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Abstract Data integration methods enable different
data providers to flexibly integrate their expertise and

deliver highly customizable services to their customers.
Nonetheless, combining data from different sources could
potentially reveal person-specific sensitive information.

In VLDBJ 2006, Jiang and Clifton [24] propose a se-
cure Distributed k -Anonymity (DkA) framework for
integrating two private data tables to a k-anonymous

table in which each private table is a vertical parti-
tion on the same set of records. Their proposed DkA
framework is not scalable to large data sets. Moreover,

DkA is limited to a two-party scenario and the par-
ties are assumed to be semi-honest. In this paper, we
propose two algorithms to securely integrate private

data from multiple parties (data providers). Our first
algorithm achieves the k-anonymity privacy model in
a semi-honest adversary model. Our second algorithm

employs a game-theoretic approach to thwart malicious
participants and to ensure fair and honest participation
of multiple data providers in the data integration pro-

cess. Moreover, we study and resolve a real-life privacy
problem in data sharing for the financial industry in
Sweden. Experiments on real-life data suggest that our

proposed methods are effective for simultaneously pre-
serving both privacy and information usefulness, and
are scalable for handling a large volume of data.
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1 Introduction

In the contemporary business environment, data shar-
ing is an essential requirement for making better deci-
sions and providing high-quality services. Often, multi-

ple service providers need to collaborate and integrate
their data and expertise to deliver highly customizable
services to their customers. While data sharing can help

their clients obtain the required information or explore
new knowledge, it can also be misused by adversaries
to reveal sensitive information that was not available

before the data integration. In this paper, we study the
privacy threats caused by data sharing and propose two
algorithms to securely integrate person-specific sensi-

tive data from multiple data providers, whereby the in-
tegrated data still retains the essential information for
supporting general data exploration or a specific data

mining task, such as classification analysis. The follow-
ing real-life scenario illustrates the need for simultane-
ous information sharing and privacy preservation in the

financial industry.

This research problem was discovered in a collab-
orative project with a financial industry, which is a

provider of unsecured loans in Sweden. We generalize
their problem as follows: A loan company A and a bank
B observe different sets of attributes about the same set

of individuals identified by the common identifier at-
tribute(ID), e.g., TA(ID,Age,Balance) and TB(ID, Job,
Salary). These companies want to integrate their data

to support better decision making such as loan or credit
limit approval, which is basically a data mining task on
classification analysis. In additional to companies A and

B, their partnered credit card company C also has ac-
cess to the integrated data, so all three companies A, B,
and C are data recipients of the final integrated data.

Figure 1 illustrates the data flow model of secure data
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Fig. 1 Data flow of secure data integration model

integration generalized from the project. Companies A
and B have two privacy concerns. First, simply joining

TA and TB would reveal the sensitive information to
the other party. Second, even if TA and TB individually
do not contain person-specific or sensitive information,

the integrated data can increase the possibility of iden-
tifying the record of an individual. The next example
illustrates this point.

Example 1 Consider the data in Table 1 and taxonomy
trees in Figure 2 (ignore the dashed curve for now).
Party A (the loan company) and Party B (the bank)

own

TA(ID, Sex, . . . , Class) and TB(ID, Job,
Salary, . . . , Class),

respectively. Each row represents one or more raw records
and Class contains the distribution of class labels Y
and N, representing whether or not the loan has been

approved. For example, the third row has five records
of ⟨Male, Carpenter, 35K⟩ of which two records have
class Y and three records have class N. Both parties

want to integrate their data and use the integrated data
to build a classifier on the Class attribute. After inte-
grating the two tables (by matching the ID field), the

female lawyer on (Sex, Job) becomes unique and, there-
fore, vulnerable to be linked to sensitive information
such as Salary. In other words, linking attack is possi-

ble on the fields Sex and Job. To prevent such linking,
we can generalize Accountant and Lawyer to Profes-
sional so that this individual becomes one of many fe-

male professionals. No information is lost as far as clas-
sification is concerned because Class does not depend
on the distinction of Accountant and Lawyer.

In this paper, we consider the following secure data
integration problem. Given multiple private tables for
the same set of records on different sets of attributes

(i.e., vertically partitioned tables), we want to efficiently

Table 1 Raw tables

Shared Party A Party B

ID Class Sex ... Job Salary ...

1-3 0Y3N Male Janitor 30K

4-7 0Y4N Male Mover 32K

8-12 2Y3N Male Carpenter 35K

13-16 3Y1N Female Technician 37K

17-22 4Y2N Female Manager 42K

23-25 3Y0N Female Manager 44K

26-28 3Y0N Male Accountant 44K

29-31 3Y0N Female Accountant 44K

32-33 2Y0N Male Lawyer 44K

34 1Y0N Female Lawyer 44K

Blue-collar White-collar

Non-Technical

Carpenter

Manager

ANY

Technical

Lawyer

Professional

Job

TechnicianMoverJanitor [1-35)

[1-99)

[1-37) [37-99)

[35-37)

Salary

ANY

Male Female

Sex

<QID1 = {Sex, Job}, 4>

<QID2 = {Sex, Salary}, 5>

Accountant

Fig. 2 Taxonomy trees and QIDs

produce an integrated table on all attributes for re-
lease to different parties. The integrated table must

satisfy both the following privacy and information re-
quirements:

Privacy Requirement. The integrated table has to
satisfy k-anonymity [47, 50]: A data table T satisfies

k-anonymity if every combination of values on QID
in T is shared by at least k records in T , where the
quasi-identifier (QID) is a set of attributes in T that

could potentially identify an individual in T , and k is a
user-specified threshold. k-anonymity can be satisfied
by generalizing domain values into higher level con-

cepts. In addition, at any time in the procedure of gen-
eralization, no party should learn more detailed infor-
mation about other parties other than the information

in the final integrated table. For example, Accountant
and Lawyer are more detailed than Professional. If
the final table contains Professaional, then Party A

should not able to determine whether the one is an
Accountant or a Lawyer.

Information Requirement. The generalized data has
to be as useful as possible to classification analysis.
One frequently raised question is: Why don’t the data

providers employ secure multiparty computing tech-
niques [13, 12, 59] and simply release the statistical
data or a classifier to the data recipients? In the project

with the financial industry, the data recipients, such as
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the credit card company, want to have access to the

financial data, not statistics, from the data providers
because the data recipients want to have higher flexi-
bility to perform the required classification analysis. It

is impractical to continuously request the IT depart-
ments of the data providers to produce different types
of classifiers with different parameters for various re-

search purposes.

Current Techniques. We briefly explain why the re-
cently developed techniques are not applicable to pro-

posed secure data integration problem.

• Distributed k-Anonymity (DkA): Jiang and Clifton
propose the DkA framework to securely integrate
two distributed data tables satisfying k-anonymity

requirement [24]. DkA framework requires a lot of
encryption operations which are computationally ex-
pensive. The number of encryptions increases as the

size of the data set increases. Therefore, DkA frame-
work may not scale well to large real-life data sets.
Furthermore, it is limited to only two parties and

does not take into consideration the information re-
quirement for classification analysis, which is the ul-
timate purpose of data sharing in our context. In

Section 3, we provide an overview of DkA frame-
work and discuss the differences.

• Secure Multi-party Computation (SMC): Our prob-

lem is very different from the problem of secure mul-
tiparty computation (SMC) of classifiers [13, 12, 59],
which allows “result sharing” (e.g., the classifier in

our case) but completely prohibits data sharing. The
goal of our proposed method is to allow data sharing
for classification analysis in the presence of privacy

concern.

There are two obvious, yet incorrect approaches.
The first one is “integrate-then-generalize”: first inte-
grate the local tables and then generalize the integrated

table using some single table anonymization methods
[5, 17, 22, 33, 38]. Unfortunately, this approach does
not preserve privacy in the studied scenario because

any party holding the integrated table will immediately
know all private information of all parties. The second
approach is “generalize-then-integrate”: first generalize

each table locally and then integrate the generalized ta-
bles. This approach does not work for a quasi-identifier
that spans multiple tables. In Example 1, achieving k-

anonymity on Sex and Job separately does not imply
achieving k-anonymity on (Sex,Job) as a single QID.

Contributions. The contributions of the paper are

summarized as follows:

1. We identify a new privacy problem through a col-

laboration with the financial industry and general-
ize their requirements to formulate the secure data
integration problem (Section 2).

2. We present two algorithms to securely integrate pri-
vate data from multiple parties for two different ad-
versary models. Our first algorithm assumes that

parties are semi-honest (Section 5). In the semi-
honest adversarial model, it is assumed that parties
follow protocol but may try to deduce additional in-

formation. Our second algorithm further considers
the presence of malicious parties (Section 6). We
show that a party may deviate from the protocol for

its own benefit. To overcome the malicious problem,
we propose a game-theoretic approach to combine
incentive compatible strategies with our anonymiza-

tion algorithm.
3. We implement the proposed algorithms and evalu-

ate the performance (Section 7). Experimental re-

sults on real-life data suggest that the algorithms
can effectively achieve a privacy requirement with-
out compromising data utility for classification. More-
over, the algorithms are scalable to handle large

data sets and significantly outperforms the DkA
framework in terms of efficiency.

4. We further extend the proposed privacy-preserving

methods to achieve other privacy models, such as ℓ-
diversity [36], (α,k)-anonymity [56], and confidence
bounding [54] (Section 8).

2 Problem Definition

In this section, we define the anonymity requirement,

state the basic requirements and assumption, and fi-
nally present the secure data integration problem for
multiple parties.

2.1 Anonymity Requirement

Consider a person-specific table T (ID,D1, D2, . . . , Dm,
Class). ID is record identifier, such as SSN , which

is removed before publishing the data. Each Di is ei-
ther a categorical or a continuous attribute. The Class
column contains class labels. Let att(v) denote the at-

tribute of a value v. The data provider wants to protect
against linking an individual to a record in T through
some subset of attributes called a quasi-identifier, or

QID. A sensitive linking occurs if some value of the
QID is shared by only a small number of records in T .
This requirement is defined below.

Definition 1 (Anonymity Requirement) Consider

p quasi-identifiers QID1, . . . , QIDp on T . a(qidj) de-
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notes the number of records in T that share the value

qidj on QIDj . The anonymity of QIDj , denoted by
A(QIDj), is the smallest a(qidj) for any value qidj on
QIDj . A table T satisfies the anonymity requirement

{⟨QID1, k1⟩, . . . , ⟨QIDp, kp⟩} if A(QIDj) ≥ kj for 1
≤ j ≤ p, where kj is the anonymity threshold.

Definition 1 generalizes the traditional k-anonymity

by allowing the data provider to specify multiple QIDs.
More details on the motivation and specification of mul-
tiple QIDs can be found in [17]. Note that if QIDj is

a subset of QIDi, where i ̸= j, and if kj ≤ ki, then
⟨QIDi, ki⟩ covers ⟨QIDj , kj⟩. ⟨QIDj , kj⟩ is redundant
and can be removed from the anonymity requirement

because if a table T satisfies ⟨QIDi, ki⟩, then T must
also satisfy ⟨QIDj , kj⟩.

Example 2 ⟨QID1 = {Sex, Job}, 4⟩ states that every
combination of qid on {Sex, Job} in T must be shared by
at least 4 records in T . In Table 1, the following qids vio-

late this requirement: ⟨Male, Janitor⟩, ⟨Male,Accountant⟩,
⟨Female,Accountant⟩, ⟨Male,Lawyer⟩, ⟨Female,Lawyer⟩.
The example in Figure 2 specifies a k-anonymity re-

quirement with two QIDs.

2.2 Basic Requirements and Assumptions

We assume that there are n parties (data providers)
such that each Party y, where 1 ≤ y ≤ n owns a pri-

vate table Ty(ID,Attribsy, Class) over the same set of
records. Parties can identify the same set of records
by executing a secure set intersection protocol (based

on [3]) on the global unique identifiers (ID). The se-
cure set intersection protocol of [3] uses commutation
encryption. Commutative encryption has the property

that when multiple parties encrypt a value successively
by their keys, the result of the encryption is identical
irrespective of the order of encryptions. Following, we

briefly present the protocol for two parties which can
be extended for n parties similarly.

Initially, both the parties encrypt the values of their
global identifier and send EK(V ) to the other party,
where K is the secret key and V is the set of global

identifier values. Each party then encrypts the received
values by its own key and sends back the double en-
crypted values along with the received values to the

other party in the same order. For example, Party 1
receives EK2(V2) from Party 2 and sends back the pair
⟨EK2(V2), EK1(EK2(V2))⟩ to Party 2. Similarly, Party 1

receives the pair ⟨EK1(V1), EK2(EK1(V1))⟩ from Party
2. Now, both the parities can determine the common
value set V1∩V2 by comparing the values in EK2(EK1(V1))

and EK1(EK2(V2)) and thus can identifies the same

set of records without disclosing the identifiers of the

records that are not common between the parties. Note,
parties also obtain an encrypted value EK1(EK2(v)) for
each v ∈ V1 ∩ V2 that uniquely identify the records. In

the rest of the paper, we use ID values to refer these en-
crypted values that uniquely identify the records. These
encrypted ID values are exchanged (see Section 5) to fa-

cilitate the anonymization process but removed (along
with the real ID values) before publishing the data to
third parties.

We assume that parties hold mutually exclusive set
of attributes. That is, Attribsy ∩ Attribsz = ∅ for any

1 ≤ y, z ≤ n (See Section 8 for further discussion on
mutually exclusive set of attributes). ID and Class are
shared attributes among all parties.

Finally, we require that a taxonomy tree is specified
for each categorical attribute in ∪QIDj . A leaf node

represents a domain value and a parent node repre-
sents a less specific value. For a continuous attribute
in ∪QIDj , a taxonomy tree can be grown at runtime,

where each node represents an interval, and each non-
leaf node has two child nodes representing some optimal
binary split of the parent interval that maximizes the

information gain on the Class attribute. Figure 2 shows
a dynamically grown taxonomy tree for Salary.

2.3 Secure Data Integration

The secure data integration problem requires at least
two parties, where parties agree to release “minimal in-
formation” to form an integrated table T for conduct-

ing a joint classification analysis. The notion of minimal
information is specified by the joint anonymity require-
ment {⟨QID1, k1⟩, . . . , ⟨QIDp, kp⟩} on the integrated

table. QIDj is local if it contains attributes from only
one party, and global otherwise.

Definition 2 (Secure Data Integration) Given mul-
tiple private tables T1, . . . , Tn, a joint anonymity re-
quirement {⟨QID1, k1⟩, . . . , ⟨QIDp, kp⟩}, and a taxon-

omy tree for each categorical attribute in ∪QIDj , the
problem of secure data integration is to efficiently pro-
duce a generalized integrated table T such that (1) T

satisfies the joint anonymity requirement, (2) T con-
tains as much information as possible for classification,
and (3) each party learns nothing about the other party

that is more specific than the information in the final
generalized integrated table T .

For example, if a record in the final T has values
Female and Professional on Sex and Job, and if Party
A learns that Professional in the record comes from

Lawyer, then condition (3) is violated. Our privacy
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Table 2 An example of DkA framework [24]

(a)

Party A Party B

ID Job Sex Salary

1 Janitor Male 36K

2 Mover Male 33K

3 Carpenter Male 30K

4 Technician Male 36K

(b)

Party A Party B

ID Job Sex Salary

1 Non-Technical Male [35-37)

2 Non-Technical Male [1-35)

3 Technical Male [1-35)

4 Technical Male [35-37)

(c)

Party A Party B

ID Job Sex Salary

1 Blue-collar Male [1-37)

2 Blue-collar Male [1-37)

3 Blue-collar Male [1-37)

4 Blue-collar Male [1-37)

model ensures the anonymity in the final integrated
table as well as in any intermediate table during in-
tegration.

We consider two different adversarial models. In the

first model, we assume that the data providers are semi-
honest, meaning that they will follow the protocol but
may attempt to derive additional information from the

received data. This is the common security definition
adopt in the SMC literature [24] and it is realistic in our
problem scenario since different organizations are col-

laborating to share their data securely for mutual ben-
efits. Hence, it is reasonable to assume that parties will
not deviate from the defined protocol. However, they

may be curious to learn additional information from the
messages they received during the protocol execution.
The algorithm presented in Section 5 ensures secure

data integration for semi-honest adversary model.

In the second model, we consider that parties may
deviate from the protocol for their own benefit. For ex-
ample, Party A may not want to share its own data

to form the integrated anonymous table if the protocol
allows it to do so. Thus, parties might misbehave by
acting selfishly and avoid sharing their own data while

receiving others’ data from the final integrated table. In
Section 6, we elaborate how this attack can take place
and propose a secure data integration algorithm for the

malicious adversary model.

3 Previous Approach: DkA

DkA (Distributed k -Anonymity) is a secure distributed
framework for two parties to integrate their data satis-
fying k -anonymity privacy model [24]. The framework

does not propose a specific anonymization algorithm,
but can be easily incorporated with a k-anonymization
algorithm to compute a global k -anonymous solution

between two parties. DkA works in three steps: (1)
Producing local k -anonymous data by the individual
parties. (2) Verifying whether or not joining the local

anonymous data ensures global k -anonymity. (3) Join-
ing the local anonymous data using a global unique
identifier. We elaborate these steps with an example

followed by a disucssion.

Consider the data in Table 2(a) and taxonomy trees
in Figure 2 (ignore the dashed curve for now). Party A
and Party B own TA(ID, Job, Sex) and TB(ID, Salary),

respectively. ID is a unique global identifier such as
SSN. Suppose the parties want to achieve 2 -anonymity
with QID = {Job, Sex, Salary}. First, both the parties

generalize their data locally to satisfy 2 -anonymity as
shown in Table 2(b). Based on the local k-anonymous
data, each party partitions the IDs into disjoint sub-

sets. Records corresponding to the ID from the same
subset have the same value with respect to the QID.
Let γi

c be the set of subsets, where i ∈ {A,B} repre-

sents the party and c ∈ integer represents the protocol
round. From Table 2(b), we get: γA

1 = {{1, 2}, {3, 4}}
and γB

1 = {{1, 4}, {2, 3}}.
Then, the two parties compare γA

1 and γB
1 to check

the global k -anonymity requirement. If there are no
subsets p and q such that 0 < |γA

1 [p] ∩ γB
1 [q]| < k, then

it is safe to join local data sets to generate the global

k -anonymous data; otherwise, the parties further gen-
eralize their data until the condition satisfies. For ex-
ample, γA

1 and γB
1 do not satisfy the condition because

|{1, 2} ∈ γA
1 ∩ {1, 4} ∈ γB

1 | = 1 < k, where k = 2.
Accordingly, both the parties generalize their data one
more step as shown in Table 2(c) and compare the new

γi
cs: γ

A
2 = {{1, 2, 3, 4}} and γB

2 = {{1, 2, 3, 4}}. Here, we
do not elaborate how the parties generalize their data.
Any k -anonymization algorithm can be used to gener-

ate local k -anonymous data. In [24], Datafly [48, 49]
algorithm is used with DkA framework.

Finally, TA and TB are joined using the ID attribute.
A solution based on commutative encryption is used to
join the data without revealing the actual ID values.

The encrypted unique ID values are used for the join
process but removed from the integrated k -anonymous
data before publishing. This step is similar to our se-

cure set intersection protocol on the global identifier to
identify the same set of records (See Section 2.2).

One of the core elements of DkA framework is a se-
cure mechanism that allows parties to compare the γi

cs.

The mechanism enables parties to know only the result
of the anonymity test. Parties do not learn the cardinal-
ity of the intersection of the failed subsets. This secure

mechanism is based on secure set intersection (SSI) pro-



6

tocol and is quite computationally expensive. The num-

ber of encryption needed in each round is bounded by
O(|T |2), where |T | is the maximum value in the domain
of ID. For the above example, |T | = 4.

DkA assumes that there is a unique global identifier
(e.g. SSN) and data are vertically partitioned between
two parties for the same set of records. Thus, each party

knows the ID values of the shared records though the
parties never exchange the ID values directly. For exam-
ple, to reduce the computational cost, a direct compar-

ison of γi
cs is not possible since parties should not learn

the size of intersection that is smaller than k. Therefore,
parties cannot share ID values directly.

DkA framework has a number of limitations mak-
ing it inapplicable to the problem studied in this paper.
First, the framework is not scalable to large data sets.

Jiang and Clifton [24] report that DkA takes approxi-
mately 12.53 days to anonymize the de facto benchmark
Adult [42] data set while our proposed technique takes

less than 20 seconds to anonymize the same data set
running on a slower machine. The scalability issue is
further studied in Section 7.3. Second, DkA is limited
to only two parties, while the proposed technique pre-

sented in this paper is applicable for multiple parties.
Finally, DkA assumes that the parties are semi-honest,
while this paper targets both semi-honest and malicious

parties.

4 Anonymization Technique

We can anonymize a single table T by a sequence of

specializations starting from the topmost general state
in which each attribute has the topmost value of its
taxonomy tree. A specialization, written v → child(v),

where child(v) denotes the set of child values of v,
replaces the parent value v with the child value that
generalizes the domain value in a record. For exam-

ple, White-collar → {Manager,Professional} replaces
all instances of White-collar in a generalized table to
either Manager or Professional depending on the raw

value of Job in each record. A specialization is valid if
the specialization results in a table that satisfies the
anonymity requirement after the specialization. A spe-

cialization is beneficial if more than one class are in-
volved in the records containing v. If not then that spe-
cialization does not provide any helpful information for

classification. Thus, a specialization is performed only
if it is both valid and beneficial.

The specialization process can be viewed as push-

ing the “cut” of each taxonomy tree downwards. A cut
of the taxonomy tree for an attribute Di, denoted buy
Cuti, contains exactly one value on each root-to-leaf

path. A solution cut is ∪Cuti, such that the generalized

T represented by ∪Cuti satisfies the given anonymity

requirement [17]. The specialization process starts from
the top most solution cut and pushes down the solu-
tion cut iteratively by specializing some value in the

current solution cut until violating the anonymity re-
quirement. Figure 2 shows a solution cut indicated by
the dashed curve representing the anonymous Table 3.

Each specialization tends to increase information be-
cause records are more distinguishable by specific val-
ues. One core step is computing the Score, which mea-

sures the “goodness” of a specialization on a value v
with respect to the information requirement of classi-
fication analysis. Our selection criterion favors a spe-

cialization v → child(v) that has the maximum gain
ratio [46]:

Score(v) = GainRatio(v) =
InfoGain(v)

SplitInfo(v)
. (1)

InfoGain(v): Let T [x] denote the set of records in T

generalized to the value x. Let freq(T [x], cls) denote
the number of records in T [x] having the class cls. Note
that |T [v]| =

∑
c |T [c]|, where c ∈ child(v). We have

InfoGain(v) = I(T [v])−
∑
c

|T [c]|
|T [v]|

I(T [c]), (2)

where I(T [x]) is the entropy of T [x]:

I(T [x]) = −
∑
cls

freq(T [x], cls)

|T [x]|
× log2

freq(T [x], cls)

|T [x]|
.

(3)

Intuitively, I(T [x]) measures the mix of classes for the

records in T [x], and InfoGain(v) is the reduction of
the mix by specializing v.

SplitInfo(v): InfoGain(v) is biased toward attributes
with many child values. An attribute with large number
of child values has higher InfoGain(v) than other at-

tributes. Thus, specializing such an attribute may not
be useful for classification analysis. This bias can be
avoided by dividing InfoGain(v) by the split informa-

tion:

SplitInfo(v) = −
∑
c

|T [c]|
|T [v]|

× log2
|T [c]|
|T [v]|

. (4)

When all the records have the same child value, Split-
Info is undefined [46]. We handle this known problem
by ignoring the value of SplitInfo and only consider the

value of InfoGain as the Score of the candidate for this
special case.

The value with the highest Score (gain ratio) is

selected for specialization. If the Score of a value is
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0, then this value will not be chosen as long as we

have other values with a better Score. But, if there is
no better choice, then a value with zero score can be
specialized, given that it is valid and beneficial. Gain

ratio has another advantage over information gain in
this distributed scenario because the Score(x) value is
used to measure the contribution of each party in the

anonymization process. Gain ratio thus also ensures
fairness since an attribute with a high Score(x) pos-
sesses more information for classification analysis. We

discuss more about contribution in Section 6.

Example 3 The specialization ANY Job refines the 34
records into 16 records for Blue-collar and 18 records
for White-collar. Score(ANY Job) is calculated as fol-

lows.
I(ANY Job) = − 21

34 × log2
21
34 − 13

34 × log2
13
34 = 0.960

I(Blue-collar) = − 5
16 × log2

5
16 − 11

16 × log2
11
16 = 0.896

I(White-collar) = −16
18 × log2

16
18 − 2

18 × log2
2
18 = 0.503

InfoGain(ANY Job) = I(ANY Job)− ( 1634 ×
I(Blue-collar) + 18

34 × I(White-collar)) = 0.272

SplitInfo(ANY Job) = −16
34 × log2

16
34 − 18

34 × log2
18
34

= 0.998
GainRatio(ANY Job) = 0.272

0.998 = 0.272.

For a continuous attribute, the specialization of an
interval refers to the optimal binary split that maxi-
mizes information gain with respect to the Class at-

tribute. We use information gain, instead of gain ra-
tio, to determine the split of an interval because every
possible split creates two child values and, therefore,

information gain has no bias.

Example 4 For the continuous attribute Salary, the top-
most value is the full range interval of domain values,
[1-99). To determine the split point of [1-99), we evalu-

ate the information gain for the five possible split points
for the values 30, 32, 35, 37, 42, and 44. The following
is the calculation for the split point at 37:

InfoGain(37) = I([1− 99))− ( 1234 × I([1− 37)) + 22
34 ×

I([37− 99))) = 0.9597− ( 1234 × 0.6500 + 22
34 × 0.5746) =

0.3584.

As InfoGain(37) is highest, we grow the taxonomy

tree for Salary by adding two child intervals, [1-37) and
[37-99), under the interval [1-99).

5 Algorithm for Semi-Honest Parties

Fung et al. [17] propose a top-down specialization (TDS)
approach to generalize a single table T . One non-privacy-
preserving approach to the problem of data integration

is to first join the multiple private tables into a single

table T and then generalize T to satisfy a k-anonymity

requirement using TDS. Though this approach does not
satisfy the privacy requirement (3) in Definition 2 (be-
cause the party that generalizes the joint table knows

all the details of the other parties), the produced table
does satisfy requirements (1) and (2). Therefore, it is
helpful to first have an overview of TDS.

Initially, in TDS all values are generalized to the
topmost value in its taxonomy tree, and Cuti contains

the topmost value for each attribute Di. At each itera-
tion, TDS performs the best specialization that has the
highest Score among the candidates that are valid, ben-

eficial specializations in ∪Cuti, then updates the Score
and validity of the affected candidates. The algorithm
terminates when there is no further valid and benefi-

cial candidate in ∪Cuti. In other words, the algorithm
terminates if any further specialization would lead to
a violation of the anonymity requirement. An impor-
tant property of TDS is that the anonymity require-

ment is anti-monotone with respect to a specialization:
If it is violated before a specialization, it remains vi-
olated after the specialization because an anonymity

count a(qid) does not increase with respect to a spe-
cialization.

Without loss of generality, we first present our so-
lution in a scenario of two parties (n = 2) in the semi-
honest model. Section 5.4 describes the extension to

multiple parties (n > 2). Consider a table T that is
given by two tables TA and TB with a common key
ID, where Party A holds TA and Party B holds TB . At

first glance, it seems that the change from one party to
two parties is trivial because the change of Score due
to specializing on a single attribute depends only on

that attribute and the Class attribute, and each party
knows about Class and the attributes they have. This
observation is wrong because parties will not be able

to determine the validity of the candidate attributes in
case the QID spans multiple tables.

To overcome this problem, each party keeps a copy
of the current ∪Cuti and generalized T , denoted by Tg,
in addition to the private TA or TB . The nature of the

top-down approach implies that Tg is more general than
the final answer and, therefore, does not violate the re-
quirement (3) in Definition 2. At each iteration, the two

parties cooperate to perform the same specialization as
identified in TDS by communicating certain informa-
tion that satisfies the requirement (3) in Definition 2.

Algorithm 1 describes the algorithm at Party A (same
for Party B).

First, Party A finds the local best candidate using
the specialization criterion (Equation 1) in Section 4
and communicates with Party B to identify the over-

all global winner candidate, denoted by w. To avoid
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Algorithm 1 Algorithm for Semi-Honest Parties
1: initialize Tg to include one record containing top most values;

2: initialize ∪Cuti to include only top most values;
3: while there exists some valid candidate in ∪Cuti do
4: find the local candidate x of highest Score(x);
5: if the party has valid candidate then

6: communicate Score(x) with Party B to find the winner;
7: else
8: send Not-participate;
9: end if

10: if the winner w is local then
11: specialize w on Tg ;
12: instruct Party B to specialize w;
13: else

14: wait for the instruction from Party B;
15: specialize w on Tg using the instruction;
16: end if

17: replace w with child(w) in the local copy of ∪Cuti;
18: update Score(x) and validity for candidates x in ∪Cuti;
19: end while
20: return Tg and ∪Cuti;

disclosing the Score to each other, the secure multi-

party maximum protocol [60] can be employed. Sup-
pose the winner w is local to Party A. Party A performs
w → child(w) on its copy of ∪Cuti and Tg. This means

specializing each record t ∈ Tg containing w into more
specialized records, t′1, . . . , t

′
z containing the child values

of child(w). Similarly, Party B updates its ∪Cuti and

Tg, and partitions TB [t] into TB [t
′
1], . . . , TB [t

′
z]. Since

Party B does not have the attribute for w, Party A
needs to instruct Party B how to partition these records

in terms of IDs. If the winner w is local to Party B, then
the role of the two parties is exchanged in this discus-
sion.

Example 5 Consider Table 1 and the joint anonymity
requirement: {⟨QID1 = {Sex, Job}, 4⟩, ⟨QID2 = {Sex,
Salary}, 5⟩}. Initially, Tg = {⟨ANY Sex,ANY Job, [1-99)⟩}
and ∪Cuti = {ANY Sex,ANY Job, [1-99)}, and all spe-
cializations in ∪Cuti are candidates. To find the can-
didate, Party A computes Score(ANY Sex), and Party

B computes Score(ANY Job) and Score([1-99)).

Below, we describe the key steps: find the winner

candidate (Lines 4-8), perform the winning specializa-
tion (Lines 10-15), and update the score and status
of candidates (Line 18). For Party A, a local attribute

refers to an attribute from TA, and a local specialization
refers to that of a local attribute.

5.1 Find the Winner Candidate

Party A first finds the local candidate x of highest
Score(x), by making use of computed InfoGain(x),

then communicates with Party B to find the winner

candidate. If Party A has no valid candidate, then it

sends Not-participate. This message indicates that the
party has no attribute to specialize. Score(x) come
from the update done in the previous iteration or the

initialization prior to the first iteration. This step does
not access data records. Updating Score(x) is consid-
ered in Section 5.3.

5.2 Perform the Winner Candidate

Suppose that the winner candidate w is local at Party

A (otherwise, replace Party A with Party B). For each
record t in Tg containing w, Party A accesses the raw
records in TA[t] to tell how to specialize t. To facilitate

this operation, we represent Tg by the data structure
called Taxonomy Indexed PartitionS (TIPS).

Definition 3 (TIPS) TIPS is a tree structure. Each
node represents a generalized record over ∪QIDj . Each
child node represents a specialization of the parent node

on exactly one attribute. A leaf node represents a gen-
eralized record t in Tg and the leaf partition containing
the raw records generalized to t, i.e., TA[t]. For a can-

didate x in ∪Cuti, Px denotes a leaf partition whose
generalized record contains x, and Linkx links up all
Pxs.

With the TIPS, we can find all raw records general-
ized to x by following Linkx for a candidate x in ∪Cuti.

To ensure that each party has access only to its own raw
records, a leaf partition at Party A contains only raw
records from TA and a leaf partition at Party B contains

only raw records from TB . Initially, the TIPS has only
the root node representing the most generalized record
and all raw records. In each iteration, the two parties

cooperate to perform the specialization w by refining
the leaf partitions Pw on Linkw in their own TIPS.

Example 6 Continue with Example 5. Initially, TIPS
has the root node representing the most generalized
record ⟨ANY Sex,ANY Job, [1-99)⟩, TA[root] = TA

and TB [root] = TB. The root node is on LinkANY Sex,
LinkANY Job, and Link[1−99). See the root node in Fig-
ure 3. The shaded field contains the number of raw

records generalized by a node. Suppose that the win-
ning candidate w is

[1-99) → {[1-37), [37-99)} (on Salary).

Party B first creates two child nodes under the root
node and partitions TB[root] between them. The root

node is deleted from LinkANY Sex, LinkANY Job, and
Link[1−99); the child nodes are added to Link[1−37)

and Link[37−99), respectively, and both are added to

LinkANY Job and LinkANY Sex. Party B then sends the



9

Link
ANY_Job


Head of Link
ANY_Job

Sex
 Job
 Salary


ANY_Sex
 ANY_Job
 [1-99)


[1-99)       {[1-37), [37-99)}


34

# of Recs.


12
ANY_Sex
 ANY_Job
 [1-37)
 ANY_Sex
 ANY_Job
 [37-99)
 22


Fig. 3 The TIPS after the first specialization

Link

Blue-collar


Head of Link
Blue-collar


Sex
 Job
 Salary

ANY_Sex
 ANY_Job
 [1-99)


ANY_Sex
 Blue-collar
 [37-99)


Head of Link
White-collar


[1-99)       {[1-37), [37-99)}


34

# of Recs.


4
12
ANY_Sex
 Blue-collar
 [1-37)


12
ANY_Sex
 ANY_Job
 [1-37)
 ANY_Sex
 ANY_Job
 [37-99)
 22


ANY_Sex
 White-collar
 [37-99)
 18


ANY_Job 
      {Blue-collar, White-collar}


Fig. 4 The TIPS after the second specialization

following instruction to Party A:
IDs 1-12 go to the node for [1-37).

IDs 13-34 go to the node for [37-99).
On receiving this instruction, Party A creates the two
child nodes under the root node in its copy of TIPS

and partitions TA[root] similarly. Suppose that the next
winning candidate is

ANY Job → {Blue-collar,White-collar}.

Similarly, the two parties cooperate to specialize each
leaf node on LinkANY Job, resulting in the TIPS in Fig-

ure 4.

We summarize the operations at the two parties,
assuming that the winner w is local at Party A.

Party A. Refine each leaf partition Pw on Linkw
into child partitions Pc. Linkc is created to link up
the new Pcs for the same c. Mark c as beneficial if the
records on Linkc has more than one class. Also, add Pc

to every Linkx other than Linkw to which Pw was pre-
viously linked. While scanning the records in Pw, Party
A also collects the following information.

– Instruction for Party B. If a record in Pw is special-
ized to a child value c, collect the pair (id, c), where
id is the ID of the record. This information will be

sent to B to refine the corresponding leaf partitions
there.

– Count statistics. The following information is col-

lected for updating Score. (1) For each c in child(w):
|TA[c]|, |TA[d]|, freq(TA[c], cls), and freq(TA[d], cls),
where d ∈ child(c) and cls is a class label. Refer

to Section 4 for these notations. |TA[c]| (similarly
|TA[d]|) is computed by

∑
|Pc| for Pc on Linkc. (2)

For each Pc on Linkc: |Pd|, where Pd is a child par-

tition under Pc as if c was specialized.

Party B. On receiving the instruction from Party
A, Party B creates child partitions Pc in its own TIPS.

At Party B, Pcs contain raw records from TB . Pcs are
obtained by splitting Pw among Pcs according to the
(id, c) pairs received.

We emphasize that updating TIPS is the only oper-

ation that accesses raw records. Subsequently, updating
Score(x) (in Section 5.3) makes use of the count statis-
tics without accessing raw records anymore. The over-

head of maintaining Linkx is small. For each attribute
in ∪QIDj and each leaf partition on Linkw, there are
at most |child(w)| “relinkings.” Therefore, there are at

most | ∪QIDj | × |Linkw| × |child(w)| “relinkings” for
performing w. Moreover, TIPS has several useful prop-
erties. (1) Every data record appears in exactly one leaf

partition. (2) Each leaf partition Px has exactly one
generalized qidj on QIDj and contributes the count
|Px| towards a(qidj). Later, we use the last property to

extract a(qidj) from TIPS.

5.3 Update Score and Validity

This step updates Score(x) and validity for candidates

x in ∪Cuti to reflect the impact of the specialization
in every iteration. The key to the scalability of our al-
gorithm is updating Score(x) using the count statistics

maintained in Section 5.2 without accessing raw records
again.

5.3.1 Updating Score(x)

An observation is that Score(x) is not affected by w →
child(w), except that we need to compute InfoGain(c)

and SplitInfo(c) for each newly added value c in child(w).
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Fig. 5 The QIDTrees data structure

The owner party of w can compute Score(c) while col-
lecting the count statistics for c in Section 5.2.

5.3.2 Validity Check

A specialization w → child(w) may change the va-
lidity status of other candidates x ∈ ∪Cuti if att(w)
and att(x) are contained in the same QIDj . Thus, in

order to check the validity, we need to keep track of
Ax(QIDj), which is the smallest a(qidj) after special-
ization. The followingQIDTreej data structure indexes

a(qidj) by qidj .

Definition 4 (QIDTrees) For each QIDj = {D1,
. . . , Dq}, QIDTreej is a tree of q levels, where each

level represents the generalized values for Di. A root-
to-leaf path represents an existing qidj on QIDj in
the generalized data Tg, with a(qidj) stored at the leaf

node. A branch is trimmed if its a(qidj) = 0. A(QIDj)
is the minimum a(qidj) in QIDTreej .

QIDTreej is kept at a party if the party owns some
attributes in QIDj . On specializing the winner w, a
party updates its QIDTreej by creating the nodes for

the new qidjs and computing a(qidj). We can obtain
a(qidj) from the local TIPS: a(qidj) =

∑
|Pc|, where Pc

is on Linkc and qidj is the generalized value on QIDj

for Pc. Note that |Pc| is given by the count statistics
for w collected in Section 5.2.

Example 7 Continue with Example 6. Figure 5 shows

the initial QIDTree1 and QIDTree2 for QID1 and
QID2 on the left. On performing

[1-99) → {[1-37), [37-99)},

⟨ANY Sex, [1-99)⟩ in QIDTree2 is replaced with qids
⟨ANY Sex, [1-37)⟩ and ⟨ANY Sex, [37-99)⟩.A(QID2) =
12. Next, on performing

ANY Job → {Blue-collar, White-collar},

⟨ANY Sex, ANY Job⟩ in QIDTree1 is replaced with
new qids ⟨ANY Sex, Blue-collar⟩ and ⟨ANY Sex, White-

collar⟩. To compute a(vid) for these new qids, we need

to add |PBlue-collar| on LinkBlue-collar and |PWhite-collar|
on LinkWhite-collar (see Figure 4):

a(⟨ANY Sex, Blue-collar⟩) = 0 + 12 + 4 = 16, and
a(⟨ANY Sex, White-collar⟩) = 0 + 18 = 18.

So AANY Job(QID1) = 16.

For a local candidate x, a party needs to update
Ax(QIDj) in two cases. The first case is that x is a

new candidate just added, i.e., x ∈ child(w). The sec-
ond case is that att(x) and att(w) are in the sameQIDj .
In both cases, the party owning x first computes a(qidxj )

for the new qidxj s created as if x was specialized. The
procedure is similar to the above procedure of updat-
ing QIDj for specializing w, except that no actual up-

date is performed on QIDTreej and TIPS. The new
a(qidxj )s are then compared with A(QIDj) to deter-
mine Ax(QIDj). Finally, if the new Ax(QIDj) ≥ kj ,

we mark x as valid in ∪Cuti.

5.4 Analysis

Generalization to Multi-party Case. Algorithm 1
is extendable for multiple parties with minor changes:
In Line 6, each party should communicate with all other

parties for determining the winner. Similarly, in Line 12,
the party holding the winner candidate should instruct
the other parties, and in Line 14, a party should wait

for instruction from the winner party.

Algorithmic Correctness. For the information re-

quirement, our approach produces the same integrated
table as the single party algorithm TDS [17] on a joint
table, and ensures that no party learns more detailed

information about the other party other than what they
agree to share. This claim follows from the fact that Al-
gorithm 1 performs exactly the same sequence of spe-

cializations as in TDS in a distributed manner where
TA and TB are kept locally at the sources.

For the privacy requirement, the only information

revealed to each other are the Score (Line 6) and the
instruction (Line 12) for specializing the winner candi-
date. The disclosure of the Score does not breach pri-

vacy because Score is calculated by the frequency of the
class attribute. This value only indicates how good an
attribute is for classification analysis, and does not pro-

vide any information for a particular record. Although
the Score does not reveal any information for a partic-
ular record, the data providers can further enhance the

protection and employ the secure max protocol [60] to
securely determine the winner with the highest Score
without disclosing the Score to other data providers.

The instruction for specializing the winner candidate
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includes (id, c) pairs, where id is the ID of the record

and c is the child value of the winner candidate. This
information is more general than the final integrated ta-
ble that the two parties agree to share and hence does

not violate privacy requirement.

Complexity Analysis. The cost of our proposed al-
gorithm can be summarized as follows. Each iteration
involves the following work: (1) Scan the records in

TA[w] and TB [w] for updating TIPS and maintaining
count statistics (Section 5.2). (2) Update QIDTreej ,
Score(x), and Ax(QIDj) for affected candidates x (Sec-

tion 5.3). (3) Send “instruction” to the remote party.
Only the work in (1) involves accessing data records,
which is in the order of O(|T |); the work in (2) makes

use of the count statistics without accessing data records
and can be performed in constant time. This feature
makes our approach scalable. Thus, for one iteration

the computation cost is O(|T |). The total number of
iterations is bounded by O(log|T |), resulting in the to-
tal computation cost to be O(|T |log|T |). For the com-

munication cost (3), the instruction contains only IDs
of the records in TA[w] or TB [w] and child values c
in child(w) and, therefore, is compact. The number of

bits to be transmitted is proportional to the number
of records in the database and thus in the order of
O(|T |). However, the instruction is sent only by the

winner party. Assuming the availability of a broadcast
channel, the maximum communication cost of a single
party is bounded by O(|T |log|T |). If secure sum pro-

tocol is used, then there is an additional cost in every
iteration. The running time of secure max protocol is
bounded by O(p(n)), where p(n) is the polynomial of

n parties [60]. In other words, as the number of par-
ties increases, the cost of the secure sum protocol also
increases.

In constrast, the Distributed k-anonymity (DkA) al-

gorithm [24] requires cryptographic technique to ensure
security. The computation cost of the DkA is bounded
by the number of encryption which is in the order of

O(|T |2) for each iteration. The communication cost for
each iteration is bounded by O(|T |2logN), where N is
the domain size from which the private-public key pairs

are drawn. We will evaluate the scalability on real-life
data in Section 7.

6 Algorithm for Malicious Parties

Algorithm 1 satisfies all the conditions of Definition 2 as
long as parties follow the defined algorithm. However, a
malicious party can deviate from the algorithm by un-

der declaring its Score(x) value (Line 6 of Algorithm 1)

Table 3 Anonymous tables

Shared Party A Party B

ID Class Sex ... Job Salary ...

1-7 0Y7N ANY Non-Technical [1-35)

8-16 5Y4N ANY Technical [35-37)

17-25 7Y2N ANY Manager [37-99)

26-34 9Y0N ANY Professional [37-99)

or sending Not-participate (Line 8 of Algorithm 1) in ev-
ery round to avoid sharing its own data with others. For

example, assume that Party A is malicious. During the
anonymization process, Party A can either send a very
low Score(x) value or Not-participate to Party B for

determining the global winner candidate. Hence, Party
A indirectly forces Party B to specialize its attributes in
every round. This can continue as long as Party B has

a valid candidate. Thus, the malicious Party A success-
fully obtains the locally anonymized data of Party B
while sharing no data of its own. Table 3 is an example

of an integrated table in which Party A does not partici-
pate in the anonymization process. Moreover, this gives
Party A a global data set, which is less anonymous than

if it had cooperated with Party B.

We assume that a party exhibits its malicious be-

havior by reporting a low Score(x) value or sending
Not-participate message while it has valid candidate.
However, a malicious party does not manipulate its in-

put database to provide wrong data (Line 12 of Al-
gorithm 1). Preventing malicious parties from sharing
false data is difficult since the data is private and non-

verifiable information. To prevent such malicious be-
havior, there can be an auditing mechanism where a
trusted third party (e.g. judge) can verify the integrity

of the data [2]. Further investigation is needed to thwart
this kind of misbehavior without a trusted third party.
In this regard, mechanism design [43] could be a poten-

tial tool to motivate parties to share their real data.

In Section 6.3, we provide a solution to prevent par-
ties from deviating from the algorithm. Before that, we
first use rationality to understand the behavior of the

participating parties and then review some basic con-
cepts of game theory.

6.1 Rational Participation

To generate the integrated anonymous table, each party

specializes its own attributes, which can be considered
as a contribution. The contribution can be measured by
the attribute’s Score(x) value according to Equation 1.

Thus, the total contribution of Party A, denoted by
µA, is the summation of all the Score(x) values from
its attribute specializations. We use φA to denote the

contributions of all other parties excluding Party A.
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This is the ultimate value that each party wants to
maximize from the integrated anonymous table. Since
all the parties are rational, their actions are driven by

self interest. Hence, they may want to deviate from the
algorithm to maximize their φ while minimizing µ as
much as possible.

An anonymous integrated table can be achieved in
two ways. First, both parties (n = 2) can specialize

their attributes. Certainly there can be many different
choices for attribute selection. Our proposed heuristic
is one of them. Second, only one party can specialize its
attributes (based on only local QIDs), while the other

party’s attributes are generalized to the topmost val-
ues. In this case, part of the table is completely locally
anonymized and part of the table is completely gener-

alized to the topmost values.

As an example, consider Parties A and B, having

the same number of local attributes and being equally
capable of contributing to the anonymization process.
Let us assume that the integrated table cannot be more

specialized after any s number of attribute specializa-
tions. Each specialization has the same Score(x) value,
and the sum of the Score(x) value is p. Figure 6 shows

the possible values of φ for both the parties. The line
joining points (0, p) and (p, 0) shows different choices of
φ values. Both the extreme points represent the partic-

ipation of one party, while the points between are the
different levels of contributions from the parties. Each
party cannot increase its φ value without decreasing the

other party’s φ. Rationality suggests that the only point
that can be accepted by both parties is (p/2, p/2). We
call it rational participation point where all the parties

equally contribute in the anonymization process.

In reality, each party holds different attributes, and

some attributes are more informative than others with
respect to classification analysis. Thus, all the parties
are not equally capable of contributing to the anonymiza-

tion process. Based on the contribution capability, par-

ties can be divided into k different classes, where parties

belonging to class 1 are the most capable, and parties
belonging to class k are the least capable to contribute.
If there are a different number of parties from different

classes, then, by extending the concept of rationality,
we can conclude that the interaction between them will
be dominated by the party of the least capable class.

For example, if one party of class 1 and two parties
of class 2 participate to form an integrated anonymous
table, then the party of class 1 will behave as if it be-

longs to class 2. Because by contributing more than the
class 2 parties, the party of class 1 will not receive any
additional contribution from them.

We use game-theoretic concepts to develop a par-
ticipation strategy that ensures (1) following the algo-

rithm, parties will approach rational participation point
(2) deviating from the algorithm will eventually de-
crease the value of φ. To make the paper self-contained,

a background on game theory is provided in the follow-
ing section. A more general overview of game theory
can be found in [4, 44].

6.2 Game Theory

A game can be defined as an interaction model among
players,1 where each player has its own strategies and

possible payoffs. A strategic game consists of a finite set
of players I = {1, 2, . . . , n}, a set of actions Ai for each
player i ∈ I, and a set of outcomes O. Each player se-

lects an action from the set of actions Ai. An action pro-
file is the set of actions a = {a1, a2, . . . , an} chosen by
the players, where ai ∈ Ai. a−i = {a1, . . . , ai−1, ai+1, . . . ,

an} denotes the actions of all the players except player
i. Action profile determines the outcome, o(a) ∈ O, of
the game. Each player has preferences over the out-

comes of the game. Preferences over outcomes are rep-
resented through a utility function, ui. The utility func-
tion of a player i can be considered as a transformation

of the outcome to a real number. It is expressed as
ui(a) : o(a1, a2, . . . , an) → ℜ. A player prefers outcome
o1, over outcome o2, if ui(o1) > ui(o2). A rational player

always wants to maximize utility and, thus, chooses an
action which will increase the utility given the prefer-
ences of the outcomes, the structure of the game, and

the belief of others’ actions.

In an infinitely repeated game, the strategic game is

repeated infinitely, where players choose their actions
simultaneously for every round. The utility of such an
infinitely repeated game is computed by the discounted

sum of the payoffs of each strategic game as follows:

1 We use the word player to refer to a party
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ui(si) = u1
i (a

1)+ δu2
i (a

2)+ δ2u3
i (a

3)+ · · ·+ δt−1ut
i(a

t),

(5)

where 0 < δ < 1 represents how the individual play-

ers value their future payoffs, at is the action profile
of strategic game of round t, and si is the strategy of
player i. A strategy si defines the actions of a player i

for every round of a repeated game.

Game theory uses different techniques to determine

the outcome of the game. These outcomes are the sta-
ble or equilibrium points of the game. The most well-
known equilibrium concept is the Nash equilibrium [41].

It states that each player plays her best strategy to
maximize the utility, given the strategies of the other
players.

Definition 5 (Nash Equilibrium) [41] A strategy
profile s∗ = {s∗1, s∗2, . . . , s∗n} is a Nash equilibrium if this

strategy profile maximizes the utility of every player i.
Formally,

∀i ui(o(s
∗
i , s

∗
−i)) ≥ ui(o(śi, s

∗
−i)), ∀śi (6)

Nash equilibrium is the point at which no player can
take advantage of the other player’s strategy to improve

his own position.

Nash equilibrium is the strategy profile from which
no player has any incentive to deviate.

6.3 Participation Strategy

Is it possible to devise a strategy for our secure data in-

tegration problem where following the algorithm consti-
tutes the Nash equilibrium? This section presents such
a strategy that guarantees that no party has any incen-

tive to deviate from the algorithm since deviation does
not lead to better utility. We first model our secure data
integration problem as a information-sharing game and

analyze the behavior of the parties. We then use game-
theoretic techniques to devise a strategy where follow-
ing the algorithm is the choice of rationality.

Our secure data integration problem can be modeled
as a game where each player “cooperates” by follow-
ing the algorithm or “defects” by deviating. Figure 7

presents the payoff matrix of our information-sharing
game for two parties. In every round, only one party
contributes. The party that contributes in the current

round is considered as the loser and receives 0 util-
ity because it does not gain any information from the
other party. On the other hand, the party that does not

contribute gets w utility and considered as the winner.

Cooperate

DefectCooperate

Defect

Player A

Player B

(pw, (1-p)w)

(w, 0)

(0,w)

(0, 0)

Fig. 7 Payoff matrix of information-sharing game

Note, this is not a zero-sum game, where the loser has
to lose the same amount what the winner gains. In our
information-sharing game, the loser does not receive

negative utility rather it receives zero utility because
the gain of the other party does not harm the loser.

In Figure 7, for the action profile {Defect,Defect},
the payoffs of both the parties are zero since they don’t

share information. For the action profiles {Defect, Coop
erate} and {Cooperate,Defect}, the cooperator gets 0
utility while the other party gains utility w. Finally, if

both the parties cooperate by following the algorithm
then one of the parties contributes. Let, p be the prob-
ability that the Party B contributes and 1 − p be the

probability that the Party A contributes. Thus, the pay-
offs of Party A and Party B for each round when both
cooperate are pw and (1− p)w, respectively.

The payoff matrix for n parties can be extended

similarly. If all the parties deviate, then they all receive
zero utility. In all other cases, parties that defeat gain a
utility of w, while the utilities of the cooperating parties

depend on the probability of their contribution.

For each party i, defect is the best strategy since
∀i ui(o(Defect, s−i)) ≥ ui(o(Cooperate, s−i)),∀s−i. A
rational party has no incentive to cooperate since devi-

ation from the algorithm brings more utility. Therefore,
for one iteration of our information-sharing game, de-
fect is the Nash equilibrium given the payoff matrix in

Figure 7. Since our information-sharing game contin-
ues for unknown number of iterations, the game can
be modeled as an infinitely repeated game. According

to Nash folk theorem [44], for any infinitely repeated
game G, a strategy profile that guarantees a higher pay-
off than the players’ minimax payoff constitutes a Nash

equilibrium. Therefore, cooperation can emerge as the
Nash equilibrium for our information-sharing game if
cooperation ensures higher payoff than minimax pay-

off.

Minimax is the lowest payoff that can be forced
upon any player by the other players. For our information-
sharing game, the minimax payoff for each player is zero

because

min
a−i∈A−i

(
max
ai∈Ai

ui(ai, a−i)

)
= 0. (7)
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Algorithm 2 Algorithm for Malicious Parties
1: initialize Tg to include one record containing top most values;

2: initialize ∪Cuti to include only top most values;
3: while there exists some valid candidate in ∪Cuti do
4: find the local candidate x of highest Score(x);
5: if µA ≤ µB + ϵ,∀B ̸= A and has valid candidate then

6: communicate Score(x) with Party B to find the winner;
7: else
8: send Not-participate;
9: end if

10: if the winner w is local then
11: specialize w on Tg ;
12: instruct Party B to specialize w;
13: µA = µA + Score(x);

14: else
15: wait for the instruction from Party B;
16: specialize w on Tg using the instruction;

17: µB = µB + Score(x);
18: end if
19: replace w with child(w) in the local copy of ∪Cuti;
20: update Score(x) and validity for candidates x in ∪Cuti;

21: end while
22: return Tg and ∪Cuti;

If all the players except player i defect, then player i
receives almost zero payoff. Hence, if we devise a strat-

egy, where each player’s utility exceeds the minimax
payoff, then that strategy profile constitutes Nash equi-
librium. Any player i that deviates from the strategy

gains only in that particular iteration but can be pun-
ished by others in the subsequent iterations by enforc-
ing upon her the minimax payoff.

For our secure data integration problem, we device
the following participation strategy that can be incor-
porated in Algorithm 1 to deter parties from deviating.

si =

{
Send Score(x) ∀j µi ≤ µj + ϵ,∀j ̸= i

Send Not-participate otherwise

Every party i keeps track of the total contributions
{µ1, . . . , µn} of every party including party i himself.

In each iteration, each party decides whether or not
to contribute based on these values. Here, ϵ is a small
positive number. Thus, each party only cooperates by

sharing its data if it has not contributed more than all
the other parties. However, each party is generous in a
sense that it participates if the difference is very small.

Thus, the participation strategy helps parties to attain
the rational participating point.

Finally, incorporating the participation strategy in

Algorithm 1, we get Algorithm 2 for secure data inte-
gration for malicious parties. The new algorithm has a
few differences. First, it has one additional condition in

Line 5 to decide whether or not to participate. A party
sends Not-participate when either others did not partic-
ipate enough or the party himself has no valid attribute.

Second, each party updates the value of µi (Lines 13

and 17) in every iteration. The use of the secure sum

protocol does not prevent parties from calculating the
contribution of the winner party because once the par-
ties know how to specialize the winner candidate, they

themselves can compute the Score of the winner candi-
date. Thus, secure sum protocol can also be employed
in Algorithm 2 to conceal the Score among the parties.

Finally, if all the parties send Not-participate in any
iteration, then the algorithm terminates.

Theorem 1 proves that a party cannot increase its
utility by deviating from the participation strategy. De-

viation may bring short time benefit but eventually the
total utility of a party cannot be increased. Therefore,
parties have no incentive to deviate and thus the par-

ticipation strategy profile constitutes Nash equilibrium.

Theorem 1 Algorithm 2 guarantees that an adversary
cannot increase its value of utility function by deviating

from the algorithm for δn−1 ≥ 1− c
w .

Proof. We show that a party following the algorithm
has a higher discounted average payoff than what she
can obtain from deviating. If all parties employ Al-

gorithm 2, then they obtain a stream of payoff, U =
⟨u1, u2, . . . ⟩, where ut ∈ {w, 0}. The total utility of the
payoff stream can be computed by discounted sum, S =∑∞

t=1 δ
t−1ut, where 0 < δ < 1. A party is indifferent

between U and any payoff stream C whose discounted
sum is S. The discounted sum of a constant payoff

streamC = ⟨c, c, . . . ⟩ is c
1−δ . Thus, a party is indifferent

between the payoff streams if c = (1 − δ)
∑∞

t=1 δ
t−1ut

and the value of c is the discounted average of the payoff

stream U = ⟨u1, u2, . . . ⟩.
However, if a party deviates (by not contributing)

at any period t = 1, . . . ,∞, then she at most obtains a
payoff stream ⟨w, . . . , w, 0, 0, . . . ⟩ in which (n − 1) w’s

are followed by a constant sequence of 0’s. Because,
other parties punish her by deviating in the subsequent
period after t = n − 1. Thus, the discounted average

payoff from deviation is

d = (1− δ)(w + wδ + · · ·+ wδn−2︸ ︷︷ ︸
n−1

+0 + 0 + . . . )

= (1− δ)(
w(1− δn−1)

(1− δ)
+ 0)

= w(1− δn−1)

Hence, a party cannot increase its payoff by deviat-

ing if w(1− δn−1) ≤ c or δn−1 ≥ 1− c
w .

Remark. The payoff of each iteration is the Score(x)

value of the winner attribute. Since the order of special-
izations for the same set of candidates has no impact
for our data utility which is classification analysis, we

can assume that the discount factor δ is close to 1 for
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Table 4 Attributes for the Adult data set

Attribute Type Numerical Range

# Leaves # Levels

Age (Ag) continuous 17 - 90

Education-num (En) continuous 1 - 16

Final-weight (Fw) continuous 13492 - 1490400

Relationship (Re) categorical 6 3

Race (Ra) categorical 5 3

Sex (Sx) categorical 2 2

Martial-status (Ms) categorical 7 4

Native-country (Nc) categorical 40 5

Education (Ed) categorical 16 5

Hours-per-week (Hw) continuous 1 - 99

Capital-gain (Cg) continuous 0 - 99999

Capital-loss (Cl) continuous 0 - 4356

Work-class (Wc) categorical 8 5

Occupation (Oc) categorical 14 3

all the parties. Hence, the constrain δn−1 ≥ 1 − c
w is

not a problem for our information-sharing game.

6.4 Analysis

Algorithm 2 has some nice properties. First, each party
requires to keep only n extra variables {µ1, . . . , µn}.
This makes the decision algorithm scalable. Second,

each party decides whether or not to participate based
on the locally generated information. Thus, a party
cannot be exploited by others in the decision-making

process. Finally, the computational and communication
costs of the algorithm remain the same as Algorithm 1.

Although the values of µi are not exactly the same

for all parties when the algorithm terminates, the algo-
rithm progresses by ensuring even contributions from
all the parties. Since parties are unable to determine

the last iteration of the algorithm, they will cooperate
until the anonymization finishes.

In real life, different parties agree to share their data

when they have mutual trust and benefits. However, if
the parties do not want to share their data more than
others, then Algorithm 2 is the appropriate solution. It

is ultimately the participated parties who will decide
whether to deploy Algorithm 1 or 2.

7 Experimental Evaluation

We implemented the proposed algorithms in a distributed
environment. Each party is running on an Intel Pentium
IV 2.6GHz PC with 1GB RAM, connected to a LAN.

The main objective of our empirical study is to evaluate
the performance of our proposed algorithms in terms of
data utility (the benefit of data integration), and scal-

ability for handling large data sets. We do not directly

compare our methods with DkA [24] in terms of data

utility since DkA measures the data utility by using the
precision metric of [50], which calculates the distortion
of the generalized data compared to the original data.

In contrast, we measure the utility of the anonymous
data by doing classification analysis, which is the infor-
mation requirement of the financial industry studied in

our problem. However, we do compare the scalability of
DkA with our algorithms in Section 7.3.

Due to non-disclosure agreement, we cannot use the
raw data of the financial industry for the experiment,
so we employ the de facto benchmark census data set

Adult [42], which is also a real-life data set, to illustrate
the performance of our proposed algorithms. The data
set has 6 continuous attributes, 8 categorical attributes,

and a binary Class column representing income lev-
els ≤50K or >50K. Table 4 describes each attribute.
After removing records with missing values, there are

30,162 and 15,060 records for the pre-split training and
testing, respectively. For classification models, we use
the well-known C4.5 classifier [46]. Unless stated other-

wise, all 14 attributes are used for building classifiers,
and the taxonomy trees for all categorical attributes are
from [17].

For the same anonymity threshold k, a single QID
is always more restrictive than one broken into multiple

QIDs. We first show the results for a single QID. The
single QID contains the top N attributes ranked by the
C4.5 classifier: the top attribute is the attribute at the

top of the C4.5 decision tree; then, we remove this at-
tribute and repeat this process to determine the rank of
other attributes. The top 9 attributes are Cg,Ag,Ms,

En,Re,Hw, Sx,Ed,Oc in that order. Top5, Top7, and
Top9 represent the anonymity requirements in which
the single QID contains the top 5, 7, and 9 attributes,

respectively.

We collect several classification errors, all on the cor-

responding testing set. Base error, denoted by BE, is
the error on the integrated data without generalization.
Upper bound error, denoted by UE, is the error on the

integrated data in which all attributes in the QID are
generalized to the topmost ANY. This is equivalent to
removing all attributes in the QID. Integration error,

denoted by IE, is the error on the integrated data pro-
duced by the anonymization algorithms. We combine
the training set and testing set into one set, general-

ize this set to satisfy a given anonymity requirement,
then build the classifier using the generalized training
set. The error is measured on the generalized testing

set. Source error, denoted by SE, is the error without
data integration at all, i.e., the error of classifiers built
from an individual raw private table. Each party has

a SE. Thus, SE − IE measures the benefit of data
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Fig. 8 Classification error for 2 parties in semi-honest model

integration over an individual private table. UE − IE
measures the benefit of generalization compared to the
brute removal of the attributes in the QID. IE − BE

measures the quality loss due to the generalization for
achieving the anonymity requirement. UE − BE mea-
sures the impact of the QID on classification. A larger

UE − BE means that the QID is more important to
classification.

7.1 Results for Semi-honest Model

We model two private tables TA and TB as follows: TA

contains the first 9 attributes of Table 4, interesting

to the Immigration Department, and TB contains the
remaining 5 attributes, interesting to the Taxation De-
partment. A common key ID for joining the two tables

is added to both tables. We would like to emphasize
that the results of IE do not depend on the number of
parties in the semi-honest model because the sequence

of specializations performed does not depend on the
decision of the participating parties.

7.1.1 Benefits of Integration

Our first goal is evaluating the benefit of data integra-
tion over individual private table, measured by SE −
IE. SE for TA, denoted by SE(A), is 17.7% and SE
for TB, denoted by SE(B), is 17.9%. Figure 8 depicts
the IE for Top5, Top7, and Top9, with the anonymity

threshold k ranging from 20 to 1000.2 For example,
IE = 14.8% for Top5 for k ≤ 180, suggesting that the
benefit of integration, SE−IE, for each party is approx-

imately 3%. For Top9, IE stays at above 17.6% when
k ≥ 80, suggesting that the benefit is less than 1%.
This experiment demonstrates the benefit of data inte-

gration over a wide range of anonymity requirements.

2 In order to show the behavior for both small k and large k,

the x-axis is not spaced linearly.
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In practice, the benefit is more than the accuracy con-
sideration because our method allows the participating

parties to share information for joint data analysis.

7.1.2 Impacts of Generalization

Our second goal is evaluating the impact of general-
ization on data quality. IE generally increases as the
anonymity threshold k or the QID size increases be-

cause the anonymity requirement becomes more strin-
gent. IE − BE measures the cost for achieving the
anonymity requirement on the integrated table, which

is the increase of error due to generalization. UE − IE
measures the benefit of our anonymization algorithm
compared to the brute removal of the attributes in the

QID. The ideal result is to have small IE − BE (low
cost) and large UE − IE (high benefit). For the C4.5
classifier, BE = 14.7% and UEs are 20.4%, 21.5%, and
22.4% for Top5, Top7, and Top9, respectively.

Refer to Figure 8. We use the result of Top7 to sum-
marize the analysis. First, IE−BE is less than 1% for
20 ≤ k ≤ 200, and IE is much lower than UE = 21.5%.

This suggests that accurate classification and privacy
protection can coexist. Typically, there are redundant
classification structures in the data. Though generaliza-

tion may eliminate some useful structures, other struc-
tures emerge to help the classification task. Interest-
ingly, in some test cases the data quality could even

improve when k increases and when more generaliza-
tion is performed. For example, IE drops as k increases
from 60 to 100. This is because generalization could

help eliminate noise, which in turn reduces the classifi-
cation error.

7.1.3 Comparing with Genetic Algorithm

Iyengar [22] presented a genetic algorithm for generaliz-
ing a single table to achieve k-anonymity for classifica-

tion analysis. One non-privacy-preserving approach is
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Fig. 10 Classification error for 2 parties in malicious model

to apply this algorithm to the joint table of TA and TB .
To ensure a fair comparison, both methods employ the

same data set, the same QID = {Ag,Wc,Ed,Ms,Oc,
Ra, Sx,Nc}, and the same taxonomy trees from [22].
For our method, TA includes Ag, Ed, Ms, Ra, Sx, Nc

and TB includes Wc, Oc. All errors in this experiment
are based on the 10-fold cross validation. Results of the
genetic algorithm are obtained from [22].

Figure 9 shows IE of Algorithm 1 and the errors for
the two methods in [22]. Loss Metric (LM) ignores the
classification goal, and Classification Metric (CM) con-

siders the classification goal. Algorithm 1 clearly gen-
erates lower error (better) than LM, suggesting that
the classification quality can be improved by focusing

on preserving the classification structures in the anony-
mous data and it is comparable to CM. However, our
algorithm takes only 20 seconds to generalize the data.

Iyengar reported that his method requires 18 hours to
transform this data on a Pentium III 1GHz PC with
1GB RAM. Of course, Iyengar’s method does not ad-

dress the secure integration requirement due to the join-
ing of TA and TB before performing generalization.

7.2 Results for Malicious Model

To show the performance for our algorithm for mali-
cious parties, we use two different attribute distribu-

tions. First, we use the same distribution as in Sec-
tion 7.1, where TA contains the first 9 attributes of
Table 4 and TB contains the remaining 5 attributes.

This distribution gives both the parties (almost) equal
capability to contribute since both the parties own top
attributes. We call this distribution equal distribution.

Figure 10(a) shows the classification error for Algo-
rithm 2. Notice that with equal distribution, Algorithm 2
performs exactly like Algorithm 1. In other words, when

both the parties are equal capability of contribution,
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Fig. 11 Classification error for 4 parties in malicious model

the anonymization algorithm produces exactly the same
integrated table as the single party method.

Next, we distribute the attributes among the parties
unequally. We assign the first top 9 attributes to Party

A and the remaining 5 attributes to Party B. In this set-
ting, Party A holds all the important attributes for clas-
sification analysis. This is also reflected in the source

error, where SE(A) is 15.3% and SE(B) is 22.4%. Fig-
ure 10(b) shows the classification error for Algorithm 2
with unequal attribute distribution. The figure depicts

that the IE for Top5, Top7, and Top9 are very high.
Party A does not participate in the anonymization pro-
cess because Party B is unable to contribute equally.

Finally, we evaluate the performance of Algorithm 2
for 4 parties. We divide the attributes as follows: TA

contains {Ag,Wc, Fw,En}, TB contains {Ms,Re,Ra,

Sx}, TC contains {Cg,Hw,Nc}, and TD contains {Ed,
Oc,Cl}. The source errors are 21.2%, 25.1%, 20% and
21.7% for Party A, Party B, Party C and Party D,

respectively. Figure 11 depicts the IE for Top5, Top7,
and Top9 with the anonymity threshold k ranging from
20 to 1000. IEs for Top5 and Top7 for k ≤ 180 are

around 16.2% and 16.6%, respectively, which is much
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lower than all the SEs. This suggests that all the par-

ties gain by integrating their data, where SE − IE is
approximately between 3.5% to 8.5%. As the value of
k increases, IE also increases. The highest IE is 18.3%

for Top9 at k ≥ 800, which is still less than the lowest
SE(C). The largest difference between BE and SE is
around 10% due to the fact that some parties have less

number of attributes, therefore, higher SEs. Given that
the (SE-BE) is large, it is more convincing to employ
our proposed algorithm to conduct joint classification

analysis on the integrated anonymous data. Thus, the
result suggests that as the number of parties increases,
the benefit of integration also increases in the scenario

of equal distribution. For all the above cases, we fix the
value of ϵ as 1%, meaning that parties participate in
the anonymization process if the difference of the con-

tribution is equal or less than 1%.

7.3 Scalability

For all previous experiments, our methods take at most
20 seconds to complete. Out of the 20 seconds, approxi-

mately 8 seconds are spent on initializing network sock-
ets, reading data records from disk, and writing the
generalized data to disk. The actual costs for data gen-

eralization and network communication are relatively
low. In contrast, Jiang and Clifton [24] report that their
DkA method takes approximately 12.53 days to finish

the anonymization process on an Intel Xeon 3 GHz pro-
cessor with 1 GB RAM on a smaller Adult [42] data set
with |T | = 30, 162 for k = 50. Thus, our method signif-

icantly outperforms DkA in terms of efficiency.
Our other contribution is the scalability of handling

large data sets by maintaining count statistics instead

of scanning raw records. We evaluate this claim on an
enlarged version of the Adult data set. We combine the
training and testing sets, giving 45,222 records, and for

each original record r in the combined set, we create
α− 1 variations of r, where α > 1 is the blowup scale.
Each variation has random values on some randomly

selected attributes from ∪QIDj and inherits the values
of r on the remaining attributes. Together with original
records, the enlarged data set has α × 45, 222 records.

For a precise comparison, the runtime reported in this
section excludes the data loading time and result writ-
ing time with respect to disk, but includes the network

communication time.
Figure 12 depicts the runtime of Algorithm 1 (Al-

gorithm 2 achieves the same result) for 50K to 200K

data records based on two types of anonymity require-
ments. AllAttQID refers to the single QID having all
14 attributes. This is one of the most time consum-

ing settings because of the largest number of candi-
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dates to consider at each iteration. Moreover, the small

anonymity threshold of k = 50 requires more iterations,
and hence more runtime, to reach a solution than a
larger threshold does. In this case, our algorithm takes

approximately 340 seconds to transform 200K records.

MultiQID refers to the average over the 30 random
multi-QID anonymity requirements, generated as fol-
lows. For each requirement, we first determine the num-
ber of QIDs by uniformly and randomly drawing a num-

ber between 3 and 7, and the length of QIDs between
2 and 9. All QIDs in the same requirement have the
same length and same threshold k = 50. For each QID,

we randomly select attributes from the 14 attributes. A
repeating QID is discarded. For example, a requirement
of 3 QIDs and length 2 is {⟨{Ag, En}, k⟩, ⟨{Ag, Re}, k⟩,
⟨{Sx, Hw}, k⟩}.

Comparing to AllAttQID, the algorithm becomes less
efficient for MultiQID. There are two reasons. First, an
anonymity requirement on multi-QIDs is less restrictive

than the single QID anonymity requirement contain-
ing all attributes in the QIDs; therefore, the algorithm
has to perform more specializations before violating

the anonymity requirement. Moreover, a party needs
to create one QIDTree for each related QID and main-
tains a(qid) in QIDTrees. The time increase is roughly

by a factor proportional to the number of QIDs in an
anonymity requirement.

7.4 Summary

The experiments verified several claims about the anon-

ymization algorithms. First, data integration does lead
to improved data analysis. Second, the algorithms achieve
a broad range of anonymity requirements without sac-

rificing significantly the usefulness of data to classifi-
cation. The data quality of Algorithm 1 is identical
or comparable to the result produced by the single

party anonymization methods [17, 22]. On the other
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hand, Algorithm 2 provides the same data quality when

the parties have equal capability of contribution. Thus,
it ensures fair participation and thwarts malicious be-
haviour. Moreover, this study suggests that classifica-

tion analysis has a high tolerance towards data gener-
alization, thereby enabling data sharing across multiple
data providers even in a broad range of anonymity re-

quirements. Third, our algorithms are scalable for large
data sets and different single QID anonymity require-
ments. They provide a practical solution to secure data

integration where there is the dual need for information
sharing and privacy protection.

8 Discussion

In this section, we provide answers to the following fre-

quently raised questions: What changes do the algo-
rithms require to accommodate other privacy models?
How reasonable is it to assume that the parties hold a

mutually exclusive set of attributes? What is the effect
of specialization ordering on the information content of
the integrated data set? Is it possible for malicious par-

ties to collude to derive more information from others?
Can the algorithms be easily modified to use local gen-
eralization or multi-dimensional generalization?

Privacy Beyond k-Anonymity. k-anonymity is an
effective privacy model that prevents linking an individ-

ual to a record in a data table. However, if some sensi-
tive values occur very frequently within a qid group, the
attacker could still confidently infer the sensitive value

of an individual by the qid value. This type of homo-
geneity attack was studied in [36, 54]. The proposed
approach in this paper can be extended to incorpo-

rate with other privacy models, such as ℓ-diversity [36],
confidence bounding [54], and (α,k)-anon-ymity [56], to
thwart homogeneity attacks.

To adopt these privacy models, we need 2 changes.
First, the notion of valid specialization has to be rede-
fined depending on the privacy model. Our anonymiza-

tion algorithms guarantee that the identified solution
is local optimal if the privacy measure holds the (anti-
)monotonicity property with respect to specialization.

ℓ-diversity [36], confidence bounding [54], and (α,k)-
anonymity [56] hold such an (anti-)monotonicity prop-
erty. Second, to check the validity of a candidate, the

party holding the sensitive attributes has to first check
the distribution of sensitive values in a qid group before
actually performing the specialization. Suppose Party

B holds a sensitive attribute SB. Upon receiving a spe-
cialization instruction on value v from Party A, Party
B has to first verify whether or not specializing v would

violate the privacy requirement. If there is a violation,

Party B rejects the specialization request and both par-

ties have to redetermine the next candidate; otherwise,
the algorithm proceeds along the specialization as men-
tioned in Algorithms 1 and 2.

Mutually Exclusive Set of Attributes. Our se-
cure data integration algorithms require that parties
hold mutually exclusive set of attributes. We assume

that each party knows what attributes the other parties
hold. Therefore, if there is a common attribute among
the parties, there are two possible alternative solutions

that parties can adopt before executing the secure data
integration algorithms. First, if the attribute is com-
mon among all the parties then they can exclude the

common attributes from integration since parties al-
ready know the values of the attribute. Second, par-
ties can make an agreement that outlines who will con-
tribute the common attribute so that multiple parties

do not contribute the same attribute. Hence, common
attribute is not a problem since parties will communica-
tion and agree on a setting that ensures that attributes

are disjoint.

Effect of Specialization Ordering. Our proposed al-
gorithms do not yield an optimal solution cut rather it

is suboptimal. We take a greedy approach and choose an
attribute with highest Score in every iteration. Thus, it
is possible that a different solution cut may provide bet-

ter utility. However, it is important to note that maxi-
mizing the overall sum of the Score for specializations
in the training data does not guarantee having the low-

est classification error in the testing data.

Colluding Parties. Even if two or more malicious par-
ties collude, it is not possible to derive more information

from honest parties. Honest parties only participate and
contribute when all the other parties equally contribute.
Therefore, if a malicious party stops contributing when

it should, then all the honest parties will no longer par-
ticipate. However, other malicious parties may continue
to participate. In fact, this does not harm but helps the

honest parties.

Other Anonymization Techniques. Our algorithm
performs the anonymization process by determining a

good solution cut. The solution cut is obtained through
specializing an attribute in every iteration based on its
Score value. In order to adopt local/multi-dimensional

generalization, we need to modify the definition of cut
and redesign the Score function. Thus, these anonymiza-
tion techniques cannot be implemented directly by our

present algorithm.
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Though local and multi-dimensional generalization

cause less data distortion, these techniques have a num-
ber of limitations. Local and multi-dimensional gener-
alization allow a value v to be independently gener-

alized into different values. Mining classification rules
from local/multi-dimensional recoded data may result
in ambiguous classification rules, e.g., White-collar →
Class A and Lawyer → Class B [18]. Furthermore, lo-
cal and multi-dimensional recoded data cannot be di-
rectly analyzed by the off-the-shelf data analysis soft-

wares (e.g., SPSS, Stata) due to the complex relation-
ships among qid values [58].

9 Related Work

Data privacy and security has been an active area of

research in statistics, database, and security communi-
ties for the last three decades [1, 18]. In this section, we
briefly present various research works that are related

to our problem of secure data integration.

9.1 Privacy-Preserving Techniques

Privacy-preserving techniques can be broadly classified

into two frameworks: interactive and non-interactive.
In interactive framework, users pose aggregate queries
through a private mechanism and the data holder out-

puts macro-data (e.g., SUM, COUNT) in response. The
proposed approaches can be roughly divided into two
categories: restriction-based techniques and perturbation-

based techniques. Restriction-based techniques ensure
privacy by putting restriction on the query [10, 51, 7,
16, 19, 37]. In the response to a query, the system de-

termines whether or not the answer can be safely deliv-
ered without inference and thus controls the amount of
information to be released. In perturbation-based ap-

proach, the system first computes the correct result
and outputs a perturbed version of the result by adding
noise [6, 11, 15]. All these works prohibit data publish-

ing, which is the basic requirement of our problem. In
non-interactive framework, the data provider publishes
an anonymous/sanitized version of the data satisfying

a privacy model. The privacy mechanism of this paper
is based on non-interactive framework.

Different privacy models have been proposed to pre-

vent an adversary from linking an individual with a
sensitive attribute. Traditional k-anonymity [47, 50], ℓ-
diversity [36], and confidence bounding [54] are based

on a predefined set of QID attributes. (α, k)-anonymity
[56] requires every qid group to satisfy both k-anonymity
and confidence bounding. t-closeness [34] requires the

distribution of a sensitive attribute in any group to be

close to the distribution of the attribute in the overall

table. Xiao and Tao [57] propose the notion of person-
alized privacy to allow each record owner to specify her
own privacy level. This model assumes that a sensitive

attribute has a taxonomy tree and each record owner
specifies a guarding node in the taxonomy tree. Dwork
[14] proposes a privacy model called differential privacy,

which ensures that the removal or addition of a single
record does not significantly affect the overall privacy of
the database. Differential privacy provides strong pri-

vacy guarantee compared to traditional privacy models.
However, it limits the data utility. Perturbation-based
techniques achieve differential privacy by adding noises.

Perturbed data are useful at the aggregated level (such
as average or sum), but not at the record level. Data
recipients can no longer interpret the semantics of each

individual record. Therefore, perturbation-based tech-
niques do not satisfy the requirement of our data inte-
gration application for the financial industry.

9.2 Privacy-Preserving Distributed Data Mining

In privacy-preserving distributed data mining, multi-
ple data providers want to compute a function based
on their inputs without sharing their data with others.

For example, multiple hospitals may want to build a
data mining model (e.g. classifier for predicting disease
based on patients’ history) without sharing their data

with one another. The usual assumption is that the data
providers are semi-honest where they follow the proto-
col but may try to deduce additional information from

the received messages. A number of works also propose
secure protocols for malicious adversary model [25, 27,
29]. Kantarcioglu and Kardes [27] propose the malicious

versions of the commonly used semi-honest protocols
such as equality, dot product, and full domain set opera-
tions. Jiang et al [25] propose an accountable computing

(AC) framework that enables other parties to identify
the adversary by verification. Extensive research has
been conducted to design secure protocols for different

data mining tasks, such as secure multiparty computa-
tion (SMC) of classifiers [13, 12, 59], association rules
mining [52], clustering [53], and ID3 decision tree [35].

Refer to [8, 45] for surveys on privacy-preserving dis-
tributed data mining.

Techniques based on SMC provide strong privacy

guarantee and prevent any disclosure of sensitive infor-
mation. But, these methods are known to be very ex-
pensive in terms of computation cost and sometimes im-

practical in real-life scenarios. Moreover, comparing to
data mining results sharing, data sharing offers greater
flexibility to the data recipients to apply their own clas-

sifiers and parameters.
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9.3 Game Theory and Information Sharing

Recently, a body of research models the problem of
information sharing as a game and employs incentive

mechanisms to deter malicious behavior [2, 28, 30, 31,
32, 61]. Kleinberg et al [31] consider different information-
exchange scenarios and use solution concepts from coali-

tion games to quantify the value of each user’s partici-
pation. Zhang and Zhao [61] address the problem of se-
cure intersection computation and use non-cooperative

games to determine an optimal countermeasure, where
the defendant changes its input database to protect
its private information from an adversary. Kantarcioglu

et al [28] define a game between the adversary and the
data miner in the context of intrusion detection system.
They present a technique to find the equilibrium point

of the game so that the data miner can construct an
effective classifier. Agrawal and Terzi [2] model infor-
mation sharing as a game and propose an auditing de-

vice that checks the behavior of the participants. They
use game theory to determine the lower bound on the
auditing frequency that assures honestly.

The work closest to ours is by Layfield et al [32].
They model information sharing among different orga-
nizations as a game, where organizations may provide

false information. They adopt evolutionary game theo-
retic framework and study the behavior of the agents
(organizations). One fundamental difference with our

approach is that they assume that information is ver-
ifiable. If an organization provides false information,
then the other organizations can detect it given some

additional verification cost. However, such verification
is not possible in our application scenario. Moreover,
all the proposed game-theoretic models do not address

the problems of secure data integration, which is the
primary contribution of this paper.

9.4 Privacy-Preserving Distributed Data Integration

Many techniques have been proposed for data integra-
tion in database research [9, 55]. This literature typ-
ically assumes that all information in each database

can be freely shared without considering the privacy
concerns discussed in this paper. To minimize the in-
formation shared with other parties, Agrawal et al. [3]

propose the principle of minimal information sharing
for computing queries spanning private databases. Inan
et al [20, 21] address the problem of private record link-

age, where given two input data tables, the mechanism
identifies similar records that represent the same real-
world entity. Though closely related, these works do not

address the problem of secure data integration.

Jurczyk and Xiong [26] propose an algorithm to

securely integrate horizontally partitioned data from
multiple data providers without disclosing data from
one party to another. Mohammed et al [40] propose

a distributed algorithm to integrate horizontally par-
titioned high-dimensional health care data. Unlike the
distributed anonymization problem for vertically par-

titioned data studied in this paper, all these meth-
ods [26, 40] propose a distributed algorithm for hori-
zontally partitioned data.

Jiang and Clifton [23] propose a method to integrate
vertically partitioned data by maintaining k-anonymity
among the participating parties. However, this approach

does not fulfill the security requirements of a semi-
honest adversary model. To satisfy this requirement,
Jiang and Clifton [24] propose DkA (Distributed k-

Anonymity) framework to securely integrate two dis-
tributed data tables satisfying k-anonymity requirement.
To the best of our knowledge, Jiang and Clifton’s works

are the only ones that generate a k-anonymous table in
a distributed setting for vertically partitioned data. Our
proposed algorithms, as discussed already, outperforms
DkA framework in terms of algorithmic complexity and

scalability for handling large data sets.
This paper is the extension of our previous work [39],

where we proposed an anonymization algorithm for ver-

tically partitioned data from multiple semi-honest data
providers. In this paper, we propose an additional algo-
rithm to integrate data with the consideration of mali-

cious parties. We show that a party may deviate from
the proposed protocol of [39] for its own benefit. To
overcome the malicious problem, we propose a game-

theoretic solution by combining incentive compatible
strategies with our anonymization algorithm.

10 Conclusions and Lesson Learned

We solved a privacy-preserving data sharing problem
for financial institutions in Sweden, and generalized their
privacy and information requirements to the problem of

secure data integration for the purpose of joint classifi-
cation analysis. We formalized this problem as achiev-
ing the k-anonymity on the integrated data without

revealing more detailed information in the process. We
presented two solutions based on two different adver-
sary models and evaluated the benefits of data integra-

tion and the impacts of generalization. Our algorithms:
(1) are scalable to large data sets, (2) can handle multi-
party scenario, (3) address both semi-honest and mali-

cious adversary model. Compared to classic secure mul-
tiparty computation, a unique feature is to allow data
sharing instead of only result sharing. This feature is es-

pecially important for data analysis where the process
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is not performing an input/output black-box mapping

and user interaction and knowledge about the data of-
ten lead to superior results. Being able to share data
would permit such exploratory data analysis and ex-

planation of results.

We would like to share our experience in collabo-
ration with the financial sector. In general, they prefer
simple privacy requirements. Despite some criticisms

on k-anonymity [36, 54], the financial sector (and prob-
ably some other sectors) finds that k-anonymity is an
ideal privacy requirement due to its intuitiveness. Their

primary concern is whether they can still effectively
perform the task of data analysis on the anonymous
data. Therefore, solutions that solely satisfy some pri-

vacy requirement are insufficient for them. They de-
mand anonymization methods that can preserve infor-
mation for various data analysis tasks.
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