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ABSTRACT 

An Accurate Approach to Modeling the Genuine Tooth Surfaces of the Face-Milled 

Spiral Bevel and Hypoid Gears 

Shuangxi Xie Ph.D. 

Concordia University, 2011 

Accurate gear tooth surface machining is critical operation to achieve the low 

noise gear drive. Normally tooth rough surface is produced by face milling process, and 

then finished by tooth grinding process. The high speed face milling can produce high 

tooth surface quality as grinding with more productivity, but currently the accurate tooth 

surface cannot be obtained due to the use of simplified cutter geometric model used in 

tooth modeling. The accuracy of roughing gear tooth produced by face milling is also 

important. The cutter in finishing process can get benefit from the equally distributed 

remaining material on roughed stock. In this paper an accurate approach to modeling the 

genuine tooth surface for face-milled spiral bevel and hypoid gears is proposed.  

In the first part of this work, a genuine cutter geometric model for the spiral bevel 

and hypoid gears is proposed. This model fully matches the real cutter used in industry. 

The side and circular cutting edges of the genuine cutter are defined on the blade rake 

plane, rather than the normal plane as the simplified cutter. In the genuine cutter 

modeling the rake angles and relief angles are taken into consideration. To compare the 

difference between genuine cutter and simplified cutter, the geometric errors of the 

simplified cutter are analyzed. The genuine cutter geometric model lays a ground for 

machining the accurate face-milled spiral bevel and hypoid gear tooth. 
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In the second part of this work, we build up the accurate spiral bevel gear tooth by 

using the genuine cutter geometric model. First, with the genuine cutter the member gear 

tooth surfaces are developed based on the kinematics of the non-generated gear tooth 

machining process, and then with the genuine pinion cutter geometric model the pinion 

tooth surfaces are modeled based on the kinematics of pinion generation process. The 

tooth surfaces of member gear and pinion are accurately represented as NURBS surface 

by optimizing the number of sampling and control points. The NURBS tooth surface can 

be directly implemented into CAD software, and provide the accurate geometry for the 

following FEA process. Finally the tooth geometric errors are calculated, and the tooth 

contact of the genuine gears is compare to the tooth contact of simplified gears. 

In the third part, the accurate tooth surfaces of hypoid gears are built up. Similar 

to spiral bevel gear tooth modeling process, first the tooth surface of member gear is 

modeled with genuine cutter, and then the pinion tooth surface is generated, and finally 

tooth contact of genuine gears are compared to the tooth contact of simplified hypoid 

gears. 

In this work an accurate approach to modeling the genuine tooth surfaces of 

genuine tooth surfaces for the face-milled spiral bevel and hypoid gears is proposed. With 

accurate surface model, high speed face milling process becomes possible to be used as 

the gear tooth finishing process. When the accurate gear tooth surface is used in gear 

roughing process, the remaining material and residual stress on the roughed stock are 

distributed equally. It can decrease the workload on the finishing cutter, thus the cutter 
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life is prolonged. The accurate NURBS gear tooth surfaces can also be conveniently used 

by the FEA process. 
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Chapter 1 Introduction 

1.1 Research Problems 

Spiral bevel and hypoid gears are composed of member gear and pinion normally 

with 90 degree shaft angle, and massively used in automobile and helicopter industry for 

transformation of the rotation and torque. The high quality gears with low noise, smooth 

transformation, and low transmission errors are required higher gear tooth accuracy. 

Currently face milling and face hobbing are two main ways to manufacture the spiral 

bevel and hyoid gears. In the traditional spiral bevel and hypoid gears machining process, 

face milling is always followed with grinding as the finishing process, so the face milling 

does not affect the accuracy of the finished tooth surface. With the high speed milling 

technology development, the face milling may use in the tooth finishing process, which 

put forward a higher requirement on accuracy for the face-milled tooth surface. The 

accurate tooth surface for the tooth roughing is also important. If the roughing tooth 

surface is accurate, the residue stress will distribute equally on the gear stock, and also 

the workload on the cutter will be reduced, thus the life of gear cutter will be prolonged.  

There are two problems in current face-milled spiral bevel and hypoid gears 

machining process. First, in the gear tooth generation the simplified cutter geometric 

model is used [1]. This simplification may result in the geometric error on the gear tooth 

surface. For the simplified cutter, at the beginning people defined the side cutting edges 
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(SCE) as two straight lines located on the blade normal plane (see Fig. 1.1). The 

simplified blade model was improved by taking the circular cutting edge (CCE) into 

consideration, and its side cutting edge was treated as parabolic profile, but the cutting 

edges are still on the normal plane. 

Side cutting edges(a) 

Normal
plane

SCESCE

(b ) 
Side and circular 

cutting edges

SCE

CCE

plane

CCE

SCE

Normal

 

Figure 1.1 Simplified blade geometric models. 

Second, current representation of gear tooth cannot be easily and accurately 

implemented in CAD software, especially the pinion teeth are represented as two 

equations with three parameters. For the generated gear tooth method, the gear tooth can 

be represented as [1] 

 
   ,g gc c

g gc

r M r u

f n v

   


 
. (1.1) 

gr  represents the family of tool surface in gear coordinate system, and it can be obtained 

by transforming tool surface cr  from cutter coordinate system to pinion coordinate 

system by matrix gcM . The equation f  is the mesh equation in the pinion generation, 

which represents during the machining process the tool surface and pinion tooth surface 
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have the same normal gn , and the normal is perpendicular to their relative velocity gcv . 

Although some researcher try to calculate the sampling points from the above equations, 

and fit them in CAD software, but the accuracy cannot be guaranteed. 

1.2 Research Objectives 

The goal of this work is to build up the genuine tooth surface for spiral bevel and 

hypoid gears. From the above problem analysis, we know that the simplified blade model 

may cause the geometric error for the gear and pinion tooth. The first objective of this 

work is to build up the genuine cutter geometric model. The cutting edges of the genuine 

cutter are defined on the rake plane by parameters the blade angle, rake angles and relief 

angles, rather than the cutting edges of simplified cutter are defined on the cutter normal 

plane. In this work the mathematic cutter model is build up, and the geometric error of 

the simplified cutter is analyzed. 

The second objective is to build up the accurate gear and pinion tooth surface by 

using the genuine cutter geometric model. First, by using the genuine cutter geometric 

model we develop the member gear tooth surface based on the kinematics of the non-

generated gear tooth machining process. Second, we generate the pinion tooth surface 

with the genuine pinion cutter and kinematics of pinion generation process. The tooth 

surfaces of member gear and pinion are accurately represented as NURBS surfaces by 

optimize the number of sampling points and control points. The NURBS tooth suface can 

be directly implemented into current CAD software, and provide the accurate geometry 

for the following gear tooth FEA.  
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In industry, people model the gear and pinion tooth surfaces, and calculate the 

machine setting, after that machine the real parts. If the real tooth meshing deviates from 

the designed pattern, they need to manually adjust the machine setting, but it takes long 

time; or use the simulation to adjust the machine settings, but the current tooth geometry 

is inaccurate. In this work, since the tooth geometry is fully match with the real machined 

gear, when can quickly and accurately adjust the machine settings by simulation, which 

saves time and money.  

Finally we calculate the tooth geometric errors, and compare the tooth contact of 

the genuine gears to the tooth contact of simplified gears. To demonstrate the above 

methods, examples on spiral bevel gears and hypoid gears machining are conducted. 

1.3 Dissertation Organization 

The remaining sections of this dissertation are organized as follows. Chapter 2 

reviews the current technologies on gear face hobbing, tooth contact analysis and tooth 

surface optimization. Chapter 3 discusses the face milling process for spiral bevel and 

hypoid gears machining. Chapter 4 presents the genuine cutter geometric model for spiral 

bevel and hypoid gears. Chapter 5 presents the accurate tooth surface for the spiral bevel 

gear generated from genuine cutter geometric model. Chapter 6 presents the accurate 

tooth surface for the hypoid gear generated from genuine cutter geometric model. 

Chapter 7 contains the summary of this work.  
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Chapter 2 Literature Review 

2.1 Introduction 

Gear machining technology has developed from eldest wooden teeth gear to the 

today’s most complicated hypoid gears. Spiral bevel gears are used to transform rotation 

and torque between two intersected axes, and hypoid gears are used to transform rotation 

and torque between two cross axes (Fig. 2.1). The hypoid gears are similar to spiral bevel 

from tooth geometry and manufacturing process point of views. The hypoid gears have a 

shaft offset between gear and pinion axes, which make the case more complicated. 

(b) Hypoid gears

Pinion

Gear

Shaft offset

(a) Spiral bevel gears

Pinion
Gear

 

Figure 2.1 Spiral bevel gears and hypoid gears. 

There are lots of researchers devote their careers for the gear technology 

development. Olivier and Gochman developed the basic theory about the generation of 

conjugated gear tooth surface. Wildhaber developed the theory of hypoid gear drives. 

Dudley wrote the first edition of Gear Handbook [2], and it is intensively used in the 

industry. Dr. Litvin, a great scientist, did a great contribution to the modern gear theory. 
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This work is based on the developed gear theory and gear manufacturing, which is 

introduced in detail in Chapter 3.  

Currently there are three major gear machining tool manufacturers. One is 

Gleason Company in USA, which provides the full service from gear machine, tooling 

and metrology for all kinds of cylindrical gear and bevel gear. The other two companies 

are Klingelnberg and Oerlikon in Europe. They are famous for the continuous indexing 

face hobbing method in spiral bevel and hypoid gears machining. There are two popular 

ways to machine spiral bevel and hypoid gears. First method is the gear tooth rough 

machined by face milling, and then finish grinded. This method is mainly applied on 

Gleason PHOENIX® machine [3]. Another method is rough machined by face hobbing, 

and hard-cutting for finish. This method is mainly applied on Klingelnberg and 

Oerlikon’s machine [4, 5]. Most of researches are focusing on these two methods. Since 

now days the flexible multi-axis CNC milling machine are massively used in the industry, 

people start to consider the gear machining on the general CNC milling machine. Suh 

proposed a ¾ axis or additional four-axis milling machine to manufacture the sculptured 

tooth surface of spiral bevel gear [6, 7]. In the work, the gear tooth geometry was build 

up, and the process planning and tool path planning were developed. Safavi proposed a 

three-axis CNC milling machine interfaced with an additional PLC module to machine 

the spiral bevel gear [8]. Özel also tried to machine the spiral bevel gear using the 

optimized cutting tool and machining parameters using end mill by CNC milling machine 

[9]. Kawasaki investigated the accuracy of straight bevel gear manufactured by using 

general CNC milling machine [10]. For the spiral bevel gear machining by using CNC 

milling machine, people don’t need to invest huge money on specific bevel gear machine 
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since the general CNC milling machine is used, but the accuracy is difficult to achieve, 

and takes longer time compared to the specified cradle machining method. Face milling 

process will be introduced in the next chapter in detail. In this chapter, we will introduce 

the face hobbing process, the methods for tooth optimization and tooth contact analysis. 

2.2 Face Hobbing 

Face hobbing is a continuous generating process for the spiral bevel and hypoid 

gear manufacturing, unlike single indexing of the face milling process which gear tooth 

has to be cut one by one. Compare to face milling process, one of the advantages is the 

tooth curvature can be easily controlled by changing the kinematics of face hobbing 

index motion. While for the non-generated face milling process, the tooth curvature is 

determined by the blade geometry and cutter radius. The disadvantages are the finish 

grinding cannot be applied to the face-hobbed tooth, and the face milling process has 

higher productivity. 

Although face hobbing process was invented one century before, the 

mathematical model for face hobbing and computerized tooth representation and contact 

is proposed around 2006 [11-14]. The face hobbing methods can be implemented on 

Klingelnberg’s Cyclo-Palloid© system, Oerlikon’s Spirac© and Spiroflex© systems, or 

Gleason’s hypoid generator with TRI-AC® and Pentac® face hobbing cutters.  
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Inside blade

Extended 

epicycloids

Roll circle

Generating gear

g

c

Base circle

 

Figure 2.2 Kinematics of face hobbing tooth generation. 

The kinematics of face hobbing tooth generation is shown in Fig. 2.2. The relative 

between generating gear and tool surface is extended epicycloids. Assume 
gN  is the gear 

teeth number, and 
cN  is the blade number. The angular velocity of gear and blade are 

g  

and c  respectively. The relationship should be satisfied as 

 
g c

c g

N

N




 . (2.1) 

The face hobbing head cutter is composed of a group of inside and outside blades, 

which are alternatively mounted on the cutter plate. When building up the hobbing cutter, 

only the rake angle and blade angle are considered. 

Once we have the kinematics model of gear generation and the blade geometry, 

the gear tooth can be represented as  
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 , ,

0

g

g g

r r u

f n v

  


  
, (2.2) 

Here, 
gr  represent the surface generated by the relative motion of blade in gear 

coordinate system. u  is the parameter of cutting edge.   is the cutter rotation angle, and 

  is the cradle rotation angle. f  represents the point on the gear tooth surface satisfies 

the mesh equation, which means that the normal direction should be perpendicular to the 

relative velocity between points on the gear tooth and blade. Once the gear and pinion 

tooth surfaces are obtained. Tooth contact analysis (TCA) can be conducted. The main 

job of TCA is to check the transmission error and contact pattern. The stress distribution 

on the flank and fillet also can be predicted by using FEA method. 

The face hobbing gear tooth generation process shows that the final tooth contact 

is affected by the blade geometry, and kinematics model. Fan proposed a modified 

machine settings to minimize the tooth surface geometric errors due to the machining 

dynamics and tolerances of machine tools [14]. But currently there is no work to consider 

the geometric error caused by the blade model since only the rake angle and blade angle 

are considered in the modeling, and also no optimization on the blade geometry.  

2.3 Tooth Contact Analysis 

After generating the gear and pinion tooth, the next step is to tooth contact 

analysis (TCA). We categorize the TCA into the following subjects: tooth surface 

modeling, tooth measurement, tooth contact analysis and stress calculation, surface crack, 

tooth vibration. 
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Gear tooth geometric modeling is the fundamental of tooth contact analysis. In 

Litvin’s work the parametric equations of gear and pinion tooth surface are provided. The 

generated gear tooth is represented as two equations and three parameters [1]. Yanwei 

built up the spiral bevel gear machining model in the machining simulation software 

VERICUT [15]. In the virtual machining environment, the blade and blank geometric 

model, and the kinematics of gear generation are built up. By through simulating the 

material removal process, they achieve the final gear geometry. This method is a simply 

and quick way to achieve the gear geometry, and also from the simulation we can observe 

the material removal process. The drawback is that the accuracy of the gear tooth can be 

guaranteed. Yanwei also proposed another method to build tooth geometric model. From 

the generated gear tooth equations the dozens of sampling points are calculated, and use a 

NURBS surface to interpolate these points in the CAD software Isight [16]. Zhaowen did 

the same work in Pro/E [17]. This method has the same drawback as the above method. 

The accuracy of the tooth geometry cannot be guaranteed. 

Due to the random error in the gear tooth machining process, the geometric error 

exists on the gear tooth. The big gear machine manufactures have their own gear 

measuring machine such as Gleason [3]. The measuring method is classified for different 

companies. There are also some general methods to measure the geometric errors of gear 

tooth. Suh proposed a virtual gear model [18]. In this model, the sampling points were 

measured by using CMM, and fitted by NURBS surface. Compare the virtual gear model 

to the theoretic model, the geometric error was evaluated. Weimin developed a accurate 

way to measuring the spiral gear tooth by optimize the measuring process parameters 

[19]. 
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The tooth contact pattern is the status of how the gear teeth contact at the 

instantaneous moment and continuous meshing process. Litvin proposed the approach to 

determine the direction and length the instantaneous contact line with Euler-Rodrigues’ 

formula [1]. According to Rodrigues’s formula, the principal curvatures of point on 

surface can be represented as 
, r rv n      . In the equation 

rv  is the velocity and 
rn  is 

derivative of normal, vector 
rv  and 

rn  are collinear for the principal direction. Euler’s 

equation build up the relation between normal and principal curvatures of a surface, 

which is 2 2cos sinn q q       . Under the workload, the instantaneous contact between 

gear and pinion tooth is an ellipse centered at the contact point. With the above two 

equation, we can derive the direction of contact point moving, and the orientation and 

major length of the ellipse. With the gear continuous rotations, the bearing contact is a set 

of contact ellipses. Kolivand use ease-off topography and shell theory to analyze the 

tooth contact for the unloaded and loaded tooth [20, 21]. The ease-off approach can be 

explained as tooth contact analysis directly from the tooth geometry of gear and pinion, 

other than from the principal directions and curvature. In this method the local mesh area 

is defined first, and then the gear and pinion tooth surface within this area projected on a 

projection plane. By analysis the projection we can predict the real contact status. This 

method is straight forward compared to the traditional tooth contact analysis except huge 

calculation work required. 

Due to the periodic loading condition, the tooth failure maybe happened on the 

gear tooth. The tooth failures may exist in form of fatigue failure at the tooth root, or 

flank crack. Guagliano researched on the flank crack due to rolling contact fatigue [22, 
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23]. In their work the crack growth mechanism was proposed. The contact pressure is 

evaluated first, and the stress intensity factors are calculated using the finite element, 

finally find the direction of crack propagation. Ural predicted the crack growth 

combining the parallel finite element methods and plasticity-induced fatigue crack 

closure and moving loads, which is better representation the moving load and 

significantly reduced the computation time for simulation [24]. Hotait investigated on the 

stress on the gear root. In the work, the effects of different misalignment were predicted 

with the proposed model, and verified with experiments [25]. 

Transmission error is the main source of vibration in gear running. Cheng derived 

a new gear mesh coupling formula, and using model free and forced vibrations in the 

transmission error excitation are examined [26]. In the experiment, the effects of design 

parameters on the dynamic characteristics and vibration response are investigated. Teik 

proposed a nonlinear, time-varying, 3-dimensional gear mesh coupling dynamic model 

for hypoid gear pair [27]. Pei-Yu provided a model of 3D dynamic contact and impact 

analysis of spiral bevel gear drives [28]. In the work finite element is used to calculate the 

transmission error and surface contact stress, and a dynamic model is applied to analyze 

the response in time varying. Yoon investigate the vibration caused by transmission error 

experimentally [29]. 

2.4 Optimization on Tooth Surface 

Tooth contact between gear and pinion is mainly determined by the tooth 

geometry if the gear installation error is neglected. There are several factors which may 
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affect the final tooth geometry. Since face hobbing and face milling are both using the 

cradle method, the factors are effective for both of them. For the generated gear tooth 

method, the gear tooth can be represented as [1] 

 
   ,g gc c

g gc

r M r u

f n v

   


 
. (2.3) 

cr  is the tool surface, and 
gcM  is the transformation matrices.   is the cradle rotation 

angle,   is related to generated gear rotation angle 
g  as  cp cm  , this is also called 

roll ratio. f  is the mesh equation, which represent the normal direction of contact point 

on gear surface and tool surface should be perpendicular to the relative velocity direction. 

From the above equation we can observe that the cutter geometry, machine settings, roll 

ratio are directly related to the generated gear tooth geometry. 

Gosselin proposed an algorithm to calculate the machine settings producing a 

theoretical tooth surface, which is match with the real tooth surface [30]. In the work, the 

generated gear tooth machining process is considered as a black box system. The input is 

the machine settings, and output is the real tooth surface. The geometric error between 

real and theoretic gear tooth is used to adjust the machine settings. At the beginning of 

machining, the initial tooth surface is produced by using the calculated machining setting 

from traditional method. CMM machine is used measure the geometry of the machined 

gear tooth. By calculate the distance between theoretic and machined gear tooth we can 

evaluate the geometric error. The next step is to adjust the machine settings up to the 

geometric error is within tolerance. Chung-Yunn optimized the machine setting by using 
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the sensitivity study [31, 32]. This method is effective and practicable in the industry. 

There are many factors may cause the geometric error of the tooth surface, and it is 

difficult to discover the real reason behind this error. The simplest ways is treated it as 

black box system. Through changing the machine settings which may cause the 

geometric error, we can observe the effect on the tooth geometry. The disadvantage of the 

method is time consuming since lots of trials and repeated measurement are taken. 

The kinematic error of face-milled gear is a parabolic function [1]. Zhang-Hua 

proposed a fourth-order motion curve, which can reduce the impact at the transfer point 

at adjacent mating teeth [33]. In this work, the modified radial motion correction is 

introduced in the calculation of machining settings, with the modified radial motion, the 

contact position, motion curve and contact path bias can be controlled independently, 

which allow us easily achieve the different desired contact patterns. 

Cutting tool is major factor affecting the accuracy of gear tooth. Simon proposed 

an optimized circular tool profile arcs and the diameter of cutter for hypoid pinion teeth 

[34, 35]. With the optimized tool, the contact pressure and angular position error are 

reduced. Fan optimized the face cone for the spiral bevel and hypoid gears, which 

maximize the contact ratio, and at the same time avoid the root-tip interference [36]. 

Jinliang optimized the pitch cone for hypoid gear to improve the strength of the gear teeth 

[37]. 
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2.5 Summary 

In this chapter, we review the current techniques related to spiral bevel and 

hypoid gear machining. One of the main machining process face hobbing is introduced, 

The kinematics of gear generation, the cutter geometry, tooth surface generation related 

face hobbing are represented. After that, the tooth contact analysis including gear tooth 

geometry modeling, measurement on tooth surface, tooth contact pattern, tooth crack and 

vibration is represented. Finally the optimization on the gear tooth surface is discussed 

from machine settings, modified radial motion, cutting tool and gear geometry point of 

views. The Tooth contact analysis and optimization techniques are effective both for face 

milling and face hobbing process. In the following chapter, the current face milling 

process used in this work will be introduced. 
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Chapter 3 Manufacturing Process of Face-

Milled Spiral Bevel and Hypoid 

Gears 

3.1 Introduction 

In this chapter, the design and manufacturing process of spiral bevel and hypoid 

gears by face milling are discussed. The contents introduced in this chapter are all 

coming from Dr. Litvin’s research group. His team contributed more than 60 high quality 

journal paper, 7 NASA reports, one book on gear geometry and theory. His research 

covered the design and manufacturing of spur [38-41] and helical gears [39, 42-46], 

worm gear [40, 47-49], screw compressor [50], spiral bevel gear and hypoid gear. In the 

gear theory, he proposed the determination of the conjugated gear surface from curvature 

relations, determination of envelope singularities, computer aided tooth contact analysis, 

low noise misaligned gear drives and so on [1]. These methods lay down a theoretical 

foundation for modern computer aided gear design and manufacturing.  

Spiral bevel gear design and manufacturing process is a very complicated process 

because of its non-standardized, complex geometry, and tooth contact. It takes time and 

costly. So normally before manufacturing the gears people will modeling the gear 

geometry and do TCA (tooth contact analysis). Litvin published one important paper 

consisting of three parts on journal of Mechanical Design in 1981 for the manufacturing 
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of hypoid [51-53]. This is the most important paper introduced the detail how the hypoid 

is machined with Formate and Helixform methods up to now. Most the following works 

are based on this paper.  

Gear machine 

settings

Gear tooth surface modeling

Gear cutter 

geometry

Mean point and its principal 

curvatures and directions

Tooth contacting 

path

Contact ellipse

Local synthesis

Pinion principal curvatures and 

directions at mean point

Pinion machine settings calculation

Pinion tooth surface modeling
Pinion cutter 

geometry

Tooth contact stress analysis
 

Figure 3.1 Hypoid gear surface modeling process 

Fig. 3.1 shows the hypoid gear surface modeling process. The first step is to 

determine the gear tooth surface. In the second part, based on the member gear tooth, the 

machine setting for the pinion are calculated, and in the final part, tooth contact analysis 

is conducted, and the synthesis is optimized. In the papers related to spiral bevel gear 

manufacturing, the gear tooth surface is derived from the gear blade geometry, and then 
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the machine settings for pinion is calculated, and the pinion tooth surface is generated, 

and finally the transmission errors are calculated, and FEA on the tooth is conducted by 

using commercial software ABAQUS. Through this procedure, the desirable tooth 

contact can be obtained, and the low-noise high endurance spiral bevel gears are achieved 

[54-59]. 

 In this chapter, first we introduce the cutting tool and CNC machine used for face 

-milled spiral bevel gears and hypoid gears, and then present how to generate the gear 

and pinion tooth surfaces. 

3.2  Simplified Face Milling Cutter 

The face milling cutting tool is composed of a group of blades, which are 

mounted on the cutter plates. Fig. 3.1 shows the Hardac ® cutter from Gleason Company. 

The blades include inner and out blades, which can be adjusted in both angular and radial 

planes. 



19 

 

Cutter plateBlades

Cutter axis

 

Figure 3.2 Hardac ® cutter from Gleason Company. 

The face milling cutters for hypoid gear are massively used in the roughing and 

semi-finishing process. A blade geometry model was proposed by Litvin, which 

simplified the side cutting edges (SCE) as two straight lines on the blade installation 

plane, which passes through the cutter axis. Argyris improved the simplified blade model 

by taking the circular cutting edge (CCE) into consideration, and proposed the parabolic 

profile for side cutting edge. 

(a) Litvin’s blade model (b) Argyris’s blade model

Installation 
plane

SCE SCE

CCE

Installation 
plane

SCE

CCE

SCE

 

Figure 3.3 Simplified blade geometric models. 
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The simplified blade can be modeled in blade coordinate system 
 s

bS . Assume wp  

is the point width. bd  is depth of blade. 
 s

c  is the blade angle. r  is the corner radius. cr  

is the cutter average radius, which is the distanct from 
 s

bO  to the origin cO  of cutter 

coordinate system cS . Curves 
   i i

s sM L  and 
   i i

s sL J  are the respective inner SCE and CCE. 

Curves 
   o o

s sM L  and 
   o o

s sL J  are the respective outer SCE and CCE. 

 i
sM  o

sM

 i
sL

 o

sL

 i
sJ  o

sJ s

bO  s

bx

 s

bz

bd
 s

c

wp
r

cO

cz

cx

cr

 

Figure 3.4 Parametric model of simplified blade. 

The line 
   i i

s sM L  can be represented in cS  as 
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L .(3.1) 
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The circular 
   i i

s sL J  can be represented in cS  as 
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The line 
   o o

s sM L  can be represented in cS  as 
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The circular 
   o o

s sL J  can be represented in cS  as 
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3.3 CNC Machine Used for Gear Face Milling 

The spiral bevel and hypoid gears can be machined by “Phoenix” CNC machine. 

This kind of special machine has hypoid generation function. The machine has to be 
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adjust to make sure the cutter and workpiece in right positions, which are called 

machining settings. The machine settings include m  (machine root angle), A  (gear 

center to back), B  (machine center to back), C  (blank offset), rS  (radial setting), q  

(radial angle) and i  (radial angle). The machine can provide three rotations and two 

linear motions. This machine can be used to produce the non-generated gear, in which 

one tooth machining process the workpiece and cradle keep stationary, and only the work 

table feeds to remove the material. When the generated gears or pinions are machined, 

the rotation of workpiece and cradle are related with certain ratio. By using face milling 

machine the gear teeth are machined one by one. 

 

A
B

C

q

rS

m

i

Cradle
Eccentric plate
Swivel
Cutter head

 

Figure 3.5 CNC machine for spiral bevel and hypoid gears. 
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3.4 Gear and Pinion Generating Process 

It becomes possible to generate the complicated conjugate teeth surfaces. To 

achieve the desire the mesh and contact condition by using this type of machine is not an 

easy job. Litvin proposed a procedure to produce the low noise of spiral bevel and hypoid 

gears by application of predesigned parabolic function of transmission error. In 

conclusion, the approach includes the following steps. 

3.4.1 Generation of the Gear Tooth Surface 

Assume we know the cutting edges of the gear blades    ,

,

g i

s s suL ,    ,

,

g o

s s suL ,

   ,

,

g i

s c sL  and    ,

,

g o

s c sL . the tool surface is the revolution of the cutting edges about the 

cutter axis cz . Since here non-generated method is used to produce the gear tooth surface, 

the gear tooth surface can be achieved by transferring the gear tool surface from gcS  to 

gear coordinate system gS , which are represented by the equations 
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. (3.5) 

Here gcM  is the transforming matrix from cS  to gS , and  rc sM   is the matrix when the 

cutting edges revolve about the cz .The unit normal to the gear surface can be represented 

by the equations 
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3.4.2 Local Synthesis 

After determination the gear tooth surface, the next step is to derive the pinion 

machine settings. First we find a mean point on the gear tooth surface, and then find the 

relative position between gear and pinion, finally calculate the pinion machine settings 

based on input parameters of local synthesis. 

 Finding the mean point 

Mean point will be the tangency of gear and pinion tooth surface. Here we assume 

the 
*

gM  is on the flank of convex side of gear tooth. 
*

gM  and the normal to  
,

i

s sG  at 
*

gM  

can be represented as 

 

   
   

* * *

,

, * *

,

,

,

i

g s s s s

g i

g s s s s

M u

n u





 




G

n
. (3.7) 

 Calculating the angle 
*   
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For the spiral bevel gear with perpendicular shaft, the relative position between 

gear and pinion is decided by angle 
*  (Fig. 3.5). Angle 

*  can be calculated from the 

meshing equation between gear and pinion tooth, which is  

    * * 0g gpn v   . (3.8) 

Here gn  is the common normal of gear and pinion at the mean point 
*

gM , and gpv  is the 

relative velocity at 
*

gM , which can be calculated from the gear ratio 

 
g

gp

p





 . (3.9) 

g  is the angular velocity of gear, and p  is the angular velocity of pinion. 

gz

pz

gy

gx

px

py

*

,g pO O

 

Figure 3.6 Relative position between gS  and pS . 

 Finding the curvatures of the pinion tooth at mean point 
*

gM . 
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With the gear tooth surface  
,

i

s sG  and the mean point 
*

gM , we can find the 

principal curvatures 
1

gk , 
2

gk  and the corresponding principal directions  Assume the 

principal directions 
1

g  and 
2

g . The local synthesis is trying to find the optimized pinion 

tooth surface which satisfies the designed meshing situation. The designed mesh situation 

is illustrated in Fig. 3.6. It is given as the input of the local synthesis. It defined the angle 

 between principal direction of gear and the tangent to the tooth contacting path, and the 

length of major axis a  of the contact ellipse at 
*

gM . 

1

g

2

g

1

p

2

p

*M
Tangent to the tooth 

contacting path


a

Tangent plane

 

Figure 3.7 Local synthesis between gear and pinion tooth surfaces. 

With the parameters 
1

gk , 
2

gk , 
1

g  ,
2

g ,   and a , we can find the principal curvatures 
1

pk , 

2

pk  and directions 
1

p , 
2

p  of pinion from the local synthesis equations 



27 

 

 

 
0

g p pg

g p pg g

g gp

v v v

n n n

d n v

dt






 


  


 


. (3.10) 

The first two equations are to make assure that the gear and pinion tooth has a continuous 

tangency. The last equation is the differentiated equation of meshing. 

3.4.3 Determination of Pinion Machine Settings 

Once we have 
1

pk , 
2

pk ,
1

p  and 
2

p , it is possible to determine the pinion machine 

settings, which include machine offset, sliding base, machine center to back, machine 

root angle, radial setting, installation angle and ratio of cutting. It is also possible to 

decide the two pinion surface parameters and one cutter parameter. All the machine 

settings are decided from the following equation 
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0

, , , 0

p c

p pc

p p c c

M M

n v

f k k k k

 


 




. (3.11) 

First equation means the pinion has a common mean point with the pinion cutter. 

The second equation shows that the pinion tooth and cutter surface should satisfy the 

mesh equation at mean point. The last equation represents the curvature relations between 

pinion tooth surface and pinion cutter surface.  

3.4.4 Generation of Pinion Tooth Surface 
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From above section we can get the cutting edges of pinion blades    ,

,

p i

s s suL ,

   ,

,

p o

s s suL     ,

,

p i

s c sL  and    ,

,

p o

s c sL . The pinion flank on convex side can be represented 

as 

 

               , ,

, 1 1 , 1 ,, , ,

0

g i g ii

s s s s pc s s s s pc rc s s s s

p pc

u M u M M u

n v

          


 

P T L

. (3.12) 

Here, first equation is to transform the pinion tool surface from pcS  to pS . The parameter 

1  is the pinion rotating angle, which is related to the cradle angle. The second equation 

is the meshing between pinion cutter and pinion tooth surface. 
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Chapter 4 Genuine Cutter Geometric 

Model for Face-milled Spiral 

Bevel Gears and Hypoid Gears 

4.1 Introduction 

Spiral bevel and hypoid gears are massively used in automobile industry for 

transformation of the rotation and torque. The high quality gears can work with low noise, 

smooth transformation, and low transmission errors. In the traditional face-milled spiral 

bevel and hypoid gears, face milling process is always followed with grinding as the 

finishing process, so the face milling does not affect the accuracy of the finished tooth 

surface. In this kind of scenario, people can use the simplified cutter model in machine 

setting calculation and tooth machining simulation because it will not affect the final 

tooth surface. With the high speed milling technology development, the face milling may 

replace the grinding in the tooth finishing process. High speed milling can provide a very 

close tool surface as the grinder continuous tool surface, but currently the simplified 

cutter model causes the geometric error, which will affect the final tooth surface, thus the 

accurate representation of the cutter geometry is critical and essential for the face milling 

used for the gear tooth surface finishing. The accurate roughing tooth surface is also 

important. Since for the accurate roughing tooth surface the residue stress and remaining 

material is equally distributed on the stock, it will reduce the workload for the finishing 

cutter, thus the life of gear cutter will be prolonged. 
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In this chapter an accurate cutter geometry model for the face-milled spiral bevel 

and hypoid gears process was build up. First, the parametric model of the cutter is build 

up with cutter geometric parameters, such as rake angles, relief angles. With this model 

we can accurately describe the real cutter geometry used in industry. To compare the 

simplified cutter to the genuine cutter, the cross sections of their tool surfaces on normal 

plane are calculated. Finally, some examples are rendered to demonstrate the geometric 

error of the simplified cutter. 

4.2 Cutter Geometric Model 

The cutter for the face-milled spiral bevel and hypoid gears is composed of a 

group of blades, which are mounted on the cutter plates. At the beginning people use a 

simplified blade geometric model, which simplifies the side cutting edges (SCE) as two 

straight lines on the blade normal plane (see Fig. 1.1). The simplified blade model was 

improved by taking the circular cutting edge (CCE) into consideration and its side cutting 

edge was treated as parabolic profile, but the cutting edges are still on the normal plane. 

For the real blade for face-milled spiral bevel and hypoid gears used in industry 

(see Fig. 4.1), its cutting edges are located on the blade rake face, which is determined by 

blade rake angles and relief angles, and form a angle with the normal plane, on which the 

cutting edges of simplified blade are defined. 
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Rake face

Normal plane

Cutting edge

 

Figure 4.1 Real blade for face-milled spiral bevel and hypoid gears. 

Different companies have their own blade product. “Gleason” company provides 

several types of blades for face milling such as RIDG-AC, WEDGE-AC, HELIXFORM, 

HARDAC, SOLID, and RSR. These blades have different features. One blade parametric 

model can used to represent the cutting edge profiles (see Fig. 4.2).  
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Figure 4.2 Blade parametric model. 

The blades include inner blade and outer blade, which are respectively generating 

the convex and concave gear tooth surface. The parametric model is defined by blade 

angle (
i

c ,
o

c ), back rake angle (
i

o ,
o

o ), side rake angle ( i

f , o

f ), end relief angle (
i

o ,
o

o ) 

and side relief angle ( i

f , o

f ). In the following section it will introduce how to use these 

geometric parameters to build up the genuine blade geometry. 

4.3 Representation of Inner Blade in Blade Coordinate System 

The inner blade is defined in the coordinate system  i
bS . The origin  i

bO  is at the 

intersection of 
 

TCE
i

 (top cutting edge) and 
 

SCE
i

 (side cutting edge). Plane    i i

b bx z  is 
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coincident to the normal plane.  i
bz  is perpendicular to the cutter plate, and  i

by  is parallel 

to cutting velocity. Axis  i
bx  is the cross product of  i

by  and  i
bz  by the right hand rule. 

 i
f i

c

 i
bx

 i
by

 i
bz

 i
bO

1
2

 i
o

A

B
C

D

E

SCE

CCE

 

Figure 4.3 Rake plane of inner blade. 

According to the definition of back rake angle 
o , it is formed by  i

bz  axis and 

vector A , which is located on    i i

b by z  plane (see Fig. 4.3). The unit vector 
AU  along A  

is 

 
 

 

0

sin

cos

i

A o

i

o

U 



 
 

  
 
 

. (4.1) 

Vector B  is on    i i

b bx z  plane.  i
c  is the blade angle. The unit vector 

BU  along B  is 

 

 

 

sin

0

cos

i

c

B

i

c





 
 

  
 
 

U . (4.2) 
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Plane 1  is perpendicular to vector B , and pass through origin  i
bo . Vector C  is at the 

intersection of    i i

b bx z  plane and plane 1 . The unit vector 
CU  along C  is 

 

 

 

cos

0

sin

i

c

C

i

c





 
 

  
 
 

U . (4.3) 

Vector D  is on plane 1 , and form angle  i
f  with C . The unit vector 

DU  along D  is 

 

   

 

   

cos cos

sin

sin cos

i i

c f

i

D f

i i

c f

 



 

 
 

  
 
   

U . (4.4) 

Rake plane 2  is determined by vectors A  and D . Vector E  is normal to 2 , and passes 

through origin  i
bo . The vector E  is 

 

         

     

     

cos sin sin sin cos

cos cos cos

sin cos cos

A D

i i i i i

o f o c f

i i i

o c f

i i i

o c f

    

  

  

 

    
 

    
 

    

E U U

. (4.5) 

Vector F  is on    i i

b by z  plane, and forms end relief angle  i
o  with axis  i

by  (see Fig. 4.4). 

The unit vector 
FU  along the Vector F  is 

  

 

0

cos

sin

i

F o

i

o





 
 

  
 
 

U . (4.6) 
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Vector G  is on    i i

b by z  plane, and perpendicular to F . The unit vector 
GU  along the G  

is 

  

 

0

sin

cos

i

G o

i

o





 
 

  
 
 

U . (4.7) 
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Figure 4.4 Top cutting edge and side cutting edge of inner blade. 

The vectors E  and G  will form the plane 3 . The top cutting edge 
 i

TCE  is 

perpendicular to 3 , and may be expressed as 

 

 

               
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Vector H  is on plane 1 , and forms side relief angle  i
f  with axis  i

by . The unit vector 

HU  along the Vector H  is 

 

   

 

   

cos sin
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sin sin

i i

c f
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 

  
 
   

U . (4.9) 

Vector I  is on plane 1 , and perpendicular to H . The unit vector 
IU  along the Vector 

I  is 

 

   

 

   

cos cos
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i i

c f

i
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U . (4.10) 

The vector E  and vector I  will form the plane 4 . The side cutting edge 
 i

SCE  is 

perpendicular to 4 , and can be expressed as 
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.(4.11) 

The circular cutting edge 
 i

CCE  is an arc on rake plane 1 . It is tangent to 

 i
TCE  and 

 i
SCE  (Fig. 4.5). Suppose r  is its radius. The Point  i

ro  is the center of the 

arc. 
 i

TCE  is tangent to 
 i

CCE  at point J . 
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Figure 4.5 Circular cutting edge of inner blade. 

The vector  i
bO J  can be expressed as 

  
 

 
TCEcot

2

i
i ia

bO J r


  U . (4.12) 

Here  
TCE

i
U  is the unit vector of 

 i
TCE , and the vector 

   i i

b rO O  can be written as 

        i i i i

b r b rO O O J JO  . (4.13) 

Since E  and 
 i

TCE  are both perpendicular to 
 i
rJO , the vector 

 i
rJO  can be 

represented as 

 
    TCE

i i

r EJO r  U U , (4.14) 

and 
EU  is the unit norm vector on rake plane. Assume  i

a  is the angle between 
 i

SCE  

and 
 i

TCE . Since the vector 
 i

SCE  and 
 i

TCE  are known, the angle  i
a  can be 

represented as 
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       TCE SCEarccos
i i i

a  U U , (4.15) 

and  
SCE

i
U  is the unit vector of 

 i
SCE . The circular cutting edge 

 i
CCE  can be obtained 

by translating and rotating an arc from    i i

b bx z  plane to the rake plane 2  (see Fig. 4.6). 

 i
bO

 i
cy

 i
cz

 i
cx

E
1

2

   i i

c cx zArc on          plane

 i
rO

J

  'i

cx

3

 i

CCE

 

Figure 4.6 Transformation of CCE from normal plane to rake plane. 

The 
 i

CCE  can be represented as 
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with the transformation matrices can be represented as 
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This equation can be explained as at the beginning an arc is defined on    i i

b bx z  plane, and 

then rotated about  i
bz  axis with angle 

1 , and then rotated about  i
bz  axis with angle 

2 . 

Up to now the arc is transformed from    i i

b bx z  plane to rake plane, and the last step is to 

translate it from  i
bO  to  i

rO . The coordinates of E  can be written as 

 
T

E E EX Y ZE , the rotation angle 1  and 2  are calculated as 

 
1

2 2 2
arcsin E

E E E

X

X Y Z


 
 
   

, (4.17) 

and 

  
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iE
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Y
 

 
  

 
. (4.18) 

To decide the limit of arc parameter 
 i , the same transformation matrices are applied on 

 i
bx  axis. We can get the new vector   'i

bx  after transformation 
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. (4.19) 

3  is the angle between vector   'i

bx  and 
 i
rJO , which can be expressed as 

 

   
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. (4.20) 

Finally the 
 i

CCE  can be represented as 
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. (4.21) 

Assume the point width is 
wp  and the depth of blade is 

bd  (see Fig. 4.7). 
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Figure 4.7 Top cutting edge and side cutting edge of inner blade. 

The parametric equation of the TCE can be expressed as 

        1 1 1 11 0 1
i

TCE u u J u K u      L , (4.22) 

with 
 
TCEcot

2

iiJ r


  U  and 
 
TCE

2

iwp
K  U . 

The parametric equation of the SCE can be expressed as 

        2 2 2 21 0 1
i

SCE u u L u M u      L , (4.23) 

with 
 
SCEcot

2

iiL r


  U  and 
 

 

SCE

SCE

i

ibd
M

Z
 

U

U . 
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4.4 Outer Blade in Blade Coordinate System 

The outer blade is similar to the inner blade, and can be defined by the same 

parameters (see Fig. 4.8), but the outer blade may have different parameter values, such 

as blade angle, rake angles and relief angles. 
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Figure 4.8 Parametric model of the outer blade. 

The circular cutting edge can be represented as 
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, (4.24) 
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and 
   

     

1
2 2 2

arcsin
o

o o o

o E

E E E
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X Y Z
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 
 
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 and    

 

 
2 arctan

o

o

o oE
o

E

Z

Y
 

 
  

 
 

. 

 o
E  is the normal vector to the rake plane, which can be represented as 
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E . (4.25) 

The vector   'o

bx  is  o

bx  after transformation, which can be represented as 
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. (4.26) 

With 
  'o

bx  we can derive 
 
3

o
  as 
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. (4.27) 

Thus, the limits of 
 o

  are 
       
3 3

o o o o

a      . Here,  o

a  is the angle between SCE 

and TCE, and it can be calculated from 

       TCE SCEarccos
o o o

a  U U . (4.28) 

 
TCE

o
U  and  

SCE

o
U  are respectively the unit vector of top cutting edge and side cutting edge. 

 o
TCE  and 

 o
SCE  can be represented as 
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,(4.30) 

The parametric equation of TCE can be expressed as 

          3 3 31 0 1
o o o

TCE u J u K u      L , (4.31) 
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od  is the overlap between inner and outer blades. The parametric equation of TCE is 

          4 4 41 0 1
o o o

SCE u L u M u      L , (4.32) 
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4.5 Cutting edges in cutter coordinate system 

The inner and outer blades are mounted on the cutter plates alternatively (Fig. 4.9). 

The axes 
cz ,  i

bz  and  o

bz  are parallel to each other. Axis 
cx  is coincide with  i

bx , and 
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forms angle p  with  o

bx . The angle p  can be calculated from the number of the blades, 

and 
2

p

bn





 . 

 o

bz

cO

cr

cx

cz

cy

 i
bO  i

bx

 i
by

 i
bz  o

bO  o

bx

 o

by

 o

bz

p

Inner blade

Outer blade

Simplified blade

 

Figure 4.9 Blades in cutter coordinate system. 

cr  is the mean cutter radius. The cutting edges of inner blade can be represented in cutter 

coordinate system 
cS  as 
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, (4.33) 

with the transformation matrix 
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The cutting edges of outer blade can be represented in cutter coordinate system 
cS  as 
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with the transformation matrix 
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. 

4.6 Cross Section of Tool Surface on 
c cx z  Plane 

The tool surface is generated by blades rotating about the cutter axis 
cz . Since the 

simplified blades are defined on the normal plane, which is 
c cx z  in 

cS , to compare the 

genuine tool surface to the simplified tool surface, the cross section of genuine tool 

surfaces on 
c cx z  plane is taken. By calculating the distance between this cross section and 

simplified blade profile, we can evaluate the geometric error of the simplified model. 
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4.6.1 Cross Section of Tool Surface Revolved by SCE on 
c cx z  Plane  

The blade side cutting edge is a straight line on rake face, when it rotates about 

the 
cz  axis, it will produce the tool surface of side cutting edge (Fig. 4.10). 

cz

cx cy
c cx z

Cross section: 

hyperbola
L

M SCE: straight line

'L

'M

 

Figure 4.10 Cross section of tool surface revolved by SCE on 
c cx z  plane. 

Points M  and L  are two ends of inner blade SCE, they can be represented in 
cS  as 

   SCE 1
i

P  and    SCE 0
i

P .When LM  revolves about 
cz , the surface can be represented as 
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.(4.35) 

The cross section of  i
SCES  on 

c cx z  should satisfied the equation 
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, (4.36) 

so from the equation we can obtain the relation between 
 i  and 

2u  
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Replace 
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  and 
 
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i

  in  i
SCES , we can get the planar curve  i
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c cx z  plane, 

which can be written as 
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This planar curve can be written in the explicit way as 
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(4.38) 

It can be simplified as a typical hyperbola equation 
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with the parameters 
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Fig. 4.11 shows the cross section  i
SCEC  is one segment of hyperbola, which is 

starting from 'L  to 'M , and their coordinates can be calculated as 

 

' 2 2

' 2 2

c c c

c c c

T

L L L

T

M M M

L X Y Z

M X Y Z

     


   
 

. (4.40) 

Cross section of tool 

surface revolving by side 

cutting edge on        plane'L
'M

hyperbola 

c cx z

 

Figure 4.11 Hyperbola curve. 

By using the same procedure, we can derive cross section of tooth surface 

generated by outer blade  o

SCEC , which can be written as 
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This result shows the cross section of tool surface revolving by SCE on 
c cx z  plane 

is a hyperbola. It is totally different with the simplified blade, which simply treated SEC 

as a straight line on 
c cx z  plane. Since the SCE is responsible for the generation of tooth 

flank, this geometric error caused from simplification finally affects the tooth mating 

between gear and pinion. 

4.6.2 Cross Section of Tool Surface Revolved by CCE on 
c cx z  Plane 

The circular cutting CCE is an arc locating on rake plane. The parametric 

equation of inner blade CCE in Eq. 4.34 can be also written as 
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. (4.42) 

When it rotates about 
cz , the revolving surface can be represented as 

                        CCE CCE 3 3, ,0 2
i i i i i i i i i i

rc aS M                P , (4.43) 

with  
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The y-coordinate of cross section of  
CCE

i
S  on 

c cx z  plane should equal to zero. 

Based on this rule we can derive the equation 
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Combining the above equations, we can get the plane curve on 
c cx z  plane 
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(4.45) 

The parametric equation shows the cross section is a complicated curve. Using the same 

procedure, we can derive the cross section for the tooth surface generated by outer blade, 

which can be written as 
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with  
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4.7 Geometric Error of Simplified Cutter 

The cutting edges of simplified and genuine cutter are two space curves, which 

are defined on normal plane and rake plane respectively. Since in tooth generation 

process the tool surface is used, in the section 3 we calculate the tool surface cross 

section on normal plane. From the difference between their cross section we know how 

much the geometric error of the simplified tool surface (see Fig. 4.12). 

cO

cz

cx

Simplified blade

 i
SCEC  o

SCECGeometric Error of the 

simplified blade

 i
CCEC

 o

CCEC

Simplified blade

1P
2P

 

Figure 4.12 Geometric error calculation of the simplified cutter. 
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To calculate the geometric error along the cutting edge, assume point 
1P  is on 

simplified blade, we can find a nearest point 
2P on cross section of genuine tool surfaces. 

The geometric error at point 
1P  can be represented as 

 2 1error P P  . (4.48) 

4.8 Applications 

To demonstrate the geometric error of the simplified cutter, some examples are 

conducted. In the first example, the inner and out blades of one cutter are tested. The 

genuine cutter and tool surface geometric models are built up (see Fig. 4.13). The 

simplified cutter geometric model is also built up, and the parametric equations of 

simplified cutter are presented in appendix. The geometric errors along the cutting edges 

are calculated. For the inner and outer blades, they have the same back rake angle, end 

relief angle, side rake angle, side relief angle and blade angle (see Table 4.1). 

Table 4.1 Geometric parameters of the blade. 

Bake rake angle 20
o End relief angle 12

o 

Side rake angle 10
o Side relief angle 4

o 

Inner blade angle 22.5
o Outer blade angle 22.5

o 

Depth of blade 17.8 mm Corner radius 1 mm 

Average cutter radius 152.4 mm Point width 2.54 mm 
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Genuine inner blade 

Genuine outer blade 

Simplified blade

Genuine tool surface

 

Figure 4.13 Genuine cutter and tool surface geometric models. 

The cross sections of tool surfaces on normal plane are displayed in 
cS (see Fig. 

4.14). The errors of simplified inner blade and outer blade along the cutting edges are 

calculated. Since the surface generated by top cutting edge will not affect the mating of 

pair of gears, the errors analysis only focus on side cutting edge and circular cutting edge. 

Fig. 4.15 shows the geometric errors of the simplified cutter. From the first example we 

find that the geometric errors from blade top to bottom are gradually increasing (see Fig. 

4.15). The geometric error of inner blade are larger than the error of outer blade because 

the distance of outer blade to 
cz  is larger than the distance of inner blade to 

cz . For the 

inner blade, the maximum geometric error is about 0.53 mm, and for the outer blade, the 

maximum error is about 0.32 mm. Since in the machining process not all the cutting edge 

segments participate in the material remove, we care more about the geometric error 

around mean point. The geometric error at the mean point of the inner blade is about 0.21 

mm, and for the outer blade, it is about 0.17 mm. 
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Figure 4.14 Cross section of the blades: (a) inner blade, (b) outer blade. 
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Figure 4.15 Geometric errors of the simplified blades: (a) inner blade, (b) outer blade. 

In the following tests, the effects of the geometric angle on the geometric errors 

are analyzed (see Fig. 4.16). Since the calculation of pinion machine settings is based on 

the mean point, the following geometric errors are estimated at the mean point. 
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Figure 4.16 Geometric errors with parameter varying: (a) back rake angle, (b) side rake 

angle, (c) end relief angle, (d) side relief angle. 

In test (a) we keep the same geometric parameters in the first test except changing 

the back rake angle from 0
o
 to 20

o
. It shows that with the back rake angle increasing the 

geometric errors will decrease at the beginning, and then gradually increase. The 

minimum errors of inner and outer blade are about 0.007 mm. The maximum error for 

inner blade is about 0.21 mm, and for out blade is about 0.17 mm. In test (b) the side rake 

angle varies from 0
o
 to 10

o
. The result shows that with the side rake angle changing, the 
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geometric errors almost keep the constant. In test (c) the end relief angle varies from 0
o
 to 

10
o
. The result shows with the end relief angle increasing, the geometric errors of inner 

blade keep on increasing from 0.02 mm to 0.50 mm, and the errors of outer blade 

increases from 0.01 mm to 0.45 mm. In test (d) the side relief angle varies from 0
o
 to 15

o
. 

It shows that with the side relief angle increasing, the geometric errors of inner blade 

gradually decrease from 0.28 mm to 0.20 mm, and the errors of outer blade decrease from 

0.21 mm to 0.16 mm. 

From the tests we can see the geometric errors of the simplified cutter cannot be 

neglected in cutter modeling, and the different cutter parameters have different effect on 

the cutter, so we have to take these parameters into consideration in cutter modeling. 

4.9 Summary 

To achieve the accurate and real face-milled spiral bevel and hypoid gears, a 

genuine geometric model of cutter is proposed in this chapter. By taken the rake angles 

and relief angles into consideration, we accurately represent the cutting edges on the rake 

plane, rather than the cutting edges of the simplified blade are built up on the normal 

plane. In the applications we observe the geometric errors of the simplified cutter are big 

enough and cannot be neglected. This genuine cutter model is the foundation to build up 

the accurate gear tooth surfaces. With this model it is possible for high speed face-milled 

used for gear tooth finishing, and the accurate roughing tooth surface also benefit to the 

finishing cutter. 
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Chapter 5 Modeling of Accurate Tooth 

Surface of Face-Milled Spiral 

Bevel Gears with Genuine 

Cutter Geometric Model 

5.1 Introduction 

Spiral bevel gear is a kind specific hypoid gear when the shaft offset is equal to 

zero. For the member gear, there are two machining ways: non-generated and generated 

methods. In the non-generated gear tooth machining, the gear tooth just simply duplicates 

the tool surface. For the generated gear tooth machining, the gear tooth is the envelope of 

the tool surface family. In the work, the member gear will be machined by non-generated 

method. The pinion tooth only can be machined by generated method. In the introduction 

we discussed the importance of the accurate gear tooth surface for the tooth finishing 

process and the tooth roughing process. In the chapter 4, a genuine cutter geometric 

model is proposed. In this chapter, by using this genuine cutter geometric model, the gear 

tooth surfaces of spiral bevel is developed. In the final one example of spiral bevel 

machining is conducted to show how to build up the tooth geometry, and demonstrate the 

geometric error of the simplified gear teeth. 
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5.2 Genuine Cutter Geometric Model 

The cutter for the face-milled spiral bevel and hypoid gears is composed of a 

group of inner and outer blades, which are alternatively mounted on the cutter plates with 

angle p . For the genuine blade, the side cutting edge (SCE) is a straight line, and the 

circular cutting edge (CCE) is an arc. Both of them are located on the rake plane (Fig. 

5.1), and can be defined in cutter coordinate system cS . For the simplified blade, the 

cutting edges are defined the blade normal plane, and here it is the c cx z  plane. 

Simplified blade

Genuine inner blade

Genuine outer blade

cz

cy

cx

Rake plane

Normal plane

Rake plane

 

Figure 5.1 Blades in cutter coordinate system. 

The tool surface is the generated by the cutting edges revolving about the cutter 

axis. To compare the genuine blade to the simplified blade, the cross section of the tool 

surface on c cx z  plane is taken. In Fig. 5.2 
 i
SCEC  and 

 o

SCEC  are the respective cross sections 

of tool surfaces generated by inner blade SCE and out blade SCE. We find they are 

hyperbolas, instead of the straight lines as simplified cutter defined.
 

 i
CCEC  and 

 o

CCEC  are 
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the respective cross sections of tool surfaces generated by inner blade CCE and out blade 

CCE. They are more complicated curves, instead of the arcs as simplified cutter defined. 

cO

cz

cx

 o

SCEC

 i
CCEC

 o
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SCEC

'M

'L
  'o

L

  'o
M

'J   'o
J'K

  'o
K

 

Figure 5.2 Cross sections of tool surface on c cx z  plane. 

5.3 Rational Bézier Curve Representation of  i
SCEC  and  o

SCEC  

The cross section 
 i
SCEC  and 

 o

SCEC  can be represented as rational Bézier curves 

since they are hyperbolas. Points 'L  and 'M  are two ends of 
 i
SCEC  (see Fig. 5.3). 

2Q

'M'L

0A 1A

3A

0Q

1Q

2A

 i
SCEB

 

Figure 5.3 Hyperbola curve of 
 i
SCEC . 
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Vectors 0A  and 1A  are the tangent directions of ' 'LM  at points 'L  and 'M , it can 

be represented as 
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and 
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Here, 
T

c c cc M M MM X Y Z     and 
T

c c cc L L LL X Y Z     are the two ends of inner 

blade SCE. Their corresponding cross section points 'M  and 'L  are 
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1Q  is the intersection of 0A  and 1A . Here assume 0A  is not parallel to 1A , and 1Q  be 

derived as 
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The hyperbola 
 i
SCEC  can be represented as a quadratic rational Bézier curve 
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Set 
0 2 1w w  . The only unknown item in  i

SCEB  is 
1w . When 

1 0w  , we obtain the straight 

line ' 'LM , yielding 
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Assume one point 
0Q  is on the curve 

 i
SCEC  with parameter 

2 2u u , the point 
0Q  can be 

written as  
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c c c c c c

c c c
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               

    

. (5.7) 

Extend the line 1 0Q Q , and it will intersect with line ' 'LM  
 
at point 2Q , which can be 

derived as 

 

   

   

' '
3 1 3 1

1 2

2 3 3 2
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3 1 3 1

1 2

2 3 3 2
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c c
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A Q A QL L

Q A

A A A A

X Z Z Z X X
X X

Z X Z X
Q

X Z Z Z X X
Z Z

Z X Z X

     
  
   
 
     
  
    

, (5.8) 

with 
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A

A

. 

Replace 
2Q  back to the straight line ' 'LM , we can obtain 

  

     
     

2 2
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0

2 2 2
0 0

1
( )

1

c cu M u L
Q u

u u

   


 

, (5.9) 

and then we can derive the equation of the parameter  0
u  as 

 

  
  

2
0

'

2

2 '
0

21

c

c

u Q M

L Qu



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. (5.10) 

Assume 
'

2

5 '

2

c

c

Q M
a

L Q





, and we can get  0 5

51

a
u

a



. Replace  0

u  back to the equation 

 i
SCEB  at point 

0Q  we can obtain 

 

         
      

2 2
0 0' '

0 0

1 0 0

0 1

1

2 1

c cu M Q u L Q
w

u u Q Q

     


    
. (5.11) 

Once we know 1w , all the parameters for the quadratic rational Bézier curve  i
SCEB  are 

determined. The curve  i
SCEB  can accurately describe the cross section of tool surface 

generated by inner blade SCE. 

By using the same procedure we can derive the equation for the outer blade (see 

Fig. 5.4), the quadratic rational Bézier curve can be written as 
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Figure 5.4 Hyperbola curve of 
 o

SCEC . 

5.4 B-spline Representation of  i
CCEC  and  o

CCEC  

 i
CCEC  and  o

CCEC  are the cross sections of the tool surfaces generated by CCE. We 

are trying to use B-spline curves to represent them (see Fig. 5.5). First we derive the B-

spline curve for the inner blade. To represent the  i
CCEC  as a B-spline curve, the sampling 

points      
0 1,

i i i

mC C C  on curve  i
CCEC  are calculated, we seek a cubic B-spline curve 

 
         ,3

0

0,1
n

i i

CCE j j

j

u N u D u


 B , (5.13) 

satisfying that:      0 0
i

C

i

CEC B  and      1
i

C

i

m CEC B , and the remaining    
1 1

i i

mC C   are 

approximated in the lease squares 

     
1 2

1

m
i i

j CCE

j

C u




 B , 
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is a minimum with respect to the n+1 control points      
0 1,
i i i

nD D D . 

By using the same procedure we can find a cubic B-spline curve for the outer 

blade, which can be written as 

          ,3

0

0,1
n

o o

CCE j j

j

u N u D u


 B . (5.14) 

Here,      
0 1,

o o o

mC C C  are the sampling points, and      
0 1,

o o o

nD D D  are the control 

points. Since interpolating method is used to approximate the cross sections, it is 

important to control the accuracy within defined tolerance. There are two ways to 

increase the accuracy. One is increasing the degree, and the other way is increasing the 

number of control points. Here we fix the degree, and use a cubic B-spline. Thus our goal 

is to satisfy the defined tolerance using as few as possible control points. At the 

beginning few control points are taken, and gradually increase the curve accuracy by 

using more control points, up to make the curve within defined tolerance. 
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Figure 5.5 B-spline representation of  i
CCEC  and  o

CCEC . 

5.5 Tool Surfaces Represented as NURBS 

The tool surfaces can be achieved by revolving of the cutting edges about the 

cutter axis cz . We assume the tool surfaces are continuous surfaces, like grinder surface. 

First we derive the the tool surface generated by inner blade SCE (see Fig. 5.6). 
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 i
SCET
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(a) NURBS tool surface (b) Control ployhedron
 

Figure 5.6 NURBS tool surface generated by SCE. 
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The NURBS surface revolved by inner blade SCE can be represented as 

 
       

2 8

,2 ,2 ,

0 0

0 1,( , ) 0 1
i w

SCE j k j k

j k

u v N u N v uP v
 

    T . (5.15) 

For easy representation the hyperbola control points 'L , 1Q  and 'M  are written as 
0,0P , 

0,1P , and 
0,2P  respectively. 

kw  is the weight of the rational Bézier  curve  i
SCEB . This 

hyperbola is the generatrix of the tool surface  i
SCET . In the other direction we use the nine 

control points circle representation. The knot vector of the circle is 

 3 31 1 1 1

4 4 2 2 4 4
0,0,0, , , , , , ,1,1,1V  , and weights  2 2 2 2

2 2 2 2
1, ,1, ,1, ,1, ,1jw  . For a unit circle on XY 

plane, it can be represented as 

    
8

,2

0

0 1w

c j j

j

C N v P v


    , (5.16) 

with the control points of hyperbola and unit circle, the control polyhedron of the  i
SCET  can 

be written as 

0,

0,

0,

,

,

,

,

,

k k

k k

k

j k P P

j k P Pw

j k

j k P

j k

w X X

w X Y
P

w Z

w

  
 

  
  

 
 
 

, 

with ,j k j kw w w  . 
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The c cx z  cross section of inner blade CCE is a cubic B-spline curve, with 1n

control points 
0,2 0, 2nP P 

. The B-spline curve can be treated as NURBS curve with weight 

equal to 1.  

cz

cx

cy

cO  i
SCET

 i
CCET

 o

SCET

 o

CCET

Cross section

 

Figure 5.7 Tool surfaces represented as NURBS. 

In Eq. 5.17,  i
CCET ,  o

CCET  and  o

SCET  are the tooth surfaces generated by inner blade CCE, 

outer blade CCE and SCE respectively. 
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, (5.17) 

5.6 Generation of Member Gear Tooth Surface  

Member gear tooth can be machined with generated or non-generated method. In 

this work non-generated method is used. For the non-generated method the gear tooth just 

duplicates the tool surface, thus the member gear tooth can be obtained by transforming 
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the tool surface from cS  to gear coordinate system gS . Fig. 5.8 shows the kinematics of 

member gear tooth generation. The coordinate system gS  is connecting to gear blank, 

and gz  is its center axis. Coordinate system 1fS  connects to the machine frame, and 

1 1f fy z  plane is called machine setting plane. mX  is the withdrawal of gear crossing 

point from machine setting plane. 2  is the machine root angle setting. The origin of 

cutter coordinate system cS  locates on the machine setting plane. 2H  is the horizontal 

coordinate of the cutter center, and 2V  is the vertical coordinate. In one tooth machining 

process, the work table which gear blank installed on will feed in 
G

Cz  or 1fx  direction, 

and the head cutter rotates about cz , but cradle keeps stationary. Thus in the member gear 

machining process with non-generated method gear tooth surface simply duplicates the 

shape of the tool surface. 
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Figure 5.8 Kinematics of member gear tooth generation. 

In above we derived the tool surfaces  i
SCET ,  i

CCET ,  o

SCET  and  o

CCET  in cS . They can 

be transformed to gS  just by transforming its control points from cS  to gS . This is one 

advantage to represent the tooth surfaces in NURBS. The gear tooth surfaces can be 

represented as 
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. (5.18) 

,

G

i jP  is the control point in gS , and ,

G

i jw  is the weight. They can be obtained from 
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where 
,i jP  is the control point in cS , and 

GCM  is the transformation matrices from cS  to 

gS , which can be written as 
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2 2 2 2

2
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, , , , , ,
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0 1 0

cos 0 sin cos

0 0 0 1
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 
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.(5.20) 

The size and shape of the bevel gear blanks are changed with different tooth taper. 

Here a general gear blank model is given (see Fig. 5.9). This model can represent the 

standard depth taper with a common apex for the pitch cone, root cone and face cone, and 

represent the uniform depth taper with the same face, pitch and root angle. The gear 

blank model is defined in the gS . Parameter r  is the gear root angle. p  is the gear 

pitch angle. f  is the gear face angle. ml  is the mean length of gear pitch cone generatrix. 

wf  is the gear face width. 
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Figure 5.9 Bevel gear blank. 

5.7 Generation of Pinion Tooth Surface  

In most cases the axes of gear and pinion of spiral bevel gears are perpendicular 

to each other. For the spiral bevel gear, the relative position of gS and pS  (pinion 

coordinate system) can be described by pinion angle g  in case of perpendicular shaft 

(see Fig. 5.10). 

pz

px

py

g

,g pO

gz

gy

gx

 

Figure 5.10 Relative position between gS  and pS . 

The transformation matrix from pS  to gS  can be written as  



72 

 

0 sin cos 0

0 cos sin 0

1 0 0 0

0 0 0 1

g g

g g

gpM
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. 

5.8 Kinematics of Pinion Tooth Generation 

Pinion tooth surface can be only machined by generated method. Fig. 5.11 shows 

the kinematics of pinion tooth generating. The pinion tool surface is defined in cS , which 

is the revolving surface of blade cutting edges. The blade rotating velocity is not related 

to the tooth generation speed. We assume the tool surface is a continuous surface like the 

grinder surface. The cutter plate is rigidly connected to cradle. Unlike the cradle and gear 

blank keep stationary in the non-generated method, in one tooth cutting process the cradle 

is rotating about 2mz  with angular velocity c  in the generated method, and the pinion 

blank is rotating about pz  with angular velocity p . 2mS  is connecting to the machining 

tool. Assume 2c  and 2  are the respective cradle and pinion blank rotation angles. For 

the modified roll, the pinion angle 2  and 2c  have the relation 

 2 3

2 2 1 2 2 2pc c c cm a a         , (5.21) 

where pcm  is the ratio of roll, 1a  and 2a  are the coefficients of modified roll.  
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Figure 5.11 Kinematics of pinion tooth generation. 

Pinion tooth surface is the envelope of the pinion tool surfaces. At each cradle 

rotation moment, the tool surface has an instantaneous contact line with pinion tooth 

surface. At each instantaneous contact point on the line, the relative velocity cpv  between 

tool surface and pinion tooth surface is perpendicular their common normal direction n . 

5.9 Genuine Pinion Tooth Surface 

Based on the above kinematics of pinion tooth generating and the genuine tool 

surface, the family surfaces generated by the inner blade side cutting edge can be 

represented in pS  as 
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Here, 
pcM  is the transformation matrices from cS  to pS , which can be derived from Fig. 

5.12 as 
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Figure 5.12 Machine settings for pinion tooth generation. 

Here a non-tilted blade is used, so the cz  is parallel to the cradle center axis. The 

coordinate system 2bS  is connected to cradle, and 1bS  is connected to machining tool. 

2rS  is the radial setting. 2C  is the machine offset. 2B  is the sliding base, and 2A  is 

the machine center to back.
 2m  is the machine root angle. 

In the pinion tooth generation, at the instantaneous contact point, cpv  is 

perpendicular to n , which can be written as the mesh equation 

      
2, , 0

i cp

Sf u v n v    . (5.24) 

Here,  2
n  and 

 cp
v  can be represented in 2mS . The normal n  in 2mS  can transformed 

from normal on tool surface in cS  as 
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 2 2 2m b b c cn L L n   . (5.25) 

Here, 2 2m bL , 2b bL  and 2b cL  are the matrices with first three rows and columns of 

corresponding matrices of 2 2m bM  and 2b cM . The normal of the tool surface in cS  can be 

represented as 

 
   

( , ) ( , )
i i

SCE SCE
c

u v u v
n

u v

 
 

 

T T
. (5.26) 

The relative velocity 
 cp

v  can be expressed as 

     2 2 3

cp

c p m m m pv r O O       . (5.27) 

2mr  is the tool surface in 2mS , which can be transformed from cS  as 

 
 

2 2 2 2 2 ( , )
i

m m b b b b c SCEr M M M u v   T . (5.28) 

The vector 
2 3m mO O  can be represented as  

T

2 3 2 20m mO O C B   . Assume p  is a 

unit vector, which can be represent in 2mS  as  
T

2 2cos 0 sinp m m   . The c  can be 

represented as 
T

0 0c cpm     . The roll ratio can be expressed as  

 
2

1 2 2 2

1

2 3
cp

pc c c

m
m a a 


     

. (5.29) 

Combining the Eq. 5.25 and Eq. 5.27, the flank on the pinion convex side can be 

represented in pS  as 
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       

   

2 2

2

, , ( , )

, , 0

i i

S pc SCE

i

S

u v M u v

f u v

 



  




R T
. (5.30) 

By using the same procedure, the fillet on pinion convex side can be represented in pS  as 

 

       

   

2 2

2

, , ( , )

, , 0

i i

C pc CCE

i

C

u v M u v

f u v

 



  




R T
. (5.31) 

For the pinion concave tooth surfaces, we can derive them with the same way. But the 

machine settings for the concave and convex sides are different. The flank on pinion 

concave side can be represented in pS  as 

 

       

   

2 2

2

, , ( , )

, , 0

o o

S pc SCE

o

S

u v M u v

f u v

 



  




R T
, (5.32) 

and the fillet on pinion concave side can be represented in pS  as 

 

       

   

2 2

2

, , ( , )

, , 0

o o

C pc CCE

o

C

u v M u v

f u v

 



  




R T
. (5.33) 

5.10 Pinion Tooth Surface Represented as NURBS Surface 

The above pinion tooth surfaces are represented by three parameters in two 

dependent equations. It cannot directly be used in CAD software. In this work we 

represent the pinion tooth surfaces as NURSB surface. First we figure out the contact 
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points from the above tooth surface equations, and then use NURBS surfaces to 

interpolate these points. 

Instantaneous contact points

Instantaneous contact lines 

Pinion tooth surface

 i
L

 ,i j
D

P

u
v

 

Figure 5.13 Pinion tooth surface represented as NURBS surface. 

In the pinion tooth generation, at each cradle rotation moment the tool surface has 

line contact with the pinion tooth surface (see Fig. 5.13). With the cradle continuously 

rotating, the generating process will produce adjacent contact lines, which form the 

pinion tooth surface. This continuous process can be discretized by dividing cradle 

rotation angle 2c  into small segments 2c , and the corresponding pinion blank rotation 

angle will be 2 . Assume at cradle rotating angle 
 

2

i

c  and the corresponding pinion 

rotating angle 
 

2

i
 , the tool surface and pinion tooth surface will contact at instantaneous 

contact line. We know u  and v  are tool surface parameters. u  varies from 0 to 1, and v  

varies from 0 to 2 . Under a given value 
 j

u  of parameter u , we can find the 

corresponding 
 j

v  which satisfies the mesh equation. There may be two solutions for 
 j

v . 

We choose the solution which is intersecting with the pinion blank. The parameters 
 

2

i
 , 
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 j
u  and 

 j
v  determine the instantaneous contact point  ,i j

D . which can be calculated 

from the equation 

 

                 

        

2 2

2

, , ( , )

, , 0

i j j i i i j j

S pc SCE

i j j i

S

u v M u v

f u v

 



  






R T
. (5.34) 

When u  varies from 0 to 1, we can find a series of contact points, which form the 

instantaneous contact line at 
 

2

i
 . One NURBS curve  i

L  with degree 1d  can be used to 

interpolate these contact points. 

 
     

1, ,

0

m
i

k d k j

k

v N v


L Q . (5.35) 

With the cradle rotating, a series of contact line can be generated with different 2 . One 

NURBS surface can be used to interpolate all of them, which can be represented as  

      
1 2, , ,

0 0

,
m n

k d l d k l

k l

u v N u N v
 

P T . (5.36) 

Here ,k lT  are the control net points. The NURBS surface P  allows us to represent the 

pinion tooth surface in CAD software very conveniently, and it is easy to manipulate. 

Since we just need to calculate the few control points instead of tons of sampling points, 

to reach the same accuracy level it reduces the workload dramatically. The next step is to 

how to use as few as possible number of points to control the NURBS surface within 

tolerance. To reach this goal we have to optimize the number of sampling points and 

control points. 
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For the surface P  only at sampling points it is exactly same as the theoretic tooth 

surface because of interpolation. Points out of the sampling points are approximate, so 

the geometric errors exist. The geometric errors can be controlled within tolerance by 

using the steps in Table 5.1. 

Table 5.1 Procedure of pinion tooth surface generation. 

Step 1 
Set the number of sampling points 

0n ,  

and calculate the initial sampling points 
0D . 

Step 2 
Set the number of controlling points 

0m , 

 and generate the initial tooth surface 
0P  by interpolating 

0D . 

Step 3 Increase the sampling points 
0n n  , and generate the new tooth surface 

1P . 

Step 4 Calculate the geometric error between the two surfaces, 1 0error  P P . 

Step 5 

Check if the error is large than the specified tolerance, go to Step 3,  

and 
0 1P P ; 

If the error is small than the specified tolerance, go to Step 6. 

Step 6 
Increase the control points 

1 0m m m  ,  

and generate the new tooth surface 2P . 

Step 7 Calculate the geometric error between the two surfaces: 2 1error  P P . 

Step 8 

Check if the error is large than the specified tolerance, go to Step 6,  

and 1 2P P ; 

If the error is small than the specified tolerance, output the tooth surface. 

 

The above algorithm is to achieve the tooth surface within specified tolerance. At 

the beginning, we use the small number of sampling points and controlling points, we can 

get a rough surface. By increasing of the sampling and control points, an improved 

surface which is getting closer to the theoretic tooth surface can be obtained. The distance 

between the rough surface and improved surface is getting smaller with the increasing of 

sampling and controlling points. When the distance reaches specified tolerance, we know 

that the geometric errors of the interpolating surface can be neglected. 
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5.11 Applications 

To illustrate how to build up the genuine gear tooth surfaces, two examples are 

conducted. One is for the spiral bevel gear, and the other example is for the hypoid gears. 

In examples, under the given blade data, the genuine blade model is build up first, and 

then produce the member gear tooth surface with specified gear machine settings. After 

get the member gear tooth, the pinion tooth surfaces are generated with the given pinion 

machine settings and pinion cutter. Finally we compare the genuine gear tooth geometry 

and tooth contact with the simplified gear tooth geometry and tooth contact. 

5.11.1 Tooth Generation of Spiral Bevel Gears 

In this example, the first step is to build up the genuine blade model. Table 5.2 

gives the blade data for the member gear. The inner blade and outer blade have the same 

geometric parameter value. There are 12 blades mounted on the cradle.  

Table 5.2 Blades data for the member gear. 

Bake rake angle 20.00
o
 End relief angle 12.00

o
 

Side rake angle 10.00
o
 Side relief angle 4.00

o
 

Inner blade angle 22.50
o
 Outer blade angle 20.00

o
 

Point width 4.826 mm Corner radius 2.794 mm 

Average cutter radius 177.800 mm   

 

Based on the given blade data the geometric model of genuine and simplified 

blades are built up. Fig. 5.14 shows that the cross sections of simplified tool surface and 

genuine tool surface are different. The geometric errors of the simplified blade are 

calculated (see Fig. 5.15). From the result we find that the geometric errors from blade 
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top to bottom are gradually increasing. The geometric errors of inner blade are larger than 

the errors of outer blade, because the distance of outer blade to cz  is larger than the 

distance of inner blade to cz . For the inner blade, the maximum geometric error is about 

0.551 mm, and for the outer blade, the maximum error is about 0.374 mm.  
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Figure 5.14 Cross sections of tool surface: (a) inner blade, (b) outer blade. 
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Figure 5.15 Geometric errors of the simplified blades: (a) inner blade, (b) outer blade. 

The second step is to build up the member gear tooth surface with the genuine 

blade model. The member gear is a non-generated (Formate®) spiral bevel gear. The 
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machine settings of member-gear are shown in Table 5.3. The data of member gear blank 

are listed in Table 5.4. 

Table 5.3 Machine settings of member gear. 

Correction in machine 

center to back 
-2.007 mm Machine root angle 76.17

o
 

Cutter horizontal setting 100.152 mm Cutter vertical setting 137.897 mm 

 

Table 5.4 Data of member gear blank. 

Gear root angle 75.13
o
 Gear face angle 80.30

o
 

Gear face width 71.120 mm Mean cone distance 177.521 mm 

Teeth number 52 Blank depth 35.000 mm 

Hand of spiral Left hand   

 

The flank and fillet of the member-gear are represented by separated surfaces (see 

Fig. 5.16). The flanks are produced by the side cutting edges. We know that the cross 

section of side cutting edge is a hyperbola, which can be accurately represented by a 

rational Bézier curve with 3 control points. The cross section of circular cutting edge is 

approximated by a cubic B-spline curve, so its error should be controlled within tolerance 

(see Fig. 5.17). As mentioned above, we increase the accuracy by using more control 

points. In the test, the radius of circular cutting edge is about 2.794 mm. When 8 control 

points are taken, the maximum error is about 0.0019 mm. when the number of control 

points increases to 12, the maximum error decreases to 0.00015 mm.  
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Figure 5.16 Genuine member gear tooth. 
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Figure 5.17 Error of CCE in B-spline with different number of control points. 

The third step is to generate the pinion tooth surface with the given pinion 

machine settings and blade data. The pinion teeth on concave and convex sides are 

generated with different blades and machine settings. Table 5.5 shows the data of the 

pinion blades. The machine settings of pinion are listed in Table 5.6. The data of pinion 

blank are shown in Table 5.7. 
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Table 5.5 Data of the pinion blades. 

 Concave side Convex side 

Bake rake angle 17.00
o
 23.00

o
 

Side rake angle 10.00
o
 10.00

o
 

blade angle 14.00
o
 14.00

o
 

End relief angle 12.00
o
 12.00

o
 

Side relief angle 4.00
o
 4.00

o
 

Cutter point radius 174.496 mm 185.151 mm 

Corner radius 2.794 mm 2.794 mm 

 

Table 5.6 Machine settings for pinion. 

 Concave side Convex side 

Machine center to back -4.530 mm 8.134 mm 

Blank offset 19.947 mm -20.314 mm 

Sliding base setting 0.339 mm -1.795 mm 

Radial setting 150.301 mm 195.018 mm 

Installment angle 62.06
o
 61.54

o
 

Machine root angle 9.70
o
 9.70

o
 

Ratio of cutting 4.853 5.773 

Coefficient of modified roll 1a  0.0302 -0.0527 

Coefficient of modified roll 2a  -0.0599 0.1157 

 

Table 5.7 Data of pinion blank. 

Pinion root angle 14.87
o
 Pinion pitch angle 79.12

o
 

Mean cone distance 177.521 mm Face width 71.120 mm 

Number of teeth 52 Hand of spiral Right hand 

 

Fig. 5.18 shows the pinion tooth surface generated with the above pinion blade 

data, machine setting and blank data. The flank and fillet on concave and convex side are 
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pointed out with different colors. To achieve the genuine pinion tooth surface, the 

following steps are taken. 

Flank on concave side

Flank on convex side

Tooth fillet

 

Figure 5.18 Genuine pinion tooth surface. 

5.11.2 Pinion Flank on Concave Side in NURBS Surface 

In this chapter we propose a method to represent the pinion tooth surface in 

NURBS surface, and also provide the method to control it within specified tolerance. 

Here one example on pinion concave flank is used to demonstrate the method. At the 

beginning, we figure out 6 30  initial sampling points from Eq. 5.34, and gradually 

increase the number of sampling points to 18 140 . Difference NURBS surfaces are used 

to interpolate the sampling points with the same number of control points. The relative 

geometric errors are calculated (see Fig. 5.19). For example, we calculate the distance 

between the surface with 6 30  sampling points and the surface with 7 40  sampling 

points, the average distance is 0.0207 mm, and the maximum distance is 0.0622 mm. 

When the number of sampling points are increased to 18 140 , the average distance is 

less than 0.0001 mm, and the maximum distance is 0.0006 mm. when keep on increasing 
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the sampling points, the distance becomes very small, and can be neglected. At this 

moment, the contribution of the adding sampling point to improve the tooth accuracy is 

trivial. 
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Figure 5.19 Geometric errors with the increase of sampling points. 

Once the sampling points are settled down, we can optimize the control points. 

We gradually increase controlling points from 5 30  to 15 110 , and calculate the 

relative geometric errors (see Fig. 5.20). When 30 control points is taken, the average 

geometric error is 0.001 mm, and the maximum geometric error is 0.0035 mm. When the 

number of control points increase to 12 90 , the average error is less than 0.0002 mm, 

and maximum error is 0.0001 mm. Keep on increasing the control points, the contribution 

of the adding sampling point to improve the tooth accuracy is trivial. 
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Figure 5.20 Geometric errors with the increase of control points. 

Fig. 5.21 shows the calculated instantaneous contact points, instantaneous contact lines 

and the genuine flank tooth. For the following tooth contact analysis, the principal 

directions and curvatures at mean point can also be calculated. 

:principle direction1 1pT

:principle direction2 2pT

Mean point 

Instantaneous 

contact lines

Instantaneous 

contact points

1pT

2pT

 

Figure 5.21 Pinion flank on concave side. 

5.11.3 Calculation of Pinion Tooth Geometric Errors 



89 

 

In the above section, we build up the pinion flank on concave side. By using the 

same strategy the flank on convex side and fillets can be generated (see Fig. 5.22). The 

surfaces in Fig. 5.22 are the generated by the tool surface with cradle angle varying from 

-15
o
 to 15

o
. The gear tooth geometric model in Fig. 5.18 can be obtained by do the 

intersection between these surfaces and pinion blank. 

Fillet

Flank

(a) convex

Fillet

Flank

(b) concave

 

Figure 5.22 Genuine flank and fillet of pinion on concave and convex sides. 

In the above pinion tooth generation process, since the genuine the blade 

geometric model and machining settings are exactly the same as the real pinion tooth 

machining process, the pinion tooth CAD model should be exact match the real tooth. We 

calculated the NURBS tooth surface in Matlab and output the tooth geometry as igs file, 

so it can be directly used by all the commercial CAD software. To estimate the geometric 

error of the simplified pinion tooth surface, the distance between the simplified and 

genuine pinion tooth surfaces is calculated.  



90 

 

Fig. 5.23 (a) shows the maximum geometric error of the simplified pinion flank 

on concave side is 0.358 mm, and the average geometric error is about 0.206 mm. Fig. 

5.23 (b) shows the maximum geometric error of the simplified pinion fillet on concave 

side is 0.089 mm, and the average geometric error is about 0.075 mm. 
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Figure 5.23 Geometric errors of simplified pinion tooth on concave side: (a) flank, (b) 

fillet. 

The distribution of the geometric error for the simplified pinion tooth surface on 

concave and convex sides are different. Fig. 5.24 (a) shows the maximum geometric error 

of the simplified pinion flank on convex side is 0.535 mm, and the average geometric 

error is about 0.272 mm. Fig. 5.24 (b) shows the maximum geometric error of the 

simplified pinion fillet on concave side is 0.063 mm, and the average geometric error is 

about 0.052 mm. 



91 

 

0
0.2

0.4
0.6

0.8
1 0

0.5

10

0.2

0.4

0.6

0.8

u
v

G
e
o
m

e
tr

ic
 e

rr
o
r 

(m
m

)
G

eo
m

et
ri

c 
er

ro
rs

 (
m

m
)

u
v

0

0.5

1 0

0.5

1

0.04

0.045

0.05

0.055

0.06

0.065

u
v

G
e
o
m

e
tr

ic
 e

rr
o
r 

(m
m

)
G

eo
m

et
ri

c 
er

ro
rs

 (
m

m
)

uv

(a) (b)

 

Figure 5.24 Geometric errors of simplified pinion tooth on convex side: (a) flank, (b) 

fillet. 

One of our goals is to produce the genuine tooth surface of gear and pinion, which 

is exact the same as the real machined tooth surface. Another objective of this work is to 

provide the accurate CAD model for the FEA tooth analysis. We know the fillet is the 

weakest part of the whole tooth surface. Since we describe the flank and fillet with 

separate NURBS surfaces, it is easy to conduct adaptive meshing for the tooth. Fig. 5.25 

shows the different mesh size for the flanks and fillets. 

(a)
(b)

 

Figure 5.25 Adaptive meshing for flank and pinion: (a) gear, (b) pinion. 

The last step is to evaluate the error by comparing the tooth contact of the genuine 

gears to the tooth contact of simplified gears at the mean point. We know the pinion tooth 

generation is based on the pinion blade geometric model and the pinion machine settings. 

The pinion machine settings is calculated based on the designed tooth contact at the mean 
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point, which include the length of contact ellipse major axis, the orientation of the tangent 

to the contact path. Since the simplified gear tooth surface does not exactly match with 

the real tooth surface, so the real tooth contact may be different with the tooth contact of 

simplified gears. Here we assemble the genuine gears and simplified gears, and compare 

their tooth contacts. 

5.11.4 Tooth Contact of the Genuine Spiral Bevel Gears 

In the above section we generate the member gear and pinion. The relative 

position between the member gear and pinion in the assembly can be determined from 

gpM . In the genuine gear and pinion assemble (see Fig. 5.26), the gear convex flank and 

pinion concave flank will contact at the mean point, whose coordinates in 
gS  are 

 
T

171.816 17.851 36.452  . The gear and pinion tooth will form a contact ellipse 

under the working load. Here we assume the elastic deformation at mean point is 0.007 

mm under the given load. Fig. 5.27 shows the contact ellipse of the genuine gear and 

pinion. 
 1

rG  and 
 2

rG  are the two principle directions of gear tooth surface at mean points, 

the corresponding principal curvatures are  1
, 0.0006g rk   , and  2

, 0.0055g rk  . 
 1

rP  and 

 2

rP  are the two principle directions of pinion tooth surface at mean points, the 

corresponding principal curvatures are  1
, 0.0386p sk   , and  2

, 0.0052p sk  . The angle 

between the gear and pinion principal directions 7.85o

s  . The angle between 
 1

sG  and 

minor axis of contact ellipse s  is 9.08
o
. The length of contact ellipse’s major axis ra  is 

23.208 mm, and the length of minor axis rb  is 1.210 mm. 
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Figure 5.26 Tooth contact of genuine spiral bevel gears. 
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Figure 5.27 Contact ellipse of the genuine spiral bevel gears. 

5.11.5 Tooth Contact of the Simplified Spiral Bevel Gears 

The gear and pinion tooth are generated with simplified cutter, and assembled 

together (see Fig. 5.28). The gear and pinion tooth contacts at the mean point, whose 

coordinates in 
gS  are  

T
170.796 18.145 36.327  . The contact ellipse is calculated 

under the same load as in the genuine gears. Fig. 5.29 shows the contact ellipse of the 

simplified gear and pinion. 
 1

sG  and 
 2

sG  are the two principle directions of gear tooth 
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surface at mean points, the corresponding principal curvatures are  1

, 0g sk  , and 

 2

, 0.0054g sk  . 
 1

sP  and 
 2

sP  are the two principle directions of pinion tooth surface at 

mean points, the corresponding principal curvatures are  1
, 0.0387p sk   , and 

 2

, 0.0052p sk  . The angle between the gear and pinion principal directions 8.65o

s  . The 

angle between 
 1

sG  and minor axis of contact ellipse s  is 9.85
o
. The length of contact 

ellipse’s major axis sa  is 26.092 mm, and the length of minor axis sb  is 1.201 mm. 

Gear

Pinion

Tangent plane

Gear convex

Pinion concave

Mean point: 

[-170.796, -18.145, 36.327]T

 

Figure 5.28 Tooth contact of simplified gears. 



95 

 

Tangent plane

Contact ellipse

 1

sG

 2

sG

 1

sP

 2

sP

j

i

8.65o

s   1.201sb mm

i

j

 1

sG

9.85o

s 

 26.092sa mm

 

Figure 5.29 Contact ellipse of the simplified gears. 

5.11.6 Compare of the Genuine and Simplified Tooth Contacts 

Compare the tooth contacts of genuine and simplified gears, we find the effect of 

the simplified cutter on gear assembly (see Fig. 5.30). First, the gear and pinion contacts 

at the different mean points, and the distance between them is about 1.102 mm. Second, 

the lengths of the contact ellipse major axis are different. The length of the genuine gear 

major axis is about 23.208 mm, and for the simplified gear it is about 26.092 mm. With 

almost the same minor axis, the areas of genuine and simplified gear contact ellipse will 

be different because of the different major axes. The area of genuine gears contact ellipse 

is about 22.256 mm
2
, and the area of simplified contact ellipse is about 24.944 mm

2
. 

Third, the orientations of the contact ellipse are different, and the angle between their 

axes is about 1.08
o
. The stress on the gear tooth will have a big change with the three 

differences. 
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Figure 5.30 Tooth contact compare between the genuine and simplified gears. 

5.12 Summary 

In this chapter, a genuine cutter geometric model is built up. Based on the 

kinematics of tooth machining process, the gear and pinion tooth surfaces are generated 

with this genuine cutter, rather than the current simplified cutter. The tooth surfaces are 

represented as NURBS surface, and they are controlled within specified tolerance. The 

NURBS tooth surface can be directly implemented in CAD software. It is easy to 

manipulate, and provide the accurate tooth geometry and adaptive mesh for tooth FEA. In 

the applications we observe the geometric errors of the simplified gear and pinion tooth. 

The geometric errors cause the tooth contact changing at the mean point. The proposed 

the genuine gear tooth model can remove the discrepancy between simplified gear tooth 

and real machined tooth. This model lays a foundation for the high speed face-milled 

used in gear tooth finishing process. 
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Chapter 6 Modeling the Accurate Tooth 

Surface of Genuine Face-Milled 

Hypoid Gears with Genuine 

Cutter Geometric Model 

6.1 Introduction 

Hypoid gears are common used in automobile industry and helicopter for 

transformation of the rotation of crossed axes, which is more complicated than the spiral 

bevel gears, used for transformation between intersected axes. Spiral bevel gears can be 

treated as a special type of hypoid gears without shaft offset. The machining process of 

hypoid gears is similar to the spiral bevel gear machining process. In this chapter, the 

tooth surfaces of accurate member-gear and pinion are modeled based on the kinematics 

of hypoid gear and pinion generation by using the genuine cutter geometric model. The 

geometric error of the tooth surfaces is calculated, and the tooth contacts between 

genuine hypoid gears and simplified gears are compared. 

6.2 Kinematics of Gear and Pinion Generation 

The member gear of hypoid gears can be machined with non-generated method or 

generated method. In this work the non-generated method is used. For the non-generated 

gear, The final gear tooth surface just duplicates the tool surface, thus the gear tooth can 
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be obtained by transforming the tooth surface from the cutter coordinate system cS  to the 

gear coordinate system gS . Fig. 6.1 shows the gear machine settings. gz  is the gear 

center axis. The coordinate system 1fS  connects to the machine frame, and 1 1f fy z  plane 

is called machine setting plane. mX  is the correction in machine center to back setting. 

2  is the machine gear root angle setting. The origin of cS  locates in the machine setting 

plane. 2H  is the horizontal coordinate of the cutter center in 1fS , and 2V  is the vertical 

coordinate. g  is the machine spiral angle. During one tooth machining, the gear blank 

keeps stationary; the cutter rotates about cz , and the workpiece material will be removed 

with the table feeding. 

2H

cO

cx

cy

cz
2V

1fO

1fx

1fy

1fz

gO

gz
gx

Machine setting plane

g

2
mX

 

Figure 6.1 Machine settings of member gear of hypoid gears. 
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The transformation matrices from cS  to gS  can be represented as 

 

       
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 
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 
 

. (6.1) 

In the chapter 4, we derived the tool surfaces  i
SCET ,  i

CCET ,  o

SCET ,  o

CCET  and their 

NURBS control points ,i jP . The control points can be transformed from cS  to gS  as 
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  

 . (6.2) 

The gear tooth surface can be represented in gS  as  
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Mostly the axes of gear and pinion are perpendicular to each other with a shaft 

offset sE . Fig. 6.2 shows the relative positions between gS and pinion coordinate system 

pS . 

g

gO

gz

gy

gx

pO
pz

px

pysE

 

Figure 6.2 Relative position between gS  and pS . 

The transformation matrices from gS  to pS  can be represented as 
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     ,90 , ,

0 0 1 0

sin cos 0

cos sin 0 0

0 0 0 1

o
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 
 
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 
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. (6.4) 

Pinion tooth surface of hypoid gears can be machined only by generated method. 

Fig. 6.3 shows the pinion machine settings. Here the tilted cutters are used, which are 

shown in Fig. 6.4. The pinion cutters are defined in CS , and mounted on the cradle with 

tilted angle i . The coordinate system 2bS , 3bS  and 4bS  are connected to cradle. j  is the 

swivel angle. The coordinate system 2mS  and 1bS  is rigidly connected to machine. The 

angle 2q  is the initial cradle angle, and radial setting 2rS  is the distance between 2mO  and 

cO . The parameter 2C  is the machine offset. 2m  is the machine root angle. 2B  is the 

sliding base, and 2A  is the machine center to back. In the pinion tooth generating 

process, the pinion cutter rotates about cz ; the cradle performs rotation about 2mz  with 

angular velocity c , and the pinion rotates about pz  with angular velocity p . The ratio 

of roll is 2

2

cp

cm



 . 
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Figure 6.3 Pinion machine settings of hypoid gears. 
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Figure 6.4 Tilted pinion cutter. 

The family surface generated by the pinion inner blade side cutting edge can be 

represented in pS  by the matrix equation 
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During the pinion tooth generation, it should satisfy the mesh equation, which can 

be represented as 

      2 2

2, , 0
p

i if l n v     . (6.6) 

 2
n  is the normal to the tool surface, and  2p

v  is the relative velocity between 

cutter and pinion. Here,  2
n  and  2p

v  are represented in 2mS . 
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    2

2 2
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c p m m pv r O A       . (6.8) 

2mr  can be obtained by transforming the cutting edge from 
cS  to 

2mS , and it can written 

as 

 
 

2 2

i

m m c SCEr M T . (6.9) 
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2mO A  in 
2mS  can be represented as  

T

2 2 20m mO A E B   . p  is the angular velocity 

of pinion, in 
2mS  it is  

T

2 2cos 0 sinp m m   . c  is the angular velocity of the 

cutter, it can be written as 
T

0 0c cpm     . Based on the mesh equation, the pinion 

flank on the concave side can be represented in pS  as 
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By using the same way, the pinion fillet on the concave side can be represented in pS  as 
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. (6.11) 

The machine settings of the convex side have the same parameters with the machines 

settings on concave side but with difference values. The pinion tooth surfaces can be 

presented by using the similar equations. In the previous section we introduced the 

method using NURBS surface to represent the pinion tooth surface. For the pinion tooth 

of hypoid gears, we figure out the instantaneous contact points, and also use NURBS to 

interpolate these points. Such as the pinion flank on concave side can be represented as 

      
1 2, , ,

0 0

,
m n

k d l d k l

k l

u v N u N v
 

P T . (6.12) 
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6.3 Applications  

One pair of hypoid gears was used to illustrate how to build up the genuine tooth 

surfaces. The geometry of hypoid gears are the same as spiral bevel gears’ geometry 

except there is a shaft offset between member gear and pinion, and the machining process 

of the hypoid gears is the similar to the machining process of spiral bevel gears. The 

member gear tooth surface is modeled first, and then the pinion tooth surface is generated. 

In this example the tilted cutter is used in the pinion tooth generation. Table 6.1 shows 

the data of gear cutter. Table 6.2 shows the machine settings of member gear, and Table 

6.3 shows the data of member gear blank. 

Table 6.1 Data of the member gear blade. 

Bake rake angle 20.00
o
 End relief angle 12.00

o
 

Side rake angle 10.00
o
 Side relief angle 4.00

o
 

Inner blade angle 22.50
o
 Outer blade angle 22.50

o
 

Point width 4.826 mm Corner radius 2.794 mm 

Average cutter radius 177.800 mm   

 

Table 6.2 Machine settings of the member gear. 

Correction in machine 

center to back 
-2.007 mm Machine root angle 76.17

o
 

Cutter horizontal setting 100.152 mm Cutter vertical setting 137.897 mm 

 

Table 6.3 Data of the member gear blank. 

Gear root angle 75.13
o
 Gear face angle 80.30

o
 

Gear face width 71.120 mm Mean cone distance 177.521 mm 

Teeth number 52 Blank depth 35.000 mm 

Hand of spiral Left hand   
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Fig. 6.5 shows the genuine tooth geometry of hypoid member gear, and the Fig. 

6.6 shows the geometric error of cross section on normal plane of simplified tool. From 

the geometric error curves we find the same phenomenon. The geometric error of inner 

blade is larger than the outer blade due to their different distance to the cutter axis. Since 

the non-generated method is used, the geometric error of the tool will be the same as the 

gear tooth geometric error. The geometric error at the mean point on convex flank is 

about 0.120 mm. 

Flank on convex side Flank on concave side

Tooth fillet Tooth bottom

 

Figure 6.5 Tooth surface of hypoid member gear. 
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Figure 6.6 Geometric errors of the simplified cutter. 

The second step is to generate the hypoid pinion tooth. Here the gear convex and 

pinion concave teeth are the contact surfaces. In the following tables we list out the data 

used for the pinion concave tooth generation. Table 6.4 shows the data of pinion cutter. 

Table 6.5 shows the data of pinion blank. The machine settings of pinion are represented 

in Table 6.6. 

Table 6.4 Data of the pinion cutter. 

Bake rake angle 20.00
o
 End relief angle 12.00

o
 

Side rake angle 10.00
o
 Side relief angle 4.00

o
 

blade angle 14.00
o
 Corner radius 1.000 mm 

Depth of blade 18.000 mm Cutter point radius 152.400 mm 

 

Table 6.5 Data of pinion blank. 

Pinion root angle 8.989
o
 Pinion pitch angle 9.633

o
 

Mean length of pinion 

pitch cone generatrix 
150.960 mm Pinion face angle 13.271

o
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Table 6.6 Machine settings of pinion on concave side. 

Blank offset 25.490 mm 
Change of pinion 

mounting distance  
-10.980 mm 

Ratio of roll 0.16525 Machine root angle -2.50
o
 

Sliding base 

setting 
-26.770 mm 

Machine vertical 

setting 
-132.374 mm 

Machine 

horizontal setting 
13.835 mm 

Machine angular 

setting 
-84.033

o
 

Swivel angle 307.195
o
 Tilted angle 9.124

o
 

 

Fig. 6.7 shows the hypoid pinion tooth on concave side. The flank and fillet are 

differentiated with colors. Fig. 6.8 shows the geometric errors of the simplified pinion 

flank and fillet. It shows the geometric error on flank is larger than the fillet. 

Flank

Fillet

 

Figure 6.7 Hypoid pinion tooth on concave side. 
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Figure 6.8 Geometric errors of the simplified pinion tooth: (a) flank, (b) fillet. 

The last step is to compare the tooth contact of genuine gears to the tooth contact 

of simplified gears. Fig. 6.9 shows the tooth contact between the genuine hypoid gear and 

pinion. The coordinates of the mean point in 
gS  is  144.737 2.723 28.415

T
 . 

Mean point: 

[-144.737, 2.723, 28.415]T

Tangent plane

Pinion

Gear

 

Figure 6.9 Tooth contact of genuine hypoid gears. 

The tooth contacts of genuine hypoid gears and simplified hypoid gears are 

compared in Fig. 6.10. First, the distance between their mean points is about 1.64 mm. 

Second, the length of the genuine gear major axis is about 14.205 mm, and for the 

simplified gear it is about 20.879 mm. The area of genuine gears contact ellipse is about 

11.591 mm
2
, and the area of simplified contact ellipse is about 21.062 mm

2
. Third, the 
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orientations of the contact ellipse are different, and the angle between their axes is about 

2.86
o
. From the results we can see that there are big difference between genuine hypoid 

gears and simplified hypoid gears on the length of major axis and the area of contact 

ellipse. The simplified cutter has more effect on the tooth contact of hypoid gears than the 

tooth contact of spiral bevel gears. 

 1.64d mm




14.205

r
a

mm



Contact ellipse of simplified gears
Contact ellipse of genuine gears 




20.879

s
a

mm



d

Area of genuine contact ellipse =11.591mm2

Area of simplified contact ellipse =21.062 mm2

Angle between axes:2.86o

 

Figure 6.10 Compare of the genuine and simplified tooth contacts. 

6.4 Summary 

In this chapter the accurate tooth surface of hypoid gears is modeled with genuine 

cutter geometric model. In the pinion tooth generation, a tilted cutter is used. We use the 

same procedure of tooth surface generation as spiral bevel gears. In tooth contact analysis, 

we find the simplified cutter has more effect on the gear tooth contact of the hypoid gears 

compared to the spiral bevel gears. 
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Chapter 7 Conclusions and Future Work 

In this research, an accurate approach to model the genuine tooth surface of face-

milled spiral bevel and hypoid gears is proposed. The major contributions of this research 

summarized as follows: 

 A genuine cutter geometric model for spiral bevel and hypoid gears is proposed. 

This model exactly matches the cutter used in real industry. The cutting edges of 

the genuine cutter are defined on the rake face, which is determined by the blade 

rake angles, relief angles and blade angle. The cross section of genuine tool 

surface generated by side cutting edge on normal plane is a hyperbola curve, 

rather than the straight line of simplified cutter, and the cross section of genuine 

circular cutting edge is a complicated curve, rather than the arc of simplified 

cutter. The examples show that the geometric error of simplified cutter is affected 

by the cutter geometric parameters, and the error is about 0.2 mm at mean point 

which is too much larger than the tooth surface 10 um tolerance requirement. 

 The accurate tooth surface of spiral bevel gears is build up by using the genuine 

cutter geometric model based on machine kinematics model during machining 

process. First, the tooth surface of non-generated member gear is modeled using 

the genuine cutter model, and then the generated pinion tooth surface represented 

as NURBS surface, rather than the typical representation with three independent 

parameters, and two equations. During the tooth generation, the accuracy of the 

NURBS tooth surface is controlled within specified tolerance by optimizing the 
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sampling points and control points. This NURBS tooth surface can be directly 

implemented in the CAD software. In the tooth contact analysis, the contact 

ellipses produced by genuine and simplified cutter are different in term of 

orientation and contact area. 

 The accurate tooth surface of hypoid gears is build up by using the genuine cutter 

geometric model. In the tooth surface generation of hypoid gears, the same 

procedure is used as the spiral bevel gears. The member gear tooth is modeled 

first, and then the pinion tooth is generated with genuine cutter geometric model. 

In the final tooth contact analysis, the simplified cutter has more effect on the 

tooth contact of the hypoid gears compared to the spiral bevel gears since the 

shaft offset and tilted cutter are used in the hypoid gear machining. The big 

different on tooth contact area will significantly affect the stress on the gear teeth. 

In this work, the genuine gear tooth surfaces of spiral bevel and hypoid gears are 

accurately modeled by using genuine blade geometric model. It can avoid 0.2mm 

geometric error in gear tooth modeling compared to the gear tooth modeled by using 

simplified blade model. Based on the genuine gear tooth, the face milling process can be 

used in the gear tooth finishing, and obtain accurate tooth surface. It can also obtain 

equally distributed residue stress on the gear stock in the tooth roughing, and also the 

workload on the cutter in finishing process will be reduced, thus the life of gear cutter 

will be prolonged. 

For future research, following topics are suggested to expand the present research 

work: 
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 Calculating the pinion machine settings based on the genuine member gear and 

cutter geometric model; 

 Conducting the FEA on the gear tooth to analysis the stress difference on genuine 

and simplified gear tooth. 

 Modeling the in-process geometric model of gear and pinion, and predicting the 

cutting forces during gear teeth machining. 
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