INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

CINDI: THE VIRTUAL LIBRARY GRAPHICAL USER
INTERFACE

YOUQUAN ZHOU

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
ForR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoNcoOrDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 1997
© YOUQUAN ZHOU, 1997

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
setvices bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre rélérence
The aqthor_ has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
repr.oduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’ auteur conserve la propriété du

cop)-rright in this thesis. Neither the droit d’auteur qui protege cette theése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimes
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-40223-1

Abstract

CINDI: The Virtual Library Graphical User Interface

Youquan Zhou

The search for information on the Internet is often not an easy job for many Internet
users. Because of the lack of a standard indexing scheme and an informative query
interface, a Net search could have thousands of hits returned and the number of search
misses is high. This thesis is part of the work to develop an Indexing and Search-
ing System for the Internet called the CINDI (Concordia INdexing and DIscovery)
system. It is aimed at providing a standard index scheme called Semantic-Header
and informative query interface for users and providers of resources published on the

Internet.

This thesis presents the architectural design of the CINDI system, the design and
implementation of the client part of the expert system. and the design and implemen-
tation of the graphical user interface (GUI) for the CINDI system. As the interface
is an important part for the quality of a software, it has been carefully designed and
implemented in an effort to be easy to use, user friendly, and consistent. The inter-
face has been implemented under the UNIX system using the Motif toolkit and C

programming language.

The heart of the indexing system is the record called Semantic-Header that is
kept for each item being indexed. The grammar of the Semantic-Header and that of
the search query are also discussed in this thesis. An interface between the CINDI

system and Netscape Navigator is also implemented.

Finally. some directions for future work related to CINDI are described.

11l

Acknowledgments

First and foremost, I would like to express Imy sincere gratitude to my supervisor, Dr.
Desai for active discussions and valuable suggestions. This work would not have been
possible without his conceptional design of the semantic header, enthusiastic support

and consistent guidance.

I would like to sincere thanks to Dr. Shinghal, R. and Dr. P.G. Chander. for

their guidance in the design and implementation of the expert system.

I would also like to thank Rajabien Shayan Nader who, as part of the CINDI
project, suggested many ideas to me during the valuable discussions between us. His

amicable personality also made the project more enjoyable.

I would like to express my thanks to Yves Saintillan. In the early stages of the
project, we had many discussions which helped to shape the specification and archi-

tecture of the system.

Finally, I would like to dedicate this work to my wife, Yijuan Liu, my daughters,

Baiyin and Emily, for their support, great patience, and encouragement.

v

Contents

Introduction

1.1 Overview of the Virtual Library
1.1.1 Thelnterneto
1.1.2 The World-Wide Web (WWW)

1.2 The CINDISystem it ..
1.2.1 Introduction e e
1.2.2 CINDI: The Project

1.3 Organization of the Thesis

System Architecture of the CINDI System

2.1 Graphical User Interface
2.1.1 GUI Design Principle
2.1.2 Overviewof X-Motif,

2.1.21 WhatisMotif 7. oL
2.1.2.2 Advantages of using Motif
2.1.2.3 Basic Steps of Motif Programming

2.2 The Client-Server Concept v v v ...

2.3 Useof an Expert System

2.4 The Database Systems

2.5 SystemDesign. L e

Indexing/Registering Sub—system

3.1 Semantic-Header
3.1.1 Semantic Header Structure
3.1.2 An Semantic-Header Example
3.1.3 SemanticRules oL,

He QO

o oo Ot WL

—_—

3.2 Subject Entry: Modelling the Expertise of a Librarian.

3.2.1 Context SensitiveHelp
3.2.2 Implementation of the Expert System
3.3 OtherPartsofthe GUL, .
3.3.1 Pulldown Menus
3.3.2 Functionalities of the Menu Bar
3.3.3 Repeatable Entry Fields
3.3.4 Functionalities of ActionBars

Search Sub-system

4.1 Search Query Structureo
4.1.1 Query Structure
4.1.2 Description of the Structure
413 AnExample. o000

4.2 Expert Assistance for Searching o000
4.2.1 Subject Entry Lo oo
4.22 VagueSearch Entry
4.2.3 Query Entry for Repeatable Fields
4.2.4 Infix Query Expression
4.2.5 Validation of the Search Query

4.3 Viewing the Semantic-Header
4.3.1 Overview e e e e e e
4.3.2 Action Buttons of Displaying Windows
4.3.3 Viewing the Actual Resource

Annotation Sub—system

3.1 Overview. L. e e e e e e e
5.1.1 Semantic~-Header Name
5.1.2 Annotator’s Information

5.2 Functionalities of Action Buttons,
5.2.1 Loading a Semantic-Header
5.2.2 Register the Annotation,

vi

A Y Ut v Wy
[SV N R S R an B s

6 Summary and Future Work 112

6.1 Summary e e e e e e e e e e e e e e e e e e 112
6.2 Contribution of this Thesis to CINDI 113
6.3 Future Worko Lo 114
6.3.1 Implementing the Fuzzy Search 114

6.3.2 Extension of the Search Query 114

6.3.3 Internationalizing the Application 115
6.3.4 Speeding up the Semantic-Header entry process 115
6.3.5 Extension of Subject look-up 115
6.3.6 Buildingthe SHDDB, 116
6.3.7 Enhancing the On-lineHelp 116
Bibliography 118

vii

List of Figures

> W N =

-1 O O

O o

11
12
13
14

16
17
18
19

D NN NN
= W N~ O

o
(]}

General structure of the CINDIsystem
Architecture of the CINDI system
Architecture of the Registering sub-system
Architecture of the Search sub~system
Architecture of the Annotation sub-system
Semantic-Header Entry Interface: Overall Design
Error message for out of sequence lookup
Subject look—up: No entry found
Subject look-up: General
Subject look—up: Sub-levell
Subject look—up: Sub-level2
Search by Substring: Error message-1
Search by Substring: Error message-2
Example of sub-string look-up: search string ‘com’
Example of sub-string look—up: display General level
Example of sub-string look-up: display Sub-levell
Example of sub-string look—up: display Sub-level2

Semantic-Header Entry Interface: Page 1

Error message: validate current entry
Error message: validate current entry
An error message popup for register

Information message: Register wasdone

viii

27
28

30
31
32
33
34
35
36
37
38
39
40
41

43

Error message: Cannot change SHN 73

Error message: Mismatch UserID/Password pair 74
Error message: Cannot delete SH 75
Search Interface: Design L. 78
Search Interface: Screen dump 87
Error message: Search query checking-1 94
Error message: Search query checking-2 95
Error message: Search query checking-2 96
Search result popup: a listof titles 97
Display SH interface: Overalldesign 100
Viewing a Semantic-Header: Page 1. 101
Viewing a Semantic-Header: Page 2 102
Viewing a Semantic-Header: Page 3. 103
Access actual resource: An Example 106
Graphical User Interface: Annotation 108
Annotation error checking popupl L. L. 110
Annotation error checking popup2 L. 111

ix

Chapter 1

Introduction

1.1 Overview of the Virtual Library

Virtual Library

A virtual library [LS93] can be defined as the concept of remote access
to the contents and services of libraries and other information resources,
combining an on-site collection of current and heavily used materials in
both print and electronic form, with an electronic network which provides
access to, and delivery from, external worldwide library and commercial
information and knowledge sources. In essence, the user is provided the
effect of a library which is a synergy created by bringing together techno-

logically the resources of many many libraries and information services.

An increasing number of research institutes, universities and business organiza-
tions are currently providing their reports, articles, catalogs and other information
resources on the Internet in general and the World Wide Web, which can be consid-

ered as a virtual library.

Hypertext

Hypertext [Nie95] provides a non-sequential method for reading a docu-
ment displayed on a computer screen. Instead of reading a document in
sequence from beginning to end, the reader can jump to topics by selecting

a highlighted word or phase (called an anchor). This activates a link to

another place in the same document, or to another document altogether.
The resulting matrix of links within and among documents is termed a

Web.

Multimedia

In a computer system or a computer network, the term “ multimedia”™
signifies presentation of information by means of more than one medium
at a time (including, for example, graphics. video clips, and animations

sound in addition to text).

Hyper-media

When a hypertext system incorporates multimedia resources, it is called
a hyper-media. Hyper-media extends hypertext in two ways. First, it
incorporates multimedia documents into hypertext documents. Second, it
allows graphic, audio, and video elements — rather than just text elements

— to become links to other documents or multimedia elements.

Hypertext Markup Language (HTML)

HTML [Web96] is a variant of the Standard Generalised Markup Language
(SGML). It is a language used to describe hypertext documents. It is a
standard for formatting documents so that. when accessed by Mosaic or
any other HT'ML-capable editor, they look good on-screen. It effectively
defines what Web documents may look like and how Web resources can

present themselves.

Universal Resource Locators (URL)

A URL is a statement, written according to strict rules of syntax, that
specifies where a Web resource can be found.A URL is the address of any
multimedia resource on the WWW. A URL can point to an HTML file,

a GIF image, an MPEG movie, an AU sound file, and so on.

N

1.1.1 The Internet

The Internet can be described as the federation of interconnected digital networks
(LANs and WANSs) that communicate through the TCP/IP protocol [Car93]. The
Internet is a vast telecommunication network of networks involving millions of com-

puters worldwide.

The Internet began as a federally funded research network {Lan93]. In 1969, the
Department of Defence’s Advanced Research Projects Agency (DARPA) funded the
establishment of a packet switching network. the ARPANET. In its beginning as the
ARPANET, the Internet was conceived primarily as a means of remote login and ex-
perimentation with data communication protocols. However, the predominant usage
quickly became electronic mail (E-Mail) in order to support collaboration. This trend
continues into the present incarnation of the Internet, but with increasingly diverse
support for collaborative data-sharing. E-mail has been supplemented by a variety
of wide-area filing, information retrieval, publishing, and library access systems. At
present. the Internet provides access to hundreds of gigabytes of software. documents,
sounds. images, and other file system data; library catalog and user directory data;
weather, geography, telemetry, and other physical science data; and many other types
of information. This information can be either private or public. Private information
is available for authorised users, who have a particular status or have paid a fee.
Public information is available to any user of the Internet without any charge. In
1993 the Internet was chosen The Landmark Technology of the Year by InfoWorld.
And the Internat Society has declared 1993 as “The Year the Internet Happened”
[Mas94]. Its growth continues at an exponential rate or higher. Whereas Internet
users historically had been mostly researchers and university students, there are now
a larger number of commercial than educational sites. Protocols and services for this

network enable new forms of information sharing and communication.

Many people, however, found Internet services difficult to use, primarily because
of the awkward user interface. Until about 1990, the only way to share information
on the Internet was through FTP, E-mail, and Usenet. Later, the University of
Minnesota came up with a novel system named Gopher. This is a hierarchical menu

system in which people use Gopher client programs to connect to Gopher servers

running at many different sites throughout the Internet. It allowed organizations
to have more of a “presence” on the network than was previously possible. They
could make information available about themselves and include “pointers™ to other
related Gopher servers. Another feature of Gopher was that it provided access to
other Internet services such as FTP, Telnet, and index searching. Users no longer
had to deal with the awkward command line FTP client program. Transferring data

became easier than ever before.

1.1.2 The World-Wide Web (WWW)

Without question the most popular part of cyberspace at this time is the World-Wide
Web [BCL*94, Ber96], whose development began at CERN. the European Particle
Physics Laboratory in Geneva, as an information service on the Internet. Its initial
goal was to allow physists to share information. WWW is a concept, not a program
or a system, not even a specific protocol. It provides the technology needed to offer a
manageable, attractive interface to the Internet’s vast sea of resources. WWW brings
together two distinct ideas—that of hyper-media documents for non-sequential access
to multimedia information and that of GUI-based client programs capable of scouring
a world-wide network in search of information. Capable of linking dissimilar com-
puters worldwide into a hyper-media network, WWW permits any Internet user to

provide hypertext—based information and make it available to the WWW community.

The Web is a mix of the Internet’s client-server handshaking and communication
protocol. the HyperText Transfer Protocol (HTTP) [GF93], together with a protocol
for document formatting, the HyperText Markup Language (HTML) [Web96]. The
World-Wide Web is characterized by the following properties:

e The address system: Use of a Unique Resource Locator (URL) as a common

addressing syntax.

e A Network protocol: Use of the HTTP protocol to transfer information and
requests between computers. This is the native WWW server’s protocol. The
World-Wide Web browser can also get information from FTP Archives or WAIS

servers [Koc95].

e A markup language (HTML): Every World-Wide Web client browser is required
to understand HTML.

The flashy NCSA Mosaic graphical WWW browser captured a lot of attention
in 1993 and 1994. Since then, Netscape Navigator, a commercial version WWW

browser, has become the most popular one.

1.2 The CINDI System

1.2.1 Introduction

The vast amount of information available today on the Internet has a great poten-
tial to improve the quality of life. Currently available information sources include a

growing number of digital libraries.

To make effective use of the wealth of information on the Internet, users need ways
to locate pertinent information. In the past few years. many such search systems have
been developed and some of them have gained wide acceptance on the Internet. These
include AltaVista, Yahoo, WebCrawler, Lycos, Harvest, EINet Galaxy, Veronica etc.
Some of these are manually generated indices while others are generated by robots
[Kosb]. Some of these robot-based systems also allow manual index entry. Moreover,
some of these are specialized for the WWW, while others are designed to locate files
on Anonymous FTP sites. The search interface of these systems provides users little
flexibility and the search results are not always pertinent. As an example, a test was
conducted in June 1995 on some of the existing search systems [Des93d]. Table 1
summarizes the test results of some of the existing search systems using the keywords
Bipin (AND) Desai.

There were 24 URLs containing Bipin (and) Desai on the WWW at the time the

test was taken. The terminology used in the table is as follows:

e Search System: The search system used to conduct the test.
e Number of Hits: The number of document containing Bipin (and) Desat found.

e Number of Duplicates: The number of times the same document was retrieved

more than once.

ut

o Number of Mis-hits: The number of irrelevant documents found.

e Number of Missed: The number of documents not found even through they
exist on the WWW.

Search Number of | Number of | Number of | Number of

System Hits Duplicates | Mis-hits | [tems missed
Aliweb none - - 24
DA-CLOD none - - 24
EINet 6 0 4 18
GNA Meta Lib. none - - 24
Harvest none - - 24
InfoSeek 7 0 0 17
Lycos 231 2 222 17
Nikos none - - 24
RBSE 8 - 3 24
W3 Catalog none - - 24
WebCrawler 7 3 0 20
WWWW 2 0 0 22
Yahoo none - - 24

-

Table 1: Sample Search Statistics for searching on Bipin (AND) Desai

The table shows that none of these systems was always successful in retrieving the
documents sought. Even systems such as Lycos [Mau93], which was known to have
indexed over four million documents at the time this test was conducted had only
partial success in locating all relevant documents. The reason for these unexpected
results is that many of these systems attempt to match the specified search terms
without regard for the context in which the words appear in the target information

resource.

It should be noted that some of these systems are no longer accessible and newer

systems have since been introduced. If these tests were conducted today, the tar-

get items would most likely have been found by using web-robots. However, they

would be hard to locate among the total number of entries found, since the number

of duplicates and the number of mis—hits would be in the hundreds or even thousands.

Some of the drawbacks in the existing search systems are listed below:

Heterogeneous: Different virtual libraries may describe the same document in

different ways.

Not easy to use for new users: A new user may navigate a long time through

the menus if he does not know how to express his query perfectly.

Documents are usually referenced by words and random phrases instead of by

title, author, subject etc.

Many systems do not have exact information about the content of a document
or file. A user often has to retrieve the pertinent source document/file and

browse it before deciding if a specific file is pertinent.

It is often difficult to find relevant information. To address this problem, many
people have built indexing systems (such as WWW robots), but most of these
systems place significant unnecessary load on information servers and network
links, because they use expensive object retrieval protocols to gather indexing
information, and they do not coordinate information gathering among each
other. Each indexer gathers all of the information it needs, without trying to

share overlapping information with other indexers.

Most systems offer little support for customising how they handle different

information formats and index/search schemes.

Creating indices based on search robots, worms. spiders, or crawlers have the following
disadvantages [DS96]:

Repeated attempts by robots to find new resources increases the traffic on the
network. The number of these robots is increasing, and system administrators

may disallow visits by robots.

e A robot-based approach will become difficult to justify if the network switches

to a fee—for-use mode of operation [Bro93].

e The type of data gathered by a robot is not useful because it is too simple to
support discovery. This is the case in spite of the fact that such indices, for the

lack of a better tool, have been useful to date.

e Natural language understanding systems are not advanced enough to extract

meaning from a resource.

e It is more difficult to generate automatic identification of features and concepts

from resources such as program code, digital images and complex systems.

e Automatic indexing tends towards the simplistic approach and supporting dis-

covery or even finding required information will become increasingly non—-manageable.

This trend for existing systems to exhibit poor selectivity is illustrated above.

1.2.2 CINDI: The Project

The search for informations on the Internet is often not an easy job for many In-
ternet users. Because of the lack of a standard index scheme and an informative
query interface, a Net search could have thousands of hits returned and the number
of search misses is high. According to the sixth World-Wide Web survey [Too96], the
number one problem that Web users face is “speed” (76.55%), The next big problems
are "finding known info” (34.09%), and organizing collected information (31.03%). If
documents are not catalogued properly, then during a search, one may not be able
to retrieve the resource sought even though it exists in the virtual library. Proper
cataloging thus becomes essential. Employing professional cataloguers will be too
time consuming and costly. A better approach is to provide a system that helps the

contributors catalog their own documents.

In the library domain, there are some systems that address the issue of cataloging.
CORE [Cro94], MARC [Byr91], MLC [Hor86], and TEL [Gay94] are examples of this
approach. These existing and proposed indexing systems range from minimum to full
level of bibliographic information. However, such systems are designed for profes-

sional cataloguers, and many of the elements included in them are beyond the level

of familiarity of most providers or use of information.

Metadata

Metadata is the information which records the characteristics and relationships of
the source data. It helps provide succinct information about the source data which

may not be recorded in the source itself due to its nature or an oversight [Des90].

The Metadata Invitational Workshop was held from in March, 1995 in Dublin,
OH [Des93b]. The participants were actively involved in various aspects of the Digital
or Virtual Library project, primarily in North America. The intent of the meeting
was to try to work towards the definition of a minimum common set of elements for a
network object. The main objective was to address the problem of cataloging network
resources with the adoption, extension, or modification of the current standards and

protocols in order to facilitate their discovery and access.

The goals of the workshop were: to achieve a consensus on a set of core data
elements for document—like objects(DLO); to map these and related elements to
accepted standards; and to devise an extension scheme for registering other types of
network objects. The elements proposed are subject, title, author, other—agent, pub-
lisher, date, identifier, object-type, form, relation, language, source, and coverage.

Detailed discussion of these elements can be found in [DS96].

The problem with current automatically generated index databases is their inad-
equate semantic information. Yet, it is evident that professional cataloging of the
ever—growing information resources would be prohibitively expensive. Thus the de-
sign of adequate metadata to describe and establish the semantic content of resources
and to establish their semantic dependencies on other resources is of utmost impor-
tance. This, along with a registering system, would establish a basis for later search

and discovery.

Metadata has become an intensely debated issue in the Internet community, and
many have come to the conclusion that the concept of a catalogued-based approach

would be the most appropriate paradigm. Metadata is seen to provide a template for

9

describing information about a resource in order to facilitate later discovery.

The Project

The CINDI (Concordia INdexing and DIscovery System) project is a system pro-
posed by Desai et al [DS94]. The objective of the project is to build a system that
enables any resource provider to catalog his/her own resource and any user to search
for hypermedia documents using a typical search items such as Author, Title. Subject
etc. The system will offer a bibliographic database that provides information about
documents available on the Internet. A standardized index scheme will be used to
ensure homogeneity of the syntax and semantics of such an index. These index entries
are stored in a database system (Semantic Header Database System). In addition the
Catalog database will provide help when the user catalogs his/her index. The system
is based on a set of nodes connected to the Internet. each node contains a graphical
user interface (based on an expert system). The proposed system is characterized by

the following:

® A standardized metadata to describe each information resource — the Semantic—
Header [Des95c]

e A Semantic—Header registering system to register the Semantic-Header into the

Semantic Header Database System.

A search system that allow query entry for information discovery.

An annotation system.

o A Semantic Header Database that stores the Semantic-Headers.

A Catalog Database that stores information about subjects classified using a

standard cataloging scheme.

Using a set of graphical user interfaces. a user can register/update an index entry,
make annotations to any index entry, and execute search. Furthermore, a user may
select one of the entry from a search result to view the complete metadata. The
system will increase the metadata access counter by one. The user can also browse
the source resource using Netscape. In this case, the system will increase the asso-

ciate resource access counter by one to keep record of the total number of times the

10

assoclate resource has been accessed.

There are many advantages of the proposed system over existing systems:

e The Semantic-Header allows the indexation of documents accessible by any

protocol.

e The Semantic-Header includes annotations of reviewers and other users thus
offering the possibility of a more informed decision as to the pertinence of the

source resource.

e The Semantic-Header syntax offers a way to register standardised keywords cho-
sen by the provider of the resource. These make searching uniform. The existing
systems often hack terms from title and/or content resulting in unpredictable

results.

e The Semantic-Header is designed to be part of each resource. The HTML/SGML
[Nie95, Gol90] based syntax allows its display by appropriate browsers.

e The Semantic-Header has an “abstract” element which provides a better idea

of the resource than an excerpt prepared by systems such as Lycos.

e The distributed [Des90] nature of the Semantic-Header database provides for

scalability.

e In existing indexing systems, one of the limitations is the low number of indexed
documents. This is illustrated by the disappointing results for manual index
systems such as ALIWEB[Des95¢c| as illustrated in [Kosa]. The difficulty lies
in convincing people to register information regarding their resources. This
problem would be solved in the CINDI system by providing an easy-to—use
interface to register metadata of resources, thereby assuring the presence of

metadata in resources by browsers.

e Since the registration of the Semantic-Header in the database is performed by
the provider of the resource, it has the following advantages: cost, accuracy,

and efficiency.

11

1.3 Organization of the Thesis

This thesis describes the architecture of the CINDI system, and the design and im-
plementation of the Graphical User Interfaces, implementation of the client part of
the expert system, and implementation the interface between the CINDI System and

Netscape browser.

Chapter 2 presents the general idea of the CINDI System. The first section gives
an overview of graphical user interface design principles and an overview of X-~Motif.
which is the toolkit used to implement the interfaces. The client-server concept used
in our system is presented in section 2.2. The expert system is discussed in section
2.3. The semantic header database and the catalog database are briefly discussed in
section 2.4. Section 2.5 presents the system design the CINDI system and its main
components: the registering sub-system, the search sub-system. and the annotation

sub-system.

The details of the indexing/registering sub—system are presented in Chapter 3.
The index structure for our indexing system, the Semantic-Header, is given in sec-
tion 3.1. The semantic rules are also discussed in this section. The rules for the expert
system and implementation detail of the expert system for the indexing/registering

subsystem are presented in section 3.2. In section 3.3, details of the GUI are discussed.

Our search sub-system is presented in Chapter 4. The structure of the search
query is described in Section 4.1. In section 4.2, we discuss expert assistance for
searching, which incorporate the elementary expertise used by a reference librarian.
We also discuss the implementation details of the search sub—system in this section.
Section 4.3 is the implementation to view the indexed metadata and connecting to

Netscape browser.

The annotation sub-system is discussed in Chapter 5. An overview of this sub-

system is given in section 3.1. The implementation details are given in section 3.2.

A brief summary of the CINDI system, the contribution of this thesis to the CINDI

system, and some directions for future work are given in Chapter 6.

12

4

Chapter 2

System Architecture of the
CINDI System

2.1 Graphical User Interface

2.1.1 GUI Design Principle

A user interface is simply the interface between an application and the user of an
application. The primary goal of a user interface is to help the user interact with an
application simply and naturally. Successful user interface designers keep the user in

mind when designing an application.

User interface software is difficult and expensive to implement. Highly interactive
interfaces are among the hardest to create, since they must include at least two asyn-
chronous input devices (such as a mouse and keyboard), real-time feedback, multiple
windows, and elaborate, dynamic graphics. Most graphical interface are created using
toolkits such as X-Motif [JR93], Open Look [Dub96], and UIM/X [Blu96] etc..

Graphical user interfaces (GUIs) [BGBG95, Ped92, Thi90} have been used since
the late 1960s. However, it did not start to become popular until 1981, when Xerox
introduced the 8100Star workstation. The first truly commercial success of a GUI-
based system was the Macintosh. GUIs were soon developed for UNIX workstations
by Sun Micro systems and for PCs by Microsoft. By now, most computer users inter-

act through GUI GUIs are popular, because they make applications easier to learn

13

and use. By standardizing the way users interact with a program and input informa-
tion, errors are reduced. As a result. GUI applications not only are favoured by end
users, but also save companies both time and money by increasing productivity and

ensuring accuracy.

GUI design is a kind of art. A GUI developer must take the responsibility of using
interface elements effectively and helping the user be as productive as possible. The
designer must take care to keep things as simple as possible for beginner and. at the
same time, not restrict the more experienced user. This task is perhaps the most
difficult one facing the developer in application design. In order to design an effective
graphical user interface for an application, the designer must evaluate both the goals
of your particular application and your intended audience. Only with a complete
understanding of these issues will the designer be able to determine the best interface

to use.

Since errors are a fact of life, the designer have to design the interface to deal with
the possibility of error input, and guide the user accordingly in order to reduce error
input. The user interface must be easy to use, user friendly, and consistent. The

principles of good user interface design are as follows:

e Adopt the user’s perspective: Good design is rooted in an understanding
of the user’s work. A well-designed application solves a user’s problems, makes
his work easier, and offer him new capabilities. The two most effective ways
of understanding the user’s work are to involve users in the design and to be a

user oneself.

e Give the user control: Users want and need to be in control of the tools they
use to perform their work. The user can be in control when an application is

flexible and uses progressive disclosure.

e Use real-world Metaphors: A good user interface allows the user to transfer
skills from real-world experiences. For example, push buttons, and scales slides.

This makes it easier for the user to infer how to use an application.
e Keep the interface natural: Each screen object needs to have a distinct

14

appearance such that the user can easily recognize and quickly understand it. At
the same time, the style of the interface needs to graphically unify these elements

and ensure a consistent and attractive appearance at any screen resolution.

o Keep interfaces consistent: Similar components operate similarly and have

similar use. The same action should always have the same result.

e Communicate application action to the user: Effective applications let
the user know what is happening with the application, but without revealing
implementation details. Proper communication between the user and the ap-
plication increases user satisfaction. There are three types of communication:

provide feedback, anticipate errors, and provide warnings.

While designing our application, we follow the above principles. For example, we
adopt context-sensitive help and pull-down menu selection to make the user’s work
easier. We also offer users with flexibility. For example, the user can select an item
from a pull-down menu or enter a value through the keyboard. We also try to keep
our interface consistent. For example, all the repeatable entry blocks have Prev
and Next buttons and they have the same meaning in all blocks. We keep our user
interface to be use friendly by appropriate pop-up messages to interact and inform

the user.

2.1.2 Overview of X-Motif

Since X-Motif is the tool used to implement the Graphical User Interfaces for the
CINDI system, an overview of Motif is necessary.
2.1.2.1 What is Motif ?

Motif [JR93, HF94]was developed by the Open Software Foundation (OSF), an indus-
try consortium that includes Digital Equipment Corp., Hewlett-Packard, and IBM.

When someone refers to Motif, they can be referring to any one of the following:

e A look-and-feel Style Guide for applications, based on IBM’s Common User
Access (CUA) guidelines.

e A window manager, mwm, to help enforce the Style Guide.

15

e A User Interface Language (UIL) interpreter, which places much of the user

interface code into interpreted files.
e A toolkit (C library) for building Style Guide-compliant applications.

In this thesis, Motif refers to a toolkit. This toolkit is based on the Xt Intrinsics
[NO92], which provides an Object-Oriented Framework for creating reusable, config-
urable user-interface components called widgets, supporting a convenient interface
for creating and manipulating X windows, colormaps, events, and other cosmetic
attributes of the display. Motif allows the developer to create applications with a
graphical user interface that can run on a wide variety of computer platforms, includ-
ing those from Sun Micro systems, Hewlett-Packard, IBM, Silicon Graphics, DEC,
and a slew of clone vendors who support UNIX on the 386/486/586/Pentium archi-

tectures.

A widget is a generic abstraction for user interface components in the Motif toolkit.
Widgets are objects that operate independently of applications. They know how to
draw themselves and how to respond to certain events. Widgets are used for scroll
bars, push buttons, dialogs boxes and just about everything else in the toolkit. Most
widgets have an associated window on the X display that holds the user interface
elements of the widget. This allows Motif programs to create a great many windows

on the X server.

Each widget has a C data structure that is dynamically allocated via malloc at
creation time. This structure, which is supposed to be treated as an opaque data
type, contains the widget’s data attributes, called resources, and pointers to the wid-
get’s functions, such as callbacks. Each widget is of a certain class, and the class also

defines a set of functions and resources that apply to every widget of that class.

Some widgets display graphics on the screen. Others serve as container widgets

that group other widgets, which are called child widgets.

Xt and Motif follow the Object-Oriented approach, wherein the application pro-
gram is completely insulated from the code inside the widgets. There is a whole

hierarchy of widget classes. For example, the XmLabel class inherits features of all

16

ancestor classes. In this case, the label widget inherits from the Core and XmPrim-
itive class. Other classes, like XmPushButton, inherit in turn from the XmLabel
widget class. A programmer has access to functions that create, manage, and destroy
widgets, in addition to certain public widget variables known as resources. Normally,
though, the developer is not concerned about which widgets inherit from which. What
is really needed is a list of a widget’s resources, including the resources inherited from
ancestor widgets. These resources lists in the official OSF/Motif Programmer’s Ref-
erence Manual [FB93]. If the application programmer wishes to keep the user from

modifying resources, the resource values of a widget may be set at creation time.

The Motif toolkit sits on top of the Xt Intrinsics library, which means that Motif
uses many of the Xt features and functions. Motif does, however, have a set of
functions of its own, and Motif has its own widget set with its own look and feel. The
Xt Intrinsics provide a basic mechanism for many widget sets that do not provide
look and feel. For more information about Xt Intrinsics and Motif. the reader may
refer to [JR93. HF94, FB93, NO92]
2.1.2.2 Advantages of using Motif
There are a number of advantages in using Motif:

e Motif is one of the major interface standards in the UNIX world.

o Motif was adopted as part of the Common Open Software Environment, or
COSE, led by IBM, Hewlett-Packard, Sun, SCO, and UNIX System Laborato-

ries.

e Speeds up programming: Motif allows programmers to build Graphical User

Interfaces for their applications with little effort.
e Motif provides 3D effects.

e Motif fits in reasonably well with X standards through the use of window man-

agers and resource files.
e Program interfaces are more consistent across applications.

e People find Motif applications easier to learn and use.

17

2.1.2.3 Basic Steps of Motif Programming

Motif programs usually follow five basic development steps:

1. Initialize the Xt Intrinsics (which also sets up the connection to the X server)

with XtApplnitialize

SV

Create the widgets
3. Set up any required callback functions
4. Realize the widget hierarchy with XtRealizeWidget

5. Enter the event-handling loop

Initialize the Xt Intrinsics

The first step in any Motif program is to initialize the Xt Intrinsics.

Widget XtApplnitialize(
XtAppContext™ appcontext,
String app-class_name,
XrmOptionDesclist xrm_options,
Cardinal number_xrm options.
int ~argc,

String™ argv,
String™ fallback resources,
ArglList args,

Cardinal number_args)

The application context is set up by XtApplnitialize. The developer uses the ap-
plication context, appcontext, in the call to XtAppMainLoop. The application-class
name specifies a name used for looking up X resource values. For most of the param-
eters, the developer can safely pass NULL or zero. That’s because XtApplnitialize

offers many more options than most Motif programs need.

18

Create the Widgets

There are two primary ways to create Motif widgets. One is to use the Xt-provided
functions XtCreateWidget. Another is to use Motif-provided functions, one for each
widget type. For menus, dialog boxes, scrolled-text and other combination widgets,
it is better to use Motif-provided functions to create them, because there is often a

complex hidden code for each of them.

Here is an example that illustrates the creation of a widget using Motif-provided

function:

XmCreatePushButton creates a push button widget. All Motif XmCreate type
functions take the same set of parameters:
Widget XmCreatePushButton(Widget parent,
char™ widget_name,
ArgList args,

cardinal num_args)

The parameter parent widget (all widgets, except for top-level widgets, must have
a parent), controls the size and location of the child widget created by XmCreate-
PushButton. widget_name, is the name of the push button to be created. This name
1s important for resource—setting commands. The args and num_args parameters are

the list of hard-coded resource values the developer want to set for the widget.

The XmCreate... functions create, but do not manage, widgets. Therefore, the
developer must later call XtManageChild. An unmanaged widget does not appear in
a window on the screen. When a widget is managed, the widget is then placed under
control of its parent. Usually managed widgets are visible, but sometimes the parent
sets the size and location of a managed widget to something that can not be seen.
In addition, if the parent widget isn’t managed, then the child widget also will not
be visible-even if the child widget is managed. This is very useful for working with

dialog windows.

19

Callback Functions

Xt and Motif intercept and handle most X events, freeing program code from this
responsibility. If the developer wish to be notified of an event, he/she can set up an
event-handling callback function to handle an event. Motif makes extensive use of
these callback functions to notify the application code when a high-level event occurs.

The Xt function XtAddCallback registers a function as a callback for a widget:

void XtAddCallback(Widget widget,
String which _callback,
XtCallbackProc callback_function,
XtPointer client_data)

The client_data is a pointer to an extra data that to be passed to the callback

function.

All basic callback functions set up with XtAddCallback take the same parameters.
The first one is the widget ID of the widget the callback was set up on. The second
one is a pointer (normally XtPointer) to the data called client data. This data was
originally passed to XtAddCallback. The third one is a pointer to a Motif structure

that includes specific information about the callback.

The client_data is application data. whereas call_data comes from Motif and Xt
toolkit. Many callbacks provide a specialized structure with information useful to
user application functions. Those structures are always in the call.data parameter.
Any data that passed from XtAddCallback is passed as the client_.data parameter.
The easiest and most common mistake with callback functions is to reverse client_data
and call_data. If the callback doesn’t seem to work properly, always check that the
parameters are correct. This is a really easy error to make, and even easier error to

correct.

Realize the Widget

After setting up all the widgets and managing them, it is time to make them visible

on the screen. XtRealizeWidget takes care of all the initializations necessary for a

20

widget and all its managed children. XtRealizeWidget takes one parameter, a high-

level widget to be realized. Normally, this is the widget returned from XtApplnitialize:

void XtRealizeWidget(Widget parent)

XtAppMainLoop

XtAppMainLoop executes the main event-handling loop of the Motif application.
This function executes forever, so there must be at least one callback function that

will exit the program.

Looping forever allows the Xt Intrinsics to handle most of the work of an X appli-
cation. With XtAppMainLoop, the Xt Intrinsics essentially take over the application.
When an input event arrives, Xt AppMainLoop determines which widget in the appli-
cation should get the event and then passes the event on to the widget. The widget,
then, determines whether to execute a callback function or to handle the event on its

own.

2.2 The Client—Server Concept

Client/server [Cho94] computing refers to the method of distributing computer appli-
cations across many platforms. Typically, applications are divided between a server
providing access to a central data repository and numerous clients containing graph-
ical user interfaces (GUI’s) that permit access to and manipulation of the data. The
client application sends a request across the network for data or the use of a resource.
The server application sits idle, waiting to service incoming requests from clients.
When the server receives a request, it performs the necessary action. One server
application can support numerous clients, giving each client access to all of the ap-

plication data.

Client /server systems operate over LANs, WANSs, or a combination of the two
[Car93]. Client applications are typically placed on workstations with graphics ca-
pability. The primary purpose of the client application is to provide an interface

between the application/data and the user. The server application usually resides

21

on a more powerful computer containing a database. While fulfilling requests, the
server application prevents inconsistent data conditions caused by more than one
client attempting to update the same data. Numerous client applications can run
simultaneously on the same workstation. In addition, numerous server applications,
or multiple instances of one server application, can run on a server. Due to the dis-
tributed nature of client/server applications, client/server architecture implies a great

deal of flexibility and portability.

Client/server computing facilitates the development of applications with enhanced
access to data. The implementation of client/server systems has enabled organiza-
tions to achieve breakthroughs in performance and significantly higher levels of cus-
tomer satisfaction. The flexibility inherent in client/server architecture allows for
more competitive procurements, and easy upgrading of hardware. Client/server im-
plementations force organizations to focus on how information moves within their

organization, and how to best use that information to meet the needs of users.

It is difficult to succinctly define exactly what client/server systems are. Differ-
ent people and organizations have different definitions. However, Bochenski [Boc94]
points out that there are ten commonly accepted characteristics that help to define

the meaning of client/server computing:

1. A client/server architecture consists of a client process and a server process that

can be distinguished from each other, yet that can interact seamlessly.

o

. The client and server portions can operate on separate computer platforms -

but do not have to.

3. Either the client or the server platform can be upgraded without having to

upgrade the other platform.

4. The server is able to service multiple clients concurrently; clients can access

multiple servers.
5. The client/server system includes a networking capability.

6. A significant portion of the application logic resides at the client end.

7. Action is usually initiated at the client end. However, database servers can

perform tasks based on triggers, business rules, and stored procedures.

A user-friendly graphical user interface (GUI) generally resides at the client

o0

end.

9. A structured query language (SQL) capability is characteristic of the majority

of client/server systems.
10. The database server should provide data protection and security.

Regardless of the definition used. the computer industry is going through a period
of rapid and dynamic change — and client/server computing is a key component of
this evolution. 100% of the corporate respondents to a recent survey on information
systems (IS) spending for 1996 are budgeting significant funds for client/server de-
velopment and deployment [Wil96]. There are several reasons for the intense interest

in client/server computing:

e Clients are increasingly powerful and cheaper than mainframes and minicom-

puters.

e Servers are becoming powerful enough to handle the workload of many clients

at low cost.

e Data storage can be moved closer to the end user where it becomes a more

valuable business resource.
o Client/server applications are generally easier to construct and maintain.

CINDI is a client-server application where programs runs on both the client and
server computers. The program that runs on the server in no way limits the number
of clients that the server can support simultaneously (thee server machine could be
difference from the client machine). In fact, a single server can in principle manage an
arbitrary number of active clients. We provide graphical user interface on our client

application.

Once a client has established a connection to a server, it can issue a series of

transactions each of which is invoked by a simple function call. One such transaction

23

actually performs the connection between client and server. With the exception of
the connect transaction, which must also establish a connection, each transaction

provokes a sequence of actions as follows:

1. A message identifying the transaction to be executed and the associate data are

sent by the client to the server.

N

The server processes identified transaction using the associate data.

3. A message containing the response to the transaction is sent by the server to

the client along with the ID of the original transaction..

This scenario is repeated until the client initiates a terminating transaction.
All the data pertaining to the indexing metadata is maintained in one or more

sites of the distributed databases.

2.3 Use of an Expert System

Expert Systems have been used extensively to model human intelligence [Shi92]. For
example. a medical diagnosis system can mimic a doctor by capturing his/her knowl-
edge that enables the doctor to diagnose a disease from a given set of symptoms.
Capturing the mental view of the domain expert, the acquired knowledge is encoded

as a set of if...then... rules.

In our application, resources providers need to classify their documents by subject.
In cataloging a new resource. the librarians use the knowledge of accepted norms for
classification. They are familiar with the classification schemes, terms, index struc-
tures, and resources available in the domain of the user’s need. From this knowledge,
and their perception of the resource to be cataloged, they choose the term to describe
the document. The expertise of a cataloging librarian had to be replicated to assist
the users of the registering sub-system in cataloging their resources. The subject
lookup manager guides the user in selecting the most correct subject terms from the
catalog database [DS96, CSDR]. The rules for cataloging were designed to be re—

usable for searching as well.

Users searching for a information resource often have only incomplete information
about what they are looking for; for example, a user wants an article written by Desai
on the topic of information system. but the full name of the author and exact title of
the document are not known. Typically, a reference librarian would be able to guide
the user in the search; this is what an expert system sets out to do. In general, the
user input to the expert system can be at different levels of detail, and depending
upon the level of detail entered, one task of the expert system is to provide the re-
quired amount of help to complete the input. In general, the expert system exhibits

the following properties:

Indexing sub—system

A semantic header is created by the author of the resource. In addition to
standard bibliographic information, the semantic header includes author-
generated subject terms and an indication of document type. The expert
system guides the user in selecting the most correct subject terms from an
on-line thesaurus. This ensures an automatic conversion of author terms
to the controlled vocabulary drawn from the established lists of subject

headings and descriptions.

Search sub—system

A graphical user interface allows the user to enter search queries. The
expert system provides automatic conversion of user search terms to the
controlled vocabulary. In searching for a given set of documents, often the
users offer vague, partial, and incorrect information in identifying the in-
dex terms for the documents they are searching. In other words, the user
search specification is often “ill-structured”; hence, expertise is needed
to help users better articulate their needs. In addition, the total num-
ber of input field combinations occurs at any given time. For example,
in a given search, the user may be interested only in the documents of
a particular subject hierarchy (Computer Science—Artificial Intelligence—
Expert System) without caring for the titles of the documents. In this
case, it does not make sense to consider a search situation that also ex-

plicitly requires the titles of the documents. On the other hand, if the user

25

is interested in articles written by a specific author without caring for the
titles of the documents or how they are cataloged. the system should not
require subject hierarchy entry and title entry. Thus. by isolating and
encoding the input combinations and handling them through rules, only
a subset of rules needs to be active to process the user input and provide
appropriate help. This also improves the system’s modularity and under-

standability [AW94, JF90]. Detail implementation of the expert system

2.4 The Database Systems

The index entries registered by a provider of a resource are stored in a Semantic
Header distributed Database system (SHDDB). From the point of view of the user
of the system, the underlying Semantic Header Database (SHDB) may be considered
to be a monolithic system. In reality, it could be distributed and replicated, allowing
for reliable and failure-tolerant operations. The interface hides the distributed and
replicated nature of the database. The distribution is based on subject areas and, as

such, the database is considered to be horizontally partitioned [Des90].

[t is envisaged that the Semantic Header Database on different subjects will be
maintained at different nodes of the Internet. The locations of such nodes need only
be known by the intrinsic interface. A database Catalog would be used to distribute
this information. However, this Catalog itself could be distributed and replicated as

is done for distributed database systems.

Database Catalogs will also be used to store information about subject areas
maintained in the SHDBs so that the users can select subject items for indexing and
retrieving Semantic Headers. Thus, each node will contain a Catalog consisting of
all subjects as well as information relating to the locations of Semantic Headers, per-
taining to a subject, in the distributed system. The overall structure of the CINDI

System is illustrated in Figure 1.
The Semantic Header information entered by the provider of the resource using

26

wshs

wansk
uadxg IS

uadxg

WNIPIJA UOHIBIIUNWIWIO))

woskg
uadxg

u-og 1-oNS

[4

MS

Figure 1: General structure of the CINDI system

I~

[

a graphical interface is relayed from the user’s workstation by a client process to the
database server process at one of the nodes of the SHDDB. The node is chosen based
on its proximity to the workstation or on the subject of the index record. On receipt
of the information, the server verifies the correctness and authenticity of the infor-

mation and after finding everything in order, sends an acknowledgement to the client.

The server node is responsible for locating the partitions of the SHDDB where the
entry should be stored and for forwarding the replicated information to appropriate
nodes. In addition, the database server process is responsible for providing the cata-
log information for the search system. In this way the various sites of the database
work in a cooperating mode to maintain consistency of the replicated portion. The
replicated nature of the database also ensures distribution of load and ensures contin-

ued access to the bibliography when one or more sites are temporarily nonfunctional.

The Semantic Header Database and the Catalog Database are implemented using
the ODE (Object Database Environment)[AGGL95] database system. In our system:.
we used a modified Library of Congress subject classification scheme for the general
subject level. We produced a thesaurus for the subject Computer Science based on

ACM Computing Review classification [Ass93].

When making a search request, the client process communicates with the nearest
Catalog to determine the appropriate site of the SHDB. Subsequently, the client
process communicates with this database and retrieves one or more Semantic Headers.
The results of the query could then be collected and sent to the user’s workstation.
The contents of these headers are displayed, on demand, to the user who may decide
to access one or more of the actual resources. It may happen that the item in question
may be available from a number of sources. In such a case, the best source is chosen
based on optimum costs. The client process would attempt to use the appropriate

hardware/software to retrieve the desired resources.

2.5 System Design

System design [RBPEL91, Pre93] is the high-level strategy for solving the target prob-
lem and building a solution. System design includes decisions about the organization
of the system into subsystems. the allocation of subsystems to hardware and software
components, and major conceptual and policy decisions that form the framework for

detailed design. The overall organization of a system is called the system architecture.

System design is the first stage during which the basic approach to solving the
problem is selected. The first step in system design is to divide the system into sub-
systems. A sub—system is not an object or a function but a package of functions,
assoclations, operations, events, and constraints that are interrelated and that have
a reasonably well-defined and small interface with other subsystems. A sub-system
is usually identified by the services it provides. A service is a group of related func-
tions that share some common purpose, such as [/O processing, drawing pictures. or

performing arithmetic.

The CINDI system is divided into five sub-systems: The Index Registering Sub-
system, the Search Sub-system, the Annotations Sub-system, the Semantic-Header
Database Sub-system and the Catalog Database Sub-system. Figure 2 shows the
architecture of the CINDI system.

Authors/providers of information resources create and register the metadata of
their resources through the Registering Sub-system’s user interface. The expert sys-
tem of the Registering Sub—system guides the user in making the metadata entry and
interacts with the Semantic header distributed database system. Internet users search
for pertinent information through the Search Sub-system. A search query is entered
through the user interface of the Search Sub-system. The expert system of the Search
Sub-system helps the user to enter more precise query by providing context-sensitive
help to focus the search. The user can access the actual on-line source resources
through the search system. The search system, on the user’s demand, passes the
on-line access identifier of the resource to an existing browser., which display the ac-
tual resource to the user. Reviewer’s comments on a specific document can be made

through the Annotation Sub-system.

Registering Subsystem

X Author/ !
Supplier

User

Browser

. Hypermedia
' Documents

) Reviewer

User Expert X SH
' Database
Interface System ' | Subsystem
: bty
T |
Search Subsystem :
U - Catalog
ser Expert » | Database
Interface System ; Subsystem
Annotation Subsystem
User Expert ' | Local File
Interface System 7| System 1

Figure 2: Architecture of the CINDI system

30

Register Interface Expert System

T : register
Menu Bar mr:nn:::l o update SH
daelere | Database
Subsystem
Subject lookup
SH Entry Area manager
Author/
E—"N
Supplier = subject Catolog
[lokup | Database
Action Bar Error Handler Subsystem
Dialog Box File I : . '
Manager és:vc -l Local File '
| System ;

Figure 3: Architecture of the Registering sub-system

The Registering Sub—System

The Registering Sub—system (Figure 3) is the system that accepts metadata from the
resources provider. This sub-system is further divided into two main components,
the graphical user interface (GUI) and the expert system (Section 3.2.2). Resource
providers enter metadata through the GUIL The expert system mimics the behaviour
of a reference librarian to help the user during the process of data entry. It provides
context-sensitive help for entering the catalog subject fields. Given a synonym or
substring, the expert system will provide all matching terms for selection through
a pop up window. It interacts with the Catalog Database Sub-system by sending
subject search query and by receiving search results from the Catalog Database Sub-
system. After completely entering the Semantic-Header fields, the author/supplier
can register it in the Semantic-Header database (SHDB). He can also update an
existing Semantic—Header in the SHDB or delete a Semantic-Header from the SHDB
provided he enter the same user ID and password pair that was used at the time of the
registration. However some fields cannot be updated (Section 3.3.4). The GUI has a

main menu bar, a data entry area (SH Entry Area), an action bar, and dialog boxes.

31

The menu bar provides menu option for users to open or save a Semantic-Header
file, edit the entry area, and access online help. The Semantic-Header entry area
is the fields where the corresponding entries of the information resource’s metadata
are entered. The fields are title, alt-title, subject, language, character set, author
information, keywords, identifiers, classification, coverage, genre, system requirement.
source/reference, abstract, and annotation. Detailed description of the metadata is
given in Chapter 3. An action bar provides push button for various actions to be
taken, i.e., register, update, or delete the metadata. The Transaction manager is
responsible for interacting with the remote Semantic-Header database system for
registering, updating, and deleting an index. It also checks the metadata entered
before sending the data to the Semantic—Header Database Sub-system for registering.
The subject lookup manager is the expert system engine. The error handler validates
the metadata entered by the user to make sure that the data are acceptable according
to the rules of the Semantic—Header. It interacts with users through popup messages
if necessary. The file manager provides services for loading or saving a Semantic-

Header in the local file system.

The Search Sub—system

As shown in Figure 4. a user utilize the Search Sub-system to enter the search query
for pertinent resources. This sub-system is also divided into two main components,
the graphical user interface and an expert system. The GUI allows the user to enter
a search query. The expert system consists of the query manager. the error handler.
subject look-up manager, and the file manager. The query manager interacts with
the Semantic-Header database system by sending search query and receiving search
result. The Subject Look-Up Manager interacts with the Catalog Database Sub-
system by conducting standard subject terms look—up. The error handler ensures
that the query entered is valid and provide the user with appropriate pop up mes-
sage. The local file manager can save a Semantic-Header entry in the display window

in the local file system.

The search interface has a query entry area, an action bar, a Semantic-Header

display window, and dialog boxes. The query entry area is the area where the search

Search Interface Expert System

Get SH
Query Query manager gH Database
Entry Area Subsystem
Action Bar Error handler
User = ==
subject Catolog
s '%kup Database
Subjects Look U
Display Window . J:/;:anag:‘: P Subsystem
Dialog Box Fil :r -------------- |
e ' 4 I
Manager —= Local File |
su || System |
1

Figure 4: Architecture of the Search sub-system

query is entered. The search entry can be a document’s title, author, subject, key-
words, identifier, words in abstract or the combination of them. Detailed description
on the search query format will be given in Chapter 4. Action bar will provide push
button for actions to be taken, i.e Search, Clear, Help, Exit. SH Display Window is
the popup window to display a specific Semantic—Header selected by the user during
the search process. From the display window, the user can access the actual resource
by connecting to Netscape browser, save the Semantic-Header to local disk. Dialog

box will provide error messages, warning messages etc.

The Annotation Sub—system

Annotations is a reviewer’s comments on a information resource. Any user can make
annotation on a resource through the Annotation Sub-system (Figure 3). Such an-
notations will be registered with the Semantic-Header and would be displayed with
it. The graphical user interface of this sub-system displays the existing annotations

of the resource and the Semantic—-Header name, which is composed of the title, first

33

Annotation Interface = Transaction System

Semantic-Header
Name
Transaction . SH
Existing manager amnotatd Database
Annotations Subsystem
Annotator’s =
User =1 Information Error Handler
Annotations T TTTTTTT T T !
Entry Area X . \
File 22 Iéoz‘?:irlr:lﬂe
Action Bar Manager , y :
.

Figure 5: Architecture of the Annotation sub—system

subject, first author, posted date, and version number. It also allows the user to enter
new annotations. The transaction manager checks the user’s name entry through the
interface against the user’s actual login name. A warning message, “Name entered
is different from user login name. Both name will be recorded”, will be given if it is

necessary.

34

Chapter 3
Indexing/Registering Sub—system

The index entry and registering sub-system provides a graphical interface (Figure 6)
to facilitate the provider (author/creator) of a resource to register the bibliographic
information about the resource. The interface allows the provider to enter this in-
formation and it provides help by means of pop-up selection windows and an expert
engine to suggest controlled terms (Section 3.2.2). Once the information is correctly
entered, the author can decide to register the Semantic-Header entry in the Seman-
tic Header database. Once the header information is accepted by the database, the
author/creator is notified. An user ID and password are to be provided when the
Semantic-Header is first registered and for all changes made to it. Since the user
ID and the associate encoded password is not accessible by anyone other than the
original registrar of the index entry, the entry can only be updated by person(s) who

are cognizant of them.

3.1 Semantic—Header

The heart of any bibliography or indexing system is the record that is kept for each
item being indexed. Standardization of a bibliographic entry better allows people to
exchange information through a virtual library. The index structure for our indexing
system was proposed by Desai [Des95¢c, Des95b, Des935a] and is called the Semantic—
Header. It was originally presented at the First International World Wide Web
Conference in Geneva for WWW resources. Since then, it has been extended to other

resources accessible directly on the Internet.

X Cindi: Semantic Header Entry

File Edit Help
Title
Alt-title
General] :
Sub-levell } -
Subject [_Sub-level2 J.[i
Search
String L]
[Synonyms| | SubStrings |
[Prev | Next |
Language ||] Character Set
L_Rale |
Name
Organization
Address
Phone
Fax
E-Mail
Author/Other Agents
Kevwords {]
(comma seperated
L 1]
[Domain | Value
I[dentifier(s) Prev | Next
SRRy] AR
e - —
[JL]
[Domain | Value
Classification Prev | Next
L I]
[Domain] Value
Coverage Prev Next
L L]
[Component Exigance(s) (comma separated)
System Requiements | Prev Next
LForm 1T] Size | |
Genre Prev Next
L 1 |
Relationship Domain:Identifier ;
Source/Reference [Prev] Next
Cost
Abstract
Annotation

I _Register |[_Update | [Delete |

User ID: Password;|

Calculus]
Chemistry
Commerce

Communicati
Computer Sci

Database Ma
Information
Information
Online Info!

| Physical Desi—|

éuthoe'h
o-author
Editor

Artist
Corporate Enl
Designer

FTP
ISBN
ISSN

Gothr

SHN -

]

Legal
Security Level

Audience M
Geographical
Spatial Cover|
Temporal Co
Epoch U

Hardware]
Network

Software

Text
PS

Binary

| A—

Computer Ap
Computer Sy
Hardware

Imformation:
Sofwre Engin

Arabic
Chinese
English

French

Figure 6: Semantic-Header Entry Interface: Overall Design

36

The Semantic-Header may be considered as an application of the Standard Gen-
eralized Markup Language (SGML)[Gol90].The objective of the Semantic-Header is
to include those elements that are most often used in the search for an information
resource. Since the majority of searches begin with a title, the name of the author(s)
(7T0%), subject and sub-subject (50%) [Kat87], we have made the entry of these ele-
ments mandatory in the Semantic-Header. The abstract and annotations are, also,
relevant in deciding whether or not the resource would be useful. These items are also
included. However, a user working with the index entry system is guided through the
process by an expert system. This system guides the user in the choice of standard-

ized terms through an easy-to—use graphical user interface (Figure 6).

3.1.1 Semantic Header Structure

The structure of the index is similar to the ones used for most library indices and
includes other information deemed useful for on-line systems. The contents of a
Semantic—Header are defined in the following grammar. The grammar follows ex-
tended BNF rules [GM86]: tags are given in quotes, optional items are bracketed by
square brackets “[* and “]”, alternative items are separated by a bar “|”. and the
superscript plus sign ¥ means that items may be repeated one or more times. The

grammar for the Semantic—Header follows:

sem_header := “<semhdr>" contents “</semhdr>"

contents := userID password title alt-title subjects language character_set
authors keywords identifiers dates version sup_version
classifications coverages system.reqs genre source_ref cost

abstract annotation

userID = “<userid>" ... “</userid>"
password = “<password>" ... “</password>"
title = f<title>" L f</title>”
alt—title = “<alttitle>” [...] “</alttitle>"
subjects := “<subject>" subject.item™ “</subject>"
subject_item := general sublevell sublevel2
general = “<general>" ... “</general>"

37

sublevell

sublevel2
language
character_set
authors
author_item

role

name
orgnization
address
phone
fax
email
keywords
identifiers
iden_item

domain

value
dates
date_post
date_expiry
version
sup.version
classifications
clsitem
domain
value
coverages
coverage_item

domain

:= “<sublevell>” [...] “</sublevell>"

:= “<sublevel2>" [...] “</sublevel2>"

:= “<languag>" [Arabic|Chinese|English|...] “</language>"
:= “<char-set>" [...] “</char-set>"

:= “<author>" author_item* “</author>”

:= role name orgnization address phone fax email

:= “<arole>" Author|Co-author|Editor|Artist| Corporate Entity|

Designer|Programmer “</arole>"

:= “<aname>" [..] “</aname>"

= “<aorg>" [...] "</aorg>"

:= “<aaddress>" [...] “</aaddress>"
:= “<aphone>" [...] “</aphone>"
= “<afax>" [...] “</afax>"

= “<aemail>" [...] “</aemail>”

li

“<keyword>" ... “</keyword>"
:= “<identifier>" iden.item* “</identifier>"

:= domalin value

:= “<iden-domain>" FTP|ISBN|ISSN

|GopherfHTTP|ULC|USA|ULN
“</iden-domain>"

= s:<iden_Voalue>” e "‘</iden-va.lue>”

:= “<dates>" date_post date_expiry “</dates>"

= “<created>" ... “</crea.ted>”

“<expiry>" [...] “</expiry>"

i

“<version>" [...] “</versionE>"

“<spversion>" [...] *</spversion>"

“<classification>” clsitem™ “</classification>"

= domain value

4

‘<cls-domain>" Legal|Security Level “</cls-domain>"

“<cls-value>" ... “</cls-value>"

i

= “<coverag>" coverage_item™“</coverage>"
:= domain value

:= “<cover-domain>" Geographical|Spartial |Temporal|Epoch

38

“< /cover-domain>"

value 1= “<cover-value>" ... “</cover-value>"
system_reqs ;= “<system-requirements>" system_item™
“< [system-requirements>"
system_item := component exigance
component := “<component>" [Hardware|Software|Network]
“</component>”
exigance = “<exigance>" [...] “</exigance>"
genre := “<genr>" genre_item* “</genre>"
genre_item := form size
form := “<form>" [Text|PS|Binary] “</form>"
size = “<size>" [...] “</size>"
source-refs := “<source-reference>" ref_item™*“</source-reference>"
ref_item := relation domain_iden
relation = “<relation>" [...] “</relation>"
domain_iden := “<domain-identifier>" [...] “</domain-identifier>"
cost = “<cost>" [...] “</cost>"
abstract 1= “<abstract>” [...] “</abstract>"
annotation := “<annotation>" [...] “</annotation>"

In general, every field or block of the Semantic-Header will be started with a ‘be-
gin’ tag and terminated by an ’end’ tag. For example abstract begins with <abstract>
and ends with </abstract>.

A Semantic—Header begins with the tag <semhdr> and ends with the tag </semhdr>.
In between these are fields: userID password, title, alt-title, a list of subjects, lan-
guage, character set, a list of authors/agents, a list of key words, a list of identifiers,
date created, expiry date, version, supsedes version, a list of classifications, a list of
coverages, a list of system requirements, a list of genres, a list of sources/references,

cost. abstract, and annotations. The significance of these fields are given below:

User ID: This is a required field. It is a self selected value chosen at the outset

by the provider along with an associate password. The Semantic Header database

39

will record this information and would require it for all sunsquent interaction to iden-
tify the provider of the resource. The user should enter the same userID and password

pair every time he/she register or modifies a Semantic-Header.

Password: This is a required field. [t appears between the tags <password> and
< /password>. When first registering a Semantic-Header, the user must select a pass-
word . This password must be used later along with the user ID to update or delete

the corresponding Semantic-Header.

Title: Title signifies name or short description of the indexing resource. It is a

required field. It begins with the tag <title> and ends with the tag </title>.

Alt-Title: Alt-title is an alternate name or short description of the resource to

be indexed. Alt-title is an optional field.

Subject: Subject denotes the words or phrases indicative of the information con-
tent. Subject begins with the tag <subject> and ends with </subject>. Within
subject we have three levels of hierarchy. Subject is a repeating group (a multi-part
field with one or more occurrences of items in the group). All resources must have at
least one occurrence of this field. An expert system guides the user when entering all

subject levels.

Language and Character Set: The character set used and the language in

which the resource was composed are given in the next two optional fields.

A character set is the set of all characters, alphabetic and otherwise. necessary to
construct words and sentences in a given language. For example, ASCII is a 7-bit
character set. ISO 8839-1, also called Latin-1, is an 8-bit character set that repre-
sents most Western European languages (except Greek), including French, German,
and English.

Author: The details about the author(s) and/or other agent(s) responsible for the

resource are given in the next repeating group. The sub-fields are: role of the agent,

40

name, organization, address, phone and fax numbers, and e-mail address. All sub—
fields except the name are optional, except in instances of corporate entries in which
case the orgnization must be given. By using the role sub—field and giving it the
appropriate value, semantics for agents such as editor or publisher are incorporated

in this repeating group.

Keyword: Keywords that can be used for searching the resource are kept in be-
tween the tags <keyword> and </keyword>. There could be one or more keywords

separated by a comma.

Identifier: The next element is a repeating group for recording the identifiers of
the resource. Each occurrence of this group consists of two sub—fields: one for the

domain and the other for the corresponding value.

Date: The dates of creation(required). expiry and update (if any) are given next.

Any updates made are indicated by a system-generated date.

Version: The version number, and the version number being superseded, if any,

are given in these optional elements.

Classification: The intended classification is indicated in the next optional repeating
group. It consists of a domain (nature of resource, security or distribution restriction,

copyright status etc.) and the corresponding value.

Coverage: The coverage is indicated in the next repeating group. It consists of
a domain (target audience, coverage in a spatial and/or temporal sense, etc.) and the

corresponding value.

System Requirements: A list of system requirements such as the software required
to access, use, display or operate the resource is included in the Semantic~Header as
an optional repeating group. It consists of a domain of the system requirements (pos-
sible value are: hardware, software, network, protocol, etc.) and the corresponding

exigance.

41

Genre: This optional element is used to describe the physical or electronic format
of the resource. It consists of a domain (type of representation or form which in the
case of a file could be a format such as ASCII, Postscript, TeX. GIF, etc.,) and the

corresponding value or size of the resource.

Source/Reference: The relationship of the resource to other resources may be
indicated by this optional repeating group. It contains the relationships, domains,
and identifiers of related resources. A related object may be used in deriving the
resource being described, or it may be its sub/super components. Such information
is usually found in the body of a document-like resource. However. this optional
group permits an option for this type of resource and an opportunity to register it

for resources of other formats.

Cost: In the case of a resource accessible for a fee, the cost of accessing it is given

next. [t consists of a currency and the cost for accessing the resource.

Abstraction and Annotation: The abstraction and annotations are given in the
next fields. The abstract is provided by the author of the resource, the annotations
are made by the author and/or independent users of the resource and include their
identities along with their login user names. Once registered. the annotation cannot
be modified.

3.1.2 An Semantic—Header Example

Here is an example of a Semantic—Header.

<semhdr>
<userid>
bedesai
</userid>
<password>
ctuth4g
</password>
<title>

A System for Seamless Search of Distributed Information Sources
</title>

<alttitle>

Sailing the Internet with a navigational System
< /alttitle>
<subject>
<general>
computer science

< /general>
<sublevell>
information systems
</sublevell>
<sublevel2>

search process

< /sublevel2>
<general>
computer science
</general>
<sublevell>
information systems
</sublevell >
<sublevel2>
distributed systems (database management)
< /sublevel2>
</subject>
<languag>

English
</language>
<char-set>
150-8859-1
</char-set>
<author>

<arole>

Author

43

</arole>

<aname>

Bipin C. Desai

</aname>

<aorg>

Department of Computer Science, Concordia University
</aorg>

<aaddress>

1455 De Maisonneuve Blvd. West. Montreal, Quebec. Canada H3G 1M8
< /aaddress>

<aphone>

848-3000

</aphone>

<afax>

848-3026

< /afax>

<aemail>

bedesaidcs.concordia.ca

</aemail>

<arole>

Co-author

</arole>

<aname>

Rajjan Shighal

< /aname>

<aorg>

Department of Computer Science, Concordia University
</aorg>

<aaddress>

1455 De Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8
< /aaddress>

<aphone>

44

< /aphone>
<afax>

< /afax>

<aemail>
shinghal@cs.concordia.ca
< /aemail>

</author>

<keyword>

distributed information technology, hypermedia, artificial intelligence, ez-
pert systems

< /keyword>
<identifier>
<iden-domain>

HTTP

< /iden-domain>
<iden-value>
http://wwuw.cs.concordia.ca/old/w3-paper.html
< /iden-value>

< /identifier>

<dates>

<created>

1994/06/15

</created>

<expiry>

< [expiry>
</dates>
<version>
1.0

< /version>

<spversion>

< /spversion>
<classification>
<cls-domain>
Security Level

< /cls-domain>
<cls-value>

Normal

< /cls-value>

< /classification>
<coverag>
<cover-domain>
Audience

< /cover-domain>
<cover-value>
engineers, scientists
< /cover-value>
<cover-domain>
Geographical Coverage
</cover-domain>
<cover-value>
planet earth

< /cover-value>

< /coverage>
<system-requirements>
<component>
Software
</component>
<exigance>
Netscape Browser
</exigance>

< /system-requirements>
<genr>

<form>

Text

46

</form>
<size>
19919 bytes
</size>
<form>

PS
</form>
<size>
79919 bytes
<[size>
</genre>
<source-reference>

<relation>

</relation>
<domain-identifier>
</domain-identifier>
< /source-reference>

<cost>

</cost>

<abstract>

This article discusses the issues in developing a system that will provide
users with desktop access to the world’s digital information resources. It
provides a more focused approach to searching, retrieving and perusing
hyper-media documents. The documents are stored in heterogeneous dis-
tributed information systems representing virtual libraries. The system
should allow users to search and obtain information from systems ezhibit-
ing a range of categorizing and organizing conflicts. Thus users, at a
given workstation, perceive their local information system as having been
augmented by further data rather than having to deal with a number of
unfamiliar systems. For example, a user at a workstation could locate and

peruse any document stored electronically anywhere across a wide network

47

of virtual libraries.
< [abstract>

<annotation>

< /annotation>

</semhdr>

3.1.3 Semantic Rules

To register a Semantic—Header, certain rules must be respected.
1. The following fields are required:

e Title.
e At least the General level for one subject.
e At least one author/other agents.
e At least one keyword.
e At least one identifier.
o Date created/Posted.
o User ID (Must be at least 6 characters.)
e Password (Must be 4 to 8 characters.)
2. Semantic Header Name: To unique identify a Semantic-Header, we define the
concatenation of the title, the first author’s name, first author’s role, the first

subject, the date created, and the version number as the Semantic Header
Name (SHN). In change mode the SHN cannot be changed.

3. The value for the role between the tags <arole> and </arole> can be author,
co-author, editor, artist, corporate entity, designer, programmer, or publisher.
If role is a corporate entity, the name of the organization must be given between
the tags <aorg> and < /aorg>. Otherwise, the name of a person must be given

between the tags <aname> and </aname>.

48

[04]

Subject entries are selected from standard terms in the thesaurus and provided
by the expert system. Presently we provide only lower subject levels for com-
puter science in the Catalog Database. The Details of this classification can be

found in [Ass93].

The possible value for identifier domain between the tags <iden-domain> and
</iden-domain> can be FTP, ISBN, ISSN, Gopher, HTTP, SHN, UAS, or
URN.

Possible values for the classification domain between the tags <cls-domain>

and </cls-domain> must be Legal or Security level.

Possible values for the coverage domain between the tags <cover-domain>
and </cover-domain> must be Audience, Geographical, Spatial. Temporal. or
Epoch.

Possible values for the system requirement component must be Hardware, Soft-

ware, Protocol, or Networks.

Possible values for the genre form could be Text, PS, or Binary etc.

49

3.2 Subject Entry: Modelling the Expertise of a
Librarian

The advice offered by a librarian is made available to the user of our application while
cataloging a resource. During cataloging, the provider often may not know to which
subject, sub—subject, sub-sub-subject a particular document belongs. In cataloging
a new resource, the cataloging librarian uses knowledge of authority and accepted
norms for classification. From such knowledge s/he chooses terms to describe the re-
source. Reference librarians are aware of the conventions used by cataloguers as well.
They are typically familiar with the classification schemes, terms, index structures,

and resources available in the domain of the user’s need.

To model the expertise of a reference librarian, we use a small embedded expert
svstem in our current implementation for cataloging. We focus our discussion solely

on context-sensitive help for subject entry from the graphical user interface.

3.2.1 Context Sensitive Help

The user interfaces for registering require the user to input information about the
subject classification to which the document to be indexed belongs. The user entry
can be at different levels of detail. and. depending upon the level of detail entered.
one of the tasks of our expert system is to provide the required amount of help to
complete the input. This is equivalent to a reference librarian’s guiding a novice user
in entering additional data, based on what has already been entered by the user. For
example, if the user had entered the subject Computer Science, then the help for
other fields of the subject hierarchy would be tailored to Computer Science. Later, if
the user changes the subject to, say, Physics, then the help information would change
accordingly. The context sensitivity of the help is complicated, however, because the
user can input a synonym for an input field. In general, synonyms can be entered for
any of the fields corresponding to the subject hierarchy: a three level hierarchy for
document classification. Moreover, a synonym entered at one level of the subject hier-
archy may resolve at one or more levels. A synonym must be resolved using a control

thesaurus so that it can match with an appropriate document—identification keyword.

Suppose, for example, that the user entered KBS: it can denote Knowledge Base Sys-
tems, Expert Systems, or Deductive Data Base Systems that are part of the control
thesaurus. In general, searching the subject hierarchy for a control vocabulary can
be modelled as a tree traversal. Synonyms, however, complicate this search for a con-
trol thesaurus term because they make a tree traversal into a directed—acyclic-graph
traversal, which is computationally more demanding. Synonym resolution, however,
allows the system to automatically fill in higher levels of the subject hierarchy, as
these can be determined once a synonym at a lower level is resolved in the control
thesaurus. This aids focusing the search to a specific set of documents [CSDR]. Such
svnonyms. For example. if entry KBS for sub—subject was resolved to Ezpert Systems,
then the subject of the entry would be automatically updated to contain Artificial
Intelligence under which Fzpert Systems is a sub-subject.The synonyms and the as-

sociated control thesaurus are stored in a local database.

A complication arises in synonym resolution when the user enters a synonym for
a subject that is actually a sub-subject synonym [DS96]. Such synonyms are said
to be non-conteztual. Upon detecting a non—contextual synonym entered for a field,
the system warns the user of this mismatch and resolves the synonym by traversing
up/down the subject hierarchy. The expert system then displays a list of control

thesaurus items found for the user to choose.

When a synonym resolves at multiple levels of the subject hierarchy, the synonym
1s said to be overloaded. For example, nothing prevents a generic synonym such as DB
to be used as a shorthand for the sub-subject and the sub-sub-subject levels of the
subject hierarchy. Suppose that as a sub-subject it resolves to {Data Base Systems,
Knowledge Base Systems}, and as a sub-sub-subject it resolves to {Relational Data
Bases, Horn Clause Systems}. The context of the input entry is then used to resolve
the synonym for the level it corresponds to instead of resolving it into all match-
ing terms. Handling non—contextual and overloaded synonyms mimics the discerning

judgement of a reference librarian in interpreting user input appropriately.

Another complication arises when the user enters partial values: a sub-string for
a subject, such as, Data Bas. Although one can display a list of subjects that have

this substring, context sensitivity implies that the values already entered in other

91

fields must also be considered in providing help to the user. Thus, the help would be
based on not only the partial values of the current field, but also on existing values
of the other related fields. For example, if the user has entered Hybrid relational
in sub—subject and Frame in sub-sub-subject field, then the context-sensitive help
for subject should take into account the current values in sub-subject and sub—sub-
subject fields before providing appropriate help to the user. Thus, the help would
be based on not only the partial values of the current field, but also on existing val-
ues of other related fields. For example, if the user has entered Hybrid relational
in sub-subject and Frame in sub-sub-subject field. then the context-sensitive help
for subject would take into account the current values in sub-subject and sub-sub-
subject fields before providing appropriate help to the user. If the current values of
sub-subject and sub-sub-subject entries are ignored, then the user would be provided
with a long list of subjects, many of which would have sub—sub—subjects that may

not match with the current values entered in these respective fields.

When a partial value matches entries at multiple levels, then a collision is said
to have occurred in the expansion of this partial value. In this situation, the system
gives the matches for each subject level. If, however, no match can be found on the

hierarchy based on the input value, a warning is issued.

3.2.2 Implementation of the Expert System

The knowledge that an expert system uses is represented as a set of if .. then ..
production rules [Shi92]. In the current implementation of the expert system, some
restrictions are applied to reduce the complexity of the rules. First of all, entry fields
for subject, sub-subject, and sub—sub-subject are not editable. The user has to select
an entry from the context-sensitive help list. Secondly. the synonym resolution and
partial value entry (sub-string) are carried out through a separate entry field. The
third restriction is that when the user looks for subject entry terms through synonym
resolution or partial value entry, the values for current subject entry fields are ignored.
The rules for our current implementation are as follows:

Rules for the inference engine

o If the search is at a general level, then invoke the top level subject of classi-

fication based on the Library of Congress subject headings from the Catalog

52

Database.

If the search is at sub-levell, then use the selected general level entry as the
key, search from the catalog database, and bring up the children subject level

for the selected general level.

If the search is at sub—level2, then use the selected general level and sub-levell
as a basis, and provide the lower level of the selected general level and sub—

levell.

If the string entry is a substring, then for each subject level of the subject
hierarchy in the catalog database, display the control terms for each subject

level containing the substring entered in the GUL

If the string entry is a synonym, then for each subject level of the subject
hierarchy in the catalog database, display the control terms for each subject

level having synonym with the substring entered in the GUL

vrerre—c

L Lrror Meoesse

Figure 8: Subject look—-up: No entry found

Rules enforced by the GUI

e Subject entry fields are not editable. The user cannot manually enter a subject,

sub-subject, or sub-sub-subject.

e The user must select a higher level in the subject hierarchy before selecting a
lower level. He must fill out the general level before looking up sub-levell and,
similarly, choose sub—levell before looking up sub-level2. Otherwise, an error

message window is displayed (Figure 7) to inform the user.

e When a subject button (General, Sub-levell or Sub—level2) is pressed, a
popup window containing a list of standard subject terms of the appropriate

subject hierarchy level appears. The user can then select a standard subject

54

DA Subject took up: General

Figure 9: Subject look—-up: General

term from the list by clicking on the appropriate line in the pop up window.
In event that no standard term exists, an error message appears in a popup

window (Figure 8).

Selecting the General button invokes the top level of subject classification
based on the Library of Congress subject headings. Figure 9 is the popup
window for General level look-up. The items in the list are sorted in alphabetic

order.

%

Seehpect fook (p Sub

Figure 10: Subject look—up: Sub-levell

e Selecting the Sub—levell button provides the child subject level terms for the
selected general level. Figure 10 is the popup window for the Sub-levell look—
up when the General level is Computer Science. In our current implementation
of the catalog database, we provide only lower level of subject hierarchies for

Computer Science.

o Selecting the Sub—level2 button will display the lower subject level terms for
the current general level and sub-levell entries. Figure 11 is the popup window
for the Sub-level2 look—-up when the General level is Computer Science and the

Sub-levell is Information Systems.

Subject look wup.: Sub - tevele

Figure 11: Subject look—-up: Sub-level2

e If the user re-selects a subject level, the lower level(s) are cleared. He must

re—select the lower subject level(s) if necessary.

57

Frror Message

A ARSI SR RAAAAL L LA ANAAAL AALS S AARAAAAALAC AN AN A AN AR

Figure 13: Search by Substring: Error message-2

Synonym resolution and substring entry rules

e To look for synonyms or sub-strings, a string must be entered in the search
string entry field. If no string is entered, the system will pop up an error

message (Figure 12).

e Looking for synonyms and substrings are separate operations. If Synonyms
button is pressed, the system will look for synonyms of the string entered only.
On the other hand, if SubStrings button is pressed, the system will look for
terms in the thesaurus with substring matching the string entered by the user

without looking for synonyms.

58

Subject ook tp. St -Strings

AR AL b i

Figure 15: Example of sub—string look-up: display General level

e When Synonyms or SubStrings is pressed and the search string is not empty.
search will be conducted by the expert system at the catalog database server. If
no matching term is found, an error message will pop up (Figure 13). If match-
ing terms are found, a popup window will display the number of matching items
in each subject level (Figure 14). The user can then view the matching subject
terms for each matching level (Figure 15,16,17) by selecting the corresponding

push button.

e For synonym and sub—string look—ups, selecting a lower subject level will auto-
matically select the higher parent level(s) for the selected entry. For example,
if a user were to select Expert System as sub-level2, Artificial Intelligence and

Computer Science will be the sub—levell and the general level respectively.

The following example illustrates the mechanism: Suppose the user enters “com” for
the search string. When SubStrings button is pressed, a popup window will display

the number of matching items for each subject level (Figure 14).

39

R 2 0 T

Subject look ap: Sub fevel?

Figure 17: Example of sub-string look-up: display Sub-level2

60

e If the user selects button General a popup window will display the matching
terms for general level (Figure 15). If the user selects an item from the item
list in Figure 13, only the general field is filled up and any entry for lower levels

will be cleared.

o Selecting Levell button will display the matching items for subject levell (Fig-
ure 16). If the user selects an item from the item list in Figure 16, both the

general level and sub-levell are filled up and sub-level2 is cleared.

e Pressing on Level2 button will popup a window displaying matching terms for
subject level2 (Figure 17). The user can select any single item from the popup
window. If you select an item from the item list in Figure 17, all the three

subject levels will be filled up.

61

3.3 Other Parts of the GUI

As mentioned in Chapter 2, X Motif was used to implement the graphical user inter-
face. The overall design of the Indexing/Registering Sub-system interface is shown
in Figure 6. The screen dumps for the actual interface are shown in Figures 18, 19,
20. Since one single screen is not large enough to accomodate the whole interface, a
scrollable window is used. The viewport may be adjusted by the user through the

use of scrollbars that are attached to the scrolled window.

3.3.1 Pulldown Menus

Menu selection has many advantages. This includes shorter training time for new
user, reduced keystrokes, rapid, accurate entry of items from standard choices. The

user interface provides pulldown menus for the following entry fields:

e Role: A field for author information entry. Current available terms for selec-
tion are Author, Co-author, Editor, Artist, Corporate Entity, Designer, and

Programmer.

o Identifier Domain: Currently available terms for selection are FTP. ISBN.
[SSN, Gopher, HTTP, ULR, UAS, and ULN. This field is not editable, and
the user has to choose from the pull down menu to select value for this field.
Once a domain is chosen, the user must enter the associate value. For example,
http://www.cs.concordia.ca/w3-paper.html is a value for HTTP domain, and
0-201-15790-X is a value for ISBN domain etc.

e Language: The language in which the resource is written. Currently available
languages for selection are: Arabic, Chinese, English, Farsi,French, German,
Haryani, Hindi, Italian, Japanese, Korean, and Spanish. The user can also

enter other languages from the keyboard.

o Classification Domain: Currently available terms for selection are Legal and
Security level. The value for Legal could be copy right, or free to use and

distribution etc. The value for Security level could be, personal, and public etc.

AR AN, TR

K G

Co 4t bl

g 3800 S,

TErY

Figure 18: Semantic-Header Entry [nterface: Page 1

a2

o8

g

ost Da

idid

b

o

PR Tt 3

I AR
v s VU

17

i

&

N ordid b e dene

Figure 19: Semantic-Header Entry Interface: Page 2

64

Figure 20: Semantic-Header Entry Interface: Page 3

¢ Coverage Domain: Audience coverage. Geographical coverage. Spatial cov-
erage. Temporal coverage. and Epoch. These are standard predefined entry
terms. | he user cannot enter his own terms. The value for a chosen coverage
domain must entered by the user. The value could be Computer professional

for Audience. and North America for Geographical etc.

e Component: Components for system requirement are Hardware. Software.
and Networks. This field is not editable. The corresponding exigance of a

selected component must be entered.

e Genre Form: Currently available terms for selection are PS. Text. and Binary.
The user can also enter his own values. The size for each selected Form must

also be entered to complete the entry.

66

N\ Operr fite

Figure 21: File selection popup: Open file

3.3.2 Functionalities of the Menu Bar

The menu bar of the graphical user interface contains the pull down menus File,
Edit, and Help.

File Menu

The File pulldown menu contains the menu items Open, Save, and Exit. Selecting
menu item Open will display a file selector (Figure 21) whereby a user can select a file
containing an existing Semantic-Header. The file will be loaded into the Semantic-
Header interface for further modification. Selecting menu item Save, invokes a file
selector for file name entry (similar to Figure 21, with the title of Save File). After the
file name is entered, the Semantic-Header on the entry screen is saved to disk by the

local file system. Selecting Exit terminates the Semantic—Header entry application.

67

Edit Menu

The Edit pulldown menu contains the menu items New Entry and Clear Field.
Selecting New Entry clears the Semantic-Header entry screen and allows the user
to enter a new Semantic-Header. Menu item Clear Field is a cascade button
which in turn contains menu items Title, Alt-title, Subject, Author, Key-
word, Identifier, Classification, Coverage, System requirement, Genre,
Source/Reference, Abstract, and Annotation. Selecting a menu item will clear
the corresponding entry field or fields in the corresponding entry block. For example,
selecting menu item Title will clear the title field, selecting Subject clears fields

General. Sub-levell, Sub-level2 and Search String, and so on.

Help Menu

Currently, the Help pulldown menu contains the menu items System Help, On
Subject, On Author and On Keyword. System Help provides online help for the
whole Semantic-Header entry screen. On Subject provides online help concerning
subject entry. On Author provides online help concerning author/other agents entry.
On Keyword provides online help concerning keyword entry. An online help popup

window example is shown in Figure 22.

Figure 22: Online help popup window

68

Frror Messaqge

RS

Figure 23: Error message: validate current entry

3.3.3 Repeatable Entry Fields

Some fields of the Semantic-Header may have multiple entries. They are called repeat-
able entry fields. The repeatable entry fields in the Semantic—Header are Subject, Au-
thor/Other Agents, Identifier, Classification, Coverage, System Requirements, Genre,
and Source/Reference. For example, a document could be classified under more than
one subjects, an article could be written by more than one authors, and the document
can be identified by it’'s HTTP, FTP, and ISBN etc. We provide Prev and Next
push buttons at the bottom of each block in the user interface to accommodate these

entries.

The Prev push button allows the user to view or modify the previous entry of a
block and The Next push button allows the user to view or modify the next entry

of a block. To proceed to the previous or next entry, certain conditions applied:

L. If the current entry is the first entry and Prev is pressed, the system will

generate an audio signal to remind the user.

2. The current entry must be a valid entry. Otherwise an error message appears
to inform the user. For example, if the Role of an author is Corporate Entity

and the Organization was not entered, an error message will pop up (Figure

69

Figure 24: Error message: validate current entry

23).

If the current entry is the last entry, the user can clear all the fields in the block
and proceed to the previous entry. Otherwise a validation will be done before

proceeding to the previous entry.

The user cannot leave a set of blank fields for a block and proceed to the next

or previous entry, except for case 3 above.

For Identifier, Classification, Coverage, System Requirements, and Genre entry.
none of the fields in a block can be left blank prior moving to the next or
previous entry, except for case 3 above. Otherwise an error message appears to

inform the user (Figure 24).

70

Frror Message

Figure 25: An error message popup for register

3.3.4 Functionalities of Action Bars

The action bar at the bottom of the entry interface contains three action buttons
(Register, Update and Delete). The functionalities of these buttons are described

below:

Register

The Register push button allows users to register the current Semantic—Header
into Semantic-Header Database. To register a new Semantic—Header, an user ID.
and password are required. When this button is pressed, the corresponding callback

function will be involved. The callback function perform the following operations:

1. Validates the Semantic-Header entry: Before an actual registration is made,
the callback function will check the semantic header entry to make sure all the
required fields are entered. These fields are: title, at least one subject hierarchy,
at least one keyword, at least one entry for an author, at least one identifier, the
creation date , user ID, and password. If any of the required fields is missing,
an error message is displayed (Figure 25). This validation ensures that the

standard indexing scheme is enforced.

71

2. The client program sends the Semantic~Header to the server: If the semantic
header entry passes validation. the callback function next involves the client pro-
gram (at the user’s workstation) which formats the Semantic~Header according
to the standard scheme presented in section 3.1 and sends it to the Semantic
Header Register function at the semantic header database (the server) through
the TCP/IP protocol [Car93, San94].

Figure 26: Information message: Register was done

3. The server registers the Semantic—Header: The Semantic Header Register func-
tion at the semantic header database decodes the formatted Semantic-Header
and registers 1t into the database. A response code will be sent to the client

indicating the status of the registration process.

4. The client informs the user by a popup window displaying appropriate message
based on the response code received from the server. The response codes and
the corresponding messages are as follows:

e Code 1: This Semantic-Header has been registered (Figure 26).

e Code 2: User ID already exist and Password does not match! The Semantic-

Header cannot be registered.

e Code 3: This Semantic-Header is in the database. It cannot be registered

again.

e Code 100: Data transmission error occurred. Please try later.

72

The Register push button will be disable when one open an existing semantic header
for modification. If a Semantic—-Header does not contain a UserID/Password pair, it
is an existing Semantic-Header in the database. Otherwise, the Semantic-Header has

not been registered and the Register button will be enable.

VR AN

X Error Message

Figure 27: Error message: Cannot change SHN

Update

The Update push button allows users to update an existing Semantic-Header. This
Semantic-Header is loaded into the GUI through the use of the Open menu item in
the File menu. The Semantic-Header could have been retrieved from the Semantic-
Header database through the Search sub-system and is saved through the display
screen (As outlined in Chapter 4).

If a Semantic-Header has been registered, the user is not allowed to change entry
fields corresponding to the Semantic Header Name (title, first author’s name, first au-
thor’s role, first subject, date created, and version number) and the annotation. The
expert system will make these fields non-editable and provide appropriate warning

messages if the user attempts to modify these fields (Figure 27).

To update a Semantic-Header, the user has to enter an UserID/Password pair
that matches the pair entered when the Semantic-Header was registered. When this

button is pressed, the corresponding callback function will be involved. The callback

73

3 PR AN F e 42

W] Frror Message

Figure 28: Error message: Mismatch UserID/Password pair

function perform the following operations:

1.

o

Validates the Semantic—Header entry: Before an actual update is made. the
callback function will check the semantic header entry to make sure all the
required fields that are not part of the Semantic Header Name are entered.
These fields are: at least one keyword. user ID, and password. If any of the

required fields is missing, an error message is displayed (Figure 25).
The client program sends the Semantic-Header to the server.

The server update the Semantic-Header: The Semantic Header Update function
at the semantic header database uses the Semantic Header Name to locate
Semantic—-Header and update it. A response code will be sent to the client

indicating the status of the update process.

The client informs the user by a popup window displaying appropriate message
based on the response code received from the server. The response codes and

the corresponding messages are as follows:

e Code 11: This Semantic-Header has been updated.

e Code 12: UserID/Password pair does not match. This Semantic-Header
cannot be updated (Figure 28).

e Code 100: Data transmission error occurred. Please try later.

The Update button is disabled when a new Semantic-Header is being entered.

74

W] £rror Message

Figure 29: Error message: Cannot delete SH

Delete

The Delete push button is to remove a Semantic-Header from the system. A

Semantic-Header cannot be deleted if it contains other viewer’s annotations.

To delete a Semantic-Header, the user has to enter an UserID/Password pair
that matches the pair entered when the Semantic-Header was registered. When this
button is pressed, the corresponding callback function will be involved. The callback

function perform the following operations:

1. The client program sends the Semantic—Header Name to the server.

o

The server delete the Semantic—-Header: The Semantic Header Delete function
at the semantic header database uses the Semantic Header Name to locate
Semantic-Header and delete it. A response code will be sent to the client

indicating the status of the deletion process.

3. The client informs the user by a popup window displaying appropriate message
based on the response code received from the server. The response codes and

the corresponding messages are as follows:

e Code 21: This Semantic-Header has been deleted.

e Code 22: UserID/Password pair does not match. This Semantic-Header

cannot be deleted.

75

e Code 23: This Semantic-Header does not exist in the database.

e Code 24: Annotation exists for this Semantic-Header. It cannot be deleted
(Figure 29).

e Code 100: Data transmission error occurred. Please try later.

The Delete button is disabled when the user enter a new Semantic-Header.

76

Chapter 4
Search Sub—system

The Search Sub-system incorporates the expertise used by the typical reference librar-
ian. This expertise guides the user in entering the various search items in a graphical
user interface. The query from the user could be Anown or Unknown. Known implies
that the user knows the exact title, author, or identifier of the resource. Unknown
implies that the user may have at most a vague knowledge of the subject, title, au-

thor. or identifier of the resources.

The overall design of the graphical user interface of the search sub-system is
shown in Figure 30. The search query entry area contains the following blocks/fields:
title/alt-title, subject, author/other agents, identifier, keywords. date range. lan-
guage, version, max hits, and words in abstract. The user has options to search by
the following key terms: title, subject, author, keywords, or words in abstract. He
can also search by the combination of two or more key terms. The user can select an
associate radio button (Ezact, Substr/noncase, or Like) for title, author, and identifier
to focus the search. For repeatable entry blocks such as subject. author, identifier.
and keyword, the user can express the query entry in mathematical Infiz format by
using radio buttons And and Or as well as push buttons Prev, Nezt, open bracket ’(’,
and close bracket °)’. Detail discussion about these buttons will be given in Section
4.3. We provide context—sensitive help for subject entry and pulldown menu selection
for identifier domain entry and language entry. The user can also retrieve document
published within a period of time by specifying the posted date of the documents
that are After and/or Before a specific date.

77

X Cindi: Semantic Header Entry

Title/Alt-title [P g,,af,,‘;‘,‘;gy
Exact o Substr/nW Commerce
== Communicati
Gene | Computer Sci¢
Sub-level]
Subject LSub-levcl2§LL\m] gomputcr ép—
Total Entry [Clitrent Entry M | omputer Sy
- Hardware
O And O or [Py ~[Ne— (] T Imformation.
|~ Sofwre Engin
Author/ N L \] e
Other Agents ame o
< Exact Organization| 1| T~IDambase Ma
O Substnoncase Towl Enwy [| Current Entry |Refation [~—_ | Effonnat@on
N ormation
< Like O and O or [Prev] [Next] 1D \ Online Info
Identifier T] Physical Desi
< Exact Domai Value TP
O Substrimonc m:w Relation [] ISBN
O And © Or [Prev] [Mext] O] Gopher
] H'[Erp
L 1 SHN
Keywords | val Entry [] Current Eny [] Relation []
O and Oor [Pev] [Fext] [O
Created/Post Date After
(YYYY/MM/DD)
Before | S S Arabic
- Chinese
[Canguageff=———"_J[Version |[| [MaxDisplay | | ! English
Words in Abstractl N garsx h
(comma seperated | Frenc
(] B

Figure 30: Search Interface: Design

78

Once the user has entered a search request, the client process communicates
with the nearest SHDDB catalogue to determine the appropriate site of the SHDDB
database. Subsequently, the client process communicates with this database and re-
trieves one or more Semantic~Headers. The results of the query can then be collected
and sent to the user’s workstation. The contents of these headers are displayed. on
demand. If the user can access one or more of the actual on-line resources by connect-
ing to a browser, currently connecting to Netscape browser is implemented. It may
happen that the item in question may be available from a number of sources. In such
a case the most cost effective choice may be selected. The client process attempts to

use appropriate hardware/software to retrieve the selected resources.

4.1 Search Query Structure

4.1.1 Query Structure

After the user has entered the query via the GUI, the query information must be
formatted, and sent through the client to the server. Consequently, both the client
and the server must agree on the same grammar. Our search query format is similar
to that of the Semantic-Header’s. Each entry value or block begins and ends with a

tag. The search query grammar written in BNF [GM86] is as follows:

search := “<search>" content “</search>"
content := current_block_no max return_result title title_status
list_subject list_author list identifier list keyword

date_after date_before language version word.in_abstract

current_block._no := “<blockno>" 1|2|3[... “</blockno>"
maxreturn_result := “<nosh>" 10/20|50/100 “</nosh>"
title = “<title>" L. f</title>"
title status = f<sts>T L “< [sts>T
list_subject := “<subject>" subject.item™ “</subject>”
subject_item := general sublevell sublevel2 operator bracket num_of_bracket
general := “<general>" ... “</general>"
sublevell 1= “<sublevell>" ... “</sublevell>"
sublevel2 1= “<sublevel2>" ... *</sublevel2>"
operator 1= “<oper>" ... “</oper>"
bracket = “<brck>" [...] “</brek>"
num.of _bracket := “<brckN>" ... “</brckN>"
list_author := “<author>" author_item™® “</author>"
author_item := name organization operator bracket num_of_bracket

author_status

name = “<aname>" [...] “</aname>"
organization = “<aorg>" [...] “</aorg>"
operator 1= “<oper>" ... “</oper>"
bracket = “<brck>" [...] “</brck>"
num_of_bracket := “<brckN>" ... “</brckN>"

79

author_status
identifier

iden_item

domain

value
operator
bracket
num_.of_bracket
iden _status
list keyword
keyword item
keyword
operator
bracket
num _of_bracket
date_after
date_before
language
version

word_in_abstract

= C<sts>T L < [sts>T

:= “<identifier>" iden.item*“</identifier>"

:= domain value operator bracket num_of_bracket

iden_status

:= “<iden-domain>" [FTP|ISBN|ISSN
|Gopher|HTTP|ULC|USA|ULN)]
“</iden-domain>"

:= “<iden-value>” [...] “</iden-value>"

= “<oper>" ... “</oper>"
= “<brck>" [...] “</brck>"
:= “<brckN>" ... “</brckN>”
= “<sts>T L < fsts>T

= “<kw>" keyword item* “</kw>"
:= keyword operator bracket num_of_bracket

:= “<keyword>" [...] “</keyword>"

“<oper>” ... “</oper>"
“<brck>" [...] “</brck>"

:= “<brckN>" ... “</brckN>"
“<dateAft>" [...] “</dateAft>"
= “<dateBef>" [...] “</dateBef>"

i

:= “<languag>" ... “</language>"
1= “<version>" ... “</version>"
:= “<abstract>" ... “</abstract>"

4.1.2 Description of the Structure

A search query begins with the tag <search> and ends with the tag </search>. The
content of the search query contains currently desired block. the maximum number
of search hits returned, the title, a list of subjects, a list of author/other agents, a list
of identifiers, a list of keywords, date after, date before, language, version, and word

in abstract. For standardization purpose, we tag every field of the search query.

¢ Maximum number of hits to be returned is tagged by <nosh> and </nosh>

which indicates the number of matching Semantic-Headers the user wants the

80

SHDB system to return. From the user interface, the user has the option of

selecting 10, 20, 50, 100. The default number of hits to be returned is 10.

The current block desired is tagged by <blockno> and </blockno>. This field
is used by the server for searching purpose only. The user are not aware of
the current block number, but he/she can view the previous or next block of
Semantic-Headers by pressing the Prev Block or Next Block push buttons
on the interface respectively. Based on the current block wanted and the num-
ber of hits to be returned, the search system at the SHDB will decide which
matching Semantic-Headers should be returned to the user. The matching
Semantic-Headers are sorted by their titles in ascending order and are num-
bered as 1, 2, 3 etc. The SHDB uses the following formula to determine which
Semantic-Header should be sent back to the user. The Semantic-Headers re-

turned would be number S to E, where
S = (current block -1) * (max number of SH to be displayed) + 1
E = (current block) * (max number of SH to be displayed)

Suppose the maximum number of hits is 10 and total number of search hits is 25.
If the current block wanted is 1, the system will return Semantic-Header num-
bers 1 to 10; if the current block wanted is 2, the system will return Semantic-

Header numbers 11 to 20 etc.

The Title block contains two fields. The first field is the title itself, which is
tagged by <title> and < /title>. The second field is the status of the entered
title, which is tagged by <sts> and </sts>. Possible values for status could be
‘e’, ’s’, or 'I'. The meaning of the these values are: ’e’ — exact entry, the user
is sure about the Semantic-Header’s title; 's’ — substring entry, the user is not
sure about the title of the Semantic~-Header and gives only a sub-string of the

title; ‘I’ - vague entry, the user gives only something similar to the actual title.

The Subject block is repeatable. It contains fields for general, sublevell, sub-
level2, operator, bracket, and number of brackets. Each subject level is also

enclosed by tags and contains either an empty string or a standard subject

31

term, which would be looked-up from the Catalog Database. The operator is
tagged by <oper> and </oper>. The value for the operator is either ’|’ (logical
OR) or &’ (logical AND), which indicates the logical relationship between the
current subject_item and the next subject_item if there is any. The bracket field
is tagged by <brck> and </brck>. The bracket value could be an open bracket
'(°, close bracket ’)’ or space. The number of brackets is tagged by <brckN>
and </brckN>. It indicates the number of open brackets or close brackets. In

the case of space for bracket, this field is ignored.

The Author block is repeatable. Each author_item contains fields for name,
organization, operator, bracket, number of brackets and author status six fields.
Tagged by <aname> and </aname>, the name field is the author’s name.
Organization, tagged by <aorg> and </aorg>. is the author’s organization or
the organization that posted the Semantic~Header sought. The author_status

tagged by <sts> and </sts> could be ’e’, ’s’, or 'I’.

The Identifier block is also repeatable. Each identifier item contains fields for
domain, value, operator, bracket, number of bracket, and identifier status six
fields. Domain is the standard identifier of a Semantic-Header, which could
be selected from a popup menu. Value is the value of the given domain. The

!

iden_status tagged by <sts> and </sts> could be ’e’, ’s’.

The Keywords block is repeatable. Each keyword item contains fields for the

keyword, operator, bracket, and number of brackets.

The field Date after indicates that the user seeks Semantic—-Headers created

or posted after the specified date.

The field Date before indicates that the user seeks Semantic—-Headers created

or posted before the specified date.

The field language indicates that the user seeks Semantic-Headers written in

the specified language.

The field Version indicates that the user wants the specified version of a

Semantic-Headers.

e The field Word in abstract indicates that the user seeks Semantic-Headers

with the specified word in their abstract.

4.1.3 An Example

Here is an example of the search query formulation.

<search>

<blockno> 1 </blockno>

<nosh> 10 </nosh>

<title> search </title>

<sts> s </[sts>

<subject>

<general> computer science </general>
<sublevell> information systems </sublevell>
<sublevel2> search process < /sublevel2>
<oper> </oper>

<brck> < /brek>

<brckN> 0 </brckN>

</subject>

<author>

<sts> s </sts>

<aname> desai </aname>

<aorg> concordia university </aorg>
<oper> & </oper>

<breck> (</brck>

<brckN> 1 </brckN>

<sts> s </sts>

<aname> shighal </aname>

<aorg> concordia university </aorg>
<oper> </oper>

<brck>) </brck>

<brckN> 1 </brckN>

< /author>

83

<identifier>

<sts> </sts>

<iden-domain> </iden-domain>
<iden-value> </iden-value>
<oper> </oper>

<brck> </brck>

<brckN> </brckN>

< /identifier>

<kw>

<keyword> information technology </keyword>
<oper> | </oper>

<brck> </brck>

<brckN> </brckN>

<keyword> hypermedia </keyword>
<oper> </oper>

<brck> </brck>

<brckN> </brckN>

</kw>

<dateAft> 199//01/01 </dateAft>
<dateBef> </dateBef>

<languag> Fnglish </language>
<version> </version>

<abstract> </abstract>

< /[search>

According to this query, the user wishes Semantic-Headers with search as a sub-
string of their titles. These Semantic-Headers would in the subject of computer
science as general level, information systems as sub-levell, and search process
as sub—level2; having keywords: information technology OR hypermedia; the
authors of the resources should be desai and shinghal at concordia university; posted
after 1994/01/01 and written in the English language.

84

4.2 Expert Assistance for Searching

The guiding principle in the design of the search system is the model of a human
reference librarian. S/he is called on to help in identifying the best sources of infor-
mation for a given purpose and to aid in the selection of material to meet a particular
interest or need. The reference librarian seeks a response to a query by using informa-
tion derived from bibliographic search processed through the librarians own expertise
and knowledge of the relevant subject. In addition, users of a library have access to
the same bibliographic indices and many information databases and can use these to

select relevant titles or weed out irrelevant ones.

The expert system should not be a significant overhead. Thus, we were considered
to keep the expert system small. Though several expert system shells such as CLIPS
[GRI3] facilitate knowledge engineering and rule encoding, they incurred a significant
overhead when integrated into our overall system owing to the following reasons

[CSDR]:

e The expert system shell had to be embedded in the overall system because rule
firings are controlled only by the inference engine. This increased the size of

the overall system.

e The inference overhead was at times unacceptable. For example, for every rule
firing, if a system such as CLIPS were used, its inference engine would recompute

the set of rules that can fire.

e The working memory of an expert system directly affects its performance. Typ-
ically, several hundred objects can qualify as targets by a search query. These
intermediate findings are needed since a user may wish to pursue the documents
discovered by a subset of the query parameters. If this information accumulates
in the working memory, the performance of the expert system slows down. This
adds to the size of the rule base, because we also need additional “clean up”
rules to periodically clean the working memory from unwanted or outdated

information.

e Input entered by a user and stored in data structures should be converted into

appropriate formats for insertion into the working memory before the rules

85

can fire. Later, rule inferences in the form of atoms should be parsed and
mapped back into data structures. This increases the development effort, and

the overhead of using the expert system.

e A rule application context will be exercised using a rule (or, a set of rules)
instead of putting all rules in a rule base. This will improve the performance of

the system.

Once the rules were designed, we encoded them directly as C functions, thus im-
plicitly implementing the interface engine as part of the system. This also avoided the
overhead of embedding an external shell into our overall system. Using this approach.
the skill of a reference librarian was distributed throughout the system rather than
centralized in one place. This improved performance, because only a small number

of rules fired at any time.

A specific search and search type query may require the user to peruse a num-
ber of titles and select from among them. This type of query involves users who
have fuzzy notions of their needs and whose questions are often vague [DS96]. They

involve a certain amount of trial and error in the retrieval and browsing of documents.

In the current search system, we incorporate the elementary expertise used by a
reference librarian. Reference librarians are aware of the conventions used by cata-
loging librarians. They are conversant with the classification schemes, terms, indices,
structures, and resources available for a user’s particular need. The expertise of the
librarians should be replicated to assist the users of our application in discovery.
This expertise will guide the user in entering the various search items in a graphical
user interface similar to the one used by the registering sub-system (Figure 6). The
appearance of the interface is shown in Figure 31. The expert search sub-system
requires the expertise of a reference librarian to be built into help users formulate
queries and launch these queries. The system was designed so that its query for doc-
ument search facilitates efficient database access, and reduces the number of incorrect

results generated. This requires several aspects to be considered as part of its function

[CSDR].

86

AT 2P

N Cindi: Search Entry for Semantic Header

Title’Alt-title

Figure 31: Search Interface: Screen dump

(004}
-1

4.2.1 Subject Entry

The user can seek pertinent information source by subject. Since the user is often
not familiar with subject classification, the expert system provides context—sensitive
help for entering the subject hierarchy entry. The ideas are the same as those pre-
sented in Section 3.2. For simplicity, we also make the subject fields ineditable in our
current version of implementation. The user must rely on the context—sensitive help

to complete the subject entry.

Since the user may not know exactly which subject he is looking for, we provide
multiple entry for this block. The user can enter more than one subject hierarchies
for his search query. The relationship among the entries is connected by logical AND

or OR. They are formatted in mathematical Infix format.

4.2.2 Vague Search Entry

When the user makes search by title, author, or identifier, he may not know the
exact title, the full author name or identifier values. For example, the system aids
the user in completing a given field entry based on the contents of the other search
fields. We provide radio buttons for most of the search entry fields. They are Exact,
Substr/nocase and Like. These provide disjoint options for users to specify their
query precisely and hence to minimize irrelevant information returned to the user.
These radio buttons allow the user to specify the level of confidence of the current
entry. They take effects only when the user enters a non-empty string in the field

corresponding to the buttons. The default value is Exact.

Exact

The Exact radio button specifies the current entry should match exactly in the

Semantic-Header on the target set:

o Selecting Exact for Title/Alt—title entry means the user want to view Semantic—

Headers having exactly the title entered.

e Selecting Exact for Author/Other Agents entry means the user wants to

view Semantic-Headers having the author Name/Organization entered.

88

e Selecting Exact for Identifier entry means the user wants to view the Semantic-

Header with matching identifier entered in the field.

Substr/noncase

The Substr/noncase radio button specifies the current entry is a sub—string (case

non-sensitive) of the corresponding field of the target Semantic-Headers:

e Selecting Substr/noncase for Title/Alt—title entry means the system should
return all Semantic—Headers with a title or an alt—title which contains the sub-

string entered in the title/alt-title field.

o Selecting Substr/noncase for Author/Other Agents entry means the sys-
tem should return all Semantic-Headers with the Name/Organization fields

which has the entered sub-string.

e Selecting Substr/noncase for Identifier entry means the system should return
all Semantic-Headers having the value entered as a sub-string for the domain

identifier.

Like

The Like radio button specifies the current entry is similar to the corresponding field
of the Semantic—-Headers wanted. Rules for Like have not been implemented in the

current version.

e Selecting Like for Title/Alt—title entry means the user wants the system to
return all Semantic-Headers with a title/alt-title similar to the search string
entered in the Title/Alt—title field.

o Selecting Like for Author/Other Agents entry means the user wants the
system to return all Semantic-Headers with Authors’ name/organization similar

to the search string in this field.

4.2.3 Query Entry for Repeatable Fields

In the search interface, we provide multiple entries for the subject hierarchy entry,

author/other agents entry, identifier entry, and keywords entry. To accommodate

89

multiple entries for a block, we provide radio buttons, And and Or, as well as
push buttons Prev, Next, open bracket “(%, close bracket *)*, and delete bracket

operator (-). The significant of each buttons is described as follows:

“And” and “Or” Radio Buttons

And and Or radio buttons represent logical operators AND and OR respectively.
They are used to specify the logical relationship between the current entry of a block
and the next entry of the same block. The operator AND has a higher priority than
OR.

Prev and Next

The Prev push button allows the user to view or modify the previous entry of a
block and The Next push button allows the user to view or modify the next entry
of a block. To proceed to the previous or next entry, The same conditions as those

stated in Section 3.3.3 applies.

?(” push button

The ”(” push button allows the user to enter open bracket for the query expression.
Each time this button is selected, an open bracket is added to the expression for the

current block entry.

7)” push button

The ”)” push button allow the user to enter close brackets for the query expression.
Each time the user select this button. a close bracket is added to the expression for
the current block entry. If the current entry is the first entry, this button will be

inactive.

(-) push button

The (-) push button allows the user to remove an open or a close bracket from the
query expression. Each time this button is selected, a bracket is remove from the

expression for the block unless there is no more bracket left for the current entry.

90

4.2.4 Infix Query Expression

The expert system interprets the user’s multiple entries of a block into a mathematical
Infix expression, so that the user can view the relationship among his entries. The
Infix expression is displayed in the box labelled with Relation for each repeatable
entry block in the form of “(A and B) or (C and D)”. Where A, B, C, D represent
the entries. "and” and "or” are the logical operators AND and OR respectively. The
open and close brackets are added by pressing the ”(” and ”)” push buttons . The
box labelled with Total Entry display the total number of entry for that block. The

box labelled with Current Entry display the sequence number of the current entry.

How to Enter an Expression?

Here is an example showing how to enter a simple query for repeatable entry block.

Suppose the user wants to search for Semantic-Headers for resources writ-

ten by “John Smith” or written by both “Larry Tom” and “Fled Boyal”.
The sequences of the entry could be:
1. Enter “John Smith” in the author Name field.
2. Select radio button Or.

3. Select push button Next. Now the Total Entry field will display “1”; the
Current Entry field will display “2”, and the Relation field will display “A”.

4. Enter “Larry Tom” in the author Name field.
3. Select radio button And

6. Select push button Next. Now the Total Entry field will display “2”; the
Current Entry field will display “3”, and the Relation field will display “A or
B”.

7. Enter “Fled Boyal” in the author Name field.

If you select then Next or Prev push button, the Total Entry field will display “3”
and the Relation field will display “A or B and C”. the expression “A or B and C”

91

therefore represents “John Smith OR Larry Tom AND Fled Boyal”.

To enter a more complicated query, Open/close brackets must be used. Here is

another example.

Suppose the user want to search for Semantic-Headers for resources writ-
ten by both “John Smith” and “Kim Chi” or written by both “Larry Tom”
and “Fled Boyal”.

The sequences of the entry could be:

1.

2.

Ut

~1

10.

11.

12.

13.

Select push button 7 (7.
Enter “John Smith” in the author Name field.
Select radio button And

Select push button Next. Now the Total Entry field will display “17; the
Current Entry field will display “2”, and the Relation field will display “(A”.

Enter “Kim Chi” in the author Name field.
Select push button ”)”.
Select radio button Or.

Select push button NNext. Now the Total Entry field will display “2”; the
Current Entry field will display “3”, and the Relation field will display “(A and
B) or”.

Select push button ”(”.
Enter “Larry Tom” in the author Name field.
Select radio button And

Select push button Next. Now the Total Entry field will display “37; the
Current Entry field will display “4”, and the Relation field will display “(A and
B) and (C”.

Enter “Fled Boyal” in the author Name field.

92

14. Select push button ”)”.

To see the completed expression, just select Next or Prev push button. Once
this is done the Total Entry field will display “4” and the Relation field will display
“(A and B) and (C and D)”. The expression “(A and B) and (C and D)” represents
“(John Smith AND Kim Chi) OR (Larry Tom AND Fled Boyal)”.

To change from open bracket to close bracket or vise versa, requires the removal

of the current bracket until there is only one bracket left.

93

4.2.5 Validation of the Search Query

The composition of a search would involve formulating a search query based on the
current value of the fields entered. The result of the query would be a set of seman-
tic headers, possibly empty, matching the user search request. Before formulating
a search query, however, additional checking is made. This is typical of the way a
reference librarian would proceed to focus his/her search to identify a smaller number
of documents; for example, asking the user to enter author information. title infor-
mation, performing spelling correction, phonetic checks, and input checks such as

mismatched brackets entry, etc.

Error Message

Figure 32: Error message: Search query checking - 1

When the Search push button is pressed, the system performs the following:

1. Validate the search query entry
The query entered through the graphical user interface must be validated before
it can be sent to the SHDB server for search. Two things are to be validated.
The system check to make sure that at least one of the key terms has been
entered (title, subject, author/other agent, keyword, identifier, and word in
abstract). If none of the above is given, Error messages (Figure 32) is displayed.
The system also checks to ensure that the brackets expressing a logical predicate

for repeatable fields are properly matched. If there is a bracket mismatch, a

94

Figure 33: Error message: Search query checking - 2

popup window will appear (Figure 33). The user must correct the problem

before the search process can proceed.

The client program sends the valid query string to the server

As mentioned in Chapter 2, our system is a client—server application. Once
the Search button is pressed and the search query has been verified. the client
program will format the query and sends it to the server. The communication
protocol is TCP/IP. The client will be initiated by the callback function of the

Search button. The server is the Semantic—Header database server.

Checks the results returned by the server.

If the result of the search query is 0 semantic header, then a a message . No
document matches to your query were found, is displayed (Figure 34). If some
Semantic-Headers are found for the query, a popup window appears displaying
a list of the titles for the matching Semantic—Headers. The user is allowed to
pick a subset of the retrieved documents for display of its full Semantic-Header

one by one as outlined in Section 4.3.

95

Figure 34: Error message: Search query checking - 2

96

4.3 Viewing the Semantic—Header

4.3.1 Overview

Depending on how many Semantic-Headers were matched for a search query. the
svstem popups a window to display Semantic-Headers titles for the first block of the

matched Semantic-Headers (Figure 35).

5 oo

Search for Semant
S0 s

Figure 33: Search result popup: a list of titles

Figure 33 presents the result of a search by author name. The string entered for
Author Name is Desai and Substr/noncase is selected. Since the block size is
10. only the titles for Semantic-Header numbers 1 to 10 is displayed. To view the
titles of Semantic-Header numbers 11 to 20. just select the push button Next Block.
And to view the titles for Semantic-Header numbers 1 to 10 again. just select push
button Prev Block. Selecting Dismiss will remove the popup window. On Figure

35, the Prev Block button is inactive. This is because the current block is the first

97

block. Similarly, if the current block is the last block, the Next Block button will

be inactive.

To view a complete Semantic—Header, simply click on the title for that Semantic—
Header from the the title list in the pop up window. When this is done, the corre-
sponding Semantic-Header will be displayed in the display window (Figures 36, 37,38,
39).

A Semantic Header Access Counter (SHAC) is kept along with the Semantic-
Header to record the number of accesses to the Semantic-Header by users. Once the

user views the complete semantic header, the SHAC will be increased by one.

4.3.2 Action Buttons of Displaying Windows
Next

The Next push button allows the user to view the next Semantic—Header. One can
also view any other Semantic-Headers by clicking on the specific Semantic—Header

title in Figure 35.

Prev

The Prev push button allows the user to view the previous Semantic-Header. One
can also view any other Semantic-Headers by clicking on the specific Semantic-Header

title in Figure 35.

Access

The Access push button allows the user to read the actual resource associate with the
current Semantic-Header. When this button is pressed, Netscape browser is involved

to display the actual resource. Please refer to section 4.3.3 for more details.

Annotate

The Annotate push button will tell the user how to add annotation to the cur-
rent Semantic-Header. One have to save the current Semantic~Header then run the

Annotation program to add annotations. Please refer to Chapter 5 for more details.

98

Save

The Save push button allows the user to save the current Semantic-Header in a file.
A file selection window will popup for selecting a file name or accept a new file name

(Figure 21, with Save File as it title).

Note: in order to modify the Semantic—Header or add annotation to the Semantic—

Header, one has to save the Semantic-Header first.

Exit

Pressing Exit push button will exit the display window.

99

X Cindi: Semantic Header Display

s

Alt-title:

[

Subject

Genenl
Sublevell
Sublevei2

Sublevell
Sublevel2

Author/QOther Agents:

Role:
Name:

Annotation:

Identifiers:

Domain:
Value:
Domain:
Value:

Classification:

Domain:
Value:
Domain:
Value:

Coverage:

Domain:
Value:
Domain:
Value:

System Requirement:

Component
Exigance:
Component
Exigance:

Genre:

Form:
Sizex
Form:
Size

Source/Reference:

Relation :
Domain [dentifier:
Relation :
Domain [dentifier:

Miscellaneous:

Language:
Character Set:
Date Created:
Expiry Date:

Prev || Access!{ Annotate]|

[Next |

Save || Exit |

Figure 36: Display SH interface: Overall design

100

i R0 S oo TSR R

Cindi-Semantic Header Dispiay

Figure 37: Viewing a Semantic-Header: Page 1

101

R 54365093 4964947

" FoR2r 5
AR 2
RIS TR NT ORR

Figure 338: Viewing a Semantic—Header: Page

102

% R

it

e

Figure 39: Viewing a Semantic-Header: Page 3

103

4.3.3 Viewing the Actual Resource

As mentioned above, to view the actual resource for the current Semantic-Header,
one need to press the Access push button in the display window. A user can access
the actual resource only if the selected item for access has an identifier which allows

on-line access via a browser such as Netscape where it is used to display the resource.

Starting a Netscape Session

In the current version of our system, Netscape is used as the browser to display the
actual resources. If a Netscape Navigator is not running on the user’s machine, the
callback function for Access will fork a process. There would be then two processes,
the parent process and the child process. The parent process, the search system, can
continue with what it is doing. The child process will start a Netscape session and

pass along the identifier of the resource. This is accomplished by the statement.

” N

(1) execlp("netscape”,”’netscape”, on-line-identifier—string, (char *) 0);

where “on-line-identifier-string” is the identifier of the resource.

Remote Control of a Netscape Session

Usually, the user does not want more that one Netscape process running on his
machine. So remote control of the running Netscape process is necessary. In order to
speak the remote control protocol directly, via X property changes, we adapted the
protocol proposed by Jamie Zawinski [Zaw96]. We now can simply invoke Netscape

by the following statement:
(2) netscape-remote -nonraise -remote 'openURL (on-line-identifier-string)’

When Netscape Navigator is invoked with the above statement, it does not open
a Netscape window, but instead connects to and controls an already-existing pro-
cess. The existing Netscape process accesses the resource using the identifier of the

resource, “on-line-identifier-string”, passed as the argument of openURL().

104

Statement (1) start a Netscape process. Statement (2) remote controls an existing
Netscape process. This ensures that there is one and only one Netscape process is

running at the user’s workstation.

After Netscape is begun, the user may wish to exit from or kill the Netscape pro-
cess and want to access it again later. The question is can another Netscape process
start? The answer is yes! This is done by using “signal trap”. The idea is as fol-
lows. We fork the main process, and in the child do an execlp to start Netscape and
set “netscape_running” global variable to true in the parent process. We also setup
a signal trap in the parent process that would catch any SIGCHLD from the child
process. The signal trap function will set the “netscape_running” global variable to
false. When the Netscape child process ends then a SIGCHLD signal will be sent to

the parent process [Lea94]. The “netscape_running” global variable to false.

If the user presses Access push button, the associate callback function will check
the “netscape_running” global variable, statement (1) is involved if “netscape_running”
is false. Otherwise statement (2) will be involved.

Figure 40 is an example of calling netscape when the identifier is:

“http://www.cs.concordia.ca/w3-paper.html.“

Increasing the Resource Access Counter

An Resource Access Counter (RAC) is kept along with the Semantic—-Header to record
the number of accesses to the associated actual source resource by users. Once a

document is accessed, the RAC will be increased by one.

105

Figure 40: Access actual resource: An Example

106

Chapter 5

Annotation Sub—system

5.1 Overview

The research community depends on peer review of documents submitted for pub-
lication. Such review or annotation is often not published. However, comments to
the editor made by readers of journals are usually published and are accessible to the
community. Since many of the resources on the Internet tend not to be reviewed, it
would be beneficial for a user to have access to annotations made by other users for a
given resource. The proposed system allows users to add annotations to an existing

resource. These annotations are stored along with the index in the SHDDB [DS96].

The annotation sub-system is similar to the indexing subsystem. However, only
a few of the indexing entries that uniquely identify the resource in question are re-
quired. An annotation made by any user can be entered and would be registered with
the identity of the user. Each annotation could be incorporated in the index entry
and could be retrieved with the index. Such annotations by recognized persons would

be a valuable guide for future users.
Peer reviews of electronically submitted papers could be implemented using such
annotations. Authentication of reviews has to be done by an appropriate editorial

board.

The graphical user interface of the annotation sub—system is shown in Figure 41.

107

Figure 11: Graphical User Interface: Annotation

108

To avoid non-serious entries to the annotation by unscrupulous readers, we have
separated the annotation entry from the Search Sub—system. In order to add anno-
tation, the user has to save the Semantic-Header when viewing the Semantic-Header
in the search sub—system. It is expected that the user actually access the resource
corresponding to the Semantic—Header. If the user decides to make an annotation, he
loads the saved Semantic-Header from local file system by pressing Load SH push

button in the Annotation form.

The newly entered annotations together with the annotator’s information as well
as his login name and host name will be concatenated to the existing annotations
when the annotator register his annotations. The components of Annotation user

interface are described below.

5.1.1 Semantic—Header Name

The Semantic-Header Name block uniquely identifies a Semantic-Header. It is com-
posed of the title, the first author’s role, the first author’s name, the first author’s
organization, the first subject, the date created, and the version number. The SHDB
server will use the Semantic-Header Name to locate the Semantic-Header and append

the new annotation to the existing one.

5.1.2 Annotator’s Information
Annotator’s information includes the annotator’s name, organization, address, phone

number, fax number, and email address.

For reference purpose and to associate a person with an annotation, we require
annotator’s information to be entered. Name and Address are require fields. The rest

are optional.

109

: b4 Erro:j Message

Figure 12: Annotation error checking popupl
5.2 Functionalities of Action Buttons

5.2.1 Loading a Semantic-Header

The Load SH push button allows the user to load a Semantic-Header into the
annotation interface. A file selection window (Figure 21} will popup to allow the
user to enter or select a file name. Only a Semantic-Header file can be loaded into
the annotation interface. After loading the file. the Semantic~-Header Name and the

existing annotation is displayved. The Register button is enabled.

5.2.2 Register the Annotation

The client/server mechanism is used to register the annotation in the Semantic Header

Database. When the Register button is pressed. two things are checked:

1. It ensure that the annotator’s name and address are provided. If not. an error

message is displaved (Figure 42).

2. The syvstem verifies if the annotator's name entered is identical to the user’s
login full name. If not. a warning message will be given (Figure 43). There

are two push buttons in this warning message window as shown in Figure 43:

110

MR AL

Figure 4+3: Annotation error checking popup?2

Ok and Cancel. If one

selects Cancel. the annotation will not be registered.

Otherwise. it is registered. If the annotator’s name entered is identical to the

user’s login full name. the annotation will be registered without warning.

111

Chapter 6

Summary and Future Work

6.1 Summary

Current indexing systems are based on harvesting a network of virtual libraries for
new documents. Such documents are retrieved and their contents used to provide
terms for the index. The big disadvantage with this scheme is the unreliability of the
index entries produced and the lack of an authentic abstract for the item. Current
index schemes are relevant for resources of limited protocols and are not applicable
to other resources. Another problem with some of the robot-based approaches is the
unnecessary traffic on the network and lack of cooperation and sharing among differ-
ent systems. Finally, the in-feasibility of the existing approach become clear as more

and more providers of information would require payment.

CINDI, an Indexing and Searching System On the Internet, is an ongoing project
developed at Concordia University under the supervision of Dr. Desai. Its main goal
is to develop a system that enables any user to find the location of any hypermedia

document on the Internet.

To improve the efficacy of search, we have used a Semantic—Header: a data struc-
ture to record the metadata of network resources. Provided by the author/creator of
the resource, it not only indicates the contents of the document and provides some

vital extrinsic attributes, but also helps in indexing and locating the document.

The proposed system, CINDI, presented in this thesis is an attempt to tackle these
problems from two viewpoints: from the point of view of the supplier of on-line infor-
mation and from that of the "naive” user. The supplier of information must describe
the information resource in a standard format. The user will use simple search terms

to look for a particular resource and does not want to go from one catalog to another.

The supplier prepares the index information. Consequently, such index entry
would be more reliable than the one derived by a third party or by simply scanning
a document. The presence of an abstract in the Semantic—Header allows the con-
tributor of the document to highlight the nature of the subject. Such a summary
in the index allows users to make better decisions regarding the relevance of the re-
source. We have designed and implemented a graphical user interface for entering
this information. Subject entry is guided by an expert system engine that controls
the terms used to describe the subject. The expert system here mimics the expertise
of a cataloguer. Terms such as Identifier domain, Language, Classification domain,

Coverage domain etc. can be selected from popup menus.

For the user, we have designed and implemented a graphical user interface for
the search sub-system. Subject entry is also guided by an expert system engine that
controls the terms used to describe the subject. The expert system here would mimic

the expertise of a reference librarian.

Users can also express their points of view in the form of annotation through the

annotation sub-system.

6.2 Contribution of this Thesis to CINDI

The contributions made by this thesis fall into three categories: the architectual design
of the CINDI system, the design and implementation of graphical user interface,
and the design and implementation of the client part of the expert system. These

contributions are listed as follows:
e Overall design: CINDI is divided into five sub-systems (Section 2.5).

e The design and implementation of the indexing/registering sub-system

113

The design and implementation of the search sub-system, which includes the
query entry interface, the Semantic-Header displaying interface, and the inter-

face between CINDI and Netscape browser.
The design and implementation of the annotation sub-system.

Proposition and implementation of the rules for the context—sensitive help for

subject hierarchy entry.

Implementation of mathematical Infix expression for a repeatable query entry
block.

6.3 Future Work

For the CINDI project, we have already built the basic components of our system.

The following are suggestions for future work on the current implementation of the
CINDI system.

6.3.1 Implementing the Fuzzy Search

As we notice from the search interface (Figure 31), we have the radio button Like

for title entry and author/other agents entry. Two additional things need to be done

for this feature.

1.

o

Develop the rules for Like. When the user selects Like, he/she is not sure
about the string entered. The user only enter something similar to what he/she
seeks. [t is necessary to clearly specify all rules for this or elicit the information

from the user.

. Once the rules are specified, the expert system can be implemented according to

these rules. The user will be able to search relevant information even though he
has at most vague idea about the title, author, and identifier about the target

resources. This is called the fuzzy search.

6.3.2 Extension of the Search Query

In our current search query entry, the values entered in different blocks are ANDed

together to execute the search. It would be a good idea to provide the user with

114

option of selecting AND or OR for the relationship of the values entered among the
entry blocks. The job is to be done by both the GUI and the server:the GUT allows
the user specify his options and the search engine at the semantic header database

server site execute the search base on the query entered.

6.3.3 Internationalizing the Application

The resources on the Internet are written in many languages other than English.
Internet users would no doubt like to have software applications in their native lan-

guage. The next step for the CINDI System should be internationalization.

The purpose of internationalization is to have an application that can run any-
where in the world and yet interact with the user in the user’s native language. The
major goal of internationalization is not to change the binary application to run in
a different country. The same executable program reconfigures itself under different
languages, called locales. To do this, all text messages must be separated. For this,
a separate set of localization for each target market is needed. The separate local-
ization data could be stored in a file or files external to the program. For instance,
there would be a set of localization files supporting the Chinese Language, a set of

localization files supporting the French Language., and so on.

6.3.4 Speeding up the Semantic—-Header entry process

Entering a Semantic—Header for a resource could be time consuming. To speed up
this process, one of the future work could be to develop a system to scan over the
resource and extract information such as the Title, Abstract, Keywords, Author info
etc. from the Semantic—-Header. The user can then load the auto—created Semantic—
Header into the Semantic-Header entry interface to modify it as necessary. This

project is actually underway.

6.3.5 Extension of Subject look—up

At the time of this writing, we limit our subject standard terms to computer science
only. A more general scheme should be used; for instance, based on the classification

of the Library of Congress to include all subjects. Since our subject hierarchy has

115

only three levels, a method should be introduced to suppress subjects with more than

three levels of hierarchy.

Synonym resolution also needs to be implemented. This includes building a syn-

onym database and implementing the look-up logic.

6.3.6 Building the SHDDB

CINDI was designed to have a Semantic-Header Distributed Database System (SHDDB)
1. At this time, we have built a centralized database. One of the major future work
will be the construction of the SHDDB. The database must be horizontally parti-

tioned [Des90] and partly redundant in order to allow reliability and failure-tolerance.

The distribution can be based on subject areas. The database on different subjects
will be maintained at different nodes of the Internet. The end users need not know the
distributed and replicated nature of the SHDDB. An expert system (central control
system) should be constructed to track the locations of different nodes. Whenever
there is a Semantic-Header to be registered or a search query to be processed, the
expert system should decide where the Semantic—Header should be stored or where

to find the answer for the search query.

The various sites of the database should work in a cooperating mode to maintain

consistency of the replicated portion.

6.3.7 Enhancing the On—line Help

On-line help help users better understand the system. Our current on-line help could

be extended for the following context:
e What is this and what is it for?
e Where am I ?
e Why did that happen?

e How do I do this?

116

e What can I do with this system?

The on-line help should be:
e Easy to use.
e Easy to find information.

e Allow easy switching between help and working context.

Consist of a simple interface.

Be laid out in a high-quality design.

Bibliography

[AGGL93]

[Ass95]

[AW94]

[BCL+94]

[Ber96|

[BGBGYS]

[Blu96]

[Boc94]

[Bro93]

Arlein, R., Gava, J., Gehani, N., and Lieuwen, D. Ode 4.1 User Manual.
AT&T Bell Laboratories, Murray Hill, New Jersey, 1995.

Association for Computing Machinery. The full computing classification

system. Computing Review, ACM Press, page 6. January 1995.

Antoniou, G. and Wachsmuth, I. Structuring and modules for knowledge
bases: Motivation for a new modul. Knowledge-based System, T(1):49-

71, 1994.

Berner-Lee, T., Cailliau, R., Luotonen, A., Nielsen, Frystyk H., and
Secret, A. The world wide web. Communication of the ACM, Vol.37,
No0.8:76-83, August 1994.

Berghel, Hal. The client’s side of the world-wide web. Communication
of the ACM, Vol.39, No.1:32-40, January 1996.

Baecker, Ronald, Grudin, Jonathan, Buxton, William A.S.. and Green-
berg, Saul. Human—Computer Interaction Toward the year 2000. Morgan
Kaufman Publishers, 2nd edition, 1995.

Bluestone Inc.
Uim/x. http://www.bluestone.com/products/catalog/prodcat_uimz.html,
1996.

Bochenski, B. . Implementing production-quality client/server systems.
New York: John Wiley & Sons, 1994.

Brody, H. Internet@crossroad. Technology Review, May/June 1995.

118

[Byr91]

[Car93]

[Cho94]

[Cro94]

[CSDR]

[Des90]

[Des93a]

[Des95b]

[Des95c¢]

[Des95d]

[DS94]

Byrne, D.J. MARC manual: understanding and using MARC record.
Libraries Unlimeted, Englewood, Colo, 1991.

Carl-Mitchell, Smoot. Practical internetworking with TCP/IP and
UNIX. Reading, Mass. : Addison-Wesley, 1993.

Chorafas, Dimitris N. Beyond LANs Client/Server Computing.
McGraw-Hill, 1994.

Cromwell, W. A new bibliographic standard. The Core Record: Library
Resources and Technical Services, 38(4):415-424, 1994.

Chander, P. G., Shinghal. R., Desai, Bipin C., and Radhakrishnan, T.
An expert system to aid cataloging and searching electronic documents
in digital libraries. Ezpert Systems with Applications. To appear in issue
12(4), June 1997.

Desai, Bipin C. An Introduction to Database Systems. West, St. Paul,
1990.

Desai, Bipin C. Indexing and searching virtual libraries.
http://www.hpcc.gov/cic/forum/White_Papers.html, July 1995.

Desai, Bipin C. Report on the metadata workshop, dublin,
oh. http://www.cs.concordia.ca/ faculty/bedesai/metadata/metadata-
workshop-report.html, March 1995.

Desai, Bipin C. The semantic header and indexing and searching on
the internet. http://www.cs.concordia.ca/ faculty/bedesai/cindi-system-
1.0.html, 1995.

Desai, Bipin C. Test: Internet indexing systems vs list of known urls.
http://www.cs.concordia.ca/ faculty/bedesai/test-of-indez-systems.html,
June 1995.

Desai, Bipin C. and Shinghal, Rajjan. A system for seamless search of dis-
tributed information sources. Attp://www.cs.concordia.ca/w3-paper.html,
May 1994.

119

[DS96]

[Dub96]

[FB93)

[Gay94]

[GF95]

[GMS86]

[Gol90]

[GR93]

[HF94]

[Hor86]

[JF90]

Desai, Bipin C. and Shinghal, R. Resource discovery: Modelling, cata-
loging, and searching. In Proceeding of the Seventh International Con-
ference and Workshop on Database and Ezpert Systems Applications
(DEXA’96), pages 70-75. IEEE Press, Zurich, Switzerland, 1996.

Dube, Alan C. Dis-
cussion about the open look gui. http://title.net/news/comp305.html,
1996.

Ferguson, Paula M. and Brennan, David. Motif Reference Manual, Vol-
ume 6B. O’Reilly & Associates, 1st edition, 1993.

Gaynor, E. Cataloging electronic texts: The university of virginia library
experience. Library Resources and Technical Services, 38(4):403-413,
1994.

Gettys, Jim and Frystyk, Henrik Nielsen. Http - hypertex transfer pro-
tocol. http://www.w3.org/pub/WWW/Protocols/QOverview.html, 1995.

Gehani,Narain and McGettrick, Andrew. Software specification tech-
niques. Workingham, England ; Reading, Mass. : Addison-Wesley, 1986.

Goldfarb, Charles F. The SGML Handbook. Oxford University Press,
1990.

Giarratano, J. and Riley, G. Ezpert Systems: Principles and Program-
ming. PWS Publishing Company, Boston, MA. 2nd edition, 1993.

Heller, Dan and Ferguson, Paula M. Motif Programming Manual, Volume
6A. O’Reilly & Associates, 2nd edition, 1994.

Horny, K.L. Minimal-level cataloging: A look at the issues a symposium.
Journal of Academic librarianship, 11:332-334, 1986.

Jacob, R.J.K. and Froscher, J.N. A software engineering methodology
for rule-based systems. IEEE Transaction on Knowledge and Data En-
gineering, 2(2):173-189, 1990.

120

[JRO3]

[Kat87]

[Koc95]

[Kosa)

[Kosb]

[Lan93|

[Lea94]

[LS93]

[Mas94]

[Nie95]

[NO92]

[Ped92]

Johnson, Eric F. and Reichard, Kevin. Power Programming... Motif.
MIS Press, 2nd edition, 1993.

Katz, W. A. Introduction to Reference Work. McGraw-Hill, New York,
1987.

Kochmer, J. The Internet Passport: NorthWestNet’s Guide to QOur
World Online. North West Net, 1995.

Koster, = Martijn. Aliweb(archie like indexing the web.
http://web.nezor.co.uk/aliweb/doc/aliweb.html.

Koster, Martijn. The web robots pages.
http://info.webcrawler.com/mak/projects/robots/robots.html.

Lane, Elizabeth S. An Internet primer for information professionals : a
basic guide to Internet networking technology. Westport, CT : Meckler,
1993.

Leach, Ronald. Advanced topics in UNIX : Processes, files, and systems.
New York : J. Wiley, 1994.

Laverna, M. and Saunders. [. The Virtual Library: Visions and Realities.
Meckler, 1993.

Masinter, L. 1993 is the year the internet 'happened’. Internet Society
News, Winter 1994.

Mauldin, M. L. (1995)measuring the web with lycos. In Poster Proceeding
of the Third International WWW Conf., pages 26—29, Darmstadt, April
1995.

Nielsen, Jakob. Multimedia and Hypertext: The Internet and Beyond.
AP Professional, 1995.

Nye, Adrian and O’Reilly, Tim. X Toolkit Intrinsics Programming Man-
ual, Volume 4M. O’Reilly & Associates, 2nd edition, 1992.

Peddie, Jon. Graphical User Interfaces And Graphic Standards.
McGraw-Hill, 1992.

121

[Pre95]

[RBPEL91]

[San94]

[Shi92)]

[Thi90]

[Too96]

[Web96]

[Wil96]

[Zaw96]

Pree, Wolfgan. Design Patterns for Object-Oriented Software Develop-
ment. Addison—-Wesley, 1995.

Rumbaugh, James, Blaha, Michaeland Premerlani, William, Eddy, Fred-
erick, and Lorensen, William . Object-Oriented Modeling and Design.
Prentice Hall, 1991.

Santifaller, Michael. TCP/IP and ONC/NFS : internetworking in a
UNIX environment. Reading, Mass. : Addison-Wesley, 2nd edition, 1994.

Shinghal, R. Formal Concepts in Artificial Intelligence. Chapman &
Hall, London; New York, 1992.

Thimbleby, Harold. User interface design. Addison-Wesley Pub., 1990.

Toon, John et al. The gvu center’s sixth www user survey.
http://www.cc.gatech.edu/quu/user_surveys/survey-10-1996, November
1996.

Web Mastery. The html language.
http://union.ncsa.uiuc.edu:80/HyperNews/get /www/html/lang.html,
1996.

Wilder, CQuin, Liam et al. The money machine. Information Week,
Issue 561, pages 25-28, 1996.

Zawinski, Jamie. Remote control of unix netscape.
http://home.netscape.com/newsref/std/z-remote.html, 1996.

