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Abstract 

Efforts have been devoted to the identification of the impacts of occupant behavior on 

building energy consumption. Various factors influence building energy consumption 

at the same time, leading to the lack of precision when identifying the individual 

effects of occupant behavior. This paper reports the development of a new 

methodology for examining the influences of occupant behavior on building energy 

consumption; the method is based on a basic data mining technique (cluster analysis). 

To deal with data inconsistencies, min-max normalization is performed as a data 

preprocessing step before clustering. Grey relational grades, a measure of relevancy 

between two factors, are used as weighted coefficients of different attributes in cluster 

analysis. To demonstrate the applicability of the proposed method, the method was 

applied to a set of residential buildings’ measurement data. The results show that the 

method facilitates the evaluation of building energy-saving potential by improving the 

behavior of building occupants, and provides multifaceted insights into building 

energy end-use patterns associated with the occupant behavior. The results obtained 

could help prioritize efforts at modification of occupant behavior in order to reduce 

building energy consumption, and help improve modeling of occupant behavior in 

numerical simulation.  

 

Keywords: Occupant behavior; Building energy consumption; Data mining; Cluster 

analysis; Grey relational analysis  

 

 

 

 

 

 

 



1 Introduction 

The identification of major determinants of building energy consumption, together 

with a thorough understanding of the impacts of the identified determinants on energy 

consumption patterns, could assist in achieving the goal of improving building energy 

performance and reducing greenhouse gas emissions due to the building energy 

consumption. In general, the factor influencing the total building energy consumption 

can be divided into seven categories: 

(1) Climate (e.g., outdoor air temperature, solar radiation, wind velocity, etc.), 

(2) Building-related characteristics (e.g., type, area, orientation, etc.) 

(3) User-related characteristics, except for social and economic factors (e.g., user 

presence, etc.), 

(4) Building services systems and operation (e.g., space cooling/heating, hot water 

supplying, etc.), 

(5) Building occupants’ behavior and activities, 

(6) Social and economic factors (e.g., degree of education, energy cost, etc.), and  

(7) Indoor environmental quality required.  

 

Among these seven factors, social and economic factors will partly determine the 

occupant attitude toward energy consumption, and building occupants will embody 

such impact on their daily activities and behavior, thereby influencing building energy 

consumption. At the same time, indoor environment quality could be regarded as 

being basically decided by building occupants, thereby influencing building energy 

consumption. In essence, these two categories of factors which represent occupants’ 

influences affect building energy consumption indirectly. Therefore, their influences 

on building energy consumption are already contained within the effects of occupant 

behavior, and there is no need to take them into consideration when identifying the 

effects of influencing factors. 

 

The separate and combined influences of the first four factors on building energy 

consumption can be identified via simulation. With a variety of parameter settings, 

current simulation software is robust in respect to simulating different situations based 

upon these four factors. However, it is difficult to completely identify the influences 

of occupant behavior and activities through simulation due to users’ behavior diversity 

and complexity; current simulation tools can only imitate behavior patterns in a rigid 

way. In recent years several models have been established to integrate the influence of 

building occupant behavior into building simulation programs [1-4]. However, these 

models focus only on typical activities such as the control of sun-shading devices, 

while realistic building user-behavior patterns are more complicated.  

 

A number of studies [5-7] suggest that, in order to obtain the full effects of user 

behavior, one possible approach is to extract corresponding useful information from 

real measured data, since such data already contains the full effects. For example, Yu 

et al [7] proposed a decision tree method for building energy demand modeling, and 

applied this method to the historical data on Japanese residential buildings. The 



generated model has a flowchart-like tree structure, enabling users to quickly extract 

useful information on the influence factors of building energy consumption. Such 

model along with derived information could benefit the improvement of building 

energy performance greatly. Generally, the previous studies on the effects of occupant 

behavior can be divided into two categories. The first category focuses on the effects 

of building user presence on building energy consumption. For example, Emery and 

Kippenhan [8] reported a survey on the effects of occupant presence upon home 

energy usage in four nearly identical houses. The four houses were divided into two 

pairs, and the building envelope of one pair was constructed with improved thermal 

resistance. One of each pair of houses was left unoccupied, while the other was 

occupied by university student families. Researchers compared the first heating 

season’s (1987–88) total energy consumption of the occupied and unoccupied houses 

(i.e., the sum of heating, lighting, and appliances). They found that the presence of 

occupants increased the total energy consumption of both occupied houses, and the 

house with the improved building envelope had a smaller increase. The second 

category focuses on the effects of actions occupants took to influence energy 

consumption. For example, Ouyang and Hokao [9] investigated energy-saving 

potential by improving user behavior in 124 households in China. In this study, these 

houses were divided into two groups: one was educated to promote energy-conscious 

behavior and put corresponding energy-saving measures into effect in July 2008, 

while the other was required to keep behavior intact. Comparisons were made 

between monthly household electricity uses in July 2007 and July 2008 for both 

groups. Researchers found that, on the average, effective promotion of 

energy-conscious behavior could reduce household electricity consumption by more 

than 10%. Evidently, comparative analyses on measured data were conducted in these 

studies to identify the effects of user behavior. However, the limitations of this method 

are significant. First, apart from user behavior, the other four influencing factors also 

contribute to the variation in building energy consumption simultaneously, while this 

method is unable to adequately remove the effects of those four factors and identify 

the influences of occupant behavior. Although in these studies some measures were 

implemented to remove the impact of those factors, such as using nearly identical 

housing characteristics and taking energy data in other years with similar climatic 

conditions as a reference, the effects of these measures are questionable since even a 

slight difference in some building parameters (e.g., heat loss coefficient) and weather 

parameters (e.g., annual average outdoor air temperature) would result in remarkable 

fluctuations in the building energy consumption. Second, in real building databases, 

buildings are usually described by a mixture of variable types such as numerical 

variable, categorical variable (e.g., residential building types are divided into detached 

and apartment), and ordinal variable (e.g., buildings are rated as platinum, gold, and 

silver). Such data of mixed variable types is difficult to process by statistical methods 

that are normally utilized in comparative analyses. This also adds the difficulty of 

distinguishing between building-related effects and user-related effects. Third, with 

regard to comparative analyses, buildings are usually classified into different groups 

to simplify research. Such classification is commonly based on building-related 



parameters, such as floor area. For example, if building floor area ranges from 100 m
2
 

to 400 m
2
, it can be replaced by small, medium, and large corresponding to the 

intervals [100, 200], [200, 300], and [300, 400], respectively. Accordingly, all the 

buildings are classified into three groups, i.e. small buildings, medium buildings, and 

large buildings; and further study can be performed on each group. In this process, the 

partition of building-related parameters is normally decided by considerations of 

convenience and intuition. Why should 200 m
2
 and 300 m

2
 be the interval between 

each group? Hence, a more rational classification method for grouping buildings is 

required.  

 

Moreover, buildings are commonly represented by various typical parameters at the 

same time, such as building age and floor area. All these parameters may be divided 

into different levels, such as low and high, for simplicity. In order to perform a 

comprehensive investigation, the sample size (i.e. number of buildings) necessary for 

research should be determined by the combination of different levels of all parameters. 

For example, suppose seven typical parameters are selected for representation and 

each are stratified into 3 levels (e.g. small, medium, and large). In terms of 

combinatorial theory, it can be calculated that at least 3
7 

= 2187 buildings should be 

investigated for comparison, which may be quite impractical.  

 

 

The main purpose of this paper is to develop a methodology for identifying the effects 

of occupant behavior on the building energy consumption through data analysis, 

thereby evaluating the energy saving potential by improving user behavior and 

providing deep insights into the building energy consumption patterns.  

 

This paper is organized as follows: Section 2 introduces the proposed methodology. 

Section 3 describes the results of applying this method to a set of field measurement 

data and discusses the related work. Section 4 concludes the paper.  

 

2 Methodology 

A new methodology is proposed for examining the effects of occupant behavior on the 

building energy consumption. Basically, it is realized by organizing similar buildings 

among all the investigated buildings into various groups based on the four influencing 

factors unrelated to user behavior, so that for each building in the same group the four 

factors have similar effects on the building energy consumption. Accordingly, the 

effects of occupant behavior on the building energy consumption can be identified 

accurately in these groups. Further, provided there is a sufficient building sample size 

and subject buildings have a large divergence in the four influencing factors, implying 

that the full effects of the four factors in each group can be similar enough and the 

energy consumption difference caused by them is comparatively small, energy 

consumption difference between buildings in each group could be thought of as being 

caused only by occupant behavior. It is obvious that the identification of building 

groups is the most important element of this methodology. Such identification is 



achieved mainly via cluster analysis.  

 

2.1 Cluster analysis 

Cluster analysis is the process of grouping the observations into classes or clusters so 

that objects in the same cluster have high similarity, while objects in different clusters 

have low similarity. Fig. 1 shows a clustering schema based on a hypothetical building 

data table. It contains various energy-related variables such as outdoor air temperature 

(T) and building heat loss coefficient (HLC).  

Attribute 1

(T)
...

Attribute m

(HLC)

Instance 1

…

Instance i

Instance j

...

Instance n

x x x

x x x

x x x

x x x

x x x

x x x

Cluster 1

Cluster w

... x x x

Instance

...

 

Figure 1. Clustering schema  

The data table consists of m attributes and n instances. Each attribute represents a 

variable and each instance denotes a building. All the instances are grouped into w 

clusters. Accordingly, these w clusters are homogeneous internally and heterogeneous 

between different clusters [10]. Such internal cohesion and external separation are 

based upon the m attributes as well as their influences; it implies that these attributes 

have the most similar holistic effects on the building energy performance of the same 

cluster buildings, while the effects are significantly distinct for the buildings in 

different clusters. Therefore, the separate effects of occupant behavior on the building 

energy consumption can be identified more precisely based on cluster analysis and the 

four influencing factors unrelated to the occupant behavior. Note that these four 

influencing factors are represented by corresponding parameters selected from an 

existing database.  

 

Before conducting cluster analysis, some preprocessing steps are needed in order to 

deal with the inconsistencies of different attributes. For example, most of the 

energy-related attributes have their own units. Switching attribute units from one to 

another may significantly change the attribute values, thereby impacting the quality 

and accuracy of clusters. Therefore, data transformation techniques should be applied 

in order to help avoid dependence on the selection of attribute units. Also, data 

transformation can help prevent attributes with large ranges from outweighing those 

with comparatively smaller ranges. At the same time, the contribution of different 

attributes to the building energy consumption may differ considerably; thus, after data 

normalization, each attribute should be associated with a weight that reflects its 

significance. Grey relational analysis will be used to identify such weights. The 

procedure of data transformation and grey relational analysis will be introduced in 

Sections 2.2 and 2.3, respectively.  



 

The dissimilarity between observations in the database is calculated using the distance 

between them in the cluster analysis. In this study, the most popular distance measure, 

Euclidean distance, is used [10]: 

 

𝑑(𝑘, 𝑙) = √(𝑥𝑘1 − 𝑥𝑙1)2 + (𝑥𝑘2 − 𝑥𝑙2)2 + ⋯ + (𝑥𝑘𝑛 − 𝑥𝑙𝑛)2 

where k = (xk1, xk2, …, xkn) and l = (xl1, xl2, …, xln) are buildings. xk1, …, xkn are n 

parameters of k and xl1, …, xln are n parameters of l.  

 

Commonly used clustering algorithms include K-means, K-medoids, and CLARANS 

[10]. In this study, we employ the K-means, along with open-source data mining 

software WEKA [11], to perform cluster analysis, due to its high efficiency and wide 

applicability.  

The K-means algorithm is one of the simplest partition methods to solve clustering 

problem. Given a dataset (D) containing w objects, the K-means algorithm aims to 

partition these w objects into k clusters with two restraints: 1) the center of each 

cluster is the mean position of all objects in that cluster, 2) each object has been 

assigned to the cluster with the closest center. This algorithm consists of given steps: 1) 

Randomly select k observations from D as the initial cluster centers, 2) Calculate the 

distance between each remaining observation and each initially chosen center, 3) 

Assign each remaining observation to the cluster with the closest center, 4) 

Recalculate the mean values, i.e., the cluster centers, of the new clusters, and 5) 

Repeat Steps 2 to 4 until the algorithm converges, meaning that the cluster centers do 

not change. It should be mentioned that K-means is quite sensitive to initial cluster 

centers. Therefore, different values should be tried so as to obtain the minimum sum 

of the distances within a cluster. At the same time, the number of clusters should be 

specified in advance.  

 

2.2 Data transformation 

As mentioned previously, data transformation has been applied in order to deal with 

the inconsistencies in measured dataset. Specifically, min-max normalization [10] is 

performed to scale the values so that they fall within a predetermined range. The main 

advantage of min-max normalization lies in its ability to reserve the relationships 

between the initial data since it carries out a linear normalization. Assume that xmax 

and xmin are the original maximum and minimum values of a numerical attribute. By 

min-max normalization, a value, x, of this attribute can be transformed to x’ in the 

new specified range [x’min, x’max] by calculating 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(𝑥′𝑚𝑎𝑥 − 𝑥′𝑚𝑖𝑛) + 𝑥′𝑚𝑖𝑛 

In this study, the new range is defined as [0, 1].  

For binary attributes, their two states, such as the operation states of room air 

conditioners, i.e. [ON, OFF], can be transformed to [0, 1] or [1, 0] directly. The 

decision to recode these two states to either [0, 1] or [1, 0] depends upon whether or 

not there is a preferred positive value.  



For multi-valued categorical attributes with an implicit order, it is often necessary to 

rank their ordered states first, and then map the obtained range onto [0, 1] by 

𝑥𝑖 ′ =
𝑟𝑎𝑛𝑘𝑖 − 1

𝑟𝑎𝑛𝑘𝑚𝑎𝑥 − 1
 

where  

x’: transformed value of each state 

ranki: corresponding rank of each state 

rankmax: maximum rank 

For example, the four levels of certification in the Leadership in Energy and 

Environmental Design (LEED) Green Building Rating System, i.e. [CERTIFIED, 

SILVER, GOLD, PLATINUM], will be transformed to [0, 1/3, 2/3, 1] using the 

aforementioned method. 

 

2.3 Grey relational analysis 

Based on geometrical mathematics, grey relational analysis (GRA) has been proposed 

in order to find grey relational grades and a grey relational order (i.e. the rank of grey 

relational grades) that can be used to describe primary trend relationships between 

related factors, and to identify the important factors that significantly influence 

predefined target factors [12]. For example, if the building energy consumption is 

defined as the target factor, GRA can provide grey relational grades for its various 

influencing factors, such as outdoor air temperature and floor area. These grey 

relational grades are numerical measures of the impact of the influencing factors on 

the total building energy consumption. The larger the grey relational grades are, the 

more significant impacts the influencing factors have. In comparison with other 

similar multi-factorial analysis methods such as regression analysis and principal 

component analysis, the main advantages of GRA are its comparative simplicity and 

the ability to deal with small data sets that do not have typical probability 

distributions.  

Let y0 be the objective sequence (measured data of target factor, such as the building 

energy consumption) and yi be the compared sequences (measured data of related 

factors, such as various influencing factors of building energy consumption):  

      𝑦0 = (𝑦0(1), y0(2), … , y0(𝑛))   

y𝑖 = (y𝑖(1), y𝑖(2), … , y𝑖(𝑛)), 𝑖 = 1, 2, … , 𝑚 

The procedure of GRA is described as follows: 

Step 1: Normalization of raw data (Min-max normalization is used in this study), y0 

and yi are used to denote obtained normalized sequences; 

Step 2: Calculate grey relational coefficients ζ. ζi(k) between y0 and yi is defined as  

𝜉𝑖(𝑘) =
min

𝑖
min

𝑘
|𝑦0(𝑘) − 𝑦𝑖(𝑘)| + 𝛼 max

𝑖
max

𝑘
|𝑦0(𝑘) − 𝑦𝑖(𝑘)|

|𝑦0(𝑘) − 𝑦𝑖(𝑘)| + 𝛼 max
𝑖

max
𝑘

|𝑦0(𝑘) − 𝑦𝑖(𝑘)|
 

𝑖 =  1, 2, … , m;  𝑘 =  1, 2, … , n 

where α is distinguishing coefficient and 0<α<1, normally α = 0.5;  

Step 3: Calculate grey relational grade γ 



𝛾(𝑦0, 𝑦𝑖) =
1

𝑛
∑ 𝜉𝑖(𝑘)

𝑛

𝑘=1

 

Step 4: Rank the obtained grey relational grades; thus, grey relational order can be 

identified. 

As mentioned previously, grey relational grade will be employed to be weighted 

coefficients of corresponding attributes in cluster analysis. Note that grey relational 

grades range from 0 to 1. Generally, r > 0.9 indicates a marked influence, r > 0.8 

indicates a relatively marked influence, r > 0.7 indicates a noticeable influence, and r 

< 0.6 indicates a negligible influence [13].  

 

3 Case study – Occupant behavior effects in residential buildings 

3.1 Data collection and preprocessing 

To evaluate and improve residential buildings’ energy performance, a project entitled 

“Investigation on Energy Consumption of Residents All over Japan” was carried out 

by the Architecture Institute of Japan from December 2002 to November 2004 [14]. 

For this project, field surveys on energy-related data and other relevant information 

were carried out in 80 residential buildings located in six different districts in Japan: 

Hokkaido, Tohoku, Hokuriku, Kanto, Kansai, and Kyushu. Table 1 shows the survey 

items and corresponding investigation methods. Fig. 2 shows measuring instruments 

which were used to monitor temperature and consumptions of electricity, gas, and/or 

kerosene. 

 

Table 1: Investigation items and methods 

Method Survey items Measuring time 

Field 

measurement 

Different end-use loads of all 

kinds of fuel   

Electricity  Measured every minute 

Gas Measured every 5 minutes 

Kerosene Measured every 5 minutes 

Indoor air temperature  

(1.1m above floor) 
Measured every 15 minutes 

Questionnaire 

survey 

Lifestyle, Utilization of equipment, Annual 

income, etc. 
Once only 

Inquiring survey Other issues, such as basic building information Once only 

 

 

Fig.2. Measuring instruments (from left to right: electricity, gas, kerosene and air temperature) 

 

The building energy consumption was broken down into eight major end-use loads: 1) 

HVAC, 2) hot water supply (HWS), 3) kitchen (KITC, including cooking and other 



kitchen equipment such as dishwasher and range hood), 4) lighting (LIGHT), 5) 

refrigerator (REF), 6) amusement and information (A&I, such as television, telephone, 

and computer, etc.), 7) housework and sanitary (HOUSE, such as washing machine, 

vacuum, and electrical shaver, etc.), and 8) others (OTHER, unidentified usage such 

as electrical shutter and all the unclear items).  

 

Scrutinizing the data from the 80 buildings, researchers found that only 67 sets were 

complete, while 13 had missing values of energy consumption data. Data reduction 

and aggregation was then performed to obtain a smaller representation of the original 

data. For example, diverse energy unit of different kinds of primary energy sources 

used by the various buildings, including electricity, natural gas, and kerosene, was 

converted to MJ based on conversion coefficients in Table 2 so they could be added 

directly. Then, readings of each end-use load at different intervals (e.g., 1 or 5 minutes) 

were averaged over each month. The resulting data was stored in a database.  

 

Table 2: Conversion coefficients of different fuels 

Fuel Conversion coefficient Unit 

Electricity 3.6 MJ/kWh 

City gas (4A-7C) 20.4 MJ/Nm
3
 

City gas (12A-13C) 45.9 MJ/Nm
3
 

Liquefied petroleum gas (LPG) 50.2 MJ/Nm
3
 

Kerosene 36.7 MJ/L 

 

3.2 Selection of typical parameters 

The main parameters that could generally represent the four influencing factors 

unrelated to the occupant behavior should be identified before the cluster analysis. 

Based on the characteristics of residential buildings in Japan, twelve representative 

parameters of the four influencing factors were captured from the database and are 

outlined in Table 3: 

 

 

 

Table 3: Representative parameters of the four influencing factors 

Influencing factors Representative parameters Category Unit Abbreviation 

City 

Climate 

(i) Annual mean air temperature numerical °C T 

(ii) Annual mean relative humidity numerical  RH 

(iii) Annual mean wind speed numerical m/s WS 

(iv) Annual mean global solar 

radiation 
numerical MJ/m

2
 RA 

Building-related 

characteristics 

(i) House types
a*

 categorical  HT 

(ii) Building area numerical m
2
 BA 

(iii) Equivalent leakage area
b* 

 numerical cm
2
/m

2
 ELA 

(iv) Heat loss coefficient
c*

 numerical W/m
3
K HLC 



User-related 

characteristics 

except social and 

economic factors 

(i) Number of occupants numerical  NO 

Building services 

systems and 

operation
d*

  

Energy source of usage for    

(i) Space heating and cooling  categorical  HC 

(ii) Hot water supply categorical  HWS 

(iii) Kitchen equipment categorical  KE 

a
*
) House types are divided into either detached house or apartment. 

b
*
)
 
Measured by the fan pressurization method. 

c
*
) Calculated based on building design plans. 

d
*
) Energy source of usage is divided into either electric or non-electric. Since all of the space cooling 

equipment is electric, the value of HC is determined by space heating equipment.  

 

3.2 Results and discussion 

3.2.1 Grey relational grades 

The ultimate goal of this study is to identify the influences of the occupant behavior 

on the building energy consumption. Therefore, annual building energy use intensity 

(EUI) in 2003 was selected as the objective sequence in GRA, and accordingly, there 

is no need to consider the building area independently. Among the remaining eleven 

parameters, four weather parameters are time-series variables that can be viewed as a 

function of time. In order to take both the impact of season and regional climate 

difference into consideration, grey relational grades were first calculated for each 

building based on monthly building EUI and local monthly weather parameters [15]; 

then, an average was taken over grey relational grades in each district. For the other 

seven parameters, considering the size of database, grey relational grades were 

calculated on all the buildings. 

 

The results of GRA are given in Table 4. It can be seen that, with respect to weather 

parameters, generally outdoor air temperature influenced EUI more significantly than 

the other three parameters, especially in the cold districts, i.e. Hokkaido and Tohoku. 

At the same time, the number of occupants and the heat loss coefficient had noticeable 

impact on the building energy performance, since the grey relational grades of these 

two parameters are between 0.7 and 0.8. This implies that these two parameters 

deserve more attention in the building design phase.  

 

 

 

 

 

Table 4: Grey relational grades for each district 

District 
Grey relational grades 

T WS RH RA NO HLC ELA HT
a*

 HC
b*

 HWS
b*

 KE
b*

 

Hokkaido 0.799  0.584  0.620  0.683  0.701  0.780  0.490  0.617  0.537  0.514  0.551  



Tohoku 0.831  0.555  0.765  0.662  

Hokuriku 0.772  0.532  0.644  0.716  

Kanto 0.737  0.601  0.732  0.641  

Kansai 0.712  0.580  0.695  0.690  

Kyusyu  0.654  0.605  0.661  0.675  

a
*
 The two states of house types, i.e., detached house and apartment, are transformed to [0, 1]. 

b
* 
The two states of these three parameters, i.e., electrical and non-electrical, are transformed to [0, 1]. 

 

3.2.2 Cluster analysis 

After data preprocessing and the calculation of the grey relational grades, i.e. 

weighted coefficients of the selected parameters in Table 3, cluster analysis was 

conducted using the open-source data mining software WEKA. The results of cluster 

analysis are given in Table 5. With the consideration of the size of the database, four 

clusters were determined by the K-means algorithms based on Euclidean distance 

measures. Cluster centroids, which represent the mean value for each dimension, were 

used to characterize the clusters. For example, it can be seen that cluster 1, in 

comparison with the other clusters, is a segment of buildings representing a high 

outdoor air temperature (the cluster centroid of T in this cluster is 0.609, which is 

higher than that in the other three clusters), detached houses (the cluster centroid of 

HT in this cluster is 0, indicating that all the buildings in this cluster are detached 

house), high heat loss coefficients, low equivalent leakage areas, small number of 

occupants, non-electrical hot water supplies and kitchen equipment, etc. Similarly, the 

other clusters can be explained as follows: cluster 2 can be mainly characterized as 

high solar radiation, large number of occupants, electrical space heating and cooling, 

and electrical kitchen equipment. Cluster 3 is a segment of buildings representing a 

low outdoor air temperature, low heat loss coefficients, high equivalent leakage area, 

and non-electrical hot water supplies. Cluster 4 can be mainly characterized as high 

outdoor relative humidity, non-electrical space heating and cooling, and electrical 

kitchen equipment. In addition, the centroid of all the data is also given for 

comparison with the cluster centroids, as shown in Full Data column in Table 5. The 

internal cohesion and external separation for the clusters based upon the eleven 

attributes imply that these attributes have the most similar holistic effects on the 

building energy performance in the same cluster, while the effects are significantly 

distinct for the buildings in different clusters.  

 

Table 5  

Centroid of each cluster and statistics on the number and percentage of instances assigned to 

different clusters 

Attribute Full Data 
Cluster 

1 2 3 4 

T 0.451  0.609  0.483  0.312  0.408  

WS 0.313  0.316  0.303  0.339  0.302  

RH 0.395  0.262  0.417  0.428  0.439  

RA 0.347  0.318  0.370  0.343  0.343  



HT 0.166  0.000  0.134  0.411  0.116  

HLC 0.183  0.254  0.154  0.116  0.229  

ELA 0.394  0.291  0.413  0.460  0.390  

NO 0.275  0.216  0.320  0.234  0.296  

HC 0.305  0.331  0.000  0.501  0.537  

HWS 0.307  0.514  0.067  0.514  0.289  

KE 0.222  0.551  0.000  0.514  0.000  

Clustered instances and proportion 67 (100%) 13 (19%) 23 (34%) 15 (22%) 16 (24%) 

 

3.2.3 Effects of occupant behavior 

3.2.3.1 End-use load shapes 

After the generation of four clusters, different end-use loads of various buildings in 

each cluster were averaged over one year. Fig. 3 shows the average annual EUI of 

different end-use loads for each cluster. The proportion of each end-use load to the 

whole is also given above the corresponding bar.  

 

Fig. 3. Average annual EUI of different end-use loads 

As shown in Fig. 3, hot water supply and HVAC form the two largest categories of 

end-use loads in terms of average annual EUI in all four clusters, while housework 

and sanitary and ‘others’ have a modest contribution. Also, the two largest loads far 

exceed the other six end-use loads that do not have significant variations in the 

proportion among most of the clusters. This indicates that occupants in different 

clusters had similar behavior. Moreover, the proportions of both hot water supply and 

HVAC remain approximately steady among these clusters, except that there is a 

noticeable increase in the HVAC proportion in Cluster 4, which is mainly 

characterized by medium-low outdoor air temperature and non-electrical space 

heating equipment. This increase may be partly caused by two factors: 1) the high 

electricity rate in Japan, and 2) the high efficiency of non-electrical space heating 

devices such as kerosene space heaters. A high electricity rate tends to restrict 

occupants’ usage of electrical heating/cooling equipment in the other three clusters, 

while high efficiency of non-electrical space heating devices encourages occupants’ 

utilization of them in Cluster 4, thereby increasing energy consumption. Therefore, a 

rational combination of electricity rates and primary heating/cooling sources could 

help reduce building energy consumption through influencing occupant behavior.  
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3.2.3.2 Variability in annual EUI of different end-use loads induced by occupant 

behavior 

In order to examine the variability in annual EUI of different end-use loads that is 

caused by the occupant behavior, the end-use loads in each cluster were normalized 

and plotted. Fig. 4 depicts a box plot of normalized annual EUI of different end-use 

loads. The annual EUI of each building is normalized by the mean value of all the 

buildings in that cluster, thus highlighting the variability and allowing all the end-use 

loads to be plotted together on the same scale. As shown in Fig. 4, a large variability 

that ranges from close to zero to about four times upon the mean value is induced by 

the user behavior. Since the end-use loads in each building is normalized by the mean 

value of all the buildings in that cluster, the value of end-use loads ranges from zero to 

twice as many as the mean value was considered to be an insignificant variation. 

Accordingly, the threshold value for significant variation is defined as 2 (illustrated by 

the dash line). Except for HWS and REF, the range of the other six end-use loads 

exceeds the threshold value in most of the clusters. Such high variability implies that 

there still remains great potential for energy saving by improving occupant behavior 

related to these six domestic end-use loads. Contrarily, considering the relatively 

narrow range of HWS and REF, there could be little expectation of reducing energy 

consumption in these areas via improving occupant behavior.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Boxplot of normalized annual EUI of different end-use loads 

0

1

2

3

4

5

H
V

A
C

H
W

S
LI

G
H

T
K

IT
C

R
EF

A
&

I
H

O
U

SE
O

TH
ER

H
V

A
C

H
W

S
LI

G
H

T
K

IT
C

R
EF

A
&

I
H

O
U

SE
O

TH
ER

H
V

A
C

H
W

S
LI

G
H

T
K

IT
C

R
EF

A
&

I
H

O
U

SE
O

TH
ER

H
V

A
C

H
W

S
LI

G
H

T
K

IT
C

R
EF

A
&

I
H

O
U

SE
O

TH
ERN

o
rm

al
iz

ed
 a

n
n
u
al

 E
U

I 
o

f 

d
if

fe
re

n
t 

en
d

-u
se

 l
o

ad
s 

End-use loads 

Cluster 2 Cluster 4 Cluster 3 Cluster 1 



 

3.2.3.3 Reference building and energy-saving potential 

In order to evaluate energy-saving potential for the four clusters, the reference 

building for each cluster was first defined. The characterization of the reference 

building was carried out by identifying the building with the energy consumption 

closest to the cluster energy consumption centroid in terms of Euclidean distance and 

end-use loads. The annual EUI of different end-use loads of a reference building for 

each cluster is given in Table 6.  

 

Table 6  

Annual EUI of different end-use loads of reference building for each cluster (MJ/m
2
) 

 HVAC HWS LIGHT KITC REF A&I HOUSE OTHER SUM 

Cluster 1 77  165  31  24  25  12  29  0  363  

Cluster 2 45  161  39  25  22  20  7  12  332  

Cluster 3 154  141  33  42  20  13  6  0  409  

Cluster 4 188  212  34  25  15  19  11  0  504  

 

 
Fig. 5. Stacked-column diagram of annual EUI of different end-use loads of three typical buildings 

 

Fig. 5 shows the stacked-column diagram of annual EUI of different end-use loads of 

three typical buildings in the four clusters: a reference building (RB) and buildings 

with the minimum (Min) and maximum (Max) annual EUI. Occupant behavior led to 

a huge difference between these three different buildings in each cluster. In this study, 

annual EUI of different end-use loads of a reference building was taken as a baseline. 

Accordingly, the energy-saving potential of a building with a larger annual EUI than 

that of a reference building could be determined by computing the difference between 

them. For example, the potential energy savings that could be achieved by improving 

occupant behavior for the buildings with the maximum annual EUI in the four clusters, 

i.e. EUIMax – EUIRB, were 281 MJ/m
2
, 250 MJ/m

2
, 198 MJ/m

2
, and 202 MJ/m

2
, 

respectively. Moreover, comparison with a reference building provided a means of 

examining which end-use load seemed to have the greatest potential for energy 

conservation. For instance, comparison between the building with the maximum 
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annual EUI and the reference building in each cluster indicated that HVAC 

contributed the most towards energy saving, while HWS had a negligible contribution. 

This result is consistent with the conclusion drawn from Fig. 3. Similarly, other 

end-uses loads with noticeable energy-saving potential in each cluster could be 

identified, such as housework and sanitary in Cluster 1 and lighting in Cluster 4. Such 

information can help building owners realize that which occupant behavior should be 

modified in practice to effectively improve building energy performance. Further, 

based on this information, a better effect may be achieved if building occupants 

receive an energy-saving education and tips on how to improve their behavior. It 

should be noted that, in comparison with a reference building, buildings with the 

minimum annual EUI in the four clusters not only had lower HVAC EUI, but also had 

much smaller HWS EUI. A possible explanation for this is that occupants in these 

buildings reduced energy consumption by being concerned about the cost   in living 

standards. For example, these occupants may decrease the frequency of utilization of 

room air conditioners in the cooling season, even though the indoor temperature is not 

the best comfort temperature. Further field investigation is needed to identify the real 

reasons.    

 

3.2.3.4 Monthly variations of end-use loads induced by occupant behavior 

In order to examine the effects of occupant behavior on end-use loads over time and 

buildings, monthly variations of average end-use loads in each cluster were plotted in 

semi-logarithmical graphs, as shown in Fig. 6 to 9. Clearly HVAC shows a significant 

variation in all the four clusters. Generally, the peak of HVAC occurred in the heating 

season, especially in December and January, while the trough of HVAC occurred in 

the cooling season, especially June and July. This may have occurred because four 

districts (i.e., Hokuriku, Kanto, Kansai, and Kyushu) have a moderate climate and the 

other two (Hokkaido, Tohoku) are located in a cold climate, and cooling energy 

demand is considerably lower than heating energy demand. At the same time, HVAC 

in Cluster 3, characterized by the lowest outdoor air temperature, had the biggest 

peak-to-trough ratio. This indicates that weather conditions significantly influenced 

occupant behavior, thereby impacting building energy consumption. With respect to 

HWS, its variation is noticeable, considering the absolute magnitude of the variation 

is comparatively large. In general, the peak of HWS occurred in December or January, 

while the trough occurred in August or September. Evidently this was also caused by 

weather conditions, especially outdoor air temperature. With regard to LIGHT, KITC, 

REF, and A&I, these four curves bear a remarkable similarity to each other in the four 

clusters, and almost all of them vary by less than 20% from the mean. This indicates 

that these households tended to maintain their lifestyles, and the level of their general 

indoor activities associated with these end-use loads did not fluctuate wildly from 

month to month. In addition, the remaining two smaller end–use loads, i.e., HOUSE 

and OTHER, showed a marked seasonal variation in the four clusters, while the 

absolute magnitude of the variation is comparatively small. Basically the end-use 

loads in a heating season are higher than in a cooling season. A further investigation 

of corresponding occupant-behavior patterns needs to be performed to explain the 



reasons for this variation. 

 

Fig. 6. Monthly variation of end-use loads in Cluster 1 

 

Fig. 7. Monthly variation of end-use loads in Cluster 2 

 

Fig. 8. Monthly variation of end-use loads in Cluster 3 
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Fig. 9. Monthly variation of end-use loads in Cluster 4 

 

3.2.3.5 Monthly average indoor temperature of air-conditioned room  

Different occupant behavior, especially those associated with HVAC, can significantly 

affect indoor climate, which in turn will have an influence on occupant behavior, 

thereby causing dramatic differences in building energy consumption. Therefore, the 

effects of occupant behavior on building energy consumption should be understood 

and interpreted in conjunction with the investigation of indoor climate. Figures 10–13 

show the monthly average living-room temperature of three typical buildings in each 

cluster: the reference building (RB) and buildings with the maximum and minimum 

annual EUI (Max and Min). These selected living rooms had air conditioners and/or 

heating equipment. As shown in Fig. 10, there is a significant difference between 

living-room temperatures of the three buildings in the cooling season and a minor 

difference in other seasons. The living room of Max was maintained at a temperature 

of about 24 °C in the cooling season. At the same time, the room temperature of Min 

was around 5 °C higher than that of Max, and the room temperature of RB was 

generally between that of Max and Min in this season. Considering that Cluster 1 is 

characterized by the highest outdoor air temperature, it can be deduced that the 

frequency of utilization of room air conditioners in the cooling season in these three 

buildings can be ranked as: Max > RB > Min. With respect to the other three clusters, 

Fig. 11–13 shows that the living room of Max was maintained at a temperature of 

about 24 °C all year, while living-room temperatures of RH and Min varied with the 

outdoor air temperature. Clearly the frequency of utilization of space cooling/heating 

equipment in the three buildings in these three clusters has the same order as that in 

Cluster 1 in both heating and cooling seasons. These results suggest that occupant 

behavior that seeks thermal comfort normally results in high energy consumption. 

Therefore, there has to be a trade-off between human thermal comfort and building 

energy consumption, and it is necessary to strike a balance between achieving a high 

comfort level and reducing energy consumption through modifying occupant 

behavior.  
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Fig. 10. Monthly average living-room temperature of three typical buildings in Cluster 1 

 

Fig. 11. Monthly average living-room temperature of three typical buildings in Cluster 2 

 

Fig. 12. Monthly average living-room temperature of three typical buildings in Cluster 3 

 

Fig. 13. Monthly average living-room temperature of three typical buildings in Cluster 4 

 

4 Summary and Conclusions 

The main purpose of this paper includes the development of a novel data analysis 

methodology through clustering techniques for identifying the effects of occupant 

behavior on building energy consumption. It is realized by organizing similar 

buildings among all the investigated buildings into various groups based on the four 

influencing factors unrelated to user behavior, so that for each building in the same 

group the four factors have similar full effects on energy consumption. Min-max 
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normalization techniques are performed as a data preprocessing step to deal with the 

inconsistencies of different attributes. Grey relational analysis is also carried out, and 

grey relational grades, a measure of relevancy between two factors, are used as 

weighted coefficients of attributes in cluster analysis.  

 

In order to demonstrate its applicability, this methodology was applied to a group of 

residential buildings located in six different districts of Japan. Energy-related data of 

these buildings was measured, and a database was developed after scrutinizing the 

measured data. Twelve attributes were captured from the database to represent the 

influencing factors unrelated to occupant behavior. K-means method was selected in 

cluster analysis and four clusters were obtained as a result.  

 

In these four clusters the effects of occupant behavior on building energy consumption 

were examined at the end-use level. End-use variations over time and buildings 

induced by occupant behavior were analyzed. Also, as a preliminary step toward 

identifying energy-saving potential, a reference building was defined as the building 

whose energy consumption was the closest to cluster energy consumption centroid in 

terms of Euclidean distance and end-use loads. Moreover, indoor climate was 

investigated to better understand and interpret the effects of occupant behavior.  

 

This proposed method allows researchers to evaluate building energy-saving potential 

by improving user behavior, and provides multifaceted insights into building energy 

end-use patterns associated with occupant behavior. The results obtained could help 

prioritize efforts of modification of occupant behavior to reduce building energy 

consumption, and also could be used to improve modeling of user behavior in 

numerical simulation.  

 

The main focus of future research should be placed on identifying appropriate 

building sample sizes and number of clusters, selecting typical attributes that can 

adequately represent the influencing factors unrelated to occupant behavior, since 

these measures will provide more precise effects of occupant behavior. In addition, 

more case studies in different sectors, such as commercial buildings and office 

buildings, should be conducted to further improve building energy performance and 

policy formulation. 
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