (Aµ) remains massless. The masses of W± and

Z bosons are roughly calculated to be MW ∼ 78 GeV and MZ ∼ 89 GeV. These

predictions are increased by ∼ 2 GeV with loop corrections which at the end come to

a complete agreement with their observed masses

MW = 80.398± 0.025 GeV , MZ = 91.1876± 0.0021 GeV , (1.30)

and the weak scale v is therefore evaluated as

v =
2MW

gL
≃ 246 GeV . (1.31)

In the unitary gauge the Higgs potential Equation (1.15) becomes

V (φ)→ −µ
4

4λ
− µ2H2 + λvH3 +

λ

4
H4 , (1.32)

the second term in the potential represents a tree-level mass for the Higgs boson

MH =
√

−2µ2 = v
√
2λ , (1.33)

the weak scale v is known but the quartic Higgs coupling λ is not. This puts a mystery

on the Higgs mass, however there is a lower limit from LEP experiments MH & 114

GeV.
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1.3.2 Mass Generation of Fermions

Three families of leptons and quarks acquire their masses from Yukawa interactions

of Higgs scalars

−LY ukawa =
∑

y ψLφψR . (1.34)

While the lower components of fermion doublets interact with φ, the upper compo-

nents interact with φc because of non-zero VEV appearing in the lower component of

Higgs doublet

−LY ukawa =
3
∑

i,j=1

(yeij Li φEj + yuij Qi φ
c Uj + ydij Qi φDj) + h.c. , (1.35)

where fermions are introduced in their gauge eigenstates i.e.

Le
L = {e0, µ0, τ 0}L , Qu

L = {u0, c0, t0}L ,

Lν
L = {ν0e , ν0µ, ν0τ}L , Qd

L = {d0, s0, b0}L , (1.36)

E = {e0, µ0, τ 0}cR , U = {u0, c0, t0}cR ,

D = {d0, s0, b0}cR .

Notice that right-handed neutrinos (νR) do not exist in the framework of the SM which

leaves neutrinos massless in the theory. However neutrino oscillation experiments

showed that neutrinos have indeed very little mass. yeij, y
u
ij and ydij are completely

arbitrary 3×3 matrices which ultimately determine the fermion masses and mixings.

They do not have to be Hermitian, symmetric, diagonal or real. They are the most

arbitrary aspect of the SM and they introduce most of the free parameters in the

theory.

At the vacuum, the Yukawa Lagrangian for up-type quarks reads

−Lu
Y ukawa =

3
∑

i,j=1

yuij Qi φ
c Uj =

3
∑

i,j=1

ū0iL y
u
ij

(

v +H√
2

)

u0cjR + h.c

−Lu
Y ukawa = ū0L (M

u + huH) u0cR + h.c , (1.37)

where three families of up-type quarks are defined as u0L = (u01 u
0
2 u

0
3)

T
L in a 3 com-

ponent column vector, with a similar definition for u0cR . M
u is a 3 × 3 fermion mass

matrix

Mu = yuij
v√
2
, (1.38)
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and hu is the 3× 3 Yukawa coupling matrix

hu =
yuij√
2
=
Mu

v
=
gLM

u

2MW
. (1.39)

To switch to physical particle states, it is necessary to diagonalize the fermion mass

matrix Mu by separate unitary transformations AL and AR on the left and right

handed fermion fields,

Au†
L M

uAu
R =Mu

D =









mu 0 0

0 mc 0

0 0 mt









(1.40)

where the diagonal entries are real, non-negative eigenvalues corresponding to the

physical masses of up-type quarks. The down type quark and charged lepton matrices

are also diagonalized in a similar way by unitary transformations

Ad†
LM

dAd
R =Md

D , Ae†
LM

eAe
R =Me

D . (1.41)

In terms of these unitary transformations physical eigenstates of fermion fields can

be defined as

Ae†
L e

0
L = (eL µL τL)

T , Au†
L u

0
L = (uL cL tL)

T ,

Ae†
R e

0c
R = (ecR µc

R τ cR)
T , Au†

R u
0c
R = (ucR ccR tcR)

T , (1.42)

, Ad†
L d

0
L = (dL sL bL)

T ,

Ad†
R d

0c
R = (dcR scR bcR)

T ,

so that the transition from gauge eigenstates to physical eigenstates is fairly easy

f̄ 0
LM

ff 0
R = f̄LM

f
DfR , (1.43)

and with the following consequence

M2
D = (A†

LMAR)(A
†
RM

†AL) = (A†
RM

†AL)(A
†
LMAR) , (1.44)

M2
D = A†

LMM †AL = A†
RM

†MAR , (1.45)

the diagonalizing matrices AL and AR can be obtained by computing the eigenvectors

corresponding to the eigenvalues of MM † and M †M , respectively.
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1.4 Electroweak Interactions

All electroweak interactions in the SM are generated from the kinetic part of the

Lagrangian for both leptons and quarks:

Lkinetic = i
∑

ψ γµDµψ

Lkinetic = i
3
∑

j=1

(

Ljγ
µDµLj + Ejγ

µDµEj

+ Qjγ
µDµQj + U jγ

µDµUj +Djγ
µDµDj

)

. (1.46)

There are three electroweak interactions: electromagnetic, neutral current and charged

current interactions. To illustrate these let us consider only the first generation leptons

and quarks; Equation (1.8) and Equation (1.10) lead us to the following interaction

terms

Ll,q
Kinetic = ( ν̄e ē )L

γµ

2

(

gLW
3
µ − gYBµ

√
2gLW

+
µ√

2gLW
−
µ −gLW 3

µ − gYBµ

)(

νe

e

)

L

+ ( ū d̄ )L
γµ

2





gLW
3
µ +

gY
3
Bµ

√
2gLW

+
µ√

2gLW
−
µ −gLW 3

µ +
gY
3
Bµ





(

u

d

)

L

+ ēcRγ
µgYBµe

c
R − ūcRγµ

2gY
3
Bµu

c
R + d̄cRγ

µ gY
3
Bµd

c
R . (1.47)

Substituting the physical eigenstates for the neutral gauge bosons

(

W 3
µ

Bµ

)

=

(

cos θW sin θW

− sin θW cos θW

)(

Zµ

Aµ

)

(1.48)

and defining the electric charge e =
gLgY
g

we obtain all three electroweak interactions.
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1.4.1 Electromagnetic Interactions

Electromagnetic interactions are mediated by massless photons therefore they are

infinite-range interactions. From Equation (1.47) we have

LEM =

[

ν̄e
γµ

2
(gL sin θW − gY cos θW )PL νe + ē

γµ

2
(−gL sin θW − gY cos θW )PL e

+ ū
γµ

2
(gL sin θW +

gY
3

cos θW )PL u+ d̄
γµ

2
(−gL sin θW +

gY
3

cos θW )PL d

+ ēc γµgY cos θWPR e
c − ūc γµ2gY

3
cos θWPR u

c + d̄c γµ
gY
3

cos θWPR d
c

]

Aµ ,

(1.49)

LEM =

[

ν̄e γ
µ(0e)PL νe + ē γµ(−e)PL e+ ū γµ(

2e

3
)PL u+ d̄ γµ(−e

3
)PL d

+ ēc γµ(e)PR e
c + ūc γµ(

−2e
3

)PR u
c + d̄c γµ(

e

3
)PR d

c

]

Aµ , (1.50)

where PL and PR are projection operators which separate left- and right-handed

components of fermion fields. They are defined in Appendix A. It is obvious that a

photon couples to fermions with their electric charges, so in general a photon only

couples to electrically charged particles, it does not couple to neutrinos as they are

electrically neutral. Therefore, the electromagnetic interactions can be described in

a simpler form

LEM = eAµJ
µ
A , (1.51)

where Jµ
A is the electromagnetic current which covers the three flavors of fermions

Jµ
A =

∑

i

Qif̄iγ
µfi

Jµ
A = Qe ē γµe +Qu ū γµu+Qd d̄ γµd , (1.52)

The Feynman diagram of electromagnetic interactions is given in Figure 2.

Aµ

f

f̄

eQf γµ .

Figure 2: Feynman diagram of electromagnetic interactions in the SM.
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1.4.2 Neutral Current Weak Interactions

Neutral current interactions are transmitted by neutral Z bosons. Because of broken

electroweak symmetry (massive Z bosons) they are short-range interactions. From

Equation (1.47), the neutral current interactions can be summarized as

LNC =

[

ν̄e
γµ

2
(gL cos θW + gY sin θW )PL νe + ē

γµ

2
(−gL cos θW + gY sin θW )PL e

+ ū
γµ

2
(gL cos θW −

gY
3

sin θW )PL u+ d̄
γµ

2
(−gL cos θW −

gY
3

sin θW )PL d

− ēc γµgY sin θWPR e
c + ūc γµ

2gY
3

sin θWPR u
c − d̄c γµ gY

3
sin θWPR d

c

]

Zµ ,

(1.53)

LNC =

[

ν̄e γ
µ gL
cos θW

(
1

2
)PL νe + ē γµ

gL
cos θW

(−1
2
+ sin2 θW )PL e

+ ū γµ
gL

cos θW
(
1

2
− 2

3
sin2 θW )PL u+ d̄ γµ

gL
cos θW

(−1
2
+

1

3
sin2 θW )PL d

+ ēc γµ
gL

cos θW
(− sin2 θW )PR e

c + ūc γµ
gL

cos θW
(
2

3
sin2 θW )PR u

c

+ d̄c γµ
gL

cos θW
(−1

3
sin2 θW )PR d

c

]

Zµ . (1.54)

Equation (1.54) can be simplified further

LNC =
gL

cos θW
ZµJ

µ
Z , (1.55)

where Jµ
Z is neutral current given by

Jµ
Z =

∑

i

(T iPL −Qi sin2 θW )f̄iγ
µfi , (1.56)

T and Q are the weak isospin and electric charge of the fermion fields, respectively.

Figure 3 shows the Feynman diagram of neutral current interactions in the SM.

Zµ

f

f̄

gL
cos θW

γµ(T fPL −Qf sin2 θW ) .

Figure 3: Feynman diagram of neutral current interactions in the SM.
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1.4.3 Charged Current Weak Interactions

Mediators of charged current interactions are the charged W± gauge bosons. Since

the W± bosons are massive, these interactions are short-range interactions as well.

The Lagrangian of charged current interactions can be inferred from Equation (1.47)

as

LCC =
gL√
2
(W−

µ J
µ
W +W+

µ J
µ†
W ) , (1.57)

where Jµ
W is the charged current and Jµ†

W its conjugate

Jµ
W =

∑

i,j

(ēLjγ
µνLiδij + d̄Ljγ

µuLiV
†
ij) ,

Jµ†
W =

∑

i,j

(ν̄Liγ
µeLjδij + ūLiγ

µdLjVij) . (1.58)

In the lepton sector, since neutrinos are massless in the SM, their eigenstates are

arbitrary. There is nothing to distinguish them except their weak interactions. So it

is acceptable to define νe, νµ, and ντ as the weak interaction partners of e, µ, and τ

respectively. This ensures that Aν
L = Ae

L so that the physical eigenstates of neutrinos

are νL = Ae†
L ν

0
L. Therefore,

ν̄0k γ
µ e0k = ν̄i γ

µAe†
ik A

e
kj ej = ν̄i γ

µ ej δij , (1.59)

hence the W± boson does not mix lepton flavors. The Feynman diagram of leptons

charged current interactions is given in Figure 4.

W−
µ

νi

ēj

gL√
2
γµPLδij .

Figure 4: Feynman diagram of leptons charged current interactions in the SM.

However, in the quark sector things are different: since all quarks are massive particles

their physical eigenstates mix with a 3×3 matrix in the charged current interactions.

That is,

ū0k γ
µ d0k = ūi γ

µAu†
ik A

d
kj dj = ūi γ

µ dj Vij (1.60)
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and Au†
ik A

d
kj = Vij is the so-called Cabibbo-Kobayashi-Maskawa (CKM) quark mixing

matrix.

VCKM =









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









(1.61)

The standard parametrization of the CKMmatrix involves three Euler angles (θ12, θ23, θ13)

and one CP violating phase δ13:

VCKM =









c12 c13 s12 c13 s13 e
−iδ13

−s12 c23 − c12 s23 s13 eiδ13 c13 c23 − s12 s23 s13 eiδ13 s23 c13

s12 s23 − c12 c23 s13 eiδ13 −c12 s23 − s12 c23 s13 eiδ13 c23 c13









(1.62)

where cij and sij are cosines and sines of mixing angles (θ12, θ23, θ13). Another useful

parametrization is the Wolfenstein parametrization in which the hierarchical structure

of mixings between generations is clearly seen

VCKM ∼









1 λ λ3

−λ 1 λ2

λ3 −λ2 1









(1.63)

where λ = sin θ12 and the Cabibbo angle θ12 is the mixing of the first two generations

which is precisely measured in various experiments (sin θ12 ∼ 0.23). And Figure 5

shows the Feynman diagram of quarks charged current interactions in the SM.

W−
µ

ui

d̄j
gL√
2
γµPLV

†
ij .

Figure 5: Feynman diagram of quarks charged current interactions in the SM.

1.5 Challenges in the Standard Model

The SM was developed in 1960’s and finalized to its ultimate form in 1970’s with the

experimental confirmation of the existence of the quarks. First, electromagnetic and
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weak interactions were combined in electroweak theory by Sheldon Glashow, and then

the Higgs Mechanism was incorporated by Steven Weinberg and Abdus Salam giving

the SM its modern form. Since then, most of the SM predictions were experimentally

confirmed;

• Discovery of quarks in deep inelastic scattering experiments: up, down, and

strange quarks (Stanford Linear Accelerator Center (SLAC) 1968), charm quark

(SLAC and Berkeley National Laboratory (BNL) 1974), bottom quark (Fermi-

lab (FNAL) 1977) and finally top quark (FNAL 1995).

• Neutral weak currents were discovered at European Council for Nuclear Re-

search (CERN) in 1973,

• W± and Z0 bosons were discovered by UA1 and UA2 collaborations at CERN in

1983. Their masses were measured to be exactly the same as the SM predicted.

• And many other sub-atomic phenomenons that are predicted by the SM were

experimentally confirmed up to date.

Because of its success in explaining a large variety of experimental results, the SM

commonly regarded as the theory of almost everything.

Despite being the most successful theory of particle physics to date, the SM is

not perfect. There are a number of experimental observations for which the SM does

not give an adequate explanation. First of all, it cannot provide an explanation of

gravity which is one of the four fundamental forces in nature. Then, according to the

SM the neutrinos are massless particles. However, neutrino oscillation experiments

have shown that neutrinos do actually have a small mass. The SM predicts that

matter and anti-matter should have been created in (almost) equal amounts, which

would have annihilated each other as the universe cooled. However, the cosmological

observations showed that there is a matter-anti-matter asymmetry in the universe,

i.e, the universe is made out of mostly matter. The SM is able to explain only about

4% of the energy present in the universe, 24% is accounted for the dark matter which

interacts only weakly with SM fields, and the rest is considered to be the dark energy,

a constant energy density for the vacuum. Attempts to explain the dark energy in

terms of vacuum energy of the SM lead to a mismatch of 120 orders of magnitude.

Besides experimental discrepancies there are some theoretical problems as well in

the model. Some features of the SM are added in an ad hoc way. These are not a
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problem per-se, i.e, the theory works fine with these ad-hoc features, but they imply

a lack of understanding. Some of the ad hoc features are: the hierarchy problem,

the strong CP problem, and the number of parameters. The SM introduces particle

masses through a process known as spontaneous symmetry breaking caused by the

Higgs field. Within the SM, the mass of the Higgs field gets some very large quantum

corrections due to the presence of virtual particles, mostly virtual top quarks. These

corrections are much larger than the actual mass of the Higgs field. This means that

the bare mass parameter of the Higgs field in the SM must be fine tuned in such a

way that almost completely cancels the quantum corrections. This level of fine tuning

is deemed unnatural by many theorists and called the hierarchy problem. In order

to explain the matter-anti-matter asymmetry a term that breaks CP symmetry in

the strong interaction sector may be included in the context of the SM; however no

such violation has been found so far implying that the coefficient of this term is very

close to zero. This fine tuning is also unnatural and called the strong CP problem.

Finally the SM depends on 19 numerical parameters. Their values are known from

experiments, but the origin of the values is unknown. With all those inconsistencies

in the SM, theorists try to extend the SM or establish new models in order to explain

all these problems and to find the true symmetry of the nature. Theories that lie

beyond the Standard Model include natural extensions of the SM such as Grand

Unified Theories, Left-Right Symmetric Models or supersymmetric extensions, such

as the Minimal Supersymmetric Standard Model, Next-to-Minimal Supersymmetric

Standard Model, or entirely novel explanations, such as string theory, M-theory and

extra dimensions.

In this work we concentrate on Left-Right Symmetric Models as a natural exten-

sion of the SM and investigate some features of WR gauge boson detection at the

Tevatron and the LHC. The LHC, being the most powerful and the largest magnifier

ever, it is a wonderful opportunity to find new particles and interactions and to test

the new theories beyond the SM. There are a number of studies investigating a new

neutral gauge boson which would be a signal for an extra U(1) symmetry. However,

the search for a new charged gauge boson is far less than that. A charged gauge boson

would indicate an extra SU(2) symmetry and one can easily test chiral interactions

to determine whether the underlying symmetry is SU(2)L or SU(2)R.
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In the next chapter we give the details and descriptions of the Left-Right Sym-

metric Model. Then in Chapter 3 we focus on b→ d, s transitions in an asymmetric

class of SU(2)L × SU(2)R × U(1)B−L models, with a simple, one-parameter struc-

ture of the right-handed mixing matrix for the quarks, which obey the constraints

of Kaon physics. We impose experimental constraints on the branching ratios of

b → sγ, b → ceν̄e, and B0
d,s − B̄0

d,s mixing to restrict the parameters of the model:

gR/gL,MWR
,MH± , tanβ as well as the elements of the right-handed quark mixing

matrix V R
CKM .

In Chapter 4 we analyze the single WR boson production in the asymmetric left-

right model, where the left and right quark mixing matrices are not constrained to

be equal. We investigate the cross sections as well as the branching ratios of WR

bosons at the LHC, including constraints from low-energy phenomenology. We then

look for most likely signals in pp → WR t → t (dijet) production. Including the

background, we find that LHC could show significant signals for the new charged

bosons. We compare our results throughout with those of the manifest left-right

symmetric model and comment on similarities and differences.

Finally in Chapter 5, in light of the recent measurements of the top quark forward-

backward asymmetry at the Fermilab Tevatron experiment, which in some regions of

the parameter space shows a discrepancy of 3σ compared to the SM prediction, we

analyze top quark pair production and asymmetry in the context of left-right mod-

els both at the Tevatron and LHC. We use the minimal manifest left-right model

and an asymmetric left-right model where gauge couplings and flavor mixing in the

right-handed sector are allowed to differ from those in the left-handed sector. We

explore the consequences of including effects from WR and ZR gauge bosons, con-

sistent with phenomenological constraints from meson mixing and new bounds from

ATLAS and CMS, for the tt̄ cross section, invariant mass distribution and forward-

backward asymmetry at the Tevatron, and predict their values at the LHC. We show

that, varying the parameters of the model while preserving agreement with collider,

electroweak precision, and flavor violation data, the generic left-right model cannot

account for the large deviations of the observed asymmetry at the Tevatron and also

that it predicts very small charge asymmetries at the LHC.
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Chapter 2

LEFT-RIGHT SYMMETRIC

MODEL

2.1 Model Description

The main motivation for the Left-Right Symmetric Model (LRSM) is to treat the

right-handed particles and their interactions on an equal footing with the left ones.

The SM breaks parity maximally, that is all the fermions in the model are chiral

Weyl fermions which means that the weak gauge bosons W± and Z only couple to

left-handed leptons and quarks. Apparently left-handed particles and interactions are

favored in the SM, but a proper answer to the question ’Why should nature prefer

such a discrimination?’ is absent. Moreover, as recent experiments showed that

neutrinos do indeed have small masses, it means they in fact can flip their chirality

under proper circumstances which is not allowed in the context of the SM because

there is no room for right-handed neutrinos. Following these motivations, the LRSM,

being a natural extension of the SM, can fulfill the above requirements and also may

give some interesting consequences.

The weak interactions of LRSM are based on the gauge group SU(2)L×SU(2)R×
U(1)B−L where B − L stands for the difference in baryon and lepton numbers. The

field content of the model and quantum numbers are given in Table 2. Contrary to the

SM, all right-handed component of fermion fields transform as doublets under SU(2)R

symmetry in the LRSM; the corresponding gauge bosons of this new symmetry only

couple to right-handed fermions. This Left-Right (LR) symmetry emerged from the
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idea that the physical laws must be as valid for right-handed motions as they are for

the left-handed ones.

Fields Components SU(2)L × SU(2)R × U(1)B−L

Fermions

LL





ν

e





L

2 1 −1

LR





ν

e





R

1 2 −1

QL





u

d





L

2 1 + 1

3

QR





u

d





R

1 2 + 1

3

Gauge bosons

WL W+
L ,W−

L ,W 3
L 3 1 0

WR W+
R ,W−

R ,W 3
R 1 3 0

V V 0 1 1 0

Higgs

Φ





Φ0
1 Φ+

1

Φ−

2 Φ0
2



 2 2 0

∆L





∆
+

√

2
∆++

∆0 −∆
+

√

2





L

3 1 +2

∆R





∆
+

√

2
∆++

∆0 −∆
+

√

2





R

1 3 +2

Table 2: Field content of the LRSM and respective quantum numbers in SU(2)L ×

SU(2)R × U(1)B−L gauge structure.
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It was shown by Mohapatra and Senjanovic [2] in 1975 that the LR symmetry can

be spontaneously broken to give a chiral low-energy theory which is the SM at the

weak scale and the small neutrino masses via the see-saw mechanism. The complete

symmetry breaking pattern of the LRSM is accomplished in two stages

SU(3)C × SU(2)L × SU(2)R × U(1)B−L −→ SU(3)C × SU(2)L × U(1)Y ,

SU(3)C × SU(2)L × U(1)Y −→ SU(3)C × U(1)EM , (2.1)

where the electromagnetic charge is defined by the modified Gell-Mann-Nishijima

formula

Q = TL + TR +
YB−L

2
. (2.2)

The Lagrangian density of the LRSM can be summarized in the same way as in

the SM (see Equation (1.4)).

• Gauge Lagrangian

The gauge part of the Lagrangian density contains the gauge bosons kinetic energy

terms as well as the three- and four-point self interactions for the gauge fields Ga
µ,W

i
Lµ

and W i
Rµ:

LGauge = −1
4

∑

FµνF
µν

LGauge = −1
4
Ga

µνG
µνa − 1

4
W i

LµνW
µνi
L − 1

4
W i

RµνW
µνi
R − 1

4
VµνV

µν , (2.3)

where the field strength tensors for SU(3)C ,SU(2)L,SU(2)R and U(1)B−L are, respec-

tively,

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν , a, b, c = 1...8 ,

W i
Lµν = ∂µW

i
Lν − ∂νW i

Lµ − gLǫijkW j
LµW

k
Lν , i, j, k = 1...3 ,

W i
Rµν = ∂µW

i
Rν − ∂νW i

Rµ − gRǫijkW j
RµW

k
Rν , i, j, k = 1...3 ,

Vµν = ∂µVν − ∂νVµ , (2.4)

gs,gL and gR are gauge coupling constants while fabc and ǫijk are generators in adjoint

representations of SU(3) and SU(2) groups, respectively.

• Kinetic Lagrangian

22



The kinetic part of the Lagrangian density constitutes the kinetic terms of fermions

and gauge bosons

LKinetic = i
∑

ψ γµDµψ

LKinetic = i
3
∑

j=1

(

LLjγ
µDµLLj + LRjγ

µDµLRj +QLjγ
µDµQLj +QRjγ

µDµQRj

)

,

(2.5)

the covariant derivative takes the following forms for each term

LLγ
µDµLL = LLγ

µ

(

∂µ −
igL
2
σ ·WLµ +

igB−L

2
Vµ

)

LL , (2.6)

LRγ
µDµLR = LRγ

µ

(

∂µ −
igR
2
σ ·WRµ +

igB−L

2
Vµ

)

LR , (2.7)

Q
α

Lγ
µDµQ

β
L = Q

α

Lγ
µ

[(

∂µ −
igL
2
σ ·WLµ −

igB−L

6
Vµ

)

δαβ −
igs
2
λαβ ·Gµ

]

Qβ
L, (2.8)

Q
α

Rγ
µDµQ

β
R = Q

α

Rγ
µ

[(

∂µ −
igR
2
σ ·WRµ −

igB−L

6
Vµ

)

δαβ −
igs
2
λαβ ·Gµ

]

Qβ
R, (2.9)

where the strong and weak interactions of fermions and bosons are encoded in these

kinetic terms.

• Scalar Lagrangian

The scalar part of the Lagrangian contains the kinetic terms and potential of Higgs

multiplets

LHiggs =
∑

i

Tr|Dµφi|2 − VHiggs , (2.10)

where the Higgs multiplets are φi = {Φ,∆L,∆R}. Gauge bosons mass terms are

encoded in the kinetic part of the above equation. The form of the covariant derivative

for each multiplet is explicitly given in Appendix A. The most general CP-invariant

and renormalizable Higgs potential is
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VHiggs = − µ2
1Tr(Φ

†Φ)− µ2
2[Tr(Φ̃ Φ†) + Tr(Φ̃†Φ)]− µ2

3[Tr(∆L∆
†
L) + Tr(∆R∆

†
R)]

+ λ1[Tr(ΦΦ†)]2 + λ2{[Tr(Φ̃Φ†)]2 + [Tr(Φ̃†Φ)]2}+ λ3[Tr(Φ̃ Φ†)Tr(Φ̃†Φ)]

+ λ4{Tr(ΦΦ†)[Tr(Φ̃ Φ†) + Tr(Φ̃†Φ)]}+ ρ1{[Tr(∆L∆
†
L)]

2 + [Tr(∆R∆
†
R)]

2}
+ ρ2[Tr(∆L∆L)Tr(∆

†
L∆

†
L) + Tr(∆R∆R)Tr(∆

†
R∆

†
R)] + ρ3[Tr(∆L∆

†
L)

× Tr(∆R∆
†
R)] + ρ4[Tr(∆L∆L)Tr(∆

†
R∆

†
R) + Tr(∆†

L∆
†
L)Tr(∆R∆R)]

+ α1{Tr(ΦΦ†)[Tr(∆L∆
†
L) + Tr(∆R∆

†
R)]}+ α2[Tr(Φ Φ̃†) + Tr(Φ†Φ̃)]

× [Tr(∆L∆
†
L) + Tr(∆R∆

†
R)] + α3[Tr(ΦΦ†∆L∆

†
L) + Tr(Φ†Φ∆R∆

†
R)]

+ β1[Tr(Φ∆RΦ
†∆†

L) + Tr(Φ†∆LΦ∆†
R)] + β2[Tr(Φ̃∆RΦ

†∆†
L)

+ Tr(Φ̃†∆LΦ∆†
R)] + β3[Tr(Φ∆RΦ̃

†∆†
L) + Tr(Φ†∆LΦ̃∆

†
R)] , (2.11)

where all the coefficients are real. Since our interest is not on the Higgs sector of the

model, we will give a general overview of the Higgs sector in section 2.4.

• Yukawa Lagrangian

This part of the Lagrangian contains Yukawa-type interactions of fermions with Higgs

multiplets

−LY ukawa =
∑

y ψLΦψR

−LY ukawa =

3
∑

i,j=1

(

yLij LLi ΦLRj + ỹLij LLi Φ̃LRj + yQij QLi ΦQRj + ỹQij QLi Φ̃QRj

+ y∆ij (L
T
Li iσ2∆L LLj + LT

Ri iσ2∆R LRj)
)

+ h.c. , (2.12)

here yLij, ỹ
L
ij, y

Q
ij , ỹ

Q
ij and y∆ij are 3 × 3 Yukawa matrices which again will determine

fermion masses and mixings. For the conjugated Higgs bidoublet, it is defined by

Φ̃ = σ2Φ
∗σ2 =

(

Φ0
2 −Φ+

2

−Φ−
1 Φ0

1

)

. (2.13)

2.2 Spontaeous Symmetry Breaking in the LRSM

The Lagrangian of the LRSM is completely invariant under SU(2)L × SU(2)R ×
U(1)B−L. Therefore all the fermions and gauge bosons are massless before the SSB.
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The symmetry breaking of the LRSM is spontaneously achieved in two steps and it

is similar to that of the SM, that is, it occurs via the VEV of scalar Higgs multiplets.

The symmetry breaking scheme is as follows

SU(2)L × SU(2)R × U(1)B−L
〈∆R〉−−−→ SU(2)L × U(1)Y . (2.14)

At this stage the right-handed scalar Higgs triplet gets a VEV and breaks the LR

symmetry to electroweak symmetry. Physical W±
Rµ and Z0

Rµ gauge bosons gain their

masses by interacting with right-handed Higgs triplet. The next step is the breaking

of the electroweak symmetry which is exactly the same as in the SM

SU(2)L × U(1)Y
〈Φ〉,〈∆L〉−−−−−→ U(1)EM , (2.15)

where bidoublet Higgs and (possibly but not necessarily) left-handed Higgs triplet

get VEV and break the electroweak symmetry to electromagnetism. Consequently

physical W±
Lµ and Z0

Lµ gauge bosons acquire their masses. The VEVs of Higgs scalars

are

〈Φ〉 = 1√
2

(

vu 0

0 vd

)

, 〈∆R〉 =
1√
2

(

0 0

vR 0

)

, 〈∆L〉 =
1√
2

(

0 0

vL 0

)

. (2.16)

The hierarchy between VEVs is like vR ≫ (vu, vd) ≫ vL. Since the electroweak

analysis lead to the constraint vL ≤ 10 GeV and the see-saw mechanism for small

left-handed neutrino masses requires vL ≤ a few MeV, we will work at the limit

vL → 0 in this thesis. The value
√

v2u + v2d = v ≡ 246 GeV is chosen to be compatible

with the SM.

2.2.1 Generation of Gauge Boson Masses in the LRSM

Gauge bosons masses arise from Higgs fields kinetic terms. At the first step, right-

handed Higgs triplet takes a VEV 〈∆R〉 = vR and breaks the LR symmetry as in

Equation (2.14). The corresponding Higgs kinetic terms are

Tr|Dµ∆R|2 = Tr[(Dµ∆R)
†(Dµ∆R)] (2.17)

=
g2Rv

2
R

2
W µ−

R W+
Rµ +

v2R
2
(gRW

µ3
R − gB−LV

µ)(gRW
3
Rµ − gB−LVµ) .

Neutral fields can be diagonalized by an orthogonal transformation and the compo-

sitions of the physical gauge bosons in terms of gauge eigenstates become

W±
Rµ =

W 1
Rµ ∓ iW 2

Rµ√
2

,

(

ZRµ

Bµ

)

=

(

cosϕ − sinϕ

sinϕ cosϕ

)(

W 3
Rµ

Vµ

)

, (2.18)
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where ϕ is a mixing angle which plays a similar role as the SM Weinberg angle (θW ),

cosϕ =
gR

√

g2R + g2B−L

, sinϕ =
gB−L

√

g2R + g2B−L

. (2.19)

At this stage of SU(2)R ×U(1)B−L breaking, the neutral gauge eigenstates W 3
Rµ and

Vµ mix to give a physical massless state which will be identified as the hypercharge

Bµ field and a physical massive ZRµ boson which will decouple from the further

breakdown process.

The second stage is controlled by the Higgs bidoublet getting a non zero VEV

〈Φ〉 6= 0 and possibly, but not necessarily, by the left triplet VEV 〈∆L〉 = vL. The

left-handed Higgs triplet (∆L) is only responsible for maintaining the discrete parity

symmetry [3] in the theory, whereas the Higgs bidoublet is needed to give masses to

leptons, quarks and SM gauge bosons. The kinetic terms for left triplet and bidoublet

Higgs fields are

Tr|Dµ∆L|2 = Tr[(Dµ∆L)
†(Dµ∆L)] (2.20)

=
g2Lv

2
L

2
W µ−

L W+
Lµ +

v2L
2
(gLW

µ3
L − gB−LV

µ)(gLW
3
Lµ − gB−LVµ)

and

Tr|DµΦ|2 = Tr[(DµΦ)†(DµΦ)]

=
v2

8
(gLW

µ3
L − gRW

µ3
R )(gLW

3
Lµ − gRW 3

Rµ)

+
v2

4
(g2LW

µ+
L W−

Lµ + g2RW
µ+
R W−

Rµ)

− gLgRvuvd
2

(W µ+
L W−

Rµ +W µ+
R W−

Lµ) (2.21)

and the compositions of physical gauge bosons at this stage are

W±
Lµ =

W 1
Lµ ∓ iW 2

Lµ√
2

,

(

ZLµ

Aµ

)

=

(

cos θW − sin θW

sin θW cos θW

)(

W 3
Lµ

Bµ

)

, (2.22)

where the Weinberg mixing angle is defined as

cos θW =
gL

√

g2L + g2Y
, sin θW =

gY
√

g2L + g2Y
, gY =

gR gB−L
√

g2R + g2B−L

, (2.23)

and the hypercharge coupling constant (gY ) is related to the coupling constants of

the unbroken LR symmetry (gR and gB−L).
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Now it is easy to extract the neutral and charged gauge bosons mass matrices

from those Higgs kinetic terms above. The mass squared matrix for neutral gauge

bosons in the basis {W 3
Lµ,W

3
Rµ, Vµ} is

M2
V 0 =

1

4















g2L(4v
2
L + v2) −gL gR v2 −4gL gB−L v

2
L

−gL gR v2 g2R (4v2R + v2) −4gR gB−L v
2
R

−4gL gB−L v
2
L −4gR gB−L v

2
R g2B−L (4v

2
R + 4v2L)















, (2.24)

and it is diagonalized by the rotation of gauge fields into physical eigenstates,















W 3
Lµ

W 3
Rµ

Vµ















=















cos θW 0 sin θW

− sinϕ sin θW cosϕ sinϕ cos θW

− cosϕ sin θW − sinϕ cosϕ cos θW





























ZLµ

ZRµ

Aµ















, (2.25)

or in terms of the electromagnetic coupling constant e and the gauge coupling con-

stants gL, gR, gB−L and gY



















W 3
Lµ

W 3
Rµ

Vµ



















=





















e

gY
0

e

gL
−egY
gL gR

gY
gB−L

e

gR

−egY
gL gB−L

−gY
gR

e

gB−L







































ZLµ

ZRµ

Aµ



















. (2.26)

The relations between mixing angles and coupling constants are given by

cosϕ =
gR

√

g2R + g2B−L

, sinϕ =
gB−L

√

g2R + g2B−L

,

cos θW =
gL

√

g2L + g2R sin2 ϕ
, sin θW =

gR sinϕ
√

g2L + g2R sin2 ϕ
,

tanϕ =
gY

√

g2R − g2Y
, (2.27)
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and some useful relations

gL =
e

sin θW
, gY =

e

cos θW
,

gR =
e

sinϕ cos θW
, gB−L =

e

cosϕ cos θW
, (2.28)

gB−L =
gY gR

√

g2R − g2Y
, e =

gL gY
√

g2L + g2Y
.

With the VEV hierarchy mentioned before, neutral gauge boson masses read

MZL
∼= v

√

g2L + g2Y
2

, MZR
∼= vR

√

g2R + g2B−L , MA = 0 . (2.29)

Since Φ transforms non-trivially under both SU(2)L and SU(2)R, it mixes theWR

andWL gauge bosons with the following mass-squared matrix in the basis {W±
Lµ,W

±
Rµ}

M2
V ± =





M2
L M2

LR

M2
LR M2

R



 =
1

4





g2L (2v
2
L + v2) −2gL gR vu vd

−2gL gR vu vd g2R (2v2R + v2)



 , (2.30)

where the two mass eigenstates W±
1 and W±

2 mix with an orthogonal rotation matrix

to construct physical W gauge bosons





W±
1µ

W±
2µ



 =





cos ξ e−iω sin ξ

− sin ξ e−iω cos ξ









W±
Lµ

W±
Rµ



 , (2.31)

here ξ is a mixing angle which has already some natural bounds on it (ξ < 10−3) [4]

and ω is a phase. The mixing angle and two mass eigenstates in the predefined VEV

hierarchy limit are defined by

tan 2ξ =
2M2

LR

M2
L −M2

R

=
4gRLvuvd

2g2RLv
2
R + (g2RL − 1)v2

, (2.32)

M2
W1

=
g2L
4

[

v2 cos2 ξ − 2gRLvuvd sin 2ξ + g2RL(2v
2
R + v2) sin2 ξ

]

,

M2
W2

=
g2L
4

[

v2 sin2 ξ + 2gRLvuvd sin 2ξ + g2RL(2v
2
R + v2) cos2 ξ

]

, (2.33)
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where we have introduced a new parameter gRL = gR/gL (for numerical purposes)

and the shorthand notation v2 = v2u+v
2
d. Notice that in the case of no mixing (ξ → 0)

the mass eigenstates will exactly be MW1
=MWL

and MW2
=MWR

.

MWL
=
vgL
2

, MWR
=
vRgR√

2
. (2.34)

The relation between the masses of W and Z bosons are

MWL

MZL

=
gL

√

g2L + g2Y
= cos θW ,

MWR

MZR

=
gR

√

2(g2R + g2B−L)
=

cosϕ√
2

. (2.35)

2.2.2 Generation of Fermion Masses in the LRSM

Similar to the SM, three generations of leptons and quarks acquire their masses

through Yukawa interactions of Higgs multiplets.

−LY ukawa =
∑

y ψLΦψR

−LY ukawa =
3
∑

i,j=1

(

LLi(y
L
ij Φ+ ỹLijΦ̃)LRj +QLi(y

Q
ij Φ + ỹQijQRjΦ̃)QRj

+ y∆ij (L
T
Li iσ2∆L LLj + LT

Ri iσ2∆R LRj)
)

+ h.c. . (2.36)

Φ and Φ̃ couple to both leptons and quarks, they generate Dirac masses for fermions,

and their Yukawa matrices are independent allowing nontrivial quark and lepton

mixings in the charged current interactions. ∆L and ∆R only couple to leptons

generating light Majorana masses to the left-handed neutrinos and heavy Majorana

masses to the right-handed neutrinos according to see-saw mechanism. The Yukawa

Lagrangian leads the following Dirac mass matrices for leptons and quarks

Mν =
1√
2
(yLijvu + ỹLijvd) , Me =

1√
2
(yLijvd + ỹLijvu) ,

Mu =
1√
2
(yQijvu + ỹQijvd) , Md =

1√
2
(yQijvd + ỹQijvu) , (2.37)

and the Majorana mass matrices for neutrinos

MνL =
1√
2
y∆ij vL , MνR =

1√
2
y∆ij vR . (2.38)

These mass matrices can be diagonalized just as in the SM by unitary transformations.
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2.3 Electroweak Interactions in the LRSM

Electroweak interactions of leptons and quarks arise from the kinetic part of the

Lagrangian as in the SM,

LKinetic = i
∑

ψ γµDµψ

LKinetic = i
3
∑

j=1

(

LLjγ
µDµLLj + LRjγ

µDµLRj +QLjγ
µDµQLj +QRjγ

µDµQRj

)

.

(2.39)

Again considering only the first generation of leptons and quarks, Equations (2.6-2.9)

lead us to the following electroweak interaction terms

Ll,q
Kinetic = ( ν̄e ē )L

γµ

2





gLW
3
Lµ − gB−LVµ

√
2gLW

+
Lµ

√
2gLW

−
Lµ −gLW 3

Lµ − gB−LVµ









νe

e





L

+ ( ν̄e ē )R
γµ

2





gRW
3
Rµ − gB−LVµ

√
2gRW

+
Rµ

√
2gRW

−
Rµ −gRW 3

Rµ − gB−LVµ









νe

e





R

+ ( ū d̄ )L
γµ

2







gLW
3
Lµ +

gB−L

3
Vµ

√
2gLW

+
Lµ

√
2gLW

−
Lµ −gLW 3

Lµ +
gB−L

3
Vµ











u

d





L

+ ( ū d̄ )R
γµ

2







gRW
3
Rµ +

gB−L

3
Vµ

√
2gRW

+
Rµ

√
2gRW

−
Rµ −gRW 3

Rµ +
gB−L

3
Vµ











u

d





R

.

(2.40)

Substituting the physical eigenstates for the neutral gauge bosons from Equation

(2.25) and Equation (2.26), we can simply extract all three electroweak interactions.

2.3.1 Electromagnetic Interactions in the LRSM

Massless photons are the mediators of electromagnetic interactions in LRSM as well.

Again they only couple to electrically charged fermions with their electric charges.

From Equation (2.40) we can read the electromagnetic interactions of fermions
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LEM =

[

ν̄e
γµ

2
(gL

e

gL
− gB−L

e

gB−L

)PL νe + ē
γµ

2
(−gL

e

gL
− gB−L

e

gB−L

)PL e

+ ū
γµ

2
(gL

e

gL
+
gB−L

3

e

gB−L

)PL u+ d̄
γµ

2
(−gL

e

gL
+
gB−L

3

e

gB−L

)PL d

+ ν̄e
γµ

2
(gR

e

gR
− gB−L

e

gB−L
)PR νe + ē

γµ

2
(−gR

e

gR
− gB−L

e

gB−L
)PR e

+ ū
γµ

2
(gR

e

gR
+
gB−L

3

e

gB−L
)PR u+ d̄

γµ

2
(−gR

e

gR
+
gB−L

3

e

gB−L
)PR d

]

Aµ

LEM =

[

ν̄e γ
µ(0e)PL νe + ē γµ(−e)PL e+ ū γµ(

2e

3
)PL u+ d̄ γµ(−e

3
)PL d

+ ν̄e γ
µ(0e)PR νe + ē γµ(−e)PR e + ū γµ(

2e

3
)PR u+ d̄ γµ(−e

3
)PR d

]

Aµ .

(2.41)

The compact form of electromagnetic interactions is simply written

LEM = eAµJ
µ
A , (2.42)

where Jµ
A is the electromagnetic current which covers the three flavors of fermions

Jµ
A =

∑

i

Qif̄iγ
µfi

Jµ
A = Qe ē γµe +Qu ū γµu+Qd d̄ γµd , (2.43)

As shown in Figure 6, the Feynman rule of electromagnetic interactions in the LRSM

is exactly the same with that of the SM.

Aµ

f

f̄

eQfγµ .

Figure 6: Feynman diagram of electromagnetic interactions in the LRSM.

2.3.2 Neutral Current Interactions in the LRSM

Neutral currents in the LRSM are mediated by ZL and ZR gauge bosons. Mixings of

neutral gauge eigenstates ensure that both ZL and ZR are involved in left and right

neutral currents. Following Equation (2.40)
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LNC =

[

ν̄e
γµ

2
(gL cos θW + gB−L cosϕ sin θW )PL νe

+ ē
γµ

2
(−gL cos θW + gB−L cosϕ sin θW )PL e

+ ū
γµ

2
(gL cos θW −

gB−L

3
cosϕ sin θW )PL u

+ d̄
γµ

2
(−gL cos θW −

gB−L

3
cosϕ sin θW )PL d

+ ν̄e
γµ

2
(−gR sinϕ sin θW + gB−L cosϕ sin θW )PR νe

+ ē
γµ

2
(gR sinϕ sin θW + gB−L cosϕ sin θW )PR e

+ ū
γµ

2
(−gR sinϕ sin θW −

gB−L

3
cosϕ sin θW )PR u

+ d̄
γµ

2
(gR sinϕ sin θW −

gB−L

3
cosϕ sin θW )PR d

]

ZLµ

+

[

ν̄e
γµ

2
(gB−L sinϕ)PL νe + ē

γµ

2
(gB−L sinϕ)PL e

+ ū
γµ

2
(−gB−L

3
sinϕ)PL u+ d̄

γµ

2
(−gB−L

3
sinϕ)PL d

+ ν̄e
γµ

2
(gR cosϕ+ gB−L sinϕ)PR νe + ē

γµ

2
(−gR cosϕ+ gB−L sinϕ)PR e

+ ū
γµ

2
(gR cosϕ− gB−L

3
sinϕ)PR u+ d̄

γµ

2
(−gR cosϕ− gB−L

3
sinϕ)PR d

]

ZRµ

(2.44)

LNC =

[

ν̄e γ
µ gL
cos θW

(
1

2
)PL νe + ē γµ

gL
cos θW

(−1
2
+ sin2 θW )PL e

+ ū γµ
gL

cos θW
(
1

2
− 2

3
sin2 θW )PL u+ d̄ γµ

gL
cos θW

(−1
2
+

1

3
sin2 θW )PL d

+ ν̄e γ
µ gL
cos θW

(0)PR νe + ēγµ
gL

cos θW
(sin2 θW )PR e

+ ū γµ
gL

cos θW
(−2

3
sin2 θW )PR u+ d̄ γµ

gL
cos θW

(
1

3
sin2 θW )PR d

]

ZLµ

+

[

ν̄e γ
µ gY
tanϕ

(
tan2 ϕ

2
)PL νe + ē γµ

gY
tanϕ

(
tan2 ϕ

2
)PL e

+ ū γµ
gY

tanϕ
(−tan

2 ϕ

6
)PL u+ d̄ γµ

gY
tanϕ

(−tan
2 ϕ

6
)PL d

+ ν̄e γ
µ gY
tanϕ

(
1

2
+

tan2 ϕ

2
)PR νe + ē γµ

gY
tanϕ

(−1
2
+

tan2 ϕ

2
)PR e

+ ū γµ
gY

tanϕ
(
1

2
− tan2 ϕ

6
)PR u+ d̄ γµ

gY
tanϕ

(−1
2
− tan2 ϕ

6
)PR d

]

ZRµ , (2.45)
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this expression can be summarized in terms of neutral currents

LNC =
gL

cos θW
ZLµJ

µ
ZL

+
gY

tanϕ
ZRµJ

µ
ZR

, (2.46)

where Jµ
ZL

and Jµ
ZR

are left and right neutral currents, respectively, covering three

generation of fermions and they are defined by

Jµ
ZL

=
∑

i

(T i
LPL −Qi sin2 θW )f̄iγ

µfi ,

Jµ
ZR

=
∑

i

(T i
RPR −

Y i
B−L

2
tan2 ϕ)f̄iγ

µfi . (2.47)

TL, TR are left and right weak isospin components, Q is the electric charge, and YB−L

the B − L number of fermion fields. Feynman diagrams of left and right neutral

currents in LRSM is given in Figure 7.

ZLµ

f

f̄

gL
cos θW

γµ(T f
LPL −Qf sin2 θW ) ,

ZRµ

f

f̄

gY
tanϕ

γµ(T f
RPR −

Y f
B−L

2
tan2 ϕ) .

Figure 7: Feynman diagrams of neutral current interactions in the LRSM.

2.3.3 Charged Current Interactions in the LRSM

LCC =
gL√
2
(W−

LµJ
µ
WL

+W+
LµJ

µ†
WL

) +
gR√
2
(W−

RµJ
µ
WR

+W+
RµJ

µ†
WR

) , (2.48)

where Jµ
WL

,Jµ
WR

are left and right charged currents and Jµ†
WL

,Jµ†
WR

are their conjugates.

While neutral gauge bosons ZL,R couple to both left and right handed components of

fermions, the charged gauge boson WL(R) only couples to left(right) handed compo-

nents of fermions.
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Jµ
WL

=
∑

i,j

(ēLjγ
µνLiU

L†
ij + d̄Ljγ

µuLiV
L†
ij ) ,

Jµ†
WL

=
∑

i,j

(ν̄Liγ
µeLjU

L
ij + ūLiγ

µdLjV
L
ij ) ,

Jµ
WR

=
∑

i,j

(ēRjγ
µνRiU

R†
ij + d̄Rjγ

µuRiV
R†
ij ) ,

Jµ†
WR

=
∑

i,j

(ν̄Riγ
µeRjU

R
ij + ūRiγ

µdRjV
R
ij ) . (2.49)

In the context of the LRSM both left and right-handed neutrinos can have masses, and

they are also subject to mix under proper circumstances. Therefore, UL,R represent

corresponding left and right lepton mixing matrices as well as V L,R in the quark sector.

Since in this thesis we mainly focus on the effects of WR gauge boson in the quark

sector, we leave the lepton mixing matrices generic without further consideration. We

give the Feynman diagram of leptons charged current interactions in Figure 8.

W−
L(R)µ

νi

ēj

gL(R)√
2
γµPL(R)U

L(R)†
ij .

Figure 8: Feynman diagrams of leptons charged current interactions in the LRSM.

where UL and UR are in generic form

UL,R =











Uνee Uνeµ Uνeτ

Uνµe Uνµµ Uνµτ

Uντ e Uντµ Uντ τ











L,R

. (2.50)

In the quark sector, the WL gauge boson mixes left handed quarks in the same

way as in the SM with the same CKM quark mixing matrix (V L
CKM). However, the

mixing of right handed quarks is left arbitrary in the most general form (V R
CKM).

In this thesis we will adopt a specific choice for V R
CKM that is introduced in [5] it

is constructed in such a way that it is constrained by some well-known low-energy
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phenomenologies. Feynman diagrams of quarks charged current interactions is given

in Figure 9.

W−
L(R)µ

ui

d̄j
gL(R)√

2
γµPL(R)V

L(R)†
ij .

Figure 9: Feynman diagrams of quarks charged current interactions in the LRSM.

2.3.4 Right CKM Quark Mixing Matrix

There are several left-right scenarios which appear in the literature for the right-

handed CKM matrix;

• In manifest LR symmetric models (MLRSM) [6], the CP violation is generated

by complex Yukawa couplings, while the VEVs of the Higgs fields remain real.

This implies the same mixing for right and left-handed quarks, V R
CKM = V L

CKM ,

and equal gauge couplings for SU(2)L and SU(2)R, gR = gL.

• In pseudo-manifest LR symmetry, both CP and P symmetries are spontaneously

broken [7], such that the Yukawa couplings are real. In this case the left and

right handed quark mixings are related through V R
CKM = V L⋆

CKMK, with K a

diagonal phase matrix. Here as well, gR = gL.

• In asymmetric LR symmetry (ALRM), left-right symmetry is assumed to be

fundamental, superseding the Higgs, Yukawa, or fermion structure [5]. Here

arbitrary mixing between the second and third generations, or between the

first and third generations are allowed (within unitarity constraints). To sim-

plify the notation, we drop the CKM subscript and, following [5], denote the

parametrizations as (UA) and (UB), where

UA =









1 0 0

0 cosα ± sinα

0 sinα ∓ cosα









, UB =









0 1 0

cosα 0 ± sinα

sinα 0 ∓ cosα









, (2.51)

with α an arbitrary angle (−π/2 ≤ α ≤ π/2). In parametrization UA, depending

on the values of α, the dominant coupling could be Uts while in UB, the dominant
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coupling could be Utd. The (A) and (B) parametrizations are chosen to allow

relaxing the mass limit on WR while obeying the restrictions on ∆mK without

fine tuning.

The form of the CKM matrix in the right-handed quark sector affects low-energy

phenomenology, in particular processes with flavor violation, and thus restricts the

mass MWR
and the mixing angle ξ. These have been analyzed recently in [8]. (For an

alternative analysis, concentrating on the CP violation properties of the model, see

Reference [9].)

2.4 Higgs Sector in the LRSM

The Higgs sector of the LRSM consists of one bidoublet (Φ) and two triplet (∆L,R)

complex scalar Higgs fields. The right triplet (∆R) is responsible for the 1st stage of

symmetry breaking

SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y ,

and the bidoublet (Φ) accomplishes the 2nd stage

SU(2)L × U(1)Y → U(1)EM ,

whereas the left triplet (∆L) is only present to maintain the discrete parity symmetry

in the theory.

Φ =





Φ0
1 Φ+

1

Φ−
2 Φ0

2



 , ∆L =





∆+
√
2

∆++

∆0 −∆+
√
2





L

, ∆R =





∆+
√
2

∆++

∆0 −∆+
√
2





R

. (2.52)

The formation of triplet fields in the form of bidoublets is explained in Appendix A.

Neutral component of Higgs fields are expanded around the vacuum as

Φ0
1 =

vu + h01 + iϕ0
1√

2
, Φ0

2 =
vd + h02 + iϕ0

2√
2

,

∆0
L =

vL + h0L + iϕ0
L√

2
, ∆0

R =
vR + h0R + iϕ0

R√
2

. (2.53)

There are four neutral scalar, four neutral pseudo scalar, four singly charged scalar

and two doubly charged scalar Higgs fields in the theory. They mix appropriately

with unitary transformations to construct the physical Higgs spectrum of the LRSM.
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• Neutral Scalars

(S0
i )

T = (h01 h02 h0L h0R) ,

(H0
i )

T = (H0
1 H0

2 H0
3 H0

4 ) . (2.54)

• Neutral Pseudo Scalars

(P 0
i )

T = (ϕ0
1 ϕ0

2 ϕ0
L ϕ0

R) ,

(A0
i )

T = (A0
1 A0

2 G0
1 G0

2) . (2.55)

• Singly Charged Scalars

(C+
i )

T = (Φ+
1 Φ−

2
∗

∆+
L ∆+

R) ,

(H+
i )

T = (H+
1 H+

2 G+
1 G+

2 ) . (2.56)

• Doubly Charged Scalars

(D++
i )T = (∆++

L ∆++
R ) ,

(H++
i )T = (H++

1 H++
2 ) . (2.57)

Gauge and physical eigenstates are related with unitary transformations which satisfy

unitarity relations

H0
i = (ZS)ij S

0
j , (ZS)(ZS)

† =

4
∑

i,j,k=1

[(ZS)ik(ZS)
∗
jk] = δij ,

A0
i = (ZP )ij P

0
j , (ZP )(ZP )

† =

4
∑

i,j,k=1

[(ZP )ik(ZP )
∗
jk] = δij ,

H+
i = (ZC)ij C

+
j , (ZC)(ZC)

† =

4
∑

i,j,k=1

[(ZC)ik(ZC)
∗
jk] = δij ,

H++
i = (ZD)ij D

++
j , (ZD)(ZD)

† =

2
∑

i,j,k=1

[(ZD)ik(ZD)
∗
jk] = δij . (2.58)

These rotation matrices (ZS, ZP , ZC and ZD) are basically diagonalizing matrices of

corresponding Higgs mass matrices which are constructed from the minimization of

the Higgs potential. We will not give further details of rotation matrices and the

minimization of the potential since they are out of the scope of this thesis.
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Chapter 3

B DECAYS IN THE LRSM

Within the next decade, significant progress is expected in experimental high energy

physics. Most of the hope rests on the LHC, expected to probe the SM of electroweak

interactions and models beyond it. The experimental explorations would complement

efforts made by theorists over the last decades. The common wisdom held that while

the SM left some fundamental questions unanswered (such as stability of the Higgs

mass, the origin of CP violation, the baryon asymmetry, or the presence of dark matter

in the universe), it was experimentally sound. Several precision measurements have

recently questioned the latter. First and foremost, there was evidence for the existence

of neutrino masses and mixing, inconsistent with the SM predictions, where neutrinos

are assumed massless. Some of recent experimental results, which might prove (at

least) difficult to explain within the SM, and provide some hints of deviations from

its predictions come mostly from B physics. The values of the angle φ1 measured in

some penguin process b→ sqq̄ and the precisely measured value in B → J/ψK0
S differ

by two to three standard deviations (B0 → π0π0K0
S, B0 → K+K−K0, [10–12]) and

may suggest the existence of a new CP phase in this penguin-dominated process; the

lepton forward-backward asymmetry in B → K∗l+l− is measured to be around two

standard deviations higher than the SM prediction [13]; direct CP asymmetries in

B0 → K+π− and B+ → K+π0 differ significantly from each other, although naively

one would expect them to be the same [14]; the branching fraction for B+ → τν is

up to two standard deviations higher than expected, depending on the theoretical

input chosen [10,15]; in purely leptonic D+
s → µν and D+

s → τν decays the deviation

of the branching ratios is even larger [16, 17] if one uses the recent lattice QCD
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calculations of the meson decay constant; the measured production cross-section for

cc̄ states is higher than the calculated one [18]. A careful analysis combining all the

experimental data on Bs mixing [19] finds that the phase of the mixing amplitude

deviates by about 3σ from the SM prediction (or slightly less, if one does not use

Gaussian error distributions) [20, 21].

Additionally, the CDF and DØ experiments have determined a sizable forward-

backward asymmetry in top anti-top events, in which one top decays semileptonically,

a measurement that is more than a 2σ deviation from the SM prediction [22].

Taken together, these indicate that flavor and CP physics are highly non-trivial

and that they may be governed by a new paradigm beyond the single CKM matrix

of the SM. Possibilities for non-SM flavor violation are present in the b → d, s non-

leptonic decays. This justifies looking at rare B decays in new physics scenarios.

Perhaps the simplest such scenario of models beyond the SM is the left-right

symmetric model [2, 3, 6, 23–25]. Motivated originally by the desire to understand

parity violation in weak interactions [6, 26], it gathered some more support due to

its simplicity. It appears to be a natural extension of the SM, as it treats both left-

and right-handed fermions as doublets. Additionally the model gauges the B − L

quantum number, left ungauged in the SM, and it provides an elegant explanation of

neutrino masses through the see-saw mechanism [27–38].

In this thesis we are going to focus on a specific scenario proposed by Langacker

and Sankar [5] in which the right CKM quark mixing matrix (RCKM) is formulated

as in Equation (2.51). The authors assume the LR symmetry to be fundamental,

superseding the Higgs, Yukawa or fermion structure, and analyze constraints on the

charged gauge boson masses and mixings including a variety of constraints, coming

from the Kaon system, the B0
d − B̄0

d mixing, b → Xνee, universality, muon decays

and neutrinoless double beta decays. They consider several neutrino masses scenarios

(Dirac or Majorana, light, intermediate or heavy) and allow for gR 6= gL as well as

V R
CKM 6= V L

CKM . The form chosen for the V R
CKM is not arbitrary, nor is it the most

general form for a 3 × 3 mixing matrix one could write down. The choice for right-

handed quark mixings is particularly attractive, as it is motivated by the K0 − K̄0

mass difference, which is strongly affected by the right-handed quark mixing matrix,

and it depends on one parameter only, making it highly predictive. Their requirement
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is that MWR
be as general as possible, and the form of V R

CKM not be excessively fine-

tuned. An additional reason to revisit this parametrization is that a recent analysis

of CP violation in Pati-Salam type LR models [39] concludes that manifest/pseudo-

manifest left-right models are disfavored, unless they include an unnaturally large CP

violating phase.

The aim of this chapter is to investigate the consequences of the RCKM parametriza-

tions in ALRM on b → d, s transitions, concentrating at first on the CP-conserving,

flavor violating processes b → sγ (∆B = 1) and B0
d,s − B̄0

d,s mixing (∆B = 2). Al-

though the experimental data for these agrees with the predictions of the SM, we use

the analysis to establish consistency of the model parameters.

Our motivation is two-fold. First, flavor and CP violation in B decays have re-

ceived a lot of theoretical and experimental interest recently, and careful analysis,

as outlined before, show deviations from the SM predictions. Agreement with the

branching ratio for b → sγ is the cornerstone of any model beyond the SM. LHCb

will uncover many new exciting results in B physics and may rule out certain models,

as might a new (under discussion) Super KEKB factory. Second, strong flavor vio-

lation (which could come from the right-handed quarks in ALRM) has implications

for new particles and interactions at the LHC, notable for new charged gauge bosons,

which have received less attention than their neutral counterparts.

The analysis presented here follows several previous analysis of B decays in LR

models [40–44]. Although many discussions of the manifest or pseudo-manifest model

exist, very few are available for more general LR models. Our numerical analysis is

more detailed and comprehensive than in previous works and clearly separates regions

for all parameters of LR models that are ruled out by existing measurements. As

we were unable to find equally extensive discussions of manifest or pseudo-manifest

LRSM, we include a comparison with these models as well, and give the relevant

values in the SM. Additionally, we have performed the analysis using well-established

publicly available software, which allows exact numerical evaluations without using

additional assumptions. As we had to modify the software to include evaluation of

the box diagrams, we explain the modifications in Appendix D and give the relevant

formulas.

In the ALRM, the LR symmetry of the Lagrangian is seen as more fundamental

than the Higgs, Yukawa or fermion structure. The left- and right-handed quark

40



mixing are independent of each other and are fixed by experimental constraints from

low energy physics. The mixing matrix for left-handed quarks is the known CKM

matrix, while for right-handed quarks the mixing matrix is chosen to satisfy the Kaon

(K0− K̄0 mixing, ǫK) meson constraints. This fixes the mixing between the first two

families (to be either minimal or maximal), allowing for arbitrary mixing between

the second and third, or the first and third families, parametrized as UA and UB as

in Equation (2.51). The consequences of the ALRM have received less attention [5],

and we propose to investigate them here in b→ s, d transitions.

LR models are best constrained at low energies by flavor-changing mixings and

decays as well as by the CP violating observables. In what follows, we will work with

the UA and UB parametrizations (denoted simply by U) and compare our results

with the MLRSM where possible. The restrictions on these parametrizations in the

KL − KS mixing have been thoroughly examined [5, 45–51], and the experimental

limits imply
(

gRMW1

gLMW2

)2

≤ 0.075, or
gL
gR
MW2

≥ 300 GeV ,

with MW1
,MW2

the masses of the charged gauge bosons in Equation (2.33). These

restrictions still hold, as the experimental data on Kaon physics did not change sig-

nificantly over the years. However, we need to carefully re-examine the constraints

on the model parameters coming from B physics, in light of the new measurements.

We proceed first with the analysis of the ∆B = 1 flavor-changing decays, and follow

in the next subsection with ∆B = 2 processes. Both ∆B = 1 and ∆B = 2 processes

are generated by the same Lagrangian, which is responsible for flavor changing.

The charged current interactions for general B decays in the ’t Hooft-Feynman

gauge are,

LW
CC = − 1√

2
ūiγ

µ
[

gLcξVijPL + gRe
−iωsξUijPR

]

djW
+
1µ

+
1√
2
ūiγ

µ
[

gLe
iωsξVijPL − gRcξUijPR

]

djW
+
2µ , (3.1)

for the W1,2 bosons and for the charged Higgs fields

LH
CC = − sin 2β

cos 2β
NH ūi

[

Mui
VijPL −MdjVijPR

]

djH
+

− 1

cos 2β
NH ūi

[

Mui
UijPR −MdjUijPL

]

djH
+ , (3.2)
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with

NH =

[

v2u + v2d +
(v2u − v2d)2

2v2R

]− 1

2

, (3.3)

and tan β =
vu
vd

. Note that there is a neutral Higgs boson which can violate flavor.

This Higgs boson must be heavy to obey Flavor-Changing Neutral Currents (FCNC)

bounds (of order 30−50 TeV or heavier [52], so we will a-priori neglect its contribution

here). Finally the interactions corresponding to the charged Goldstone bosons G1,2

are

LG
CC = − 1√

2MW1

ūi

[

(gLcξMui
Vij − gRsξMdiUij)PL

− (gLcξMdiVij − gRsξMui
Uij)PR

]

djG
+
1

+
1√

2MW2

ūi

[

(gLsξMui
Vij + gRcξMdiUij)PL

− (gLsξMdiVij + gRcξMui
Uij)PR

]

djG
+
2 . (3.4)

In all the above formulas ui(di) denotes up(down)-type quarks, Mui(di) are their re-

spective masses, and PL,R = (1 ∓ γ5)/2 are the left and right handed projection

operators.

3.1 b→ sγ Decay

The inclusive rate B → Xsγ has been measured precisely to 10% [53,54] BRExp(B →
Xsγ) = (3.55± 0.23)× 10−4. The rate has been calculated in SM to O(α2

s) with the

remaining uncertainty 7% [55] BRSM(B → Xsγ) = (3.15 ± 0.23) × 10−4. While the

difference is not too large, the window between the measurement and the SM can be

used to severely constrain new physics.

The decay b → sγ has been considered by numerous authors in the context of

manifest or pseudo-manifest left-right models [40–44]. Basically, this is a one-loop

flavor changing neutral current process, proceeding through an electromagnetic pen-

guin diagram, with up-type quarks and charged bosons in the loop. The low-energy

effective Hamiltonian for b→ sγ in the operator product expansion (OPE) is written

as

H(∆B=1)
eff =

4GF√
2

[(

VjbV
⋆
js

)

C7
LO

7
L + g2RL

(

UjbU
⋆
js

)

C7
RO

7
R

]

, (3.5)
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where the operators are

O7
L =

eMb

16π2
(s̄ σµνPR b) Fµν , O7

R =
eMb

16π2
(s̄ σµνPL b) Fµν , (3.6)

with Fµν the electromagnetic field tensor. All relevant one-loop Feynman diagrams

are given in Figure 10.
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Figure 10: Triangle and self-energy diagrams contributing to the b→ sγ transition.

We used FeynArts [56, 57] for generating the amplitudes, then FormCalc and

LoopTools [58,59] packages to evaluate the loop contributions C7
L and C7

R numerically.

The dominant contribution to Γ(b → s γ) comes from the top-quark in the loop,

so below we give the analytical expressions for the top-quark contribution. The

coefficients of pure left, pure right, and LR interference are encoded in C7
L and C7

R ;

43



C7
L = c2ξASM(x1) + s2ξASM(x2) + s2ξ gRL

Mt

Mb

Utb

Vtb

2
∑

i=1

ALR(xi)

+
s2β
c22β

Mt

Mb

Utb

Vtb
A1

H+(y) + t22βA
2
H+(y) , (3.7)

C7
R = s2ξg

2
RLARH(x1) + c2ξg

2
RLARH(x2) + s2ξ gRL

Mt

Mb

Vtb
Utb

2
∑

i=1

ALR(xi)

+
s2β
c22β

Mt

Mb

Vtb
Utb

A1
H+(y) +

1

c22β
A2

H+(y) , (3.8)

where the arguments of the functions are xi = (Mt/MWi
)2 , y = (Mt/MH±)2. The

loop integrals ASM , ARH , ALR and A1,2
H+ are calculated numerically in terms of scalar

and tensor coefficient functions. The QCD corrections arising from the evolution of

the effective Hamiltonian down to µ =Mb scale are

C
7(eff)
L = η−16/23

[

C7
L +

3

10
X(η10/23 − 1) +

3

28
X(η28/23 − 1)

]

,

C
7(eff)
R = η−16/23C7

R , (3.9)

with X = 208
81

and η = αs(Mb)
αs(MW1

)
≃ 1.8. In the calculation of the branching ratio we

have followed the traditional method of scaling the decay width Γ(b → sγ) with the

semileptonic decay width Γ(b→ c e ν̄) [60]

BR(b→ sγ) =
Γ(b→ sγ)

Γ(b→ c e ν̄)
× BR(b→ c e ν̄) , (3.10)

we calculated the width Γ(b → c e ν̄) in our model and for the branching ratio we

used the well-established value BR(b→ c e ν̄) ≃ 11% [17].

In Figure 11 we present the dependence of the branching ratio of b → sγ in a

contour plot in MW2
− sinα plane, with Uts = sinα in the V R

CKM = UA parametriza-

tion. (Note that in V R
CKM = UB the contribution to the right-handed quark mixings

to b→ s processes is zero). Fixing the mass of the charged Higgs boson toMH± = 10

TeV1, we consider various tanβ and gRL values. While we allow the ratio of gRL

to vary, it is not allowed to have arbitrary values. As SU(2)R × U(1)B−L breaks to

U(1)Y , the coupling constants of the three groups gR, gB−L and gY are related (see

Equation (2.28)), requiring gRL > tan θW . For coupling ratios outside this inter-

val, the ZRf f̄ coupling becomes non-perturbative. We restrict the branching ratio

1As required by the B0 − B̄0 mixing, see discussion in the next subsection.
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to be within the experimentally allowed values in the 1σ range, and the allowed

regions are shaded in yellow, with upper values in red. The lower bound value is

always allowed by the parameter space chosen. As the SM value in our calculation

is BR(b → sγ) = 3.2× 10−4, the region in which sinα = 0, which corresponds to no

contribution from the right-handed side, is always included in the allowed parameter

space.
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Figure 11: Contour plot of the MW2
vs sinα constraint in the UA parametrization,

from b→ sγ. We fix the BR(b→ sγ) to be in the interval (3.20− 3.85)× 10−4, and

vary gRL and tan β, as indicated in the panels. We takeMH± = 10 TeV. Black-shaded

regions represent areas excluded by the WR−WL mixing angle ξ ≤ 3×10−3. Regions

highlighted in yellow represent allowed parameter spaces.
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The gRL value is kept constant along the rows of the graphs in Figure 11. These

values are gRL = 0.6, 0.8 and 1 for the first, second and third row, respectively. We

vary tanβ between 10 and 60 among the panels. Increasing tanβ for a fixed gRL value

widens the allowed parameter space for Uts = sinα. The reason is that, for tan β ≥ 5,

the dominant Higgs contribution is proportional to 1/ cos2 2β. This contribution

increases with tan β and thus requires a larger compensating W2 contribution, thus

enlarging the parameter space allowed to satisfy the experimental bounds. Taking

tan β → 0 and MW2
→∞ does not reduce the model to the SM for the chosen Higgs

mass; one would also need to take MH± → ∞ limit to recover the SM. Going down

the plots along the columns of Figure 11, we investigate the effects of varying the

ratio gRL. For low tan β, the parameter regions available for Uts = sinα are reduced

because one effectively increases the contribution ofW2 for a fixed Higgs contribution;

while increasing tanβ increases the Higgs contribution, opening more parameter space

for Uts = sinα. The region shaded is excluded by the restriction on the WR −WL

mixing angle, ξ < 3× 10−3. In conclusion, Figure 11 shows that large values of tanβ

insure that a large parameter space for V R
ts = sinα is allowed as MW2

gets larger;

while smaller values of gRL allow larger flavor violation in the right-handed sector,

even for low W2 masses.

For comparison, we investigate the same dependence in the MLRSM in Figure

12. There is not sinα dependence there, as the flavor violation in the right-handed

sector is fixed; and so is gR = gL. As in our model, large tan β allows for a larger

parameter space. The main difference lies in the fact that in MLRSM V R
ts ∼ O(10−2)

while in our model, Uts = sinα is allowed to vary and be large. Thus in the MLRSM

the contribution for W2 is relatively smaller, allowing for contributions from lighter

charged Higgs. The W2 mass is required to be at least 1 TeV for tanβ = 10, while

for tan β = 60, the W2 mass is allowed to be as light as 500 GeV. Higgs masses of 1

TeV are ruled out for MW2
< 2 TeV for tan β = 10, but not for tanβ = 60. In both

cases, the Higgs contribution decouples for MH± ≥ 5 TeV, while no such statement

can be made in our model when both Uts and gRL are allowed to vary.
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Figure 12: BR(b→ sγ) as a function of the W2 mass in the MLRSM, V R
CKM = V L

CKM .

We take tan β = 10 in the left panel and tanβ = 60 in the right panel. The curves

in red, green and blue correspond to, respectively MH± = 1, 5 and 50 TeV. Yellow

highlighted regions represent allowed spaces; the black shaded region is excluded by

the WL −WR mixing angle.

In Figure 13 we investigate the dependence of the branching ratio of b → sγ on

the H± mass and tanβ in the UA parametrization. We fix the mass MW2
= 500

GeV (as we are interested in the consequences of a light gauge boson) and vary

Uts = sinα and gRL. We again restrict the branching ratio to be within 1σ range and

give contour plots for the allowed regions (highlighted in yellow, with upper values

in red; as before, lower values are always allowed in the chosen parameter space).

For each of the rows of plots in Figure 13 we keep gRL constant and choose values

for Uts = sinα. For fixed ratios of gRL, increasing sinα shifts the allowed parameter

space to higher values of tan β, and this result is independent of MH± . The result

is in complete agreement with our observations on the tanβ influence in Figure 11,

where the Higgs contribution was needed to compensate for a large flavor mixing in

the right-handed sector. Going down the columns of Figure 13, we analyze the effects

of varying gRL. The second row shows that for larger gRL ratio the allowed parameter

regions are moving towards larger tan β. For the last row, where gRL = 1, the allowed

region of the parameter space is extremely sensitive to sinα, and consistent with the

data only for very small values for Uts = sinα. Even for relatively small right-handed

flavor violation, sinα = 0.25, most of the region of the parameter space is ruled
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out. Here the contribution from the right-handed gauge boson is large, large flavor

violation requires a very large Higgs term contribution, and even large values of tanβ

are insufficient to generate compensating terms. Here again, the region shaded is

excluded by the restriction of the WR −WL mixing angle ξ < 3 × 10−3; this region

depends only on the ratio gRL.
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Figure 13: Contour plot of the MH± vs tan β constraint in the UA parametrization,

for b→ sγ. We fix the branching ratio to be in the interval (3.20− 3.85)× 10−4, and

vary gRL and sinα, as indicated in the panels. We take MW2
= 500 GeV. Shaded

regions represent areas excluded by the WR−WL mixing angle ξ ≤ 3×10−3. Regions

highlighted in yellow represent allowed parameter spaces.
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In conclusion, we see from Figure 13 that larger values of tan β and smaller values

of gRL satisfy the b→ sγ branching ratio constraints for a wide parameter space for

MH± , while low values for Uts = sinα are required for low W2 masses.

Following previous studies, we do not analyze b → dγ transitions. Finding new

physics effects in the b → d may be easier than in the b → s one because the SM

amplitude is suppressed in the b → d transition. In the SM, b→ sγ and b→ dγ are

both described by a common Wilson coefficient, C7
L. This is also true in any model

within a minimal flavor violating framework in which the flavor-changing interactions

are determined by the left-CKM angles. However,the experimental measurement for

b→ dγ is not very precise [61–63] BRExp(b→ dγ) =
(

1.63+0.30
−0.24 ± 0.16

)

× 10−6. Since

the SM predictions for exclusive modes such as B → ργ or B → ωγ [61–63] suffer

from large model-dependent uncertainties, it is necessary to measure the inclusive

rate for B → Xdγ. The largest experimental challenge is the huge background due

to b → sγ. The only possible way is probably to sum up exclusive b → dγ modes,

perhaps from Belle and KEKB.

3.2 B0
d,s − B̄0

d,s Mixing

The ∆B = 2 flavor-changing decays have been studied in the context of minimal left-

right symmetric models [64–68]. The mass difference between B0
q and B̄0

q is defined

by

∆mq =

∣

∣〈B0
q |H∆B=2

eff |B̄0
q 〉
∣

∣

mBq

. (3.11)

The effective Hamiltonian H
(∆B=2)
eff for the B0− B̄0 transition is obtained by integrat-

ing out the internal loop in the box diagrams responsible for this process.

H
(∆B=2)
eff =

6
∑

i

CiQi +
3
∑

i

C̃iQ̃i , (3.12)
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with the following four-quark operators

Q1 = (q̄αγµPLb
α)⊗ (q̄βγµPLb

β) , Q̃1 = (q̄αγµPRb
α)⊗ (q̄βγµPRb

β) ,

Q2 = (q̄αPLb
α)⊗ (q̄βPLb

β) , Q̃2 = (q̄αPRb
α)⊗ (q̄βPRb

β) ,

Q3 = (q̄αPLb
β)⊗ (q̄βPLb

α) , Q̃3 = (q̄αPRb
β)⊗ (q̄βPRb

α) ,

Q4 = (q̄αPLb
α)⊗ (q̄βPRb

β) ,

Q5 = (q̄αPLb
β)⊗ (q̄βPRb

α) ,

Q6 = (q̄αγµPLb
α)⊗ (q̄βγµPRb

β) , (3.13)

where the superscripts α, β denote color indices, and q stands for either d or s quark.

We used the parametrization of the matrix elements of the operators in terms of the

bag parameters in Vacuum Insertion Approximation

〈B0|Q1(µ)|B̄0〉 =
1

3
M2

Bq
f 2
Bq
Bq

1(µ) , (3.14)

〈B0|Q2(µ)|B̄0〉 = − 5

24

(

MBq

Mb +Mq

)2

M2
Bq
f 2
Bq
Bq

2(µ) , (3.15)

〈B0|Q3(µ)|B̄0〉 =
1

24

(

MBq

Mb +Mq

)2

M2
Bq
f 2
Bq
Bq

3(µ) , (3.16)

〈B0|Q4(µ)|B̄0〉 =
1

4

(

MBq

Mb +Mq

)2

M2
Bq
f 2
Bq
Bq

4(µ) , (3.17)

〈B0|Q5(µ)|B̄0〉 =
1

12

(

MBq

Mb +Mq

)2

M2
Bq
f 2
Bq
Bq

5(µ) , (3.18)

〈B0|Q6(µ)|B̄0〉 = −1
6

(

MBq

Mb +Mq

)2

M2
Bq
f 2
Bq
Bq

6(µ) , (3.19)

where MBq
is the mass of the Bq meson, Mb and Mq are the masses of b quark

and d or s quark respectively. And the same expressions for the operators Q1,2,3

(Equation (3.14),Equation (3.15) and Equation (3.16)) are valid for the operators

Q̃1,2,3. Performing the renormalization group (RG) evolution down to Mb scale, the

associated Wilson coefficients Ci’s acquire next-to-leading (NLO) QCD correcting

factors

Ci(Mb) = ηi(Mb)Ci(Mt) , (3.20)

where ηi(Mb) are the QCD correction factors at NLO [69],

ηi(Mb) = η
(0)
i (Mb) +

αs(Mb)

4π
η
(1)
i (Mb) . (3.21)
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We took αs(Mb) = 0.22 and listed the QCD correction parameters ηi(Mb) at NLO

for all operators in Appendix C. For the meson masses and decay constants, we used

the following values

MBd
= 5.28 GeV , MBs

= 5.37 GeV ,

fBd
= 0.21 GeV , fBs

= 0.25 GeV , (3.22)

and the bag-parameters at the µ =Mb scale given in Table 3.

Bd
1(Mb) 0.87 Bs

1(Mb) 0.86

Bd
2(Mb) 0.82 Bs

2(Mb) 0.83

Bd
3(Mb) 1.02 Bs

3(Mb) 1.03

Bd
4(Mb) 1.16 Bs

4(Mb) 1.17

Bd
5(Mb) 1.91 Bs

5(Mb) 1.94

Bd
6(Mb) 1.00 Bs

6(Mb) 1.00

Table 3: Bag-parameter values taken from lattice-improved calculations in the RI-

MOM renormalization scheme [1], with the running quark masses Mb(Mb) = 4.5 GeV

and Md(Mb) = 5.4 MeV. Notice that we took B6 = 1 for both cases since the bag

parameters for the relevant operator is not known yet.

In Figure 14 we show all box diagrams contributing to the B0
d,s − B̄0

d,s mixing,

with q = d, s. All the contributions from W1,2, G1,2 and charged Higgs bosons are

encoded in the Wilson coefficients (Ci and C̃i) in terms of reduced Passarino-Veltman

functions. We do not give explicit expressions for the different contributions, in the in-

terest of brevity, as some have been presented before. For the analytical evaluation of

the diagrams we again used the FeynArts to generate the amplitudes in the ’t Hooft-

Feynman gauge with the approximation of neglecting external momenta. However,

in the limit of vanishing external momenta, all four-point functions in LoopTools

are known to be ill-defined, so when using them in numerical calculations we intro-

duced analytical expressions for all the relevant four-point functions and listed them

in Appendix D.
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Figure 14: Box diagrams contributing to B0− B̄0 transition. Here q = d for B0
d − B̄0

d

and q = s for B0
s − B̄0

s mixing; um,n represent up-type quarks and are summed over.

Experimentally the mass differences are known with high precision [22, 70, 71]

∆Md = (0.508± 0.004) ps−1 , ∆Ms = (17.77± 0.10± 0.07) ps−1 . (3.23)

However, the evaluation of the SM contributions is less precise [72]. The measured
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value can be explained by the SM within 20% of theoretical uncertainty ∆Md is (0.53±
0.08) ps−1, the error arising from uncertainties in MS mass values, bag parameters

and the decay constant [73]. This is consistent with our results. If we were to strictly

impose the experimental constraints, we might incorrectly omit an important part of

the parameter space. Estimating the theoretical errors conservatively at 15%2, we

restrict the parameter space for ∆Md = (0.43 − 0.58) ps−1 and ∆Ms = (15 − 20)

ps−1. We evaluate the SM contributions as ∆Md = 0.48 ps−1 and ∆Ms = 17.66 ps−1.

As before, the parameters are MW2
, MH±, tanβ, gRL and sinα, the measure of flavor

violation in the right-handed quark sector.
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Figure 15: Contour plot of the MW2
vs sinα constraint in the UB parametrization,

for the B0
d − B̄0

d mass difference. We fix ∆Md mass difference to be in the interval

(0.43−0.58) ps−1 (represented by blue and red curves, respectively) and vary gRL, as

indicated in the panels. We take MH± = 10 TeV in upper panels and MH± = 20 TeV

in lower panels and tan β = 10. Regions shaded are restricted by theWL−WR mixing

angle ξ ≤ 3 × 10−3. Regions highlighted in yellow represent the allowed parameter

spaces.

2This is the same as assuming a Gaussian distribution and calculating the total error from the
experimental and theoretical ones.
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In Figure 15 we show contour plots of the MW2
versus Utd = sinα in the UB

parametrization for the B0
d − B̄0

d mass difference and several values of gRL. The

results are very sensitive to this ratio, and we can satisfy the mass difference for any

W2 mass in the 500 GeV to 2 TeV range consistently only for small sinα. Increasing

gRL restricts the parameter space further from WL −WR mixing. While the Higgs

contribution compensates for some of the contributions fromW2, theW2 contribution

to the mass difference appears dominant for the chosen values MH± = 10 TeV and

MH± = 20 TeV for gRL = 0.6, 0.8 and 1. The interplay between the W2 and H±

contributions is responsible for allowed regions of parameter space away from sinα =

0, for regions around MW2
∼ 1.8 TeV. Note that, as the SM value is within the range

considered, the region around sinα = 0 is always allowed, and in fact, increasing the

ratio gRL, this is the parameter region that consistently survives, corresponding to a

very small flavor violation in the right quark system. The sign of sinα is relevant,

with more parameter regions available for sinα < 0. As before, the shaded regions

are restricted by the WL −WR mixing angle ξ ≤ 3× 10−3.

Similarly, in Figure 16 we show the contour plot for the B0
s − B̄0

s mass difference,

with restrictions on MW2
− sinα plane in the UA parametrization. The difference is

that in this case the constraints on the parameter space are slightly less stringent and

a larger region of (MW2
, sinα) is allowed than in the ∆Md case. In the allowed range,

the experimental bounds allow a significant region of the parameter space around

sinα ∈ (−0.1, 0.1) even for gRL = 1, and increasing for gRL = 0.6 and 0.8. The

interplay between H± and W2 contributions is more pronounced for gRL = 1, where a

region of the parameter space opens forMW2
∼ 1.2−1.6 TeV. (This region is present,

to a lesser extent, for gRL = 0.8 in the MW2
∼ 1− 1.2 TeV region.)
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Figure 16: Contour plot of the MW2
vs sinα constraint in the UA parametrization,

for the B0
s − B̄0

s mass difference. We fix ∆ms mass difference to be in the interval

(15 − 20) ps−1 (represented by blue and red curves, respectively) and vary gRL, as

indicated in the panels. We take MH± = 10 TeV in upper panels and MH± = 20

TeV in lower panels, and tanβ = 10 throughout. Regions shaded are restricted by

the WL−WR mixing angle ξ ≤ 3× 10−3. Regions highlighted in yellow represent the

allowed parameter spaces.

In Figure 17, we show the dependence of ∆Md (upper row) and ∆Ms (lower row)

on the charged Higgs mass, for two values of gRL : 0.6 and 0.8. We include a sample

of significant plots, for two values of MW2
, MW2

= 1 and 2 TeV, for values of sinα

chosen to fit within the allowed experimental range. One can see, comparing the top

panels, that the B0
d − B̄0

d mass difference is sensitive to both the MW2
mass and to

the measure of CKM flavor violation in the right-handed quark sector, sinα. For

gRL = 0.6 and MW2
= 1 TeV, the charged Higgs mass must be MH± ≥ 10 TeV for

sinα ∈ (−0.17, 0.01) interval. This constraint is relaxed for gRL = 0.8 and MW2
= 2

TeV, when sinα ∈ (−0.3, 0.02) forMH± ≥ 7 TeV; while outside this sinα interval the

bounds are not satisfied for any charged Higgs masses, and one would need to increase

theW2 mass to reproduce the data. In the bottom row, we perform the same analysis
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for ∆Ms. The constraints for MW2
= 1 TeV, gRL = 0.6 (left panel) are satisfied for

MH± ≥ 7 TeV, but in a smaller region, for sinα ∈ (−0.04, 0.05), than those for ∆Md.

For MW2
= 2 TeV, to remain within the bounds for gRL = 0.8 (right panel) requires

MH± ≥ 10 TeV for sinα ∈ (−0.07, 0.08). The horizontal region highlighted in yellow

corresponds to the allowed region between the bounds, ∆Md = (0.43 − 0.58) ps−1,

and ∆Ms = (15 − 20) ps−1. As in the b → sγ, our model requires heavier Higgs

bosons especially for larger flavor violation in the right-handed quark sector.
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Figure 17: ∆Md,s dependence on the charged Higgs mass MH± . We fix tan β = 10

and show curves for negative and positive values of sinα, in red and blue respectively,

chosen in each panel to fit within the experimental range. The yellow highlighted

regions represent allowed parameter regions between ∆Md = (0.43 − 0.58) ps−1 and

∆Ms = (15− 20) ps−1.
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Figure 18: ∆Md,s dependence on the W2 mass in MLRSM forMH± = 0.5, 1, 5 and 50

TeV. We show ∆Md in the upper panels, and ∆Ms in the lower ones. The left row

corresponds to tan β = 10, the right one to tan β = 60. Regions shaded are restricted

by the WL −WR mixing angle ξ ≤ 3× 10−3. Regions highlighted in yellow represent

the allowed parameter spaces.

In the MLRSM case, with V R
CKM and gR = gL fixed, Higgs masses are required to

be 5 TeV or larger for both tanβ = 10 and 60, whileMW2
> 1 TeV, as shown in Figure

18, where we study the dependence of ∆Md,s onW2 mass for four values of the charged

Higgs mass, 0.5, 1, 5 and 50 TeV. Note that there is no new information provided by

∆Ms data and that the manifest LR contribution is also largely insensitive to tanβ.
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3.3 Summary

With the advent of the data from LHC, we expect to observe physics beyond the

SM. The LRSM is perhaps the simplest such scenario, with the right-handed quarks

belonging to doublets and participating in charged flavor violating interactions. Mod-

els in which the right-handed sector mimics exactly the left-handed one, such as the

manifest or the pseudo-manifest LR model, have been explored thoroughly and are

very restrictive. Motivated by the possibility of additional gauge bosons that may be

observed at the LHC, as well as some shortcomings of a LR symmetric quark flavor

sector, we investigated here an asymmetric LR parametrization for the quark mixing

matrix (Langacker and Sankar) in the context of B physics [8]. This parametrization

has several attractive features: while respecting family unitarity, it is general. It

allows for variations in the right-handed coupling constant and it is simple, thus pre-

dictive (the right handed quark mixing matrix depends on one additional parameter

only).

Note that our results are quite general, if we restrict ourselves to parametrizing

two family mixings only, in the CP conserving case, since setting Uts = sinα in the UA

parametrization, and Utd = sinα in the UB parametrization, satisfies general unitarity

constraints.

We include existing restrictions on the WL − WR mixing angle ξ coming from

K0 − K̄0 mixing, while not restricting ourselves to any particular scenario for the

nature or masses of the neutrinos. We provide additional constraints from BR(b →
sγ) and B0

d,s − B̄0
d,s mixing. Defining the parametrizations as UA (Uts 6= 0, Utd = 0)

and UB (Utd 6= 0, Uts = 0), we set constraints on sinα, MW2
, gRL, tan β, and MH± .

We have used exact numerical evaluations and the existing packages FeynArts for

generating the amplitudes, then FormCalc and LoopTools packages to evaluate the

loop contributions, and added modifications as needed.

For the branching ratio b → sγ, all parameters play an important role. Smaller

values for the ratio gRL allow for more flavor violation in the right quark sector (larger

sinα, smaller W2 masses, wider range for MH±). BR(b→ sγ) also depends on tanβ.

Increasing tanβ opens larger parameter spaces for both MH± and MW2
. In ∆Md,s

splitting, we find the results to be sensitive to the W2 mass, sinα and the ratio gRL.

In the regions allowed by the experimental constraints, the results are practically

independent of tanβ.
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While a lot of restrictions are interconnected, they share a few general character-

istics. First, the restrictions on UB, coming from B0
d− B̄0

d are more stringent than the

combined bounds on UA coming from b→ sγ and B0
s−B̄0

s . As these two parametriza-

tions are independent, the larger parameter space available for UA indicates that in

that scenario, lighter gauge bosons are more likely to be produced. Second, for any

significant regions of parameter space we have gRL < 1. While decreasing gR de-

creases the strength and cross section for right-handed particles, it allows for larger

flavor violation in the right-handed sector. It is a delicate balance, as decreasing the

amount of right-handed flavor violation makes the model more like the MLRSM, and

decreasing it even further takes the model to the SM. We restrict gRL > tan θW to

reproduce correctly the U(1)Y coupling constant. On the other hand, gRL < 1 allows

for more flavor violation and smaller W2 masses, while requiring heavy charged Higgs

boson masses, MH± ≥ 10 TeV. The results obtained are consistent with manifest or

pseudo-manifest left-right symmetric models, while allowing more flexibility in the

parameter space and opening the possibility of observing light gauge bosons at the

LHC. However, even allowing for more variations of model parameters, the allowed

parameter space in MW2
, sinα,MH± is quite constrained, making the ALRM very

predictive.

After scanning the parameter space of ALRM and constraining the model param-

eters, at the next chapter we investigate the production and decay ofWR gauge boson

and its signatures in hadron colliders including the restriction on model parameters.
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Chapter 4

PRODUCTION AND DECAY OF

WR BOSON AT THE LHC

While the SM has provided a compelling picture of low-energy interactions, it has

been plagued by theoretical inconsistencies. More recently, experimental deviations

from the predictions of the model such as signals of neutrino masses and mixing

[74] have given further justification to building of BSM physics. Additionally, the

experimental outlook on testing these scenarios looks very promising. LHC data is

expected to provide ample material for analysis. When the data become available, it

would be probably difficult to disentangle expectations for different models. The task

of theorists is to provide viable scenarios for BSM physics and to predict the signals

which distinguish them from the SM and from each other.

A large variety of models is available, all of which attempt to resolve some

theoretical inconsistency of the SM. Of these, a particularly simple model is the

LRSM [2, 3, 6, 23–25]. Originally introduced to resolve the parity and neutrino mass

problems, it remains one of the simplest extensions of the SM, and it is a natural sce-

nario for the see-saw mechanism [27]. The Higgs sector of the LRSM and its signals at

accelerators have been thoroughly analyzed by theorists [28–38], and experimentalists

have been particularly keen to search for doubly charged Higgs bosons, predicted in

most versions of the model [75–77]. Less attention has been paid to the vector boson

sector. The LRSM extends the gauge group of the SM to SU(2)L×SU(2)R×U(1)B−L,

and thus predicts the existence of two extra gauge bosons: a neutral ZR and a charged

WR. While an extra neutral gauge boson Z ′ is predicted by several extensions of the
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SM, all containing an extra gauged U(1) symmetry group, a charged gauge boson

would be a more likely indication of LR symmetry1.

Several other models predict the existence of extra W ′ bosons, such as extra

dimensional models (both Randall-Sundrum (RS) [78–80] and Universal Extra Di-

mensions (UED) model [81, 82]), Little Higgs models [83–85] and Composite Higgs

models [86–88]. The W ′ predicted in these models have features which distinguish

them from those of the LRSM, which we will discuss after our analysis.

Production of extra charged vector bosons at colliders has received less interest

than that of Z ′, although one study exists for the Tevatron [89]. However, recent

papers analyzing chiral couplings of a W ′ at the LHC indicate how to disentangle

left or right handed bosons [90, 91]. In this thesis, we follow a different procedure.

Assuming the extra charged vector boson to come from a version of the LRSM and

thus be right-handed, we analyze the production mechanism, decay rates, and possible

signals at the LHC.

WR bosons are predicted to be heavy, of the order of O(TeV) and thus the signal

is expected to be much below the WL production signal. But this is only the case

if the quark mixing matrix in the right-handed sector (V R
CKM) is either identical, or

equal up to a diagonal matrix, to the one in the left-handed sector the usual V L
CKM

–the so- called manifest and pseudo-manifest LRSM, respectively. This does not have

to be the case, as was discussed at length by Langacker and Sankar [5], who allow

right-handed mixing matrices V R
CKM with large off-diagonal elements. They perform

a thorough investigation of the constraints on the mass of WR and its mixing with

WL under these circumstances and find out that the WR mass can be a lot lighter,

MWR
& 300 GeV [17].

In the age of the LHC there is another immediate advantage of the ALRM: such

a WR boson can be produced at rates larger, by orders of magnitude, than for models

in which V R
CKM = V L⋆

CKMK, where K is a diagonal phase matrix. One could see

this by looking at the signal pp→WL,Rt. This single-top production cross section is

known to be important in identifying and distinguishing between different new physics

models, as these can have different effects (s-channel or t-channel) on the production

process [92, 93]. The partonic cross section at the LHC is dominated by qg, with

q = d, s. However, for WL production one must rely on the process gb → b → tW ,

1While WR is present in several gauge unification scenarios, models with extra WL bosons also
exist.
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and thus be disadvantaged by the small amount of b quarks in the proton; or rely

on gd(s)→ d(s)→ tW , which is suppressed by the V L
ts or V L

td element of the V L
CKM .

However, if the off-diagonal V R
ts or V R

td elements of the V R
CKM are large, one could

produce WR copiously. Additionally, if there are less stringent restrictions on the

WR mass, one can envisage that WR production could be observable and, if so, a

clear distinguishing signal for LRSM. At the Tevatron, the production cross section

is dominated at the partonic level by qq̄, with q = u, d, s, c. Even for a light WR

boson, we would not expect any enhancements due to the non-diagonal entries in the

V R
CKM ; the same is true for linear colliders.

The sensitivity of the Tevatron to WR searches has been thoroughly discussed in

Reference [89]. Mass limits from the existing data depend on the ratio of the coupling

constants for SU(2)R and SU(2)L, gRL, on the nature and mass of the right-handed

neutrinos νR, on the leptonic branching ratio for WR, and on the form of the right-

handed CKM matrix V R
CKM . The most stringent experimental bounds from Tevatron

searches are MWR
≥ 1 TeV, under very specific assumptions (looking for WR decays

into an electron and a neutrino, for SM-like couplings to fermions) [94, 95]. As their

assumptions would not apply to our model, we investigate the possible signals and

mass bounds at the Tevatron in dijet production before proceeding with the LHC

signal analysis.

The LHC thus presents a unique opportunity to observe such a WR boson. We

propose to investigate this possibility in this thesis. In Chapter 3 we have laid the

foundation of flavor-changing studies in LR models by analyzing the most general

restrictions on the parameter space of the model (MWR
,MH± , V R

CKM , and gRL) coming

from b → sγ, B0
d − B̄0

d and B0
s − B̄0

s mixings [8]. For consistency, we include here

these parameter space restrictions as well as those coming from the Kaon physics.

4.1 Production and Decays

In this section we investigate the single production cross section at the LHC of a W±
R

boson, pp → tWR, and decay branching ratios of the right-handed W boson in the

scenarios in which the RCKM matrix is UA or UB as, in Equation (2.51), and compare

the results to those obtained in the MLRSM. In the MLRSM the CKM matrices in the

left- and right-handed quark sectors are the same and so are the coupling constants for
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SU(2)L and SU(2)R. The only unknown parameter is the WR mass; while in UA and

UB the production and decay rates are also functions of sinα, the RCKM parameter,

as well as the ratio gRL of SU(2)L and SU(2)R coupling constants. The dominant

partonic level Feynman diagrams are shown in Figure 19 The index i indicates that

we sum over the three generations.

di
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t
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t

WR
t

Figure 19: Feynman diagrams of the WR-top associated production at the LHC.
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Figure 20: WR production cross-section as a function of the WR mass (upper panels)

and RCKM matrix parameter sinα (lower panels), for the three models described in

the text (UA, UB and MLRSM).

In Figure 20, top row, we present the single WR production cross section as a

function of the WR mass (in the 400-2000 GeV range) for three values of sinα. The
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three panels correspond to three values allowed for gRL : 0.6, 0.8 and 1. When sinα is

large, the off diagonal RCKM mixing element Utd or Uts becomes large. As there are

more d and s quarks than b in the proton, this enhances the hadronic contribution

to the cross section for UA and UB cases. The production cross section decreases

when WR mass increases, or sinα decreases. Similarly, the production cross section

is enhanced by larger gRL. The MLRSM cross section overlaps with that of model

UA in the case of sinα = 0.1 (the right panel in the top row).

In the bottom row of Figure 20 we explore the dependence of the cross section

in UA and UB on sinα for three values of MWR
. The three panels again represent

cross sections for gRL = 0.6, 0.8 and 1. Figure 20 shows that in the region of large

sinα and lowMWR
we can expect large enhancements in the production cross section.

For suitable choices of sinα and MWR
(light WR mass and large sinα region), the

cross section can reach 1 pb or more. The slight difference between UA and UB cross

sections is attributed to the relative abundance of d over s quarks in the proton.

In Figure 21 we give a contour plot in theMWR
− sinα parameter space, including

constraints from b → sγ, B0
d − B̄0

d , and B0
s − B̄0

s processes. This plot correlates

restrictions on sinα,MWR
, gRL and production cross sections. In the top row, we show

the plot for the UA parametrization. This parametrization is constrained by b → sγ

branching ratio (in yellow) and B0
s − B̄0

s mixing (dashed). The three panels represent

increasing values of coupling constants ratio gRL = 0.6, 0.8 and 1. The dark shaded

parameter region at the bottom (increasing with larger gRL) represents restrictions

due to theWL−WR mixing angle ξ < 3×10−3. The most stringent phenomenological

inputs which restrict the WL −WR mixing angle ξ are: weak universality for light

neutrinos, partial conservation of axial-vector-current in K → 2π and K → 3π and

constraints on WL mass, which is reduced by increasing ξ [5]. The parameter space

is overall very restricted. For smaller gRL there is a stable allowed region around

sinα = 0, which is decreasing with increasing gRL. However, for all coupling ratios,

there is a parameter space allowed, where sinα is large and positive, and the WR

mass can relatively light (MWR
= 600 − 700 GeV for gRL = 0.6) or intermediate

(MWR
= 1400 − 1500 GeV for gRL = 1). For these cases the cross section can be of

order 10−2 pb.
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Figure 21: Contour plot ofMWR
vs sinα. The upper row is for the UA parametrization

in which theWR production cross-sections are constrained by both b→ sγ andB0
s−B̄0

s

processes. Dark-gray shaded regions are excluded from b→ sγ and light-gray shaded

regions from B0
s − B̄0

s . Black shaded region indicates the exclusion by L-R mixing

angle violation (ξ < 3×10−3). The lower row is for the UB parametrization where only

B0
d− B̄0

d mixing constrains the production cross-section. In both parametrizations we

take MH+ = 20 TeV and tan β = 30.

The bottom row of Figure 21 presents the same restrictions on the MWR
− sinα

parameter space in the UB parametrization. The three panels again represent restric-

tions for gRL = 0.6, 0.8 and 1. The restrictions come from B0
d−B̄0

d (light-gray shaded)

and theWL−WR mixing angle ξ < 3×10−3 (black shaded–this constraint is the same

as in the upper row). The UB parametrization is much more restricted, reflecting the

stringent restrictions from B0
d − B̄0

d mixing. While the same region around sinα = 0

exists in all graphs, it is shrunk very close to zero, especially for gRL = 1. The region

for sinα away from zero (in this case negative) is significant only for gRL = 0.6 and

larger values of the WR mass. Still, there is a small parameter space available for

MWR
= 1.8− 2 TeV. But the cross section expected in this region is of order of 10−3
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pb, smaller by a factor of 10 than that for the UA parametrization.
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Figure 22: Branching ratios of WR decays as functions of sinα (upper panels) and

WR mass (lower panels). The WR mass is fixed at 750 GeV in the top left and 1500

GeV in the top right panel, while sinα is fixed to 0.1 in the bottom left panel and

0.9 in right one.

In Figure 22 we present the branching ratios of WR decays into quarks, and a

representative one into WLh
0, assuming this decay has the phase space required to

proceed in the ALRM. In the top panels, we analyze the decay width into quarks,

as a function of sinα, for both UA and UB scenarios. The left panel corresponds to

MWR
= 750 GeV, the right one to MWR

= 1.5 TeV. It is possible to include both

parametrizations in one plot because, between these two scenarios, the CKM matrix
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elements involving s and d quark mixing with t quarks are switched, and although

the masses of these quarks are not identical, it does not significantly impact the

branching ratios. While W−
R → d(s)ū is the dominant decay for both cases, for large

sinα the branching ratios to bc̄ and d(s)t̄ become comparable; while for low sinα

the branching ratios to the same-generation pairs, bt̄ and sc̄, are large. The leptonic

decays W−
R → l−ν̄R, (l = e, µ) are not presented here, as we wanted to avoid extra

assumptions on the nature of the neutrinos and their masses. Many other decay

channels are possible, but we have chosen to only illustrate WLh
0. It is possible that,

for a range of the parameters, there is sufficient phase space for other decays (to

leptons, h0H±, ZLH
±,...) to proceed, but all require further assumptions. In our

analysis, charged Higgs and all other neutral Higgs bosons except for h0 are heavy,

so these channels are not open. The branching ratio to WLh
0 is independent of sinα

and always dominated by branching ratios to quarks.

The panels in the bottom row show the dependence on the same branching ratios

as a function of MWR
, for sinα = 0.1 (left panel) and sinα = 0.9 (right panel).

The dominance of the d(s)ū decay mode persists, and is independent of sinα, a

consequence of the form chosen for V R
CKM to agree with Kaon phenomenology. The

branching ratios are independent of the mass of the WR, with the exception of WLh
0.

Note that the branching ratios also do not depend on the coupling constant for SU(2)R

(or gRL), as it appears as an overall factor in both the partial decay width and total

width formula.
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ū d

Manifest

MWR
[GeV]

B
r(
W

R
→

2
X
)

200018001600140012001000800600400

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Figure 23: Branching ratios ofWR decays as functions of theWR mass in the MLRSM.
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Figure 23 illustrates the branching ratios of all decay modes of the WR boson in

the MLRSM. The main difference from the point of view of observability is that in

the UA, UB scenarios there are 5 qq̄′ decay modes with branching ratios in the range

5 × 10−2 − 2 × 10−1, while in MLRSM there are only 3 (for MWR
> 500 GeV). In

both cases, all other branching ratios are much smaller and very similar in all three

scenarios. For the purpose of explicit branching ratio calculations, we considered the

case in which the bi-doublet Higgs boson is supplemented by triplet Higgs bosons.

Under this assumption we diagonalized the Higgs mass matrix and calculated the

Feynman rules. We expect the case with doublet Higgs bosons to yield very similar

results when we impose experimental constraints.

4.2 Signal and Background for WR Production at

the LHC

Before proceeding with the analysis of the WR production signal at the LHC, we

consider the signal at the Tevatron, from pp̄ → WR → dijet. The dijet data is

already available from CDF Run II [96] and the analysis shows no significant evidence

for a narrow resonance. This is used to put mass constraints on several beyond the

SM particles, including the W ′. To compare the data with our model, we used the

CalcHEP 3.1 software [97] and implemented the model into it. To obtain the dijet

spectrum we used the following detector cuts at
√
s = 1.96 TeV: pT > 40 GeV,

|y| < 1, |η| < 3.6 and Rcone = 0.7 (jet cone angle). The parameters used to generate

Figure 24 are MWR
= 750 GeV, gRL = 1, sinα = 0.2(−0.05) for UA(UB). The dijet

process is dominated by s−channel contributions. From the figure we see that under

these conditions, theWR signal falls below the CDF data and would not be observable

at the Tevatron. Thus we cannot expect to extract meaningful mass bounds for WR

even for a relatively light gauge boson.
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Figure 24: Differential cross section for the dijet mass spectrum for WR decays in

the UA, UB parametrizations and in the MLRSM, compared to the SM background

and the CDF data. It is possible to show that the SM curve agrees very well with

the CDF Run II data after including NLO perturbative QCD corrections. Our SM

curve should be taken as a rough estimation.
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Figure 25: The signal pp→ tWR → t(jet jet)

We now proceed with the investigation of the WR production signal at the LHC.

We simply considered a single top production associated with a dijet through a WR

exchange in both s- and t-channel processes as in Figure 25. Assuming b-jets are

tagged and further top decays are reconstructed, we selected only light quarks (u, c, d
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and s) in jets. In order to compare our signal with the background we accounted

all the possible top + dijet processes in the SM final state. For the signal analysis

we used again the implementation of our model into the CALCHEP software [97]. We

also introduced some basic detector cuts on the pseudo-rapidity (|η| < 2) and on the

transverse energy (pT > 30GeV). We assume that in both our model and in the SM,

the top quark will decay as predicted, and it can be reconstituted. We have chosen

WR decays to quarks, rather than leptons, because we wanted to avoid assumptions

on the nature and masses of neutrinos. Also, jets can be easily identified and this

decay mode does not involve any missing energy, making it easier to detect a WR

resonance. We also restricted the decay products to jets (light quarks only) to avoid

tt̄ production. In the case of considering WR → t̄di, the SM background would be tt̄j

and could be significant.

In Figures 26 and 27 we present WR production signal at 14 TeV with different

CKM parametrizations and compare it with the SM background. We choose the bin-

size to be 20 GeV, and plot the differential cross section with respect to the invariant

dijet mass Mjj. It is clear that for all the parametrizations, the WR signal can be

observed as a resonance in the dijet invariant mass distribution at the LHC and is

quite distinguishable from the SM background. The diagrams for the SM background

are very similar to the ones in Figure 25, WR replaced with WL as well as some other

exchange diagrams. Signatures in UA and UB parametrizations are in the left and right

columns of Figure 26. In first two rows we kept WR mass at an intermediate value

(MWR
= 1.5 TeV) and changed the ratio of gauge coupling constants (gRL) as well as

the RCKM matrix element (sinα) between the panels. The numerical values of these

parameters are chosen according to the constraints from low energy phenomenology

in Figure 21. In the last row we showed the signal of a lighter WR (MWR
= 750

GeV) with bin-size= 10 GeV and equal gauge coupling constants (gR = gL) in the

region allowed by the constraints. By comparison, in Figure 27 we show signatures for

the WR production and decay to dijets in the MLRSM model for the intermediate

(left panel) and the light (right panel) WR (the last for comparison only, as light

WR masses are largely excluded by Kaon phenomenology in the absence of extreme

fine tuning). It is inferred from these figures that a new right handed charged gauge

boson signal of LR symmetry is very clear, distinct and accessible within the LHC’s

discovery limits. For a luminosity of 100 fb−1 at 14 TeV and a light WR boson (both
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very optimistic assumptions), the signal can reach 100 events per year.
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Figure 26: WR signal as a resonance in dijet mass distribution at the LHC (
√
s = 14

TeV) with UA (left column) and UB (right column) RCKM parametrizations. The

signal is observed in p, p→ t, dijet process where only the light quarks are counted as

jets. We choose binsize = 20 GeV for intermediate MWR
= 1500 GeV and binsize =

10 GeV for light MWR
= 750 GeV.
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Figure 27: The resonance WR signal in the LHC (
√
s = 14 TeV) with Manifest

model. The intermediate WR (on left panel) and light WR (on right panel) signals

are presented. Again the same binsize choice with Figure 26.

Whatever the model is, the cross-sections are robust, that is, they are roughly

of the same order of magnitude, independent of the model used. The reason is

the following: in UA and UB models there are fewer diagrams contributing to the

differential cross sections, but the flavor violation from the right-handed quarks is

stronger, whereas in the MLRSM there are more Feynman diagrams contributing to

the differential cross section, but the flavor violating interactions in the right-handed

sector are weaker. This explains the resemblance of the signals between UA(UB) and

the MLRSM. To distinguish among the LR models and to finely pinpoint the origin of

the signal requires further detailed analysis with more realistic detector simulations.

4.3 Summary

We analyzed the single production, decay and collider signals ofWR bosons produced

in LR symmetric models [98]. We considered models with a general right-handed

quark mixing structure (which we call the ALRM), but constrained by the Kaon and

B-meson flavor physics. We also compared the results with those of the MLRSM,

where V R
CKM = V L

CKM and the coupling constants in the left and right sectors are

equal. In the ALRM there is only one free parameter in the RCKM mixing matrix.

Additionally, the charged Higgs and WR masses, as well as the ratio of the SU(2)L

and SU(2)R coupling constants, are also free parameters. We included restrictions
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on the same parameter space coming from B0
d,s− B̄0

d,s mixing and the branching ratio

for b→ sγ [8].

The dominant production mode is in association with a top quark and this has a

large background from the single top production (in association with WL) from the

SM. However, looking at events in the 500-2000 GeV mass range for WR, we show

that the SM background is always below the WR signal, and we expect a significant

peak above the SM background around the WR mass (assumed to be in the range

considered). Even with a luminosity of 10 fb−1, achievable at the LHC within the

next 3 years, we expect several events a year, while with L = 100 fb−1, the events

could reach 100 per year. We concentrated our analysis in the WR → dijet decay

mode, where dijets are the light quarks u, d, s and c.

The cross section for the single WR production can reach 10 fb, including all

parameter restrictions, and the dominant decay modes are to light quarks, ūd(s)

being favored by the choice of parametrization, and c̄s(d) and t̄b by the restrictions

on the RCKM.

Models which predict extraW ′ bosons all have features that distinguish them from

WR bosons in the LRSM. In warped extra-dimensional models [78], the coupling of the

extra charged gauge bosons to light quarks and leptons is suppressed relative to those

in SM. By contrast, in the LRSM, the decays to leptons might be suppressed for heavy

right-handed neutrinos, whereas W → jet jet has no missing energy so the signal can

be reconstructed in full. The irreducible SM background from the electroweak process

(single top production) is shown to be smaller than the signal inside the resonance

region. Warped RS models need luminosities of L = 100 (1000) fb−1 for aW ′ to reach

a statistically significant signal, and expected W ′ masses are in the 2-3 TeV region.

Technicolor or Composite Higgs [86–88] models are expected to give very similar

signals, as the warped extra dimensional model is dual to the 4D strong dynamics

involved in electroweak symmetry breaking. In the Little Higgs Models [83–85], the

heavy WH is left-handed and the partial width to each fermion species is almost the

same (for massless fermions). In UED, the additional Kaluza-Klein (KK) W and Z

bosons expected to have masses in the 100-200 GeV region [81,82], have their hadronic

decays closed, so they decay democratically to all lepton (one KK and one ordinary)

flavors.

A clear signal for a charged vector boson will be much more significant that one
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for a neutral Z ′ boson, as it would restrict the extension of the gauge sector. Our

analysis is complementary to previous analysis which indicate how to find whether the

extra charged W ′ boson is left- or right-handed, by presenting the signals expected

for WR in the LRSM, both manifest with V R
CKM = V L

CKM and in a case where V R
CKM ,

constrained by B and K phenomenology, is independent of the mixing in the left-

handed quark sector and characterized by a single parameter. The signal for such a

charged gauge boson is significantly different from that in other scenarios with extra

W ′s, and would be an irrefutable signal of LR symmetry.
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Chapter 5

TOP QUARK PAIR

PRODUCTION AND

ASYMMETRIES AT THE

TEVATRON AND THE LHC IN

THE LRSM

Measurements of top production and decays are of particular interest for particle

theorists as they likely will shed light on the mechanism of electroweak symmetry

breaking. The Tevatron has produced such measurements and more is expected to

come from the LHC. For instance, the tt̄ total cross section, as well as the differential

cross section with respect to the tt̄ invariant mass, both of which are sensitive to a

variety of BSM scenarios of particles decaying into tt̄ pairs, are completely consistent

with the SM [99–103].

But recently both the CDF and DØ collaborations have measured the forward-

backward asymmetry of the top quark pairs, Att̄
FB [104–107]. Based on a data sample

of 5.3 fb−1 [105, 106], the asymmetries evolved to the parton level 1 are

1Here and throughout the chapter, parton-level is used in the meaning described in Reference
[105]. It refers to the deconvolution from the data, like detector efficiencies, jet algorithm, selection
efficiencies, background etc. See Reference [105] for more details.
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Att̄(|∆y| < 1) = 0.026± 0.118 ,

Att̄(|∆y| ≥ 1) = 0.611± 0.256 ,

Att̄(Mtt̄ < 450 GeV) = −0.116± 0.153 ,

Att̄(Mtt̄ ≥ 450 GeV) = 0.475± 0.114 , (5.1)

in the tt̄ rest frame (with Mt = 175 GeV). In the SM the asymmetry is produced

mainly through one-loop QCD corrections, with a smaller contribution from elec-

troweak tt̄ production, and is stable with respect to corrections from QCD threshold

resummation [108]. The NLO SM predictions are, by comparison [109–113]

Att̄
SM(|∆y| < 1) = 0.039± 0.006 ,

Att̄
SM(|∆y| ≥ 1) = 0.123± 0.008 ,

Att̄
SM(Mtt̄ < 450 GeV) = 0.040± 0.006 ,

Att̄
SM(Mtt̄ ≥ 450 GeV) = 0.088± 0.013 . (5.2)

We note that there has been a recent calculation of the asymmetry including

electroweak corrections to O(α2) terms, as well as interferences with the QCD dia-

grams [114]. It seems that SM asymmetry receives non-negligible same-sign contri-

butions from the electroweak sector so that, except the region with Mtt̄ > 450 GeV,

the observed deviation between theory and experiment diminishes.

As the deviation from the expected and the measured asymmetry is large, this

has been interpreted as a signal for New Physics (NP), in particular a signal for a

below-TeV scale physics. A large variety of models has been employed to resolve the

discrepancy. These models invoke new particles and new interactions to explain the

discrepancy. In general, one can classify these models according to the new mediators

of the new physics as (1) t−channel bosons mediators (scalars or vectors, such as W ′

or Z ′) with flavor-violating couplings to right-handed up quarks [115–132], or (2)

s−channel mediators, color sextet or color anti-triplet scalar particles coupling with

flavor-violating couplings to up and top quarks, such as [133–153] or (3) new flavor

multiplets which coupling to quarks in a flavor-symmetric way [125,127,129,154,155].

Comparative studies of various models also exist, and it was shown that s−channel
particles used to explain the anomaly have maximal axial couplings, while t−channel
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particles exhibit maximal flavor violating couplings [126, 147, 156–169]. As well, a

number of analysis have appeared, which study the implications of models which

predict large asymmetry for LHC phenomenology [162,170–175]. These models have

been studied individually, or in a group, to extract some global features which would

insure generating a large asymmetry while contributing a negligible amount to the

cross section, and to classify general features. A recent analysis [176] concludes that,

among scalar mediated-processes, only the t−channel exchange of a QCD-singlet,

weak doublet scalar is consistent with flavor and electroweak constraints, and does

not conflict with the collider data obtained so far.

Although these models have been shown to produce a large asymmetry, since all

appear designed specifically to resolve this problem, they are sometimes insufficiently

justified and thus they seem disconnected from other low energy phenomenology

constraints. In all models, the large flavor violation in the t−u or t−d quark sectors

is enhanced, while flavor changing in the other sectors is suppressed. The question

remains of whether such asymmetry can be obtained by employing a known and well-

studied NP model. In particular, what the prediction is of such a model (allowing for

maximum flexibility) and how important it is for the prediction of the asymmetry to

impose the requirement that the model satisfies known phenomenological constraints.

We propose to investigate here the effect on the asymmetry and tt̄ production cross

section emerging from WR and ZR bosons in the LRSM. This model satisfies some

definite conditions:

• It is one of the simplest and most natural extensions of the SM.

• It contains additional particles in both the s− and t−channels which could

enhance the forward-backward asymmetry, but also the tt̄ cross section.

• It has been thoroughly investigated and constrained through many analysis,

and in particular CDF and DØ have put limits on extra boson masses.

• More information and testing of the model will be provided soon by LHC (some

recent bounds from colliders are discussed later).

We first perform an analysis of the tt̄ pair production and forward-backward asym-

metry at the Tevatron, then we explore the signal at LHC, for both the cross section

and possible asymmetries testable at the LHC. As we wish to allow the model to be as
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general as possible, we rely on a generic model, without constraining masses, mixing

parameters or gauge couplings, but impose constraints coming from low-energy phe-

nomenology, mainly K and B physics, but also collider restrictions coming from the

Tevatron. As the LHC data would be available fast, and the constraints on particular

models are rapidly changing, we are motivated by the fact that the LHC collabora-

tions are now analyzing unprecedented amounts of top data that will clearly rule out

models. Thus a clear expectation of model predictions for the LHC is timely.

The constraints on the parameter space of the left-right model, mostly from flavor

violating processes, which are relevant to the study ofWR phenomenology, come from

K0−K̄0 mixing, B0
d−B̄0

d and B0
s−B̄0

s mixing, and b→ sγ. These constraints depend

on several parameters and are difficult to summarize analytically; however, they are

included in the evaluation of the tt̄ cross section and forward-backward asymmetry,

analyzed in the next section.

We also include restrictions imposed by the available data from ATLAS which

seems to rule out a Z ′ resonance withMZ′ < 950 GeV, with the exact limit depending

on specific models and specific assumptions [177]. A recent talk at the European

Physics Society meeting [178] reports new bounds on Z ′ mass, with 50 times more

data (∼ 2 fb−1) and with new bounds varying from 1.5 TeV to 1.8 TeV depending on

the models. Similarly there are new bounds from the CMS and DØ collaborations

[179, 180] with total integrated luminosity 1.1 fb−1 and 5.4 fb−1, respectively. While

the bounds from CMS are very similar to the ones from ATLAS, DØ bounds are

somewhat weaker. A relevant study by Nemevsek et al [181–183] on the bound on

WR mass using the 33 pb−1 LHC data at 7 TeV reports MWR
> 1.4 TeV, but is also

spectrum specific and depends on whether the right-handed neutrino is Majorana or

Dirac and whether it is lighter or heavier than MWR
. We assume the right-handed

neutrino heavier than MWR
so that the above bound is evaded.

For the evaluation of the cross section and the asymmetry, we have chosen two

benchmark parameter sets for each of Model A, Model B and MLRSM, defined as

previously. To select particular benchmark points, we used the results of our previous

parameter scans over MWR
, sinα,MH± and gR/gL in [8,98] where we have presented

restrictions over the parameter space obtained by imposing low energy constraints

from meson mixings and b → sγ branching ratio, as well as collider constraints on

production of extra gauge bosons. The parameter scan leaves very small allowed
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regions where the WR is light, and/or the flavor violation from the right-handed

sector is significant.These points are chosen to maximize flavor-violation in the right-

handed quark sector, for both light and heavyMWR
scenarios. The parameter sets for

each model, namely Set I and Set II, that are used in our calculations in accordance

with those constraints are given in Table 4. We include, in addition to the Set I and

Set II, a left-right scenario for each of the three models which is not subjected to

experimental constraints, which we call the Unconstrained LR Set. We require that

this model is roughly consistent with collider limits on the tt̄ cross section. Our aim is

to show the effects of experimental restrictions on the parameter space and highlight

that “relaxing” them can produce large asymmetries.

Manifest Model A Model B

Set I Set II Uncons Set I Set II Uncons Set I Set II Uncons

MWR
(GeV) 700 1500 500 700 1000 500 1100 1300 500

MZR
(GeV) 1172 2511 837 2189 1674 734 3441 2176 734

gR/gL 1 1 1 0.6 1 2 0.6 1 2

sinα - - - 0.5 0.25 0.7 -0.2 -0.1 0.7

Table 4: Benchmark points Set I, Set II and Unconstrained for left-right symmetric

models: Manifest, Model A, and Model B, used throughout the analysis. Note that

MZR
is fixed when a value for MWR

is chosen but the MZR
values are included for

reference.

5.1 tt̄ Cross Section and Forward-Backward Asym-

metries at the Tevatron

The top quark pair production in pp̄ collisions is mostly accomplished through s-

channel quark-antiquark annihilation (about 90%) and much less so through gg and

qg processes. The latest CDF and DØ measurements of the cross section [100–102]

agree with the SM at the next-to-next-to-leading order (NNLO) prediction [184–186],

σCDF II
(pp̄→tt̄) = 7.50± 0.48 pb , (5.3)

σNNLO
(pp̄→tt̄) = 7.39± 0.55 pb . (5.4)
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We proceed to analyze the top-pair cross sections in the left-right models. For consis-

tency, we evaluate here the cross section in the SM, as well as in the LR models under

scrutiny: the MLRSM, Model A and Model B, for the Set I and Set II for each model

and, by comparison, for the Unconstrained set. Any new model must predict a cross

section which agrees with the experimental data, as the cross section is particularly

sensitive to s−channel exotic resonances, thus restricting the mass of the ZR boson

in LR models.

In the calculation of tt̄ production cross-sections we proceed as follows. We first

calculate the LO cross-sections at
√
s = 1.96 TeV withmt = 172.5 GeV, using CTEQ6M

parton distribution function (PDF) set to go from parton to pp̄ cross sections. We

then calculate the NNLO cross section by multiplying the LO result with the K factor

(K = 1.3 for Tevatron [184–186]) as in the SM. We assume for simplicity that the

K-factors are universal, so that the NP/SM ratios at LO and NNLO are the same,

minimizing the impact of the NNLO corrections to the LR model contributions (See

our comments in the next paragraph). We list the cross sections obtained in Table 5.

σSM(pb) 7.36± 0.007

Set I Set II Uncons.

σMan(pb) 7.37± 0.007 7.37± 0.007 7.43± 0.008

σModA(pb) 7.36± 0.007 7.37± 0.007 8.35± 0.008

σModB(pb) 7.36± 0.007 7.36± 0.007 8.17± 0.008

Table 5: The NNLO tt̄ production cross-sections at the Tevatron (
√
s = 1.96 TeV) for

the SM, and Left-Right models: Manifest, Model A and Model B, for the benchmark

points chosen.

The CDF and DØ results impose that in addition to the total production cross

section of tt̄, the differential cross section with respect to the invariant mass of tt̄

should also agree with the SM prediction. Thus, in Figure 28 we graph the differen-

tial cross sections in LR models with respect to the tt̄ invariant mass distributions

and compare our calculation with the CDF II measurement. In the three panels of

Figure 28 we show in sequence the differential cross sections for the Manifest, Model

A and Model B for the two parameter sets Set I (red), Set II (green) as well as the
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Unconstrained Set (blue). The CDF data is given as black lines, and includes uncer-

tainties in each bin. Note that care must be taken when comparing the new physics

cross-sections against the SM cross-section, as the selection efficiencies for NP models

can be lower. The predicted NNLO SM cross-section requires a SM K-factor of 1.3,

while the NNLO corrections to the new physics have not been calculated, so any

comparison between the observed cross-section and the tt̄ production cross-section

is subject to some uncertainty [187]. Comparing our results to the central value of

the combined CDF tt̄ production cross-section to the cross-section of SM plus new

physics for all three parameters sets show fairly good agreement with the Mtt̄ distri-

bution measured by CDF II, and given our comments above, it probably may yield

even better agreement. Thus we insured that, for the parameters chosen, both the

total and the differential cross sections are consistent with the data. Note, however,

the slight enhancement of the differential cross section in the Unconstrained set for

Mtt̄ > 500 GeV, due to low MZR
= 734 GeV for Models A and B. The increase is

shifted and (not seen due to an uneven bin choice) for the Unconstrained set of the

Manifest model, where MZR
= 837 GeV.
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Figure 28: tt̄ invariant mass distribution of differential cross section in Manifest LR

model (upper panel), Model A (lower left panel) and Model B (lower right panel)

in comparison with CDF II 5.3 fb−1 data. The parameter sets (Set I, Set II and

Unconstrained Set) for each model are given in Table 4.

We proceed next by examining the asymmetry in the production and decays of

the tt̄ system. The forward-backward asymmetry of top quark pairs (Att̄
FB) in pp̄

collisions is seen as a precision test of the SM. The tt̄ pair production in SM at the

lowest order is symmetric under charge conjugation. At NLO, the interference of

QCD processes involving initial and final state gluon emission qq̄ → tt̄g and qg → tt̄q

will exhibit a small forward-backward asymmetry. The NLO calculations in the SM

yield an asymmetry due to virtual corrections arising from interference effects, which
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are opposite in sign and larger than the real emission component.

The forward-backward asymmetry is defined in terms of top quark rapidities as

AFB =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
, (5.5)

where ∆y = yt−yt̄ is the difference of top and anti-top rapidities and N is the number

of events in the forward (∆y > 0) and backward (∆y < 0) regions. While the cross

sections measured by CDF and DØ agree with the SM expectations, the measured

asymmetries deviate from the NLO SM calculation, by as much as 50% in the large

Mtt̄ invariant mass bin. It is the challenge of any new BSM to generate the asymmetry

without disturbing the cross section; it is our intention to verify if this is possible for

a realistic left-right model.

We proceed as follows. Since the kinematical cuts in Tevatron analysis are very

restrictive, we generate 5 million signal events in order to minimize the statistical

errors. We generate events with CalcHEP 3.1 [97] using CTEQ6M PDFs. The factor-

ization and renormalization scales µF = µR = mt are used, and we take the top quark

mass mt = 172.5 GeV. We use Pythia 6.4.18 [188] for showering and PGS 4 [189]

for jet reconstruction, b-tagging and a rough detector simulation.

p

p̄

V 0
µ

t

t̄

b

b̄

V ±µ

V ±µ

q

q̄

l

ν̄

Figure 29: tt̄ production and decay topology in hadronic and semileptonic events. V 0
µ

represents neutral gauge bosons γ, g, Z, ZR and V ±
µ the charged ones, W±

L ,W
±
R . The

diagram with the top quark decaying hadronically is shown but both possibilities are

included.

We start the analysis by producing the tt̄ pair, then decaying top quarks semilep-

tonically and hadronically. We concentrate our analysis on the lepton+jets topology,

where one top quark decays semileptonically (t → blν) and the other hadronically
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(t→ bqq̄′), as in Figure 29. We select events with one single lepton (electron or muon)

plus missing energy to account for the associated neutrino and a minimum of 4 jets

with one jet b-tagged and with the following kinematical cuts,

|ηl| < 1 , |ηj| < 2 ,

plT > 20 GeV , pjT > 20 GeV ,

/ET ≥ 20 GeV , |ηb| < 1 , (5.6)

where l, j, b denote lepton (e, µ), jet (u, d, c, s) and b-quark parameters, respectively.

The jets are reconstructed using a cone algorithm with ∆R =
√

∆φ2 +∆η2 < 0.4.

Here b−jets, tagged with the loose SECVTX algorithm, are restricted to |ηb| < 1.

We used the default b-tagging efficiency and functions for Tevatron given in PGS 4.

The efficiency of the signal to pass through the cuts (after showering, clustering and

detector simulations) allows only 2% signal events to survive the kinematical cuts to

yield the forward-backward asymmetries.

The number of events are scaled to the NNLO cross sections using the standard

K-factor for the Tevatron. We have calculated left-right contribution at the LO

(including the LO SM, LR and the interference between the two) to the asymmetries.

We have listed asymmetries obtained for the four different regions, for all models

studied in Table 6. The first two rows are parton level asymmetries, the first row

obtained by unfolding the CDF data and the second for the MCFM. The remaining

rows compare the CDF signal data to our various models2. As it is seen from the

Table 6, the LO left-right contributions to the asymmetries are relatively small. The

results might have been enhanced if the left-right contributions were calculated at the

NLO which is beyond the scope of this work. We have chosen to compare our results,

simulated to the final states, with the CDF signal. The reason is that the errors in

the signal results are much smaller than the ones evolved to parton level, and thus

this comparison gives a better measure of the deviation of our results from the data.

We include a reduced χ2 analysis as a measure of how well the models perform.

It is apparent from Table 6 that, while the models yield a slightly enhanced

forward-backward asymmetry in one region, and others in different regions, none

of the phenomenologically viable LR models can reproduce large enough anomaly

seen at the Tevatron. The results for the benchmark points chosen for Manifest,

2In fact, the signal level data for the regions |∆y| ≥ 1 or |∆y| ≤ 1 are not presented in [105]. So,
we have used the data-level values including the background.
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Model A and Model B are however fairly consistent in the both sign and size of the

anomaly. Moreover the asymmetry seems to depend sensitively on MWR
and on the

ratio gR/gL, but to a lesser extent on sinα, the measure of flavor violation in the

right-quark sector. From our previous investigations of the parameter space we know

that MWR
and gR/gL are closely correlated, as a decrease or increase in one forces

a decrease or increase in the other to satisfy low energy constraints. We are thus

confident that results the sets chosen are a true indication LR model predictions. As

sets I and II represent very different regions of the parameter space, and different

variants of the model, this is further confirmation that our results are robust and do

not depend on the specific points chosen in the parameter space of the LR model.

One can obtain higher asymmetries (consistent with the data) in a LR model not

subjected to experimental constraints (last three rows in Table 6), as indeed is the

case for models constructed specifically to explain the asymmetry.

Att̄
FB Att̄

FB Att̄
FB Att̄

FB χ2
red

|∆y| < 1 |∆y| ≥ 1 Mtt̄ < 450 GeV Mtt̄ ≥ 450 GeV (4 d.o.f.)

CDF(parton-level) 0.026 ± 0.118 0.611± 0.256 −0.116± 0.153 0.475± 0.114

MCFM(parton-level) 0.039 ± 0.006 0.123± 0.008 0.040± 0.006 0.088± 0.013

CDF(signal-level) 0.021 ± 0.031 0.208± 0.062 −0.022± 0.043 0.266± 0.062

LR

Manifest-I 0.0025 0.0174 0.0030 0.0086 6.8

Manifest-II 0.0098 0.0162 0.0091 0.0137 6.7

Model A-I 0.0063 0.0143 0.0065 0.0096 6.9

Model A-II 0.0043 0.0131 0.0051 0.0072 7.0

Model B-I 0.0077 0.0121 0.0062 0.0118 6.9

Model B-II 0.0035 0.0038 0.0029 0.0044 7.3

Uncons.

LR

Manifest 0.0065 0.0280 0.0024 0.0222 6.1

Model A 0.0532 0.2400 0.0078 0.1832 0.9

Model B 0.0444 0.2189 −0.0084 0.1751 0.7

Table 6: The Forward-Backward Asymmetry at the Tevatron in the SM, and in LR

models: Manifest, Model A and Model B, compared with the CDF data. We include,

in the first two rows, the unfolded CDF results and the MCFM calculation.Parameter

sets (Set I, Set II and Unconstrained) for each model are given in the Table 4.

We proceed to investigate the features of the signal in LR models. In Figure

30 we show the distributions of rapidity differences ∆y in the upper row, and top

quark rapidity yt in lower row, for three different LR models. In order to generate a

large asymmetry in the high invariant mass bin, the rapidity must be increased and
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skewed significantly with respect to the SM distribution. Additional high mass gauge

bosons could sometimes produce this effect. We show the Manifest model (left panel),

Model A (middle panel) and Model B (right panel) with Set I (blue) Set II (green)

the Unconstrained (red) and the SM (black) in each panel. We did not perform a

global fit to the data, as our results do not agree with the CDF measurements. The

Unconstrained Set shows only modest increases with respect to the other models.

The results are however consistent among the different models obeying low energy

constraints, and parameters sets chosen, at least making the left-right model very

predictable.
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Figure 30: ∆y(upper row) and yt(lower row) distributions in Manifest LR model

(left panel), Model A (middle panel) and Model B (right panel) at the Tevatron.

Parameter sets (Set I, Set II and Unconstrained) for each model are given in the

Table 4.

In Figure 31 we give invariant mass distributions in Pythia of LR models at

the Tevatron, for the Manifest LR model (left panel), Model A (middle panel) and
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Model B (right panel). The number of events are scaled to NNLO cross sections with

standard K-factor. Comparison with the SM expectations again shows consistency.

Both this figure and the previous one show that realistic LR models, which obey

low-energy constraints, cannot yield the measured CDF asymmetry. The Uncon-

strained model shows an increase in the differential cross section, corresponding to

a ZR peak around 734 GeV in Models A and B, and a less pronounced one at 837

GeV in the Manifest left-right case. These are close to the experimental limit at the

Tevatron and the first two are likely already ruled out. Changing the ratio gR/gL

and lowering the WR mass may be able to achieve consistency of left-right models

with the asymmetry data, but these models do not satisfy other phenomenological

constraints and are thus unrealistic.
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Figure 31: tt̄ invariant mass distributions at the Tevatron in Manifest LR model (left

panel), Model A (middle panel) and Model B (right panel) in comparison with the

SM. Parameter sets (Set I, Set II and Unconstrained) of each model are given in the

Table 4.

5.2 tt̄ Cross Section and Forward-Central Charge

Asymmetries at the LHC

As the Tevatron results show interesting discrepancies with the SM expectation, it

is important to evaluate the asymmetries and cross sections for tt̄ production at the

LHC. Naturally one might ask is such a pursuit is worthwhile, as we have shown

in the previous section that the model cannot explain the Tevatron asymmetries.

The large forward-backward asymmetry at the Tevatron, although an exciting signal
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for new physics, may not arise from new interactions or new particles. It could

arise from a kinematical enhancement of the tt̄ pair, or from a hidden sector. Even

the experimental situation at the Tevatron is not yet clear, as the errors on the

measurements are significant; also the CDF results show a strong mass dependence of

the asymmetry not confirmed by the DØ measurements. At LHC different production

mechanisms dominate and other asymmetries are at play. Measurements of the charge

asymmetry at CMS and ATLAS at the LHC (which appear to be small and negative,

though perhaps the uncertainties are too large to make a firm statement) are hard to

reconcile with the Tevatron results. Predictions for both colliders are important to

understand the dynamics of different gauge symmetries and their effect on different

asymmetries. This is particularly interesting for our model, which can reproduce the

Tevatron cross section but not the asymmetry. The natural question is: what is the

prediction for the LHC? While the Tevatron has collected about a thousand tops, the

LHC, even with L = 1 fb−1 has amassed almost an order of magnitude more, making

the errors in the production cross section at
√
s = 7 TeV already competitive with

those at the Tevatron with L = 5.3 pb−1, while the invariant mass Mtt̄ investigated

extends to 2.5 TeV (with 200 pb−1), versus 1.8 TeV for the Tevatron. LHC will

provide measurements of top quark properties, shedding light on models on NP and

electroweak symmetry breaking. Agreement or disagreement with this data would

open (or perhaps narrow) questions about the validity or restrictions of the model.

For example, the CMS Collaboration has recently presented the first measurement of

charge asymmetry in tt̄ production [190]

Aη
C = − 0.016± 0.030(stat)+0.010

−0.019(syst) ,

Ay
C = − 0.013± 0.026(stat)+0.026

−0.021(syst) . (5.7)

The first one based on pseudo-rapidities (η), the second on the rapidity (y) of the two

top quarks, while the combined (e+ jets and µ+ jets channels) ATLAS [191] result

is

AC = −0.024± 0.016(stat)± 0.023(syst) . (5.8)

As seen, the result has so far large statistical uncertainties, but this uncertainty is

expected to decrease with more data, while the systematic one will improve with

improved detector simulation.
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The Tevatron, however, is a better machine for measuring the forward-backward

asymmetry. At the Tevatron, the forward-backward asymmetry measures the ten-

dency of the top quark (in the tt̄ pair) to move along the direction of the incoming

quark rather than along the direction of the incoming anti-quark. At LHC, the mea-

surement of any asymmetry is very subtile. Its charge-symmetric initial state (pp, or

the dominant gg, qq partonic level channels) does not provide a framework to differen-

tiate between initial partons in the tt̄ production. To define an asymmetry one must

rely on sub-leading contributions to the tt̄ production cross section from qq̄ and qg,

with different partons in the initial state. In this case, the forward backward asymme-

try represents a charge asymmetry in the decay qq̄, qg → tt̄+X [162,170–175], though

several other types of asymmetries have been defined [192] and used to discriminate

between BSM models.

We proceed to analyze the properties of the left-right model in top pair production

and decays. We evaluate the tt̄ production at the LHC following the same procedure

used in the previous section to analyze the signal at the Tevatron. First, we esti-

mate the total and differential cross section for tt̄ production for the models under

investigation, then we proceed to define and analyze the charge asymmetry.

At the LHC, the tt̄ production is dominated by gluon fusion in pp collisions. In our

calculation we implement the models in CalcHEP 3.1 for the evaluation of production

cross sections at LO level. We normalize the cross sections to NNLO using the NNLO

K-factor (K = 1.6 for LHC) and we present them in Table 7 for both
√
s = 7 TeV and

√
s = 14 TeV, for the same parameter sets and models as discussed in the previous

section and given explicitly in Table 4. While the SM and Manifest LR model are

completely consistent for both Set I and Set II parameters, Models A and B predict

a slightly smaller (about 8%) production cross section (but consistent for both Set I

and II), all of which agree with the measured value (including errors) at ATLAS at
√
s = 7 TeV [193] and with the SM predictions at NNLO [184–186],

σATLAS
tt̄ = 145± 31+42

−27 pb ,

σNNLO
tt̄ = 150 pb , (5.9)

while the prediction for the cross section in the SM at NNLO at
√
s = 14 TeV is

σNNLO
tt̄ = 919± 4 pb [184–186]. A complete analysis of the production cross section

should include subsequent decays of the top quark, as only a detailed analysis would
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be able to conclude if one can distinguish various scenarios. We present below some

details of our analysis.

σSM(7 TeV)(pb) 167± 0.17

σSM(14 TeV)(pb) 921± 1.20

Set I Set II Uncons.

σMan(7 TeV)(pb) 168± 0.23 168± 0.20 169± 0.19

σModA(7 TeV)(pb) 168± 0.12 168± 0.14 179± 0.11

σModB(7 TeV)(pb) 168± 0.15 168± 0.12 178± 0.10

σMan(14 TeV)(pb) 924± 1.99 923± 2.30 926± 1.41

σModA(14 TeV)(pb) 922± 1.33 921± 1.46 967± 1.82

σModB(14 TeV)(pb) 919± 1.31 921± 1.04 962± 1.52

Table 7: tt̄ production cross-sections at the LHC for both
√
s = 7 TeV and

√
s = 14

TeV.

In Figure 32 we show the number of events in the invariant mass distributions for

tt̄ obtained after imposing detector cuts and passing through the detector simulation,

in the Manifest LR model (left panel), Model A (middle panel) and Model B (right

panel) at the LHC with
√
s = 7 TeV (upper row) and

√
s = 14 TeV (lower row),

where we distinguish between Sets I, II, Unconstrained and the SM as before. These

events are then used to evaluate the charge asymmetries at the LHC. The events

generated are consistent among the models studied, and show a modest bump for the

unconstrained model corresponding the the ZR resonance production. It is evident

from the figure that the Mtt̄ invariant mass distribution for all models chosen is the

same, and indistinguishable from the one in the SM. The important distinction lies in

the possible discovery of a Z ′ = ZR boson, which in the Manifest LR model Set I has

a mass of 1200 GeV, as well as the ones around 730-830 GeV for the Unconstrained

sets (depending on the model considered). These appear as a resonance bump in tt̄

production. For the Set I and Set II of Model A and Model B, the resonances are

heavier and out of the Mtt̄ range presented.
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Figure 32: Events in the tt̄ invariant mass distributions at LHC in MLRSM (left

panel), Model A (middle panel) and Model B (right panel) in comparison with the

SM. Top row shows the distribution for
√
s = 7 TeV, the bottom row is for

√
s = 14

TeV. Parameter sets (Set I, Set II and Unconstrained) for each model are given in

the Table 4.

We proceed to the evaluation of the asymmetries at the LHC. As previously men-

tioned, due to the pp initial state, tt̄ asymmetries at the LHC can be defined as forward

and central charge asymmetries. The division of top quark rapidity yt between forward

and central regions of the detector distinguishes the two asymmetries. The separation

parameter y0 defines the forward |yt| > y0 and central |yt| < y0 regions of the detector.

As an optimum choice of separation parameter we use y0 = 1.5 [162, 170–175]. We

define the forward charge asymmetry by

AF (y0) =
Nt(y0 < |y| < 2.5)−Nt̄(y0 < |y| < 2.5)

Nt(y0 < |y| < 2.5) +Nt̄(y0 < |y| < 2.5)
, (5.10)
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and the central charge asymmetry by

AC(y0) =
Nt(|y| < y0)−Nt̄(|y| < y0)

Nt(|y| < y0) +Nt̄(|y| < y0)
, (5.11)

where Nt(t̄) represent the number of top (anti-top) quarks with given asymmetry.

To calculate the asymmetries, we used the same procedure as in the case of the

Tevatron, employing CalcHEP-Pythia-PGS for event generation, parton showering,

jet reconstruction and detector simulation. For the analysis we used the same lepton+

jets topology with one semileptonic and one hadronic top decays. We proceed by

selecting single lepton events with an associated neutrino and a minimum 2 jets with

at least one b-quark tagged. We imposed the following kinematical cuts for event

selection at the LHC (using the same symbols as before)

|ηl| < 2.5 , |ηj| < 2 ,

plT > 15 GeV , pjT > 20 GeV ,

/ET ≥ 20 GeV , |ηb| < 1 . (5.12)

The jets are reconstructed using a cone algorithm with ∆R =
√

∆φ2 +∆η2 < 0.5.

Here again b− jets, tagged with the loose SECVTX algorithm, are restricted to |ηb| <
1. Please note that b-tagging efficiency and functions given in PGS 4 are based on

Tevatron parameters. Thus we follow the procedure given in [194] to update the

b-tagging functions according to the Equation (2) of [194]. In the LHC analysis

jet events are much more energetic due to the high center of mass energy of the

collision, and thus the jet reconstruction algorithm in PGS 4 consumes huge amount

of computing time. Since the kinematical cuts are fairly relaxed in the LHC case,

we have chosen lesser amount of events (2 × 105) simulated for every asymmetry

evaluation with reasonable statistical errors. After imposing all the detector cuts, the

asymmetries are calculated using the 10% signal events surviving. The calculation

for the LHC asymmetry in the SM as well as LR models is based on simulating events

normalized to the cross sections at NNLO level by using the standard K-factor. The

results are shown in Table 8. The asymmetries are very small, and the asymmetries in

LR models can have different signs than in the SM, although unfortunately this seems

highly parameter-dependent. At this point, these asymmetries appear consistent (of

the same size) with the ATLAS and CMS measurements and most tend to be small

and negative. To make a more definite statement, one must wait for more precise
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experimental data. The LHC results are obtained over the whole rapidity parameter

values, while our results are divided into regions for better understanding of model

dynamics. The experimental results have large uncertainties, making them not yet

very predictable; a higher luminosity might change that. The charge asymmetry

changes sign when measured in the forward region from the one measured in the

central region of the detector in both SM and LR models.

Att̄
C(7 TeV) Att̄

F (7 TeV) Att̄
C(14 TeV) Att̄

F (14 TeV)

0 < |y| < 1.5 1.5 ≤ |y| < 2.5 0 < |y| < 1.5 1.5 ≤ |y| < 2.5

SM −0.0024 0.0157 0.0011 −0.0028

LR

Manifest-I −0.0014 0.0097 −0.0035 0.0050

Manifest-II 0.0013 −0.0091 −0.0031 0.0133

Model A-I −0.0045 0.0236 0.0002 −0.0035

Model A-II −0.0020 0.0127 0.0033 −0.0234
Model B-I 0.0021 −0.0142 −0.0002 0.0003

Model B-II −0.0001 −0.0038 −0.0053 0.0179

Uncons

LR

Manifest −0.0013 0.0063 −0.0084 0.0260

ModelA −0.0117 0.0650 −0.0063 0.0217

ModelB −0.0087 0.0469 −0.0075 0.0158

Table 8: Forward and Central Charge Asymmetries at LHC. Parameter sets (Set I,

Set II and Unconstrained) for each model are given in Table 4.

In Figures 33 and 34 we show the top and anti-top rapidity distributions in LR

models at the LHC for
√
s = 7 TeV and

√
s = 14 TeV, in Manifest LR model (left

panel), Model A (middle panel) and Model B (right panel). Parameter sets (Set I,

Set II and Unconstrained) for each model are distinguished (by blue, green and red

curves). The SM distributions are given by black curves. These figures should be

compared to Figure 30 from the Tevatron section. By comparison, the LHC asym-

metries are even more dominated by events at, or near zero charge asymmetry for

both top and anti-top quarks and do not show measurable deviations in LR models.

Thus a significant charge asymmetry for top or anti-top quarks at the LHC would

be indicative of BSM scenarios other than left-right models. It may be difficult to

use the charge asymmetry to distinguish between various models, even those which
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predict large asymmetries at the Tevatron, as a comprehensive analysis of their pre-

dictions at the LHC shows that they seem to be small, though some models may

differ when evaluated at high invariant masses, which are especially sensitive to the

qq̄ contribution [195].
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Figure 33: Top (upper row) and anti-top (lower row) rapidity distributions in Manifest

LR model (left panel), Model A (middle panel) and Model B (right panel) at LHC

(
√
s = 7 TeV). The parameter sets (Set I, Set II and Unconstrained) for each model

are given in Table 4.
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Figure 34: Top (upper row) and anti-top (lower row) rapidity distributions in Manifest

LR model (left panel), Model A (middle panel) and Model B (right panel) at LHC

(
√
s = 14 TeV). The parameter sets (Set I, Set II and Unconstrained) for each model

are given in Table 4.

5.3 Summary

The observation of a large forward-backward asymmetry in tt̄ production at the Teva-

tron offers tantalizing signals of BSM physics. For large rapidities and large invariant

tt̄ mass distributions, the measurements deviate by 3σ or more from the SM expec-

tations. This seems to indicate that the phenomenology of the top quark, which has

a mass of the order of electroweak symmetry breaking, may offer a window into new

much anticipated BSM. Several models have been produced specifically to deal with

the measurements. Though instructive, they seems like a band-aid solution. In addi-

tion, recent investigation of whether the increase in the asymmetry at large invariant

massMtt̄ can be accounted for by a tree-level scalar exchange indicates that the range
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of models who remain consistent with other top-related measurements, flavor viola-

tion constraints, electroweak precision measurements and collider data, is far more

restricted than initially thought. There are at present other measurements which in-

dicate deviations from the SM, which are not explained by most of the ad-hoc models

that provide a fix for the forward- backward asymmetry.

One can then ask, what about the BSM scenarios favored on theoretical grounds,

and already analyzed and subjected to relevant phenomenological and experimental

tests. In this work, we analyzed the left-right model, in fact a general version of

this model, where left and right coupling constants are not equal, and the quark

mixing matrices in the left and right sectors are unrelated. The model is subjected to

constraints coming from meson mixing (K0− K̄0, B0
d− B̄0

d and B0
s − B̄0

s ) and b→ sγ.

The production of WR has been previously studied in this model and limits on the

masses, coupling constants and right-handed quark mixing have been included. It is

worthwhile to ask whether such a model can explain the deviation of the predicted

asymmetry from the observed one at the Tevatron. The LR model has the features

desired for a resolution: a WR in the t-channel which can be responsible for the

asymmetry, and a heavier ZR in the s-channel, which may affect the observed cross

section.

Our comprehensive analysis shows that, if the cross section agrees with the SM

model one, as confirmed by the CDF data, the model is not able to generate sufficient

asymmetry at the Tevatron to explain the observed discrepancy. We should add that

this result survives variations in coupling constants, boson masses and right-handed

CKM mass mixing parameters in the allowed parameter space determined by low-

energy data. Relaxing these constraints would definitely yield bigger asymmetries

and would provide large enough asymmetries to agree with the Tevatron data, as the

Unconstrained version of LR models shows. This model is thus unlike models which

explain the asymmetry through exchange of a lightW ′ in the t-channel, coupling with

a large coupling to only the t−d quark sector, and which requires additional fermions

for anomaly cancellation.

We analyze the tt̄ cross section and asymmetries at the LHC. The cross section

agrees with the one predicted by SM and measured at
√
s = 7 TeV. One would expect

to see the ZR resonance for increased center of mass energy: so far, the indications

are negative, pushing the Z ′ mass into the TeV range (although the precise values
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depend on the model and parameters chosen). It is also likely that the LHC, looking

for top jet resonances, would either validate or rule out at > 3σ level any extra Z ′ or

W ′ models which can reproduce the Tevatron asymmetry. The left-right models pre-

dict a negligible charge asymmetry (the relevant defined parameter at the LHC), in

either forward or central regions, at both
√
s = 7 and 14 TeV. The predictions for the

asymmetry are not even well-defined in sign, but the LR models are consistent with

the SM predictions and so far, with the experimental results form ATLAS and CMS.

The forward and central charge asymmetry have opposite signs. The arbitrariness

in sign is unfortunate as it was shown that a definite positive (central-value) charge

asymmetry at the LHC would strengthen the Tevatron results, while a definite nega-

tive (central-value) asymmetry would be unexpected and its explanation conflict with

models that pass the Tevatron requirements [195]. One can draw two conclusions.

One is that while the LR models predictions for the cross sections at the Tevatron

and LHC and the asymmetry at LHC agree with the experimental data, these models

cannot provide an explanation for the observed Tevatron forward-backward asymme-

try. We can ascertain this with confidence, as it is valid for a large region of the

parameter space and is valid independent of whether we chose Manifest, Model A or

Model B. The questions still remain: are the Tevatron and LHC results inconsistent

with each other (this will become clear with more precise LHC data), and what is the

origin of the large forward-backward asymmetry. The second conclusion is that, while

predictions for charge and forward-backward asymmetries are important in compar-

ing models to experimental data, they are not good indicators of left-right models

because they are very small. A more promising alternative would be to search for

WR bosons, predicted to be lighter than ZR; measuring top quark polarization which

could indicate right-handed physics; and measuring left-right, rather than forward-

backward, asymmetries. These tests are beyond the scope of this work and will be

presented elsewhere.

There is however another issue that arises. Except for the ad-hoc models (some

of which are already ruled out by a more careful analysis), it appears likely that

none of the better-known BSM scenarios can produce such large asymmetries. Should

negative asymmetries survive at LHC, consistency with Tevatron measurements would

be challenging and demonstrate that top quark physics has subtleties not fully yet

understood. Should asymmetries at the LHC be found to be small and positive, the
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challenge would be in how to understand their enhancement in pp̄ but not pp (within

normal expectations of symmetries in pp initial states). But before measurements,

one must know what results to expect from established BSM scenarios. As many such

scenarios are plagued by uncertainties due to a large parameter space, a clear result

is important, as it would restrict BSM possibilities.
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Chapter 6

CONCLUSION AND OUTLOOK

In this thesis we have studied the basics of left right symmetry in an asymmetric

class of SU(2)L× SU(2)R×U(1)B−L models. Focusing on the model with a particu-

lar choice of CKM matrix in the right-handed quark sector, we first investigated the

allowed parameter space of the model by imposing well-known and accurately ob-

served low energy phenomenology of B-meson mixing (B0
d ,B

0
s ) and b→ sγ transition.

We followed an asymmetric parametrization of the RCKM quark mixing matrix where

an arbitrary mixing between either second and third generations (scenario A with UA

mixing) or first and third generations (scenario B with UB mixing) are allowed. Using

various high-energy software packages for analytical and numerical evaluations, we set

constraints on the RCKM matrix element (sinα), WR mass (MWR
), gauge couplings

ratio (gR/gL), electroweak scale VEVs ratio (tan β) and charged Higgs mass (MH±).

We found that these parameters are strongly correlated and while all parameters play

an important role in the b→ sγ transition, the results for B-meson mixing are prac-

tically independent of tan β. We concluded that with those stringent constraints on

model parameters, ALRSM is very predictive. We presented our results in [8].

After that, we studied the production of WR gauge boson and its consecutive

decays at the LHC with the constraints on parameter space coming from low energy

phenomenology. After investigating the single production cross section of WR gauge

boson (pp→ tWR) and branching ratios of decay channels (WR → 2X) at the LHC,

we analyzed the WR production signal as a resonance in dijet mass distribution in

both Tevatron (pp̄ → t,WR → t, dijet) and LHC (pp → t,WR → t, dijet). Top

quark associated WR production has a large background from top associated WL
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production in SM, we showed that the WR signal falls below the SM background in

Tevatron which means that Tevatron is not a sufficiently powerful machine to discover

such an extra gauge boson. However, we showed that at the LHC, the WR resonance

is always above the SM background which makes the model very predictive even in

the early stages of the LHC. We published our results in [98].

Finally, we studied asymmetries in the top-anti-top pair production at both Teva-

tron and LHC in the context of ALRSM. The large discrepancy between SM prediction

and experimental observation of forward-backward asymmetry in tt̄ production at the

Tevatron offers signals of BSM physics. With this motivation, there are several mod-

els specifically built to deal with the experimental measurements. The main challenge

in these models is to enhance the forward-backward asymmetry without disturbing

the tt̄ production cross section which the SM prediction is already consistent with the

experimental measurement. Thus we first investigated the effects of ALRSM to the

forward-backward asymmetry in tt̄ production at the Tevatron, with an extra neu-

tral gauge boson (ZR) in s-channel, contributing to the production cross section and

not disturbing it by being relatively heavier, and with an extra charged gauge boson

(WR) in t-channel which can be responsible for the asymmetry. We showed that,

incorporating the low-energy constraints on model parameters and keeping the pro-

duction cross section in agreement with the CDF observation, the ALRSM is not able

to generate sufficiently large asymmetries at the Tevatron. Relaxing the constraints

on model parameters, however, provides large enough asymmetries to agree with the

Tevatron data but destroys the consistency in the cross section. We then carried out

an analysis of the measurement of tt̄ production cross section and charge asymmetries

at the LHC. We found that the cross section agrees with the one predicted by the

SM and measured at
√
s = 7 TeV and it is also consistent with the SM prediction at

√
s = 14 TeV. We noticed that it would be possible to observe a ZR resonance with

increased center of mass energy at the later stages of LHC run. However, the charge

asymmetries predicted by the model either in forward or central regions are negligibly

small which actually are consistent with the SM predictions and earlier experimental

results from ATLAS and CMS. We reported our results in [196].

More work remains to be done on WR production and decays. If we introduce a

model for neutrino decays of WR to leptons (a possible signal, with less background,

forWR), including supersymmetry, new decay modes might become available and the
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whole production-decay signals would have to be re-analyzed. A comparison between

WR in the LRSM with W ′ in other models will pinpoint characteristics of signals

and how to distinguish between models, thus offering a window into BSM gauge

symmetries. All of these would have to be pursued in the light of data becoming

available from LHC.
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Appendix A

Notations and Conventions

This Appendix specifies the notations and conventions that are used through out the

thesis. The four-vector position and momentum of a particle are

xµ = (t, ~x) , pµ = (E, ~p) (A-1)

and the four-vector derivative is

∂µ = (∂/∂t, ~∇) (A-2)

The spacetime metric is

ηµν =













−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













(A-3)

A-1 Spinors and Dirac Algebra

Fermions can either be treated as two-component Weyl spinors or four-component

Dirac or Majorana spinors. Since the Lagrangian of the Standard Model (and any

supersymmetric extension of it) violates parity, each Dirac fermion has left- and right-

handed parts with completely different electroweak interactions. If four-component

Dirac notation is preferred then left- and right-handed projection operators must also

be introduced

PL =
(1− γ5)

2
, PR =

(1 + γ5)

2
(A-4)
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The tools that are frequently used in Dirac algebra are 4× 4 gamma matrices which

are constructed from 2× 2 sigma (Pauli spin) matrices in Weyl (or Chiral) basis

γµ =

(

0 σµ

σ̄µ 0

)

, γ5 =

(

−1 0

0 1

)

(A-5)

where

σµ = (1,σ) , σ̄µ = (1,−σ) (A-6)

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

(A-7)

Some useful properties of gamma matrices

(γ0)† = γ0 , (γ0)2 = I (A-8)

(γk)† = −γk , (γk)2 = −I (A-9)

(γ5)† = γ5 , (γ5)2 = I (A-10)

(γµ)† = γ0γµγ0 (A-11)

{γ5 , γµ} = γ5 γµ + γµ γ5 = 0 (A-12)

these properties of gamma matrices also imply

(PL)
2 = PL , (PR)

2 = PR , PLPR = PRPL = 0 (A-13)

In Chiral representation, a four-component Dirac spinor is expressed in terms of 2

two-component, complex and anticommuting Weyl spinors ξ and χ† with two distinct

type of spinor indices α = 1, 2 and α̇ = 1, 2

ΨD =

(

ξα

χ†α̇

)

(A-14)

and

ΨD = Ψ†
Dγ

0 = ( χα ξ†α̇ ) (A-15)

where the field ξ is called a left-handed Weyl spinor and χ† is a right-handed Weyl

spinor because

PLΨD =

(

ξα

0

)

, PRΨD =

(

0

χ†α̇

)

(A-16)

103



Some useful properties of Weyl spinors are

ξχ ≡ ξα χα = ξα ǫαβ χ
β = −χβ ǫαβ ξ

α = χβ ǫβα ξ
α = χβ ξβ ≡ χξ (A-17)

ξ†χ† ≡ ξ†α̇ χ†
α̇ = ξ†α̇ ǫα̇β̇ χ

†β̇ = −χ†β̇ ǫα̇β̇ ξ
†α̇ = χ†β̇ ǫβ̇α̇ ξ

†α̇ = χ†β̇ ξ†
β̇
≡ χ†ξ† (A-18)

ξ†σ̄µχ ≡ ξ†α̇ σ̄
µα̇α χα = ǫα̇β̇ ξ

†β̇ σ̄µα̇α ǫαβ χ
β = −χβ ǫαβ ǫα̇β̇ σ̄

µα̇α ξ†β̇

=
1

2
χβ σν

αα̇ σνββ̇ σ̄
µα̇α ξ†β̇ = −χβ σν

αα̇ δ
µ
ν δ

α
β δ

α̇
β̇
ξ†β̇ = −χβ σµ

ββ̇
ξ†β̇

≡ −χσµξ† (A-19)

where the spinor indeces are raised and lowered by using the antisymmetric tensor

ǫαβ = −ǫβα = ǫβα = −ǫαβ and the reduction identities that are used in above equa-

tions are

σµ
αα̇ σµββ̇ = −2 ǫαβ ǫα̇β̇ (A-20)

σνββ̇ σ̄
µα̇α = −2 δµν δαβ δα̇β̇ (A-21)

With all these properties and identities, it is possible to translate four-component

Dirac language into two-component Weyl language (or vice versa) using the following

dictionary

Ψi PL Ψj = χi ξj (A-22)

Ψi PR Ψj = ξ†i χ
†
j (A-23)

Ψi γ
µ PL Ψj = ξ†i σ̄

µ ξj (A-24)

Ψi γ
µ PR Ψj = χi σ

µ χ†
j (A-25)

where the spinor indeces are suppressed and flavor or gauge indeces (i, j) are intro-

duced.

A-2 Bidoublet-Triplet Conventions And Covariant

Derivative

The nature of Left-Right symmetry leads us to use Higgs bidoublet and multiplets for

fermionic mass generation and complete symmetry breaking. The conventions that
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are used in this thesis are one Higgs bidoublet (Φ) and two Higgs triplets (∆L,∆R).

The covariant derivative of triplet fields can only be written in adjoint representation,

thus for the sake of generalization all triplet fields are converted to their bidoublet

equivalents allowing us to use only the fundamental representation for the covariant

derivative for all fields.

• Triplet forms

∆ =









∆1

∆2

∆3









=⇒ Dµ∆ = (∂µ − igǫijkWµ
j)∆k (A-26)

where the covariant derivative is in adjoint representation.

• Bidoublet form

∆ → σ ·∆√
2

=

[

∆+√
2

∆++

∆0 −∆+√
2

]

(A-27)

where the combinations of ∆1 and ∆2 form neutral ∆0 and doubly charged ∆++

fields while ∆3 remains as singly charged ∆+ field.

∆1 + i∆2

√
2

= ∆0 ,
∆1 − i∆2

√
2

= ∆++ , ∆3 = ∆+ (A-28)

and the covariant derivative in fundamental representation is

Dµ∆ = ∂µ∆− i
g

2
(σ ·W )∆ + i

g

2
∆(σ ·W ) (A-29)

The list of covariant derivates of Higgs multiplets under SU(2)L×SU(2)R×U(1)B−L

symmetry

DµΦ = ∂µΦ− i
gL
2
(σ ·WLµ)Φ + i

gR
2
Φ(σ ·WRµ) (A-30)

Dµ∆L = ∂µ∆L − i
gL
2
(σ ·WLµ)∆L + i

gL
2
∆L(σ ·WLµ)− igV B−L

2
Vµ∆L (A-31)

Dµ∆R = ∂µ∆R − i
gR
2
(σ ·WRµ)∆R + i

gR
2
∆R(σ ·WRµ)− igV B−L

2
Vµ∆R (A-32)
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Appendix B

Feynman Rules in LRSM

Some basis and shorthand notations that are used in interaction vertices are;

• Vacuum expectation values:

vi ≡ {vu, vd, vL, vR}

• Fermion masses:

Dν
i ≡ {mνe , mνµ, mντ}

De
i ≡ {me , mµ , mτ }

Du
i ≡ {mu , mc , mt }

Dd
i ≡ {md , ms , mb }

• Higgs coefficient:

NH =

(

v2u + v2d +
(v2u − v2d)2

2v2R

)−1/2

B-1 Fermion-Fermion-Gauge (FFV)

Aµ e†j

ei

−e γµδij
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Aµ u†j

ui
2e

3
γµδij

Aµ d†j

di
−e
3
γµδij

Zµ
L ν†j

νi
gL

cos θW

PL

2
γµδij

Zµ
L e†j

ei
gL

cos θW

{

−PL

2
+ sin2 θW

}

γµδij

Zµ
L u†j

ui
gL

cos θW

{

PL

2
− 2

3
sin2 θW

}

γµδij

Zµ
L d†j

di
gL

cos θW

{

−PL

2
+

1

3
sin2 θW

}

γµδij

Zµ
R ν†j

νi
gY

tanϕ

{

PR

2
+

tan2 ϕ

2

}

γµδij

Zµ
R e†j

ei
gY

tanϕ

{

−PR

2
+

tan2 ϕ

2

}

γµδij
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Zµ
R u†j

ui
gY

tanϕ

{

PR

2
− tan2 ϕ

6

}

γµδij

Zµ
R d†j

di
gY

tanϕ

{

−PR

2
− tan2 ϕ

6

}

γµδij

W µ−
L e†j

νi
gL√
2
PLγµU

L†
ij

W µ−
L d†j

ui
gL√
2
PLγµV

L†
ij

W µ−
R e†j

νi
gR√
2
PRγµU

R†
ij

W µ−
R d†j

ui
gR√
2
PRγµV

R†
ij

B-2 Fermion-Fermion-Scalar (FFS)

H+
1 e†j

νi
−i NH

cos 2β

{

(

sin 2β Dν
i U

L
ij − UR

ij D
e
j

)

PL

−
(

sin 2β De
j U

L
ij − UR

ij D
ν
j

)

PR

}
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G+
1 e†j

νi

i
gL√
2

{

Dν
i

mW1

UL
ij PL −

De
j

mW1

UR
ij PR

}

G+
2 e†j

νi

i
gR√
2

{

Dν
i

mW2

UR
ij PR −

De
j

mW2

UL
ij PL

}

H+
1 d†j

ui
−i NH

cos 2β

{

(

sin 2β Du
i V

L
ij − V R

ij D
d
j

)

PL

−
(

sin 2β Dd
j V

L
ij − V R

ij D
u
j

)

PR

}

G+
1 d†j

ui

i
gL√
2

{

Du
i

mW1

V L
ij PL −

Dd
j

mW1

V R
ij PR

}

G+
2 d†j

ui

i
gR√
2

{

Du
i

mW2

V R
ij PR −

Dd
j

mW2

V L
ij PL

}

B-3 Gauge-Scalar-Scalar (VSS)

Aµ H−
j

q

H+
i

p ie δij(p− q)µ

Aµ H−−
j

q

H++
i

p 2ie δij(p− q)µ
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Zµ
L H−

j

q

H+
i

p ie
g2L − g2Y
2gLgY

{

2
∑

k=1

(ZC)ik(ZC)
∗
jk

}

(p− q)µ

−ie gY
gL

{

4
∑

k=3

(ZC)ik(ZC)
∗
jk

}

(p− q)µ

Zµ
L H−−

j

q

H++
i

p ie
g2L − g2Y
gLgY

{

(ZD)i1(ZD)
∗
j1

}

(p− q)µ

−2ie gY
gL

{

(ZD)i2(ZD)
∗
j2

}

(p− q)µ

Zµ
R H−

j

q

H+
i

p i
√

g2R − g2Y
2

{

2
∑

k=1

(ZC)ik(ZC)
∗
jk

}

(p− q)µ

− i g2Y
√

g2R − g2Y

{

4
∑

k=3

(ZC)ik(ZC)
∗
jk

}

(p− q)µ

Zµ
R H−−

j

q

H++
i

p − i g2Y
√

g2R − g2Y

{

(ZD)i1(ZD)
∗
j1

}

(p− q)µ

+i
g2R − 2g2Y
√

g2R − g2Y

{

(ZD)i2(ZD)
∗
j2

}

(p− q)µ

W µ−
L

H0
j

q

H+
i

p
−i gL√

2

{

2
∑

k,l=1

ǫkl(ZC)ik(ZS)
∗
jl

}

(p− q)µ

+i gL

{

(ZC)i3(ZS)
∗
j3

}

(p− q)µ

W µ−
L

H−
j

q

H++
i

p

i gL

{

(ZD)i1(ZC)
∗
j3

}

(p− q)µ

W µ−
R

H0
j

q

H+
i

p
−i gR√

2

{

2
∑

k,l=1

ǫkl(ZC)ik(ZS)
∗
jl

}

(p− q)µ

+i gR

{

(ZC)i4(ZS)
∗
j4

}

(p− q)µ
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W µ−
R

H−
j

q

H++
i

p

i gR

{

(ZD)i2(ZC)
∗
j4

}

(p− q)µ

B-4 Gauge-Gauge-Scalar (VVS)

Zµ
L H0

j

Zν
L

g2L + g2Y
4

{

2
∑

k=1

(ZS)
∗
jkvk + 8(ZS)

∗
j3v3

}

gµν

Zµ
R H0

j

Zν
R

g2R − g2Y
4

{

2
∑

k=1

(ZS)
∗
jkvk

}

gµν

+

{

2g4Y
g2R − g2Y

(ZS)
∗
j3v3 +

2g4R
g2R − g2Y

(ZS)
∗
j4v4

}

gµν

Zµ
L H0

j

Zν
R

−
√

g2L + g2Y
√

g2R − g2Y
2

{

2
∑

k=1

(ZS)
∗
jkvk

}

gµν

+

{

4g2Y
√

g2L + g2Y
√

g2R − g2Y
(ZS)

∗
j3v3

}

gµν

Aµ H+
j

W ν−
L

−egL√
2

{

2
∑

k,l=1

ǫkl(ZC)
∗
jkvl − 2

√
2(ZC)

∗
j3v3

}

gµν

Aµ H+
j

W ν−
R

−egR√
2

{

2
∑

k=1

(−1)k(ZC)
∗
jkvk − 2

√
2(ZC)

∗
j4v4

}

gµν

Zµ
L H+

j

W ν−
L

egY√
2

{

2
∑

k,l=1

ǫkl(ZC)
∗
jkvl − 2

√
2(ZC)

∗
j3v3

}

gµν
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Zµ
L H+

j

W ν−
R

−egR√
2

{

gL
gY

2
∑

k=1

(−1)k(ZC)
∗
jkvk + 2

√
2
gY
gL

(ZC)
∗
j4v4

}

gµν

Zµ
R H+

j

W ν−
L

− gL√
2

{

√

g2R − g2Y
2
∑

k,l=1

ǫkl(ZC)
∗
jkvl

+
2
√
2g2Y

√

g2R − g2Y
(ZC)

∗
j3v3

}

gµν

Zµ
R H+

j

W ν−
R

−
{

2gRg
2
Y

√

g2R − g2Y
(ZC)

∗
j4v4

}

gµν

W µ−
L

H0
j

W ν+
L

g2L

{

2
∑

k=1

(ZS)
∗
jkvk + 4(ZS)

∗
j3v3

}

gµν

W µ−
R

H0
j

W ν+
R

g2R

{

2
∑

k=1

(ZS)
∗
jkvk + 4(ZS)

∗
j4v4

}

gµν

W µ−
L

H0
j

W ν+
R

−gLgR
{

2
∑

k,l=1

(−1)kǫkl(ZS)
∗
jkvl

}

gµν
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Appendix C

QCD Correction Factors for

B0
d,s − B̄0

d,s Mixing

We list here the coefficients used to calculate the NLO QCD corrections to B0
d,s− B̄0

d,s

mixing in the left-right model, in eq. (3.21). The operators Q4 and Q6 mix under

renormalization with an evolution matrix, and the respective Wilson coefficients are

calculated in the following way,

(

C4(mb)

C6(mb)

)

=

(

η11LR η12LR

η21LR η22LR

)(

C4(mt)

C6(mt),

)

(C-1)

and the NLO QCD coefficients ηi(mb) appear in Table 9.

η1 η2 η3 η5 η11LR η12LR η21LR η22LR
NLO 0.842 1.648 1.648 2.242 0.920 -0.039 -0.877 2.242

Table 9: The QCD correction parameters ηi(mb) used in (3.21).

For a detailed analysis of QCD corrections we refer to [69].
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Appendix D

4-point Passarino-Veltman

Integrals

The generic form of 4-point one-loop tensor integrals in 4d is

T µνρσ =
1

iπ2

∫

d4k kµ kν kρ kσ
4
∏

i=1

1

(k + ri)2 −m2
i

, (D-1)

where we define the denominators with the conventions of Fig. 35. The internal

p1

p2 p3

p4

k

m4

k + r1 m1

k + r2

m2

k + r3m3

Figure 35: Momentum and mass conventions used in the Passarino-Veltman for eval-
uating the box diagrams.

momenta ri are related to the external momenta through the relations,

ri =

i
∑

j=1

pj , i = 1, 2, 3

r4 =
4
∑

j=1

pj = 0. (D-2)
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For B0 − B̄0 mixing we only needed the following scalar and tensor integrals

D0 =
1

iπ2

∫

d4k

4
∏

i=1

1

(k + ri)2 −m2
i

, (D-3)

Dµ =
1

iπ2

∫

d4k kµ
4
∏

i=1

1

(k + ri)2 −m2
i

, (D-4)

Dµν =
1

iπ2

∫

d4k kµ kν
4
∏

i=1

1

(k + ri)2 −m2
i

, (D-5)

and the decomposition of tensor integrals in terms of reducible functions are;

Dµ =
3
∑

i=1

rµi Di , (D-6)

Dµν = gµν D00 +
3
∑

i,j=1

rµi r
ν
j Dij . (D-7)

In LoopTools, these coefficient functions (D0, Di, D00, Dij) are evaluated numerically,

however at the vanishing external momenta limits these functions are not well defined.

So at this point bypassing the LoopTools, we introduced the analytical expressions

for those functions in the vanishing external momenta limit,

D(p21, p
2
2, p

2
3, p

2
4, (p1 + p2)

2, (p2 + p3)
2, m2

1, m
2
2, m

2
3, m

2
4), (D-8)

where pi’s are external momenta andmi’s are internal masses. Neglecting the external

momenta, the structure of those functions might be represented as

D(0, 0, 0, 0, 0, 0, m2
1, m

2
2, m

2
3, m

2
4), (D-9)

and we will call them for simplicity D(m2
1, m

2
2, m

2
3, m

2
4). Since we only consider the

top quark contributions in the loop, those functions become D(m2
i , m

2
j , m

2
t , m

2
t ) in

which mi and mj stand for the boson masses in the loop.

The relevant integrals for B0 − B̄0 mixing are the following:
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D0(mi = mj) =
2 (1− r) + (1 + r) ln r

m4
i (r − 1)3

, (D-10)

D0(mi 6= mj) = −s ln s+ [(s− r)(r − 1)− (s− r2) ln r]
m4

i (s− r)2 (r − 1)2
, (D-11)

D1(mi = mj) = −1 + (4− 5 r) r + 2 (2 + r) r ln r

4m4
i (r − 1)4

, (D-12)

D1(mi 6= mj) =
(2 r − 1) s2 − (2 s− 1) r2

2m4
i (s− 1) (s− r)3 (r − 1)

+
(s− 1)2 [(r − 2) s+ r2] r ln r

2m4
i (s− 1)2 (s− r)3 (r − 1)2

− (r − 1)2 [(s− 2) r + s2] s ln s

2m4
i (s− 1)2 (s− r)3 (r − 1)2

, (D-13)

D2(mi = mj) = −r
2 + 4 r − 5− 2 (2 r + 1) ln r

4m4
i (r − 1)4

, (D-14)

D2(mi 6= mj) = − (r − 3) s+ r + r2

4m4
i (s− r)2 (r − 1)2

+
s2 (r − 1)3 ln s

2m4
i (s− 1)(s− r)3(r − 1)3

− [s2 + (r − 3) s r2 + r3] ln r

2m4
i (s− r)3 (r − 1)3

, (D-15)

D3(mi = mj) = −r
2 + 4 r − 5− 2 (2 r + 1) ln r

4m4
i (r − 1)4

, (D-16)

D3(mi 6= mj) = − (r − 3) s+ r + r2

4m4
i (s− r)2 (r − 1)2

+
s2 (r − 1)3 ln s

2m4
i (s− 1)(s− r)3(r − 1)3

− [s2 + (r − 3) s r2 + r3] ln r

2m4
i (s− r)3 (r − 1)3

, (D-17)
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D00(mi = mj) = −r
2 − 1− 2 r ln r

4m2
i (r − 1)3

, (D-18)

D00(mi 6= mj) = − (s− 1) s2 ln s

4m2
i (s− r)2 (r − 1)2

− r {(s− r)(r − 1) + [(r − 2) s+ r] ln r}
4m2

i (s− r)2 (r − 1)2
, (D-19)

D11(mi = mj) =
−1 + r [9− (17 r − 9) r] + 6 (r + 3) r2 ln r

18m4
i (r − 1)5

, (D-20)

D11(mi 6= mj) =
[r2 + (2 r − 3) s] r2 ln r

3m4
i (s− r)4 (r − 1)2

− {s3 + 2 (s− 2) s2 r + [3 + (s− 3) s] r2} s ln s
3m4

i (s− 1)3 (s− r)4

+
−(s+ 1) s2 + [5 + (s− 2) s] s r + [2 + (5 s− 9) s] r2

6m4
i (s− 1)2 (s− r)3 (r − 1)

, (D-21)

D12(mi = mj) =
(r − 1) [1 + (r + 10) r]− 6 (r + 1) r ln r

12m4
i (r − 1)5

, (D-22)

D12(mi 6= mj) =
2 (s2 − 3 r + 2 s r) s2 ln s

12m4
i (s− 1)2 (s− r)4

− r {2 (r − 2) s r2 + r3 + [3 + (r − 3) r] s2 ln r}
6m4

i (s− r)4 (r − 1)3

− −(r + 1) r2 + [5 + (r − 2) r] s r + [2 + (5 r − 9) r] s2

12m4
i (s− 1) (s− r)3 (r − 1)2

, (D-23)

D13(mi = mj) =
(r − 1) [1 + (r + 10)] r − 6 (r + 1) r ln r

12m4
i (r − 1)5

, (D-24)
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D13(mi 6= mj) =
2 (s2 − 3 r + 2 s r) s2 ln s

12m4
i (s− 1)2 (s− r)4

− r {2 (r − 2) s r2 + r3 + [3 + (r − 3) r] s2 ln r}
6m4

i (s− r)4 (r − 1)3

− −(r + 1) r2 + [5 + (r − 2) r] s r + [2 + (5 r − 9) r] s2

12m4
i (s− 1) (s− r)3 (r − 1)2

, (D-25)

D22(mi = mj) =
17− (r + 1) 9 r + r3 + 6 (3 r + 1) ln r

18m4
i (r − 1)5

, (D-26)

D22(mi 6= mj) =
−s3 ln s

3m4
i (s− 1) (s− r)4

+
{(r − 4) s r3 + [6 + (r − 4) r] s2 r2 − s3 + r4} ln r

3m4
i (s− r)4 (r − 1)4

+
11 s2 − 7 (s+ 1) s r + 2 [1 + (s− 5) s] r2

18m4
i (s− r)3 (r − 1)3

+
5 (s+ 1) r3 − r4

18m4
i (s− r)3 (r − 1)3

, (D-27)

D23(mi = mj) =
17− (r + 1) 9 r + r3 + 6 (3 r + 1) ln r

36m4
i (r − 1)5

, (D-28)

D23(mi 6= mj) =
−s3 ln s

6m4
i (s− 1) (s− r)4

+
{(r − 4) s r3 + [6 + (r − 4) r] s2 r2 − s3 + r4} ln r

6m4
i (s− r)4 (r − 1)4

+
11 s2 − 7 (s+ 1) s r + 2 [1 + (s− 5) s] r2

36m4
i (s− r)3 (r − 1)3

+
5 (s+ 1) r3 − r4

36m4
i (s− r)3 (r − 1)3

, (D-29)
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D33(mi = mj) =
17− (r + 1) 9 r + r3 + 6 (3 r + 1) ln r

18m4
i (r − 1)5

, (D-30)

D33(mi 6= mj) =
[(s− 1) ln r − (r − 1) ln s] s3

3m4
i (s− 1) (s− r)4 (r − 1)

− {(r − 3) s r2 + r3 + [3 + (r − 3) r] s2 r} ln r
3m4

i (s− r)3 (r − 1)4

+
11 s2 − 7 (s+ 1) s r + 2 [1 + (s− 5) s] r2

18m4
i (s− r)3 (r − 1)3

+
5 (s+ 1) r3 − r4

18m4
i (s− r)3 (r − 1)3

, (D-31)

where we define the parameters as

r =

(

mt

mi

)2

and s =

(

mj

mi

)2

. (D-32)
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