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ABSTRACT 

DEVELOPMENT OF VBI MODELS WITH VEHICLE 

ACCELERATION FOR BRIDGE-VEHICLE DYNAMIC RESPONSE 

 

Hossein Azimi, Ph.D. 

Concordia University, 2011 

 

There has been a growing interest to model and analyze the Vehicle-Bridge 

Interaction (VBI) of intricate vehicles on bridges. VBI analysis is used if the dynamic 

response of the vehicle in addition to that of the bridge is required. This is particularly 

sound in case of high-speed trains where the vehicle acceleration is a design criterion for 

passenger comfort and needs to be well predicted. 

 The main objective of this research is to establish efficient numerical procedures 

within the framework of finite element methods to solve the dynamic response of the VBI 

systems for vehicles moving with constant velocity or with acceleration. For vehicles 

with constant velocity, the dynamic condensation method is applied to reduce the vehicle 

DOFs to the VBI element. A new formulation is proposed for the mass, damping, and 

stiffness of the VBI element considering new formulation for the contact points. 

For vehicles experiencing acceleration or deceleration, external forces resulting 

from vehicle horizontal acceleration are numerically formulated in a matrix form as the 

function of vertical contact forces. By defining a new variable called acceleration 

parameter, the contact force formula is reformulated. Consequently, a new formulation 

for the VBI element containing the effect of vehicle acceleration is developed. 

The effect of shear deformation and consistent mass on the vehicle and bridge 

responses is investigated. The Timoshenko beam element is used to simulate the effect of 
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shear deformation with consistent mass including the effect of rotary mass. Results 

generally imply that all bridge responses are affected, particularly mid-span acceleration. 

A comprehensive parametric study is conducted on the model variables and their 

effects on the dynamic response of the bridge and the vehicle. The studied parameters 

include vehicle and bridge damping, frequency parameter, system mass parameter, and a 

new parameter called vehicle mass parameter. The new VBI element for vehicles 

experiencing acceleration is studied for three types of vehicle models. Results 

demonstrate the capability of the developed VBI elements in capturing several dynamic 

effects when compared to the available models, particularly for high speed vehicles. The 

new VBI models showed better predictions for the vertical contact forces, vehicle vertical 

acceleration, and the bridge mid-span deflection. 
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{ v

cN } interpolation vector only for vertical DOFs 

{ vr

cN } interpolation vector for vertical and rotational DOFs 

{ h

cN } interpolation vector only for horizontal DOFs 

{ h

cN } interpolation vector only for horizontal DOFs 

{pc} load vector as defined in Eq. A.19 

{ *

cip } equivalent loads as defined in Eq. 3.17a 

 cp̂  transformed load vector defined in Eq. 3.44 

{ *

cP } equivalent contact forces of structure  

{qc} load vector as defined in Eq. A.20 

{ *

ciq } equivalent loads as defined in Eq. 3.17b 

 cq̂  transformed load vector defined in Eq. 3.44 

r radius of gyration 

rci irregularity profile at the contact point of i
th

 wheel 

{r} vector of irregularity profile at contact points 

 *r  equivalent irregularity profile as defined in Eq. 3.18 

S speed parameter, defined in Eq. 4.8 

SP spring-damper forces 

TE  torque applied by the engine exerted on the wheel axle 

t time, or time at the beginning of time step 

tt   time at the end of the time step 

Vi total vertical force acting at i
th

 contact point of bridge 

'iV   dynamic vertical contact forces 
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 V  vector of total vertical contact forces 

v vehicle speed 

X beam global coordinate 

x beam local coordinate 
x  ratio of the local wheel location x over the beam element length L. 

 z  acceleration parameter, defined in Eq. 3.42 

  frequency parameter 

   constraint matrix 

 ud  upper-part vehicle displacement increments 

t  time increment 

  vehicle mass parameter 

  system mass parameter 

i  coefficient of friction for i
th

 wheel 

   diagonal matrix of coefficient of frictions of all wheels 

  damping coefficient 

  mass per unit length 

    geometry matrix 

 w   a partitioned geometry matrix due to DOFs of wheels 

 u  a partitioned geometry matrix due to DOFs of upper-parts 

 uu  equivalent matrix for upper part of car body, Eq. A.12 

 wu  matrix as defined in Eq. A.21 

    dimensionless matrix of equilibrium 

  vehicle driving frequency, defined in Eq. 4.6 

  bridge fundamental frequency 
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AASHTO American Association of State Highway and Transportation Officials 

AREMA  American Railway Engineering and Maintenance-of-Way Association 

DAF Dynamic Amplification Factor 

DOF Degree Of Freedom 

VBI Vehicle-Bridge Interaction 

LRFD Load and Resistance Factor Design 

FE Finite Element 

FL Flexure stiffness, Lumped mass 

FSL  Flexural plus Shear stiffness, Lumped mass 

FSCR Flexural plus Shear stiffness, Consistent-Rotary mass 

2-D two dimensional 

3-D three dimensional 
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CHAPTER 1 

 

INTRODUCTION 
 

 

 

1.1 BACKGROUND 
 

The dynamic interaction between moving vehicles and a bridge lies within the 

vast area of structural dynamics. This is a coupled, time-dependant dynamic problem. 

The vehicle and the bridge are the two subsystems interacting with each other through 

contact forces. If the vehicle speed is constant and there is no obstruction ahead, contact 

forces will be only vertical forces. However, if the vehicle experiences acceleration or 

deceleration, horizontal contact forces will be present in addition to vertical contact 

forces. The two subsystems are commonly considered as two elastic systems oscillating 

and interacting with each other. Therefore, the main dominant parameter is the natural 

frequencies of the vehicle and the bridge and also the vehicle driving frequency. The 

driving frequency is important since it governs the rate of forces acting on the two 

subsystems.  

In the design of conventional highway or railway bridges, the dynamic effects are 

considered with the well known Dynamic Amplification Factor (DAF) or impact factor. 

There are many parameters that affect the dynamic behaviour of the bridge in addition to 

its span or natural frequency. Some of these parameters include vehicle speed, weight, 

and dynamic characteristics, the state of the structure, roadway or track roughness, 

expansion joints, the type of bridge supports, and influence of secondary elements. 
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Numerical methods have been used widely to analyze bridge dynamics since they 

can incorporate complex models of bridges and vehicles. However, there is still a need 

for the development of better, more comprehensive numerical models that addresses the 

limitations of the existing models. 

 

1.2 MOTIVATION 
 

There has been much research on the analysis of bridges traversed by running 

vehicles. Appropriate simulation of the interaction of vehicles and bridges is vital in 

bridge engineering applications. Majority of the available research work is limited to a 

few vehicle models or bridge models. Such studies require the extraction of long 

equations for each vehicle or bridge model individually in every analysis. Therefore, a 

generalized model that represents the vehicle and bridge interaction will ease the analysis 

procedure.  

Majority of research in this area focused on the dynamic response of the bridge 

and not the vehicle. In this case, where only the response of the bridge is required, the 

moving vehicles are usually simplified and approximated by a number of moving loads. 

However, the vehicle response can also be of importance depending on the application 

under consideration. In the design of high-speed railways, the vehicle’s vertical 

acceleration is a design criterion concerning the passenger comfort and should be 

calculated appropriately. Moreover, a comprehensive study on the dynamic response of a 

given bridge would necessitate accounting for various sources of dynamic effects (e.g. 

effect of road roughness or rail irregularities). In such cases, a Vehicle-Bridge Interaction 
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(VBI) is required. The VBI analysis deals with those types of analysis where the response 

of both the vehicles and the bridge is simulated. 

One of the most efficient methods of the vehicle-bridge interaction analysis is to 

adopt the dynamic condensation method and to condense the effect of running vehicles 

into the bridge equations. One of these methods involves the application of VBI elements 

referring to bridge beam elements (or other types of elements such as shell elements) that 

are in direct contact with one or more wheels of the running vehicles. Other bridge 

elements are treated as regular beam elements. In spite of the available models in this 

area, there is still a need to develop upgraded models that addresses shortcomings of 

available models; in particular, for the case of vehicles with acceleration or deceleration. 

  

1.3 OBJECTIVE AND SCOPE 
  

The main objective of this thesis is to establish efficient procedures within the 

framework of Finite Element Method (FEM) for solving the dynamic response of the 

VBI problems for various vehicle operating conditions. The formulation of these models 

will be kept as general as possible, so that they can be applied to most practical 

applications, while identifying the effect of various parameters on the response of 

vehicles and the bridge. 

In order to achieve the thesis objective, the scope of the research is to: 

1. Develop a modified VBI element for vehicles moving with constant velocity 

where the longitudinal acceleration is zero.  

2. Develop a VBI element for vehicles moving with acceleration or deceleration. In 

this case, horizontal longitudinal forces exist which necessitates new formulation. 
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3. Verify the validity of the developed VBI elements numerically by using other 

models and results available in literature. 

4. Investigate the significances of the developed VBI elements and identify the 

response parameters that could be particularly captured. 

5. Study the effect of important parameters and model variables on the VBI analysis 

response, and also indicate the sensitivity of the bridge/vehicle important 

responses. The emphasis will be on assessing the key responses that would 

influence the design of bridge structures or bridge components (e.g. track 

structure of railway bridges). The studied key responses are: bridge mid-span 

deflection, bridge mid-span acceleration, and vehicle’s vertical acceleration. The 

parameters and variables included in modeling are shear deformation, consistent 

mass, bridge and vehicle damping ratios, frequency parameter, system mass 

parameter, and a newly proposed parameter called vehicle mass parameter. 

 

1.4 OUTLINE OF THE THESIS 

 

The thesis is organized in six chapters as follows: 

 Chapter two presents a review of previous work in the analysis of vehicle-bridge 

interaction, and the modeling of the vehicle and bridge. 

 Chapter three includes the development of two VBI elements; one for vehicles 

moving with constant velocity, and another for vehicles with acceleration. This 

chapter also includes verification models to validate the developed VBI elements 

and the coded MATLAB program. 
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 Chapter four investigates the effect of shear deformation and consistent mass of the 

bridge modeling on the response of the vehicle and the bridge. 

 Chapter five compares the results of new VBI elements with available models in 

literature. It also includes a parametric study of important model variables in the 

VBI analysis. 

 Chapter six presents the important outcomes and conclusions of this thesis and 

recommendations for future work. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 

 

 

2.1 INTRODUCTION 
 

  

Research efforts in the area of studying the dynamic response of bridges subjected 

to moving vehicles experienced two distinguished phases. The application of digital 

computers can be considered as the separation limit of these two phases. Before the 

application of computers, methods were analytical, simplified or approximate in order to 

analyze simple and fundamental problems. As the simplified analysis of the early 

research efforts is not applicable in the analysis of complex VBI problems, this literature 

review will be focusing mostly on the relatively recent research. If required, an 

exhaustive literature review on the vehicle-bridge dynamics can be consulted in Yang et 

al. (2004).  

The availability of digital computers assisted researchers to consider more 

realistic vehicle and bridge models in the analysis. Early studies conducted by 

Timoshenko and Young (1955) and later by Biggs (1964) focused only on the moving 

load analysis of the bridge. More studies on the moving load analysis were performed by 

Frýba (1972). The dynamics of railway bridges were later studied comprehensively by 

Garg and Dukkipati (1984) and Frýba (1996). Nowadays, researchers can model and 

analyze the vehicle-bridge interaction phenomenon with almost no limitation in the 

bridge or vehicle models. However, the majority of the research is focused on the bridge 

response not the vehicle response. 
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2.2 VEHICLE MODELING 
 

Various types of vehicle modeling can be selected depending on the application 

required. Vehicle modeling has a significant effect on the amount of the analysis time and 

effort involved, and should be chosen carefully.  

 

2.2.1 Moving Load Models 

The simplest model that can be considered for the dynamic interaction of vehicles 

and bridges is the moving load (or moving force) model. Wheel loads or axle loads are 

simplified by constant vertical forces traversing the bridge with the velocity equal to the 

vehicle speed. Hence, the interaction between vehicle and the bridge is ignored and the 

inertia effect of the vehicle is neglected. This is an acceptable method in cases where the 

ratio of the vehicle mass to the bridge mass is small and only the response of the bridge is 

of interest (Yang et al. 2004). Moreover, this method can be used if some sources of 

dynamic effects (such as road irregularities, rail joints, bumpers, wheel flat, etc.) are not 

required to be considered in the analysis. In addition, this model could be interesting in 

cases where a closed form solution is required or in the rough assessment of the dynamic 

effects of the bridge as used by Frýba (2001) and Brady et al. (2006). 

Although the moving load method is approximate, it is the most applied in the 

analysis and design of bridges due to its simplicity. Sample of research work in this area 

includes: Frýba 1972, Wu and Dai (1987), Weaver et al. (1990), Galdos et al. (1993), 

Gbadeyan and Oni (1995), Wang (1997), Zheng et al. (1998), Rao (2000), Chen and Li 

(2000), and Dugush and Eisenberger (2002). Another reason of vast application of 

simplified methods is that the key governing parameters can be identified using closed-
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from solutions; hence, rational simple formulas can be developed for application in 

design codes (Humar and Kashif, 1993). 

 

2.2.2 Moving Mass Models 

This is the next simplest model after the moving load model used for cases where 

the ratio of the vehicle mass to the bridge mass is not small and the inertia effect of the 

vehicle may have considerable effect on the bridge response. Considerable research has 

been conducted on the development of numerical and analytical solutions for moving 

mass problems. Fourier series expansion was used by Stanišić and Hardin (1969) to 

obtain the response of a simple beam under an arbitrary number of moving masses. Ting 

et al. (1974) and Sadiku and Leipholz (1987) applied Green’s function to study the 

moving mass problem. A closed form solution was first derived by Stanišić (1985) for the 

analysis of a single mass passing a simple beam. The same closed-form moving mass 

model was applied by Akin and Mofid (1989) in an analytical-numerical approach for the 

moving mass problem of beams with various boundary conditions. 

Although the moving mass model can include the inertia effect of the moving 

vehicle, it neglects the effect of relative displacement (vehicle bouncing) between the 

vehicle and the bridge. This may have significant effect on the bridge response where the 

road roughness or rail irregularities to be included in the analysis and also for high-speed 

vehicles. In addition, the moving mass model can not be used if the response of the 

vehicle is also of importance since the vibration of the moving mass is commonly 

assumed as the contact point of the bridge surface in a no-jump algorithm. 
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2.2.3 Moving Sprung Mass Models 

The simplest model considering the effect of suspension system is the so-called 

moving sprung mass model. In this model, the moving mass model is supported by a 

spring and dashpot as shown in Fig. 2.1. This model can be used as a generic model to 

study the interaction between a vehicle and the bridge. The problem of sprung mass 

traversing a simple beam was solved by Biggs (1964) using a semi-analytical approach. 

Frýba (1972) studied different types of vehicle modeling including, moving load, moving 

mass, and moving sprung mass model. The researcher studied the main parameters and 

the effect and sensitivity of various variables in the bridge response, followed by 

developing analytical and numerical solutions. This book was revised in the second 

edition (Frýba 1999). Other studies were also carried out for the analysis of an elastic 

continuum traversed by multiple moving oscillations by Pesterev et al. (2001) and 

Pesterev et al. (2003) using a series expansion technique. 

 

2.2.4 Moving System Models 

More elaborate models compared to sprung models that consist of many DOFs are 

usually called moving system models (Majka and Hartnett, 2008). The various parts of 

the vehicle are modeled as discrete masses connected to each other by a suspension 

system. The suspension system is commonly modeled having stiffness and damping 

properties. The stiffness properties of tires and suspension system have been modeled by 

springs with linear properties; and damping properties of tires, suspension system, and air 

cushions have been modeled by linear dashpots (Genin et al., 1975; Blejwas et al., 1979; 

Genin and Chung, 1979; Humar and Kashif, 1993; Green and Cebon, 1994; Xia et al., 
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2003; Majka and Hartnett, 2008). However, nonlinear models for forces in suspension 

system were also utilized by Hwang and Nowak (1991) for trucks with numerous DOFs. 

Due to significant dynamic interaction between railway bridges and trains, 

various models have been applied to model the train. A simple model that is capable of 

including the pitching effect of the car body was adopted by Yang et al. (1999). This 

model was a 4-DOF model, three vertical and one rotational (or pitching) DOF. The car 

body was modeled as a rigid beam supported by two suspension systems (linear spring 

and dashpot), each connected to one wheel. Models including various mechanical parts of 

a train such as wheelset, bogie, and the car body with linear suspension properties have 

been used extensively (Zhang et al. 2001; Xia et al. 2001; Xia et al., 2003; Kwark et al., 

2004; Lee et al. 2006; Majka and Hartnett 2008). In North America, bogie is called wheel 

truck or simply truck. However, in order to clearly differentiate between a truck vehicle 

and the truck (or bogie), the term bogie will be used in the current thesis. 

Detailed train models are used primarily for the analysis of the vehicle-bridge 

interaction of high-speed trains. A sample of 2D train model used by Wu and Yang 

(2003) is shown in Fig. 2.2. This is a 10-DOF model composed of the vehicle body, front 

and rear bogies, and four wheels. All are assumed to be rigid bodies connected by linear 

springs and dashpots as shown. Vertical and rotational (or pitching) DOFs are considered 

for the vehicle body (or the car body) and bogies, and only vertical DOFs are adopted for 

wheels. A sample 3D vehicle model is shown in Fig. 2.3 applied by Majka and Hartnett 

(2008). Similar parts are considered for the vehicle model with additional DOFs. For the 

car body and the two bogies, a total of 5 DOFs were assumed. Two translational DOFs 

for vertical and lateral displacements and three rotational DOFs for pitching, rolling 
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(about x-axis), and yawing (about z-axis) motions were considered. For wheels, only 3 

DOFs were considered including the vertical, lateral and rolling motions. Therefore, a 

total of 27 DOFs were used to model one car of a moving train. 

 

2.3 BRIDGE MODELING 
 

Various types of bridge modeling have been adopted in the study of the vehicle-

bridge dynamics. The selection of the model depends on the analysis procedure and 

intended goals. Some of the most important models are summarized below. 

Early studies on the VBI analysis utilized the continuum models represented by 

Euler-Bernoulli beam equation. These models were used mostly for the simple span 

bridges with limited cross sectional variety. The advantage of these models, in addition to 

its simplicity, is the ability to obtain a closed-form solution. This model is still attractive 

for researchers who intend to study the VBI theoretically with closed-form equations 

(Biondi et al., 2005). Euler-Bernoulli beam has some simplifications which may not be 

acceptable in some cases; therefore, other models such as the Timoshenko beam element 

can be used which includes shear deformations and rotary inertia. 

The continuum beam models are sufficient only for simple structures. For more 

complex bridges, combined continuum-discrete models were developed. This approach 

was applied to model three-span uniform cross-section continuous bridge with internal 

hinge (Veletsos and Huang, 1970), double-I-girder bridges (Chu et al., 1979), and truss 

bridge with rigid, semi-rigid or pinned joints (Garg and Dukkipati, 1984). 

Advancements in the computational technology have provided the required tools 

to model any complex structures using the discrete methods. These methods also provide 
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good programming ability for writing computer programs in step-by-step calculations. 

Among these methods, Finite Element Method (FEM) has attracted the greatest interest 

to model various types of bridges in the majority of recent works. 

As an example of the bridge modeling using FEM, Majka and Hartnett (2008) 

introduced a three-dimensional, two-node finite beam element for a railway bridge. 

Euler-Bernoulli formulation was applied to result in an element capable of capturing the 

axial, bi-directional bending and torsional displacement. Six DOFs on each node make a 

12-DOF element sufficient to simulate different types of motions. 

  

2.3.1 Road Roughness and Rail Irregularities 

One of the essential parameters in the dynamic response of the bridge and also the 

vehicle is the road roughness (for highway bridges) or rail irregularities (for railway 

bridges). Surface profile can have different conditions depending on the initial 

construction, weather conditions, and maintenance. The surface roughness or rail 

irregularities are 3D in nature, but they are frequently modeled in 2D. For track structure 

of railway bridges, each rail can have its own irregularities independently from the other 

rail. 

 The roughness of the pavement of highway bridges is a random parameter in 

nature. It was modeled primarily by Power Spectral Density (PSD) functions. Random 

functions are generated depending on the road condition (poor to excellent) and provide a 

profile along the bridge (Hwang and Nowak, 1991; Marcondes et al., 1991; Pan and Li, 

2002; Yang and Lin, 1995). Another source of dynamic effect in highway bridges is the 

thermal expansion joints, effect of which may be included in the analysis. 
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 Most of the sources of dynamic effects in railway bridges have been summarized 

by Frýba (1996). They can be categorized into two main groups, periodic and random 

irregularities. Periodic irregularities can be described by Fourier series. These 

irregularities can generate resonance vibrations because of their periodic nature; however, 

this rarely occurs in regular railway bridges. Some of the sources of periodic irregularities 

are rail joints, wheel flats, isolated irregularities, undulated rail surface, and presence of 

cross-beams and ties. The second group of dynamic sources is random irregularities 

which are mostly due to track roughness and imperfection. Similar to road pavement, 

random rail irregularities are commonly described by PSD functions. Detailed numerical 

models are available to model various sources of dynamic effects such as wheel flat 

(Uzzal, 2008; Zhu et al., 2009; Zhu et al., 2010). 

 

2.4 METHODS OF SOLUTION FOR VEHICLE-BRIDGE 

INTERACTION (VBI) 
 

VBI analysis is called to those vehicle-bridge interaction analyses where the 

responses of both the bridge and the vehicle are calculated (Yang et al., 2004). For very 

basic and simple cases, where the moving load or moving mass models are considered 

together with basic beam models, closed-form solutions are available in literature (Frýba, 

1972; Stanišić, 1985). These solutions are approximate due to the simplifications in the 

applied loading, and they can be used only if the bridge dynamics are of interest and the 

vehicle velocity is low. However, VBI analysis should be performed when the vehicle 

response is also required or more sophisticated dynamic analyses need to be done.  
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Considering vehicle and bridge models, two sets of equations of motion are 

written, one for the vehicle and another one for the bridge. Each equation of motion is a 

second-order differential equation. These two sets of equations are coupled through the 

interaction between the two subsystems (i.e. the vehicle and the bridge). The interaction 

is exerted by contact forces which are the forces induced at the contact points between 

the wheels and the bridge surface. Since the contact points move with respect to time, the 

equations of motions are two sets of coupled time-dependent second-order differential 

equations needed to be solved simultaneously. 

All the analysis methods proposed for the VBI analysis are step-by-step dynamic 

methods. At each time step, it is required to solve a set of second order differential 

equations of motion. Methods that have been more frequently adopted in solving second-

order differential equations in VBI problems include the direct integration methods such 

as, Newmark- method (Inbanathan and Wieland, 1987; Yang and Lin, 1995), Wilson’s 

 method (Sridharan and Mallik, 1979), and fourth-order Runge–Kutta method (Chu et 

al., 1986). In addition to the direct integration schemes, the Fourier transformation 

method has also been used (Green and Cebon, 1994; Chang and Lee, 1994). 

The most important and frequently used methods for the VBI analysis can be 

classified into three main categories: Iterative Solution of Contact Forces, Modal 

Superposition, and Dynamic Condensation. 

 

2.4.1 Iterative Solution of Contact Forces 

This method can be categorized as the simplest yet the most direct approach of the 

treatment for the VBI problem. Two sets of equation of motions (one for the vehicle and 
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another one for the bridge) are coupled through the contact forces. The main idea is to 

calculate contact forces at each time step that satisfy both sets of equations of motion. 

Depending on the analysis approach, various procedures can be adopted (Hwang and 

Nowak, 1991; Green and Cebon, 1997; Yang and Fonder, 1996). For instance, one way 

of analysis is to assume initial values for the displacement of contact points at each time 

step which is usually the values calculated from the previous time step. Then, contact 

forces are calculated using the vehicle equation of motion. Using these contact forces, 

bridge equation of motion is solved and new values for contact points are obtained. The 

procedure is repeated until a convergence criterion is satisfied. 

Yang and Fonder (1996) introduced a more versatile iterative solution method. 

They divided the interaction forces exerted by running vehicle on the bridge element into 

two main categories: movement-dependent and movement-independent forces. Using the 

vehicle kinematic property at the beginning of the time step, these forces can be 

calculated. Then, the trial value for the motion of the bridge is calculated to be compared 

with the last available guess, after which, the convergence criterion is verified. If the 

convergence is not achieved, an improved trial value for the initial guess is introduced 

which can be based on two techniques: relaxation, or Aitken acceleration (Dahlquist and 

Bjorck, 2008). 

Despite the simplicity of these iterative methods, the convergence rate is likely to 

be low particularly for a series of vehicles where many contact points are involved. In 

addition, the convergence criterion is questionable and the selection of a suitable value 

may require several separate complete analyses. The VBI analysis of trains consisting of 

many cars and locomotives can be very time-consuming using simple iterative methods. 
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2.4.2 Modal Superposition 

The modal superposition technique was used by many researchers as of 1960 to 

analyze the dynamic interaction of vehicle and bridges (Frýba, 1967; Frýba, 1972; 

Richardson and Wormley, 1974; Ting and Genin, 1980; Genin et al., 1982) and still is 

being used (Xia et al. 2001 and 2003) depending on the analysis approach. After the 

construction of the bridge model, the mode shapes and modal frequencies are calculated. 

Then, only some lowest dominant bridge modes are considered to analyze the bridge 

equation of motion at each time step. Hence, the computational effort will be 

substantially reduced. Xia et al. (2001) formulated a 3D-vehicle equation of motion 

solved at each time step using Newmark- integration algorithm with =0.25. 

Despite the advantages of this method, it is not versatile to add other additional 

effects to the model, such as wheel impact and rail irregularities (in case of railway 

bridges) or road roughness (in case of highway bridges). In addition, due to the 

interaction between vehicles and the bridge considering the inertial effects of the moving 

vehicle, bridge modal characteristics are being modified since they do not remain 

constant especially for heavy vehicles such as freight trains. The change in the modal 

properties was studied by Li et al. (2003). 

 

2.4.3 Dynamic Condensation 

In general, in the dynamic condensation methods, a portion of the structure’s 

DOFs, known as 'master', are kept and the remaining DOFs, known as 'slave', are 

eliminated by relating them to the retained DOFs. In other words, these methods 

primarily reduce the order of the system by condensing the slave DOFs to the master 
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DOFs. Hence, less computational effort will be required to solve the equations of motion 

including only the master DOFs. Dynamic condensation method on the element level is 

viewed as one of the most efficient approaches in solving the VBI equations (Yang et al, 

2004). 

If only the response of the bridge is desired, all vehicle DOFs can be condensed to 

those of the bridge. Garg and Dukkipati (1984) adopted the Guyan (1965) condensation 

scheme to eliminate all vehicle DOFs. Although the vehicle response can be calculated 

from equations of slave DOFs, they are not accurate enough due to the approximations 

inherent in relating the vehicle (slave) DOFs to the bridge (master) DOFs. 

Another method was used by Yang and Lin (1995) to condense all vehicle DOFs 

on the element level in a finite element formulation. They introduced the concept of VBI 

element. Using the finite element scheme, a bridge model can be constructed by a number 

of beam elements (say, for example, Euller-Bernouli beam elements). In addition, the 

body of each railroad car was assumed to be a rigid bar and was idealized as two lumped 

masses at the two ends of the rigid bar. As shown in Fig. 2.4, the train is then simplified 

by a series of sprung mass models. Some of the beam elements are in direct contact with 

the sprung masses. These are called interaction elements or more specifically vehicle-

bridge interaction (VBI) elements with the same DOFs as the original beam elements but 

different mass, stiffness, and damping properties. A VBI element with the element length 

of l is shown in Fig. 2.5. Using an iterative dynamic condensation method, eigenvalues 

( 2 ) of the VBI elements were calculated. Then, the associated mass matrix is also 

obtained followed by the modified stiffness matrix. To calculate the damping coefficient 

of the VBI element, Rayleigh method was adopted. Since the VBI elements have the 
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same number of DOFs of other original beam elements, the overall bridge matrices are 

easily assembled using the conventional assembling methods. 

Later, Yang and Yau (1997) introduced a more advanced VBI element. They used 

the same vehicle idealization as used by Yang and Lin (1995); i.e. sprung mass units 

were applied to model the entire train. Two sets of equations were written, one for the 

sprung mass units and another one for the beam elements. The vehicle equations of 

motion were then solved by the Newmark- integration scheme at each time step. Using 

the formulation obtained by Newmark- and the concept of condensation, the vehicle 

(slave) DOFs were condensed to the associated beam (master) DOFs of the VBI 

elements. Then, the overall bridge matrices are assembled using a conventional element-

assembly process. The modified bridge equation of motion is solved using an iterative 

procedure based on Newton-Raphson algorithm until a convergence criterion is satisfied. 

Using the VBI elements, various dynamic properties of the bridge and vehicles can be 

considered in the formulation, including the rail irregularities, ballast stiffness, wheel flat, 

damping of the beam, and stiffness and damping of the vehicles. 

A more versatile method was proposed by Yang and Wu (2001) based on the 

concept of VBI elements. This method does not have the vehicle idealization as sprung 

masses and applies the real vehicle models with any complexity. At each time step, 

Newmark- method is used to solve the vehicle equation of motion which is written 

separately for in-contact and not-in-contact DOFs. In-contact DOFs are due to the wheels 

DOFs which are in direct contact with the bridge, and the rest of the vehicle DOFs are 

considered as not-in-contact. With the no-jump assumption, the contact point 

displacements are related to the wheel DOFs by a constraint relationship. Then, the 
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vertical contact forces are formulated based on the contact points. These forces are 

substituted to the beam equation of motion as external forces. Their equivalent nodal 

forces are then calculated applying suitable interpolation functions. The bridge’s overall 

matrices are assembled and the bridge equation of motion is solved by Newmark- with 

no iterations. Due to the versatility and computational advantages of this method, it has 

been widely acknowledged and used by researchers. The details of the formulation are 

presented in Appendix A. 

 

2.5 TREATMENT OF VEHICLE LONGITUDINAL 

ACCELERATION OR DECELERATION 
 

Few studies have investigated the effect of vehicle horizontal acceleration on the 

response of the vehicle and its interaction with the bridge. Yang and Wu (2001) simply 

modeled horizontal contact forces using friction coefficients multiplied by vertical 

contact forces. They used the same vertical contact forces calculated based on the 

formulation developed for vehicles with constant velocity. Ju and Lin (2007) presented a 

finite element model of vehicle-bridge interaction considering braking and acceleration. 

Their method needs iteration in each time increment and they assumed constant 

horizontal acceleration for their formulation.  

It is more common to construct the vehicle models used in VBI analysis with no 

embedded horizontal DOFs (Yang and Wu, 2001; Law and Zhu, 2005). However, few 

studies applied horizontal DOFs with linear spring-dashpot units (Ju and Lin, 2007). In 

current thesis, the VBI elements are developed for vehicle models with no horizontal 

DOFs. 
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Fig. 2.1 Sprung mass model 

 

 

 

 

 
 

Fig. 2.2 A 2D model of one car of a train (Wu and Yang, 2003) 

 

 

 

 

 

 

 
Fig. 2.3 A 3D model of one car of a train (Majka and Hartnett, 2008) 
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(a) 

 

 
(b) 

 

Fig. 2.4 Train-Bridge model: (a) a general model, (b) simplified sprung mass model 

(Yang et al., 2004) 

 

 

 

 
 

Fig. 2.5 A Vehicle-Bridge Interaction (VBI) element (Yang et al., 2004) 
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CHAPTER 3 

 

DEVELOPMENT OF 2-D NUMERICAL VEHICLE-BRIDGE 

INTERACTION ELEMENTS 
 

 

 

3.1 INTRODUCTION 
 

 There has been a growing interest to model and analyze Vehicle–Bridge Interaction 

(VBI) of intricate vehicles on bridges. The objective of such an analysis is to realistically 

investigate the dynamic effects of moving vehicles particularly in case of high-speed 

trains, where the vehicle acceleration is a design criterion and should be well predicted. 

One method of analysis is to eliminate the wheel degrees of freedom (DOF) that are in 

direct contact with the bridge surface resulting in a VBI element, which is a modified 

conventional beam element that is acted upon directly by wheels of a running vehicle. 

The bridge may have other elements that have no imposed wheels, which are treated as 

regular beam elements. In this study, the analysis type used for the VBI problem is the 

time history analysis with suitable time increments. 

 In this chapter, numerical VBI elements are developed for two cases of vehicles: 

vehicles with constant velocity, and vehicles experiencing acceleration or deceleration. 

Vehicles are modeled as a combination of solid parts (e.g. vehicle body, wheels, tires, 

etc.) connected by a linear suspension system. The vehicle models excluding horizontal 

DOFs are used for developing the VBI elements. This type of vehicle modeling is more 

common and was used by majority of researchers (Yang and Wu 2001; Xia et al. 2003; 

Majka and Hartnett 2008); however models with horizontal DOFs were also used by few 

researchers (e.g. Ju and Lin 2007). Moreover, the bridge is modeled by beam elements 
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which can be Euler-Bernoulli or other types of beam elements. The VBI element 

developed for vehicles with constant velocity is used in the development of the VBI 

element for vehicles with acceleration.  

 In the development of the VBI element for vehicles with constant velocity, the 

available formulation obtained by Yang and Wu (2001) is used to formulate the contact 

forces. The contact forces are the mutual forces between the wheel and the bridge 

surface. For vehicles with acceleration, the procedure is first developed for a basic 

vehicle model and then it is generalized for a general vehicle. More vehicle examples are 

presented to demonstrate how the procedure works. 

 

3.2 NUMERICAL VBI ELEMENT FOR VEHICLES WITH 

CONSTANT VELOCITY 
 

3.2.1 Basic Equations 

In the two-dimensional (2-D) analysis of a vehicle with constant speed, there is no 

horizontal acceleration in the vehicle, implying that no horizontal contact forces are 

present and only the vertical contact forces are transferring vehicle loads to the bridge. 

The equation of motion for a beam element traversed by the ith wheel at the end of the 

time increment ( tt  ) can be shown as: 

             
ttbcittbittbibittbibittbibi ffdkdcdm


   (3.1) 

where  bim ,  bic , and  bik  are the mass, damping and stiffness matrices of the beam 

element.  bid  is the nodal displacement vector of this element and  bif  is the vector of 
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the nodal external forces.  bcif  is the vector of the equivalent nodal forces resulting from 

the ttiV ,  contact force. 

Vertical contact forces ttiV ,  are entries of the corresponding vector  
ttcf 
 which 

can be formulated as (Yang and Wu 2001): 

               
tcttcttwcttwcttwcttc qpdkdcdmf 


  (3.2) 

where  cm ,  cc , and  ck  are called the contact matrices and they are all known, and 

follow Eqs. A.16 to A.18.  wd  is the displacement vector of the wheels which is 

unknown.  
ttcp


 is the effect of external forces on the vehicle DOFs at the end of the 

time increment and is known given in Eq. A.19. Finally,  
tcq  represents the effect of the 

vehicle displacement vector and its derivatives at the beginning of the time increment 

which is known in a step-by-step analysis given in Eq. A.20. 

To relate the contact force V  to the corresponding element nodal forces  bf , an 

interpolation function  cN  is used: 

    VNf cb   (3.3) 

The interpolation functions are chosen depending on the method of modeling and 

the dynamic degrees of freedom (DOFs) considered for the bridge elements. For the case 

that a lumped mass model is used, an interpolation function  v

cN  incorporating only 

vertical DOFs is sufficient; i.e. all the entries in  v

cN  are set to zero except those 

regarding vertical DOFs. This ensures that there would only be vertical resultant nodal 

forces. Nevertheless, for a model based on consistent mass, an interpolation function 

 vr

cN  is needed which includes the effect of the rotational DOFs in addition to the 
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vertical DOFs. In this study the lumped mass model is used. Hermitian cubic polynomials 

can be used as the interpolation functions.  v

cN  or  vr

cN  are calculated based on the 

location of the wheel on the element, x, which is a function of time. For a two 

dimensional 6-DOF Euler-Bernoulli beam element composed of vertical, horizontal, and 

rotational DOFs at each node, the corresponding interpolation functions are as follows: 

  
T

v

c xxxxN 0,0,23,0,0,231 3232   (3.4a) 

      
T

vr

c xxxxxxxxxxN  232232 ,0,23,21,0,231  (3.4b) 

where x  is the local coordinate of the contact point on the element, i.e. Lxx /  where L 

is the element length (see Fig. 1). 

 

3.2.2 Effect of Road Irregularities in the New Formulation 

The wheel displacement vector  wd  can be related to the contact displacement  cd  

of the bridge by the following constraint equation (Wu et al. 2001), 

       rdd cw   (3.5) 

where    is a constant transformation matrix and  r  represents the effect of the road 

irregularities.  r  usually is defined based on the power spectral density functions which 

by themselves are functions of the location of the vehicle on the bridge X with respect to 

an origin, such as the beginning of the bridge.  

 Before starting the differentiations, it is required to distinguish between the local 

coordinate x and the global coordinate X, and their effect on the differentiation. For any 

beam element of the bridge, the relationship between x and X using a constant can be 

written as X = x + Cons. Using the chain rule, one can show that the derivative of any 
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function of X (such as  r ) with respect to X is equal to the derivative of that function 

with respect to x. Since X = x + Cons., 1
dX

dx

dx

dX
, where 

dx

d
 is the derivative operator 

with respect to the variable specified in the denominator. By the chain rule, 

     
dX

dx

dx

rd

dX

rd
 , where 1

dX

dx
. Hence, 

     
dx

rd

dX

rd
 . This means that if 

  
dx

rd
 is 

required, it can be calculated from 
  

dX

rd
, which is easier to be calculated. 

The first derivative of the wheel displacement vector  wd  with respect to the 

local coordinate x is obtained as: 

             xcxcw rvdr
dt

dx
dd ,,    (3.6) 

where v is the velocity of the vehicle and the comma denotes the differentiation with 

respect to the coordinates specified. By taking another derivative, 

         x,x,cw rvradd 2   (3.7) 

where a is the vehicle acceleration which is zero for the case of the constant vehicle 

speed. Substituting Eqs. 3.5, 3.6, and 3.7 in Eq. 3.2 and also defining new transformed 

contact matrices  cm ,  ck , and  cc  instead of   cm ,   ck , and   cc  respectively, a 

new formulation for the contact force is obtained, 

                 
ttctcttcttccttccttccttc rqpdkdcdmf


   (3.8) 

where  
ttcr 
 is defined as a new parameter representing the effect of the road 

irregularities in the contact force which is: 

           rkrcvrmvr cxcxxcttc 
 ,,

2
 (3.9) 
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3.2.3 Bridge Element Nodal Displacement, Velocity, and Acceleration 

The next step is to relate the displacement of the contact point to that of the nodal 

ones. This is usually done in the finite element analysis by applying interpolation (or 

shape) functions.  

For a 6-DOF beam element shown in Fig. 3.1, in order to obtain contact displacement 

cd  from nodal displacement vector  bd , an interpolation function  vr

cN  represented in 

Eq. 3.4b should be used which includes the effect of the rotational DOFs in addition to 

the vertical DOFs:  

  b

vr

cc dNd   (3.10) 

Velocity of the contact point can be determined using the chain rule by taking the first 

derivative of Eq. 3.10 with respect to time: 

    b

vr

cb

vr

c

c dNd
dt

Nd
d    (3.11) 

According to Eq. 3.4b,  vr

cN  is a function of x, which is the location of the wheel and 

by itself is a function of time. Therefore: 

 vN
dt

dx

dx

Nd

dt

Nd

x

vr

c

vr

c

vr

c


,
 (3.12) 

where the comma denotes the differentiation with respect to the coordinates specified, 

and v is the velocity of the vehicle. Hence, the first derivative of the displacement of the 

contact point is: 

    b

vr

cb
x

vr

cc dNdNvd  
,

 (3.13) 

Similarly, the acceleration of the contact point is obtained as: 
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       b
x

vr

c
xx

vr

cb
x

vr

cb

vr

cc dNaNvdNvdNd
,,

2

,
2    (3.14) 

where a is the acceleration of the vehicle. However, for the case of the constant velocity, 

the acceleration is zero. 

 

3.2.4 VBI Element Structural Matrices 

Using Eq. 3.8, 3.10, 3.13, and 3.14, the equation of motion for the bridge element 

(Eq. 3.1), traversed by ith wheel, can be reformulated as: 

 

        

                 
ttcitcittci

n

j

bjcijbjcijbjcijttbi

ttbibittbibittbibi

rqpdkdcdmf

dkdcdm












 ***

1

*** 



 (3.15) 

where n is the total number of wheels and the matrices with an asterisk are calculated 

using contact matrices and interpolation vectors as: 

     vr

cjcij

v

cicij NmNm *  (3.16a) 

     vr

cjcij
x

vr

cjcij

v

cicij NcNmvNc 
,

* 2  (3.16b) 

     vr

cjcij
x

vr

cjcij
xx

vr

cjcij

v

cicij NkNcvNmvNk 
,,

2*  (3.16c) 

and the equivalent nodal loads are: 

     ttci

v

cittci pNp 
 ,

*  (3.17a) 

     tci

v

citci qNq ,

*   (3.17b) 

similarly, the equivalent vector of road irregularities is: 

     ttci

v

cittci rNr 
 ,

*
 (3.18) 
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In the latter three formulas, parameters with i or j are the entries of the corresponding 

vectors or matrices, e.g. cijm , cijk , and cijc  are entries of the ith row and jth column of the 

transformed contact matrices  cm ,  ck , and  cc , respectively. Eqs. 3.15 to 3.18 

comprise the formulations for the proposed VBI element including modified mass, 

damping, and stiffness matrices. Using these equations, the new modifications can be 

easily consulted compared with the VBI element proposed by Yang and Wu (2001) 

presented in Appendix A in Eqs. A.28 to A.30. The new element incorporates explicitly 

the effect of the moving vehicle with the asterisk matrices and vectors. The overall bridge 

structural matrices (mass, damping, and stiffness) can be assembled using Eqs. 3.15 to 

3.18, and are updated in each time increment. The detailed procedure can be found in 

Appendix A. 

 

3.2.5 Working Procedure of the VBI Analysis Using the Modified 

Element 

The step-by-step time-history numerical procedure to analyze a bridge traversed by a 

moving vehicle with constant velocity is as follows: 

(a) Construct the structural matrices (i.e. mass, damping, and stiffness) for the bridge free 

of any vehicle. Rayleigh method is used to calculate the damping matrix. In addition, 

determine the structural matrices for the vehicle model. 

(b) Define tend and xend and also t . The parameter xend  is needed to determine whether 

the vehicle is still on the bridge or not. This parameter can be specified for any wheel 

and its value is vehicle length plus bridge length. 

(c) Consider initial conditions for the bridge elements and vehicle DOFs. Let 0t . 
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(d) Perform the new time increment tttnew  . Stop the analysis if endnew tt   or the 

position of the first wheel is greater than xend. 

(e) Compute interpolation functions  v

cN  and   vr

cN  based on wheel positions using Eq. 

3.4. 

(f) Determine corresponding asterisk matrices  *

cm ,  *

cc , and  *

ck  using Eq. 3.16, and 

also asterisk vectors  
ttcp



* ,  
tcq* , and  

ttcr 

*  by Eqs. 3.17 and 3.18. 

(g) Update the global bridge structural matrices using asterisk values calculated in the 

previous step. 

(h) Solve the bridge equation of motion by Newmark-   method and find the bridge 

displacement vector for time tt  . 

(i) Find  wd ,  wd , and  wd  for time tt   using Eqs. 3.5, 3.6, and 3.7. 

(j) Calculate the displacement vector for the upper part of the vehicle, which are not in 

direct contact with the bridge, at time tt  . 

(k) Go to Step “d” for the new time increment. 

 

3.3 NUMERICAL VBI ELEMENT FOR VEHICLES 

EXPERIENCING ACCELERATION OR DECELERATION 
 

3.3.1 Formulation of Acceleration Forces Based on Vertical Contact 

Forces 

The term ‘acceleration forces’ is used here to distinguish those forces generated by 

longitudinal (or horizontal) vehicle acceleration or deceleration in the considered DOFs 

of the vehicle model. These forces are treated as external forces and can be added to the 
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regular vector of external forces. A procedure is presented here to formulate such forces 

based on vertical contact forces. This will result in a concise formulation to be used in the 

numerical analysis of VBI systems. Before introducing the generalized formulation, it 

would be beneficial to review an example and then use it for a general vehicle. 

 

(a) Sample Vehicle of 4 DOFs 

Consider a basic model of a car comprised of two wheels, and one car body. The 

suspension system consists of linear spring-dampers (kv and cv) illustrated in Fig. 3.2 with 

shown dynamic DOFs r1 to r4, the car body mass mc, the rotary inertia Ic, and the mass of 

wheels mw1 and mw2. The vehicle velocity is denoted as v and the vehicle acceleration as 

a.  

The free body diagrams of dynamic forces for the car body and one wheel are shown 

in Fig. 3.3 where SPw are the spring-damper forces, Fw are the internal horizontal forces, 

Vi are the total vertical contact forces, 'iV  are the dynamic vertical contact forces, and   

is the kinetic friction coefficient in case of braking with sliding, or static friction in case 

of traction. TE is the torque applied by the engine exerted on the wheel axle, which is not 

required to be calculated since only horizontal and vertical equations of motion will be 

considered for wheels. 

In the formulation of VBI element, it is assumed that the vehicle has reached its static 

equilibrium at rest before starting the movement. Therefore, vehicle self-weight and 

associated static deflections are not considered in the dynamic analysis of the vehicle. 

The vertical contact force 'iV  is used excluding the effect of the vehicle self-weight. 

However, for the bridge analysis and also for calculation of the horizontal contact forces 
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generated by friction, the total vertical contact force denoted as Vi has to be used. The 

effect of the vehicle self-weight is treated as external loads applying on the contact points 

which are constant throughout the analysis. Equilibrium for wheels implies that: 

 0 wiwiii FamV          2 ,1i  (3.19a) 

 0 mwiwii rmSPV           2 ,1i  (3.19b) 

and for the car body, 

 021  amFF cww  (3.20a) 

 0121  rmSPSP cww
  (3.20b) 

   12111222 hFFdSPdSPrI wwwwc   (3.20c) 

where a is the vehicle acceleration. Knowing that Eqs. 3.19a, 3.20b, and 3.20c are those 

for the assumed DOFs, they comprise the equations of motion for the vehicle. Comparing 

these three equations with the case of constant velocity, only one new term is present 

which is   121 hFF ww   in Eq. 3.20c representing an extra rotational pitching moment on 

the car body. Therefore, the effect of vehicle horizontal acceleration only on the vehicle 

DOFs can be represented by new rotary moments. 

One can define a vector of acceleration forces  af  as a vector whose entries are 

regarding each DOF specified in Fig. 3.2. For this type of vehicle modeling with no 

horizontal DOFs, all entries are set to zero except those regarding pitching DOF, 

    
T

wwa hFFf 0,0,,0 121   (3.21) 

Then, the vector of acceleration forces  af  can be decomposed into two parts as: 

     Ffa   (3.22) 

where    is named as geometry matrix and is obtained as: 
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  






















00

00

00

11 hh
 (3.23) 

and  F  is the vector of internal horizontal forces F, 

  
T

ww FFF 21,  (3.24) 

To determine internal horizontal force vector  F , Eq. 3.19a can be used where F is 

based on vertical contact forces V and vehicle acceleration a. Since there is no horizontal 

dynamic DOF, all parts of the vehicle move equally in the horizontal direction 

(longitudinal direction) with the same velocity and acceleration. Hence, the vehicle 

horizontal acceleration a can be calculated based on the horizontal contact forces and 

total vehicle masses as: 

 
t

n

i

ii

M

V

a


 1



 (3.25) 

where Mt is the total mass of the vehicle and n is the number of wheels. Assuming that 

i  is known (see Appendix C), horizontal internal forces F are determined only as a 

function of vertical contact forces according to Eq. 3.19a. Using Eq. 3.19a together with 

Eq. 3.25, vector  F  can be formulated as: 

      VF   (3.26) 

where    is defined as dimensionless matrix of equilibrium, 

  

























t

w

t

w

t

w

t

w

M

m

M

m

M

m

M

m

22

11

1

1

 (3.27) 
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and  V  is the vector of vertical contact forces and also    is the matrix of the 

corresponding friction coefficients that is as follows for the sample vehicle model, 

   









2

1

0

0




  (3.28) 

Finally, applying Eq. 3.22 with Eq. 3.26, the vector of acceleration forces  af  is 

obtained as a function of vertical contact forces  V , 

       Vfa   (3.29) 

where the matrices   ,   , and    are calculated for any vehicle model and are 

known throughout the analysis. 

It would be constructive for later sections to mention that, one can separate the 

acceleration forces into those forces due to wheel DOFs  waf  and the ones for car body 

DOFs  uaf . As a result,  af  can be shown as: 

  
 

 








wa

ua

a
f

f
f  (3.30) 

For each of  waf  and  uaf , corresponding geometry matrices  w  and  u  could 

be determined, and the rest of components   ,   , and  V  remain the same as above. 

For this example, the geometry matrix  w  due to wheel DOFs is a 2×2 zero matrix 

and  u  for upper DOFs are obtained as: 

   











11

00

hh
u  (3.31)  
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3.3.2 Generalized Procedure for Formulation of Acceleration Forces 

 With a close look at the above procedures for obtaining the required matrices to 

formulate the vector of acceleration forces, we can summarize and generalize the 

procedure for the vehicle models excluding horizontal spring-dampers as follows. 

1. Using the equation of motion of the vehicle about all pitching DOFs, determine the 

vector of acceleration forces  af  as a function of internal horizontal contact forces. 

2. Considering number of wheels (i.e. axles for a 2-D model) for the vehicle model, 

divide  af  into  waf  and  uaf  due to wheel DOFs and upper DOFs, respectively. 

3. Determine corresponding geometry matrices  w  and  u . 

4. Starting from wheels, using the equilibrium equation for horizontal forces, determine 

internal horizontal forces  F  based on horizontal contact forces V . Upper internal 

horizontal forces could be determined by those formulas obtained for lower internal 

horizontal forces. 

5. Derive the dimensionless matrix of equilibrium    by arranging the equations 

obtained from previous step.  

6. Determine    which is an n×n diagonal matrix composed of the friction coefficient 

of all n wheels of the vehicle model. 

7. Finally, the vector of acceleration forces is formulated by Eq. 3.29 for each  waf  

and  uaf  as: 

       Vf wwa        (3.32a) 

       Vf uua   (3.32b) 
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Note: For a 2-D analysis,  waf  and  w  will be zero matrices, but they are kept in order 

to have a generalized and consistent formulation. 

 

3.3.3 Numerical Formulation of the Vehicle Equations of Motion 

Including the Effect of Acceleration 

As stated in Section 3.3.1, the effect of the horizontal acceleration can be treated as 

external forces; therefore one can apply the equation of motions for a vehicle with 

constant velocity presented by other researchers (Yang and Wu, 2001) and add a new 

term similar to external forces representing the effect of acceleration (for comparison see 

Appendix A, Eq. A.4). Therefore, the equation of motion for a general vehicle including 

the effect of acceleration could be written as: 
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 (3.33) 

Eq. 3.33 represents the equation of motion for two sets of vehicle DOFs, the upper 

part or non-contact part  ud  and wheel DOFs  wd . Each matrices of mass, damping, 

and stiffness are divided into four sub-matrices. External forces are those on upper part 

DOFs  uef  and wheel DOFs  wef . Contact forces are also represented with the vector 

 
ttcf


. Matrices  ul  and  wl  transform the contact forces from contact points to the 

vehicle DOFs. Apparently,  ul  is a zero matrix, since the contact forces are only acting 

on wheels and  wl  is a unit matrix for 2-D models. Last term in Eq. 3.33 including  uaf   

and  waf  are those representing the effect of horizontal acceleration. For convenience, 
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let define  a t t
f


 as the forces induced by acceleration formulated using Eq. 3.29 and 

3.30, 

  
 
 

ttwa

ua

tta
f

f
f













  (3.34) 

Similar to external forces, the first part,  ua t t
f


, is regarding the upper part or non-

contact DOFs and the other vector  ua t t
f


 is due to the wheel or contact part DOFs. 

Using Eq. 3.29 aforementioned force vectors are obtained, 

       
ttcuttua ff


   (3.35a) 

       
ttcwttwa ff


   (3.35b) 

where matrices  u  and  w  are the decomposed form of the matrix    due to upper 

DOFs and wheel DOFs  respectively. The corresponding matrices   ,   , and    are 

determined using the procedures and formulas presented in the preceding section. 

 

3.3.4 Numerical Formulation of Vertical Contact Forces 

The effect of acceleration forces is the same as external forces in the vehicle 

equation of motion Eq. 3.34. The effect of external loads is included in a parameter 

denoted as  
ttcp


 in Eq. A.19:  

            
ttwettueuuwuwttc fflp








11
 (3.36) 

where  uu  and  wu  are constant matrices determined based on properties of the 

vehicle and factors of Newmark-   method defined in Eqs. A.12 and A.21. To avoid 

repetition and retain brevity, extra required information can be consulted from Yang and 
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Wu (2001) given in Appendix A. According to Eq. 3.36, only vector  
ttcp


 including 

the effect of external load has to be adjusted. Hence, to apply the effects of the forces 

induced by vehicle acceleration,  
ttuaf


 and  

ttwaf


 are added to external forces 

 
ttuef


 and  

ttwef


 respectively. Consequently, the new vector  
ttcp


 is obtained as: 

                  
ttwattwettuattueuuwuwttc fffflp








11
 (3.37) 

Hence, the new formulation for the vector of external forces  
ttcp


 is determined as: 

              
ttwattuauuwuwttcttc fflpp








11
 (3.38) 

where  
ttcp


 is calculated by Eq. 3.36. 

Using Eqs. 3.29 and 3.30 to substitute  ua t t
f


 and  wa t t

f


 in Eq. 3.37, one can 

obtain: 

                 
ttcwuuuwuwttcttc flpp






 

11
 (3.39) 

Using  
ttcp


, the contact force formula given in Ea. A.15 by Yang and Wu 

(2001) will be modified as follows for vehicles experiencing acceleration, 

               
tcttcttccttccttccttc qpdkdcdmf 


  (3.40) 

where   
ttcd


 is the vector of contact point displacement, and  cm ,  cc , and  ck  are 

called contact matrices given in Eqs. A.16 to A.18. By applying Eq. 3.39 into Eq. 3.40 we 

have: 

 
             

            
tcttcttccttccttcc

ttcwuuuwuw

qpdkdcdm

flI














11

 (3.41) 

where I is the unit matrix. For simplicity, let an acceleration parameter  z  be defined as: 

                 111 
 wuuuwuwlIz  (3.42) 



 39 

All terms in Eq. 3.42 are time-independent. Finally, the contact forces  
tttcf 
 are 

obtained as 

               
tcttcttccttccttccttc qpdkdcdmf ˆˆˆˆˆ 


  (3.43) 

 where matrices with hat-sign are transformed form of the corresponding matrices which 

are multiplied by the acceleration parameter  z , namely: 

     cc mzm ˆ  (3.44a) 

     cc czc ˆ  (3.44b) 

     cc kzk ˆ  (3.44c) 

     
ttcttc pzp


ˆ  (3.44d) 

     
tctc qzq ˆ  (3.44e) 

Subsequently, ith entry of the  
ttcf 
 as the contact force between ith wheel and the 

bridge ttiV ,  is determined as: 

  


 
n

j

ttcjcijttcjcijttcjcijtcittcitti dkdcdmqpV
1

,,,,,,
ˆˆˆˆˆ   (3.45) 

where crjm , crjc , and crjk  are respectively the entry in the ith row and jth column of the 

contact matrices  cm ,  cc , and  ck . Similarly, the ttcjp ,
ˆ  and tcjq ,

ˆ are the entries located 

in the jth row of the corresponding vectors, i.e.  
ttcp


ˆ  and  

tcq̂ . 

 

 

 

 



 40 

3.3.5 Structural Matrices of VBI Element for Vehicles Experiencing 

Acceleration or Deceleration 

For vehicles with constant velocity, there are only vertical contact forces transferring 

vehicle loads to the bridge element. On the other hand, if a vehicle is experiencing 

acceleration or deceleration, in addition to the vertical contact forces, horizontal contact 

forces will be present at the contact points. However, in the finite element formulation, 

having structural matrices (i.e. mass, damping, and stiffness) of the bridge, it is required 

to find the nodal forces induced by those contact forces shown in Fig. 3.4 to be able to 

solve bridge equation of motion. 

Those consistent nodal forces bcjf , j=1 to 6, can be determined from contact forces by 

using interpolation functions  v

cN  and  h

cN  as follows (Yang and Wu, 2001), 

      HNVNf h

c

v

cbc   (3.46) 

The interpolation vector   v

cN  can be calculated by Hermitian cubic polynomials, 

while  h

cN  is usually considered as a linear function.  All the entries in  v

cN  are set to 

zero except those regarding vertical DOFs. This ensures that there would only be vertical 

resultant nodal forces. Similarly, all entries of the vector  h

cN  are set to zero except 

those due to horizontal DOFs in order to relate horizontal contact force H  to horizontal 

nodal forces 2bcf and 5bcf . For a two dimensional 6-DOF Euler-Bernoulli beam element, 

the corresponding interpolation functions are as follows, 

   T
v

c xxxxN 0,0,23,0,0,231 3232   (3.47a) 

   Th

c xxN 0,,0,0,1,0   (3.47b) 
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where x  is the local coordinate of the contact point on the element, i.e. Lxx /  where L 

is the element length (see Fig. 3.4). Hence, these interpolation functions are calculated 

based on the location of the wheel on the element which is a function of time because of 

the moving vehicle. 

By applying the new formula for vertical contact forces (Eq. 3.45) in the method 

developed for the VBI element for vehicles with constant velocity in Sections 3.2.3 and 

3.2.4, the new formulation for VBI element considering the effect of acceleration is 

obtained. 

After relating the contact forces to consistent nodal forces in Eq. 3.46, it is required to 

relate the displacement of the contact point to those of the nodal ones. This is usually 

done in finite element analysis by applying the interpolation functions. For a 6-DOF 

beam element shown in Fig. 3.4, in order to obtain contact displacement cd  from nodal 

displacement vector  bd , an interpolation function  vr

cN  is used which includes the 

effect of the rotational DOFs in addition to the vertical DOFs, 

  b

vr

cc dNd   (3.48) 

The interpolation function  vr

cN  is determined using Hermitian cubic polynomials as  

      
T

vr

c xxLxxxxxLxxN 23323232 ,0,23,2,0,231   (3.49) 

By taking derivative of Eq. 3.48 with respect to time and using the chain rule, the 

velocity of the contact point can be obtained, 

    b

vr

cb

vr

c

c dNd
dt

Nd
d    (3.50) 
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According to Eq. 3.49,  vr

cN  is a function of x, the location of the wheel, which by 

itself is a function of time; therefore: 

 vN
dt

dx

dx

Nd

dt

Nd

x

vr

c

vr

c

vr

c


,
 (3.51) 

where the comma denotes the differentiation with respect to the coordinates specified, 

and v is the vehicle velocity. Hence, the first derivative of the displacement of the contact 

point is: 

    b

vr

cb
x

vr

cc dNdNvd  
,

 (3.52) 

Similarly, the second derivative of the contact point is obtained as, 

       b
x

vr

c
xx

vr

cb
x

vr

cb

vr

cc dNaNvdNvdNd
,,

2

,
2    (3.53) 

The differentiation functions of the interpolation vector  vr

cN  with respect to local 

wheel’s location x are: 

    xxLxxxxLxx
L

N
x

vr

c 23,0,66,341,0,66
1 2222

,
  (3.54a)

    26,0,126,46,0,612
1

2,
 xLxxLx

L
N

xx

vr

c  (3.54b) 

The last step is to obtain the VBI element equation of motion. In general, the beam 

element having directly the effect of the wheels can be written as (Yang and Wu, 2001), 

             
ttbcittbittbibittbibittbibi ffdkdcdm


   (3.55) 

where  bim ,  bic , and  bik  are the ith VBI element mass, damping, and stiffness 

matrices, respectively. In addition, the vector  bid  and its derivatives are due to nodal 

displacements of the corresponding VBI element,  bcif  represents the nodal forces 



 43 

induced by contact forces according to Eq. 3.46, and finally  bif  includes the effect of 

other external nodal forces that may be applied on the VBI element. 

If one substitutes  bcif  of Eq. 3.55 into Eq. 3.46 and also applies Eq. 3.45 in Eq. 3.46 

considering Eq. 3.48, 3.52, and 3.53 for the relationship between  bd  and  cd , the new 

VBI element equation of motion is formulated as: 

 

        

               
tcittci

n

j

bjcijbjcijbjcijttbi

ttbibittbibittbibi

qpdkdcdmf

dkdcdm
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
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





 



 (3.56) 

where matrices with an asterisk incorporate the effect of the vehicle contact forces for the 

VBI element, 

        vr

cjcij

v

cii

h

cicij NmNNm ˆˆ *    (3.57a) 

        vr

cjcij
x

vr

cjcij

v

cii

h

cicij NcNmvNNc ˆˆ2ˆ
,

*    (3.57b) 

          vr

cjcij
x

vr

cjcijcij
xx

vr

cjcij

v

cii

h

cicij NkNcvmaNmvNNk ˆˆˆˆˆ
,,

2*    (3.57c) 

and the equivalent nodal loads are: 

        ttci

v

cii

h

cittci pNNp 
 ,

* ˆˆ   (3.58a) 

        tci

v

cii

h

citci qNNq ,

* ˆˆ    (3.58b) 

Eqs. 3.56 to 3.58 are the new formulations for VBI element incorporating the 

effect of vehicle acceleration on the vehicle and bridge responses. Knowing the asterisk 

matrices for the proposed VBI element, the structural properties (mass, damping, and 

stiffness) of the bridge can be assembled and updated in each time increment to solve the 

whole bridge equation of motion. Damping matrix is calculated by Rayleigh method 

using a linear relationship between mass and stiffness damping. 



 44 

3.3.6. Working Procedure of Time-History Analysis for VBI Systems 

Including Acceleration 

The step-by-step numerical procedure to analyze a bridge traversed by a moving 

vehicle with acceleration is as follows: 

(a) Construct the structural matrices  bM ,  bC , and  bK for the bridge free of any 

vehicle. For the calculation of the damping matrix  bC , Rayleigh method can be 

used. 

(b) Considering vehicle matrices, calculate corresponding constant matrices  uu , 

 wu  ,  cm ,  cc , and  ck  (Appendix A).  

(c) Determine time increment t , end time of the analysis tend and corresponding 

vehicle location xend. The parameter xend  is needed to determine whether the vehicle 

is still on the bridge or not. This parameter can be specified for any wheel and its 

value is vehicle length plus bridge length. 

(d) Determine the vehicle geometry matrices  u , and  w , and also dimensionless 

matrix of equilibrium    for the vehicles, and using proper selection of friction 

coefficient   , calculate acceleration parameter  z  by Eq. 3.42. 

(e) Consider initial conditions for the bridge and vehicle DOFs. Let 0t  . 

(f) Perform the new time increment tttnew  . Stop the analysis if endnew tt   or the 

position of the first wheel is greater than xend. 

(g) Compute interpolation functions  v

cN ,  h

cN  using Eq. 3.47, and  vr

cN  and its 

derivatives using Eqs. 3.49 and 3.54 based on wheel positions. 

(h) Calculate  
tuq ,  

ttcp


,  
tcq ,  and  

twq  (Appendix A). 
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(i) Determine corresponding asterisk matrices  *ˆ
cm ,  *ˆ

cc , and  *ˆ
ck  using Eq. 3.57, and 

also asterisk vectors  
ttcp



*ˆ  and  
tcq*ˆ  by Eq. 3.58. 

(j) Assemble and construct the whole bridge matrices  M ,  C , and  K . 

(k) Solve bridge equation of motion, by Newmark-   method and find  bd ,  bd , and 

 bd  for time tt  . 

(l) Find  cd ,  cd , and  cd  for time tt   using Eqs. 3.48, 3.52, and 3.53. 

Consequently, corresponding values for  wd ,  wd , and  wd  are calculated using 

Eq. A.3. 

(m) Calculate vehicle displacement vectors  
ttud


,  

ttud


 , and  
ttud


 using Eqs. A.7 

to A.9. 

(n) Go to Step “f” for the new time increment. 

 

3.3.7 More Vehicle Examples 

Formulation of acceleration forces was only shown for one simple vehicle in 

Section 3.3.1(a). In order to demonstrate how the generalized procedure in Section 3.3.2 

works, more vehicle examples should be studied. To formulate the vector of acceleration 

forces (see Eq. 3.32), matrices  u ,  w ,   , and    need to be specified. Matrix    

is a diagonal matrix with the value of the friction coefficient of each wheel as its entries. 

In this section, the other three matrices are determined for three vehicle examples. The 

first studied model is a car model resembling the one shown in Fig. 3.2 including the 

effect of tires. The effect of tire in the formulation is studied. The second model is a more 



 46 

complex model of a car also having the effect of tires in the modeling. The last vehicle 

model is a train model with two bogies and four wheelsets. 

 

(a) Effect of tire in the modeling (a car model with 6 DOFs) 

Consider the model shown in Fig. 3.5 that represents a 2-axle vehicle incorporating 

the effect of the tires. Each tire is modeled by a spring and a damper under the wheel. The 

tire DOFs are in direct contact with the bridge and they are assumed to have no mass. 

The free body diagram of dynamic forces for the car body is similar to that shown in 

Fig. 3.3, whereas the free body diagram for the wheels and tires are shown in Fig 3.6. 

The equations of motions for tires are: 

 0 tiii FV        2 ,1i  (3.59a) 

 0 tii SPV        2 ,1i  (3.59b) 

and for wheels are: 

 0 wiwiti FamF        2 ,1i  (3.60a) 

 0 mwitiwi rmSPSP         2 ,1i  (3.60b) 

and for the car body: 

 021  amFF cww  (3.61a) 

 0121  rmSPSP cww
  (3.61b) 

   12111222 hFFdSPdSPrI wwwwc   (3.61c) 

where a is the vehicle horizontal acceleration. Hence, the vector of acceleration forces is 

determined as: 

    
T

wwa hFFf 00,0, 0, ,- ,0 121   (3.62) 
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Consequently, considering internal horizontal acceleration forces  F  as: 

  
T

ttww FFFFF 2121  ,, ,  (3.63) 

the geometry matrix    is obtained as: 

  































0000

0000

0000

0000

00

0000

11 hh

    (3.64) 

Then, using equilibrium equations of horizontal forces (i.e. Eq. 3.59a and 3.60a), 

the dimensionless matrix of equilibrium    is obtained as: 

  































10

01

1

1

22

11

t

w

t

w

t

w

t

w

M

m

M

m

M

m

M

m

 (3.65) 

And finally, the vector of acceleration forces will be calculated using Eq. 3.29. 

Correspondingly, the geometry matrix  w  due to tire DOFs is a 2×4 zero matrix 

and  u  for upper DOFs is obtained as: 

  






















0000

0000

00

0000

11 hh
u  (3.66) 

 

 

 



 48 

(b) Half-car planar vehicle model of 8 DOFs  

Consider the model shown in Fig. 3.7 that represents a vehicle model of a half-car 

planar vehicle while incorporating the effect of the tires. This model was used by 

Esmailzadeh and Jalili (2003). Each tire is modeled by linear spring-dampers under each 

wheel. The tire DOFs are in direct contact with the bridge without any mass.  

The equations of motion for tires are: 

 0 tiii FV        2 ,1i  (3.67a) 

 0 tii SPV        2 ,1i  (3.67b) 

and for wheels are: 

 0 wiwiti FamF        2 ,1i  (3.68a) 

 0 jwitiwi rmSPSP         2 ,1i   ;  6 ,5j  (3.68b) 

and for the two upper masses (passenger and driver masses): 

 0 amF pii        2 ,1i  (3.69a) 

 0 ipii rmSP         2 ,1i  (3.69b) 

and for the vehicle body: 

 02121  amFFFF sww  (3.70a) 

 032121  rmSPSPSPSP sww
  (3.70b) 

     221121221111224 hFFhFFbSPbSPdSPdSPrJ wwww   (3.70c) 

where a is the vehicle horizontal acceleration. Hence, the vector of acceleration forces is 

an 8×1 vector, and is determined as: 

      
T

wwa hFFhFFf 00,0, 0, , ,0 ,0 ,0 221121   (3.71) 
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Consequently, considering internal horizontal acceleration forces  F  as: 

  
T

ttww FFFFFFF 212121  ,, , , ,  (3.72) 

the geometry matrix  w  due to tire DOFs is a 2×6 zero matrix and  u  for upper 

DOFs is obtained as: 

  





























000000

000000

00

000000

000000

000000

2211 hhhh
u  (3.73) 

Then, using equilibrium equations of horizontal forces (i.e. Eq. 3.67a and 3.68a), the 

dimensionless matrix of equilibrium    is obtained as: 

  







































10

01

1

1

22

11

22

11

t

w

t

w

t

w

t

w

t

p

t

p

t

p

t

p

M

m

M

m

M

m

M

m

M

m

M

m

M

m

M

m

 (3.74) 

And finally, the vector of acceleration forces will be calculated using Eq. 3.29. 

 

(c) Train model of 10 DOFs 

Consider a car of a train that has four wheels, two bogies and a car body, where the 

suspension system is comprised of spring and dampers that are presented in Fig. 3.9 with 
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the shown dynamic DOFs. The free body and kinetic diagrams for the car body, one 

bogie and one wheel are shown in Fig. 3.10. Notations are similar to those in Fig 3.3. 

Equilibrium for wheels implies that: 

 0 wiwiii FamV      41toi   (3.75a) 

 0 jwiwii rmSPV        41toi   ;  107 toj   (3.75b) 

As a sample of equilibrium equations for bogies, bogie #1 is considered here and bogie 

#2 can be treated similarly: 

 01121  amFFF bbww       (3.76a) 

 012131  bwwb SPSPSPrm        (3.76b) 

   32121112241 hFFhFdSPdSPrI wwbwwb        (3.76c) 

and for the car body:  

 021  amFF cbb       (3.77a) 

 0211  SPSPrmc
       (3.77b) 

   12111222 hFFlSPlSPrI bbc        (3.77c) 

Hence, the vector of the acceleration forces for upper part DOFs is determined as: 

  

 

 

  





































34322

32121

121

0

0

0

hFFhF

hFFhF

hFF

f

wwb

wwb

bb

ua  (3.78) 

while for the wheel part DOFs, the vector  waf  is a 4×1 zero vector. Consequently, 

considering internal horizontal acceleration forces  F  as: 
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   T

wwwwbb FFFFFFF 432121  ,, , , ,  (3.79) 

the geometry matrix  u  for the upper part or non-contact DOFs is obtained as: 

  


































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332

11

000

000000

000

000000

0000

000000

hhh

hhh

hh

u     (3.80) 

whereas the matrix  w  for wheel DOFs is a 4×6 zero matrix.  

Consequently, using equilibrium equations of horizontal forces (i.e. Eqs. 3.75a 

and 3.76a) and Eq. 3.25, one can determine the dimensionless equilibrium matrix   , 

  
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AAAA
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1
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  (3.81) 

where 
t

bww

M

mmm
A 121

1


  and 

t

bww

M

mmm
A 243

1


 . The matrix of the friction 

coefficients    is also a diagonal matrix of the corresponding friction coefficients for 

each wheel.  
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3.4 NUMERICAL VERIFICATIONS 

 

3.4.1 Moving Sprung Mass Model 

Consider a simply supported girder subjected to a moving sprung mass as 

illustrated in the Fig. 3.11. This case was lately used for verification by several 

researchers such as Yang and Wu (2001), Zhang et al. (2001), and Majka and Hartnett 

(2008). Vehicle required matrices are presented in Appendix B.1. The required data are: 

Young’s modulus E=2.87 GPa, Poisson’s ratio  =0.2, moment of inertia I=2.90 m
4
, 

mass per unit length m=2303 kg/m, girder length L=25m, sprung mass Mv=5.75 ton, 

wheel mass Mw=0, and suspension spring constant kv=1595 kN/m. No damping is 

included in the system. The span is divided into 10 Euler-Bernoulli beam elements.  

The results of the sprung mass system are compared in Figure 3.12 with the 

analytical solution presented by Biggs (1964) and the moving load model response. The 

results show perfect match between the two methods. In addition, the moving load 

response is obtained using the same MATLAB (ref) code by using gravitational loading 

of the vehicle as the constant moving load. 

 

3.4.2 Suspended Rigid Beam Model 

The second verification case is a rigid beam comprised of two DOFs supported by 

two wheels. Each wheel is connected to the rigid beam by a spring and damper. This 

model shown in Fig. 3.13 was used by Yang and Wu (2001). The matrices simulating the 

vehicle’s model are presented in Appendix B.2. Properties for the beam are: Young’s 

modulus E=2.943 GPa, Poisson’s ratio  =0.2, moment of inertia I=8.65 m
4
, mass per 
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unit length m=36 t/m, and beam length LB=30m. The moving beam properties are: sprung 

mass Mv=540 ton, wheel masses are zero, rotatory mass Iv=13800 t.m
2
, and suspension 

spring constant kv=41350 kN/m. No damping is included in the system. Wheel to wheel 

distance is 17.5 m. Vehicle speed is 27.78 m/s. The beam is modeled as 10 elements each 

is 3 m. The result presented by Yang and Wu (2001) is depicted in Fig. 3.14 together with 

results obtained from the proposed element and also from moving load model. Again, a 

very close match is obtained for the proposed element and the one proposed by Yang and 

Wu (2001).  

 

3.4.3 Half-Car Planar Model Including the Effect of Tires 

Consider a vehicle model of a Half-car planar vehicle having the effect of the tires in 

the model shown in Fig. 3.7. Each tire is modeled by a spring-damper under the wheel. 

The tire DOFs are in direct contact with the bridge without any mass. In the original 

study by Esmailzadeh and Jalili (2003), no DOF was considered for tires; their effects 

were considered in the formulation developed by those researchers. In their model, there 

are the total of 6-DOF used for the vehicle model. However, for the element presented in 

this study, two extra DOFs with zero mass are required in the locations of tires (see Fig 

3.7), in order to include the tire stiffness and damping in the vehicle model. Vehicle and 

bridge properties are tabulated in Tables 3.1 and 3.2, respectively. 

Vehicle required matrices are presented in Appendix B.4. Results obtained from 

Esmailzadeh and Jalili (2003) together with those obtained from the new VBI element for 

three constant velocities of 56, 72, and 88 km/h are demonstrated in Figs. 3.15 and 3.16. 
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Mid-span deflection is shown in Fig 3.15, and driver bouncing in Fig 3.16 illustrating 

very close results. 

 

3.5 LIMITATIONS AND ASSUMPTIONS 

 

The suspension units (dashpot and springs) of vehicle models used in the 

development of VBI elements should retain linear properties. Majority of the vehicle 

models used by researchers in the analysis of bridge dynamics were linear models. This is 

particularly common in the VBI analysis using vehicle models comprised of dozens of 

DOFs, such as those used in the modeling of high-speed trains. However, there are few 

studies that adopted nonlinear properties (Hwang and Nowak, 1991). Although the actual 

suspension properties for majority of highway vehicles are nonlinear but they operate 

closely to linear behaviour, hence they can be approximated as linear. 

   The VBI element developed for vehicles experiencing acceleration is formulated 

based on the friction coefficient. It is assumed that the friction coefficients are known and 

they are one of the inputs. However, the developed element is versatile such that it can 

model a pre-defined scheme of a varying friction coefficient. Appendix C presents a 

review on the available models to include friction in multibody dynamic systems, and 

models considered in VBI analysis. 

 

3.6 SUMMARY 

 

In this chapter, new modified numerical VBI (Vehicle–Bridge Interaction) elements 

were developed for the calculation of complicated VBI problems that incorporate the 
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effect of the dynamic parameters (e.g. vehicle speed, acceleration, etc.), more 

realistically. The general common notations were kept the same as the VBI element 

proposed by Yang and Wu (2001) presented in Appendix A for easier comparison 

between the two methods. The new formulation and the mathematical background are 

presented comprehensively in this chapter.  

 In the development of the VBI element for vehicles with constant velocity, the 

available formulation obtained by Yang and Wu (2001) is used to formulate the contact 

forces. Those forces are related to beam element nodal forces by Hermitian cubic 

interpolation functions. Suitable interpolation functions between the beam element 

displacement vector and those for contact points are considered. The velocity and the 

acceleration of the contact point are then obtained by the first and second derivative of 

the corresponding displacement vector. The result is a new formulation proposed for the 

structural properties of a VBI element capable of capturing bridge and vehicle responses 

more realistically. The final applicable formulas for numerical analysis as the properties 

of the new VBI element are summarized in Eqs. 3.16 to 3.18 for vehicles with constant 

velocity. 

 For vehicles experiencing acceleration or deceleration, a key step is to formulate 

acceleration forces based on vertical contact forces. The term ‘acceleration forces’ is used 

referring to those forces exerted on the vehicle because of the vehicle longitudinal (or 

horizontal) acceleration. Using vehicle equations of motion, the vector of acceleration 

forces is formulated numerically by defining suitable dimensionless matrices and vectors, 

after which, vertical contact forces are formulated by the new vector of external forces. A 

new factor called acceleration parameter is defined assisting the formulation in a practical 
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and concise form. This parameter simulates the effect of the horizontal acceleration and is 

constant throughout the analysis. New formulation for the vertical contact forces, and 

also the effect of horizontal contact forces will result in a new VBI element capable of 

modeling intricate vehicle models and bridges. Final formulations obtained for this VBI 

element are presented in Eqs. 3.56 to 3.58. 

A new model was coded using MATLAB
®
 programming language (2008) to perform 

the time-history analysis of vehicle-bridge interaction. Three numerical models are used 

in this chapter to verify the developed numerical VBI elements and the coded MATLAB 

program. The numerical verification models comprise sprung mass model, rigid beam 

model, and half-car planar vehicle model. Results generally demonstrated a close match 

confirming the validity of the developed numerical elements. 
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Table 3.1 properties of the half-car planar vehicle model and the bridge (Esmailzadeh 

and Jalili 2003) 

 

m s 1794.4 kg k 1 66824.4 N/m

m t1 87.15 kg k 2 18615.0 N/m

m t2 140.4 kg k t1 =k t2 101115 N/m

m p1 =m p2 75 kg k p1 =k p2 14000 N/m

J 3443.05 kg.m
2 c 1 1190 N.s/m

b 1 1.271 m c 2 1000 N.s/m

b 2 1.716 m c t1 =c t2 14.6 N.s/m

d 1 0.481 m c p1 50.2 N.s/m

d 2 1.313 m c p2 62.1 N.s/m
 

 

 

Table 3.2 Bridge properties for the half-car planar model  

(Esmailzadeh and Jalili 2003) 

 

L 100 m

E 207 GPa

I 0.174 m
4

 20,000 kg/m

c 1750 N.s/m
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Fig. 3.1 Two-dimensional VBI element 
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Fig. 3.2 A car model of 4-DOF 
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Fig. 3.3 Free body diagrams of 4-DOF car model of: (a) the car body, (b) wheels 



 59 

fbc2

x

L

V

H
fbc1

f
bc3

fbc4

fbc5

fbc6

 

Fig. 3.4 Two-dimensional VBI element for vehicles with acceleration 
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Fig. 3.5 A car model of 6-DOF having the effect of tires 
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Fig. 3.6 Free body diagrams of 6-DOF car model for (a) wheels (b) tire 
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Fig. 3.7 A Half-car planar Vehicle model of 8-DOF having the effect of tires 

 

 

 

 

 

      

       

  

 

 

 

Fig. 3.8 Free body diagrams of the half-car planar model for (a) passenger or driver 

(b) vehicle body (c) wheels (d) tires 
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Fig. 3.9 Four-wheel model of one car of a train 
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Fig. 3.10 Free body diagram of the car body, a bogie, and a wheel 
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Fig. 3.11 Numerical verification, moving sprung mass model 
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Fig. 3.12 Displacement at the beam mid-span, numerical verification using moving 

sprung mass model 
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Fig. 3.13: Numerical verification, suspended rigid beam model 
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Fig. 3.14: Displacement at mid-span of the beam, numerical verification using suspended 

rigid beam model 
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Fig. 3.15 Displacement at mid-span of the bridge for half-car planar model 
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Fig. 3.16 Driver bouncing for half-car planar model 
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CHAPTER 4 

EFFECT OF SHEAR DEFORMATION AND CONSISTENT MASS 

ON VBI ANALYSIS 

 

4.1 GENERAL 
 

Effect of shear deformations and rotary inertia can be neglected in many 

applications of structural dynamics and the accuracy of simple beam based on Euler-

Bernoulli bending theory is sufficient (Archer, 1963). However, in some cases, relying 

only on that simple formulation may lead to misrepresenting results. An example of small 

difference is in the lowest modal frequencies of long and thin beams. Example of 

significant errors can include thicker beams (lower span-to-depth ratio), and higher modal 

frequencies of any beam (Thomas et al., 1973). Effect of shear deformations and rotary 

inertia can be included in the analysis by using Timoshenko beam theory.  

The Timoshenko beam theory is also known as the first-order shear deformation 

theory. The formulation of a specific finite element depends on the choice of the 

interpolation functions used for the transverse deflection and rotation. For all first-order 

finite elements, the transverse shear strain is assumed constant with respect to the 

thickness coordinate. However, the real shear strain distribution is not constant. 

Therefore, shear correction factors are considered to compensate for this assumption and 

to adjust the calculated shear force with the actual shear force (Reddy, 1997a).  

Consequently, higher-order shear deformation theories were developed to provide 

a more realistic modeling of transverse shear strains. For instance, Levinson (1981) and 

Reddy (1984, 1997b) developed third-order shear deformation theories to capture the true 
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variation of transverse shear strain and stresses; this is because the actual transverse shear 

strain is quadratic through the beam height. Therefore, there is no need to use a shear 

correction factor when using a third-order shear deformation theory.  

In the application of thick plates and particularly in the laminated plates, higher 

order shear deformation theories needed to be considered to calculate stress transferred 

between the two material used in the laminated plate. However, higher-order plate 

theories provide a slight increase in the accuracy in comparison with the first-order 

solution, but at the expense of a significant increase in the computational effort. 

Therefore in many practical applications, the first-order element is used since it provides 

the best compromise between economy, simplicity, and accuracy in prediction of the 

global response (Urathaler and Reddy, 2008). Therefore in the current thesis, the 

Timoshenko beam theory is used, which provides fairly acceptable results for comparison 

between those obtained by Euler-Bernoulli beam element. 

The effects of shear deformations are studied based on two groups according to 

the bridge mass matrices. In the first group, the mass matrix is modeled by lumped 

masses, while the second group applies to the consistent mass matrix. In addition, the 

effects of consistent masses are investigated also in two categories. The first category 

covers bridge models that have flexural stiffness only (i.e. Euler-Bernoulli beam 

elements), whereas the second category bridge models accounts for the effect of shear 

deformations. Chopra (2001) reported that the lumped mass matrix formulation is used in 

many ordinary engineering applications leading to satisfactory results. Despite the fact 

that the effect of the consistent mass and rotary inertia used to be ignored in the vibration 

analysis of simply supported beams, that effect was kept in the formulation in order to 
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maintain generality knowing that it will not add much complication to the analysis. As 

expected, in some cases, it was shown that the consistent mass and rotary inertia affect 

the bridge response as will be discussed in this chapter.  

 

4.2 BRIDGE AND VEHICLE MODELING 
 

Since the analysis is two-dimensional, the bridge model can be modeled by 6-

DOF beam elements including 3-DOF at each node, vertical, rotational, and axial DOFs. 

Utilizing the direct stiffness matrix for a fixed-fixed Euler-Bernoulli beam element, the 

stiffness matrix is obtained (Zienkiewicz and Taylor, 2005)  
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where E is the Young’s modulus, I is the moment of inertia, and L is the length of the 

beam element. In addition, a is 2L
I

A
 where A is the cross-sectional area. 

The foregoing formula includes only the effect of the flexural deformations. 

However, for a short beam element, the effect of the shear deformations can be 

noticeable. In order to include the effect of shear deformations, the Timoshenko beam 

element can be used. A simple Timoshenko beam element is the beam element used in 

two dimensional analysis having two nodes with three DOF per node representing 

translational, longitudinal and rotational movements. There are other types of beam 

elements depending on the DOFs assumed at each node. The formulation for such an 



 68 

element for a uniform beam was first driven by McCalley (1963). Later, Przemieniecki 

(1968) obtained the stiffness matrix for a uniform beam as: 
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where E is the Young’s modulus, I is the moment of inertia, L is the element length, and: 
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where G is the shear modulus, A is the cross-sectional area, and k is the shear coefficient 

(or Timoshenko shear coefficient) and is calculated based on the geometry of the beam 

cross-section.  

Cowper (1966) obtained the formulas of shear coefficients for various cross-

sectional shapes. For a thin-walled I-section the formula is: 
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where   is the Poisson’s ratio, 
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The overall bridge stiffness matrix can be constructed with the standard 

assembling of the member stiffness matrices. The procedure is elaborated elsewhere 
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(Zienkiewicz and Taylor, 2005). Bridge mass matrix can be constructed assuming the 

bridge mass as lumped masses on the element nodes. This is an accepted assumption 

leading to satisfactory results (Chopra, 2001). However, later in this chapter, the effect of 

consistent masses will be studied. The structural damping is calculated using Rayleigh 

damping formula (Chopra 2001) as linear combination of the mass and stiffness matrices 

based on the frequencies of the bridge first two modes. 

Two vehicle models are used in this chapter which are sprung mass model and 

suspended rigid beam model. These models were employed before for numerical 

validation of the MATLAB program and new VBI elements. The sprung mass model 

comprised two masses connected by spring-damper suspension system. One mass acts as 

the wheel which is in the direct contact with the bridge shown in Fig. 3.11. The 

suspended rigid beam model includes one rigid beam connected to two wheels by a 

suspension system illustrated in Fig. 3.13. The required vehicle matrices for those models 

can be consulted from Appendix B. However, the vehicle properties are different and will 

be given in corresponding sections in this chapter. 

 

4.3 EFFECT OF SHEAR DEFORMATION ON BEAM NATURAL 

FREQUENCIES 
 

To study the effect of shear deformations on the natural frequencies of beams and 

also to validate the numerical model coded in MATLAB programming language, a 

sample 20.0 m individual steel beam that has a W840x226 section is assumed without 

additional mass. The stiffness matrix is assembled by using the direct stiffness method 

and two types of element local stiffness matrices; the first type comprises only flexural 
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effects and the second type includes shear effects in addition to flexural effects. The mass 

matrix is obtained by the lumped mass approach. By the solution of the Eigen value 

problem, the frequencies of the first three modes of vibration are compared with the 

results obtained from linear finite element obtained by SAP2000 in Table 4.1 for three 

element lengths of 5.0, 2.5, and 1.0 m. Closer results to linear FEM are observed when 

incorporating the effect of shear deformations. 

Modal frequencies depicted in Table 4.1 are modal angular frequencies of the 

undamped system obtained by the solution of Eigenvalue problem depending only on the 

mass and the stiffness of the system. The closeness in results between those obtained by 

shear + flexural effects and those calculated by SAP2000 is mainly due to the closeness 

of stiffness matrices. There is no difference in the mass matrix which is modeled by 

lumped mass approximation in all methods.  

In addition, comparison of results obtained for each method individually (i.e. 

SAP2000 only) in Table 4.1 shows an increasing trend for lower element lengths. This is 

mainly due to the effect of mass in the calculation of modal frequencies. Although the 

element lengths are changed, the stiffness is not affected noticeably since beam elements 

are used to assemble global stiffness matrix for each element length. On the other hand, 

since lumped mass is used, the mass distribution is not consistent (e.g. half of the mass in 

the two side elements is not included in the analysis) and it is affected by the element 

lengths. The mass distribution is such that the equivalent modal mass decreases when the 

element length decreases, and consequently the modal frequencies increases. This effect 

is reduced when many numbers of elements are used comparing the results of lower 

element lengths. 
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4.4 EFFECT OF SHEAR DEFORMATIONS ON TWO NUMERICAL 

MODELS 
 

Two numerical models are studied in this section, which are moving sprung mass 

model and suspended rigid beam vehicle models as described in Sections 3.4.1 and 3.4.2. 

The stiffness matrix is constructed by Eq. 4.1 or 4.2, and the lumped mass matrix is used. 

The sprung mass model was first studied by Biggs (1964). This case was also used by 

many researchers such as Majka and Hartnett (2008), Zhang et al. (2001), and Yang and 

Wu (2001). The required data for the bridge and vehicle models can be consulted from 

Section 3.4.1. Results are shown in Fig. 4.2 which demonstrates clear and noticeable 

difference between responses. 

The second numerical model is the suspended rigid beam model shown in Fig. 

3.13 which was used by Yang and Wu (2001). The required data for the bridge and 

vehicle models can be consulted from Section 3.4.2. Results presented in Fig. 4.3 show 

that the effect of shear deformations is less on this model compared to the sprung mass 

model.  

 

4.5 EFFECT OF SHEAR DEFORMATION ON SAMPLE RAILWAY 

BRIDGES AND VEHICLES 

 

4.5.1 Bridge and Vehicle Models and Methodology 

One of the key parameters affecting the contribution of the shear deformations is 

the bridge span-to-depth ratio. To study the significance of the effect of the bridge span, 

several double plate-girder open-deck railway bridges were designed following the 

requirements of AREMA (American Railway Engineering and Maintenance-of-Way 
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Association) manual, chapter 15 (AREMA 2007). The moment of inertia and cross-

sectional area of bridges were determined to sustain the Cooper-E 80 loading or alternate 

live load considering overall deflection and local buckling requirements. Appropriate 

impact loads and rocking effects were also added to the live loads. The summary of the 

bridge properties is tabulated in Table 4.2. In addition to the self-weight of the girders, a 

297 kg/m was considered in the bridge mass accounting for the weight of the track 

structure and lateral bracings. The girder center to center spacing was selected as 1.8 m to 

be placed almost under each rail of the track. 

These bridges were traversed by a sample vehicle with a sprung mass model 

similar to Fig. 3.11 as a generic moving vehicle. This model has been used frequently by 

researchers studying the fundamental behaviour of vehicle and bridge in the VBI analysis 

(Delgado et al., 2009, Calçada et al., 2009). The properties of the vehicle are based on 

parameters presented by Lei and Noda (2002) which are due to a TGV (French high-

speed train) locomotive, similar to Amtrak Acela Express high-speed train operating 

between Boston and Washington. Vehicle properties used for this sprung mass model are: 

Mv= 30.01 ton, Mw=4 ton, kv=6560 kN/m, cv=180 kN.s/m. 

The designed bridges were modeled by different element lengths traversed by the 

sample vehicle with different velocities ranging from 0.5 m/s to 150 m/s. The vehicle-

bridge interaction numerical dynamic analysis, using the developed VBI element, is 

performed for each bridge model subjected to the moving vehicle with one specified 

speed at a time. The important bridge and vehicle responses considered here are bridge 

mid-span deflection, bridge mid-span acceleration, and vehicle vertical acceleration. 

Then, maximum responses for mid-span deflection, mid-span acceleration, and vehicle 
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acceleration are obtained due to each vehicle velocity. Maximum responses are 

calculated, since in the design procedure the maximum values are used.  

Mid-span deflection is the key response to calculate bridge impact factor for the 

majority of bridge design manuals. For high-speed trains, there are other considerations 

to be met. First criterion is the vehicle vertical acceleration which is a design criterion for 

riding comfort. Second criterion is the bridge acceleration which is an essential parameter 

for stability of ballasted railway tracks. The bridge mid-span acceleration may also be 

important caused by regular vehicles passing through relatively short bridges. The values 

for accelerations are obtained using absolute values regardless of the sign of the 

acceleration. 

 

4.5.2 Bridge Mid-Span Deflection 

Figs. 4.4a to 4.4c show mid-span deflection obtained from bridge models 

including or excluding the effect of shear deformation in the bridge modelling with spans 

of 6, 12, and 20 m. The bridge element lengths are selected such that they do not affect 

the accuracy of the response. For a 6.0 m bridge, the element length was selected as 0.5 

m, whereas an element length of 1 m was used for the 12 and 20 m bridges.  

The general trend in these figures implies that increasing the vehicle speed would 

not necessarily augment the mid-span deflection and it may result in lower responses for 

higher speeds. The first value on the left of the figures is almost equal to the static 

response of the bridge for which the vehicle speed is 0.5 m/s. These very low vehicle 

speeds are called crawl speed to obtain static-equivalent responses. The rest of the figure 

presents the dynamic response of the bridge for higher speeds. As clear in these figures, 



 74 

the impact factor which is the ratio of dynamic over static deflection could become even 

less than one for some high vehicle speeds. For example, for vehicle speeds of 100 m/s in 

Fig. 4.4b, the dynamic deflection at 100 m/s is less than the static (or crawl) deflection on 

the vertical axis.  

Figs. 4.4a to 4.4c also demonstrate that the deflection is greater for models 

including the effect of shear deformation. This is attributed to the fact that the stiffness of 

the bridge model comprising the effect of shear deformations is less than the model 

excluding such effects. It means that the bridge is more flexible, which eventually will 

result in more deflection. 

A significant difference between these two bridge modeling schemes (i.e. 

including or excluding the effect of shear deformations) is seen while decreasing the 

bridge span. However, the general behaviour looks similar. For the studied bridge models 

and the sample vehicle with the speed ranges mentioned, the differences between bridge 

deflections including or excluding shear deformation are summarized in Fig. 4.5. The 

maximum difference in mid-span deflection is calculated for each bridge by the passage 

of the sample vehicle with speeds ranging from 0.5 m/s to 150 m/s. Fig. 4.5 shows that, 

as expected, the effect of shear deformation is greater on shorter spans and the difference 

rapidly increases to reach up to 18% for 4.0 m span while for longer spans the difference 

reduces to be around 8%. 

As shown in Figs. 4.4a to 4.4b, the response pattern of two models (i.e. including 

or excluding the effect of shear deformation) are generally similar, but the pattern of 

curves including shear deformation is shifted to the left in comparison with the other 
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curves. This can be attributed to the driving frequency of the vehicle which is defined as 

(Fryba, 1996) 

 
BL

v
  (4.6) 

where v is the vehicle speed and LB is the bridge span. As mentioned above, employing 

shear deformations in the stiffness matrix will decrease the bridge stiffness. This will 

eventually reduce the bridge natural vibration frequencies. As expected, the maximum 

responses occur when the vehicle driving frequency is close to the bridge natural 

frequencies. Therefore, if the bridge natural frequencies are less, those responses occur 

for less vehicle driving frequencies. Considering Eq. 4.6, the driving frequency decreases 

when vehicle speed is reduced. Hence, the maximum responses happen for lower vehicle 

speeds, concluding that the response curve is shifted to the left. 

 

4.5.3 Bridge Mid-Span Acceleration 

Another essential bridge response is the mid-span acceleration which is an 

important factor in the stability of the ballast in ballasted railway bridges. Similar bridges 

with similar sample vehicle models were analyzed to study the importance of the effect of 

shear deformation on the bridge mid-span acceleration. Results are shown in Figs. 4.6a to 

4.6c which are maximum absolute values of mid-span acceleration. The figures imply 

that for shorter bridge spans with high-speed vehicles, the differences between two 

curves increase rapidly. 

On of the reasons of the rapid increase can be attributed to the changes in the 

bridge natural frequency resulting from modified bridge stiffness matrix. The dynamic 

interaction between bridge and the vehicle is greater for higher vehicle speeds since 
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driving frequency is more for those speeds (Eq. 4.6). Therefore, the dynamic response 

between two methods of bridge modelling varies more when vehicle speed increases 

which can be seen in Fig. 4.6. 

In addition, the results imply that the effect of shear deformation is more 

significant for bridges with shorter spans. It should be noted that, maximum values of 

mid-span acceleration are used in Fig. 4.6 which are very sensitive to the jagged 

oscillating nature of bridge mid-span acceleration. Furthermore, the overall vibration of 

the bridge should also be considered while using values presented in Fig. 4.6. 

 

4.5.4 Vehicle Vertical Acceleration 

Despite the fact that accounting for shear deformations affects only the stiffness 

of the bridge model, this might affect the vehicle response as well. Fig. 4.7 shows the 

vehicle vertical acceleration for three bridge spans. Vehicle vertical acceleration is an 

important criterion for riding comfort of vehicles particularly for high-speed trains. The 

comparison between response of bridges with 6 m and 20 m spans shows that the vehicle 

on shorter spans are affected more by the effect of shear deformation even for low 

vehicle velocities. The reason can be attributed to the different bridge natural frequencies 

interacting with vehicle natural frequencies and also vehicle driving frequency. 

 

4.6 EFFECT OF CONSISTENT MASS CONSIDERING FLEXURAL 

EFFECTS ONLY 
 

In general, construction of stiffness matrix in Finite Element (FE) modeling is 

done using the strain energy by the application of assumed appropriate shape functions. 
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Kinetic energy can be used for obtaining the mass matrix. However, in many ordinary 

engineering applications, lumped mass method is used. If kinetic energy is used to obtain 

the mass matrix, the result will be dependent on the chosen shape functions. If similar 

shape functions applied for stiffness matrix are used to derive the mass matrix, the 

resulted mass matrix is called consistent mass matrix which basically is consistent with 

the stiffness matrix. For an Euler-Bernoulli beam element usually Hermitian cubic 

functions are used which will yield to the following consistent mass matrix 

(Przemieniecki, 1985) 
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To study the effect of the consistent mass matrix, the generic sprung mass model 

used in Section 4.5 together with the 6 m railway bridge model is used. The properties of 

the vehicle are based on parameters presented by Lei and Noda (2002) given in Section 

4.5. The railway bridge model of 6 m was traversed by the sprung mass model for various 

ranges of vehicle speeds. Numerous analyses were carried out to determine maximum 

responses for each vehicle speeds. Midspan deflection, midspan acceleration and vehicle 

vertical acceleration are calculated as the main vehicle and bridge responses for vehicle-

bridge dynamic interaction. 

Results for maximum midspan deflection, maximum vehicle vertical acceleration 

and maximum midspan acceleration are shown in Figs. 4.8 to 4.10. The bridge element 

lengths were chosen 0.5 m for 6 m span bridge, and 1 m for 12 and 20 m bridges, and 
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they only include the effect of flexural deformations. Each point in those figures is the 

maximum value of the corresponding response of the passage of the vehicle through 

bridge with the associated velocity. The speed parameter is used as the horizontal axis. 

The speed parameter is a ratio of the driving frequency of the vehicle to the fundamental 

circular frequency of the bridge. That is a parameter depending on the vehicle velocity, v, 

the bridge fundamental frequency,  , and the bridge length, LB, defined as: 
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Speed parameter is a dimensionless parameter. The maximum midspan deflection and 

the maximum vehicle vertical acceleration are not affected by the application of the 

consistent mass matrix for all speed ranges. However, the maximum midspan 

acceleration is affected for higher speeds as shown in Fig. 4.10. For speed parameters 

more than 0.5 in Fig. 4.10, results are affected by the application of the consistent mass. 

Nevertheless, for low vehicle speeds due to insignificant dynamic content of the bridge 

oscillation, the effect is not considerable. The effect of consistent mass reduces rapidly 

for longer bridges.  

In conclusion, for Euler-Bernoulli beam element having flexural stiffness only, the 

effect of consistent mass can be neglected in the analysis of vehicle-bridge interaction 

even for high-speed trains. Special attentions should be given to short bridges where the 

bridge acceleration is important (e.g. ballasted railway bridges) at high vehicle speeds. 
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4.7 EFFECT OF CONSISTENT MASS CONSIDERING FLEXURAL 

AND SHEAR EFFECTS 
 

4.7.1 Mass Matrices 

The application of various types of mass matrices may be important in the bridge 

modeling while incorporating the effect of shear deformations. The consistent mass 

matrix including the effect of shear deformation is (Przemieniecki, 1985) 
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where 
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where the definition of bridge parameters (i.e. A, L, etc.) is given in Section 4.2.  

The effect of rotary mass may also be important induced by the beam cross-

sectional rotary inertia. This effect can be important in short beams with big cross 

sections, i.e. for beams with low span-to-depth ratios. If one wants to incorporate the 

effect of rotary masses, another mass matrix is obtained as (Przemieniecki, 1985) 
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where 
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Subsequently, the total consistent mass matrix including the effect of rotary inertia is: 

 CRCS MMM   (4.13) 

 

4.7.2 Bridge and Vehicle Models and Methodology 

In order to study the effect of these types of consistent masses including the effect 

of shear deformations, the generic sprung mass vehicle model used in the preceding 
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section is applied here with two bridge lengths of 6 m and 20 m. These bridges are 

chosen as representatives of a short span bridge and comparatively a medium span 

bridge, respectively. Three important dynamic responses are obtained using the 

developed MATLAB program for numerical time history dynamic analysis. These 

responses are midspan deflection, midspan acceleration, and vehicle vertical acceleration. 

The new VBI element is used to analyze the vehicle-bridge interaction. 

Stiffness matrix can be constructed by the flexural effects only (Eq. 4.1), or with 

flexural plus shear effects (Eq. 4.2). Mass matrix can be assembled using lumped masses 

or consistent masses, which in the case of the Timoshenko beam it will include the effect 

of rotary masses as well (Eq. 4.13). Three types of bridge models are considered here 

which are based on two types of stiffness and mass matrices. The first model is the basic 

model of Euler-Bernoulli beam element having flexural stiffness with lumped mass 

denoted as FL model. The second model is named FSL model for the Timoshenko beam 

having the effect of shear deformation in the stiffness matrix and lumped masses. The last 

model is called FSCR model which is the Timoshenko beam with the stiffness and 

consistent mass matrix including the effect of flexure and shear deformations and also the 

effect of rotary mass in the mass matrix. These assigned names are used in Figs. 4.11 to 

4.16. 

 

4.7.3 Bridge Model of 6.0 m Span 

The midspan acceleration, which is the most sensitive response to the various 

bridge characteristics, is shown in Fig. 4.11 for four vehicle speed parameters. In all four 

sub-figures, the vehicle leaves the bridge at the vehicle location of 6 m since the bridge 
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length is 6 m. The free vibration of the bridge is also shown which can be seen in all sub-

figures from the vehicle location of 6 m to 12 m. The effect of 2% bridge damping is 

evident in Fig. 4.11 (a) and also in the rest of figures. In Fig. 4.11 (a) regarding speed 

parameter S=0.05, the maximum midspan acceleration occurs right before the vehicle 

leaves the bridge. In contrast, for S=0.3, 0.6, and 1.0, the maximum value of midspan 

acceleration happens in the free vibration. This is because the vehicle passage is like a 

pulse exerted on the bridge; due to its magnitude and duration, the bridge may not have 

enough time to respond completely while the vehicle is on the bridge. Therefore, the 

maximum response will happen in the first peak of the bridge vibration after the vehicle 

leaves the bridge. It happens always in the first peak of vibration due to decreasing nature 

of the free vibration as a result of the bridge damping. 

The effect of various methods of constructing the bridge stiffness matrix and the 

bridge mass matrix is illustrated in Fig. 4.11. For relatively low vehicle velocities shown 

in Fig 4.11 (a), the response of midspan acceleration is almost the same for the bridge 

models constructed by the FSL model compared to bridges using FSCR model. The 

discrepancies between the two models increase for higher vehicle speeds which can be 

clearly observed from Fig. 4.11 (b) to (d). This is attributed to the fact that the effect of 

the consistent masses and particularly the rotary inertia increases while frequency of the 

excitation is augmented. The length of the bridge plays an important role, as well. 

Therefore, as expected, the effects of consistent and rotary masses are noticeable in 

higher vehicle speeds for this short bridge. 

The comparison between FL model and the other two models imply that the FL 

model underestimates the midspan acceleration. The difference reaches 70% for the 
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maximum midspan acceleration for S=0.6 shown in Fig. 4.11 (c). The reason is mainly 

due to the effect of shear deformations in the stiffness matrix. If one considers those 

effects in the stiffness matrix, it will result in a less stiff bridge; therefore more responses 

will occur. 

In Figs. 4.12 (a) and (b), the maximum midspan deflection occurs while the 

vehicle is still on the bridge. However, it happens in the bridge free vibration (when the 

vehicle is not on the bridge anymore) for higher vehicle speeds of Figs. 4.12 (c) and (d). 

This implies large impulsive nature of the vehicle passing the bridge which can also be 

attributed to the very short bridge length. The differences between the results obtained by 

FSL and FSCR models are much less than those for midspan accelerations. The midspan 

deflections are very close even for very high vehicle speeds (S=0.6). However for 

extremely fast movements with driving frequencies close to the bridge fundamental 

frequency (i.e. S=1.0), the discrepancy in the response can increase shown in Fig. 4.12 

(d). In addition, the effect of shear deformations is important in all vehicle speed ranges 

illustrated in Figs. 4.12 (a) to (d) by comparing FL model with the other models of FSL 

or FSCR. 

Fig. 4.13 shows the vehicle vertical acceleration for 6 m bridge. As illustrated in 

Figs. 4.13 (a) to (d), the vehicle response is less affected by the various bridge modeling 

schemes of FSL and FSCR compared to the two previous bridge responses. For all 

vehicle velocities, there are no noticeable differences between the response obtained by 

lumped mass matrix (FSL) and those by consistent-rotary mass matrix (FSCR). In 

contrast, the vehicle vertical acceleration is affected by employing the shear effects in 

FSL and FSCR models comparing to FL model excluding such effects. Similar to other 
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responses (i.e. midspan acceleration and midspan deflections) the effect of shear 

deformations is important in all vehicle speed ranges. 

 

4.7.4 Bridge Model of 20 m Span 

The bridge midspan acceleration is shown in Figs. 4.14 (a) to (d). It is expected to 

have less effects of either shear deformations or consistent-rotary mass on the response 

for 20 m bridge compared to the shorter bridge of 6 m. The effect of consistent-rotary 

mass of FSCR model is much less compared to 6 m bridge illustrated in Fig. 4.11. 

However, that effect becomes more important for higher speeds as it is evident in Fig. 

4.14 (d). The effect of shear deformations still plays a significant role in the response of 

the bridge for midspan acceleration caused by high speed vehicles clearly depicted in 

Figs. 4.14 (c) and (d). On the other hand, such effects are less important for low vehicle 

speeds of longer bridges comparing Fig. 4.14 (a) with Fig. 4.11 (a).  

For the midspan deflection and vehicle vertical acceleration shown in Figs. 4.15 

and 4.16 respectively, the consistent-rotary mass has no effect whatsoever comparing the 

results for FSL and FSCR models. This is true for all vehicle speed ranges where the 

results for FSL and FSCR models are identical. In addition, despite the fact that the 

effects of shear deformations are not negligible for midspan deflection and vehicle 

vertical acceleration for 20 m bridge shown in Figs. 4.15 and 4.16, their effects are less 

important compared to those for 6 m bridge shown in Figs. 4.12 and 4.13, respectively. 
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4.8 SUMMARY 
 

It was shown in this chapter that the effect of shear deformation should be 

included in the construction of the stiffness matrix and they are not negligible in the VBI 

analysis particularly for bridges with low span-to-depth ratios. The beam frequencies 

were calculated for a sample beam including and excluding the effect of shear 

deformations, which were compared with frequencies obtained from linear FEM analysis. 

Closer results to linear FEM were observed when considering the effect of shear 

deformations. In addition, two popular numerical models were analyzed which 

demonstrated the noticeable effect of shear deformation in the response. Moreover, by the 

passage of a sample vehicle (French high speed locomotive) over a series of designed 

double plate-girder open-deck railway bridges, the difference in the mid-span deflection 

between models including and excluding shear deformation were measured up to 18% for 

4.0 m span bridge and around 8% for spans longer than 16.0 m. 

If the effect of shear deformation is incorporated in the stiffness matrix, it will 

decrease the bridge stiffness which will eventually reduce the bridge natural frequencies. 

The dynamic interaction and maximum responses between vehicle and the bridge mainly 

depend on the relationship and closeness of bridge natural frequencies and the vehicle 

driving frequency. When the bridge frequency is less, the maximum response happens for 

less vehicle driving frequency (i.e. less vehicle speeds). This is as if the response pattern 

is shifted to the left of the figure which was observed for mid-span deflection, mid-span 

acceleration and even vehicle vertical acceleration (Figs. 4.4 to 4.7). Therefore, the 

maximum response due to lower vehicle speed may happen to be within the vehicle 
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operating speed range which could have been out of that range before considering the 

effect of shear deformations. 

Effect of consistent masses was also studied in this chapter. If the bridge stiffness 

matrix is constructed by flexural effects only, there is no considerable effect of consistent 

masses in bridge mid-span deflection and vehicle vertical acceleration for all vehicle 

speed ranges. However, those effects will slightly change the peak value of bridge 

midspan acceleration which is a very sensitive response compared to bridge midspan 

deflection and vehicle acceleration. This is valid only for short bridges and for vehicles 

with speed parameter S > 0.5. 

Timoshenko beam element is used to simulate the effect of shear deformation 

with consistent mass including the effect of rotary mass. Three types of bridge models are 

considered here which address two types of stiffness and mass matrix. Two plate-girder 

railway bridges of 6 and 20 m spans were used representing short and medium span 

girder bridges. Shear effects have a significant influence on all bridge responses of 6 m 

short bridge particularly for midspan acceleration. The model including flexural effects 

with lumped masses underestimates the midspan acceleration which can reach up to 70% 

in the peak midspan acceleration for the speed parameter S=0.6. The effects of consistent 

masses are minor in the midspan deflection and vehicle acceleration for most vehicle 

ranges; however, midspan acceleration is affected for very high vehicle speeds. For the 

20 m medium span bridge, the responses are less affected by the effect of consistent-

rotary masses. Yet there is still an effect on the midspan acceleration for high vehicle 

velocities.  
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Table 4.1: Modal frequencies (rad/sec) for a simply-supported beam obtained from the 

computer code compared to linear FEM (obtained by SAP2000) 

 

5m 2.5m 1m 5m 2.5m 1m 5m 2.5m 1m

Mode 1 27.207 27.213 27.214 27.322 27.325 27.326 27.180 27.186 27.188

Mode 2 106.7 107.17 107.24 109.03 109.29 109.30 106.60 107.06 107.14

Mode 3 228.34 234.73 235.51 241.37 245.76 245.93 228.12 234.50 235.28

Linear FEM Flexural Effects Only Shear + Flexural Effects

 

 

 

 

Table 4.2 Structural properties of the designed plate-girder open-deck railway bridges 

 

Bridge 

span

Moment of inertia Cross-sectional area Timoshenko Shear 

Coefficient

m m
4

m
2

4 0.001020 0.01946 0.442

6 0.002806 0.03208 0.431

8 0.006384 0.04704 0.441

10 0.011170 0.06014 0.438

12 0.016496 0.06625 0.468

14 0.024240 0.07510 0.471

16 0.031300 0.08523 0.479

18 0.042020 0.09308 0.490

20 0.057560 0.10072 0.516

25 0.105540 0.12172 0.529

30 0.183480 0.15336 0.485
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Fig. 4.1 Required designations for Timoshenko shear coefficient 
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Fig. 4.2 Effect of shear deformations on sprung mass model 
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Fig. 4.3 Effect of shear deformations on suspended rigid beam model 
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Fig. 4.4: Maximum mid-span deflection for bridge models including or excluding the 

effect of shear deformations, bridge spans of (a) 6m, (b) 12m, (c) 20m. 
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Fig. 4.5 The percentage of difference for mid-span deflection response regarding models 

including shear deformation effects with respect to models including flexural effects only 

for various bridge spans. 
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Fig. 4.6 Maximum bridge mid-span acceleration for bridge models including or 

excluding the effect of shear deformations, bridge spans of (a) 6 m, (b) 12 m, (c) 20 m. 
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Fig. 4.7 Maximum vehicle vertical acceleration for bridge models including or excluding 

the effect of shear deformations, bridge spans of (a) 6m, (b) 12m, (c) 20m 
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Fig. 4.8 Effect of the consistent mass on the maximum vehicle vertical acceleration for 

the bridge model of 6 m 
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Fig. 4.9 Effect of the consistent mass on the maximum midspan deflection for the bridge 

model of 6 m 
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Fig. 4.10 Effect of the consistent mass on the maximum midspan vertical acceleration for 

the bridge model of 6 m 
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Fig. 4.11 Midspan acceleration in the 6 m bridge for four speed parameters (a) 0.05, (b) 0.3, (c) 0.6, (d) 1.0. 

Flexural stiffness with lumped mass (FL), Flexural and shear stiffness with lumped mass (FSL), 

Flexural and shear stiffness with consistent-rotary mass (FSCR). 
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Fig. 4.12 Midspan deflection in the 6 m bridge for four speed parameters (a) 0.05, (b) 0.3, (c) 0.6, (d) 1.0. 

Flexural stiffness with lumped mass, Flexural and shear stiffness with lumped mass, 

Flexural and shear stiffness with consistent-rotary mass. 
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Fig. 4.13 Vehicle vertical acceleration in the 6 m bridge for four speed parameters (a) 0.05, (b) 0.3, (c) 0.6, 

(d) 1.0. Flexural stiffness with lumped mass, Flexural and shear stiffness with lumped mass, 

Flexural and shear stiffness with consistent-rotary mass. 
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Fig. 4.14 Midspan acceleration in the 20 m bridge for four speed parameters (a) 0.05, (b) 0.3, (c) 0.6, (d) 

1.0. Flexural stiffness with lumped mass, Flexural and shear stiffness with lumped mass, 

Flexural and shear stiffness with consistent-rotary mass. 
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Fig. 4.15 Midspan deflection in the 20 m bridge for four speed parameters (a) 0.05, (b) 0.3, (c) 0.6, (d) 1.0. 

Flexural stiffness with lumped mass, Flexural and shear stiffness with lumped mass, 

Flexural and shear stiffness with consistent-rotary mass. 
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Fig. 4.16 Vehicle vertical acceleration in the 20 m bridge for four speed parameters (a) 0.05, (b) 0.3, (c) 

0.6, (d) 1.0. Flexural stiffness with lumped mass, Flexural and shear stiffness with lumped mass, 

Flexural and shear stiffness with consistent-rotary mass. 
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CHAPTER 5 

EVALUATION AND INVESTIGATION OF THE SIGNIFICANCE 

OF NEW VBI ELEMENTS 
 

5.1 GENERAL 
 

In the current study, two numerical VBI elements, one for vehicles with 

constant velocities and the other one for vehicles experiencing acceleration or 

deceleration, are developed and verified as described in Chapter 3. The effect of shear 

deformation and consistent mass on the VBI analysis were studied in Chapter 4. In 

this chapter, the significance of the developed VBI elements is investigated. It should 

be noted that, since most of the results available in the literature are based on Euler-

Bernoulli beam element with flexural stiffness and lumped masses, the same 

approach is taken in this chapter to have comparable results with those reported in the 

literature. 

For vehicles with constant velocity, the effects of the model parameters are 

studied. These parameters include bridge and vehicle damping, frequency parameter, 

system mass parameter, in addition to a new introduced parameter called vehicle 

mass parameter.  

Moreover, the VBI element developed for vehicles with longitudinal (or 

horizontal) deceleration is studied for three vehicle models: The suspended rigid 

beam model; unsymmetrical truck model; and a train model. The results are 

compared with those in the literature demonstrating significant effect on both vehicle 

and bridge responses. 
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5.2 EVALUATION OF THE NEW VBI ELEMENT FOR VEHICLES 

WITH CONSTANT VELOCITY 
 

5.2.1 Parameters to be Investigated and Bridge and Vehicle Models 

In order to investigate the efficiency of the new VBI elements, a study on the effect of 

the model variables is conducted. Non-dimensional parameters used by other researchers 

(Green and Cebon, 1997; Majka and Hartnett, 2008) are used. A new parameter called 

vehicle mass parameter, which is the ratio of the wheel mass to the vehicle body mass, is 

introduced and considered. Non-dimensional parameters to be investigated are the 

damping of the vehicle and the bridge, frequency parameter,  , system mass parameter, 

 , and vehicle mass parameter,  . 

The frequency parameter   is the ratio of vehicle natural frequency to the bridge 

natural frequency. For parametric study, various values of   are obtained by modifying 

the stiffness of the sprung mass model while the vehicle mass remains constant. System 

mass parameter   is the ratio of the total vehicle mass to the total bridge mass. In order 

to obtain various values of   for parametric study, vehicle mass and stiffness are 

modified such that   remains constant. Parametric study is conducted comparing the 

results of the new VBI element with models proposed by Yang and Wu (2001) and also 

Majka and Hartnett (2008). The latter model requires iterations in each time increment, 

while no iteration is needed in the proposed element.   

In order to study the influence of the dimensionless parameters and also to compare 

the developed VBI element by the model proposed by Yang and Wu (2001), a railway 

bridge model reported by Foutch et al (1997) is used. The bridge is an open deck plate 

girder railway bridge with a simply-supported span of 15.24 m. The cross sectional area 
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is 0.12684 m
2
 and mass per unit length is 1428.64 kg/m. The moment of inertia is 

calculated as 0.05411 m
4
 based on the drawings available in the report. In addition, other 

required bridge properties are assumed which are Young’s modulus E=200 GPa, damping 

ratio 2%, and Poisson’s ratio 0.3. The same sprung mass vehicle model is used in this 

section similar to the one applied in Section 4.5.1. 

To compare the new VBI element with Majka and Hartnett (2008) model, the same 

bridge and vehicle models applied by these researchers are used. The bridge model is a 

single steel span of 31.5 m. The second moment of inertia is 0.1859 m
4
, cross-sectional 

area is 0.2262 m
2
, material density is 7850 kg/m

3
, total mass of the bridge is calculated as 

55933.6 kg., damping ratio is 1.30%, and Young modulus is 205 GPa. The bridge 

fundamental frequency is calculated as 7.33 Hz. The vehicle model is the sprung mass 

model (Fig. 3.11) with the vehicle properties based on the Manchester Benchmark 

‘‘Vehicle 1’’ train model, reported by Iwnicki (1999). The body mass of the vehicle is 

22240 kg with zero mass in the wheel. Stiffness is 7.31×10
6
 N/m, and damping is 

11.43×10
3
 Ns/m. The vehicle natural frequency is obtained as 2.89 Hz. 

To carry out the analysis, the dynamic amplification factor (DAF), defined as the 

ratio of the mid-span dynamic displacement to the static one, is calculated as the most 

important parameter in the bridge response. In addition to DAF, two other responses are 

evaluated in this study, namely maximum bridge mid-span acceleration and vehicle 

vertical acceleration. The bridge acceleration is important in the design of bridges 

especially ballasted railway bridges, while vehicle acceleration is a design criterion in the 

design of high speed trains governing the passenger comfort. Results are presented in 

subsequent sub-sections. Each figure illustrates the effect of each parameter on the bridge 
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or vehicle response and also shows a comparison of the new proposed element with the 

models proposed by Yang and Wu (2001) or Majka and Hartnett (2008). 

 

5.2.2 Effect of Bridge and Vehicle Damping 

The effect of the bridge damping is shown in Figs. 5.1 to 5.6, and for the vehicle 

damping, results are presented in Figs. 5.7 to 5.12. The effect of the vehicle damping on 

the bridge responses is minor, i.e. bridge acceleration and DAF, while the effect of bridge 

damping is much more, in particular for the bridge acceleration. However, the effect of 

the vehicle damping is more influential on the vehicle response compared to the bridge 

damping (Figs. 5.6 and 5.12). Results for DAF are decreasing in several speed regions as 

shown in Figs. 5.1 and 5.7. The most prominent of which is within the speed range of 75 

to 100 m/s. This reduction in DAF is due to the cancelation effect of the vehicle and 

bridge on each other which reduces the magnitude of the oscillation. The reduction could 

be to the extent that DAF becomes less than one for vehicle speed of 100 m/s as shown in 

Figs. 5.1 and 5.7. 

The comparison between the new proposed element and Yang and Wu (2001) 

element indicates that the new model results in smaller values of DAF for both bridge 

and vehicle damping. This effect is more evident for vehicle vertical acceleration. In 

addition, the general trend shows the growing effect of the proposed element for higher 

speeds. On the other hand, more results are obtained for proposed element compared with 

the Yang and Wu (2001) element regarding the vehicle or bridge acceleration. 

Results of DAF and vehicle vertical acceleration obtained by the new VBI element 

show a close match with those obtained by Majka and Hartnett (2008) model for both 
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vehicle and bridge damping (see Figs. 5.2, 5.6, 5.8, 5.12). However, higher discrepancy is 

observed for mid-span acceleration which is a sensitive response to the bridge damping 

as shown in Fig. 5.4. 

 

5.2.3 Effect of Frequency Parameter,   

The effect of the ratio of the natural frequency of the vehicle over the bridge natural 

frequency (i.e. parameter  ) is shown in Figs. 5.13 to 5.18. In order to incorporate 

changes in the frequency parameter, only the stiffness of the moving sprung mass was 

varied such that the targeted   was obtained. The results indicate substantial effects in all 

bridge and vehicle responses. In particular,   has larger effect on DAF and vehicle 

acceleration compared to the bridge acceleration, even for lower speed ranges. 

The results shown in Figs. 5.13, 5.15, and 5.17, calculated based on proposed and 

also Yang and Wu (2001) elements, specify that the difference widens while vehicle 

speed increases. This may be attributed to the fact that the proposed element incorporates 

more realistically the effect of dynamic parameters such as vehicle velocity which have 

more effect in higher speeds. However, the two models provide very close results for 

vehicle vertical acceleration. In contrast to the bridge or vehicle damping, the new 

proposed element results in greater responses for DAF and smaller values for bridge and 

vehicle acceleration due to changing frequency parameter. 

Figs. 5.14 and 5.18 show a close match between results obtained by Majka and 

Hartnett (2008) model and the new VBI element for DAF and vehicle vertical 

acceleration. However, the bridge acceleration is overestimated by Majka and Hartnett 



 104 

(2008) model for large speed parameters, while it is underestimated for low speed 

parameters as shown in Fig. 5.16.  

 

5.2.4 The Effect of System Mass Parameter,   

The last parameter studied is the system mass ratio  , which is the ratio of the 

vehicle mass over the bridge mass. It has a significant effect on all bridge and vehicle 

responses as shown in Figs. 5.19 to 5.21. It is interesting to note that, for speed 

parameters less than 0.2, the rate of vehicle acceleration is substantially increased when 

  is increased and the effect is less for higher speed parameters. The maximum vehicle 

vertical acceleration is obtained for S=0.2 regardless of the value of   associated, as 

shown in Fig. 5.21. The results obtained for the bridge acceleration are as expected, and 

they are ascending with almost the same rate like   as demonstrated in Fig. 5.20. In 

addition, DAF is significantly affected with variation in  . Fig. 5.19 shows that for speed 

parameters less than 0.25, DAF is larger for higher values of  . However, this trend is 

reversed for higher values of speed parameters. The speed parameter 0.25 corresponds to 

the vehicle speed of 115 m/s (415 km/hr) for the bridge model assumed which is the 

speed of the railway traffic (conventional trains or high-speed trains). Therefore, one can 

conclude that DAF increases with higher values of  in the railway traffic. 

Comparing the bridge and vehicle responses obtained from the new VBI element and 

Majka and Hartnett (2008) model shown in Figs. 5.19 to 5.21, a trend similar to other 

dimensionless parameters is observed. Results for vehicle vertical acceleration and DAF 

are very close, while there are noticeable discrepancies for the bridge acceleration. The 

reason is attributed to the iterative nature of the Majka and Hartnett (2008) model where 
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the convergence criterion is written for bridge displacements only. Such criterion will 

ensure acceptable results for bridge mid-span deflection, but not necessarily for bridge 

acceleration which experiences oscillations with high frequency. 

 

5.2.5 Effect of a New Parameter Called Vehicle Mass Parameter,   

A new parameter, called vehicle mass parameter, is proposed for the study of the 

model variables. This parameter, denoted as  , is defined as the wheel mass mw to the 

vehicle body mass mvb 

 

vb

w

m

m
  (5.1) 

Since the wheel mass is constant for a particular vehicle, the upper and lower bound 

of this parameter is due to the maximum loaded vehicle or an empty one, respectively. 

However, fully loaded vehicles are usually used for the bridge design yet there are 

different   values for various vehicles (e.g. cars, trucks, and trains) which affect the 

discrepancy of the bridge dynamic response with respect to the static analysis. In contrast 

to the bridge design, the fully loaded passenger cars may not result in maximum design 

criteria for the passenger comfort which is evaluated by the vehicle acceleration. Partially 

loaded trains have higher   values, since the mass of the car body is less whilst the wheel 

mass is the same as for the fully loaded train. 

To study the effect of this parameter on the dynamic response, the same bridge and 

vehicle model used in Section 4.5.1. is utilized here as well. Figs. 5.22 to 5.24 show the 

sensitivity of the response for various values of this parameter and also verify the 

different responses obtained from proposed modified VBI element and Yang and Wu 
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(2001) element. Similar to the bridge and vehicle damping ratio, smaller results for DAF 

are obtained from the proposed element compared to Yang and Wu (2001) element and 

greater responses for vehicle and bridge acceleration. 

The differences between two models associated with higher values of   are 

significant for DAF in high-speed vehicles. Accordingly, Fig. 5.22 demonstrates that the 

effect of the wheel mass is overestimated in the Yang and Wu (2001) element which can 

result in great DAF values for  =0.5 in high-speed vehicles. All responses of the bridge 

and vehicle shown in Figs. 5.22 to 5.24 tend to increase when   is augmented. Figs. 5.23 

and 5.24 imply that the greater acceleration in both bridge and vehicle is obtained for 

vehicles with less weight having higher   values. Therefore, using fully loaded vehicles 

does not necessarily result in upper bound responses for bridge and vehicle acceleration 

particularly for high-speed vehicles. 

 

5.3 EFFECT OF THE NEW VBI ELEMENT FOR VEHICLES 

EXPERIENCING ACCELERATION OR DECELERATION 
 

In order to demonstrate the capability, versatility, and significance of the new VBI 

element, three examples are studied. First model is a vehicle with a symmetrical 

geometry, and the second one is a truck model with an asymmetrical geometry. In the 

second model, the effect of tires is also studied. The third model is a train model based on 

the properties of a high-speed train. Effect of the new element and also some other 

important parameters are investigated for a number of important bridge and vehicle 

responses. 
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5.3.1 A Symmetrical Vehicle Model 

As a sample of symmetrical vehicle, the rigid beam model used by Yang and Wu 

(2001) is used here. Vehicle and bridge properties are based on the model given in 

Section 3.4.2. Vehicle matrices are given in Appendix B. Results obtained by the new 

VBI element are compared with those calculated by Yang and Wu (2001) to demonstrate 

the significance of the VBI element. In addition, the effect of the new VBI element on 

some important bridge and vehicle responses is studied. 

 

(a) Vehicle Responses and Discussions  

The proposed VBI element can predict the fluctuation in the vertical contact forces 

caused by the rotary or pitching moment. This moment is the result from horizontal 

vehicle acceleration or deceleration as explained in Chapter 3. Results of vertical contact 

forces for front and rear wheels are shown in Figs. 5.25 and 5.26. The forces are 

normalized with respect to static vertical contact forces. As expected, at the beginning of 

braking, the contact force of the front wheel increases and the rear wheel decreases due to 

the rotary moment. After this, the vehicle experience the oscillations exerted by the rotary 

moment resulting in a pitching movement and changes in vertical contact forces. 

Comparison between results obtained from the two models demonstrates significant 

differences of contact forces. For instance, by looking at the front wheel of the vehicle 

with the initial speed of 100 m/s and the initial deceleration of -20 m/s
2
 , one can 

conclude that the new model results in 42% increase, while Yang and Wu (2001) model 

shows only 10% increase. This huge difference implies that the effect of rotary moments 

can be considerable and should be included in the analysis. 
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Considering the alterations in the vertical contact forces, the horizontal acceleration 

can vary due to Equation 7 where the total mass is constant. One of the assumptions in 

the proposed model is that the friction coefficient is constant, or even if it is changing, the 

variation scheme is known prior to the analysis. However, as shown in Figs. 5.25 and 

5.26, the vertical contact forces are fluctuating considerably which can introduce 

alterations in the horizontal acceleration. As the friction coefficients are constant for this 

vehicle model, fluctuations in horizontal vehicle acceleration is found as follows. 

Considering Equation 7; Figs. 5.25 and 5.26 are multiplied by the corresponding friction 

coefficient and added to each other. Then, the summation figure is divided by the total 

mass of the vehicle. Fig. 5.27 shows the concluded figure demonstrating the alteration in 

vehicle horizontal deceleration resulting from variation in vertical contact forces. The 

figure is in the normalized form in which the horizontal deceleration was divided by 

corresponding g  value, where   is the friction coefficient and g is the ground 

acceleration. The vehicle deceleration for the Yang and Wu (2001) model is constant 

which is the line of normal deceleration equal to 1 in Fig. 5.27. 

Fig. 5.27 demonstrates that in addition to the vehicle horizontal deceleration, the 

vehicle initial speed is also very important. The vehicle experiences up to 10.5% increase 

in the horizontal vehicle deceleration for the extreme case of vehicle speed and 

deceleration. However, for another case of 50 m/s and -10 m/s
2
 the increase is only up to 

3.5%. It also can be concluded that the variation in horizontal deceleration is much less 

than vertical contact forces comparing the percentage of increases. Less changes in 

horizontal deceleration, which also corresponds linearly with total vertical contact forces 
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(considering Eq. 3.25), can be attributed to the fact that while one wheel is experiencing 

higher contact forces the other one is doing somewhat reverse.  

To explain these differences, one can simulate the vertical contact forces of this 

simple symmetric vehicle with three components. As shown in Fig. 5.28, these three 

components are (A) two equal static forces F1, (B) equal but reverse couple F2 resulting 

from the vehicle pitching moments and also rotary moments caused by horizontal 

acceleration, and finally, (C) components of two equal forces F3 corresponding to the 

vehicle vertical solid bouncing with no pitching. All the previous forces in each 

component category are equal due to the symmetry in the vehicle model. 

Consider only components (A), assuming that there are no pitching and bouncing 

effects (e.g. two small moving mass models on a very stiff and even surface). If this 

model experiences braking, there would be no changes in the total contact forces of 2F1, 

hence the horizontal acceleration will remain constant. Now, consider components (A) 

and (B) together. This corresponds to the vehicle model moving on a very stiff and even 

surface. If this vehicle experiences horizontal acceleration, only one rotary moment will 

be present and no solid vertical bouncing will appear. Since the forces in the components 

(B) are the same but in the reverse direction, the total contact forces in this case is also 

constant and it is 2F1; therefore, the horizontal acceleration remains constant, as well. 

Finally, consider all components together which corresponds to the vehicle model 

moving on a bridge or a non-stiff or uneven surface. In this case due to vertical 

movement of wheels, the car body will also bounce vertically producing vertical 

acceleration in the car body. Since these two forces are in the same direction, the total 
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contact force in this case is 2F1+2F3 which is different from 2F1 and will result in 

alteration in the horizontal acceleration. 

Regarding the free body diagrams of vehicle shown in Fig 3.3, consider only those 

equilibrium equations due to vertical bouncing of the vehicle (Eq. 3.19b and Eq. 3.20b) 

rewritten as follows: 

 03111  rmSPV ww
 ; 04222  rmSPV ww

 ,    (5.2a) 

 0121  rmSPSP cww
  (5.2b) 

where iV  are due to changes in the vertical contact forces caused by vertical vehicle 

bouncing. Omitting suspension forces SPw, the following total contact force V  of the 

vehicle bouncing is obtained 

 1423121 rmrmrmVVV cww
   (5.3) 

Since wheel masses are neglected in this model and they are set to zero, V  will only 

be equal to 1rmc
 . This implies that, for this particular example, the variation of the total 

vertical contact forces are linearly related to vehicle vertical acceleration; consequently, 

the vehicle horizontal acceleration is linearly related to vehicle vertical acceleration. This 

can be concluded from comparison of Fig. 5.27 with those results of vehicle acceleration 

for the new model presented in Fig. 5.29. 

 

(b) Bridge Responses 

Midspan deflection for various vehicle speeds and accelerations is shown in Fig. 5.30. 

That value is a key response in the calculation of the dynamic amplification factor in 

bridge design manuals. Using the new VBI element, the midspan deflection rapidly 

increases due to higher values of the front wheel contact forces. Differences of the new 
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VBI element and Yang and Wu (2001) model can reach up to 40% for vehicle initial 

velocity of 100 m/s and initial deceleration of -20 m/s
2
. Since these forces are much 

higher compared to contact forces calculated by Yang and Wu (2001) model, the first 

peak of the midspan deflection caused by the front wheel force is quickly augmented as 

shown in Fig. 5.30. 

Another important parameter is the midspan acceleration which is essential in the 

design of nonstructural components installed on the bridge or for the design of the ballast 

of the ballasted railway bridges. As shown in Fig 5.31, the effect of vehicle velocity is 

much higher than vehicle horizontal deceleration. However, the effect of the vehicle 

horizontal deceleration can not be neglected. 

Horizontal reaction in the hinge support is also an important response affecting the 

design of the horizontal restraint of the hinge connection. As shown in Fig. 5.32, in 

contrast to the differences between results obtained from the new VBI element and the 

one presented by Yang and Wu (2001), the peak values are almost the same for the two 

models. 

 

5.3.2 An Unsymmetrical Truck Model 

(a) Bridge and truck models 

The model discussed in the previous section was symmetric. In this section, an 

unsymmetrical model of a 3-axle truck is studied considering the effect of tires. To study 

the response resulting from new VBI element and also the effect of tire in the response, a 

sample bridge was traversed by a truck model. The Vehicle-Bridge Interaction (VBI) 

analysis was performed numerically and analyzed for various vehicle velocity and 
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deceleration conditions. The bridge model is a highway plate girder bridge initially used 

by Hwang and Nowak (1991) for the development of AASHTO LRFD (1994). Properties 

of the bridge are: Length=12 m, mass per unit length= 552 kg/m, and equivalent stiffness 

EI= 4.20×10
6
 kN-m

2
. Assuming E=200 GPa for steel, corresponding moment of inertia is 

obtained as 0.021 m
4
. Cross sectional area is not given and it is assumed that the bridge 

consists of plate girders with the total cross sectional area of 0.07 m
2
. In addition, 

Poisson’s ratio   was set to 0.3. 

The truck model utilized is similar to the model shown in Fig. 3.2 for the model 

excluding tire and Fig 3.5 is for the model including tire. Although the truck includes 

three axles, two axles are beside each other and considered as one axle in the truck model 

used by Hwang and Nowak (1991). Properties of these models are presented in Table 5.1. 

Values are used directly from a report by Nowak (1999) or calculated according to that 

report. 

The developed computer program in MATLAB was used to model the bridge and 

vehicle and also to perform the step-by-step time history numerical analysis. Results are 

obtained for vehicle initial speed of 50 m/s due to a truck with high speed and two 

friction coefficients of 0.1 and 0.7 as low and high friction conditions to have somewhat 

two extreme cases for better comparison. The latter can happen for emergency braking of 

new tires (Alvarez et al., 2005). Another value for friction coefficient that was previously 

considered is 0.85 for new tires of trucks having ABS (Anti-lock Braking System), 

(Shurtz et al., 2006).  
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(b) Discussion on bridge and vehicle responses 

Results of vehicle vertical deceleration for speed vehicles of 50 m/s and friction 

coefficient   = 0.1 and 0.7 are presented in Fig. 5.33 and 5.34. 

Two types of vehicle models are included; one excluding the effect of tires and the 

other one including tires. The results are compared with those obtained using Yang and 

Wu (2001) model. As expected, tires make the ride smoother and reduce the oscillations 

of the vehicle which brings more riding comfort. This can be seen clearly in Figs. 5.33 

and 5.34 comparing results of ‘no tire’ with those for ‘with tire’. Considering the 

response obtained from the new VBI element, the vertical acceleration increases rapidly 

while braking forces increases comparing Fig. 5.33 with Fig. 5.34. However, results 

obtained by Yang and Wu (2001) model are almost the same for two deceleration levels; 

since the effect of the vehicle horizontal deceleration was only considered at the contact 

point not on the vehicle itself. Hence, the vehicle responses and vertical contact forces 

will not change for various vehicle horizontal decelerations. This can be seen in 

Appendix A, Section A.4.  

Considering the vehicle horizontal deceleration shown in Fig. 5.35, it could be seen 

that there is no clear relationship between vehicle vertical acceleration and vehicle 

horizontal deceleration as explained in previous section for the vehicle without tires. The 

reason is associated with the effect of wheel vertical acceleration. Eq. 5.3 is also valid for 

this model. Since wheel masses are not zero for the truck model used in here, they will 

contribute in the total vertical contact forces due to Eq. 5.3. Although tires smoothen the 

ride, they increase the total vertical contact forces which will lead to almost 15% increase 

in horizontal deceleration for  = 0.7 and 7% increase for  = 0.1. 
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The bridge response is also affected by the vehicle horizontal deceleration. The 

comparison between Figs. 5.36 and 5.37 acknowledges that the bridge midspan deflection 

increases for higher braking situations. Similar to the rigid beam model, the increase is 

due to higher vertical contact forces of the front wheel. 

In contrast to the midspan deflection, the midspan acceleration is not affected by the 

vehicle horizontal deceleration. This can be seen for the results of both truck models 

comparing Fig. 5.38 with Fig. 5.39. However, discrepancies between results obtained by 

the new VBI element and those by Yang and Wu (2001) model increases while 

increasing vehicle horizontal deceleration.  

 

5.3.3 A Sample Train Model 

In order to study the influence of the vehicle braking on the response of bridges and 

trains, a railway bridge model is used reported by Foutch et al (1997) whose properties 

are given in Section 5.2.1. The train model used by Wu et al. (2001) which is a high-

speed train of SKS series 300 model is used as the vehicle model. The train model is 

similar to the model shown in Fig. 3.9 and associated properties are tabulated in Table 

5.2. Required vehicle matrices for numerical analysis are given in Appendix B. 

 

(a) Contact forces 

The vertical contact forces for all wheels are shown in Figs. 5.40 and 5.41 for vehicle 

initial speed of 50 and 100 m/s. Considering the vehicle model of Fig. 3.9, the wheels are 

numbered from right to left, where the first one at right is the first wheel and the last one 

at the very left is the fourth wheel. These designations are used in Figs. 5.40 and 5.41. 
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The friction coefficient of  = 0.1 and 0.7 are used here representing low and high 

braking situations. The value of 0.7 for friction coefficient is extremely high and it is the 

highest value that was reported by Olofsson and Telliskivi (2003). They concluded that, 

the friction coefficient varies between 0.5 and 0.6 for pure non-lubricated sliding tests 

which can reach 0.7 in some cases. If the rail is lubricated, the friction coefficient reduced 

to values between 0.2 to 0.4. 

As shown in Figs. 5.40 and 5.41, the results obtained by Yang and Wu (2001) model 

are not able to track the fluctuation in the vertical contact force. This is due to the fact 

that they used the contact force formulation of the vehicle with constant velocity for the 

case of vehicles with acceleration, which is not capable of modeling the pitching moment 

caused by the vehicle horizontal acceleration or deceleration. Significant variations in the 

contact forces are observed for all vehicle speeds in Figs. 5.40 and 5.41. The maximum 

contact force in each case is affected slightly by the vehicle velocity and it is more a 

function of friction coefficient or severity of the braking. The first wheel and the second 

wheel are under bogie #1 and the other two wheels are under bogies #2. Due to the 

pitching moment on the bogie #1, the first wheel experiences growth in the contact force 

and the other wheel is vice versa. Similar behaviour is observed for the third and the forth 

wheel under the bogie #2. 

 

(b) Midspan deflection 

The midspan deflection is shown in Fig. 5.42 for vehicle initial speed of 50 m/s. 

Results for all cases are very close. It is usually expected to have a direct relationship 

between the exerted forces on the bridge and the amount of resulting deflection. 
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However, the current example contradicts that clear fact at the first glance. As shown in 

Figs. 5.40 and 5.41, significant fluctuations in contact forces are observed for all wheels 

with no exception, but midspan deflections for all cases are only slightly different. The 

reason is attributed to the spacing of the forces and how they are applying on the bridge. 

The spacing between the first wheel and the second wheel is 2.5 m and they are under the 

bogie #1 (see Fig. 3.9). Therefore compared to the bridge length which is 15.24 m, first 

and second wheels are relatively close to each other. Although the contact force in the 

first wheel is growing, it is decreasing in the second wheel. Hence, the resultant force, 

which is a summation of the first and the second wheels, is not fluctuating as significantly 

as individual wheels.  

Results for the summation of the vertical contact forces for the first and last two 

wheels are shown in Fig. 5.43 for the vehicle initial speed of 50 m/s. For two wheels 

under the bogie #1 (i.e. first and second wheels) shown in Fig. 5.43 (a), the increase in 

contact forces is only around 7% and for the bogie #2 the decrease is around 10% shown 

in Fig. 5.43 (b). These slight changes are due to the pitching moment in the vehicle body 

itself. The car body pitching moment is resisted by the inertial effect of the vehicle body 

rotary inertia and two vertical spring-dampers supporting the vehicle body. Although, the 

amount of the pitching moment is larger compared to that for the two bogies, the rotary 

inertia of the car body is much higher than bogies; consequently, the pitching of the car 

body is much less than that for bogies shown in Fig. 5.44. In addition to the pitching, the 

vehicle bouncing is also important which is shown in Fig. 5.45 confirming the previous 

results. 
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(c) Vehicle horizontal deceleration 

Vehicle horizontal deceleration is presented in Fig. 5.46 for three levels of vehicle 

speeds and three levels of friction coefficients. The deceleration is obtained using Eq. 

3.25 for each friction coefficient of 0.1 and 0.7 as shown in Fig. 5.46. In addition to the 

friction coefficients that are constant for each analysis, the total vehicle mass Mt is also 

constant throughout the analysis; therefore considering Eq. 3.25, the vehicle horizontal 

acceleration or deceleration is a function of summation of all vertical contact forces. It is 

observed from Fig. 5.46 that, the vehicle horizontal deceleration is very much affected by 

the vehicle initial velocity not the friction coefficient. For the vehicle initial velocities of 

50 and 100 m/s, the maximum change in the horizontal deceleration is almost 2% which 

is very low and cannot be felt by the passengers sitting on that train. However for the 

very high speed vehicle velocity of 200 m/s, fluctuations grow to 13% which may be felt 

by the passengers. 

 

(d) Other important responses 

Vehicle vertical acceleration shown in Fig. 5.47, is also an important parameter 

that governs the level of passenger comfort. It is not affected considerably by the various 

values of friction coefficients. The results for Yang and Wu (2001) model and the new 

VBI element are very close, implying the fact that the vehicle horizontal acceleration or 

deceleration has no noticeable effect on the vehicle vertical acceleration for train models. 

The bridge midspan acceleration is demonstrated in Fig. 5.48 for two vehicle 

initial speeds of 50 m/s and 100 m/s. As clearly shown in Fig. 5.48, the midspan 

acceleration is very much affected by the vehicle velocity not the vehicle horizontal 
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deceleration. Hence, similar to the vehicle horizontal deceleration, the midspan 

acceleration does not depend on friction coefficients (i.e. severity of braking); however, 

the vehicle initial velocity plays a governing role.  

Fig. 5.49 shows the hinge support reaction which is not affected noticeably by the 

severity of braking, and the peak values are only 5% different. The response can be 

divided into two parts in Fig. 5.49; the first part from zero to 18 m and the second part 

from 18 m to 35 m. the first part is basically the response due to the first two wheels and 

the second part is due to the last two wheels. Since the fluctuations of the last two wheels 

are more than the first two wheels shown in Fig. 5.43, the second part of Fig. 5.49 

demonstrates more differences between  =0.1 and 0.7 compared to the first part of the 

figure. Finally, the peak values of the hinge support reaction are 10% different in the 

second part of Fig. 5.49 which should be considered in the design practices. 

 

5.4. SUMMARY 
 

In  order  to  investigate  the  effect  of  the  new  VBI  element for vehicles with 

constant velocity compared with the VBI element proposed by Yang and Wu (2001) and 

Majka and Hartnett (2008) model, a  study  on  the  influence  of  some  important  

parameters  was carried out. Parameters available in the literature considered in this  

study  were  vehicle  and  the  bridge  damping,  total  vehicle mass to the bridge mass κ , 

and the ratio of the vehicle first mode frequency over the bridge natural frequency γ. In 

addition, a new parameter   was introduced in this study which is the ratio of the wheel 

mass to the vehicle body mass. The dynamic amplification factor, as the ratio of the mid-

span displacement of the dynamic analysis to the static one, was considered as the most 
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important bridge response for the study on the model variables. Bridge and vehicle 

accelerations were also obtained from the analysis important for high-speed trains.  

Results of vehicle with constant velocity obtained by the new VBI element 

compared with those obtained by Yang and Wu (2001) generally imply that the new VBI 

element results in different DAF values increasing when vehicle speed increases. For 

vehicle and bridge acceleration, different responses are observed for all vehicle speeds. 

These differences can be attributed to the effects of dynamic parameters (e.g. vehicle 

speed) presented in the formulation proposed for the new modified VBI element 

compared to that of Yang and Wu (2001) model. 

Results of DAF and vehicle vertical acceleration obtained by the new VBI 

element show a close match with those obtained by Majka and Hartnett (2008) model. 

However, higher discrepancy is observed for mid-span acceleration. The reason is 

attributed to the iterative nature of the Majka and Hartnett (2008) model where the 

convergence criterion is written for bridge displacements only. Such criterion will ensure 

acceptable results for bridge mid-span deflection, but not necessarily for bridge 

acceleration which experiences oscillations with high frequency. 

In addition, studying the effect of dimensionless parameters demonstrates that the 

greatest sensitivity is observed for the vehicle mass parameter   and   for any vehicle 

speed and also for frequency parameter γ regarding high speed vehicles. Results indicate 

that using fully loaded vehicles having less   values will not always result in upper 

bound responses for bridge and vehicle acceleration, particularly for high-speed vehicles. 

Finally, the analyses showed that the dynamic amplification factor (DAF) is not always 

increasing with vehicle velocity and can be even less than one for medium speed vehicles 
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due to the cancellation effect between the vehicle and the bridge. This region of 

decreasing DAF can be shifted if longer bridges with different natural frequency are 

applied. 

The effect of the new VBI element for vehicles experiencing deceleration was studied 

for three types of vehicle models, symmetrical and unsymmetrical vehicles, and a train 

model. As a sample of the first group, a vehicle model of 4-DOF called rigid beam model 

was used and available results in the literature were compared with those obtained from 

the new VBI element. Large differences were observed for vertical contact forces, vehicle 

vertical acceleration, and also bridge midspan deflection. However, the effect of the new 

VBI element to Yang and Wu (2001) model is not prominent for bridge midspan 

acceleration and horizontal support reactions. 

As a representative for unsymmetrical vehicles, a sample truck model on a simply-

supported highway bridge is studied including and excluding the effect of tires. Two 

friction coefficients of 0.1 and 0.7 are used representing common and extreme braking 

forces. Results show almost the same conclusions obtained for the symmetric model, 

however due to different properties of the bridge and the vehicle, the order of differences 

was smaller particularly for midspan deflection. Moreover, the effect of tires were 

considerable on both bridge and vehicle responses, and as expected, much greater on 

vehicle responses. 

The last model that was used to investigate the effect of the new VBI element for 

vehicles experiencing deceleration is a train model. Vertical contact forces are greatly 

affected and they can be augmented 50% for an extreme braking situation. The two 

vertical contact forces under each bogie act reversely, meaning that, if one contact force 
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increases the other one will decrease because of pitching moment exerted on the bogie. 

Although the vertical contact forces vary significantly, the midspan deflection is affected 

slightly. This is because the two wheels under each bogie are relatively close and they 

cancel the effect of each other. The car body vertical acceleration is affected slightly by 

the vehicle horizontal deceleration. In addition, midspan acceleration is not very sensitive 

to the vehicle horizontal deceleration, but it is very sensitive to the vehicle velocity which 

determines vehicle driving frequency.  
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Table 5.1 Properties of the unsymmetrical truck model 

m c 25 ton

m w1 1 ton

m w2 2 ton

I c 80 ton.m
2

k v1 280 kN/m

k v2 350 kN/m

k t1 =k t2 880 kN/m

c v1 =c v2 50 kN.s/m

c t1 =c t2 1.5 kN.s/m

d 1 3.41 m

d 2 2.09 m

h 1 0.25 m

h 2 0.75 m
 

 

 

Table 5.2 Properties of the train model 

m c 41.75 ton

m b1 =m b2 3.04 ton

m w1 =m w2 =m w3 =m w4 1.78 ton

I c 2080 ton.m
2

I b1 =I b2 3.93 ton.m
2

k v1 =k v2 1180 kN/m

k w1 =k w2 =k w3 =k w4 530 kN/m

c v1 =c v2 39.2 kN.s/m

c w1 =c w2 =c w3 =c w4 90.2 kN.s/m

l 1 =l 2 8.75 m

d 1 =d 2 =d 3 =d 4 1.25 m

h 1 0.75 m

h 2 0.42 m

h 3 0.20 m

h 4 0.455 m
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Fig. 5.1 The comparison of the effect of the bridge damping B  on DAF with Yang and 

Wu (2001) model 
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Fig. 5.2 The comparison of the effect of the bridge damping B  on DAF with Majka and 

Hartnett (2008) model 
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Fig. 5.3 The comparison of the effect of the bridge damping B  on the bridge mid-span 

acceleration with Yang and Wu (2001) model 
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Fig. 5.4 The comparison of the effect of the bridge damping B  on the bridge mid-span 

acceleration with Majka and Hartnett (2008) model 
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Fig. 5.5 The comparison of the effect of the bridge damping B  on the vehicle vertical 

acceleration with Yang and Wu (2001) model 
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Fig. 5.6 The comparison of the effect of the bridge damping B  on the vehicle vertical 

acceleration with Majka and Hartnett (2008) model 
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Fig. 5.7 The comparison of the effect of the vehicle damping V  on DAF with Yang and 

Wu (2001) model 
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Fig. 5.8 The comparison of the effect of the vehicle damping V  on DAF with Majka and 

Hartnett (2008) model 
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Fig. 5.9 The comparison of the effect of the vehicle damping V  on the bridge mid-span 

acceleration with Yang and Wu (2001) model 
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Fig. 5.10 The comparison of the effect of the vehicle damping V  on the bridge mid-span 

acceleration with Majka and Hartnett (2008) model 
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Fig. 5.11 The comparison of the effect of the vehicle damping V  on the vehicle vertical 

acceleration with Yang and Wu (2001) model 
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Fig. 5.12 The comparison of the effect of the vehicle damping V  on the vehicle vertical 

acceleration with Majka and Hartnett (2008) model 
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Fig. 5.13 The comparison of the effect of the frequency parameter   on DAF with Yang 

and Wu (2001) model 
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Fig. 5.14 The comparison of the effect of the frequency parameter  on DAF with Majka 

and Hartnett (2008) model 
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Fig. 5.15 The comparison of the effect of the frequency parameter   on the bridge mid-

span acceleration with Yang and Wu (2001) model 
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Fig. 5.16 The comparison of the effect of the frequency parameter   on the bridge mid-

span acceleration with Majka and Hartnett (2008) model 
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Fig. 5.17 The comparison of the effect of the frequency parameter   on the vehicle 

vertical acceleration with Yang and Wu (2001) model 
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Fig. 5.18 The comparison of the effect of the frequency parameter   on the vehicle 

vertical acceleration with Majka and Hartnett (2008) model 
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Fig. 5.19 The comparison of the effect of the system mass parameter  on DAF with 

Majka and Hartnett (2008) model 
 

 

 

 

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

Speed Parameter

B
ri

d
g

e 
A

cc
el

er
at

io
n

 (
m

/s
2
)

Majka and Hartnett (2008)

Proposed Element

k=0.25

k=1

k=2

 
 

Fig. 5.20 The comparison of the effect of the system mass parameter  on the bridge 

mid-span acceleration with Majka and Hartnett (2008) model 

 



 133 

 

0

1

2

3

4

5

6

7

8

9

10

11

0 0.2 0.4 0.6 0.8 1

Speed Parameter

V
eh

ic
le

 V
er

ti
ca

l 
A

cc
el

er
at

io
n

 (
m

/s
2
)

Majka and Hartnett (2008)

Proposed Element

0.25

1.5

2.0

1.0

0.5

 
 

Fig. 5.21 The comparison of the effect of the system mass parameter  on the vehicle 

vertical acceleration with Majka and Hartnett (2008) model 
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Fig. 5.22 The comparison of the effect of the vehicle mass parameter  on DAF with 

Yang and Wu (2001) model 
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Fig. 5.23 The comparison of the effect of the vehicle mass parameter  on the bridge 

mid-span acceleration with Yang and Wu (2001) model 
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Fig. 5.24 The comparison of the effect of the vehicle mass parameter  on the vehicle 

vertical acceleration with Yang and Wu (2001) model 
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Fig. 5.25 Ratio of vertical contact forces over static contact forces in the front wheel of 

the rigid beam model 
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Fig. 5.26 Ratio of vertical contact forces over static contact forces in the rear wheel of the 

rigid beam model 
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Fig. 5.27 Ratio of horizontal acceleration over initial acceleration of the rigid beam 

model 
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Fig. 5.28 Simplified illustration of the vehicle model dynamics 
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Fig. 5.29 Vehicle vertical acceleration of the rigid beam model 
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Fig. 5.30 Bridge midspan deflection of the rigid beam model 
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Fig. 5.31 Bridge mid-span vertical acceleration of the rigid beam model 
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Fig. 5.32 Hinge support horizontal reaction of the rigid beam model 
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Fig. 5.33 Truck model vertical acceleration for  =0.1 
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Fig. 5.34 Truck model vertical acceleration for  =0.7 
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Fig. 5.35 Ratio of horizontal deceleration over initial deceleration for the truck model 
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Fig. 5.36 Bridge midspan deflection of the truck model for  =0.1 
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Fig. 5.37 Bridge midspan deflection of the truck model for  =0.7 
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Fig. 5.38 Vehicle midspan acceleration of the truck model for  =0.1 
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Fig. 5.39 Vehicle midspan acceleration of the truck model for  =0.7 
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Fig.  5.40 Ratio of vertical contact forces over static contact forces of the train model, for 

initial vehicle speed of 50 m/s 
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Fig.  5.41 Ratio of vertical contact forces over static contact forces of the train model, for 

initial vehicle speed of 100 m/s 
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Fig. 5.42 Midspan deflection of the train model, for initial vehicle speed of 50 m/s 
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Fig.  5.43 Ratio of the summation of vertical contact forces under each bogie over 

corresponding total static contact forces of the train model, for initial vehicle speed of 50 

m/s 
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Fig. 5.44 Vehicle pitching of various parts of the train model, for initial vehicle speed of 

50 m/s 
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Fig. 5.45 Vehicle bouncing of various parts of the train model, for initial vehicle speed of 

50 m/s 
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Fig. 5.46 Ratio of vehicle horizontal acceleration over initial acceleration of the train 

model for initial vehicle speeds of (a) 50 m/s, (b) 100 m/s, and (c) 200 m/s. 
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Fig. 5.47 Vertical acceleration of the car body of the train model, for initial vehicle speed 

of 50 m/s  
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Fig. 5.48 Bridge midspan acceleration of the train model for initial vehicle speeds of (a) 

50 m/s, and (b) 100 m/s 
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Fig. 5.49 Hinge support vertical reaction of the train model, for initial  vehicle speed of 

50 m/s. 
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

 

6.1 SUMMARY 
 

The principal objective of this study is to develop and evaluate numerical elements 

for the dynamic analysis of Vehicle-Bridge Interaction (VBI) problems where the 

response of the bridge and also the vehicle is required. 

Two numerical VBI elements are developed; first one is for vehicles moving with 

constant velocity and the second one is for vehicles experiencing acceleration or 

deceleration. The first VBI element was used in the development of the second one. The 

general common notations are kept similar to the VBI element proposed by Yang and Wu 

(2001) for easier comparison between the two models. For vehicles experiencing 

acceleration or deceleration, the numerical formulation is written such that the effect of 

vehicle acceleration is included solely in one parameter called acceleration parameter.  

A program was coded using MATLAB 7.6 (2008) programming language to perform 

the time-history analysis of vehicle-bridge interaction. Three numerical models were used 

to verify the developed numerical VBI elements and the coded MATLAB program. 

The effects of shear deformations and consistent masses on the vehicle and bridge 

responses were also investigated. Eleven double plate-girder open-deck railway bridges 

with spans ranging from 4.0 m to 30.0 m were designed using AREMA Manual (2010). 

Timoshenko beam element was used to simulate the effect of shear deformations with 
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consistent masses including effect of rotary masses. Three types of bridge modeling were 

considered, regarding two types of stiffness and mass matrix. 

A comprehensive parametric study was conducted to investigate the effect of the new 

VBI element for vehicles with constant velocity compared with the VBI elements 

available in literature. A new parameter was introduced in this study which is the ratio of 

the wheel mass to the vehicle body mass. The effect of the new VBI element for vehicles 

experiencing deceleration was studied for three types of vehicle models: symmetrical and 

unsymmetrical vehicles, and a train model. 

 

6.2 CONTRIBUTIONS AND APPLICATIONS 

 

There are two main contributions of the current research work: 

1. A numerical VBI element was developed for vehicles with constant velocity. To 

develop this VBI element, contact forces are related to beam element nodal forces 

using Hermitian cubic interpolation functions. Suitable interpolation functions 

between the beam element displacement vector and those for contact points are 

considered. The velocity and the acceleration of the contact point are then obtained by 

the first and second derivation of the corresponding displacement vector. This result 

in the stiffness, mass, and damping properties of a new beam element, which is called 

VBI element as compared with the original beam element. Corresponding 

formulations are listed in Eqs. 3.15 to 3.18. The working procedure is explained in 

Section 3.2.5. The effect of rail irregularities (for railway bridges) or road roughness 

(for highway bridges) is also included in the VBI element. 
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2. Another numerical VBI element was developed for vehicles experiencing 

longitudinal acceleration or deceleration. Forces exerted by the vehicle longitudinal 

acceleration are formulated numerically based on vertical contact forces by defining 

suitable dimensionless matrices and vectors. Then, a new factor called acceleration 

parameter is defined to facilitate the formulation. This parameter can be calculated at 

the beginning of the analysis and is constant throughout the analysis, convenient for 

numerical programming. Consequently, this results in the modified VBI element 

including the effect of vehicle acceleration or deceleration. Corresponding 

formulations are listed in Eqs. 3.56 to 3.58. The working procedure is described in 

Section 3.3.6. 

Despite the fact that the developed VBI elements are generalized and can be used in 

the analysis of the interaction of any moving object on an elastic support, there are two 

main practical applications in the field of structural engineering: 

1. LRFD-based code development for design and evaluation of railway bridges is 

required to be carried out (Najjar 2006). In the development of new LRFD code for 

railway bridges, one major step is to obtain statistical characteristics of the dynamic 

load and impact on railway bridges through a numerical analysis. This has not been 

done yet for American railway bridges.  

The first step is to simulate in-service trains based on available data from daily 

traffic on railway bridges. The accuracy of the results and their reliability increases 

with the number of simulated trains. Various bridge types need to be considered with 

different conditions (e.g. track type and irregularities). The second step is to perform 
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a complete analysis of vehicle-bridge interaction for each simulated train, bridge type, 

and bridge condition. This leads to extensive number of required analyses.  

Moreover, the development of numerical analytical procedures is required since 

modeling all sources of dynamic effects in the commercially available structural 

analysis software, such as SAP2000, is not feasible. For instance, the effect of track 

irregularities cannot be incorporated in these available software packages. On the 

other hand, the accuracy of the results is important since the dynamic interaction 

between railway bridges and trains are usually significant due to large loads being 

transported. In the current railway bridge design manual (AREMA 2011), dynamic 

effects can reach up to 40% of the live load depending on the bridge span; hence, 

appropriate calculation of dynamic effects can have a great influence on the final 

bridge design.  

In summary, to obtain statistical characteristics of the dynamic load and impact on 

railway bridges, numerous detailed VBI analyses are required. An efficient and 

sufficiently accurate method of analysis, such as the analysis that could be performed 

using the developed VBI models, is essential and can save extensive amount of time 

and effort. 

2. In the design of railway bridges for high-speed trains where the train response is 

important due to passenger comfort, sophisticated analytical methods are required to 

be used. Following the recent growth in the use of high speed trains in Japan, China, 

and Europe, much research was undertaken in these countries in the past two decades.  

Even though there is only one high-speed route currently in North America 

(Amtrak's Acela Express runs on the Northeast Corridor from Boston to Washington, 
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D.C), it was reported that there will be several high-speed constructions in USA as a 

part of the 2009 stimulus package (Billitteri, 2009). The construction is expected to 

begin as of September 2012 in Central Valley, California (Turner, 2010). For Canada, 

implementing new routes have been under discussion for a while in order to connect 

Edmonton to Calgary, and also another route from Windsor to Quebec City. Despite 

the possibility of future applications of high speed trains in North America, there is 

not much research in this area. 

 

6.3 CONCLUSIONS 
 

The following conclusions are obtained from results of the numerical analysis of the 

current research: 

1.  Accounting for the shear deformation in the VBI models formulation affects the 

mid-span deflection predictions by about 18% for 4.0m span bridge and around 

8% for spans longer than 16.0m. 

2. The effect of accounting of shear deformation becomes more imperative on the 

bridge dynamic responses, such as the peak mid-span acceleration; a significant 

difference of 70% in the response was obtained for a 6.0m bridge model with a 

speed parameter
1
 S=0.6. 

3. Consistent mass has no effect on the mid-span deflection and vehicle vertical 

acceleration for all vehicle speed ranges. However, there is a slight effect on the 

                                                 
1
 Speed parameter: 

BL

v
S




  where v is the vehicle speed,  is the bridge fundamental frequency, and LB 

is the bridge length. 
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mid-span acceleration of the very short bridges (span < 10 m) traversed by 

vehicles with speed parameter S > 0.5.  

4. The new VBI elements have more effect on mid-span and vehicle vertical 

accelerations compared to DAF (Dynamic Amplification Factor) for all vehicle 

speed ranges. In addition, the effect of new elements on all of the bridge and 

vehicle responses increases when vehicle speed is augmented (for high-speed 

vehicles in particular). This is attributed to the effect of dynamic parameters (e.g. 

vehicle speed) presented in the formulations proposed for the new VBI elements.  

5. DAF is not always increasing with vehicle velocity and can be even less than one 

for vehicles with average speeds. This region of decreasing DAF was observed 

for the bridge model of 15.5 m with speed parameter S=0.2. Despite this 

observation, it is still realistic to take DAF to be greater than 1 for practical 

engineering applications. 

6. Parametric study demonstrated important influential parameters that affect the 

response are the vehicle mass parameter   and system mass parameter   for any 

vehicle speed. Also, the response is sensitive to the frequency parameter γ in the 

case of high speed vehicles. 

7. Results indicate that using fully loaded vehicles having less   will not always 

ensure upper bound responses for bridge and vehicle accelerations, particularly 

for high-speed vehicles. This should be considered in the pertinent design 

practices. 

8. Considering 4-DOF and 6-DOF vehicle models, the vehicle longitudinal 

deceleration demonstrated significant influence on the vertical contact forces, 
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vehicle vertical acceleration, and also bridge mid-span deflection. The main 

reason is attributed to the alteration in the vertical contact forces captured by the 

new VBI element. However, the effect of the new VBI element is not prominent 

for bridge mid-span acceleration which is very much affected by the vehicle 

driving frequency (i.e. vehicle speed). 

9. Studying a train model of 10-DOF, having two levels of medium and high braking 

situations, shows that the vertical contact forces may be significantly affected and 

they can be augmented by about ±50% for an extreme braking situation. This 

local effect could have implications on the design of the rail. On the other hand, 

such extreme braking situations have minor effect on the mid-span deflection and 

the vehicle vertical acceleration mainly due to the small arm between the two 

wheels under each bogie  

Finally, it should be mentioned that the above conclusions are based on the limited 

number of numerical dynamic analyses done in this thesis. More analyses are needed if 

generalized conclusions are desired. 

 

6.4 RECOMMENDATIONS FOR FUTURE RESEARCH 
 

The following are suggested future research areas on the VBI analysis:  

1. Extension of the developed VBI elements for 3D analysis of vehicle-bridge 

interaction, which would assist in performing research in the following areas: 

 Investigation of the individual track irregularities for each rail of railway 

bridges. This will provide a detailed modelling of track irregularities, and a 

better analysis of dynamic effects and impact factor. 
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 Analysis of torsional vibration of bridges due to the moving of vehicles off the 

center-line of the bridge. 

 Analysis of lateral acceleration and bouncing of the vehicle. 

 Studying the effect of vehicle rocking oscillation on the bridge response, 

which is an important parameter in the design of railway bridges. According 

to the AREMA manual (2011), vehicle contact loads are modified by ±20% 

on each rail due to the rocking effect. 

2. Although this study covered several types of vehicles, it is suggested that more 

types of vehicles and also bridges be analyzed in order to be able to generalize the 

conclusions. For example, 6-axle locomotives can be investigated. 

3. Bridge models used in this study were simply-supported girder bridges. A future 

investigation would study the response of continuous bridges with various 

structural systems. 

4. A comprehensive study could be carried out on the effect of  elastic bearing type 

and its influencing design parameters on the response of the bridge and also the 

vehicle. 
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APPENDIX A 

VEHICLE-BRIDGE INTERACTION ELEMENT DEVELOPED BY 

YANG AND WU (2001) 

 

 

A.1 Vehicle Equations and Contact Forces 

Assume that a bridge is modeled by some beam elements which could be Euler-

Bernoulli or other type of beam elements with nodal DOF’s at both ends. Some of these 

elements will experience the vehicle wheels. The vehicle is decomposed into two parts: 

the upper or non-contact part (e.g. car body, bogie, and suspension system) and the 

contact part (i.e. wheels). Consider n wheelset can be represented each by one vertical 

DOF and let denote the corresponding displacement vector as  wd . Correspondingly, 

there are n contact points on the bridge which can be denoted by  cd . Similarly, the 

displacement vector for the upper part can be denoted as  ud . 

Let  vm ,  vc , and  vk  respectively denote the mass, damping, and stiffness 

matrix of the whole vehicle, and also  vd  the displacement vector of the vehicle. The 

equation of motion for the vehicle can be written as: 

           vvvvvvv fdkdcdm    (A.1) 

where  vf  is the force vector, and  vd  is the displacement vector for whole vehicle 

composed of  wd  and  ud , i.e.  
T

wuv ddd  . The vector  vf  can be 

decomposed into two parts: 

       cev flff   (A.2) 
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where  ef  denotes the external forces excluding the contact forces,  cf  denotes the 

contact forces acting on the bridge, and  l  is the transformation matrix. The wheel 

displacement vector  wd  can be related to the contact displacement  cd  of the bridge 

by the constraint equation: 

     cw dd   (A.3) 

where    is the transformation matrix; if no jump is considered,    is a unit matrix. 

This assumption was found to be satisfactory for the vehicle-bridge interaction especially 

for running trains. 

Assuming that all kinematic information about the system is known in time t, it is 

required to determine the behaviour of the system for time tt   while t  is a small 

time increment. The equation of motion for the system in time tt   can be written in 

terms of upper part and wheel part as following: 
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 (A.4) 

Here,  uef  and  wef  denote the external forces acting on the upper and wheel parts of 

the vehicle. The first row in Eq. (A.4) is regarding the equation of motion of the upper 

part and the second row is for the wheel part. Since the contact forces only act on the 

wheels, the submatrix  ul  has to be a zero matrix.  

If one expands the first row of Eq. (4.4), it gives: 

             
ttucttuettuuuttuuuttuuu qfdkdcdm


   (A.5) 

where 
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           
ttwuwttwuwttwuwttuc dkdcdmq


   (A.6) 

Let  ud  denote the increment of the  ud  in the time step from t to tt  . 

Utilizing the Newmark-   procedure for this time increment, the vector  ud  and its 

derivatives can be related to those at time t which are known, 

        
tutuuttu dadadad 

210 


 (A.7) 

        
ttutututtu dadadd


 

43  (A.8) 

      ututtu ddd 


 (A.9) 

In the preceding formula, those with subscript t are regarding the initial values for 

the time increment, and all are known from the previous time increment. The coefficient 

of the formula denoted as ai (i=0,…,4) depend on the   and   of the Newmark method. 

These coefficients and three more that will be used later are as follows 
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 (A.10) 

If the values in Eq. A.7 to A.9 are substituted to Eq. A.5, then the following can 

be obtained and arranged accordingly 

         
tuttucttueuuu qqfd 


 (A.11) 

where 

        uuuuuuuu kcama  50  (A.12) 

                   
tuuututuuututuuutu dkdadacdadamq  

7621  (A.13) 

Using equation 4.11, the displacement increment can be obtained as 
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           
tuttucttueuuu qqfd 



1
 (A.14) 

Having  ud , the displacement at the time tt   and its derivative can be calculated 

from Eq. A.7 to A.9. It should be mentioned that the order of accuracy is the same as that 

for Newmark-   method and no more assumptions or any other sources of errors were 

made so far. 

 

A.2 Solution of Contact Forces 

If the displacement  
ttud


 and its derivatives are substituted in the second row of 

Eq. A.4, then the contact forces  
ttcf 
 is obtained, 

               
tcttcttwcttwcttwcttc qpdkdcdmf 


  (A.15) 

where  cm ,  cm , and  cm  are called the contact matrices which are: 

            uwuuwuwwwc mmlm
11 

  (A.16) 

            uwuuwuwwwc cclc
11 

  (A.17) 

            uwuuwuwwwc kklk
11 

  (A.18) 

and the load vectors  
ttcp


 and  

tcq  are: 

 
           

ttwettueuuwuwttc fflp







11

 (A.19) 

 
           1 1

c w wu uu u wt t t
q l q q

 
   

 (A.20) 

where, 

 
       wuwuwuwu kcama  50  (A.21) 

                   
tuwututuwututuwutw dkdadacdadamq  

7621  (A.22) 
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Using the constraint equation presented in Eq. A.3, the contact forces   
ttcf 
 can 

be reformulated in terms of contact displacement  cd  considering    a unit matrix: 

               
tcttcttccttccttccttc qpdkdcdmf 


  (A.23) 

Then, i
th

 entry of the  
ttcf 
 as the contact forces between i

th
 wheel and the 

bridge ( ttiV , ), can be calculated as: 

  


 
n

j

ttcjcijttcjcijttcjcijtcittcitti dkdcdmqpV
1

,,,,,,
  (A.24) 

where mcij, ccij, and kcij are respectively the entry in the i
th

 row and j
th

 column of the 

contact matrices  cm ,  cc , and  ck . Similarly, the ttcip ,  and tciq , are the entry located 

in the i
th

 row of the corresponding vectors, i.e.  
ttcp


 and  

tcq . 

 

A.3 VBI Element Considering Vertical Contact Forces only 

Consider that n wheels of the moving vehicle are acting on the n element k1, k2, 

…, kn of the bridge elements. These elements are considered as VBI element since they 

are directly loaded with the vehicle. The rest of the bridge elements will be treated as the 

regular beam elements. For the kith beam element of the bridge, which is loaded by the 

contact force ttiV , , the equation of motion at time tt   is: 

             
ttbcittbittbibittbibittbibi ffdkdcdm


   (A.25) 

where  bim ,  bic , and  bik  are the mass, damping and stiffness matrices of the kith beam 

element.  bid  is the nodal displacement vector of this element and  bif  is the vector of 

the nodal external forces.  
ttbcif


 is the vector of the equivalent nodal forces resulted 
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from ttiV ,  contact force. One way to find these equivalent nodal forces is to use 

interpolation functions as applied in the finite element analysis. This is an assumption and 

introduces errors to the analysis. Let denote the interpolation function as  v

ciN , then: 

     tti

v

cittbci VNf 
 ,  (A.26) 

Since only vertical contact forces are considered here, then it will be a good 

assumption to only include entries associated with vertical DOF’s in the interpolation 

vector  v

ciN  and the other entries being set to zero. If one consider Hermitian cubic 

polynomials as the interpolation functions, then  v

ciN  for a 6-DOF two dimensional beam 

element shown in Fig. 3.1 is: 

   T
v

ci xxxxN 0 , 0 ,23 , 0 , 0 ,231 3232   (A.27) 

where x  is the local coordinate of the i
th

 contact point on the kith element, i.e. /x x L . 

Now, using Eq. A.24 and A.26, bridge element equation of motion, Eq. A.25, can be 

arranged as follows, 

 

        

               
tcittcibjcijbjcijbjcijttbi

ttbibittbibittbibi

qpdkdcdmf

dkdcdm















 



 (A.28) 

where the matrices with an asterisk are calculated using contact matrices and 

interpolation vectors as: 

             v

cicij

v

cicij

v

cicij

v

cicij

v

cicij

v

cicij NkNkNcNcNmNm   ;;  (A.29) 

and the equivalent nodal loads are: 

         tci

v

citcittci

v

cittci qNqpNp ,, ;  




 (A.30) 
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Eq. A.28 is regarded as the VBI element since the effect of the moving vehicle is 

considered explicitly with the asterisk matrices and vectors. 

 

A.4 VBI Element Considering Vertical and Horizontal Contact Forces 

The horizontal forces can be generated in the contact interface of the wheel and 

bridge by rolling, accelerating, or braking action of the wheel. The effect of the rolling is 

very small and is neglected here. Similar to the vertical loads, the horizontal contact 

loads, ttiH , , can be transferred to the nodal forces by introducing new interpolation 

function  h

ciN . Hence, the equivalent horizontal forces at the element nodes are 

calculated as   tti

h

ci HN , . Then, the total equivalent nodal forces due to vertical and 

horizontal contact forces are: 

       tti

v

citti

h

cittbci VNHNf 
 ,,    (A.31) 

 h

ciN  is the interpolation function where all entries are set to zero except those regarding 

horizontal DOF’s. Using Lagrange’s linear shape functions,  h

ciN  is determined as: 

    0 ,  1-  ,  0 ,  0 ,   ,  0
Tv

ciN x x  (A.32) 

one can find ttiH ,  in terms of vertical contact force ttiV ,  using the following formula, 

 ttiitti VH   ,,   (A.33) 

where i  is the friction coefficient between wheel and rail, which has different values for 

braking and acceleration. So, the contact force vector  
ttbcif


is a function of vertical 

contact forces. By following the same procedure as described in Section A.3, the asterisk 

matrices can be found as follows 
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     

     

      v

cicij

v

ci

v

ciciji

h

cicij

v

cicij

v

ci

v

ciciji

h

cicij

v

cicij

v

ci

v

ciciji

h

cicij

NkNNkNk

NcNNcNc

NmNNmNm



















 (A.34) 

and also the asterisk force vectors are obtained as 

 
     
      tci

v

citcii

h

citci

ttci

v

cittcii

h

cittci

qNqNq

pNpNp

,,

,,














 (A.35) 

 

A.5 Bridge Equation of Motion 

In the preceding sections, VBI elemente were introduced and the effect of vehicle 

load was incorporated in the asterisks matrices. The rest of bridge elements that are free 

of vehicle loads are treated as original beam elements. Versatility of the VBI element is 

such that it can be easily assembled into the whole bridge structural matrices, i.e. 

stiffness, damping and mass matrices. Consider the equation of motion for the entire 

bridge as following 

                
tcttcttbtttttt QPFDKDCDM 





    (A.36) 

where  D  represents the displacement matrix,  M ,  C , and  K  are the assembled 

structural matrices.  bF  is the vector of external forces, and  

cP  and  

cQ  are the 

equivalent contact forces in global coordinates. The assembled matrices can be obtained 

from 

 

         
         
         

















cijbicb

cijbicb

cijbicb

kkKKK

ccCCC

mmMMM

 (A.37) 
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where  bM ,  bC , and  bK  are the structural matrices of the bridge which is free of any 

vehicle loads. Similarly,  

cM ,  

cC , and  

cK  are the contact matrices which includes 

the effect of the VBI elements in the global coordinate. In addition, vectors for global 

contact forces can be assembled as 

         







 
tcitcttcittc qQpP ;  (A.38) 

This concludes the formulation for dynamic analysis. This procedure is very well-

suited for numerical programming and also flexible to add other effects, such as road 

irregularities. 
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APPENDIX B 

 

REQUIRED VEHICLE MATRICES FOR DEVELOPED VBI 

ELEMENTS 
 

In this section, vehicle matrices for all vehicle models used in this study required 

for dynamic analysis of Vehicle-Bridge Interaction (VBI) is listed. Letter m or M denote 

mass, I is for rotary mass, k for stiffness, c for damping, and g for ground acceleration. 

 

B.1 Sprung Mass Model (Yang and Wu 2001) 

Fig. 3.11 illustrates all parameters in the following matrices 

   vuu Mm    ;    www Mm    ;      0 wuuw mm  (B.1) 

   vuu kk    ;    vww kk    ;      vwuuw kkk   (B.2) 

   vuu cc    ;    vww cc    ;      vwuuw ccc   (B.3) 

    gMMf wvttwe 


 (B.4) 

 

B.2 Suspended Rigid Beam or 4 DOF Car Model (Yang and Wu, 2001) 

Fig. 3.2 illustrates all parameters in the following matrices 

   









c

c

uu
I

m
m

0

0
 (B.5a) 

       220  wuuw mm  (B.5b) 

   









2

1

0

0

w

w

ww
m

m
m  (B.5c) 

   













2

22

2

111122

112221

dkdkdkdk

dkdkkk
k

vvvv

vvvv

uu  (B.6a) 
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     













2211

21

dkdk

kk
kk

vv

vvT

wuuw  (B.6b) 

   









2

1

0

0

v

v

ww
k

k
k  (B.6c) 

   













2

22

2

111122

112221

dcdcdcdc

dcdccc
c

vvvv

vvvv

uu  (B.7a) 

     













2211

21

dcdc

cc
cc

vv

vvT

wuuw  (B.7b) 

   









2

1

0

0

v

v

ww
c

c
c  (B.7c) 

  




























2

21

1

1

21

2

wc

wc

ttwe

mm
dd

d

mm
dd

d

gf  (B.8) 

 

B.3 Car Model Including the Effect of Tires with 6 DOFs 

Fig. 3.5 illustrates all parameters in the following matrices 

  





















2

1

.

0

00

000

w

w

c

c

uu

mSym

m

I

m

m  (B.9a) 

       420 
T

uwwu mm  (B.9b) 

   









2

1

0

0

t

t

ww
m

m
m  (B.9c) 
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  





























22222

11111

2211

2

22

2

111122

21112221

0

0

tvvv

tvvv

vvvvvv

vvvvvv

uu

kkdkk

kkdkk

dkdkdkdkdkdk

kkdkdkkk

k  (B.10a) 

     













2

1

000

000

t

tT

uwwu
k

k
kk  (B.10b) 

   









2

1

0

0

t

t

ww
k

k
k  (B.10c) 

  





























22222

11111

2211

2

22

2

111122

21112221

0

0

tvvv

tvvv

vvvvvv

vvvvvv

uu

ccdcc

ccdcc

dcdcdcdcdcdc

ccdcdccc

c  (B.11a) 

     













2

1

000

000

t

tT

uwwu
c

c
cc  (B.11b) 

   









2

1

0

0

t

t

ww
c

c
c  (B.11c) 

  




























22

21

1

11

21

2

twc

twc

ttwe

mmm
dd

d

mmm
dd

d

gf  (B.12) 

where usually 021  tt mm   

                        

B.4 Half-Car Planar Vehicle Model with 8 DOFs 

Fig. 3.7 illustrates all parameters in the following matrices 
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  





























2

1

2

1

00000

00000

00000

00000

00000

00000

t

t

s

p

p

uu

m

m

J

m

m

m

m  (B.13a) 

     









000000

000000T

uwwu mm  (B.13b) 

   









00

00
wwm  (B.13c) 

  


























2

1

221122112211

212121

22

11

00

00

0

0

k

k

bkbkdkdkdkdk

kkkkkk

kk

kk

k
pppp

pppp

pp

pp

uu

 … 

                                            …  
























2222

1111

2211

2

22

2

11

2

22

2

11

2122112211

22

11

0

0

00

00

t

t

pp

pp

p

p

kkbk

kkbk

bkbkbkbkdkdk

kkbkbkdkdk

dk

dk

 (B.14a) 

     













2

1

00000

00000

t

tT

uwwu
k

k
kk  (B.14b) 

   









2

1

0

0

t

t

ww
k

k
k  (B.14c) 

  

   

   





































2

21

1111221

1

21

2222112

t

pps

t

pps

ttwe

m
bb

dbmbdmbm

m
bb

dbmbdmbm

gf  (B.15) 
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where usually 021  tt mm . Damping matrices are constructed the same way that 

stiffness matrices are written in Eq. B.14. 

 

B.5 Train Model with 10 DOFs 

Fig. 3.9 illustrates all parameters in the following matrices 

 
 





























2

2

1

1

0.

00

000

0000

00000

b

b

b

b

c

c

uu

I

mSym

I

m

I

m

m
 (B.16a) 

       640 
T

uwwu mm  (B.16b) 

  





















4

3

2

1

.

0

00

000

w

w

w

w

ww

mSym

m
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Similar to the half-car planar model, damping matrices are constructed the same 

way that stiffness matrices are written in Eq. B.17. 
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APPENDIX C 

 

FRICTION MODELS AND COEFFICIENT OF FRICTION 
 

Dry friction is a term describing the friction between two solids in contact. Dry 

friction is divided into static friction for non-moving surfaces, and kinetic friction for 

moving surfaces. The Coulomb friction is a model used commonly to model dry friction. 

Parameter s  is used for static friction and k  for kinetic friction. For vehicles moving 

by rolling of wheels, another type of friction called rolling friction exists. This is the 

friction that exists even when the vehicle is moving with constant velocity, for which the 

friction coefficient is usually very small (0.001) compared to kinetic friction which 

comes from sliding (Butt et al., 2006). In other words, any moving vehicle will gradually 

slow down due to rolling resistance. The factor used for rolling resistance is usually 

denoted by Crr (Coefficient of Rolling Resistance).  

The basics of rolling and the associated friction forces will assist to understand the 

phenomenon. Fig. C.1 shows a wheel of a moving vehicle having friction force Ff. By 

equating the torque applied about CG (center of gravity) of the wheel, we have 

 JTrF Ef   (C.1) 

where r is the wheel radius, TE is the torque applied by engine or brakes, J is the rotary 

inertia of wheel, and   is the angular acceleration, shown in Fig. C.1. The input value is 

TE, while   and also Ff are to be calculated. The force Ff depends on the frictional 

properties of the two surfaces and should be related to friction characteristics. In the 

braking or traction situations, depending on the level of the torque applied by the engine 

or brakes, the horizontal contact force or friction force (Ff) can vary. Ff obtained from k  
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multiplied by the vertical contact force determines upper bound and lower bound of the 

contact force. 

Several models have been developed to model the friction between two objects in 

various situations (Dahl, 1976; Armstrong-Hélouvry, 1991; Olsson, 1998; Dupont et al., 

2002), and still more to come. Due to the complex nature of the friction, the phenomenon 

is not yet completely understood. There is no exact solution for the friction forces by 

means of friction characteristics of the two surfaces (Pfeiffer and Glocker, 1996). All 

models available are based on some assumptions and simplifying approaches to obtain 

matching results with the experimental findings and to minimize computational 

problems. Two simplifying approaches that have been used frequently in dynamics of 

multi-body systems are non-smooth approach and regularized approach (or smooth 

approach). 

The regularized approach tries to remove discontinuity from the friction problem. 

Discontinuity is a complex challenge in the numerical integration procedures. This 

approach assumes that the force Ff is a function of relative velocity between the contact 

point of the wheel and that of the support surface. This velocity is called contact velocity. 

The relationship is considered linear in the so-called regularized approach. However, 

non-linear relationship is also commonly considered using the Smooth Non-Linear 

Friction Law, in contrast with the Coulomb friction law, with a tanh mathematical 

function (Pfeiffer and Glocker, 1996), 

 N
v

tanhF r
kf 











    (C.2) 
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where vr is the contact velocity,   is a characteristic value depending on the two surfaces 

in contact, and N is the normal force. Fig. C.2a shows the smooth non-linear friction law 

function, and Fig. C.2b shows the regularized approach, schematically. 

 

There are two main drawbacks with this approach. The first shortcoming is due to 

the type of the functions used. These functions (linear or nonlinear) will cause the 

resulting ordinary differential equation (ODE) to become stiff; which is numerically 

problematic. The second drawback is regarding the zero contact velocity (Pfeiffer and 

Glocker, 1996). This method gives zero force when the contact velocity is zero which is 

not correct. Hence, the application of this method is limited and should be accompanied 

with attention for contact velocities close to zero. 

The more advanced approach is Non-smooth approach. It includes the discontinuity 

in the contact force distinguishing between stick and slip. If the contact velocity is zero, 

stick condition happens otherwise slip occurs. For slip, NF kf   and, for stick a 

constraint equation is added to ODE problem due to the same location of the contact 

point on the vehicle and the surface. This will cause an abrupt change in the numerical 

solution, as if an impact is introduced in the numerical integration. These complexities 

require special formulation of ODE with constraint equations (Pfeiffer et al., 2006). 

Another representation of the simplified methods is to use an equivalent friction 

coefficient ( eqv ). As mentioned above, the friction force Ff is bounded to 

  NF kmaxf  . Less values of Ff compared to  
maxfF happens when, for example, a 

medium braking (not a full braking) is applied by the driver. Therefore, one can simulate 

this situation with a percentage of the  
maxfF  as: 
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   NFF kmaxff    (C.3) 

where   is between 1 and -1, and is selected depending on the severity of the braking or 

traction. Hence, one can define an equivalent virtual friction coefficient eqv  equals to 

k . This represents a point on the inclined line in Fig. C.2b, as if the regularized 

approach has been adopted. It should be mentioned that similar to all simplified methods, 

the application of eqv  includes approximation, while significantly reducing the 

complexity Using eqv , one can have a quick and rough estimation of the vehicle and 

bridge responses. 

The main objective of the current thesis is to develop a model useful for design 

purposes. In the design practices, the designer deals with extreme situations. For a vehicle 

experiencing acceleration or deceleration, these situations can be considered as extreme 

case for braking (so-called pure slipping) and for traction. For these cases, constant 

friction coefficient of k  can be used with Coulomb dry friction model and the results are 

of high accuracy. In less severe braking situations, eqv  can be used as an approximation. 

In the VBI analysis procedures available in the literature, simplified assumptions were 

adopted. Ju and Lin (2007) assumed constant vehicle acceleration, while Yang and Wu 

(2001) assumed constant friction coefficient. In the current thesis, the Yang and Wu 

(2001) assumption is adopted. 
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Fig. C.1 Free-body diagram of a wheel 
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Fig. C.2 Simplified friction models, (a) smooth non-linear friction law, (b) regularized 

approach (Pfeiffer and Glocker, 1996) 
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