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ABSTRACT

MATHEMATICAL INDUCTION

AN EPISTEMOLOGICAL STUDY WITH CONSEQUENCES FOR TEACHING

David A. Reid

Mathematical induction is considered to be a difficult
topic for students. The ability to reason using recursion
informally, which according to Poincaré is the basis for
mathematical induction, is the subject of this thesis.

The main method of investigation was a clinical study
designed to examine students' thinking as they reason using
recursion, both formally and informally.

The subjects of the study, six university students,
were engaged in tasks requiring understanding and use of
recursion, both informally, and formalized as mathematical
induction. It was found that recursive reasoning was used
informally by all subjects, but mathematical induction on a
formal level was used only by three. A lack of connection
was observed between informal recursive reasoning and
mathematical induction as a method of formal proof. It was
concluded that teaching which takes advantage of the
abilities of students to reason informally, and makes a
connection between these abilities and mathematical

induction, would be more successful.
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INTRODUCTION

Mathematical Induction (MI) is considered to be a
difficult topic for students (Sfard 1988; Ernest 1984;
Dubinsky 1986). While this difficulty is due in part to
the difficulties associated with proof and algebra, an
inability on the part of students to connect a formal
presentation of MI with already existing understandings
might contribute as well. Students who have an ability to
reason using recursive argument on an informal level might
not associate MI with such arguments. There is little
point in introducing MI in a way which does not develop a
useful understanding of MI in the learner, and such a
presentation is all too easy for topics related to proof
(Schoenfeld 1985). If we wish for students to use MI to
validate conjectures for themselves rather than as a
procedure used when required on examinations, then care
must be taken to present MI in a way which allows the
learner to integrate MI with his/her ability to reason
recursively, producing a way of understanding which is as

close to the mathematical meaning of MI as possible.



The aim of this thesis is to explore the different
ways of understanding MI which students develop, in order
to clarify the nature of the difficulties associated with
them. The primary research question is: What different
understandings of MI might students develop? 1In addition
several more specific questions will be investigated: How
does the understanding of MI in one way affect the
development of other understandings? How are different
understandings of MI related to recursive reasoning in
other contexts? Do different students use recursive
reasoning in the same way? What implications for the
teaching of MI do these possible understandings present?

In an effort to answer these questions two methods of
inquiry were used: a historical survey of the development
and significance of MI in the mathematical community, and a
clinical study of the understandings demonstrated by
individual students.

The historical survey provided indications of
different possible ways of understanding MI, by producing
examples of mathematicians who have understood MI in
different ways. The ways in which recursive reasoning was
used to validate statements, and the way in which its use
was justified, offered possible answers to some of the
research questions.

Interviews were used in the clinical study in order to

allow investigation of aspects of the students' ways of



understanding which are not visible from written work.
While a student may be able to identify, follow, and
compose proofs using MI, his/her way of understanding may
be limited to producing the required behaviors. 1In
Vygotsky's (1962) terminology the student may possess a
complex related to MI rather than a concept of MI.

Two related investigations were made, each composed of
two stages. In the first investigation four students
enrolled in university mathematics courses were involved.
They were grouped in pairs. The intention was to explore
the ways of understanding MI possessed by these students,
as they tried to use MI, and tried to communicate what they
were doing to their peers. In the first stage one group
learned MI in a fairly straight forward manner. They
practiced using MI, attempted proofs, and were involved in
a discussion comparing MI with empirical induction. As the
statements proven were generally accepted by the students,
MI was used as a method of explanation rather than proof.
The other group was exposed to statemunts which on the
basis of empirical examination appear true but which turn
out to be false. This was intended to foster skepticism
with inductive reasoning.

In the second stage a pair of students, one from each
group, worked together to determine the validity of a set
of statements. As the students in the second group were

expected to be skeptical of the truth of the statements,



they were expected to see MI .s a method of proof.
Techniques used by the students were observed, and further

discussion of the justifications of MI occurred.

The second investigation involved two humanities
students with mathematical backgrounds including algebra,
but without recent experiences with academic mathematics.
In this case the objective was to study the extent of
students ability to construct an informal, or semi-formal,
proof by MI, both without asssistance, to determine their
functional ability, and with assistance, to determine their
zone of proximal development (Vygotsky 1962).

In the first stage one student was given several
statements and asked to determine their validity. Several
statements which can be easily proven using MI were
included. The student was encouraged to develop a proof by
MI with hints being given if needed. The second student
was presented with material similar to that seen by the
second group in the first investigation. The remainder of
the investigation followed the procedures described above

for the first investigation.

This thesis consists of four chapters. Chapter I
explores the role of MI in teaching and in mathematics.
Its role in teaching is explored through an examination of
textbook and classroom presentations. 1Its role in

mathematics is explored through a survey of the development



and significance of MI in the history of mathematics.
Chapter II describes the organization of the clinical study
including a description of the students involved, the
reasoning behind the questions presented to them, and the
actual unfolding ("dérouiement") of the study. Chapter III
consists of the analysis of the information derived from
the clinical study. Each student is discussed separately,
and then a more ylobal analysis is made. Chapter IV
presents conclusions based on the historical survey and the
clinical study, and makes some suggestions for further

research.
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CHAPTER I

MATHEMATICAL INDUCTION IN MATHEMATICS AND TEACHING

Most educators writing on the subject define MI as "a
method of proof" and add that it involves a recursive
generalization of instances from previous instances (Ernest
1982; Woodall 1975). Woodall describes four different
forms that MI can take: simple induction, strong induction,
method of descent, and practical induction.

Simple induction is the form in which MI is usually
presented in text books. It is also the form that most
closely resembles Peano's axiom. An example of simple
induction is the treatment in Durbin (1988):

Principle of Mathematical Induction

For each positive integer n let P, represent a
statement depending on n. If

(a) P, is true, and

(b) the truth of P, implies the truth of P,
for each positive integer k,

Then P, is true for every positive integer n.

This is followed with a model based on an infinite
sequence of dominoes, and this instruction:

To apply the Principle of Mathematical Induction we
must verify both parts, (a) and (b). Notice that
to verify (b) we must prove that if P, is true,

then P,,, is true; that is, we must establish Py,
based on the assumption of P,.




Strong induction is similar to simple induction
but allows the assumption of P,,..., P,. That is, it
states: P, & [Py,...,P,] => P, implies P, for all n.

The method of descent begins with the assumption that
P, is not true, and that n is the smallest m for which P,
is not true. The proof is then by contradiction, often by
finding some other m < n for which P, is not true.

Practical induction, Woodall claims, is the form most
often used in practice. As he states it:

If we can prove the truth of P, (assuming, if

necessary, the truth of Py, P, ..., P,,) for
each n 2 1, then it will follow that P, is true for
all n 2 1. (Woodall 1975, 65)

There is in Woodall's wording a possibility which
could render such a technique not inductive at all. This
possibility is that it will never be necessary to assume
the truth of P, P, ..., P,4q. In this case what we have
is no longer a proof by induction. It is this necessity of
assuming the truth of preceding cases which partially
defines MI. The second definitive element of MI is often
forgotten by students (Young 1908, 148; Ernest 1984, 182).
It is that, at some point, it is necessary to demonstrate
the truth the basis: a specific instance, or several
instances, preceding all other instances. Taken together
these two elements are sufficient to define MI as
requiring:

A) Tne recursive proof of a general instance, on

the basis of preceding instances.
B) The proof of a specific instance, or specific



instances, preceding all other instances.

The History of MI

In the history o. mathematics MI has taken several
different forms. The habit of the mathematical community
to rework its communications into as concise a package as
possible makes it impossible to know, except in a few
cases, the thoughts that went into the production of a
piece of mathematics; however, there are a few clues.

Early in the history of mathematics occur the
paradoxes of zeno concerning motion. Two of these, the
"Achilles", and the "Dichotomy" or "Race Course", depend on
a recursive sequence of events to produce an infinity. 1In
the "Achilles", Achilles and a tortoise have a race.
Because the tortoise is slower it gets a head start.
Achilles can never catch the tortoise because in the time
it takes Achilles to reach the point were the tortoise
started, the tortoise has moved to another point. 1In the
time it takes Achilles to reach this second point the
tortoise has moved again. As the tortoise will always be a
step ahead Achilles can never catch the tortoise. The
argument is implicitly recursive. While this is not MI in
any formal way, it is recursive argqument and so could be
considered informal MI.

In Euclid [Proposition 20, Book IX] there appears a

proof of the infinitude of primes, or so Euclid claims. An



examination of Euclid's proof reveals that it is in fact a
proof that there exist four prime numbers if there exist
three, followed by an assertion that this proves that there
exists an infinitude of primes. How then is this a proof?
Euclid was working without any notation for a general
number. He possessed the idea but no way of writing it. To
overcome this he used the case of three primes to stand for
a general number of primes. Nothing in what he does in his
proof makes use of the "threeness" of 3. It uses only the
fact that 3 is a number and can be manipulated like one.
Euclid's proof requires the reader to understand the
recursive nature of the argument based on the prompt of the
assertion which follows. This is, implicitly, a prcof by
MI (Ernest 1982).

The explicit development of MI had to wait for
Francesco Maurolico (1494-1575). 1In his Opuscula
Mathematica published in 1575 he presented what is often
considered the first proof by MI (Gussett 1986, 145;
Bussey, 1917). He writes:

By a previous proposition [XIII] the first square
number added to the following odd number makes the
following square number; and this second square
number added to the third odd number makes the
third square number; and likewise the third square
number added to the fourth odd number makes the
forth square number; and so successively to
infinity the proposition is demonstrated by

repeated application of proposition XIII. (Bussey
1917, 203)
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Note that for Maurolico a proof by MI occurs, rather than
is. That is, his proofs require time. Maurolico's proof
demonstrates the general truth of his assertion only by
showing the equivalent of what would now be called the
induction step for several specific cases. He demonstrates
only what Sfard (1987) would call an operational
understanding. Once more recursive reasoning is being used
but the notation for a general number is lacking.

Pascal (1623-1662) had read Maurolico and, in
describing the proof of a theorem involving trianqular
numbers he says "Cela est aisé par Maurolic" (Bussey 1917,
203). He uses MI in his proof of Corollary 12 in his book
on what is now known as Pascal's Triangle. He is much more
explicit in his use of MI than Maurolico was. He begins by
stating two Lemmas. The first establishes the corollary in
the second row of the triangle. The second Lemma
establishes that if the corollary is true in any row then
it will hold in the next row. He states that from these
two lemmas "it will be seen that this proportion is
necessary in all the rows: for it is so in the second row
by the first lemma: hence by the second, it is in the third
row, hence in the fourth, and so on to infinity" (Smith
1959, 72). His initial presentation is structural; the two
lemmas alone establish the corollary. However, his
justification demonstrates an operational understanding.

It seems that the bridge from an argument "for any" and an



11
argument "for all" if intuitive for Pascal.

Throughout the history of mathematics informal MI
appears to have been used. It was the introduction of
symbolic notation in the nineteenth century that allowed
its formalization. With the formalist movements of the
late nineteenth century MI became an axiom of arithmetic.
Dedekind included it in his set of axioms published in 1888
and in 1889 Peano published his axioms of arithmetic
including MI. This axiom is now seen as the justification
for the use of MI in mathematical papers. No longer is it
necessary to appeal to the intuitions of the readers, or to
provide operational justifications in the style of Pascal.
Of course, in less formal contexts intuitive and
operational understandings continue to be used.

The history of mathematics provides several examples
of recursive reasoning processes which could be called MI
(Ernest 1982); however, as these processes differ in
important respects, MI must be taken to mean different
things at different times. 1In addition to these differing
meanings, MI has also differed in its importance and role,
its significance, in mathematics.

The current significance of MI in formal mathematics
is as an axiom. 1In the development of an axiom system for
arithmetic Peano included MI as one of his basic axioms of
formal number theory. As such MI plays a part in the

proofs of such important principles as the associativity
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and commutativity of addition. As an axiom MI is not a
part of the reasoning used, but just another property of
the natural numbers.

Historically MI has played a different role: one of
the reasoning processes used in proofs. In actual
mathematical practice MI continues to be seen this way.
Larson writes: “Mathematical induction is the most
important proof technique" in areas such as discrete
mathematics (1985, 373). Clearly, he is thinking of an
inferential process, not an axiom.

When Peano first proposed his axioms, his treatment of
MI was opposed by Henri Poincaré (Styazhkin 1969, 280) 1In

Science et Méthode, lLa Valeur de la science, and La Science

et 1'Hypothése Poincaré discusses the role MI plays in

mathematical reasoning, and in mathematical creativity. In
so doing he gives MI a special place in mathematics. His
assertion "Nous ne pouvons nous élever que par 1l'induction
mathématique, qui seule peut nous apprendre quelque chose
de nouveau." (Poincaré 1943, 28) provoked much discussion
at the time (eg Young 1908, 146) and an examination of his
writings on MI suggests a broader meaning for it than is
usually given.

For Poincaré the main components of mathematical
thinking are intuition and logic. They are differentiated
in that logic provides validations for mathematical

statements. From intuition comes the creative force which
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produces new mathematics. Both of these components are
needed in the reasoning of a mathematician, but Poincaré
provides examples of mathematicians who have possessed one
or the other of these in a larger proportion (Poincaré
1900, chapter 1).

Intuition provides the creativity needed to advance
mathematics beyond its current bounds in unobvious and
original ways. But intuition alone cannot provide a basis
for mathematics for "L'intuition ne peut nous donner la
rigueur, ni méme la certitude" (Poincaré 1900, 17). The
history of mathematics shows the gradual increase in the
role of logic in mathematical thinking, to the extent that

in La Valeur de la science Poincaré writes "Nous croyons

dans nos raisonnements ne plus faire appel & 1l'intuition"
(1900, 20) and "On peut dire qu'aujourd'hui la rigueur
absolue est atteinte." (1900, 23) 1In Poincaré's time
mathematicians such as Russell, Frege, Hilbert, and Peano
were attempting to demonstrate that this was in fact the
case. They endeavored to show that mathematics is a field
in which every statement can be verified by logic.

If mathematics can be based solely on a logical
structure, and creation is ascribed solely to the
unrigorous intuition, how then can creativity be a part of
mathematics? Poincaré's answer to this lies in examining
more closely the nature of intuition. He writes: "Nous

avons ... plusieurs sortes d'intuition: d'abord 1l'appel
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aux sens et a l'imagination; ensuite la généralisation par
induction, calquée pour ainsi dire sur les procédés des
science expérimentales; nous avons enfin 1l'intuition du
nombre pur [whence derives MI] qui peut engendere le
véritable raisonnement mathématique" (Poincaré 1900, 22).

What then does Poincaré mean by "l'intuition du nombre
pur"? He does not say. Daval & Guilbaud (1945) discuss
this point in Le Raisonnement Mathématique. They maintain
that Poincaré refers to the idea of a general number;
"l1'intuition du nombre n, c'est-a-dire du nombre
arbitraire, du nombre quelconque, par opposition aux
intuitions de chaque nombre en particulier" (Daval and
Guilbaud 1945, 31).

The idea of a general number is closely related to
what Poincaré calls "raisonnement par récurrence". ‘"Le
caractére du raisonnement par récurrence c'est qu'il
contient, condensés ... en une formule unique, une
infinité de syllogismes" (Pocincaré 1943, 20). Poincaré
illustrates this with a "cascade" of syllogisms, each one's
conclusion providing the minor premise of the next, and
each one possessing a major premise of the same form: If it
is true in this case, then it is true in the next. The
idea of a general number is based on recursive reasoning
applied to the counting numbers 1, 2, 3, ... . Poincaré
goes on to show that neither logic nor the intuitions of

sense and experience can provide a basis for recursive
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reasoning (Poincaré 1943, 21-22). That basis he finds in
"la puissance de l'esprit qui se sait capable de concevoir
la répétition indéfinie d'un méme acte dés que cet acte est
une fois possible. L'esprit a de cette puissance une
intuition directe et l'expérience ne peut étre pour lui
qu'une occasion de s'en servir et par la d'en prendre
conscience." (Poincaré 1943, 23-24) Recursive reasoning is
a power of mind, an intuition based on reasoning about
reasoning and provides, for Poincaré, the basis for MI.

The questioning of the foundations of mathematics,
which gave rise to both formalist approaches and to
Poincaré's investigations, also inspired the "Intuitionist"
school. The role of MI in intuiticnist writing differs
from that assigned to it in formalist approaches in two
important ways.

First, the proofs of the intuitionists are
constrvctive in nature, that is to say no entities are
proposed, or conclusions drawn which cannot be produced in
a finite number of determined steps. In a traditional
proof by MI the conclusion is that a statement is proven
for all natural numbers, based on the existence of a method
of proving the statement for any natural number.
Constructivist techniques do not permit this final
conclusion. Instead, for the intuitionists, MI is simply a
method of proving a statement for amy number, but not for

all (Heyting 1966). This is equivalent to denying what is
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known as the w-rule. The w-rule is a rule of inference
which states that from the infinite number of premises
P(1), P(2), P(3), ... one can conclude Vx P(x) (Vinner
1976). 1In the formalist approach this rule is subsumed
within the principle of mathematical induction.

Second, MI is derived as a theorem by intuitionists.
This is permitted by the structure of the natural numbers,

and by the weaker form of MI used by the intuitionists.

The Significance of Mathematical Induction in Teaching

The significance of MI in education has varied through
recent history. Through the first seven decades of the
twentieth century MI gradually received more attention from
text book writers and school curricula (Ernest 1984). The
"New Math" movement advocated the early introduction of
proof, and the use of proof as a teaching tool (Hanna
1983). By the late 70s high school textbooks used in
Canada and Britain were devoting considerable space to MI.
A comparison of textbooks used in British high schools
reveals that prior to 1960 the texts examined devoted two
or less pages to MI. In contrast, texts printed after 1965
devoted between 4 and 10 pages to MI (Ernest 1984, 187).

The 80s saw a decrease in the significance of methods
of proof in high school education. There is now no
requirement that MI be studied at the high school level in

Québec. Meanwhile, university mathematics courses assume
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MI as a known technique. One possible reason for this
curricular change is the criticisms of the New Math, which
decreased the study of abstractions, in favor of a study of
more “"basic" topics. Some topics seen as uniquely
mathematical have perhaps been removed to make room for
applications intended to increase the utility and relevance
of mathematics to students.

Even when MI is taught the presentation of it may not
facilitate the formation of a mathematical understanding.
As an example, in a college level course given at Concordia
University, MI received a total of one hour of lecture
time. In the description of this lecture numbers in
parentheses "(1)" serve to indicate lines referred to in
the discussion which follows. Ellipses "..." indicate
phrases which were omitted. These include statements which
were not completed, or which were only related to the
material in an indirect way, for example reminders
concerning the correct way to substitute a number in an
expression.

The presentation began with a problem being written on

the board:
Prove that
1+ 2 +2 4+ ,,. + 20 =2 _ 1
for every n > 0 n an integer

Meanwhile the lecturer said:

The way I'm going to do it, I'll just give an
example and you'll see what the problem is. [wrote
example on board] ... Before I would give you this
formula, take it, and your instinct, most of you



LT Ly T, R e e s o

18

would take it, well now, only because we need to
learn mathematical induction do we learn how to
prove this. ... This is a statement linked to an
integer n, we'll call it P, [wrote this on board]
Pé is this statement: 1 + 2 + 22 + 23 + 24 +

2% = 26 - 1 [wrote this on board] ... 1I'll give
you another example [wrote out P,] ... the whole
idea is to understand what this is for specific n
... This is sometbing you can verify on a
calculator, but we are not now trying to prove it,
in a second we will prove it. ... What's P;?
[wrote it on the board as the class dictated] ...
So this statement in here [P,] when we say it's
valid for each n, an integer, we are saying that
all those statements are correct. This is correct,
this is correct, this is correct, Py is correct,
Pijo is correct, and so on. ... proving this
statement is in fact proving all of these other
statements. This is what we mean by each integer.
Now the question is to (1) convince you that this
is correct. 1I'll say how we do it and then
elaborate more. First what is P to the k? [a
student answered] So P to the k is 1 + 2 + 22 + ...
+ 2k = 2k¥1 - 1 [wrote this on the board] What's P
to the k+1? [a student answered and P,,, was
written on the board] ... What's P to the 1, or
P,, the statement P4? [students answered] 1 + 2
equals what? 2™ - 1 {wrote Pyt 1 + 2 = 2™ - 1

on the board] Now, is this correct? This is 3 and
4 - 1, which is 3. Now we know that P, is true, we
know that the first statement, we know that this is
true for n equals 1. Now the problem is to prove
that it's true for any one. ... To prove it
rigidly you should prove it for every single n, but
there's no way to stop. You can't do it. (2) But
mathematical induction is this, to prove it for
each one, by a trick, and that trick is the
following. We proved that P, is true, so this is
what we call "a" [wrote "a)" in front of P,)

and then the second thing, we prove the following.
We prove that P, implies Pu,q. ... P, is true
implies P,  is true [wrote "P, is true => P, is
true" on the board] ... The way to prove this
statement was, to prove ... (3) P, is true, P, is
true, P; is true, P, is true, and so on, and so on.
And we said there are millions of them. So if we
prove that ... P, is true, and we are going to
prove that whenever you have a statement which is
true, then the statement which is next to it ...
(4) Whenever P, is true then the one next to it,
after it, is true. ... once we establish this
link, between one statement and the one after it
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then we have the proof. [a break was called} ...

([wrote out P, => P,y in full] ... now the proof in
here is not induction, it's just computations, it's
not *he principle itself. ... Now we'll prove

this and then later I'll explain why this proves
that the whole statement is correct. ... This
argument does not depend on k. ... Now I will tell
you why this proves the statement. ... We were
trying to prove this equality for each n. ... What
we 've done was the following: we proved that, (5)
first we said that saying that this statement is
true amounts to saying that millions of such
statements are true. Whenever you replace n by any
value you get a true statement and all those
statements are true. ... (6) We said that P, was
true and we said, by this, that if something is
true then the next one is true, well since 1 is
true the next one is true which is 2, and the next
one is true which is 3, and so on. [described the
domino model as given in the textbook (Durbin,
1988, 435)] ...I1f you have a family, and you take
one and you say this is a stupid one. Aand you
number them, you have a a large number, (7) you
have ten people, and you say this is first, second
third, and so on. (8) You say the first is stupid,
and then you prove that, you say that if given that
someone is stupid then his brother is stupid. Now
what does this mean? They're all stupid. ... You
always use the same thing: you suppose P, is true,
P, true implies P4, you're finished. Now the
second thing about mathematical induction is you
can't use it everywhere. ... [explained that MI
can be used to prove that the number of roots of a
polynomial is equal to the degree of the
polynomial] ... [gave proving the area formula for
a triangle as an example of a case where MI cannot

be used] ... the polynomial statements, they are
related to a certain integer, and we prove it using
this integer. ... there is always this n ... [Did

another example :

1 1 1 n
Prove that: + + ... =
12 203 n(n+l) n+1
after which he gave another model:] ... (9) Now if

you want a process which is infinite, we talked
about brothers, now think of the son. Well, we
will d¢ it the other way. Think of the father as
smart, and think that if you are smart, your kid is
smart. Suppose this is true, and then what is this
saying? Well this is saying that from here to



eternity you are getting smart generations. ...
[Worked another example: 2" > n2 for n 2 5,

pointing out that the initial case need not be

n=1] ...
Now since you are a little bit familiar with
induction, ... the reason we call it mathematical

induction because there is in fact a different kind
of induction, in science. Usually in science, like
biology, chemistry, something like that, they don't
prove things as we do. We do not prove anything in
biology. The way we do it is by induction. So
this is completely different form of induction than
this. Induction there is you assume that, for
example, you say "the sun has risen, for eternity,
and this implies that it rises tomorrow." The
implication is not proved. The implication is
based on our experience. We induce that this would
happen. For example, another example, how do we
prove for example that is you transplant a kidney
that it works? You have no way of proving it. T!=
way you've done it, you prove that because you've
done it so much and it works, ~o you generalize it.
You say that if you've done an =2xperiment on a
bacteria, if this experiment works then it's going
to work for every bacteria under the same
circumstances. And then it doesn't and so you're
proven wrong. Everything in physics, science and in
social science is not based on mathematical
deduction, on mathematical proofs. 1It's based on
experience. ... This is not math. In math we would
prove everything. The induction here is very rigid
on the other side, the mathematical induction.

The special cases are treated in us by this P;. Py
is our special case. We look at it and then we
prove the connection. (10) We prove that if you
see n, 5 bacteria that replicate then the sixth
that you see will replicate. We prove that. We
prove this connection and then you say any bacteria
that you see will reproduce by replication or every
cell. [Spent the rest of the lecture on Arithmetic
Progressions, the next topic]

While this is not a typical example of a lecture
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on MI (I hope) it does present examples of several concepts

related to MI which are difficult to teach well, and of
which students develop various understandings.

The lecturer did not justify MI by referring to an
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axiom, nor was he very clear in presenting intuitive
justifications in the style of Poincaré. Instead he
described MI as relying on "a trick" (2). Later he simply
asserted: (4) "Whenever P, is true then the one next to it,
after it, is true. ... once we establish this link,
between one statement and the one after it then we have the
proof." His most complete statement of the underlying
principle was: (6) “"We said that P, was true and we said,
«... that if something is true then the next one is true,
wll since 1 is true the next one is true which is 2, and
the next one is true which is 3, and so on." Finally, in
the context of hie discussion of empirical induction, he
used a single case to establish the "link": (10) “"We prove
that if you see n, 5 bacteria that replicate then the sixth
that you see will replicate. ... We prove this connection
and then you say any bacteria that you see will reproduce
by replication ..." While some students might have
connected these justifica.ions with their own intuitions
concerning recursion, it is not certain that all of them
did, and these others might have come away believing that
MI relies on trickery, or the examination of a few cases.
Both of these bases are sufficient if the only purpose of a
proof by MI is to : (1) "convince you that this is
correct."”

The lecturer also offered some models of MI. The

first of these is the domino model given in the text and
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also discussed by Ernest (1984, 184) The only danger with
this model is that students might not extend the finite
situation of a line of dominos to infinite situations such
as the natural numbers. The second model offered by the
lecturer is explicitly finite: (7) "you have ten people"
and also deals with a set which is not ordered. The
lecturer attempted to deal with this second problem by
numbering each member of the family, but then ignores the
numbering: (8) "You say the first is stupid, and then ...
you say that if given that someone is stupid then his
brother is stupid. Now what does this mean? They're all
stupid." He seems to have been aware of these problems,
and corrected them in his third model: (9) "Now if you want
a process which is infinite, ... Think of the father as
smart, and think that if you are smart, your kid is smart.
Suppose this is true, and then what is this saying? Well
this is saying that from here to eternity you are getting
smart generations." There were other times in the lecture
at which the applicability of MI to infinite sets was not
made clear: (3) "P, is true, P, is true, P; is true, P, is
true, and so on, and so on. And we said there are millions
of them." (10) "first we said that saying that this
statement is true amounts to saying that millions of such
statements are true." This colloquial use of "million",
combined with the finite models given, might have caused

some students to understand that MI is limited to proving
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results on finite sets.

An example of the difficulties students might have in
following a lecture on MI at this level is given in Shaw
(1978). 1In that case the students were school mathematics
teachers doing further training in a university course.
Given the difficulties encountered by them, it seems likely
that students at the high school and college level face a
considerable challenge in developing understandings of MI

which are compatible with those of their teachers.

Research related to Students' Understandings of

Mathematical Induction

There have been several theoretical discussions of the
difficulties involved in the learning of MI, and several
research projects. Avital & Hansen (1976), Ernest (1984),
Woodall (1975), and Young (1908) present theoretical
discussions. Of these Ernest is the most complete. The
research projects are reported in Dubinsky (1986, 1989),
Sfard (1988), and Whitton (1978).

Ernest discusses the significance of MI, the structure
of a correct proof by MI, some prerequisites to learning
MI, and some problems students encounter. His discussion
of the understanding of MI is divided into two parts. The
first deals with those outward behaviors which a student
must be able to exhibit in order to produce a proof by MI.

The second deals with the mathematical and logical concepts
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which must be understood.

Of the concepts which Ernest feels are required for an
understanding of MI the first, and most important, is that
of loyical implication. Students must understand what
constitutes a valid implication and how to prove an
implication. In addition to k-ing able to prove, students
must also understand what constitutes a proof in order to
understand that a proof by MI actually is one.

As the proof claims to demonstrate that the natural
numbers possess a particular property the idea of a
property of natural numbers is also essential to the
concept of MI.

Ernest also mentions recursion and the ordering of the
natural numbers as essential to MI and likewise essential
to the understanding of it. These concepts are seen by
Ernest as basic prerequisites. “The justification for the
method of MI, and the mechanism by which it works, are to
be found in the well ordering of the natural numbers and
their construction by recurring succession." (Ernest 1984,
179)

Ernest also describes some problems which students
often encounter when learning to prove using MI. These
provide some insight into the different ways of
understanding MI students develop.

One of the problems he mentions is the confusion of MI

with induction, in the sense of generalization from
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particulars to the general.

Students have difficulty with the induction step as it
requires the assumption of P(k), which looks suspiciously
like what they are trying to prove. The reasoning can
appear to be circular due to this misapprehension of the
nature of P(k).

Ernest also mentions a problem which Young and Whitton
also comment on, the omission of one of the steps of the
argument.

A non-understanding or void understanding of MI arises
if a student does not see the justification for the
principie. If the development of MI is based on taking the
principle of mathematical induction as an axiom there is no
deductive proof of it which can be offered. The best which
can be hoped for is to derive it from a related, but more
acceptable, axiom. Ernest suggests using the ordering of
natural numbers to justify the method of descent, which can
then be used to prove the principle of MI by contradiction.
On the other hand, if MI is being treated as an intuitive
deductive process, as suggected by Poincaré, its rejection
cannot be contradicted in any way. A third possibility is
that the student accepts recursive reasoning as valid, but
does not connect it with MI, leading to a rejection of MI
as unjustified. 1In this case the making of this connection
is sufficient to produce some understanding.

The variable used in the induction step of a formal
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proof by MI has a complicated status. Ernest describes the
logical structure of the induction step as follows:

The proof of the induction step is usually carried
out in the simplest possible way, first by adopting
the assumption P(m) known as the inductive
hypothesis. This is followed by the derivation of
P(n + 1). This permits the assertion of P(m) ->
P(n + 1) and, finally, of Vn[P(n) -> P(n + 1)],
provided that the variable n first occurs freely in
the inductive hypothesis. This last step, rather a
logical nicety, is almost always taken for granted
and is theoretically dispensable in a free variable
form of PMI [the principle of mathematical
induction]. (Ernest 1984, 175)

Ernest aiso notes that some problems students
encounter as they develop their understandings of MI are
related to its logical structure. First, students confuse
the assumption of P(n) in the induction step with an
assumption of Vn[P(n)], which is what they are trying to
prove. Second the sheer complexity of this logical
structure, and the use of quantifiers within the proof can
be a source of difficulty (Ernest 1984, 181-182).

The possible difficulties associated with the
induction step can be thought of as related to different
roles assigned to the variable k. In the following the
form of the induction step is reinterpreted in terms of its
possible structures in the minds of students, rather than
its logical form. 1In the terms of logic, what is described
here as a general number would be called a universally

quantified variable. What is described here as an

arbitrary number would be described as a free variable. 1In
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most proofs the variables used play the role of general
numbers. In the induction hypothesis, however, k cannot be
taken to be a general number, as that would be equivalent
to assuming the truth of the statement being proven, which
would immediately imply the truth of P(k+l). Instead k is
an arbitrary number, that is, k is some individual
unspecified number. Throughout the proof of the induction
step k plays this role. However, once the induction step
is proven, the implication P(m) -> P(n + 1) is generalized
(in logical terms, universally quantified) to prove the
original statement. It is this switch of roles, which
corresponds to the "logical nicety" mentioned by Ernest,
which seems to be at the root of some students rejection of
MI.

MI has also been the object of some experimental
research. This research has been concentrated on testing
different methods of teaching MI. Such studies have been
done by Dubinsky (1986, 1989), Sfard (1988), and Whitton
(1978). Dubinsky and Sfard both used computer programming
to develop the skills necessary to produce proofs employing
MI. Whitton developed these skills through the use of
worksheets providing skeletons of proofs by MI.

Dubinsky's teaching model is based on an
interpretation of Piaget's epistemology. Dubinsky develops
a "genetic decomposition”" of MI into the subconcepts he

believes are essential to understanding MI. He defines MI
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as "a method of proof" (Dubinsky and Lewen 1986, 65) and he
means this in a formalist way. He describes proving by MI
in terms of the proof of the basis followed by the proof of
the induction step, with the conclusion justified by the
principle of mathematical induction. The proof depends on
the principle, but in Dubinsky's genetic decomposition,
based on the procedures used by students, this principle is
not developed. 1Instead MI is developed from the
"coordination" of two concepts: modus ponens and
implication-valued function. The specific implication-
valued function referred to is n -> (P(n) => P(n+l)). The
result of this coordination is "the detailed statement of
how one uses the idea of induction to know that the
statement is true for n equal to 10 or for n equal to a
million". That is, a procedure for proving a statement for
any specific number. Dubinsky presents a decomposition of
a way of understanding MI which is not the same as the one
he defines as depending on the principle of mathematical
induction. He describes a procedural, constructive proof
while the principle of mathematical induction defines a
static, general proof. While the formalist definition of
MI Dubinsky gives would suggest otherwise, the
decomposition never develops a structural view of MI as a
part of an axiomatic system.

Sfard believes that "abstract notions [...] can be

conceived either structurally (as static constructs) or
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operationally (as processes rather than objects)"(Sfard
1987, 162) and "that formation of an operational conception
is, in many cases, the first step in the acquisition of a
new concept”(Sfard 1988, 560). With this in mind she
describes a computer based method of teaching MI intended
to develop both an operational and a structural
understanding. Her experimental results indicate that
students taught in this way did do better on written test
items than a control group taught in the standard,
structural, manner.

A rerervation which applies to both Dubinsky and
Sfard's work is in their use of computer programming
experiences to teach an abstract concept. It is quite
possible that the understanding gained is procedural only,
of the kind described by Ernest as "behavioral" (Ernest
1984, 176). It is difficult to tell whether an improvement
on written tests indicates more than a procedural
understanding. The students' understanding may be nothing
more than a set of behaviors. In Vygotsky's terminology
the students may have a complex of MI but not the concept
(Vygotsky 1962). While Sfard is aware of the importance of
both an operational and a structural understanding,
Dubinsky seems not to be, and both fail to show that
students possess any meaning for MI beyond that of a
procedure.

Whitton's work seems to be entirely oriented towards



the development of a set of behaviors which she equates
with understanding of MI. That some students did develop
these behaviors can be taken as a argument that her
teaching did develop at least a procedural understanding.
What other ways of understanding might also have been
present is not determined.

The studies which have been discussed can be divided
into theoretical studies of students' learning of MI, and
experimental studies of teaching methods. No studies have
been done which attempted to determine students'
understandings and learning based on clinical studies
outside of the context of evaluating a particular teaching
method. The closest thing to such research so far
attempted is Dubinsky and Lewen's (1986) study. Some
features of interest may have been obscured, however, by
their concentration on observing levels of development in a
Piagetian structure. It was the intention of this study to
try to fill in a part of this gap by studying a few
students as they went through the process of learning MI,

and as they justified their understandings to peers.



CHAPTER I1

DESIGN AND "DEROULEMENT" OF THE CLINICAL STUDY

Design of the study

The clinical study was used to investigate in detail
the ways different students understood MI. This form of
investigation was selected because of its suitability for
the investigation of the students' thinking while they were
using MI. It was intended to allow investigation of aspects
of the students' ways of understanding which are not visible
from written work. The insights which can be gained in this
way, into the processes by which MI is applied to a given
situation, cannot readily be gained using other
investigative techniques. While a student may be able to
identify, follow, and compose proofs using MI on paper,
his/her way of understanding may be limited to producing the
required behaviors. It should be noted that the use of a
clinical study limited the number of students who could be
considered, and the intention of this research was not to
provide a general picture of how thinking about MI occurs in
the whole population of students. Instead the intention was

to provide a picture of the thinking of some individuals, at

31
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a sufficient level of detail to be useful in considering

future research.

Subjects

The clinical study was designed around the idea of
using two groups of students, one mathematically more
experienced than the other. The more experienced group was
to consist of four students selected from a first year
university linear algebra course. The students were to be
selected on the basis of their strong performance in this
course. No attempt was to be made to determine whether or
not these students had previously encountered MI, in order
to avoid indicating to them the nature of the study. They
were to be informed only that it related to mathematical
reasoning. As it is unusual for students at this level in
Quebec to have taken courses in which MI is taught it was
expected that most would not have prior experience with it.
The mathematically less experienced group of students was to
consist of two upper level undergraduate students taking
courses in the humanities. It was expected that these
students would have taken no mathematics at the university
level, and would never have been taught MI. It was expected
that their mathematical skills would extend to high school
algebra, at least.

The use of these two groups was intended to serve

several purposes: (1) revealing the understanding of
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concepts related to MI possessed by the students prior to
encounter' g MI, and drawing contrasts between students
based on the level of their mathematical achievement.

(2) indicating the ways in which students in each of the two
groups adapted their cognitive structures in light of
experiences involving MI, specifically in terms of
developing and using methods of proof analogous to MI.

(3) exploring the ways in which the students differed in
using MI and concepts related to MI, when communicating with
their peers. (4) exploring the different zones of proximal
development of the students in terms of the possibility of

learning to use formal MI with assistance.

Organization of the Study

The organization of the study differed slightly for the
two groups. The general organization was as follows. For
the first stage of the study each group was divided in two.
Half of the group was exposed to situations in which MI
could be used, and was shown how MI could be used in these
situations, if they were not able to do so independently.
The second half of each group was exposed to situations in
which empirical inductions led to incorrect conclusions, in
order to develop skepticism on the part of the students for
arquments which relied on specific cases, and to provoke a
desire for proof. The first stage was intended to serve as

preparation for the second. 1In the second stage of the
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study students who had been shown MI were paired with
students who had been encouraged to be skeptical. These
pairs worked together on proving several problems using MI.
The interaction of the students who had seen MI used to
prove statements, and those who had been taught to be
skeptical of inductive proofs, was expected to reveal the
nature of the students' understandings of MI and of concepts
related to MI.

Two investigators participated in the study, the author
and his thesis advisor. This permitted the two parts of
stage one the be conducted simultaneously, and provided
additional insight during stage two.

Some modifications to this general plan were made for
each of the two groups. A general outline of these
differences is included here. The scripts used for each
session of the study are included in Appendix A, and a
detailed discussion of the rational behind each item in the
scripts appears below. It should be noted that these
scripts represent the intentions of the investigators, and
that it was necessary to deviate from the scripts to adapt

to discoveries made during the sessions.

Outline of Study as It Was Designed
The script designed for the students from the
mathematically more experienced group who were to be exposed

to MI in stage one can be divided into several steps. As it
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is designed the students are: (1) asked to prove two
statements. It was expected that their arguments would
approximate MI. (2) asked to describe the method they had
used and to compare it with the principle of mathematical
induction, which was shown to them as an axiom of the
natural nuibers. (3) asked how the principle related to the
methods they had used. (4) asked to prove three other
statements, one which can be proven by MI, one which is
false, and one for which no proof is known, but which
appears to be true. (5) involved in a discussion of their
attitudes towards MI, and how MI relates to empirical
induction.

One of the students from the group of mathematically
less experienced students was also exposed to MI in stage
one. In the case of this student the script designed was
quite different from that designed for the students from the
mathematically more experienced group. The stage was broken
into three sessions, both to permit more time for the
student to develop ideas, and to allow time for modification
of the scripts based on progress made in previous sessions.
This time for modification was considered necessary because
it was difficult to anticipate the exact difficulties a
mathematically less experienced student might have in the
context of proving statements employing recursion.

The first session was intended to develop a feeling in

the student for the need to prove in mathematics. The

REAS & 2on vinfc o w m o n
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script calls for the student to be: (1) introduced to the
Fibonacci sequence, and asked to find the pattern in it.

(2) asked to formulate the pattern algebraically. (3) asked
to generalize three properties of the Fibonacci sequence
based on single examples. 1In one case the property is quite
general, in another the property is general but slightly
different from the property which would be generalized from
a single example, and the last is not general but appears
true based on examination of a few examples. (4) asked to
look at further examples in order to become more confident
of the truth of the statements. (5) asked to check the
false generalization for an example which disproves it.

(6) asked about methods for becoming sure of the truth of a
statement. (7) asked to prove a fourth generalization about
the Fibonacci numbers.

The second session was intended to investigate the
students ability to construct a proof without assistance.
The script calls for the student to be: (1) introduced to
the notation F, for the nth Fibonacci number and to the
recursive definition of the Fibonacci numbers, and the
generalizations made in session one in this notation.

(2) asked to prove two generalizations about Fibonacci
numbers. Both generalizations in this case are true.

The third session was intended to introduce the stadent
to MI. The script calls for the student to be: (1) acked

to consider one statement from session two again and to



37
check some aspects of it which appeared interesting based on
the attempted proof in session two. (2) prove a new
statement, geometric in nature. If the student had
difficulty the investigator was to assist. (3) consider the
statement from session twe again, and to prove it with
assistance from the investigator. (4) asked to define a
phrase used in session two.

The scripts for mathematically more experienced and
less experienced groups are similar in the case of the
students who were to be developing a skeptical attitude
towards induction. The script calls for them to be:

(1) introduced to the Fibonacci numbers. (2) asked if they
think four statements are true, of which three are false but
appear true on the basis of some initial cases. (3) shown
counter examples to the three false statements. (4) asked
if they still believe the single true statement is true and
asked what criteria they would use to determine truth.

The scripts designed for stage two differed slightly
between the two groups. In the case of the mathematically
more experienced students they are asked to prove three
statements and to comment on the proof given of a fourth.
The first statement requires modification as it is false in
the form given but leads easily to a true generalization.

In the case of the mathematically less experienced students
they are first asked to judge the validity of a proof, and

then asked to prove a statement, given some empirical
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evidence for it. They are then asked to evaluate another
proof and to prove two more statements. Again they are
given some empirical evidence for the statements they are to

prove.
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Rationales for the Scripts

Scripts Used with the Mathematically
Experienced Students

Stage One
Group A: Students Who Were to be Introduced to MI

Item 1:

1. Find the relation between the number n of sides of a
convex polygon and the sum A, of its internal angles.

Item 1 was designed to encourage inductive problem
solving, involving consideraticn of the angle sums of
polygons with varying number of sides. This would then
serve as a starting point for the proof required by item 2.
Use of non-inductive techniques to answer item 1 would
indicate a preference for such techniques which would have
to be overcome in order to present MI as a method of proof

in item 2.

Item 2
2. You have probably found that:
A, = (n-2)nr for n 2 3
Give a mathematical proof of this relation (assume as an
axiom that the sum of angles of a triangle equals m).
Item 2 clarifies the nature of the relation in item 1,
in case the students work is unclear. 1In the event that the

students do not attempt an inductive proof, the investigator

can provide hints encouraging such a proof.
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Item 3:

3. Prove that n straight lines on the plane divide the
plane into no more than 2" parts.

Item 3 provides another opportunity for the students to

work through an inductive proof, with assistance if needed.

Item 4:

4. Could you describe your method of proving the above two
statements?

Could you identify the steps of your reasoning?

Were you, in a further step of your reasoning, referring to
some previous step of reasoning?

Item 4 serves to draw the students' attention to
important aspects of their proofs. First, to the similar
method used in each case. Second, to the steps employed in
arriving at the conclusion. And finally, to the recursive
nature of the arqgument. If these aspects of the proofs are
not understood the investigator continues the questioning to
clarify the students thoughts at this point. This
reflection on their own reasoning is an activity which is

linked to Poincaré's basis for MI (see page 15).

Items 5, 6 and 7:

5. In the so-called Arithmetic of natural numbers we admit,
among others, the following axioms:

I. 1 is a natural number

II. If n 1is a natural number then n + 1 is a natural
number.

II1I. Let S(1), S(2), S(3), ..., S(n), ... be statements
about natural numbers. If the statement S(ng) holds true
for some n; , and, for any n 2 ng, the truth of S(n)
implies the truth of S(n+l1), then all the infinite number of
statements S(ng), S(ng+l), S(npg+2), ....... hold true.
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6. This last axiom is called "the principle of mathematical
induction" and provides us with a method of proving theorems

about natural numbers that start with "for all n ...", or
with "for any n ...".

7. 1Is there any link between this principle and your
reasoning in problems 2 and 3?

Items 5, 6 and 7 provide a mathematical context for the
reasoning the students have been employing, pointing out the
axiomatic nature of the principle of mathematical induction,
and the sort of theorems which are proved by it. The

students' own proofs serve as examples.

Item 8:

8 Let the sequence A = (a,,b,) of natural numbers be
defined as follows:

a, = 1 b1 =1

any = by

bnﬂ = a, + bn

Let the sequences C = (c,d,) of natural numbers be defined
as follows:

C1=C2=1

d1 1 d2 = 2
Ch2 = Cp + Cpuq
dye = dp + doy

Show that the sequences A and C are identical.

Item 8 provides another opportunity to observe the
students use of MI. It was intended that the students
should need no assistance, and that this proof would serve
to evaluate their ability to construct such proofs

independently.

Item 9:

9. 1Is the following statement true:
For all natural numbers n:
p(n) = n(n+l) + 11
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is a prime number.

Item 9 exposes the students to one feature of MI.
Attempting a proof by MI does not necessarily indicate that
a statement is false. While one might come to such a
conclusion after continuing failures to prove the induction
step, MI itself does not lead to disproofs. In this case, if
the students become embroiled in the proof and fail to see
that the statement is not true, the investigator can assist

them.

Item 10
10. 1Is the following statement true:

Every even number is the sum of two primes.
(may be left out]

Item 10 is of the same nature in that it exposes a
limitation of MI, one that is shared by all forms of proof.
The statement is of the Goldbach conjecture, which has not
been proven, but appears to be true on the basis of
considerable empirical evidence. The investigator may wish

to leave this question out, depending on the comprehension

of proof attained by the students at this point.

Items 11, 12 and 13:

11. Do you accept mathematical induction as obvious or
reasonable?

Do proofs by mathematical induction convince you?

Does a proof by mathematical induction raise the degree of
certainty of a conjecture?

12. In empirical sciences, we also speak of induction; we
speak about inductive inference. For example:
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Experiment has shown that:
sugar s, dissolves in water,
sugar s, dissolves in water,

sugar sp;; dissolves in water,
Conclusion: all kinds of sugar dissolve in water.
Or:
The sun has always risen in the east, as far as I and other
people can remember. Conclusion: the sun will always rise
in the east.

13. What is the difference or differences between this kind
of induction and mathematical induction?

Item 11 directly asks the students' opinions on the
nature of MI and their trust in it. This is contrasted in
items 12 and 13 with reasoning by empirical induction, in
order to clarify the difference between the two for the

students.

Group B - Students Who Were Encouraged to be Skeptical.

This session was divided into two parts, each with a
different intention. The first part develops several
propositions. The second refutes most cf these propositions

and introduces a discussion of the need for skepticism.

Q1 and Q2:

INTRODUCTION to Fibonacci numbers
I: We are going to be looking at a sequence of numbers
called the Fibonacci sequence. Have you heard of the
Fibonacci sequence or Fibonacci numbers? The numbers in the
sequence are sometimes called Fibonacci numbers. [If "yes"
I: what do you know about it/them?] This is the beginning
of the sequence
[present Table 1:

1 1 2 3 5 8 13 21 34 ...)
[Talk about Fibonacci)
[Ql]) Can you find the pattern in this sequence? [If "no" I:
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try adding up pairs of consecutive numbers [more prompts if
needed]]

I: [Q2] Can you formulate a rule for producing the Fibonacci
sequence? [prompt if needed] How would you write your rule
algebraically? [give if needed, test understanding]

Q1 was designed to indicate the students' abilities to
use recursion to define a sequence. Q2 was designed to
indicate the students' ability to represent a recursive
relationship algebraically. Both of these skills are needed

in the construction of a proof by MI, and also to

investigate the questions which follow.

Q3, 04 and Q5:

DEVELOPMENT OF PROPOSITIONS 1

I: [Q3] Consider this question:

[ Sla: "Is there anything special about the sum of the first
n Fibonacci numbers? Is it related to the sequence in any
way?"]

I: [Q4] Is this statement true?
[ Slb: For all n: Fq + F; + F3 + ... + F, = Fp2 - 1)

I: Here is another statement about the Fibonacci numbers:
[S2: The Fibonacci sequence is given by:

F,= 1 n - —1 n+2 |p - 142 n + 569 n-4
60 24 24 60

[Q5] Is this statement true?

Q3 was designed to test the students' ability to
discover recursive relationships of more complexity. Q4 and
Q5 then indicated the criteria used by the students' to

determine the truth of a statement.
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Q6, Q7 and Q8:

INTRODUCTION to prime numbers

I: {Q6] Do you know what primes numbers are? [if "no"
explain].

Here is a list of the prime numbers less than 10000.
(Table 2]
DEVELOPMENT OF PROPOSITIONS 2
I: Here is another statement:

[S3: For all n: P = n? + n + 41 is prime]
[Q7] Is this statement true?

I: Here is a statement about prime numbers and Fibonacci
numbers:

[S4: "For all n: If n is prime then F, is prime."]
[Q8] Is this statement true?

Q6 determined only whether the students' had the
background knowledge necessary for the next questions. Q7
and Q8 then further indicated the criteria used by the

students' to determine the truth of a statement.

Q9, Q10 and Q11

DEVELOPMENT OF SKEPTICISM: Proofs and refutations

I: Have a look at the formula for producing Fibonacci
numbers. [S2] Try n=7 [if not already done] [Q9] Would you
now say that this property only produces Fibonacci numbers?
Why not?

I: Have a look at the formula for producing prime numbers.
[S3] Try n=40 [if not already done] [Q10] Would you now say
that this property only produces prime numbers? Why not?

I: Look again at the fourth statement. [S4] 19 is prime
isn't it? [Ql1] Is the 19th Fibonacci number prime?

Q9, Q10, and Q11 were intended to indicate the
students' reactions to counter examples. It was anticipated
that the students would reject the last three statements
refuted by the counter-examples, and become skeptical of the

truth of the first statement.
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Q12:
I: [Q12] Would you now say that the first statement is true
for all Fibonacci numbers? If I assure you that it is how
would you go about showing that it is true?

Q12 then indicates whether the students have become
skeptical of the truth of the first statement, and how the
students' would ensure that such a statement is true.
Without using MI the best argument they could produce would

be a large number of examples. It was expected that this

would not satisfy them.

Q13:

I: what would you say about trying to find out if statements
are true?

[In the context of this discussion:]

We have seen that in mathematics it is extremely unwise to
assume that something is true for all n just because it is
true for some n.

You've just seen several cases where even though there are
lots of examples, the statement turns out not to be true.
In the next interview you will be looking at some other
statements, some, perhaps all, of which are not true.
Remember to be careful about accepting a statement unless
you have a valid explanation.

[Q13] What would you say would be a valid explanation?

Q13 was intended to test whether the students' had
developed a rigorous standard for judging statements, and a
skepticism of statements which had not been proven in some

rigorous way.

Stage Two
The script of stage two takes the form of four

statements. The fourth statement is offered with a proof.
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For the other statements the students are asked to try to

provide a proof.

First Statement:

I: Consider this statement. Try to determine whether it is
correct or not and explain why it is correct or why it
is not.

[Statement A:

For all n 2 3,
(Fa)2 =  (Fpt) (Frur) + 1
(F, is the n*" Fibonacci number)]

The first statement is not true as written. If the
students discover that it can be modified to make it true
they would then have been instructed to try to prove the
modified statement. If they did not discover the possible
modification of the statement then it is left as an early
example to encourage a skeptical approach to the other

statements.

Second and Third Statements

I: Consider this statement. Try to decide whether it is
correct or not and explain why or why not.
(Present statement B:
B: The number of diagonals in a convex polygon of n sides is
n(n - 3)
2 )

I: Here is a sequence of numbers:
[Table 3: the B sequence:
1135 11 21 4385 ....]
Can you find the pattern in this sequence?
[If they answer B, + B,y = 2k then sxip to a below]
I: Look this statement [ statement Cl :B, + B, = 21 )
Do you think it is correct? Explain why you think so, or
why you don't.
[skip to B below]
[a)
I: Look at this statement [statement C2 :2B, + Byq = Bpyz )
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Do you think it is correct? Explain why you think so, or
why you don't.
(8]
The second statement is true and is easily proven by
MI. The third statement can take two forms. The students
are expected to propose one of the two forms, which is then

assumed as a definition of the B sequence. The task is

then to prove the equivalence of the second form.

Fourth Statement:

I: Consider this statement and its proof. Try to determine
whether it is correct or not and explain why it is
correct or why it is not.

Statement D:
For all n 2 0

th

where Fn is the n Fibonacci number

The final statement is the Binet formula for the
Fibonacci numbers. It is offered with a proof by MI (see
Appendix A for the full proof). This was introduced to
indicate the students' ability to recognize it as similar
to their arguments and to indicate what aspects of the

proof each of them felt required attention.
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Scripts Used With the Mathematically

Less Experienced Students

Stage One
A: The Student Who Was to be Introduced to MI

Session One:

Q1:

I: We are going to be looking at a sequence of numbers
called the Fibonacci sequence. Have you heard of the
Fibonacci sequence or Fibonacci numbers? The numbers in
the sequence are sometimes called Fibonacci numbers.

If llyesll

I: what do you know about it/them?

I: A merchant named Leonardo Fibonacci of Pisa studied this
sequence in connection with a problem he was trying to
solve. Since then many mathematicians and scientists
have found applications of the sequence in a variety of
contexts. This is the beginning of the sequence

[present figure 1:

1 12 3 5 8 13 21 34 ...)
Ql: Can you find the pattern in this sequence?

If unou

I: try adding up pairs of consecutive numbers [more prompts
if needed]

I: Can you formulate a rule for producing the Fibonacci
sequence?

[prompt if needed]

I: Q2: how would you write your rule algebraically?

Q1 and Q2 are identical to the first questions
presented tc the "skeptical" students in the mathematically
more experienced group. The intention of the questions was
the same in this context. As noted above Q1 was designed
to indicate the students' abilities to use recursion to
define a sequence. Q2 was designed to indicate the

students' ability to represent a recursive relationship
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algebraically. Both of these skills are needed in the
construction of a proof by MI, and also to investigate the

questions which follow.

03, 04 and Q5:

I: let's play around a bit and see if we can find out
anything about the Fibonacci sequence. Pick one of the
numbers in the sequence. [response] Now square it

[response]

Now take the two numbers before and after the number you
picked and multiply them together. What do you get?

[response]

How is that related to the square of the number you
picked?

[The square is one more/less than the product]

Q3: If that relationship were true for all Fibonacci numbers
how would you write a general rule describing this
property?

I: Let's try something else. Do you know what prime numbers
are?

If "no" explain

I: pick a prime number. Now count along the Fibonacci
sequence that many numbers. What number do you land on?
Is that prime?

Q4: If that relationship were true for all Fibonacci numbers
how would you write a general rule describing this
property?

I: let's try one more: Add up the first ten Fibonacci
numbers. What do you get? Now multiply the seventh
Fibonacci number by 11. What do you get?

Q5: If that worked for any set of 10 Fibonacci numbers how
would you write a general rule describing this property?

03, Q4, and Q5 all require the student to make a
generalization from a single case. The student's response
to such questions might indicate skill in generalizing,

willingness to do sc from small samples, and ease of

acceptance of such generalizations.
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Q6:

I: Q6: Do you think any of these properties hold for all
Fibonacci numbers?

I: Why?

I: How could you become more confident?

[expected response: more examples]
Q6 specifically inquires after the student's

willingness to accept generalizations, and the reasons the

student might use to justify such generalizations.

Q7:

I: Q7: try looking at a few more examples

[work through examples. The first proposition is likely to
provoke a reaction when it fails but the subject will
probably suggest the (correct) general property soon
after. By now confidence should be high}

Q7 was intended to result in the student rejecting the
first statement (from Q3), as it does not hold half the
time. It was expected that the student would modify the
generalization, and accept the modified statement on the
basis of several examples. Confidence in all three
statements (from Q3, Q4, and Q5) was expected to be high at

this point.

08 and Q9:

I: 08: 19 is prime isn't it? Is the 19th Fibonacci number
prime?

I: Q9: Would you now say that this property is true for all
Fibonacci numbers? What about the other properties?

08 was intended to undermine the student's confidence

by presenting her with a counter-example to the second
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statement. Q9 then explicitly asks the student to appraise
her confidence in the other statements. One of the
intended effects of the line of questioning followed in
this session was to undermine the student's faith in
empirical proof, while maintaining a desire to accept the
statement. This question was included to provide an

indication of this effect.

Q10:

I: Q10: Can you think of some way to definitely establish
the truth of these properties, if they are true?

Q10 was intended to indicate what sorts of arguments
the student felt provided certainty. This was asked both
to further expand on the information gleaned from the
answer to Q9, and also to lead into a possible discussion
of the features of a proof, for use in designing the later

sessions.

Q11:

I: Ql1: How would you establish the truth of this property:
“The sum of any set of consecutive Fibonacci numbers is
a Fibonacci number"?
Q11 was intended to remind the student of the

possibility that even likely looking statements might be

false, and so to encourage the checking of some examples

even if the possibility of a counter example seems slight.
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Session Two: The second session was intended to
provide the student with an opportunity to prove
statements. The general intent was to see if the student
could construct a proof of an inductive nature, under these

circumstances.

First sections:

I: Remember the Fibonacci numbers? Here's a list of the
first 35. Remember how we wrote the first Fibonacci
number as F, and the second as F, and so on? If n is
some number then F, would be the Fibonacci number in
position n in the list. How would you write the
Fibonacci number which came right after F,?

(help if needed]

I: Do you remember how you said to use two Fibonacci numbers
to get the next one? [yes...] How could you write that
using F, and Fpq ?

(help if needed]

I: Here are the statements we looked at last time written
with F,'s. Do they make some kind of sense? can you see
where the symbols come from?

The first sections concern the development of a
notation for the Fibonacci numbers and the establishment of
a symbolic form of the recursive rule defining them. This
was intended to provide a basis for the student's attempts
to prove, as such a basis had been lacking in the first

session.

The two statements:

I: How would you write this statement in symbols?

[show figure Sla:
The sum of the first n Fibonacci numbers is one less
than the second Fibonacci number after the ones added

up.
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The response should look like :
F1+F2+ * o 0 +Fn=Fn+2—l
I: Do you think this statement is true? How would you
convince me that it is? [prompt for a proof])

I: How about this statement?

[Show figure Slb: The sum of the first m even indexed
Fibonacci numbers is one less than the odd indexed
Fibonacci number after the ones added up.

F2+.F4+... +F2n=F2n+1-1]

I: Is this one true?... How would you convince me?

The two statements are very similar in form and in
proof. It was intended that if the student did succeed in
proving the first statement then the second would provide
reinforcement of the student's method, in preparation for a

generalization of it later.

Session Three: As the student did not produce a proof
by MI in session two, but did show some indications that
instruction might serve to lead her to one, the third

session was intended to introduce MI to her.

Q1:

Q1 Look at this statement again:

Figure 3: .
The sum of the first n Fibonacci numbers is one less

than the second Fibonacci number after the ones added up.
F1+F2+... +Fn=Fn+2'—1

Check it for n=6

Check it for n=7

Check it for n=8

Q1 was intended to remind the student of the previous
session and the statement. In session two the student used

a recursive technique to calculate each new sum, to avoid



55
having to repeat calculations. By asking the student to
calculate some specific sums it was hoped that this method

would be remembered so it could be used in the proof later.

Q2:
Q2 Consider a pancake. What is the maximum number of
pieces you can cut with 1 cut? With 2 cuts? With 3 cuts?
Would you agree with the statement:
* k cuts will never produce more than 2% pieces"
Could you show that this is true? [guide if necessary]

Q2 asks the student to prove a geometric statement.
The intention was to see if a non-algebraic context would
be more suited to the student's attempts to find a proof.
If the student was unable to find a proof, then this
problem would be used to demonstrate proof by MI for the
first time. MI was to be introduced through a chain of

implications, as the historical analysis had indicated that

this was likely to be an accessible form.

Q3:
Q3 Let us return to this statement. Can an argument
similar to the one we just used be applied in this case?
[guide if necessary]

Q3 was intended provide a context for a further
example of proof by MI, in the familiar context of the

statement the student had been trying to prove in session

two.
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04:

Q4 What did you mean in the last session by the phrase
"Prove itself"?

Q4 was intended to shed light on a phrase used by the
student in session two, which seemed likely to indicate

something of the student's attitude towards proof.

B: the student who was to e made skeptical

This session was divided into two parts, each with a
different intention. The first part develops several
propositions. The second refutes mest of these
propositions and introduces a discussion of the need for

skepticism.

01:

INTRODUCTION to prime numbers

I: [Q1] Do you know what primes numbers are? [(if "no"
explain].
Here is a list of the prime numbers less than 10000.
[Table 2]

Q1 was intended to ensure that the student was

acquainted with prime numbers in preparation for Q2 and Q5.

Q2:

DEVELOPMENT OF PROPOSITION 1
I: Here is a statement:
[Figure 8: P = n? + n + 41 ]
[Q2) If n can be any whole number what can you say about P?



57
Q2 is the first of the questions which were designed
with the intention of causing the student to make untrue

generalizations, in this case that P is always prime.

Q3:

Introduction to Fibonacci numbers

I: We are going to be looking at a sequence of numbers
called the Fibonacci sequence. Have you heard of the
Fibonacci sequence or Fibonacci numbers? The numbers in
the sequence are sometimes called Fibonacci numbers.

If llyes ”

: what do you know about it/them?

I: A merchant named Leonardo Fibonacci of Pisa studied this
sequence in connection with a problem he was trying to
solve. Since then many mathematicians and scientists
have found applications of the sequence in a variety of
contexts. This is the beginning of the sequence

[present figure 1:

1 1 2 3 5 8 153 21 34 ...]
[(Q3] Can you find the pattern in this sequence?

If llnoll

I: try adding up pairs of consecutive numbers [more

prompts if needed)

I: Can you formulate a rule for producing the Fibonacci
sequence?

[prompt if needed)

I: We can write the first Fibonacci number as F, and the
second as F, and so on. If n is some number then F,
would be the Fibonacci number in position n in the list.
How would you write the Fibonacci number which came
right after F,?

[help if needed]

I: Can you write the rule for producing Fibonacci numbers
using F, and F,,4 ? [help if needed)

Q3 is in two parts, which are similar to the first
gquestions presented to the "skeptical" students in the
mathematically more experienced group and to the other
student in the mathematically less experienced group. The
intention of the questions was the same in this context.

As noted above one was designed to indicate the students'
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abilities to use recursion to define a sequence. The
second was designed to indicate the students’ ability to
represent a recursive relationship algebraically. Both of
these skills are needed to investigate the questions which

follow.

Q4:

I: [Q4) How would you answer this question? [Figure 3a: "Is

there anything special about F, when n is a multiple of

3?"] [Guide to discovery])

I: Do you think this property holds for all Fibonacci
numbers?

I: why?

I: How could you become more confident?

[expected response: more examples]

I: try looking at a few more examples

[work through examples. ]

Q4 was designed with the intention of allowing the
student make a true generalization. The students
confidence in the truth of this generalization is later

(Q8) used to indicate how skeptical the student has become.

Q5:

I: [Q5] Let's try something else. How would you answer this
question? [Figure 3: "Is there anything special about F,
when n is prime") [Guide to discovery]

I: Do you think this property holds for all Fibonacci
numbers?

I: why?

I: How could you become more confident?

[expected response: more examples]

I: try looking at a few more examples

[work through examples. ]

Q5 is similar to Q3, in that it was designed with the

intention of causing the student to make an untrue
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generalization, in this case that F, is prime if p is

prime.

Q6:

DEVELOPMENT OF SKEPTICISM: Proofs and refutations

I: [Q6) Have a look at the formula for producing prime
numbers. [Figure 8] Try n=40 [if not already done]
Would you now say that this property only produces prime
numbers? Why not?
The second part of the session refutes two of the

three generalizations just made, and introduces a

discussion of the need for skepticism. Q6 is the first

question in the second part and refutes the generalization

made in Q2.

Q7:

I: Look again at the third statement. [Figure 3] 19 is
prime isn't it? [Q7] Is the 19th Fibonacci number prime?

I: Would you now say that this property is true for all
Fibonacci numbers?

Q7 refutes the generalization made in Q5.

Q8:

I: [Q8) Would you now say that the second statement [Figure
3a: "Is there anything special about F, when n is a
multiple of 3?2"] is true for all Fibonacci numbers?

Q8 was intended to serve as an indication of how
skeptical the student had become. It was expected that at
this point the student would no longer fz2el sure of the

statement made in Q4.
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Q9 and Q10:

I: [Q9] What would you say about trying to find out if
statements are true?

[In the context of this discussion:)

We have seen that in mathematics it is extremely unwise to

assume that something is true for all n just because it
is true for some n.

You've just seen several cases where even though there are

lots of examples, the statement turns out not to be
true.

In the next interview you will be looking at some other
statements, some, perhaps all, of which are not true.

Remember to be careful about accepting a statement unless
you have a valid explanation.

[Q10] What would you say would be a valid explanation?

Q9 and Q10 frame the discussion of the need for
skepticism. The discussion was intended to remind the
student of the possibility that even likely looking
statements might be false, and so to encourage the checking
of some examples even if the possibility of a counter

example seems slight.

Stage_Two

The script for stage two was designed with the
students' reactions in stage one in mind. As a result
several of the activities relate to activities in the
previous stage. Investigator interventions were to be
limited in stage two. The script consists of five
activities which the students were expected to work on
independently. The possibility that the students might not
finish all of them was considered, and they were to be told

to take as much time as they felt was needed.
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Introduction and Activity SAl:

I'm going to give you several different activities. For
each one please discuss what you are thinking and doing
thoroughly with each other to make sure that you are in
agreement. In addition to any written work you might do in
exploring these activities, please write down the
conclusions which you agree on in the end.

Activity SAl: Here is a statement and a proof:
[Statement SAl:

For any number mn, if a circular region (like a crépe)
is cut into pieces by n straight lines which cut all the
way across, then the number of pieces produced (P,) is at
most 2N.

P, < 2"
Proof:

One line produces exactly 2 pieces, so the statement is
correct for n = 1 as P, = 2 < 27

Each time a new cut is made by a new line the new line,
at most, cuts every piece intc two pieces, doubling the
number of pieces. This means P,y s 2P,. If P, < 2" then
Py € 2P, < 2(2M) = 2™

This proves the statement P, < 2" for all numbers n ]
and some questions:

[Questions SAl:

1. Do you agree with the statement? Why or why not?

2. Can you give an example where the statement is correct,
or an example where it is incorrect?

3. Do you agree with the proof? Why or why not?

4., What would you say is the most problematic thing about
this proof?

5. Could you make the proof better somehow? ]

Activity SAl asks the students to evaluate a proof.
The proof is a formalization of the argument that A was
shown in the third session of stage one. It was expected
that she would remember this experience and use it to
explain the operation of the proof to B. B's presumably
skeptical reactions would then encourage firther
justification on the part of A. This particular proof was
chosen as che first one because of its geometric nature,

which was thought to be more accessible to the students.
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The induction hypothesis P, < 2" was deliberately cast
in the same form as the statement to be proven, to

determine if this would create a difficulty.

Activity SA2:

[Activity SA2
Diagonals of a polygon are lines joining the vertices
(corners) other than the sides. For example here are the
diagonals of a pentagon:

[a figure was included)
The number of diagonals D, depends on the number of sides n
of the polygon:

Polygon Sides n Diagonals D, Example
Triangle 3 0~
Quadrilateral 4 2

Pentagon 5 5

Hexagon 6 9

[figures were included under "Example"]
Show that the number of diagonals of a polygon is always:
n(n-3)
D= ——— ]
2
Activity SA2 asks the students to construct a proof of
their own. It was intended that the students would use the
previous proof as a model, and the ii'clusion of several
examples was intended to facilitate this. It was also
expected that the student's conversation while creating the

proof would provide further insight into their

understandings of MI.

Activity SA3:

Here is a table of the Fibonacci numbers
[a table of Fibonacci numbers was included]
and a statement with a proof :
[Statement SA3:
For all m, if n is a multiple of three, then F, is
even.
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Proof:

Fy is 2, so the statement is true for n = 3

We will need to refer to the following:

A. Even numbers are all multiples of 2.

B. 0dd numbers are all 1 more than a multiple of 2
C. If you add an even number and an odd number ie
2n + (2m+l) you get 2n + 2m +1 which is odd.

D. If you add two odd numbers ie (2n+l) + (2m+1l)
you get 2n + 2m + 2 which is even.

If you have two consecutive Fibonacci numbers Fy,, and F;
and F,_, is odd; and F, is even; and k is a multiple of
3:

Then F, .+ F, is odd ( by C, above );

So F,, is odd because F,4 + Fy = Fu4;

And F, + F,,4 is odd ( by C above );

So Fy,, is odd because F; + Fy4q = Fir/

And Fy,4 + F,,; is even ( by B above );

So F,,s is even because Fy,4 + Fuo = Fus;

Note that if k is a multiple of 3 then k+3 is the next
multiple of 3.

We can conclude that: IF it happens that F,_, is odd, and F,
is even, and k is a multiple of 3 THEN k+3 will be the
next multiple of 3 and Fy,; will be even.

This proves the statement:

For all n, if n is a multiple of three, then F, is
even. ]

and some questions:

[Questions SA3:

1. Do you agree with the statement? Why or why not?

2. Can you give an example where the statement is correct,
or an example where it is incorrect?

3. Do you agree with the proof? Why or why not?

4. What would you say is the most problematic thing about
this proof?

5. Could you make the proof better somehow?

Activity SA3 asks the students to evaluate another
proof, this one a formalization of the reasoning used by B
in preferring the statement "Fj3, is even" to the others she
encountered in stage one. It was expected that this
activity would allow B to associate the methods used by A

in the first two activities with her own experience. This

would permit her to question aspects of the proof, which
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was intended to indicate what elements of MI she felt

required more clarification.

Activity SA4 and Activity SAS:

[Activity SA4:
Consider the following:

1+ 1 = 2 =3-1 =F, -1
1+1+2 = 4 =5-1 =Fs -1
1 +1+2+3 =7 =8 -1 =Fg -1
1 +1+2+3+5 = 12 =13 -1 =Fy - 1
1 +1+2+3+5+ 8 = 20 =21 -1=Fg -1
Show that in general:

The sum of the first n Fibonacci numbers is one less
than the second Fibonacci number after the ones added up.
F1+F2+..- +Fn=Fn¢2—1]

[Activity SAS5:

The rule: By = 1
Bz =1
B, = 2B, + By

n
defines the B sequence. These are the first terms of the
sequence:
fa table was included]
Consider the following:

1 +1 = 2 = 21
1 + 3 = 4 = 22
3+ 5 = 8 = 23
5 + 11 = 16 = 24
11 + 21 = 32 = 25

Show that in general:
By + Bpq = 27]

Activities SA4 and SAS5 ask the students to create
proofs. It was expected that the presence of examples, and
their previous experiences with the proofs in the first
three activities, would allow them to construct proofs by

MI for the two statements presented in these activities.
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"Déroulement"

The Unfolding of the Study

There would be no point in conducting clinical studies
if the responses to the questions asked could be
anticipated fully. 1In the course of the study several
unanticipated responses resulted in changes being made to
the course of questioning. The way in which the study was
actually carried out is described in this section, with

explanation as to the reasons for the changes.

Subjects

Three of the four students in the mathematically more
experienced group were, as intended, drawn from a first
year linear algebra course. They are indicated by the
initials E, G and H in the discussions which follow. The
fourth, who will be referred to as J, was a friend of E. E
and J are female. G and H are male. J turned out to be
mathematically the most experienced of the four. The
expectation that the students would not have seen MI in the
past turned out to be erroneous. E, G and J all had
experience with MI as a method of proof prior to the study.
The effects this had on the organization of the study are
discussed below.

The two students in the mathematically less
experienced group, A and B, are both female. A's highest

level mathematics course was a college calculus course,
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taken seven years prior to the study. B's highest level
mathematics course was a high school pre-calculus course,
take five years prior to the study. Both of these students
had limited algebraic skills and concepts, which interfered
with some of their attempts at proof. No major
modifications to the design of the study were necessitated
by this, although more active intervention on the part of
the investigator was required than might otherwise have

been the case.

Modifications to the Organization of the Study

The largest change made to the organization of the
study came about because of the prior experiences the three
students in the mathematically more experienced group had
had with MI. For the first stage E and G formed the pair
who were to be shown MI, and J and H formed the pair who
were to be made skeptical. The original plan was to have E
and H form a pair for stage two, and G and J form the
second pair. E and J displayed a thorough understanding of
MI as it is usually taught, and were dropped from the study
after stage one. Much of the interaction which had been
planned for stage two occurred in stage one as E and J
attempted to explain MI to G and H. After the first stage
G, who was to have been the proponent of MI in stage two,
was clearly skeptical, and H, who had been cast in the role

of the skeptic, was enthusiastic about MI. As a result
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stage two proceeded using G and H as the only pair, and in
the opposite of their anticipated roles.

Changes were also made to order of the scripts in
stage one, especially in group A, who were meant to be
learning MI. The students made slow progress in finding
the angle sum formula in item one, and the investigator
intervened, guiding them to an informal proof using MI.

The students also had to be guided to a proof for the
second statement. E identified both of these proofs as MI,
and G also noted that he had experience with MI, hence it
did not make much sense to go through the sequence causigg
them to compare their proofs with the axiom. Items 4
through 7 (which dealt with the axioms of the natural
numbers and the place of MI in them) were skipped and the
students were asked complete the proof in item 8
independently. Again the investigator had to intervene.
The investigator skipped to item 11 in order to explore G's
difficulties with MI, with item 9 (the statement "n(n+l) +
11 is always prime") introduced as an example at one point.
Item 13, discussing the differences between MI and
empirical induction, was also used, although with a
different example than that included in item 12,

In group B the script was followed, for the most part.
The students never found the relation they were expected to
in Q3 and so it was given to them. Q9 through Ql1 were

rendered redundant, as the students found counter examples
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to all three false statements by themselves. It seems that
their skepticism was already fairly well developed,
especially in the case of J. Q12 was unexpectedly answered
by J's proof using MI, and H's wholehearted acceptance of
it. A false counter example was manufactured by the
investigator to test the students' faith in J's proof and
the counter-example was rejected.

As noted above G and H participated in stage two, with
H expected to accept the use of MI and G expected to be
skeptical. They did not make the expected modification of
the first "almost true" statement, and constructed a proof
of the second without any use of MI. H and G did not
discover either of the recursive definitions of the B
sequence which were expected. Instead they discovered two
more. The question was modified to proving the equivalence
of the two statements they had found, using MI. It turned
out that the proof is quite difficult, and this problem was
abandoned. The students were then given the problem of
showing that one of the anticipated definitions was
equivalent to the definition H had found. This was
expected to be much easier to show. H did show it easily,
but without using MI. The discussion of the proof of the
Binet formula was expanded to include a variety of issues
which had been raised during the session.

It should not be assumed that the modifications

indicated above completely undermined the original intent
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of the study. In fact, the students' previous experiences
with MI allowed insights into the actual effects of the
teaching of MI on the minds of these students. 1In effect
much of what was to be accomplished in stage two was
accomplished in stage one, and stage two became an
opportunity to closely study the opinions of H and G

regarding MI.

As a certain amount of modification was anticipated in
the design of the scripts for the mathematically less
experienced group, less actually occurred during the
sessions. A was to be taught about MI, and B was to be
made skeptical. The first two sessions involving A were
preliminary in nature. In the first session the extent of
A's difficulty with algebraic notation was revealed and the
design of session two reflects this. Session two revealed
that algebraic manipulations in general were difficult for
A and the inclusion of geometric activities in session
three and stage two was a result of this. Session three
proceeded according to the script with the exception that A
asked about a listing of the B sequence which was among the
investigator's papers and this lead to her being asked to
find a pattern in it. She eventually found three, arriving
at one of the expected ones only after considerable
guidance from the investigator.

The only surprise in the stage one session with B was
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the extent to which she was already skeptical. This was
primarily a measure of her confidence in mathematics, but
it was clear that she could be relied upon not to accept as
true almost any statement. A short digression from the
main script occurred as the investigator attempted to lead
B to a proof that the sum of two odd numbers is even.

In stage two the amount of investigator intervention
required was greater than had been anticipated. This was a
result of the students' limited memories of their
experiences in stage one. The students did not develop a
sufficiently clear understanding of the proof in activity
SAl to use it as a model in SA2. The investigator had to
guide their steps on several occasions. These two
activities took most of the time allotted to the session,
and the student's opportunity to discuss SA3 was limited as
a result. SA4 and SAS were not done.

While the sessions with the mathematically less
experienced students did not result in much formal MI,
there was a surprising amount of informal activity relating
to MI in their work, even before they had seen MI. The
material which was derived from the mathematically less
experienced group has a very different character than that
derived from the more experienced group, but it is no less

interesting.



CHAPTER 1III

RESULTS

This chapter relates the results of the clinical study.
It is divided into two sections. The first section outlines
each students' behavior during the study, with analysis of
the understandings revealed or indicated by this behavior.
The second section compares the students' understandings of
MI and of several related concepts .

Throughout the following, references to the transcripts
of the sessions are made by enclousing line numbers in
parentheses, eg (Al123). In the quotations ellipses (...)
indicate that the quotation has been edited to improve
readability. Generally, repeated words, unfinished phrases
and null words such as "yeah" and "um" have been omitted.
The full line quoted appears in the transcripts in Appendix
B. Three dashes (---) indicate a short pause in the speech.
Capital letters are used to indicate the names of variables,
even when they would be written in lower case. This is done
both to make them more visible, and to evade the problem of
determining which of several possible expressions might be

intended.
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Section A

Analysis of Each Student's Behavior and Understandings

This section describes for each student the behaviors
related to MI they exhibited during the study. In each
case this behavior is analyzed first in terms of what ways
of understanding MI were indicated and then in terms of the
ways of understanding various related concepts which were
also suggested by the student's behavior. The related
concepts discussed are not the same for every student, as
none of the students had exactly the same experiences
throughout the study. Specifically, there is less which
can be said about J and E with regard to their
understandings of related concepts, as they spent less time

involved in the study than the other students.

Analysis of J's Behavior and Understandings

Summary of J's Concept of MI

J was acquainted with MI before the study.
Unfortunately there was not much opportunity to discover
how she would characterize MI. Her one comment on that
subject was:

J189: You use induction when you prove the truth of
some statement for N using the fact that the
previous statement was true. I am tryirng to

prove that K plus 1 is true using the fact
that K is true
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This description seems tied to the procedure of
using MI as a proof. J mentioned explicitly the usual
subscripts K and K+1. This may be because she was trying
to describe the procedure rather than the principle behind
it, or she may have understood MI to consist of the
procedure only. Her use of the word "fact" may indicate
some awareness of the underlying principle, as in the
procedure there is only an assumption that the previous
statement is true, and a verification of a specific case.
An understanding of the underlying principle, especially if
b;sed of the idea of "chaining” would justify referring to
the previous statement as a fact. Her initial explanation
of why her proof of "For all n: Fqy + F, + F3 + ... + F, =
Fna2 - 1" actually proves the statement was limited:

J153: Because it's proven.
J154: Well, that's the formal proof.

Her explanation may reflect a belief that it is
the "formal proof" status of the procedure of proving by MI
which give it legitimacy. At least it indicates that the
underlying principle of MI was not called to mind to
explain the functioning of the proof.

J certainly accepted MI as a method of proof, given
that she used it as such to prove "For all n: F; + F, + F3
+ ... + F, = Fyn - 1" (J139-152), and also given her
faith in the correctness of her proof:

J182: No, there cannot be anything, anything wrong
with this proof.
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J also recognized the problem of proving that F, +
F, + ... + F,=Fu, - 1 as suitable for proof by MI.
This was the only context in which she tried to use MI and
as it came late in the session it is hard to say how
accurate she is in recognizing appropriate contexts for MI.
That she used MI without any prompting certainly indicates

some ability to do so.

J's Understanding of Concepts Related to MI
Infinity

J realized that proving that F; + F, + ... + F, =
Fn2 - 1 by checking examples would be an infinite process:

J137: It can go forever --- so there must be a way
to prove it

and her use of MI as a method of proof of this statement
indicates an awareness that MI does indeed prove an
infinite number of cases. In general, J was willing to
make conjectures on the basis of examples, but did not
ascribe such conjectures the same validity that she did a

statement proven by MI.

Use of specific versus general techniques

There were many opportunities to observe J's
preference between consideration of specific cases and
searching for general rules. 1In general her behavior

seemed to be based on her description of how one determines
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the truth of a statement:

J159: First you have to check ... if it is true,
like, if you cannot find any counter-example

R122: How far do you go searching for counter-
examples?
J160: Through every natural number
J162: and then you must think ... why it works,
... how it works and ... how you can prove
it
She considered specific cases when invest.igating
problems on several occasions. She first did sc when she
accepted F,+ F, + ... + F, = F,» - 1 based on checking a
few cases (J38-41). In this case she appears to have been
inclined to believe the statement to begin with, and a few
substantiating examples were enough to convince her. It
was only after she had considered some statements which
held true for several cases but were not generally true
that she tried to prove this statement.
When she encountered Statement 2, a polynomial formula
which was falsely claimed to give the Fibonacci sequence,
she immediately began checking specific cases. 1In this

case it seems she did not think that the statement is true.

In fact she later commented:

J174: ... I was just wondering

J175: ... 1if there was any formula for this, [the
Fibonacci sequence] ...

J177: ... You have to calculate everything from

the beginning, ... and so to get from this
point to 87 would take you some long time

indicating that she felt it unlikely that there exists

a general formula for the Fibonacci numbers.
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When trying to determine the truth of Statement 3:
"For all n: P=n(n+ 1) + 41 1is prime" she commented:
J66: ... 1if there was a way to get a multiple of
41 in here then ... then it wouldn't be a

prime number anymore ...
She then began checking values:
J73: 41, 6, 7 times 8, 6 [writing "2, 6, 12, 20,
30, 42, 56, 72")
R58: What are you doing?
J74: No I'm just trying to know if this expression,
can ever give me like a multiple of 41
In this case she was systematic in searching for a
counter-example, first reducing the statement to "x2 + x is
not a multiple of 41" and then checking values.

Her immediate reaction to the statement: "For all n:
if n is prime then F, is prime" was "No" (J105). She then
began looking for a counter-example:

Ji07: 1 2 11

H122: What are you doing? ...

J109: I'm trying to check them
On only one occasion did J deal with a problem
entirely in a general way. This was in response to the
question:

Is there anything special about the sum of the

frst n Fibonacci numbers? 1Is it related to the

sequence in any way?
In response she began by working with a general sum: "Fl +
F2 + F3 + F4 + F," which she reduced to: "Fl1 + F2 + {Fl +
F2} + {F2 + F3} + {F3 + F4} + {F,, + Fo4}" (J did not

include the usual "..." to indicate the uncertain length of

the series). She continued working in this way until it
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was suggested that she look at specific sums. Even then
she saw no pattern in the sums (J29, J37). As noted above,
when shown the statement F; + F, + ... + F, = Fp., - 1 she
accepted it based on checking a few cases (J38-41). Her
preference for searching for a general rule in this case,
without checking specific cases, may be due to the
different nature of this problem in comparison to the
others she encountered. This problem is the only one in
which a rule or formula must be derived, rather than merely
verified. The only other occasion when a derivation might
have been required was in determining the defining rule for
the Fibonacci sequence, but in that case J already knew the
rule. This is also the only occasion in which a judgement
can be made concerning J's preference for reduction of a
problem to a simpler case, versus induction of a solution
from simple cases. Her first preference was to reduce a
general case to a simpler form (J11-14), but she later
recognized that MI could be used (J139). This may indicate
that she saw that an inductive approach might be fruitful,
but it could be that she simply recognized the situation as
suitable for MI without thinking of MI as inductive in
nature.

J's initial preference for searching for a general
rule may also be related to an expectation that there was
one to be found. She indicated that she believed that

there must be some relation when she expressed surprise at



the possibility that there might not be:

J25: ... you should be able to find the relation.

R22: If there is one.

J26: If there is one ... mmm

Treatment of counter-examples
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J's attitude towards counter-examples seemed to depend

on the context in which they are found.

In general she

rejected any statement when a counter-example was found. In

the case where a proof also existed, however, she

recognized that either the proof or the counter-example

must be rejected.

She recognized that a statement cannot be true if a

counter-example exists (J159-160) and rejected the

statement “"For all n: if n is prime then F, is prime" when

she found a counter-example:

J115: It's not true
H133: What? Is it true?

J116: No it's not, because I found a counter-

example
This overcomes the opinion
previously:

J112: Yeah, by observation,
However, she almost ignored the
by H to the statement: "For all
prime”. This may have been due
began by explaining the process

counter-example, concluding:

she had developed

this seems to be right
counter-example found
n: P=n(n+1) + 4
to H's presentation.

by which he found the

1

He

is



H86: It could be any K here, actually, there's
still K here because I'm just taking an
arbitrary N right, could be any N, show I'm
just working so it came out to 1, so try, plug
in 40, gives me, gives me, 40 squared plus 40
plus 41 gives that [wrote "1681"] and dividing
by 41 gives 41, as it should.

J80: I still don't understand, what you are saying
is N squared,

It seems that the discovery of a counter-example
(n - 40) was not as interesting to J as the process by
which it was discovered. J's confusion led to another
explanation of the derivation of the counter-example. At
the end of this explanation J first commented on the
counter-example itself:

J85: So you want to find N for which this could
happen, Ya? --- and your N is 40?

At this point she seems to have realized that the
derivation was not so important as the existence of this
counter-example. While continuing to listen politely to
H's explanations, she turned her attention to confirming
for herself that 40 was in fact a counter example (J92).
The last counter-example she encountered was in the
claim that the statement: " F; + F, + F3 + ... + F, =
Fn2z = 1" is not true for n = 87. T-is claim was made to
her after she had proven the statement by MI, and she
rejected the counter-example, noting that she would "ask

for an explanation, a detailed explanation, (J169) Why?!
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Why does it work? (J170)". She went on to suggest that the

discovery of such a counter-example was probal:ly a result
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of a computer miscalculation (J172).

Analysis of H's Behavior and Understandings

Description of H's Understanding of MI

As it Developed in the Course of the Study

H had not seen MI prior to the study (H221). He had
no problem with the recursive definition of the Fibonacci
sequence, and pointed out the need for initial values (H3-
4), indicating a certain level of comfort with recursion
and awareness of the way recursion works.

He first encountered MI when J proved the statement:
"For all n: Fq+ F, + F3 + ... + F, = F, - 1" using MI.

He was not aware of the usual forms of the proof as he had
not seen it before, and questioned the assumption of the
induction hypothesis (H178). Once the proof was complete
he accepted it without reservation (H180). He could not
explain why the proof worked (H181-182) and may have
thought that the induction hypothesis had been proven
within the induction step (H183). He recognized that all
that was needed for the proof was the proof of the basis
and the proof of the induction step (H185) and gave a chain
of implications as a justification for accepting the proof:
H186: ... If it works for F of 8, ok, then it
works for F of 9, and also works for F of 10,

it works for F 11, and so on and so forth. It
works for everything, right.
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Considering this was his first exposure to MI, H understood
it both as a formal proof &and in an informal way quite
quickly.

He was very confident of the proof, and when it was
suggested that there might be a counter-example to the
statement he rejected the idea (H203) and stated that if
the proof was incorrect “"then there's something extremely
wrong with our minds" (H204) He seemed to understand the
nature of the variable k in the induct:on step as well
(H222).

To justify MI H referred to the axiom that every
number has a successor:

H229: If it works for 1, and it works for K plus 1;
since we know all numbers exist, that every
number goes 1 plus 1 and you get all numbers;
if you add 1, you know it ...

and that a chain of implications could be generated:

H230: works for some K, ... and it works for some
K plus 1. If it works for a value then it
also works for the value K plus 1, and it
works for all values K plus 1. You want some
value N and it works for the one plus that, so
then that one has to work, and the one plus
that has to work too, and so on, and so on,
right?

The reference to the successor of a number may have

been related to the need for k+1 to have meaning in the
induction step, or it may have been referring to the well-
ordering of the natural numbers. He repeated this

reference to the successor of a number in stage two (H696-

698).

]
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Stage two began with the problem of proving the
diagonal formula for polygons. H and G proved the formula
deductively, without considering using MI (H434-468). When
presented with the B sequence H had no trouble developing a
recursive definition for it (H476). His definition was
based on doubling the previous term and adding or
subtracting 1 depending on the parity of n.

He mentioned again that he had not used MI before
(H501) but claimed that he could recognize it (H503). He
was not totally comfortable with MI:

H504: ... I'm just not really at ease with it so I
try and do scmething else unless I ---

When trying to use MI to prove the equivalence of
the two definitions of the B sequence he and G had
produced, H began by starting with a "low one" (H507), his
basis. He then tried to set up the induction step, making
use of the notation "F," which had been used it the proof
he saw in stage one (H525). In describing MI he described
the procedure followed when constructing a proof by MI
(H539, H542):
H542: ... for each you find one that works, and
then you say if B K works then, you should
prove that B K plus 1 works then it works for
all B.
His plan for the proof correctly made use of MI (H545)
taking into account the need to work with k+2 because of

the existence of an odd and an even case (H567). At one

point (H587) he tried to substitute u fcr both k-1 and k+1
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in order to establish the induction step:
H587: and K minus 1 here, is it the same as saying,
it's U here, and U here? [writing u over k-1
in the upper expression in figure 1] because
it's the same, because these are the same ones
right?
H588: these are these are the same expressions

H589: Now here it's again the same expression
{indicating the lower expression in figure 1]

T
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Figure 1: H's writings referred to in line H589,
involving the substitution of U for k-1
and k+1
H bas substituted uw for k-1 and then substituted k+1 for u.
As such a substitution would be acceptable in a

straight forward proof without the complexity of a
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hypothesis, he may simply have forgotten. On the other
hand a comment he made later (H727) indicated that he was
not sure whether k could be treated as a general number.
This confusion, if it existed, does not seem to have
affected his use of MI.

When G described his idea of MI, based on
backtracking, and outlined a proof of the equivalence of
the two definitions, H may have been aware that G's proof
was not MI. His comment is suggestive but not clear:

H612: It's not like a really, but I mean the idea.

H passed up another opportunity to use induction
when asked to prove 2B,4, + B, = By,y. In spite of the
fact that he had been trying to use MI to prove a very
similar statement his proof was straightforward and
deductive and he correctly stated that his proof did not
employ MI:

H648: This isn't really induction

S508: Well, are you relying on some assumption that

it works for some previous Ns, do you do that?

S509: ... or is it a straightforward ---

H651: well no, it's very straight forward. ...
It should be noted that the investigators had not
closely followed his proof, and had assumed that it
employed MI. H, however, was sure that it did not.

H and G were shown a proof of the Binet formula for
the Fibonacci numbers, along with a proof by MI. H

followed this proof without objection (H660-690).

In the closing discussion H justified MI by noting
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that the natural numbers don't "skip" :

H696: Well because you don't skip any numbers. You
can't skip numbers. They're all there. Every
number exists.

as well as again making reference to the axiom that every
number has a successor:

H697: ... If it works for any number, and it works
for the number plus that, then it works for
all numbers, because all numbers has a plus, K
has one more,

He was then told that MI is based on an axiom of
the natural numbers. He wondered of this axiom "how does
it come to that conclusion?" (H704), which may indicate
that he was unsure of the status of axioms in the logical
structure of mathematics. When the axiom was stated he
responded: "that's what I said" (H707) and in fact many of
his descriptions of MI had been very close to the form of
the axiom. They lacked the explicit reference to it being
an axiom, however, which denied them the freedom from the
need for proof enjoyed by axioms.

In response to G's conviction that exceptions could
still occur if a statement had been proven by MI, H
asserted that no exceptions could occur (H708, H710-711)
He also stated that the implication proven in the induction
step was general (H712) and that if a statement is not true
then a proof by MI simply will not work (H714). He later

combined these two ideas in pointing out that if exceptions

existed then it would be impossible to prove the induction
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step:

H722: yeah it can't ... or else you can't prove
that it works for all ... Koplus 1 ...

In general H seems to have understood MI in a
manner which was clear and self-consistent. The only
indications that he might have been uncertain about MI were
his unwillingness to use MI and some indications that he
was uncertain of the generality of the variable in the
induction step. This has been mentioned above (H587) and
is also indicated by these quotations:

H727: ... let's say if you find, ... say 10 can
you backtrack, can you assume that all the
ones lower than that too are true?

H728: ... you've only proved one, ... 1Is it
automatically true that the ones behind it are
true? That's what I mean.

At this point H must be wondering if k can be treated as a

general variable, or confused about the converse of the

induction step.

Summary of H's understanding of MI

In spite of having no memory of seeing MI in the past -
H accepted it immediately when he saw it and exhibited
considerable confidence in MI as a method of proof. He
asserted that J's proof, relating to the sum of the first n
Fibonacci numbers, was correct on several occasions (H216,
H222) and stated that if a counter-example were produced

then: "The person who's telling me that calculated
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incorrectly" (H206).

In the course of the study H seems to have developed a
good grasp of the nature of MI. He was aware that the
existence of a sirgle counter-example to a general rule
would make proof by MI impossible. He was also aware of
the need for the basis. H characterized MI in several ways
at different times; as a chain of implications, as a
procedure, and as a formal method of proof. All of these
characterizations are consistent with what is traditionally

considered to be a good understanding of MI.

H's Understandings of Other Concepts Related to MI

Use of specific versus general methods

H worked with specific examples, or with general
forms, depending on the nature of the problem he was
considering. He used specific examples in three ways: as
examples when explaining a general principle, when
searching for a pattern, and when testing a statement which
he doubted. He worked with general forms when constructing
proofs, and to search for patterns when specific examples
failed to reveal any.

When he was explaining to J that the final term of F,
+ F, + ... +F,, when decomposed into the Fibonacci pairs
which make up each term, would not be a duplicate of
another term, he worked through a specific example:

J19: All of them will be counted twice
H17: Well not all of them, the last one you won't
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count. Let's say if you did it for a certain
set here ---

H18: This one would not be counted in, at all. This
one would be counted once, would be counted in
twice. See it would be like this, from here
to here would be 12. This which is equal to 1
plus 1 and you add this one again plus 1 both
twice, because they'd both be counted twice,
plus 2, hmm, 2 plus 1 for this one because
you're counting this one, like this [Pointing
to "1 +1+1+1+2+ 1+ 2+ 3", his
decomposition of 1 + 1 + 2 + 3 + 5]}

He had been working with these series while searching
for a pattern in the way the sum was determined. H later
(H20) switched to a general notation to continue his
search.

H's main use of specific examples was in testing
conjectures he doubted. He did this in stage one to test
Statement 2 (the false polynomial formula for F,) (H52-66)
and agreed with J that testing Statement 4 (For all n: if n
is prime then F, is prime) was a good idea (H123). 1In
stage two he tested Statement A ( (F,)2 =
(Fp1) (Freq) + 1 ) and Statement B ( The number of
diagonals in a convex polygon of n sides is (n)(n-3)/2 )
(H409 and figure 34).

H's preferred method of searching for patterns was
through general forms. As mentioned above he switched to
geaeral forms in searching for a pattern in the way the sum
was determined (H20, H21). He continued in this way on

returning to the problem later (H165) in spite of seeing it

as complicated: "It'd be too long to do all that. I don't
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want to do it that way" (H163). He also used general forms
in trying to determine the truth of Statement 3 ( For all
nt P=n(n+ 1) + 41 is prime ) (H71) and, in stage two,
Statement A ( (F,)2 = (Fpq)(Fasq) + 1 ) (H402, H419).

When attempting to prove a statement H used general
forms exclusively. His proof of Statement C2 ( For all n >
2 : 2B, + Bpyy = Bo ) (H642-646) is entirely general:

S504: Did you check for some ... small Ns or not?
H645: No, I didn't
S505: No you didn't
H646: I think that in general I don't ever bother,
I just ---
In fact H seems to dislike looking at specific cases in

some contexts:

R23: Have either of you calculated any of the sums
«+« to just know what they are?
H23: Ah no I didn't want to actually, ...
R72: If you only have 40 cases to prove, you may as
well prove every case.
H112: No that's too long, I wouldn't.
This disinclination might have affected his willingness to
use MI, as Mi involves the use of at least one specific

case.

Expectation of order in mathematics

H was inclined to assume that there would be a pattern
to be found while working on a problem:

H33: No I think there probably is a pattern.

H172: You see I'm taking this, see I'm trying to
find the pattern. ...
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This seems to reflect a basic belief concerning determining
the truth of a statement:

H193: ... Mostly what you have to do is try to
find some pattern, for all the examples.

Once he saw a pattern, or some order in the situation
he was investigating, H expected it to continue. For
example, having found that 40 is a counter-example to
Statement 3: (For all n: P =n(n + 1) + 41 is prime)
he conjectured that there were no counter-examples less
than 40. He had not, in fact, determined that the
statement was true for any specific values, but he expected
that the counter-example which he had discovered was the
least (H105). He also expected there to be a connection
between Statement 4 ( For all n: if n is prime then Fn is
prime) and Statement 1b ( For all n: F, + F, + F3 + ... +
Fop = Fpp - 1)
H139: F of N minus 1 ... What was the, that thing,

that you showed us before there, the, let's

say that the summation of each one is equal to

F of N plus 2 minus 1.

His reaction to G's suggestion that they look for
a counter-example to Statement A ( (F,)2 = (Fr1) (Fpeq) +
1 ) also indicates an expectation that an orderly
arrangement such as that suggested by the statement was
likely:
H421: Well I don't know. See the problem is ...

if you do that, if it's not true, fine. If
it's true ---
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When H and G arrived at different rules to
generate the B sequence H commented:
H482: yeah but, I'm pretty sure there's a
relationship between them, I'm sure you can
figure out why.
and
H488: I mean it comes down to the same thing. ...
It's just another way of doing it. ... It
has to be.
A final indication of H's expectation of order
came in the development of the proof of the Binet formula.

H's reaction to Lemma 1, before seeing the proof, was:

H674: Which is, you know, very true, I mean,
obviously, I can see that.

Treatment of counter-examples
H displayed a good understanding of counter-examples
in general. He rejected four statements on the basis of
counter-examples (H66, H77, H144, H431) and he stated quite
explicitly:
H192: You got to prove it for all cases that it's
true, actually every case. Prove that there
is no single case that i. not true.
When faced with a hypothetical situation in which
a counter-example was found to a statement which had been
proven by MI he commented:
H204: If I knew, and if I found out that it was
true, then I'd go "Well, shit", what can I
say? I mean, obviously from that [the proof]
it's true, end of story, it's true, It should
work for everything. 1If it doesn't then

there's something extremely wrong with our
minds, because we don't understand what we're
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H215: ... if that [the counter-example] was true
then there is something wrong with this [the
proof] for sure, there'd be no question about
that. If you prove something that ... is not
true then there's something wrong with it. ...

Use and attitude towards empirical induction

H made use of empirical induction in investigating
mathematical statements. For example he seems to have
accepted Statement Slb ( For all n: Fy + F, + F3 + ... +
F, = F42 - 1) on the basis of a few examples:

H45: What is, what did you say it is 12? yeah it
is, let me see it, yeah it is, yeah it's true

When investigating the incorrect polynomial formula
for the Fibonacci numbers he empirically tested the
accuracy of his calculator keypresses:

H66: ... I'm getting 50 for a while, ... 1I'll do
it one last time and then I'm saying no. But
I'l]l make sure I'm doing it right ...
[calculates] ... no, it [the formula] doesn't
work.

He also accepted the validity of the two rules H
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and G invented for the B sequence on the basis of empirical

induction:
H505: well anyway, these two, this is right, this
is right, now what you want us to do is make
sure these two things are the same?

H repeated that the two statements are correct on other

occasions (H522, H563, H565, H632). He was aware, however,

that empirical induction is not proof in the mathematical

sense. Of the rules they invented he said:
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R548: Did you ever prove either of those?
H732: Not like, no

Analysis of G's Behavior and Understandings

Description of G's Understanding of MI

As It Developed in the Course of the Study

G had seen MI in the past, in a course on discrete
mathematics. 1In the first problem he faced, determining
the angle sum of a polygon with n sides, he followed the
inductive investigation indicated by the investigator, and
provided an informal induction step (G102), on the basis of
which the formula m(n-2) was eventually accepted. E noted
that the proof could be done by induction, at which point G
was asked if he had studied it. He replied that he had
“touched up on it" (G109) and roughly outlined the
procedure (G108-109). He used a triangle as the basis for
the induction (G115), and then stated the induction

hypothesis very formally:

v > ks3 —o (K—Q)rrzﬁk‘

Figure 2: G's induction hypothesis for the angle sum
formula, written about line E135.

As a result of suggestions from E he switched from

this formal pattern to a more informal approach describing
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the induction step in terms of going back to the one before
(G133). G accepted the final informal proof by MI as
correct (G152).

The second problem was that of showing that 2" is an
upper bound to the number of regions produced by m lines in
the plane. He observed the doubling which is at the root
of the induction step (G199, G202) and accepted it as an
informal proof (G206). He stated that if the induction
step is accepted then the statement is "obvious" (G207-
208).

G did express some misgivings about MI, in spite of
his acceptance of the informal proofs mentioned above. His
first comment:

G211: you use the hypothesis, I can't see why they
use that hypothesis within their a, their
assumption, ok? they assume something and then
they use it within their proof
seems to indicate that his difficulty lay in the use of the
inductive hypothesis. He may have seen the variable used
as being general in nature, rather than being an arbitrary
value. On the other hand the following quotation suggests
that he saw the variable as being specific, and wondered
how the statement can be assumed true for some value,
without proof.
G213: Ok, you don't, --- I have trouble seeing it.

Why should that assumption be true, when
applied to your ---
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Yet another possibility is suggested by this comment:

G215: ... You can go to as many steps as you want
and your hypothesis is, I don't ---~

The investigator had raised the issue of empirical
induction, and G seems to have added that to the problems
he experiences with MI. He may have been rejecting the
idea that empirical induction provides the justification
for the assumption of the truth of the statement, which is
then used in the proof by MI of the statement. 1In fact,
this is very close to what actually happens in MI.
Empirical testing provides one case in which the statement
is true, which is then used, by way of the reasoning
outlined in the inductive step, to pass to a second case.
The process then repeats. This is, of course, a dynamic
model of MI; as a chain of implications. 1In the static
form G has encountered the process is collapsed, and the
justification for the assumption of the inductive
hypothesis becomes more obscure.

G made a distinction between the proofs he had
accepted, which had been proven by an informal use of MI,
and formal proofs by MI. 1In fact he didn't ccnsider the
proofs he nad just seen to be proofs by MI:

G222: I'm convinced through word not through
induction, and if this is indeed the case when
you showed it here, in this particular case, 1
can see it.

If the proofs they had done had indeed been by MI then in

this case G could see MI working, but he had not thought of
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them as proofs by MI. He gave an example of the sort of
thing he would expect to prove by MI: the formula for the
sum of squares (G251). This, and the formal way in which
he began to prove the angle sum formula, indicate that G
had thought of MI as being a very formal process, and this
may have contributed to his uncertainty as to the role
played by the variable in the induction step.

When G discussed proving the equivalence of the two
recursively defined sequences, A and C (see page 41), he
again indicated an understanding of MI closely tied to
proving formulas for sequences and series. He suggested
proving the equivalence as follows:

G251: No, it's prove by induction that your formula
does indeed give you this recursive sequence,
ard then do like wise with this one, give a
general formula, ...
He did not see ihe application of MI to proving the
equivalence directly. 1Instead he suggested finding a
formula for each sequence and using MI to prove these
formulae. Such a task is possible in this case, as
recursive definitions had been given for the sequences, but
the direct proof is much simpler to find. Later (H563)
when working with H on a similar problem, he suggested the
same method, in spite of the fact that in that case the
general formulae could not be proven, except with reference

to each other.

In considering the equivalence of the two sequences G
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began by noting the importance of the equivalence of the
first terms, which was given as part of the definitions
(G263). He also began his attempt to construct an
inductive proof by establishing the basis (G273-274).
Throughout the remainder of the construction of the proof G
referred to the inductive hypothesis as an "assumption®
(G275, G294). This may merely reflect the choice of word of
whoever first taught him MI, or it may be an indication
that G felt that the hypothesis is an assumption, in the
sense of an unjustified conclusion.

When the proof was completed G professed to being
convinced (G305) but his next comment:

G306: I'm convinced. Well for the next step I can
see it as well.

raises another possible role G might have seen the

variable in the induction step playing. If the variable is
taken to be general, then there is no point in considering
whether the induction argument works for the next case as
well. 1In MI the variable is arbitrary, but only within the
induction step. Once the induction step is proven the
variable is treated as general variable, and so the
induction step applies equally for every number. If G saw
a need to check the induction step for k implies k+1 and
for k+1 implies k+2, and so forth, then he was not changing
the role of k from arbitrary to general. If this was the

case then for a proof by MI to be seen as correct by G the
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induction step would have to have been proven for every k.
Further indications that this might have been the case
(G578, G588, G591-592) are discussed below.

In a general discussion of MI which followed the
completion of the proof of the equality of the sequences G
again described the difference he felt existed between two
different kinds of proof by MI. Some proofs, such as the
informal ones which began the session, he felt were
obvious, while others he could not accept:

G314: ... some I find trouble seeing it, with
others it's evident, it's obvious. But some
of them I ask why do you prove? It's obvious.

He again treated MI as if it were empirical
induction, when he wondered how long a proof by MI would
have to go on to show that m is irrational (G325). This
supports the suggestion made above that G felt that the
induction step must be proven for each k, and also
indicates that G understood that MI is best suited to
proofs involving infinity.

In lines G337-338 G first mentioned the idea of going
back to the previous.case to establish the induction
hypothesis. This idea was developed more fully in stage
two, and is discussed below. This comment occurred in the
context of a discussion of the expression n? + n + 11 which
produces prime numbers for n<10. G wondered how MI could

be used to prove such a statement (G338) and then how to

disprove it using MI (G340). He seems to expect that the

fouy
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process of proving by MI would reveal counter-examples, in
the same way as a proof by empirical induction would (G343,
G345). 1If, as was suggested above, G believes that MI
involves the proof of the induction step for every k then
this would be that case.

G may have a problem with MI in that MI does not take
the form of most of the proofs seen in mathematics classes;
that is, the reduction of an equation to a blatant
identity. The following quotation indicates that G is
uncomfortable with proofs which do not "come to a final
agreement"”:

G351: I can move forwards, I can move backwards,
but I have to move somewhere to show my
conclusion, now it's either I can prove it
wrong or I can['t]. Like I said we can imply
things from right to left or from left to
right but we're going to come to, we're going
to come to a final agreement, but this
doesn't, you have no, no concrete way of
knowing that this is indeed proof enough.
That's what I don't understand.

Stage two began with the problem of proving the
diagonal formula for polygons. G and H proved the formula
deductively, without considering using MI (G430-484). When
presented with the B sequence G had no trouble developing a
recursive definition for it (G492-493). His definition
required the summing of all previous terms in the sequence
to determine the next term.

G suggested using MI to prove the equivalence of the

definitions he and H had found for the B sequence (G510).
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The way in which both definitions differed for even and odd
cases seems to have cause him some trouble. At one point
(G536) he tried to go from n to n+l in spite of the fact
that he was concentrating on odd cases. This may be a
result of attempting to preserve the form in which he had
seen MI in the past. He later agreed with H's procedural
description of MI (G543). Both of these acts indicate a
concentration on the form of MI which is to be expected if
the underlying structure is not very clear to him.

Proving the equivalence of two definitions of the B
sequence is a similar problem to that of proving the
equivalence of the two definitions G had seen in stage one.
G attempted to solve the problem in the same way, by
proving a general formula for each sequence and then
showing the formulae were equivalent (G563). In stage one
this strategy was inefficient. 1In the case of the B
sequence it was impossible, as nc other definitions had
been provided. The combination >f sequences with MI in a
situation seems to have strongly indicated to G that he
should use MI to prove a formula for the general term of
the sequence. Presumably, this is a product of his
training in the past.

In the course of trying to prove the equivalence of
the two definitions G, expanded on his idea of MI as
backtracking to the basis:

G578: ... and then it'll take you to K minus 1,
and that one will take you to back, back, back
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all the way to the first step, this is the way
I proved mine, ...

He repeated the same sort of description on several

other occasions (G588, G591-592). This process is
reductive rather than inductive, and may be related to
recursive computer programming techniques, in which the
basis, instead of being the starting point, is the "stop
rule". It is not clear that G meant this backtracking to
be general.

Shortly after these comments about backtracking he
switched *o building up from the basis, but he was only
considering specific cases (G597, G610). Notice in the
following that each induction step must be done separately:

G609: It's an imply-ance, it's I think, it's you
imply the first, knowing that the first one is
true, you can imply that the second one is
true, knowing that the second one is true, you
can imply that the third one is true, and so
forth, but you can't, I couldn't go from 3 to
10 for instance, without having to go through,
4 to 9, ...
This building up seems to be the process of proving the
induction step for each k. G later returned to describing
what he was doing as backtracking (G663, G665, G669, G671-
672). He may have been combining backtracking with the
idea of proving each step, and have meant that backtracking
is simply a standard way of testing a specific case.
From the above discussions it seems clear that G was

not comfortable with the idea of using MI to prove general

statements. He indicated that he did feel this way (G673-
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674, G679), and also mentioned that it was the possibility
of exceptions which disturbed him (G680, G682) The
possibility of exceptions was a result of: "not checking
every one" (G684).
The sort of understanding G had of MI at this point
can be seen by working throughL the examples he suggested:
G685: ... You gave a sequence, but assume that you
gave us a formula that works for everything,
but it doesn't work this one, ...
H713: You can't come to the conclusion that it
doesn't work for all N plus 1
G686: Is that true, I don't think that's true, I
think you can assume it, that it is true, and
just by backtracking, check your initial
hypothesis because your hypothesis was based
on the first few numbers, and it won't be
cor~ 'ct for the entire sequence,
G was asking H to consider a sequence such as 2, 4. 6, 7,
10, 12 and a formula such as S, = S, + 2. In this case
G's backtracking will work to prove that the formula
defines the sequence for 2 4 6 10 and 12, but not 7 as G
did not see backtracking as providing information about any
element of the sequence other than the one being tested
(G687). The failure of 7 to conform to the formula will not
be discovered unless it is checked specifically (G688).
When he combined these problems with the infinite sets
covered by general rules Le arrived at the impossibility of
testing every case, and so the impossibility of using MI to
prove general statements (G689-690).

If the assumption made in the induction step could be

proven in some way then G would have no problem with using
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MI as a geneval proof (G702-3). Otherwise, G was not
willing to accept MI as any more reliable than empirical

induction (G706).

Summary of G's Understanding of MI

G seems to have treated informal and formal arguments
by MI differently. He was willing to accept informal
arguments, but didn't see them as MI. He rejected formal
proofs, on the grounds that they made an unjustified
assumption of the inductive hypothesis. This reduced these
proofs to being empirical in nature, consisting of an
assumption that the statement is true for a particular k
and then a, possibly recursive, verification of this. As G
rejected empirical proofs, he also rejected formal proofs
by MI.

MI as empirical proof was one of the characterizations
G employed during the study; the other was MI as a
procedure. G also displayed a preference for seeing MI as

beginning at a case dnd proceeding backwards to the basis.

G's Understanding of Concepts Related to MI
Infinity

G was aware that the sequence of numbers involved in a
proof by MI is infinite. That is part of his problem with

the method of proof:



104
G689: Fine, but you're not going to go---. If

there's an infinite sequence of numbers you
won't check every single one.

Use of specific versus general methods

G seemed to prefer investigating specific cases when
problem solving. He did so when investigating angle sums
(G10), regions produced by lines (G160, G204), sequences
defined by recursive rules (G233), relations between
Fibonacci numbers (G407, G409, G419), diagonals of a
polygon (G437, G450), and the relationship between two
recursive rules (G506, G595). He used general procedures
only when investigating relations between Fibonacci numbers
(G403) and the relationship between two recursive rules
(G618-620). These two situations are exclusively
algebraic, where many of the others are geometric in
nature. Also in these cases G was working with H, who

showed a preference for general formulae.

Treatment of counter-examples
G accepted counter-examples as disproofs of general
statements:
$255: This, but this counter-example is proof
ennugh?
G352: For me? that's fine
He rejected statements due to counter-examples at lines

G425, G429, G488 and G623 as well. He was aware of the

difficulties associated with proving by searching for



counter-examples:

G417: Or would it be wiser to look for a sequence,
up until we can find something that
contradicts it, but well, that might take
forever

Use of and attitude towards empirical induction
G generalized based on a few examples:

G23: the sum of each ---

G24: is 180 degrees, so for every 2 sides we have a
triangle [wrote "8 sides; 4 triangles")

G35: n divided by 2 times 180

He generalized in similar ways in lines G75-76, G419-
420, G486, G491-494, and G627. G was aware that these
generalizations were not proven:

G706: ... for instance, ... you give us these
numbers. ... Now ... assume our formula
works for this particular sequence, but from
24 on there's a continuing sequence ... but
they ccmpletely ... [differ] from our
formula. We checked for this case here, then
we've already set up our [formulae]. We've

assumed that what we've written down is proof
enough, but that's not proof.

When discussing the possibility of proving that his
formula for the B sequence produced the same sequence as
H's formula, G was determined to prove that the formulae
themselves were correct, rather than just proving them
equivalent. He stated that even if the two were proven

equal, "that wasn't proof enough" (G716). There are two
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possible explanations for this assertion. G might not have
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distinguished the proof of an implication from the proof of
a conjunction or G might have thought that the terms he had
seen of the B sequence were sufficient to define it, hence
his expectation that he could prove his formula:

R550: Could you prove this? [that G and H's
formulae define the same sequence]

G711: Not for an infinite amount of numbers. No,
unless you can tie it to the fact that it is a
continuing sequence such as the natural
numbers,

H735: What are you saying? that after this it is
not part of the sequence anymore?, say you put
any number here?

H736: Say I put 27 after this, say B 25 is 27

G713: yeah something that,

H737: Yeah, ok, I get what you mean, ok, now I
understand what your problem, yeah

R553: well, could you prove that the sequence
determined by your formula is the same as the
sequence determined by his formula

G714: Yeah, but you have to prove one in order to
show that the other is also true.

G715: Just because we tie ours together we might
not come up with the same conclusion that's
not necessarily the right conclusion.

G716: So even though we tried to tie it together,
that wasn't proof enough. I don't think that
was proof. Proving that mine was indeed true
for this sequence, which if we check each and
every single one then I could say it's proof
enough.
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Analysis of E's Behavior and Understandings

Summary of E's Concept of MI

E had studied MI previously and she characterized Ml
in three ways. Her first characterization was procedural,
and came as a continuation of G's description of the
procedure:

G109: well I've touched up on it, Prove your basic
stuff, prove it for
E112: For the first one
G110: yeah for the first one
E113: For the n equal three
E115: And the second one you assume its true for
probably K and use this assumption to prove
it's true for n equal [K + 1]
Her second characterization involved a model:
E225: It's very simply, if you have a very very
long line of people and the last one kicks
anybody then the next one wants to kick one
before and again and again, you know
This model is reminiscent of the usual domino model,
and may be something she remembered from explanations
offered her when she first learned about MI. That she
remembered it argues for it having some significance in her
understanding of MI, although this is not apparent in her
other comments.

Soon after using her model to describe MI, E gave a
different explanation:

E226: Because probably induction, we have to start

from the middle. Every time we start with one

line, with the first case and after that we
start from the middle.
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While this is not perfectly clear, one aspect is: E was
describing MI as having two stages, one at the start and
one in the middle. 1In this respect this explanation
differs from her model. The model describes one
continuous, cascading, process beginning with the basis and
proceeding from there through all the elements of the set.
This is quite different from a process in which "we start

with the first case and after that we start from the
middle”. In this case the connection between the basis and
the rest of the set is not so clear. E may have been
basing her characterization not on the underlying process
of MI but rather on the procedure of constructing a proof
by M1, as described in her exchange with G (G109-El117
above). These two ideas may have been two unconnected
parts of her understanding of MI. On the other hand she
may not have distinguished this procedure from the
recursive process at all.

E had no difficulty accepting MI as a legitimate
method of proof. After having produced a proof of the
angle sum formula she was asked what she had shown and
replied: "We proved that our rule, that our formula, is
good for all n greater or equal to 3" (E159). She may only
have been offering the truism “When you have made a proof
you have proved” but her disagreement with G when he
refused to accept MI as a method of proof (G210-E230)

argues otherwise.
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While E accepted MI as a method of proof, she was not

entirely happy with it. She seems t> have felt that it is

complicated:
E110: ... it's too long, it's terrible
E304: But it is, it's too long! ... I started to

dc it. You have so many indexes here.
E had no trouble recognizing appropriate contexts
in which to use MI. She identified MI as appropriate on
several occasions. First when asked how to formulate an
argument for the sum of the angles of a polygon being
(n-2)mr (E110). Second, when she identified the argument
setting an upper bound on the number of regions created by
n lines (E219) as being inductive in nature. Third, in
discussing how to show that two sequences are identical
(E273). 1In each of these three cases she recognized that
MI is a suitable method of proof for the situation. 1In a
fourth situation she recognized a context in which MI is
inappropriate. The statement under discussion was:
“n(n+1)+11 is always prime" which had been shown false by
counter-example.
G340: Ok I can see the contradiction but how would
you prove it false through induction?
E333: you can never prove it by induction.

She recognized that induction cannot be used to

show that a statement is false, only that one is true.
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E's Understandings of Concepts Related to MI
Infinity

While it is hardly conclusive, E's model of MI as: "a
very very long line of people" (E225) may indicate some
confusion on her part. She might believe that a proof by
MI demonstrates the truth of a statement only over a large

set, rather than an infinite set.

Use of specific versus general methods

In working on problems E considered both specific
cases and general rules applying to the problem. 1In
working on the problem of determining a formula for the
angle sum of a polygon she considered first the case of a
triangle (El4). Later, when working of the problem of
proving that 2" is the upper bound of the number of regions
produced by n lines, she began:

E166: If you have one line you have two parts, if
you have 2 lines you have 4 parts, ya?

In both cases she was considering specific cases
for which the statement in question is easily tested. When
she first examined the two recursively defined sequences, A
and C in item 8, however, she began by trying to understand
how the rules defining the sequences work in general. She
did this before determining any specific values in the
sequence, even though she was asked:

S145: Have you any idea what the two sequences are?

E235: From the previous element of this sequence we
take the second coordinate and put it in the
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first place, and the second place is obtained
by summing both of the coordinates

Here, rather that determining what the sequence is, she

tried to see how it is generated.

Treatment of counter-examples

E was certain that a counter-example was sufficient to
disprove a statement:

S$20: You have not n minus 3 you have n minus ...

G100: 2

E99: OK, something, something is wrong
In this case sh2 had deduced n-3 and while she
acknowledged that her deduction was incorrect she continued
to wender why until it was explained:

E105: Why, I took this 3? I don't know, I have to

check 1 2 3

§29: You just subtracted, but you have to add a Pi
E106: oh ok

Use of and attitude towards empirical induction

Although she didn't accept small samplings as
sufficient to prove the truth of a statement E did use them
to generate statements which she then tried to prove. This
indicates both some trust in small samplings reflecting
general laws, and a belief that general rules predominate
in mathematics. She used small samplings in this way
twice. First she used a table of values as evidence of a
constant increase in the angle sum of a polygon as the

number of sides increases:



E135: If we make the figure bigger then we, look at
this, we have one Pi more

S§52: you are showing the table

E137: Ya

Later she drew a conclusion from the first five terms

of a sequence: "we get the same sequence" (E251)

112
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Analysis of B's Behavior and Understandings

Description of B's Understanding of MI

As It Developed in the Course of the Study

B began the study with no previous knowledge of MI,
and no knowledge of methods of verification other than
empirical tests (B16), which she recognized as limited (B9-
14). She had no problem discovering the recursive rule for
the Fibonacci sequence (B18, B27).

When she was asked to justify her assertion that Fy,
is always even she gave an argument making reference to
previous cases:

B30: --- because ... , when you add two odd numbers
together you make an even number ... the first
two numbers are odd and so when they add up to
the one that's a multiple of three then they
become even

She was not very sure of this argument (B31). She did
prefer it to completely empirical arguments (B42), possibly
because it was related to other knowledge in which she had
faith (B43). Later she said of it: "I'll say that until
I'm proved wrong" (B57) but she thought it was likely she
would be proved wrong (B58).

Her insecurity about the truth of this statement might
have been increased by the empirical nature of the
underlying assumption, that the sum of two odd numbers is
even (B59). She later constructed a more complete

induction step, accounting for the odd parity of the two

intervening Fibonacci numbers:
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B65: Because, ... if each Fibonacci number is the
first one plus the second one equals the third
one, ---... it starts out, ... you would be
adding two odd numbers together and get an
even number, ... then the next one then is
odd, so you'd add that to the even and then
you'd come out to another odd, but then I
don't necessarily know that the, that the next
number after an even number would be odd so

R66b: can you think of any reason why the next one
after an even number should be odd?

B66: --- because the one before the even number was
odd.

R67b: How does that make the one after the even
number odd?

B67: Because if you add an even number to an odd
number then it comes out as odd.

The only problem B had with this proof is that she could
not justify her statement in B67. It was just a verbal
understanding, something she had been taught (B68). This
undermined her confidence in the proof as a whole.

In stage two she was shown a formal proof by MI that
the number of regions produced by m lines in the plane is
less than or equal to 2". She accepted this proof, but her
acceptance of the formal aspect of it may have been due to
a lack of understanding of its logical structure (see the
discussion of B's behavior regarding proof, below). She
does seem to have understood the situation though, and to

have accepted the argument on an informal level.

B204: ... but it works with what it said up here.
B205: Or did you say it? how it doubles each piece?
B206: ... yeah because it's the number of pieces

produced it at most 2 times .
B207: the cuts

This is an informal description of the induction step of

the argument, which seems to have established the truth of

BRI 3t A Dt Y Je
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the statement for B.

B accepted A's proof that the diagonals formula worked
for D; as a general proof (B336), although she noted that
it depended on the assumption that the relation D, = D, +
n-2 worked in general (B341) and pointed out that it
required proof (B344-345). This serves as an example of
her somewhat uneven knowledge of the requirements of a
proof. She expressed a desire to generalize A's proof
(B347) and when this was done she was concerned about its
premises (B390). She didn't seem to have any problem with
assuming the consequent in a proof. She was asked:

R620: During the course of doing this you used this
formula that you're trying to prove to figure
out what D N minus 1 is.
R622: Is this a problem?
B397: Is it? Because if it weren't true then would
it have worked out?
She made a similar comment later (B424). She also seems to
have seen the variable used in the induction step as being
general in nature (B430, B434). She did make the
interesting comment:
B437: ... But then that's the same thing. 1If we
. worked it out for a triangle --- the
formula works for a triangle it works for a
hexagon and it works for something that has 3
more sides
She was extending the idea of the induction step to one
where the proof is of P, => Py3;. This would suggest that

the idea of an induction step had been generalized to some

degree.
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Summary of B's understanding of MI
B had never seen MI before the study, and does not
seem to have abstracted much from the proofs she saw. She
did make use of informal proofs by MI on several occasions.
Although she was not very confident of these proofs, she

preferred them to empirical arguments.

B's Understanding of_ Concepts Related to MI

Use of specific versus general methods
B used specific cases and tried to formulate general
rules in appropriate contexts. When faced with the task of
proving the formula for the number of diagonals of a
polygon she began by checking the examples she had been
given to make sure they worked (B256). When A noticed the
pattern D, = D, + n-2 for small n, B began attempting to
produce a general statement of this relation:
B270: wait, the diagonals are equal to the sides
minus 1
B284: ... the diagonal equals the side minus 2
plus --- the diagonal
Later the investigator provided them with two
statements in symbolic form: D; = D, + 3 and Dy = Ds + 4.
Again B saw the necessity of producing a general form:
B347: OK, so how can we reduce, ... this to ...
substitute Ns and little letters for
everything in this? ... how can we reduce
this to a formula instead of something with

numbers? If we can reduce this 10 a formula
and then still prove it with that then,
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B's continuing attempts to generalize the relation indicate
that she was aware of the need to do so. In her last
comment in B347, unfortunately cut off in conversation, she
began to describe the use she saw for the general form: as

a part of a proof.

Expectation of order in mathematics
B expected to find order and patterns in mathematics:
B45: --- I have a really difficult time reasoning
out mathematics. --- but they do see~ to
develop patterns
She saw patterns in many of the situations she was
exposed to. In most cases the patterns found were put
there as part of the study. For example, she found
patterns in the Fibonacci numbers (B18, B21), in the values
of n? + n + 41 (B12), and in the values of F, for p prime
(B35, B38, B40). She also found patterns which were not
intended, and which were not there. When she checked Fqq
her first reaction was to claim that it produced the same
thing as n? + n + 41 had for n = 40:
R49b: Ok, have a look at this one again. What
happens if you check the 19th prime number?
B49: There we go.
R50b: There we go what?
B50: It's the same as this formula.
R51b: Is it?

B51: It's the same number.
R52b: I don't think so.

B52: --- No it's not.
R53b: You're determined to find some patterns here
somewhere.

B53: I am yeah.
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This easy acceptance of patterns might indicate that
no great need of proof was felt by B. Her attitude towards
counter-examples and empirical induction do indicate that
she considered a pattern insufficient to guarantee a
statement, but that she would accept a statement until it

was proved wrong.

Treatment of counter-examples

B rejected the false statements in stage one on the
basis of counter-examples. Concerning the statement that
F, is prime when p is prime she commented:

B55: --- well, I'd love to find another pattern
here. [laughter] I can't ... say anything
about it I suppose. Or is this an exception,
or presumably if there is one exception there
will be others.

She made a distinction between a single exception and a
number of exceptions, perhaps meaning that a single

exception could simply be excluded from a genceral statement

while a number of exceptions would require its rejection.

Use of and attitude towards empirical induction

B's expectation of patterns may have been related to
her use of empirical induction to produce generalizations.
She used empirical induction to conclude that nZ + n + 41
always produces prime numbers (B9, B13-16), that Fi, is
always even (B28), that F, is prime if p is prime (B40),

and that the number of diagonals D, of a polygon is D,4 +
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n-2 (B271). Sshe was aware that empirical induction does
not produce certainty. She stated that a demonstration
that a statement is true for n=1,...,100 would not convince
her:
B80: No, because again that's just plugging in
numbers. I'd have to come to some sort of
understanding. I have no idea how, why when
you plug the numbers in it, it works out to be
whatever it works out to be. ...
She also commented (B344, B345) that the relation D, = D,4
+ n-2 had not been proven, although she had accepted it
earlier (B271).

Her experiences in stage one seem to have been
partially responsible for her distrust of empirically
arrived at conclusions in stage two, but this carried over
to statements which had been proven deductively. When, in
stage two, she was shown a formal version of her proof that
Fz, is even she stated that there might still be a counter-
example (B457, B458), because she remembered the statement
as one of those disproven in stage one (B460).

B did distinguish between the level of confidence she
had in an empirical demonstration versus one with an
underlying reason. As mentioned above she felt more
confident of the statement concerning F;, than of the
others she saw in stage one (B42). She stated her reasons
for this preference as follows:

B60: It is because ... I could see the pattern
outside of just the denotation whereas with

this one I was looking, here I couldn't figure
out why, ... when N is a multiple of 3 1



B63:

could see the pattern ... in the actual
numbers instead of just looking at the charts
and, do you understand?

I would say you ... have to actually ... be
able to ... see. With these ones it's
basically a matter of plugging in numbers ...
and seeing what you come out with, and looking
at those ... numbers but, ... I never actually
figured out why it was doing that. ... That's
the way it worked, whereas with this one it
has another, ... [is] backed up by another
rule? ... you actually have to understand why,
... it is doing that, --- ... for example the
N 2 plus N plus 41, ... I didn't know why it
was doing that. ... the numbers seemed to be
working out to prime numbers. They just were
doing that. I didn't know why. Whereas this
one, at least I think I know why, the
multiples of three work out to be even because
..., when you add the Fibonacci numbers the
other two are odd and then so it would come
out to be even.

B also recognized in one case that her empirical

evidence

B68:

R69b:

B69:

could be turned into a proof by cases:

... I haven't tested out every single odd
number adding it to every other odd number,

.. =—-- But then I gquess you'd only ... have
to do the first 1 through 9, because that's
what they're all going to end up with anyway.

Why do you just have to do the first 1
through 92
Because anything after that will also end with
1 through 9

Use of variables

120

B at one point indicated that she felt that a variable

n could be considered a general number:

B434:

but if we've taken it into a general
statement using N instead of numbers, and it
works, then isn't that a general statement
about all polygons?
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Understanding of proof

B's understandinc of proof in general was unstable.
While she understood certain aspects of the requirements of
a proof, she was unaware of others. Most importantly in
the context of MI, she seemed unaware of the fallacy of
assuming the consequent. She did not have the problem some
students encounter with MI, that of seeing the assumption
of P, in the induction step as an assumption of the
statement to be proven, because she did not see any problem
with assuming the statement to begin with, at least in
formal contexts where algebraic complexity hid the
structure of the proof.

Most of the examples below occurred in the context of
A and B's attempt to understand the proof given that the
number of regions P, produced by n lines in the plane is
less than or equal to 2". The proof included this
paragraph:

Each time a new cut is made by a new line the new

line, at most, cuts every piece into two pieces,

doubling the number of pieces. This means P, <

2P,. If P, < 2" then P4 s 2P, < 2(2") = 2
It was anticipated that the assumption "If P, < 27"
would give rise to an objection on the grounds that this
was exactly the statement to be proven. However, the major
difficulty for B lay in the inequality P4 < 2P, s 2(2") =
21, After careful consideration she came to the

conclusion that the deduction of P,4 < 2™ from the



122
inequality was justified, at least if the intermediate
inequalities were correct:

B153: Yeah, well that makes sense
B154: if all of these things are true.

B185: ... It works logically, ... if you agree
with all of these statements then it makes
sense.

B190: This makes sense, but it's just that you have
to agree with every step along the way.

She examined each step (B159, B194-201) and so

concluded that the statement was correct. She had no
problem using P, € 2" within the inequality. This would
indicate either that she understood that P, in this case
was not expressing a general case but rather an arbitrary
one, or that she did not see that what she was assuming was
in fact the statement she was trying to prove. The
generally literal approach B took to symbolism makes it
unlikely that she took P, to have two different meanings
within the same pronf, leaving the most likely conclusion
that she did not realize that she had assumed her
conclusion, or saw no problem in this.

She later gave two possible reasons for accepting the
statement: that it had not be disproven, and that it made
sense at each step:

B236: So then is it true because we can't disprove
5237:152117—.jt_ It makes sense to me, like this is

the proof is estab[lished]
B238: It makes sense to me in each step
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Her comment in B236 seems to be related to her criteria
for judging an empirical proof. As has been noted above
she ascribed tentative validity to any statement which
displayed a pattern and which had not been contradicted.
Here she used a similar criterion for a deductive proof.
lLater A produced a demonstration that 2(2™1) = 2" which
ended with the statement 2" = 2", B commented:
B245: ... I like that ... sort of proof.
This is perhaps the form of deductive proof with which B
was most familiar, and so she might treat it with more
confidence than an inductive proof, which in turn she might
treat with more confidence than an empirical proof. When A
produced the equality 10 = 10 in the course of proving the
diagonals formula for Ds; based on an assumption that it
works for D,, B was quick to accept it in spite of A's
uncertainty:
A797: ... So 2 times 2 plus 3 is equal to 10 so 2
times 5 is equal to 10. So I don't know what
we've proved, but we have something that
seems. This works. Ok. So I don't know.
B336: So, well we've shown it.
In fact B seems to have meant that A's proof proved the
formula for any m not just 5. The convincing form of the
proof may have led her to assume its generality without any
further indications.

B did see one problem in A's proof. She was aware

that the proof relied on an assumption that Ds = D, + 3,

which they knew for that specific case, but not in general.
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She commented:

B341: So we've proved that ... in relation to one
another they're true, but in relation to the
truth

B344: Because the only the way we proved this [D, =
D4 + n-2]

B345: Was to look at the patterns in this. [The
examples they had])

She later insisted on seeing a proof of D, = D,q4 + n-
2 (B408). After they had been guided through the general
formulation of the proof she made a comment which provides
more evidence that she was not aware of the fallacy of
assuming the consequent, at least in this case:

B424: ... assuming this was right [D, = D,4 +
n-2), and assuming this was right [the
formula), because if it hadn't been right then
it wouldn't have worked out or something like
that, we substitute this for the D N then
worked it all out.

Any proof which assumes its conclusion can be
made to "work out“. That this one did so in a way which is
logically correct is something with which more
mathematically sophisticated students encounter
difficulties, but B avoided the problem by being unaware of

it.
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Analysis of A's Behavior and Understandings

Description of A's Understanding of MI

As it Developed in the Course of the Study

A began the study with no prior experience with MI,
and limited algebra skills which hampered her ability to
formalize generalizations. She could use the concept of
recursion, however, as evidenced by her creation of a
recursive definition of the Fibonacci numbers. She could
also use recursion to justify statements, such as her
assertion that there was no upper bound to the number of
Fibonacci numbers:

R45: Are Fibonacci numbers unlimited?

A46: Yes, because then you keep multiplying [she

means adding] to the right. You can always
have numbers to multiply and you get it ...

Here the recursive definition of the Fibonacci numbers
provides the equivalent of induction step in a proof by MI.

In session two of stage one it seems that her idea of
proof as an algebraic manipulation culminating in an
identity prevented her from looking for recursive
justifications when explicitly asked for a proof of F; + F,
+ ... + Fo =Fpo - 1 (A69-92). She did observe that she
could recursively apply previous steps to test the
statement for specific values (A102). At this point she
was guided through the process of proving the statement for

the case of n=36 from an assumption of it for the case of

n=35,
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In session three she saw the same statement and again
used previous results recursively to derive new ones (Al26-
133) . In her attempt to prove that 2" is an upper bound on
the number of regions produced by m lines in the plane she
derived an incorrect induction step, involving adding 2
regions with each line (A168), which she recognized could
be repeated recursively forever (A169).
Al68: each time that you add another line you are
bringing it up sort of x number of cuts
Al69: but then it it doesn't change its nothing
weird happens each time you add a line there's
only so many more pieces you can add its it
doesn't seem that anything unexpected is going
to happen when you get to 50 slices
When it was determined that a new line can at most
double the number of pieces A asserted that the number of
pieces will always be less than 2" (Al178). In this way the
statement was proven for her, indicating an informal
acceptance of MI as a method of proof:
Al84: its the same sort of it's the same
relationship over and over. It doesn't matter
if it's two slices or fifteen slices when you
look at it. When you look at sort of the
pattern of what goes on when you cut ...
After she was shown that her induction step was in error
she then doubted the truth of the statement (A194).
She was then reminded that the number of regions at
most doubles, and was shown the first five of a chain of
implications. She recognized this as an unending process

(A221). She was shown a similar chain of implications for

the statement Fq + F, + ... + F, = F,, - 1, and followed
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its development (A249-250). When she was shown the
induction step in general form she commented:

A286: That the sum of the Fibonacci numbers to F K
plus 1, we could just as easily call it F K

which seems to indicate some confusion as to the arbitrary
rather than general nature of k in the induction step. She
also associated the way the proof had worked with the
Fibonacci numbers rather than seeing it as a general
principle which could be applied in various circumstances
(A304).

When prompted she described a chain of implications
beginning at F;, and continuing indefinitely:

A309: Yeah, and then we could say that we know it
for the 34th, because we know it for the 33rd,
we know it for the 34th, and if we know it for
the 34th, then we know it for the 35th, and if
we know it for the 35th, then we know it for
the 36th, and so on, and so on, and so on, and
so on, and so on.

This idea of MI seems to have been clear to her. She
also asserted that such a chain proved the statement for
all Fibonacci numbers (A310) indicating a belief in
something equivalent to the w-rule (see page 16).
Immediately afterward she expressed doubt in her assertion
that the chain would continue, possibly due to uncertainty
about the generality of the induction step (A311). She did
feel that: "It doesn't seem logically that it should [fail]

though" (A314) and after a reconsideration of the induction

step (A316-318) she became more confident.
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0f the chain argument A said:" to me ... at a certain
point it just comes down to trust. " (A327). The basis
for her belief that the induction step is general was this
trust:

A329: we've gone through them all, they follow this
pattern, OK but you trust that they will just
continue to follow this pattern, that I mean,
that somehow randomness or some crazy fluke of
nature won't happen so that, for some reason,
like Fibonacci number 17 million decides that
it's going to do something completely wonkv
because it just stops working for whatever
reason.

She explicitly stated that if the induction step
worked for all Fibonacci numbers: "then this is true"
(A333). It would seem that the induction step itself,
rather that the recursive application of it, was A's main
problem. She explored for herself the circumstances under
which the statement could fail to be true:

A337: but then if it does stop working then it's
not a Fibonacci number, and if it's not a
Fibonacci number then it doesn't have to work
along according to that pattern.

A recognized that the proof of Fy + F, + ... + F,=
Fu, - 1 is similar to the proof shown her that 2" is an
upper bound to the number of regions in the plane produced
by n lines (A341-345). She described both in terms of a
chain of implications:

R359: Then do you know it for the seventh Fibonacci
number?

A359: Yes and the eighth, yes, yes, and that's how
we come to this belief in it going on forever.

A360: And the same thing with the slices of pie.

You know it for the first, so then you know it
for the second, and you know it, therefore you
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know it for the third, therefore you know it
for the fourth.

She continued to have doubts however, perhaps because of
knowledge that empirical induction is not certain. Her
trust in the induction step may have been undermined by

this knowledge:

A366: ... I find it incredible to say that it
would work, for all of them because you go
from one to the other and to the other.
Somehow that doesn't prove it to me.
In stage two A recognized the statement that 2" is
an upper bound to the number of regions in the plane
produced by n lines but made no connection between the
formal proof of it which was given and the chain of
implications used to show it in stage one (A518). She
again suffered the same confusion between 2" and 2n (A525)
and may have been partially remembering what she had done
before. 1In following the proof given A used the inductive
hypothesis without comment (A549-554) and may have assumed
that it was a premise of the proof:
A549: So then if your number of pieces ... then is
maximumly smaller than or equal to this 2 to
the N we said up here.
The induction hypothesis was presented in exactly the same
form as the statement to be proven and it was intended that
A and B would object to its use in the proof on the grounds
that it was exactly what they were trying to prove.

A was uncertain about how to go about verifying the

proof but eventually concluded that it was correct (A624,
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A638) after contempla oun of some algebraic manipulations
(A619). She did not make the connection with recursion or
a chain of implications. She commented only that the
statement was proven:
A653: Because it seems to make, to be a logical
proof.
A654: It seems to describe the situation. When we
play around with it things seem to fit into
each other. When we tried it for a few sample
numbers it worked. --- I don't know why, why.
It may be that it was easier for A to use reasoning
related to MI that it was for her to identify it when shown
formally.

When considering the problem of proving the formula
for the number of diagonals of a polygon she exhibited
considerably more use of recursion than in her
consideration of the proof just discussed. A noted that a
simple starting point would be helpful (A707) and on
considering the examples they had been provided with
discovered a recursive relationship between them (A711)
This recursive relationship later served as the induction
step for the proof. She checked the relation empirically,
and accepted it based on her empirical test (A715-716)
Once this was done she felt the need to formalize it
(A725), but was unable to do so without help. Her comment:

A745: Like we can predict right now, how many side
we can, without using this formula you and I

can say, how many sides the next one is going
to have, right?
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indicates that she recognized that the relation she had
found could be applied as an induction step.

Once she was given a formal version of her relation
for the case of n=5 she was able to prove the diagonal
formula for D; based on its assumption for D, (A766-796).
She was uncertain as to whether this was sufficient to
prove the statement in general (A800). She did state that
the truth of the induction step would imply the truth of
the diagonals formula:

A803: ...I think that if we decide that this [the
recursive relation] is true as a statement
about polygons ...

A804: then we've proved with this, that this [the
formula) is true.

When she was given a general form of her relation
she was able to use it in a way analogous to her use of a
specific form. She had no objection to the assumption of
the truth of the diagonals formula for a previous case
(A837) but was surprised when her work culminated in the
proof of the induction step (A864). She was, however, very
confident that her proof proved the statement (AB867):

AB67: And we're back to what we, so we got, that's
a proof. This constitutes a proof. This is a
proof.

She did comment that the assumption of the induction
hypothesis bothered her, both in her proof and in the
previous proof:

A881: ... This comes down to like ... what I

think is my bone about the other one we did.

I think ultima[tely] some way you're assuming
that something is true aren't you? To do this?
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She did seem to be comfortable with the chain idea,
however, commenting:
A890: Yeah if it works for quadrilaterals we can
work from there using this like, using our
statements up, can we not?
She recognized the infinite nature of this chain:
R639: OK --- could you keep doing that?
B407: Forever and ever? ---
A896: I think so, yeah
She repeated the chain idea again later (A928-929) but she
was still uncertain that the chain would continue on
forever (A934). This may have been related, as noted
above, to an association to empirical induction (A935), or
uncertainty about infinite processes in general (A975).
She recognized the proof that F;, is even as being the
same as the sort of proof they had done for the diagonals
formula (A969), but expressed the same uncertainty about

the infinite continuation of the chain of implications:

A975: NO! but it could go wonky. Who knows what's
going to happen in the infinite universe?

Summary of A's Understanding of MI
A had not encountered MI before the study. She

accepted informal proofs using MI, and the justification of
these proofs by a chain of implications, in both stages of
the study. She did have difficulty accepting that such a
chain would continue indefinitely. This may have been

related to an association of such chains with empirical
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induction, which she knew to be uncertain (see below). She
did feel, however, that “"logically" (A314) it should
continue. She associated acceptance of such informal
arguments with "trust" in the generality of the induction
step (A329).

A recognized the similar nature of different arguments
based on MI on several occasions. In stage one she saw
that the two proofs, of the Fibonacci relation and of the
upper bound in partitioning the plane, were of the same
type (A360). In stage two she recognized that the
technique used to prove that F3, is even was the same as
the technique used in prcving the diagonals formula (A969).
This seems to indicate that she had abstracted some

elements of MI from the different situations.

A's Understandings of Other Concepts Related to MI

Infinity
A's ideas concerning infinity are not easily
categorized. On one hand she was aware that the Fibonacci
numbers have no upper bound (R44-46) and that chains of
implications can also go on forever (A896). On the other
hand infinity seems to be a place where rules break down.
For example an infinite number of lines cutting the plane:
Al64: It'd be a gquess. Because it works for the
first four and there seem to be a paitern
involved I gquess that I expect that the
pattern will continue, but then like when I

think about like when you do something like
infinite cuts.
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A seemed to use physical analogues for infinity,
which may have affected the way she thought about infinite
processes:
A935: ... 1If the highway goes straight for as far
as the eye can see does that mean that [it's]
forever straight? I don't know. ---
On the whole nothing she said clearly indicated a

classification for her idea of infinity. It was perhaps

very dependent of the context in which she is working.

Use of specific versus general methods
A was more likely to use specific examples that
general forms in solving problems. She used general forms
only when she first tried to state a recursive rule for the
B sequence and when she first began trying to prove the
diagonals formula:
A408: ... the sum of the B sequence, up to a even
number, ... gives you a, the following
number. If you work up to a, the sum of up to

an odd number then it gives you the following
number, I think plus 1

A704: ... 2 DN is equal to N, N minus 3. dces
that work? if you're trying to multiply up can
you do that? OK. but --- .« mm— - - what

happens if you divide D N by N?
The difficulties she encountered in A704 might indicate
the reason for her disinclination to reason using general
forms. The notation usually used for such reasoning is
algebraic, and manipulation of algebraic expressions was

not something A felt very confident about.



135
She used specific examples on many occasions: to

finish her search for a B sequence formula (A411-412); when
trying to see why 2(2") = 2™ was true (A601-612); when
she first found the pattern D, = D,q + n-2 in the
diagonals problem (A710); and when she verified the
diagonals formula for Ds (A766-776). Her extensive use of
specific examples was probably due to her limited ability

in algebra, which hampered her attempts to work generally.

Expectation of order in mathematics

For A mathematics is orderly and patterned, and so she
is inclined to accept statements based simply on their
expression of some pattern. She accepted the statements
offered in stage one, session one because:

A41: The whole time, because its math I'm going to
say yes, all the time.

but she wasn't absolutely sure:

R41: Ok, so you're sure that I could never come up

with an example were it wouldn't.
A42: No, I'm not.
In stage one, session two A was tempted to relate

the properties of the Fibonacci numbers she had seen before
(those shown her in session one) to the statement Fq + F, +
oo + F,=Fyo - 1:

A69: ... I was thinking I could try and use one of

these formulas --- ?2?, to see if I could,
prove [do) something with them, ...
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She seems to have had a preference for believing that
the statement is true, and was surprised at the
investigator's suggestion that it might not be:
A71: or a non proof? ok --- aaagh! Ok, just tell

me something, what I'm asking for in fact is a

clue, can I have a clue, should I be using

these, problems [from session one] ?

The final statement offered in session one: "The
sum of any set of consecutive Fibonacci numbers is a
Fibonacci number" she accepted immediately, only to quickly
find a counter-example. Her acceptance was based on the
way the statement fit with the way Fibonacci numbers work,
the way the patterns seemed similar, rather that any
empirical or logical evidence.

In addition to expecting order A is also fairly good
at recognizing patterns. She quickly saw the recursive
rule for the Fibonacci numbers (Al), a recursive rule for
the B sequence (A413), and found the relaticn D, = D,, ;

n-2 when working on a proof for the diagonals formula in

stage two.

Problems with algebra

A's algebra skills were not very good. She was mnot
comfortable with equations (A75, A76, A83, A683) and
exponents (A596). Her understanding of variables seems to
have been largely based on the appearance of expressions.

For example she was not comfortable using the same n that
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had been used in previous formulae in her attempt to prove
the statement F; + F, + ... + F, = F,, - 1:

A53: ... I don't like using the same n, did you
choose n in particular?

One of the techniques she used in her attempted
proof was the manipulation of an algebraic formula, without
any gquiding principle:

A97: ... I think that my problem is that I'm
trying to, think about --- ways of
manipulating symbols, so that they mean
something, that that they show, that this side
of the equation is equal to this side of the
equation, ...

A69: ... So, is there some way you can do this?,
so I look back to my 2?22, and I, what is there
to manipulate in this formula?, that would
make it prove itself? ...

She repeated this phrase "Prove itself" on two other
occasions (A85, A655) and when she was asked what she meant
by it. She referred to proofs she had seen done in the
past:

A384: I was desperately trying to think back to my
calculus classes, and the proof she was
writing on the board, in which she would take
this and then build down from it, or build up
from it, and it would prove itself. ...

A385: ... in the course of this calculation, from
this flipping things around in the formula,
putting something here, or adding something,
... substituting another formula into it,
which is what we eventually did, [we used
another one?}, that the formula would prove
itself, but in fact, it's not proving itself.
It, You're proving it using other, we, working
it with something else, or with other elements
of it, ...
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This does not seem to be the description of an algebraic
process that would be given by someone who felt in control
of the process. A's manipulations were an attempt to mimic
the proofs she had seen, which consisted of a series of

equations culminating in an identity.

Treatment of counter—examples.and
Use of and attitude towards empirical induction

A only referred to counter-examples on a few occasions
(A69, A619, A715) but on these occasions she seemed aware
that a single counter-example would serve to disprove a
general statement. Her expectation of order inclined her
to not expect to find counter-examples, however, and she

never actually searched for one:

R69: ... there's no way I'm going to sit here all
afternoon, and crunch numbers, just so I can
find out whether its wrong --- especially as I

suspect that I'm not going to find one
She was also inclined to accept statements based on
empirical evidence. She did so in verifying that F, is
prime if p is prime (A24); in concluding that Fy + F, + ...
+ F, + 1 = Fp,p (A90); in concluding that 2(2") = 2mM™
(A612, A614); in verifying the proof of that the number of
regions produced by n line is < 2" (A654); and in verifying

the relation D, = D4 + n-2 (A715).
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In the case of the sum of F; + Fo + ... + Fy she was
uncertain of a result she had derived algebraically because
she had not verified it empirically:
A66: I don't know, I didn't test it
She eventually concluded that F; + F, + ... + F, + 1 =
Fn2 was true based on the examination of a few cases

(A90).

She did not consider empirical methods to be proofs

however:

A68: well so far, so good, but I don't know, I
don't think that that's the most successful
way to figure this out. If I was to just sit
here going, like I said before, it's not as if

I can, try every single Fibonacci number I can
possibly think of, ...

Use of variables

A's treatment of variables was unstable. 1In most
contexts she did not indicate that her understanding of the
variables was different from that intended by the
investigator, but on some occasions she may have been
thinking of a different role for the variables involved
that was expected. When she first saw the statement: “The
sum of the first m Fibonacci numbers is one less than the
second Fibonacci number after the ones added up." she said:

A51: I can't understand what you wrote --- the sum

of the first N Fibonacci numbers, so N being

we don't know how many numbers, we don't know
how many Fibonacci numbers we're dealing with.
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She may have been indicating that n was a general number,
or she may have meant that m was an unknown, and assumed
that the problem would be to find m. When she first saw a
semi-formal proof of the above statement she seems to have
taken the variable k to be totally general:

A286: That the sum of the Fibonacci numbers to F K
plus 1, we could just as easily call it F K

She is correct in saying this only if she believes k is
intended to be general; for only then could any other
symbol be substituted for it without affecting the
argument. Later, however, she does not see the argument as
general, as she suggests that there might exist numbers for
which the argument would not hold:
A311: ... I mean there obviously ... it could
just change for some reason, something could
just go wrong in the whole pattern in question
and it could just not work.
The role of k in the induction step is an unusual
one. While A seems not to have a standard understanding of
the role of k in the two examples above she did at one
point seem to grasp it. 1In the following she is discussing
the relationship between P, and P,,, in the partitioning
problem. Although her language is a bit uncertain she
seens to be describing P,4 as the number of pieces
obtained from an additional cut made to P, pieces:
A540: ... P N is the total number of pieces. ...
So the P N is the total cuts and you add
another one, ...
A543: one more cut, so that's plus 1. You're going

to get double the number of pieces, ...
A545: That's the number of pieces plus one more
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cut.

Understanding of proof

A began the clinical study with not much faith in her

ability to understand a proof:

A88: I don't see how anything could prove it. I've
never understood proofs in all my life. I
shouldn't give up ---Is there a way? Can I

write an actual formula that's going to prove
it?

A seems to have a basis philosophical problem with

mathematical proofs as well:

A674: Yeah. --- Well, I'm suspicious of anything
that reduces reality into mathematical
formulas, and then asks me whether it's true
or not. I just, I think that that's the
problem, I'm just suspicious of this this this
thing. --- That's not a problem with the
proof that's a problem with me, and my
suspicions.

Her idea of proof seems to be based on those she
has seen in the past which primarily took the form of
algebraic equations being manipulated in such a way that
eventually a blatant identity was produced (A384). She
attempted such a proof of: F; + F, + ... + F, = F,o -1

RA92: I'm thinking about how I can ... write this
down so that you get, an equation that gives
you Fq is equal to Fq, and I think that would
prove it -~~--- that's all that I'm doing
here, I'm saying 13 is equal to 13. That's
this one right. I can break this down, and
work it out so that, Fq equals Fq, that's
really what I have to do to prove it ---

When such an identity was produced in the proving of

the diagonals formula she was certain of the proof (A867)
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A seems also to have been aware of the fallacy
of assuming the consequent, and this made her wary of the
formal proofs by MI which she saw. 1In stage two she made a
comment concerning the proof of the diagonal formula which
indicates such an awareness:
A881: I don't know --- ... This comes down to like
..., what I think is my bone about the other
one we did [the proof of P,<2"]. I think
ultima(tely] some way you're assuming that
something is true aren't you? To do this?
Shortly afterward she accepted the proof, based
of the idea of a chain of implications. It seems that she
had trouble with a more formal phrasing which hides the
idea of a chain and explicitly makes an assumption of the
induction hypothesis. At the same time she could accept
the reasoning if she saw the chain in it:
A890: Yeah if it works for quadrilaterals we can

work from there using this like, using our
statements up, can we not?
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Section B

Comparisons of Students' Understandings,
Attitudes and Abilities

This section makes a comparison of the students in
terms of their abilities, attitudes and understandings of MI
and concepts related to MI. The discussion of MI includes
within it ideas such as recursion, acceptance of informal
and formal MI, and ability to construct arguments using
informal and formal MI, and the students' characterizations
of MI. The discussion of related concepts include
discussions of the equation of a proof for amy with a proof
for all, use of specific versus general problem solving
methods, understandings of the way the variable is used in
the induction step, and the students' understandings of and

abilities to produce specific proofs.

Mathematical Induction
Three of the students (E, G, and J) had studied MI
prior to their participation in the study. The other three

(A, B, and H) had not.

Recursion
All of the students studied had no trouble with
recursion, at least in the context of recursive definitions.

A, B, G, H, and J all accepted and worked with the recursive
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definition of the Fibonacci numbers. E and G accepted and
worked with the recursive definitions of the two sequences A
and € shown them in stage one. Finally, A, G, and H created
recursive derfinitions of the B sequence.

Every student except E was asked to define the
Fibonacci numbers by their defining rule. 1In the cases of
G, and J tley did so on the basis of the name alone, as they
had previous knowledge of them. H accepted the definition
given by J, noting that F, and F, must be defined
explicitly. H was the only one to make this observation. A
and B had not encountered the Fibonacci numbers before, and
derived the rule for themselves. The recurcive nature of
the definition did not seem to be a problem for any of the
students.

The B sequence is interesting in that it admits a
number of different defining rules. It was the expectation
of the investigators that the students would arrive either
at the rule 2B, + B, = B, or at the rule B, + By, = 2".

In fact the students discovered two other rules, both based
on treating even and odd cases separately. One of these was
the first rule discovered by all three students who
encountered the sequence. The rule is:

If n is odd: B,, = ZB, for 1 = 1 to n.

If n is even: By, = 2B; + 1 for 1 =1 ton

H first conjectured that the rule for the odd case was

true in general and then rejected it when he found it didn't
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work for even cases (H474). G and A, on the other hand,
restricted it to the odd case and then found the other rule
for the even case (G492, A413). H went on to find the rule
B, = 2 By - (-1)" (H476). A almost found the same rule,
noting that it was "doubling, sort of" (A414).

The four rules each have certain features of interest.
As noted before, the rules found by the students must treat
the even and odd cases differently, while those expected by
the investigators apply to both cases. H's rule (B, = 2B,4
- (-1)") and the rule B, + B,, = 2" are similar in that
they are based only on the term immediately preceding the
term being defined, and in that they employ another sequence
as part of the definition. The rule 2B, + By = B, is
similar to the Fibonacci sequence in that it is based on the
two terms preceding that being defined, and makes reference
to no outside sequence. The rule most popular with the
students is based on the sum of all the preceding terms, as
well as on the parity of the term in question. The
explanation for this variation in rules discovered is not
immediately obvious. The choice of rules which are based on
all previous terms is interesting, however, as it shows that
students are willing to accept such a recursion, which is
that employed in the strong induction described by Woodall
(1975, 64).
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Informal Mathematical Induction

Informal MI is distinguished here from formal MI by its
lack of a precise structure. While formal MI requires
nothing more than a single instance and a proof of the
induction step, informal MI often includes several instances
and working of the induction step for specific values. The
induction step may never be proven generally; instead a
general pattern is inferred from specific steps and extended
with "and so on" or some similar phrase.

Most of the students (A, B, E, and G) were exposed to
informal arguments based on MI. The two students in the
mathematically more experienced group, E and G, accepted
these arguments without difficulty.

The two students in the mathematically less experienced
group expressed reservations. For A informal MI was
associated with empirical induction, and her acceptance of
MI was limited by the knowledge that in the case of
empirical induction an infinite chain of occurrences can

break down:

A3ll: ... Sometﬁing could just go wrong in the
whole pattern in question and it could just
not work.

A did feel that MI was more reliable:

A314: It doesn't seem logically that it should
[break down] though ...

For B MI was also more reliable, but not much more

so than empirical induction. This might have been a result
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of the design of the study, which intended to make B
skeptical.
The remaining two students, J and H, were not exposed
to informal proofs by MI, although H's description of MI as
a chain of implications would seem to indicate that he

would accept an informal argument based on such a chain.

Formal Mathematical Induction

All of the students were exposed to formal proofs by
MI; that is, proofs which followed the pattern of MI as
laid out in text books. Three of the four students in the
mathematically more experienced group (J, H, and E)
accepted formal proofs by MI. J actually produced such a
proof herself, which H accepted immediately as correct. E
attempted to construct a proof in the textbook form for the
equivalence of the two sequences A and C, and agreed with
the one finally arrived at.

G also agreed with the proof of the equivalence of the
two sequences A and €, but in his other comments it is
plain that he does not agree with such formal proofs in
general. He said as much:

G220: I have a lot of problems being convinced by
induction.

As has been noted above these "problems" do not extend to
informal MI.

The two students in the mathematically less
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experienced group accepted formal proofs by MI, but seem
not to have understood them. 1In their discussions they
justified the use of the induction hypothesis within the
induction step by noting that they had been given it,
without noting that it was the statement they were meant to
be proving (A549). Their acceptance of this formal argument
may have been based more on the construction of an informal
argument justifying the statement than on the formal

arqument itself.

Ability to Construct Formal Proof Using MI.

Not every student was asked to produce a formal proof
using MI, but their abilities to do so became apparent
during the study. Of the four students in the
mathematically more experienced group E and J could produce
such proofs. J actually did so when proving the statement:
"For all n: Fy + F, + ... + F, =Fy, - 1". E made
considerable progress towards such a proof of the
equivalence of the two sequences A and € and her
descriptions of MI indicated an awareness of the basic
steps in constructing such a proof.

The other two students in the mathematically more
experienced group, G and H, had difficulty in constructing
such proofs, and were disinclined to do so. The reasons
for this, however, were different for each of them. H's

only experience with MI before stage two had been looking
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at J's proof in stage one. He lacked confidence, quite
understandably, in his ability to construct such a proof
independently. G, on the other hand, had constructed such
proofs in the past, but did not trust them. As a result he
too was disinclined to use formal proofs by MI. The one
occasion when they did attempt such a proof was their
attempt to prove the equivalence of the two definitions of
the B sequence they had discovered. The proof required is
quite complex, and the fact that they made some progress
seems to indicate that in a simpler situation they would
have been able to construct a correct formal proof using
MI.

The two mathematically less experienced students, A
and B, are probably not able to construct such a proof.
They did not recognize the essential parts of such a proof
when shown one, as H did. As well, they lack the algebra
skills needed in most cases for the construction of the

induction step.

Ability to Use MI Informallx as a Method of Proof

The students' relative abilities to use MI informally
differ considerably from their abilities to do so formally.
The students in the mathematically less experienced group,
A and B, used informal MI spontaneously in simple
situations, and followed arguments based on a chain of

implications.
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Of the students in the mathematically more experienced
group, G and E actually used informal MI to prove
statements. H described MI as a chain of implications,
which might indicate he could use MI in this way, although
he seems to have a marked preference for general problem
solving techniques, which would limit the likelihood of his
realizing such a chain could be used. J's ability in using
formal MI is such that, at least in algebraic situations,
she would be more likely to approach a proof formally than

informally.

Characterizations of MI

The students in the study used a variety of ways to
characterize MI. Among these were MI as a procedure, MI as
formal proof, MI as a chain of implications, MI as
analogous to a physical process (such as dominos falling),
and MI as empirical induction.

All of the students in the mathematically more
experienced group described MI in terms of the procedure
one follows in order to produce a proof by MI. J produced
a proof which followed the standard procedure exactly and
all of them gave descriptions such as this:

H542: ... for each you find one that works, and
then you say if B K works then, you should

prove that B K plus 1 works, then it works for
all B.
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For the three students who accepted MI as a formal
proof, "formal proof" was one of their characterizations of
MI. J justified her proof by saying: "Well, that's the
formal proof." (J154).

H was the only student who spontaneously used a chain
of implications to characterize MI, but A adopted this

characterization when it was suggested to her.

E was the only student to suggest a physical model:
E225: It's very simply, if you have a very very
long line of people and the last one kicks
anybody then the next one wants to kick omne
before and again and again, you know
That she characterized MI in this way does not
necessarily mean that this is the way E understands MI. It
is possible that she felt that this model would be useful
for bringing G to a certain understanding of MI, without
confusing the physical process with MI itself.
G and A seem to have had reservations about the
use of MI related to a characterization as similar to
empirical induction. For example G's comment:
G690: ... I think that, you haven't accounted for
every single one, unless you've taken every

one sequentially.

indicates this sort of characterization of MI.

The Transition From Proving For Any to Proving For All

The principle of mathematical induction provides
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justification of a transition from an infinite number of
cases to an assertion that a statement holds for all such
casee. That this transition is not justified by other
logical properties of the natural number system is
indicated by the inclusion of principles such as the
principle of mathematical induction, or the so-called
w-rule (see page 16), among its axioms. Acceptance of such
principles as logically warranted is not automatic. While
some of the students studied displayed an acceptance of
such a principle, others did not.

J, E and H seemed to be completely at ease with MI and
also the transition from an infinite number of cases to
all. Their acceptance of MI is the strongest evidence of
this. H's repeated statements that MI means that: "If it
works for any number, and it works for the number plus
that, then it works for all numbers" (H697) also indicates
a belief in such a principle.

G seems not to have accepted such a principle. When
he was asked about it, he expressed reservations:

R537: ... you can do it for any number. If I give
you a number you can do it, but does that show
that you can do it for all numbers?

G674: Not necessarily, I don't, see that's what [I]
have a problem seeing.

A and B also had trouble accepting this principle, but
it is difficult to say whether this relates to the

principle itself, of to their lack of confidence about

mathematics and infinite processes in general.



T NN g Rt e TS

153
Use of Specific Cases Versus Use of General Methods

The situations in which the students used general or
specific techniques can be described as testing,
investigating, and proving. Testing situations are those
in which a statement is checked in a specific case. As
such, any testing which was done, was done specifically.
Not all students were as inclined to test statements
however. While A, B, E, G and J all tested many of the
statements presented to them, H did so in fewer casec.

The contrast between H and the other students he
worked with is interesting. 1In stage one H and J were
presented with four statements and asked to determine if
they were true. They reacted identically to the first two,
accepting the first without testing and testing the second.
J also tested the third and fourth statements, while H
instead investigated them using general methods. In stage
2 H began investigating the truth of Statement A in a
general way as did G. It was G who first tried testing a
specific example (G407) and H followed his lead.

Thereafter they continued to work in similar ways, although
G worked more with specific cases in testing the rules they
discovered for generating the B sequence.

Investigating a problem can be done using either
specific cases or general forms. As noted above H tended
to use general forms for investigating problems, as did J.

The other students tended to work with specific cases. G
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did use general forms when investigating problems, but only
those which are exclusively algebraic in nature, such as
those involving Fibonacci numbers (G403) or the B sequence
(G618). In these cases he was working with H which may
also have affected his methods. While working with E he
rarely used general forms in his investigations.

Proving must necessarily be general, unless the proof
is of an empirical nature. All the students attempted to
use general forms when trying to prove statements. A and B
had difficulty in doing so due to their weak algebra
skills; however, B on several occasions noted the need for
a general form to be used in a proof (B270, B284, B347). On
the other hand, A worked through a proof an induction step
for a specific example (A766-776) and B accepted this as a
proof (B336).

In general A and B could be described as being the
most inclined to the use of specific cases, due to their
lack of algebra skills, and H the most inclined to general
forms, to the extent that he might attempt to prove
statements without ever checking to see that they were true

in a single case (H646).

Understandings of the Variable in the Induction Step

Several difficulties with the role of k in the
induction step were observed in the students studied. Some

students treated k as a general number, and rejected proofs
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by MI of the grounds that they assumed their consequent. On
the other hand, k was sometimes treated generally, but no
objection to the assumption of the consequent was raised.
In some cases students considered k to be arbitrary, both
in the induction step and in the proof as a whole, leading
to the possibility that a statement proven by MI might fail
to be true for some other arbitrary k. Finally some
students accepted the change of role of k, and so accepted
MI, possibly without being aware of the issue at all.

G, A, B, and H all made comments indicating a belief
that k is used as a general number within the induction
step. At several times G seems to have felt this way.

This lead him to wonder how this could be justified:
G211: ... I can't see why they use that hypothesis
within ... They assume something and they
they use it within their proof.
G221: ... just because you assume something, why
are you assuming it to be true in every case?

A noted that she had misgivings about the induction
hypothesis used in proving the diagonals formula in stage
two. Her comments are similar to those of G:

A88l: I don't know --- ... This comes down to like
..., what I think is my bone about the other
one we did [the proof of P,2"]. I think
ultima[tely] some way you're assuming that
something is true aren't you? To do this?
A had not objected to the use of the induction hypothesis
during her consideration of the proof of P,<2". 1In the

proof the induction step used the same variable n as did

the original statement to be proven. It was expected that
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an objection would be raised to this assumption of the
statement to be proven, but in fact neither A nor B
suggested it was a problem at the time. This may indicate
that they were not thinking of the logical structure of the
proof and so were unaware of the possible fallacy of
assuming the consequent. If this was the case then it
provides an example in which the variable in the induction
step is taken as being general, without resulting in any
difficulties at all. A's differing attitudes while
considering the proof and when she referred to it later may
be a result of further consideration as the study
progressed, or she may have felt misgivings earlier and
not expressed them.

In stage one there occurred a similar example in which
A did not object to the induction hypothesis even though
she seems to have taken the variable k to be totally
general. When she was shown a semi-formal proof of the
statement F, + F, + ... + F, = F, - 1, she indicated
that k was general:

A286: That the sum of the Fibonacci numbers to F K
plus 1, we could just as easily call it F K

The substitution of k for k + 1 can only be justified if k
is a general number. She did not object to the assumption
of P(k) in this case, perhaps because it was in the context
of the development of a chain of implications and so she

had seen specific examples of the induction step before
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being introduced to it's arbitrary form.
In a similar way B indicated at one point that she
felt that a variable n, used in the induction step, could

be considered a general number:

B430: That works in general. Then --- if this
works for N minus 1 and it works for N ---
then shouldn't it work for --- N minus 2 or N

plus 2 or whatever? If this always works? ---
While most of his comments indicate that H understood
MI in a way compatible to the logical structure described
above, on two occasions he seemed to be ascribing a general
role to the variable in the induction step. While
attempting to prove that his formula for the B sequence was
equivalent to G's, H made the following arqument:

H586: Am I right in saying, if this is equal OK?
for A K minus 1

H587: and K minus 1 here, is it the same as saying,
it's U here, and U here? [writiag u above k-1
in the upper expression on figure 3] because
it's the same, because these are the same ones
right?

H588: these are these are the same expressions

H589: Now here it's again the same expression [the
lower expression in figure 3]
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Figure 3: H's writings referred to in line H589,
involving the substitution of U for k-1
and k+l

F is indicating that k-1 be replaced with a general
variable u which, because it is general, can show the truth
of an equation involving k+l. 1In essence he is treating k
as a general number. He later asked a question indicating
that he felt that it was possible for the proof of P(k) =>
P(k+l) to imply the truth of P(m) for m < k:

H727: A question, let's say if you find, if you do

that, and you find, say 10 can you backtrack,

can you assume that all the ones lower than
that too are true?
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In stage two G seems to have concluded that k is
not meant to be general within the inductive step, but he
then gives it an arbitrary role in the final statement. In
other words he accepts that MI proves a statement for a
particular, unspecified, case, but does consider the
statement proven for any other case. This permits the
possibility that there might be a k for which the statement
does not hold, which was missed in the working of the
proof:

G687: Yeah, but let's assume that your K was chosen
outside of that.

A also saw k as arbitrary at times. For example in
the following, where she is discussing the relationship
between P, and P, in the partitioning problem. Although
her language is a bit uncertain she seems to be describing
P, a@s the number of pieces obtained from an additional
cut mac- to P, pieces suggesting that n is arbitrary, not
general:

A540: ... P N is the total number of pieces. ...
So the P N is the total cuts and you add
another one, ...

A543: one more cut, so that's plus 1. You're going
to get double the number of pieces, ...

A545: That's the number of pieces plus one more
cut.

Earlier she rejected an argument based on MI, and
suggests that there might exist numbers for which the
argument would not hold:

A311l: ... I mean there obviously ... it could

just change for some reason, something could
just go wrong in the whole pattern in question



160
and it could just not work.
The arbitrary role of k here results in a rejection of the
argument because of the possibility of k behaving
differently at some other point. As with G, the arbitrary
role for k causes a problem in seeing the proof as general.
Of the students studied G and A are the most

interesting with regard to their understandings of the
variable in the induction step. The changing role of k was
not a part of their understandings of MI. They both saw
the variable as being always general on some occasions,
while on others they saw it as being always arbitrary. A
also differed in her reactions to the problems introduced
by assigning a fixed role to k. At times she rejected MI,
while at other times she ignored the problems entirely.
One difficulty, the treatment of k as a general variable
within the induction step, was shared by B and H as well as
G and A. This difficulty was also noted by Ernest (1984,
181). E and J displayed no difficulties with the role of
the variable in the induction step, although this may have
been due to the limited opportunities they had to discuss

the structure of proofs by MI.

Understandings of, and Abilities to Produce, Proofs
While proof by MI is the specific focus of this thesis

the different methods of proof used by the students provide

interesting insights into their attitudes towards proofs in



general.

Proof of the diagonals formula

Four students were faced with the task of proving the
formula D, = n(n-3)/2 for the number of diagonals of a n
sided polygon. H and G worked together, as did A and B.

The proof of H and G was entirely deductive. Both
examined an octagon. Working separately they each verified
the formula except for a particular feature. H could not
see why (n-3) appeared in the numerator; he felt it should
have been (n-2) (H442). G was unable to arrive at a
justification for the 2 in the denominator (G438, G454).
After G had explained the (n-3) to H, H accepted the
formula, but did not describe his reasoning (H445). G
realized the reasoning behind the 2 and accepted the
formula somewhat later (G483). Throughout their reasoning
was based on simple deduction, without any attempt to build
the formula recursively from specific cases. G does not
seem to have checked the formula at all. It is not clear
from H's diagrams whether or not he did so.

A and B were given examples for n = 3, 4, 5, and 6 to
begin with, but it seems likely that they would have
generated examples of their own. They did extend those
given to them to n = 7 and 8. The proof they developed was
hampered by difficulties in expressing general relations. A
discovered the relation D, = D,, + n-2 but was unable to

make use of it until the investigator provided
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formalizations for the specific cases of n = 5 and n = 6.
They were attempting to produce such formalizations (B270),
but were unable to do so due to their weak algebra skills.
Equipped with these relations A succeeded in proving the
formula for D; based on an assumption of the formula for
D,. B suggested generalizing A's proof (B347) but was
unable to do so until the investigator provided a general
version of the relation D, = D,4, + n-2. They worked
through the proof and arrived at the desired conclusion.
For A this proof was conclusive (A867). B had noted that
the relation used in the proof also needed proof, and the
investigator provided one.

While there was considerable interference from the
investigator in the case of A and B, the differences
between the two approaches to the problem seem to be more
closely related to the backgrounds and beliefs of G and H
versus those of A and B. G and H were quite skilled at
deductive proof, but inexperienced with MI, and G had
certain fundamental problems with such proofs. A and B, on
the other hand, lacked the algebraic skill needed for most
deductive proofs, and approached MI from an informal
perspective based, at least in the case of A, on the idea
of a chain of deductions rather that of a proof procedure.
This explains the methods employed by each pair. The
superior deductive skills of G and H discouraged them from

the kind of empirical investigations which led A and B to
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the relation which is at the heart of proof by MI.

The upper bound in the partitioning of the plane by n lines

Four of the students encountered the problem of
proving that 2" is an upper bound to the number of
partitions of the plane produced by n lines. A saw this
problem twice, once in stage one, session three, and once
in stage two.

G and E worked on the problem together. They both
considered n = 1, 2 and 3, at E's suggestion (E166, G160-
164). G noted the possibility that two lines could be
equal, which temporarily confused E (E174). G also spent
considerable time considering every possibility, not just
the maximal arrangements (G169-179), although E noted that
only the maximal arrangements were relevant (E171, E187).
Both recognized the importance of doubling (G199, E215-
218). They arrived at an inductive proof, which E saw as

being based on MI (E219).

The first time A saw the problem she was guided
through it. She had some difficulty with it as she often
interpreted 2" as 2n. She saw an additive, rather than a
multiplicative pattern in the transition from n=4 to n=5
(Al68), but was led to the idea of doubling (Al174). The
use of informal MI in the proof was not a problem for her

(A183).
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The second time A saw the problem it was presented
along with a formal proof by MI. She worked on it with B.
A never explicitly related the proof to her previous
experience, aside from noting that she had worked on it
before (A518). The importance of doubling was noted by
both A and B (A541-543, B198). The formal proof was never
really understood by them, as indicated by their
concentration on details, and implicit assumption of the
consequent. The proof was accepted by them primarily on

the basis of the idea of doubling.

In all the above cases an informal proof by MI was
accepted by the students. 1In the case of A and B this
occurred in spite of the informal proof being hidden in a
more formal proof which they did not understand. As is
noted elsewhere G did not accept formal proofs by MI, but
here accepted an informal proof. One could conclude that
the elements of proof by MI which he rejected are not

present in an informal version.

Notions and Use of Empirical Induction

A, B, G, H, and J all encountered statements which
they accepted on the basis of empirical evidence alone. 1In
some cases this evidence seems to have been quite scanty.
For example H and J seem to have accepted the truth of the

equation F, + F; + F3 + ... + F, = F,, - 1 on the basis
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of a single example (H45, J38-41). E was never in a
position to judge a statement based on empirical evidence,
but she did empirically arrive at the conclusion that the
two sequences A and C are equal based on five cases (E251).

All of the students did not consider empirical
evidence to guarantee the truth of a statement. A was
unusual in that she used empirical techniques to confirm
deduced results (R66). A's understanding of deductive
proof did not ascribe to it much more reliability than she
ascribed to empirical proof. This may have been a result
of the algebraic nature of many of the deductive proofs, as
she was somewhat more confident of informal deductive
proofs (A881 versus A890).

A and G were alike in perceiving a strong similarity
between MI and empirical induction, which undermined their
faith in MI (A329, A935, G609, G682, G684). This
perception is discussed in more detail in the comparison of
understandings of MI (above). B differed from A and G in
this respect as she actively differentiated MI from
empirical induction (B59-60) and expressed more trust in
statements which were supported by a MI type argument (B42,

B60).

Treatment of Counter-examples

Every one of the students in the study accepted

counter-examples as disproofs of general statements. The
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only one whose doubts were indicated at any time was B, who
commented: "Or is this an exception, or presumably if there
is one exception there will be others" (B55). H and J were
specifically asked whether a counter-example to an accepted
proof could be admitted. Both indicated that the proof or
the counter-example must be in error.

Not every student was equally likely to look for
counter-examples, however. All students checked statements
empirically at some time, but only J engaged in a
sys?ematic search for a counter-example (J109). G
considered doing so at one point (G417) but rejected the
idea, and H discovered a counter-example through a
generalized method of searching, after J suggested the

conditions a counter-example would have to meet.



CHAPTER 1V

CONCLUSIONS

Several interesting ideas are raised by the above
analyses. Some of these have application to the teaching of
MI, while others suggest interesting possibilities for
further research. The major findings relate to the use of
MI on an informal level, the accessibility of a chain of
implications as a characterization of MI, the importance of
making the role of the variable in the induction step clear,
the influence that the form of a proof can have on it's

acceptance, and connections between MI and other concepts.

Use of MI on an Informal Level

The history of mathematics provides evidence that MI
was accepted as a method of proof long before it was named
and formalized in the nineteenth century. Informal proofs
by MI, such as Euclid's proof of the infinitude of primes,
might be understood by students at the high school level.
In fact, Freudenthal (1973, 172) gives an example of a girl
in a kindergarten who became aware of the recursive nature

of the positional notation for the natural numbers, and so
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concluded "it goes on".

The results of the clinical study also indicated that
MI is accessible even to students without much mathematical
training, at least on an informal level. Both of the
students in the mathematically less experienced group, A and
B, used MI spontaneously to prove statements like "The
number of Fibonacci numbers is infinite". Their lack of
confidence in their proofs seems to have been more a product
of their lack of confidence in mathematics in general than
specifically associated with MI. Drawing attention to and
validating the informal proofs they created might contribute
to increasing their confidence in them, and in contexts for
which they are mathematically prepared they might be able to

apply MI on a more formal level.

Accessibility of a Chain of Implications

The first proof which is generally accepted to involve
MI, Maurolico's proof of 1 + 3 + 5+ ... + (2n - 1) = n?,
takes the form of a chain of implications. Pascal, although
his use of MI is closer in form to modern usage, also uses a
chain of implications to justify his conclusion. The same
sort of justification is used by Poincaré. This seems to
indicate that such a chain serves as a more accessible
version of MI, which is more easily accepted. Sfard's
(1987) contention that such operational conceptions are more

easily accepted by students would also support this idea.
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In the clinical study such a characterization was
spontaneously adopted by H, a mathematically more
experienced student who had not seen MI before. 1In his case
exposure to a formal proof employing MI resulted in the
reformulation of it into a chain of implications. This
characterization also seems to have been accessible to A.

The teaching of a purely structural form of MI seems
less likely to succeed than a characterization as a chain of
implications, and perhaps many of G's difficulties with
formal MI are related to such teaching. It may be that a
presentation of MI which makes the recurrence of the
induction step more apparent should be adopted and used by
students until they are ready to collapse the implications
into a single induction step.

This is not to say that such a chain of implications
is without potential problems. Ernest (1984) suggests that
implications themselves are a cause of difficulties. There
is some support for this suggestion in the behavior of G and
H. G felt that proving the equivalence of two recursive
rules was insufficient. This may have been due to confusion
between implications and conjunctions. H's query as to
whether the induction step proved statements for numbers
preceding the basis may indicate that he was assuming the

converse of the implication.
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Importance of the Variable in the Induction Step
One difficulty students had with MI during the clinical
study was the different roles that the variable plays in the
induction step. The different ways in which variables are
employed in mathematics generally is difficult for students
to comprehend, and the lack of explicit instruction
concerning variables cannot help. In the context of MI,
because of its logical structure, this problem of
determining the role of the variables used is quite complex.
Most proofs seen in high schools and colleges involve a
sequence of algebraic manipulations. Throughout these
manipulations the variables used act as general numbers, and
in the final conclusion they are again general. In a proof
by MI the variable employed in the induction step plays a
complicated role. In the induction step the variable is not
general, but arbitrary; it stands for some unspecified
number. It is treated as a particular value, not as a place
holder for a whole set of numbers. The proof in the
induction step of P(k) => P(k+l) is then generalized to
state that this implication holds for every k. In this
final conclusion of the statement the variable is treated as
a general number. This situation occurs in any context in
which an implication is proven as a part of a larger proof,
but such proofs are rarely seen. MI is likely to be the
first time students experience such a change in role, and it

may be too much to expect them to spontaneously understand



e PR AN TR

171
what is going on. The problems experienced by students with
implications reported by Ernest (1984) may be also be

related to this difficulty with the variable.

Influence of the Form of the Proof

Another difficulty students have with MI which was
revealed during the study is the form of the proof. Most
proofs students see involve the manipulation of algebraic
expressions to produce a blatant identity. MI does not
produce such proofs, although they are sometimes seen in the
proof of the induction step. G specifical;y indicated that
this failure to “"come to a final agreement" (G351) was one
of his objections to MI. A and B were also much more
satisfied with proofs which came to such an agreement, and
had more confidence in them.

This difficulty with the form of the proof may be
partly responsible for a difficulty suggested by Ernest
(1984, 182), the tendency to leave out the basis. The
induction step of a proof by MI is often a proof of the
usual sort, arriving at an identity. If the proof is
reduced to the induction step only, then the difficulty with
the form of the proof is avoided. 1I1f the students prior
experiences with proof have taught them that nothing is
important except coming to that final agreement then they

might be expected to discard the basis as irrelevant.
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Relation of MI to Problem Solving

Polya (1954, 111) suggests that problems which are
solved inductively lead naturally to the use of MI to prove
conjectures. In the study, H used completely general
techniques in his attempt solve a problem which could easily
have been approached inductively. He was also the only
student who never spontaneously used MI, either formally or
informally, to prove statements. The two students who made
the least use of general methods, A and B, used MI
informally on several occasions. While they are hardly
conclusive, these results suggest that there may be some
relation between a students' use of induction in problem

solving and use of informal MI.

Recursion

All of the students in the study were aple to work with
recursive definitions without difficulty. This, and the use
of informal MI by most of them, seems to indicate that
recursion is nct at the root of the difficulties these
students had with MI. This suggests that experiences with
recursion and recursive computer programming would not have
a significant effect on students' understanding of MI. 1In
fact, Word (1988) found this to be the case. G's references
to "backtracking" might have been related to prior
experiences with computer programming, which seem to have

actively interf red with his understanding of MI, perhaps



173

due to the "downward" orientation of such recursions, as
opposed to the “"upward" direction of the recursion on MI

(Leron and Zazkis 1986).

implications for Teaching

The above conclusions indicate several ways in which
teaching MI might be improved. 1If students have some
ability to use recursion in proofs already then a connection
should be made between these informal proofs and formal
proofs by MI. This would allow the students to connect
formal MI to their existing cognitive structures more
easily, and lessen the likelihood of forming incomplete
associations with incompatible forms of proof. Exploring
these informal uses of MI, and characterizing them as chains
of implications, would provide a foundation for the
introduction of a formal use of MI.

Students' difficulties with the role of the variable in
the induction step is but one of the many difficulties
students have with variables. 1In general these difficulties
might be addressed by making explicit the different roles
variables can play in mathematics. Specifically in the
context of MI, connection can be made between the induction
step and the implications in a chain of implications, with
the induction step seen as a generalization of the
implications. This would be a part of the process mentioned

above, of making a connection between the students' informal
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understanding of MI, and the formal use of MI.

Students' difficulties with the form of a proof by MI
seem to be rooted in the experiences with proof the students
have had in the past. A formal understanding of MI requires
both a knowledge of proof, to permit the proof of the
induction step, and a knowledge of the variety of different
forms proofs can take. In teaching many forms of proof are
avoided, perhaps with an intention of preventing possible
corfusion on the part of students. This results in a
characterization of proof by students which is limited,
resulting in problems in the introduction of different forms
of proof later in the students' education.

The difficulties associated with MI might be
responsible for the neglect of it in the curricula current
in Québec, and elsewhere in North America. There are,
however, sound reasons for teaching MI at an informal way,
perhaps in a geometric context, at the high school level.
One of these reasons has already been mentioned above. The
limiting of proofs to only the simplest forms leaves
students with a characterization of proof which interferes
with their learning at later stages. Other reasons include
the relation of proof by MI to inductive problem solving,
students' use of informal MI, and the philosophical
importance of MI to mathematics.

Polya (1954) discusses inductive problem solving at

length, and notes that while empirical investigations can
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discover relations, they cannot prove them. If such
inductive investigations are to be a part of schooling, and
current opinion is strongly in favor of problem solving as a
part of mathematics, then there are three choices for
verifying relations once found. The first is ac~epting the
empirical evidence as sufficient. This seems unsatisfactory
if problem solving in mathematics is to retain the deductive
nature of mathematics a¢ a whole. The second is using
proofs which do not employ MI. Such proofs require that the
proving process be considered separately from the discovery
process, as the specific examples found in the discovery of
a relation play no role in the construction of a proof. The
third is proof by MI, which makes use of the discovery
process, and which can often be seen within the process
itself. As noted above, several of the students who made
use of specific examples in problem solving, also made use
of informal arguments based on MI to prove the relations
they had discovered. A, B, E and G all exhibited this
behavior.

That students use MI informally argues that they feel
it has some value as a method of validation of their
conjectures. Ignoring MI solely on the grounds that
students find the current presentation of it difficult to
follow seems unreasonable in light of this informal use of
MI. If a modified presentation can permit students to

associate part of the reasoning the use informally with the
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reasoning used in mathematics, this seems a valuable
opportunity.

The deductive structure of mathematics, and the
processes of discovery and proof of statements by
mathematicié 1s is sometimes considered relevant only for
those students who will go on to become mathematicians
themselves. Mathematics, however, is a part of popular
culture, in the same way as literature and history. It has
long been accepted that the study of these topics .5 more
than learning the skills of writing and reading, and
similarly mathematics is more than the learning of the
skills of arithmetic and algebra. While much of what is
taught will never be needed by the students, unless they
specialize in these fields in the future, by learning it
they learn about the popular culture and about their place
in it. Mathematics, as an aspect of popular culture, has
far reaching effects in a technclogical age. The
technological and information oriented character of
contemporary living increasingly exposes people to
situations which are, at least partially, mathematical in
nature. As important as understanding how mathematics is
used in such situations is understand why mathematics is
being used and what conclusions can be drawn from the use of
mathematics in a particular situation. The setting oZf
insurance rates, for example, is often justified on the

basis of statistical inferences. The use of mathematics to
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determine these rates makes them seem to be more objective
than if rates were determined on the basis of a personal
interview, or by some other method. It takes an
understanding that mathematics is a human creation, and of
the standards used within mathematics to judge new
creations, to understand the subjective nature of

mathematics in application.

Suggestions for further research

This study attempted to fill a part of the gap in
research on MI between studies of a theoretical nature and
empirical studies of teaching methods. 1In the course of it
a reminder of the uncertainties of clinical studies was
encountered, in the form of the unexpected reversal of roles
in the case of G and H in stage two. In addition several
possibilities for further research were raised. There
remains considerable work to be done.

The students who participated in this study were all
enrolled in university. Although two of them had never
studied mathematics at the university level, their academic
performance in other levels was above average. It remains
to be seen whether the same use of informal MI would be
found in students at the high school level. A similar study
involving high school students would serve to indicate
whether the conclusions reached here can only be applied to

some students, or whether high school students in general
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can use informal MI.

It would be interesting to know at what age this
informal ability begins to develop, if in fact it is
generally present by high school age. A comparative study
of students from different age groups would be worthwhile
for this reason.

It was hypothesized above that making a connection
between students' informal use of recursive reasoning and
formal proof by MI would make acceptance of MI as a proof
technique more likely. This too could be tested, through a
teaching experiment. The relationship between students'
understandings of variables, algebraic skills, and MI could
also be explored in more detail, in such a context.

The students in this study showed an interesting mix of
inductive and deductive approaches to problems and proofs.
The interferences between these two modes, and the possible
transfer of inductive or deductive techniques from problem
solving to proof and back, would also be interesting as
topics of study.

Finally, even tﬁe students in this study who had not
studied mathematics at the university level had a strong
notion of what characterizes a proof. The development of
students' understandings of proof during their high school
education might make a useful focus for a general study of
proof, including proof by MI. In connection with this the

possible interaction between the learning of different kinds
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of proofs could be examined, including consideration

order of teaching different forms of proof.
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APPENDIX A

SCRIPTS

The tables of the Fibonacci and B sequences referred to

in the scripts are included after the scripts.

Scripts for Mathematically More Experienced Group
Scripts for Stage 1

Script for students being introduced to MI

1. Find the relation between the number n of sides of a

convex polygon and the sum A, of its internal angles.

2. You have probably found that:
A, = (n-2)n for n 2 3
Give a mathematical proof of this relation (assume as an

axiom that the sum of angles of a triangle equals m).

3. Prove that n straight lines on the plane divide the

plane into no more than 2" parts.

184
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4. Could you describe your method of proving the above two

statements?
Could you identify the steps of your reasoning?

Were you, in a further step of your reasoning, referring to

some previous step of reasoning?

5. In the so-called Arithmetic of natural numbers we admit,
among others, the following axioms:

I. 1 is a natural number

IT. If n 1is a natural number then n + 1 is a natural
number.

II1I. Let S(1), S(2), S(3), ««+, S(n), ... be statements
about natural numbers. If the statement S(ny) holds true
for some ng , and, for any n 2 ng, then truth of S(n)
implies the truth of S(n+l), then all the infinite number of

6. This last axiom is called “the principle of mathematical

induction® and provides us with a method of proving
theorems about natural numbers that start with "for all n

«..", or with "for any n ...".

7. Is there any link between this principle and your

reasoning in problems 2 and 3?
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8 Let the sequence A = (a,b,) of natural numbers be

defined as follows:

by = @, + b,
Let the sequence C = (c,,d,) of natural numbers be defined
as follows:

cp =¢C =1

d1 = 1 dz = 2
Ci2 = Cp + Cns1
dnz = 4y + dpyg

Show that the sequences A and C are identical.

9. Is the following statement true:
For all natural numbers n:
p(n) = n(n+l) + 11

is a prime number.

10. Is the following statement true:
Every even number is the sum of two primes.

[may be left out]
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11. Do you accept mathematical induction as obvious or
reasonable?

Do proofs by mathematical induction convince you?

Does a proof by mathematical induction raise the degree of

certainty of a conjecture?

12. In empirical sciences, we also speak of induction; we
speak about inductive inference. For example:

Experiment has shown that:

sugar s, dissolves in water,

sugar s, dissolves in water,

sugar s,; dissolves in water,

Conclusion: all kinds of sugar dissolve in water.

Or:

The sun has always risen in the east, as for as I and other
people can remember. Conclusion: the sun will always rise

in the east.

13. what is the difference or differences between this kind

of induction and mathematical induction?



Script for Students Being Made Skeptical

SCRIPT for Stage 1 Group B

INTRODUCTION to Fibonacci numbers

I: We are going to be looking at a sequence of numbers
called the Fibonacci sequence. Have you heard of the
Fibonacci sequence or Fibonacci numbers? The numbers in
the sequence are sometimes called Fibonacci numbers. [If
"yves" I: what do you know about it/them?] This is the
beginning of the sequence

[present Table 1:

1 1 2 3 5 8 13 21 34 ...]

[Talk about Fibonacci ]

[Q1] Can you find the pattern in this sequence? [If "no" I:
try adding up pairs of consecutive numbers [more prompts

if needed])

I: [Q2] Can you formulate a rule for producing the Fibonacci
sequence? [prompt if needed] How would you write your
rule algebraically? [give if needed, test understanding])

DEVELOPMENT OF PROPOSITIONS 1

I: [Q3] Consider this question:

[ Sla: "Is there anything special about the sum of the first
n Fibonacci numbers? 1Is it related to the sequence in

any way?"]
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I: [Q4] Is this statement true?

[ Sib: For all n: Fy + F, + F53 + ... + F, = F o - 1]

I: Here is another statement about the Fibonacci numbers:

[S2: The Fibonacci sequence is given by:

F.= Lln - — L h+2fp - 49 n 4 369 1 - 4
60 24 24 60

[Q5] Is this statement true?

INTRODUCTION to prime numbers

I: [Q6]) Do you know what primes numbers are? [if "no"
explain). Here is a list of the prime numbers less than

10000. [Table 2]

DEVELOPMENT OF PROPOSITIONS 2
I: Here is another statement:
[S3: For all n: P = n? + n + 41 is prime]

[Q7] Is this statement true?

I: Here is a statement about prime numbers and Fibonacci
numbers:
[S4: "For all n: If n is prime then F, is prime."]

[Q8] Is this statement true?
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DEVELOPMENT OF SKEPTICISM: Proofs and refutations

I: Have a look at the formula for producing Fibonacci
numbers. [S2] Try n=7 [if not already done] [Q9] Would
you now say that this property only produces Fibonacci

numbers? Why not?

I: Have a look at the formula for producing prime numbers.
[S3] Try n=40 [if not already done] [Q10] Would you now
say that this property only produces prime numbers? Why

not?

I: Look again at the fourth statement. [S4] 19 is prime

isn't it? [Ql1] Is the 19th Fibonacci number prime?

I: {Q12) Would you now say that the first statement is true
for all Fibonacci numbers? If I assure you that it is

how would you go about showing that it is true?
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I: What would you say about trying to find out if statements
are true?

(In the context of this discussion:]

We have seen that it mathematics it is extremely unwise to
assume that something is true for all n just because it
is true for some n.

You've just seen several cases where even though there are
lots of examples, the statement turns out not to be
true.

In the next interview you will be looking at some other
statements, some, perhaps all, of which are not true.

Remember to be careful about accepting a statement unless
you have a valid explanation.

[Q13] What would you say would be a valid explanation?
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Script for Stage 2

I: Consider this statement. Try to determine whether it is
correct or not and explain why it is correct or why it
is not.

[Statement A:

For all n 2 3,
F2 = (Fpa)(Fan) + 1

(F, is the nth Fibonacci number)

I: Consider this statement. Try to decide whether it is

correct or not and explain why or why not.

[Present statement B:
B: The number of diagonals in a convex polygon of n sides is
n(n - 3)
2

I: Here is a sequence of numbers:
[Table 3: the B sequence:
113511 21 4385 ....)

Can you find the pattern in this sequence?
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[If they answer B, + B, = 2k then skip to a]

I: Look this.statement [ statement Cl :B, + B,, = 2"? )
Do you think it is correct? Explain why you think so, or
why you don't.

[skip to B]

[a]
I: Look at this statement [statement C2 :2B, + By4 = By ]
Do you think it is correct? Explain why you think so, or

why you don't.
[R]

I: Consider this statement and its proof. Try to determine
whether it is correct or not and explain why it is

correct or why it is not.

Statement D:

For all n 2 0

th

where Fn is the n Fibonacci number
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Lemma 1: For all n 2 0 there exist ¢ and d such that:
—— n —
1+ ‘/5 1+ ‘/5
= ¢ + d
2 2
Proof of Lemma 1 by induction:
The lemma is true for the case n = 0 as:
—_— -0 —
1+ ‘/5 1+ ",5
= 1 4+ —— (0)
2 2
Induction Hypothesis:
k —_
1+Vs 1+ Vs
—_— = Cc + d
2 2
Induction step:
— ~1k+1 —
1+ °5 1+ ‘/5 1 + ‘/g_
= c + d
2 2 2
by I.H.
1+ Vs 1+ 2(Ys) +5
= C + d
2 4
1+ Vs 3+ Vs
= o} + d




which is of the required form.

Lemma 2:

Define the

then dn

sequences ¢, and dn by:

F

n

for all n 2 0.

Proof of Lemma 2:

It suffices to show: (1) d0

(1)

(ii) d; =
and (iii) d_ =
— -0
VS

for n > 1.
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(ii) . -
1 + Vs 1+ VS
= 0 + —F (1) 80 d1 = 1
2 2
(iii) From the proof of Lemma 1 we have: Ch+l = dn
and dn+1 =d tc,
Therefore: dn+2 = dn+1 tChyp = dn+1 + dn
Lemma 3:
Define the sequences c, and dn by:
—_— n J—
1 - VS 1 - VS
= c_ + d
5 n 5 n
then dn = Fn for all n 2 0.

The proof of Lemma 3 is similar to that of Lemma 2.

Proof of Theorem:
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1 1+'s 1 1-"s
d - — d =
n — n
Ve 2 Vs 2
1+Vs 1 - Vs
Voo | - v % |~
2('5 ) 2(°5)
Vg d Ve
n_ d - n + ——q_ =
— v n N Vv n
2(V5 ) 2(Vs ) 2(Y5 ) 2(Y5 )
1 1
—_—d + —d =dn- Fn
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Scripts for Mathematically Less Experienced Group
Scripts for Stage 1
Scripts for A

Script for Session 1

I: We are going to be looking at a sequence of numbers
called the Fibonacci sequence. Have you heard of the
Fibonacci sequence or Fibonacci numbers? The numbers in

the sequence are sometimes called Fibonacci numbers.

If " Yes n

I: what do you know about it/them?

I: A merchant named Leonardo Fibonacci of Pisa studied this
sequence in connection with a problem he was trying to
solve. Since then many mathematicians and scientists
have found applications of the sequence in a variety of
contexts. This is the beginning of the sequence

[present figure 1:

1 1 2 3 5 8 13 21 34 ...)

Ql: Can you find the pattern in this sequence?

If unon

I: try adding up pairs of consecutive numbers [more

prompts if needed]
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I: Can you formulate a rule for producing the Fibonacci
sequence?

[prompt if needed]

I: Q2: how would you write your rule algebraically?

I: let's play around a bit and see if we can find out
anything about the Fibonacci sequence. Pick one of the
numbers in the sequence. [response] Now square it

[response]
now take the two numbers before and after the number you
picked and multiply them together. what do you get?

[response]
how is that related to the square of the number you
picked?

[the square is one more/less than the product]

Q3: If that relationship were true for all Fibonacci
numbers how would you write a general rule describing

this property?
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I: Let's try something else. Do you know what prime numbers

are?

i” "no" explain

I: pick a prime number. Now count along the Fibonacci
sequence that many numbers. What number do you land on?

Is that prime?

Q4: If that relationship were true for all Fibonacci
numbers how would you write a general rule describing

this property?

I: let's try one more: Add up the first ten Fibonacci
numbers. What do you get? Now multiply the seventh
Fibonacci number by 11. What do you get?

Q5: If that worked for any set of 10 Fibonacci numbers
how would you write a general rule describing this

property?
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I: Q6: Do you think any of these properties hold for all
Fibonacci numbers?

I: why?

I: How could you become more confident?

[expected response: more examples]

I: Q7: try looking at a few more examples

[work through examples. The first proposition is likely to
provoke a reaction when it fails but the subject will probably
suggest the (correct) general property soon after. by now

confidence should be high)

\

I: Q8: 19 is prime isn't it? Is the 19th Fibonacci number

prime?

I: Q9: Would you now say that this property is true for all

Fibonacci numbers? What about the other properties?

I: Q10: can you think of some way to definitely establish

the truth of these properties, if they are true?

I: Qll: How would you establish the truth of this property:
"The sum of any set of consecutive Fibonacci numbers is

a Fibonacci number"?
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Script for Session 2

I: Remember the Fibonacci numbers? Here's a list of the
first 35. Remember how we wrote the first Fibonacci
number as F, and the second as F, and so on? If n is
some number then F, would be the Fibonacci number in
position n in the list. How would you write the
Fibonacci number which came right after F,?

[help if needed]

I: Do you remember how you said to use two Fibonacci numbers
to get the next one? [yes...] How could you write that
using F, and Fpyq ?

[help if needed])

I: Here are the statements we looked at last time written
with F,s. Do they make some kind of sense? can you see

where the symbols come from?

I: How would you write this statement in symbols?

[show figure Sla:
The sum of the first n Fibonacci numbers is one less
than the second Fibonacci number after the ones added
up.

The response should look like :

F1 +F2+ L I} +Fn= Fn*z - 1 ]
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I: Do you think this statement is true? How would you

convince me that it is? [prompt for a proof]

I: How about this statement?

{Show figure Slb: The sum of the first n even indexed
Fibonacci numbers is one less than the odd indexed
Fibonacci number after the ones added up.

F, + Fp + voo + Fppp = Fopqy - 1 ]

I: Is this one true?... How would you convince me?

Script for Session 3

Q1 Look at this statement again:

Figure 3:

D: The sum of the first n Fibonacci numbers is one less
than the second Fibonacci number after the ones added

up.

F1+F2+oo- +Fn=Fn#2"1

Check it for n=6
Check it for n=7

Check it for n=8
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Q2 Consider a pancake. What is the maximum number of pieces
you can cut with 1 cut? With 2 cuts? With 3 cuts?

Would you agree with the statement:

“ k cuts will never produce more than 2k pieces"

Could you show that this is true? [guide if necessary]

Q3 Let us return to this statement. Can an argument
similar to the one we just used be applied in this case?

[guide if necessary]

Q4 What did you mean in the last session by the phrase

"Prove itself"?
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Script for B

INTRODUCTION to prime numbers

I: [Q1] Do you know what primes numbers are? [if "no"
explain]). Here is a list of the prime numbers less than

10000. [Table 2]

DEVELOPMENT OF PROPOSITION 1
I: Here is a statement:
[Figure 8: P = n? + n + 41 ]

[Q2] If n can be any whole number what can you say about P?

Introduction to Fibonacci numbers

I: We are going to be looking at a sequence of numbers
called the Fibonacci sequence. Have you heard of the
Fibonacci sequence or Fibonacci numbers? The numbers in
the sequence are sometimes called Fibonacci numbers.

If "yes"

I: what do you know about it/them?

I: A merchant named Leonardo Fibonacci of Pisa studied this
sequence in connection with a problem he was trying to
solve. Since then many mathematicians and scientists
have found applications of the sequence in a variety of
contexts. This is the beginning of the sequence

[present figure 1:

1 1 2 3 5 8 13 21 34 ...]
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[Q3] Can you find the pattern in this sequence?

If unou
I: try adding up pairs of consecutive numbers [more

prompts if needed]

I: Can you formulate a rule for producing the Fibonacci
sequence?

[prompt if needed])

I: We can write the first Fibonacci number as F, and the
second as F, and so on. If n is some number then F,
would be the Fibonacci number in position n in the list.
How would you write the Fibonacci number which came

right after F,?

[help if needed]

I: Can you write the rule for producing Fibonacci numbers

using F, and F,,y ? [help if needed]

I: [Q4) How would you answer this
question? [Figure 3a: "Is there anything special about F,

when n is a multiple of 3?"] [Guide to discovery)



I: Do you think this property holds for all Fibonacci
numbers?

I: why?

I: How could you become more confident?

[expected response: more examples]

I: try looking at a few more examples

[work through examples.]
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I: [Q5]) Let's try something else. How would you answer this

question? [Figure 3: "Is there anything special about F,

when n is prime“] [Guide to discovery]

I: Do you think this property holds for all Fibonacci
numbers?

I: why?

I: How could you become more confident?

[expected response: more examples]

I: try looking at a few more examples

[work through examples.]

DEVELOPMENT OF SKEPTICISM: Proofs and refutations

I: [Q6) Have a look at the formula for producing prime
numbers. [Figure 8] Try n=40 [if not already donel
Would you now say that this property only produces

numbers? Why not?

(Q10]

prime
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I: Look again at the third statement. [Figure 3] 19 is prime

isn't it? [Q7] Is the 19th Fibonacci number prime?

I: Would you now say that this property is true for all

Fibonacci numbers?

I: [Q8] Would you now say that the second statement [Figure
3a: "Is there anything special about Fn when n is a multiple

of 3?2"] is true for all Fibonacci numbers?

I: [Q9] What would you say about trying to find out if
statements are true?

[In the context of this discussion:)

We have seen that it mathematics it is extremely unwise to
assume that something is true for all n just because it
is true for some n.

You've just seen several cases where even though there are
lots of examples, the statement turns out not to be
true.

In the next interview you will be looking at some other
statements, some, perhaps all, of which are not true.

Remember to be careful about accepting a statement unless
you have a valid explanation.

[Q10] What would you say would be a valid explanation?
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Script for Stage 2

I'm going to give you several different activities. For each
one please discuss what you are thinking and doing
thoroughly with each other to make sure that you are in
agreement. In addition to any written work you might do
in exploring these activities, please write down the
conclusions which you agree on in the end.

Activity SAl: Here is a statement and a proof:

[Statement SAl:

For any number n, if a circular region (like a crépe) is
cut into pieces by m straight lines which cut all the
way across, then the number of pieces produced (P,) is
at most 2N,

P, < 2"
Proof:
One line produces exactly 2 pieces, so the statement is
correct for n =1 as P, = 2 < 21

Each time a new cut is made by a new line the new line,
at most, cuts every piece into two pieces, doubling the
number of pieces. This means P,4, < 2P,. If P, < 2"
then P4 < 2P, s 2(2") = 2nm

This proves the statement P, < 2" for all numbers n

)

and some questions:

[Questions SA1l:

1. Do you agree with the statement? Why or why not?

2. Can you give an example where the statement is correct,
or an example where it is incorrect?

3. Do you agree with the proof? Why or why not?

4. What would you say is the most problematic thing about
this proof?

5. Could you make the proof better somehow?

]
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[Activity SA2

Diagonals of a polygon are lines joining the vertices
(corners) other than the sides. For example here are
the diagonals of a pentagon:

The number of diagonals D, depends on the number of sides n
of the polygon:

Polygon Sides n Diagonals_D, Example
Triangle 3 0
Quadrilateral 4 2
Pentagon 5 5
Hexagon 6 9

Show that the number of diagonals of a polygon is always:

n(n-3)
Dn= ——
2
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Here is a table of the Fibonacci numbers
[Table is included after the scripts]
and a statement with a proof
[Statement SA3:
For all n, if n is a multiple of three, then F, is even.

Proof:
F; is 2, so the statement is true for m = 3

We will need to refer to the following:
A. Even numbers are all multiples of 2.
B. Odd numbers are all 1 more than a multiple of 2
C. If you add an even number and an odd number ie
2n + (2m+l) you get 2n + 2m +1 which is odd.
D. If you add two odd numbers ie (2n+l) + (2m+l) you
get 2n + 2m + 2 which is even.

If you have two consecutive Fibonacci numbers F,,, and F;
and F, 4 is odd; and F, is even; and k is a multiple of
3:

Then F,, + F, is odd ( by C, above );

So F,, is odd because Fi_; + F, = Fuu;

And F, + Fy,q4 is odd ( by C above );

So Fy,, is odd because F, + Fy = Fu.i/

And Fy,4 + F,,, is even ( by B above );

So F,,; is even because Fyq4 + Fyp = Fiaj

Note that if k is a multiple of 3 then k+3 is the next
multiple of 2.

We can conclude tha*: IF it happens that F,, is odd, and F,
is even, and k ir a multiple of 3 THEN k+3 will be the
next multiple of 3 and F,,; will be even.

This proves the statement:
For all n, if n is a multiple of three, then F, is even.
]

and some questions:

[Questions SA3:

1. Do you agree with the statement? Why or why not?

2. Can you give an example where the statement is correct,
or an example where it is incorrect?

3. Do you agree with the proof? Why or why not?

4. What would you say is the most problematic thing about

this proof?

Could you make the proof better somehow?

— N
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[Activity SA4:

Consider the following:

1+1 = 2 =3-1 =F -1
1+1+2 = 4 =5-1 =Fg-1
1+1+2+3 =7 =8-1 =Fs-1
1+1+2+3+5 =12 =13-1=F-1
1+1+2+3+5+8 =20 =21-1=F-1

Show that in general:

The sum of the first n Fibonacci numbers is one less
than the second Fibonacci number after the ones
added up.

F1+F2+oo' +Fn=Fn+2_1

]
[Activity SAS:
The rule: B,
B, =1
B, 2B, + Bp,
defines the B sequence. These are the first 24 terms of the
sequence:
[see table below]

1

Consider the following:

1 +1 = 2 = 21
1+ 3 = 4 = 22
3 +5 = 8 = 23
5 + 11 = 16 = 2%
11 + 21 = 32 = 23

Show that in general:
Bn + B n+1 = 2n
]



Table of Fibonacci Numbers

Fibonacci numbers
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377

610

987
1597
2584
4181
6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
1346269
2178309
3524578
5702887
9227465
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The B sequence:

Table of the B Sequence

O W

11

21

43

85

171

341

683
1365
2731
5461
10923
212845
43691
87381
174763
349525
699051
1398101
2796203
5592405
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APPENDIX B

TRANSCRIPTS

Each session of the clinical study was recorded on
audio tape, and transcribed for analysis. This appendix
includes abridged transcripts of all sessions. Parts of
sessions which did not provide information relevant to the
study have been summarized. In some cases short utterances
such as "yeah", or "uhhuh" have been omitted where they do
not have importance. In the transcripts three dashes "---"
indicate a pause of about 1 second. Question marks in
groups represent words which could not be understood on the
tape. In some cases a possible interpretation of partially
audible words is offered, enclosed in brackets, and ending
with a question mark. Line numbers beginning with *R"
indicate utterances of the author. Line numbers beginning
with "S" indicate utterances of Professor Sierpinska, the

author's thesis supervisor.

Stage One, Group Learning MI

The students were first shown item 1:

1. Find the relation between the number n of sides of
a convex polygon and the sum A, of its internal angles.

E was uncertain of the meaning of convex polygon. §
explained. G was also uncertain about convex. S and E
explained.

215
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E6: [reading] find the relation between the number n of

E7:
Gl0:

sides

and the sum

of a convex polygon and the sum A N of its internal
angles. OK assuming we have so many sides

\

j‘ \}Cﬁ)

~—

._;( _zgiw?/{)

Figure 4: G's sketch at line G10.

E and G debated whether the number of angles equalled

the number of sides. E gave triangle and rectangle as
examples.

El4:

into

G23:
E21:
G24:

G25:
E23:
G26:

E24:
G27:

G35:
E33:

we have to think about this angle. We know 1 very
interesting thing that for triangle we have the sum of
angles is 180 degrees

E and G suggested to each other breaking the octagon up
triangles.

the sum of each ~---

is 180 ,

is 180 degrees, so for every 2 sides we have a triangle
[see figure 4]

So assuming we have 8 sides

yeah

ok we know for an even number of sides, we have 4
triangles within it.

yes and we have to multiply it by 180, ya?

correct

They then wrote down their conclusion for n even.

n divided by 2 times 180
wait a moment --- triangles, ok?
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G36: sub-triangles

E34: you are right

G37: triangles

E35: yes, and the sum, ya?

G38: the sum, that's right

E36: An is egual 180 multiplied by n by 2. ok?

G then saw that their rule did not work because the
triangles did not cover all of four angles. E suggested
placing all the triangles with a vertex on one vertex of the
polygon. They made a drawing.

Figure 5: E and G's sketching of sub-triangles of an
octagon.

G agreed to E's plan but felt the process would have to
be repeated with every vertex to determine the angle sum of
the polygon. They counted the number of triangles and the
number of sides. The number of sides was counted
incorrectly. G generalized n-3 from the miscounted sides. E
attempted to explain that the process did not have to be
redone for each vertex of the polygon.

At this point S intervened and suggested starting with
a triangle.

G93: a triangle, that's what I was thinking
S12: How many, how, what's the sum?

E91: 180 that's all

S13: Ok and the

E92: OK It was one

S14: No
E93: Sorry three and
G94: 180

E94: and one hundred---

S15: Pi, or Pi

G95: or Pi [see figure 7)

S16: Now how do you make, how do you make .. a quadrangle
G96: Ok that's right
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E96: we have two pieces more
G97: Ok then I see what you're building
S17: So for?
G98: 2 Pi
E97: 2 Pi
$20: You don't have Pi but you have not n minus 3 you have n
minus ---
G100: 2
E99: OK, something, something is wrong
S21: Something is lost here
E100: Ya ya umhmm
§22: so how do you build a, a pentagon
E101: OK OK OK
G101: well..
S23: how do you build a pentagon from that?
N
_.———--——"—"’-"s
Figure 6: G's sketching at line G102

G102: Well you, all you have to do is add an extra two
E102: No if you mmm--- ok It works, It works only for even

number uh uh, odd number ---. [nacht???]

G103: Can't you build the edges like this?

S24: yeah but you don't mean that this and this lies on the
same line

G104: No they don't

S25: so you have 1 2 3 4 5, so for 5

G105: umhmm

E103: 3

G106: Yeah, interesting --- [?] finish off the relationship
then

S26: What is it?

G107: For

S27: n

E104: n minus 2 uh n minus 2 multiplied by Pi. umhmm ya
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Figure 7: Table of angle sums.

S28: OK
E105: Why, why, why I took this 3?2 I don't know, I have to
check 1 2 3

$29: You just subtracted, but you have to add a Pi

E106: oh ok
$30: because you're subtracting the three but this has to be

added
E107: umhmm ya .
S31: Ok so now the second problem --- So --- you can still

look at that

E108: [reading] give a mathematical proof of this relation
assume as an axiom

S32: Because what you've one just now is discovered it

E109: mmm?

$33: How would you formulate the argument?

E110: By, by induction. it's too long, it's terrible

$34: By induction?

Elll: Ya

835: Do you know mathematical induction?

G108: yeah

§36: you do?

G109: well I've touched up on it, Prove your basic stuff,
prove it for
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E112: For the first one

G110: yeah for the first one

E113: For the n equal three

Gl11: That's your hypothesis [?? hard to hear] prove for uh
prove for n greater than three

E114: No the first step is to prove for n equal 3

Gl12: For, yeah it's you basic step

E115: And the second one you assume its uh true for probably
K and to

Gl13: where X is, yeah

E116: and use this assumption to prove
§37: OK

E117: it's true for n equal

S asked E to let G describe the proof.

Gll4: well I'd go for the basic step

E122: N umhmm ok

G115: Ok n is equal to 3. Then we show that n-2 equals Pi
So, we, that's evident as such or do you want a
graphical, can we give a geometrical ---

S instructed them to take the angle sum of a triangle
as an axiom. She mentioned that this is not always so. E and
G wrote out the beginnings of their proof.

.ASSU“[-Z“"\ ,f@)f/
v > ks3 — (-2 =A,

Figure 8: G's writing at line E135

E135: Ok, then, it's really simply because every time if we
uh greater, No, if we make the figure bigger

G131: that's right

E136: you know, then we, look at this we have one Pi more

S51: you show that table [see figure 7]

G132: all right

S52: you are showing the table

E137: Ya

S53: You are not showing this --- the diagram

E138: yes, yes

Gl133: for every increase in K the one before we're always
getting a Pi less that's, ---

S then prompted them for a proof of the induction step.
G suggested proving it by summation. E rejected the idea. G
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expressed confusion about the status of "The sum of the
angles of a triangle is n". He was not sure if it was an
assumption, an axiom, or a theorem. S assured him it was an
axiom. E stated that a formal approach was needed, but G and
S rejected the idea. G claimed that the axiom proved the
angle sum formula, but was not clear how. E stated that a
polygon could be divided into triangles, or built up from
triangles. S expressed the inductive step of building up an
(n+l)-gon from an n-gon. G agreed with this idea and felt it
proved the formula. E also agreed, describing the triangle
as the basis, and referring to an assumption.

G152: it's proved for that

E156: If we add

$73: that's what you have to show

E157: Is this good? A K plus 1 is equal ---. k minus 2 by
our assumption ok? plus Pi so it's equal how much? K
minus 1 Pi

24\4§ *'/:ZEA

Figure 9: E's writing at line E157

G153: yeah

$74: So what have you shown?

E158: What we have, We proved.

$75: Proved what?

E159: we proved that our rule, that our mmm
§76: formula

E160: formula, is good

G154: holds for K greater than

E161: Is good for all n greater or equal to 3
G155: 3

S then showed E and G item 3, involving determining
that 2" is an upper bound to the number of partitions of the
plane produced by n lines. G commented that he had never
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done geometry. They read over the item, and E commented that
the previous problem had shown them that they should begin
by making a table. G agreed. S told them to look at the
problem geometrically instead.

E166: If you have one line you have two parts, if you have 2
lines you have 4 parts, ya? and if you

S81: Oh? Have you? Two lines?

E167: Two lines

Gl60: two lines you have 3 parts

S82: you may have 3 parts, or 4. When do you have 3 parts?

Gl61l: or 4

E168: for 2 lines?

S83: yes

G162: well the lines they may be parallel and onto each
other

E169: no no

S84: yes

E170: ok

G163: You may have

S85: If they are parallel, just count the numbers

G164: so can we make an assumption that not, no two lines
are, are the same?

S86: Why should you? Those, you just have to show that the
plane makes,

E171: not more than

S87: into not more than

E172: 2 power n

S88: you don't have to calculate the exact number

G165: n is the number of [parts? points? planes?]

E173: yes

G166: unless you did this, we have two lines they're onto 80
for

El174: I don't understand your sketching

Figure 10: G's sketching at line G167

G167: well this is the plane we have, two lines one over the
other
E175: Ok
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G168: assuming we have two lines here, ok?

E176: Umhmm

G169: then for, fcr this case in which the two lines are
parallel , are parallel and onto each other, the same
line, we only have two parts

E177: We ---

S89: These are two lines?

E178: No

G170: Yeah it's one on top of the other so we'll make this
one a different color [see figure 10]

$90: wWhy?

G171: we're dividing a plane with 2 lines, those 2 lines can
be the same line can't they?

S91: yes

Gl172: A line on the same

S92: you have the base of one

G173: The two lines are equal

E179: Ok but we have, we have to

S93: 7?22 Because he is finding the extreme cases s0 here's
two lines

E180: Yes but

S94: suppose they're equal, then you have two parts, suppose
they're not equal, parallel,

E181: OK

S95: three parts, if they intersect

G174: Now this line, in order to have 4 parts this one has
to be

El82: ya

G175: Not necessarily perpendicular, [see figure 10]

E183: No yes I understand

G176: but at an angle to this

S96: You are mixing your pens

G177: line here, are we assuming that the plane

El184: Ya

G178: Sorry ah there must be some angle I shouldn't put, so
given that there's an angle between the two, and they
are not parallel, then it splits it into

E185: Ok :

G179: n uh, n plus, n plus 1, n plus 1 sides, correct? Or
I'm assuming that, that if, lines are parallel then we
split this, assuming we have this and this and what do
-we have, three cases

A>SV”‘"" 4\/\0\\ i-c \f’Wv Gr € // Nni | zj,'/,'u‘ms

Figure 11: G's sketching at line G179
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E186: Ok but but

G180: If we put another line 3 we have four cases, so we're
going to has n plus 1

E187: OK look, but we have to consider only one cxtremum
situation, when you have the biggest number of parts,
never mind what happens for parallel or now not
parallel I think the most interesting thing is when the
line, line,

§97: Intersects

E188: Intersects in one, in one point

E claimed that the maximum number of partitions is
produced if all the lines share a common point. G only
claimed that no two should be parallel. He did however
insist on looking at the minimum case as well as the
maximum. He claimed that if all the lines intersect the
number of partitions would be 2". E presented the
possibility of three lines forming 7 partitions.

Figure 12: E's sketch of 7 partitions formed by 3 lines

S asked if this situation produced more or less than
the case of all lines intersecting in a point. E counted,
found 7, and G stated that this was "one less". They then
considered that case of four lines. Returning to the case of
three lines E commented that it should be 8 not 7. S asked
why and pointed out that 2" is an upper bound, not the
actual value. They agreed that all lines intersecting in a
point did not produce the maximum possible. S brought them
back to the problem of showing that 2" is the upper bound.

G199: It's kind of evident but it's kind of hard to show,
it's hard to show that either that line will intersect
all those other lines and intersect what those other
lines aren't partitions of 2 which will double it and
yet it still won't exceed that

E212: ya

G200: that value but it will be equal to it.

S110: How many more, parts more will you get when you add
another line?
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Fiqure 13: S's sketching at line S110

G201: when you add another 1line?

S§111: yes

G202: maximum, multiply the number you had by 2, maximum

S112: yes that's it, because it can intersect in at most two
parts

E213: Umhmm

G203: two parts

S113: each of those can intersect ---

G204: For instance you have let's say 6 lines

E214: if we, probably, if we have n ---

S114: lines

E215: No no no, n lines it gaves us, gaves us, the double
you parts

S115: yes

E216: then if we add one line it can not divide

S$116: more

E217: more than had by half

S117: so at the most you double

G205: double

E218: times 2 [S says at same time]

S118: so it gives you the proof

G206: I think that's proof enough. I can't, a could see ---

E219: by induction, you know

G207: assuming that your maximum is n and adding an extra
line that extra line you add cut through and intersects
each and every one of the others, at a particular point
then the maximum you can have is 2 times that value,
yeah

S119: yes

G208: that's obvious to me

S120: What is it? This is the induction step

E220: Umhmm

S121: That's what you, that's what you [need?]) because
assume that this is less than or equal to 2 power n for



|

226
n lines
E221: umhmm
S122: then you add another line and then it just doubles
G209%9a: doubles
E222: by two this side and this side
S123: this would be 2 power n plus 1
E223: plus one
G209b: that's right
S124: This is the induction step and that gives you
E224: the [conclusion?]
G210: --- which --- I have, I have trouble with induction, I

can't ---

S125: that's a ---

G211: you use the hypothesis, 1 can't see why they use that
hypothesis within their a, their assumption, ok? they
assume something and they they use it within their
proof

S126: and you don't believe it.

G212: and you don't believe it, why

E225: It's very simply, if you have a very very long line of
people,and the last one kicks [everybody? anybody?]
then the next one wants to kick one before and again
and again, you know

G213: Ok, you don't, --- I have trouble seeing it. Why
should that assumption be true, when applied to your

E226: Because probably induction, we have to start from the
middle, you, you, we start --- Every time we start with
one line you know, with the first, the first case and
after that we start from the middle, of, of this ---

S$127: you would propose what? to check for some 5 or 6, that
would give you more confidence?

E227: No no no no no then, this, in this case ---

G214: How many do you need to build up that confidence? That
gives you, well here's your proof now?

E228: No

G215: Yeah, that's the way I see it. How else would you see
it? you can go to as many steps as you want and your
hypothesis is, I don't ---

S128: Suppose we have proved that, then we can prove it for,
what you are doing in the induction step I think is
you're showing how to prove each step.

G216: Each individual but you have---

S129: Yeah

G217: to show for that many steps on, it does hold

S130: It's done

E229: But you make, [on this crazy?]

G218: Proof by induction, induction proof by, all the others
I understand, induction I have problem understand, I'm
sorry I can't

S131: But that's what the whole experiment is all about.

G219: 1Is it?
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S132: because people have trouble with being convinced there
is
G220: I have a lot of probl-ms being convinced by induction.
S133: Yeah

G221: you can show me a lot of points, but what, what just
because you assume something, why are you assuming it
to be true in every case?

E230: But you made it without any problem here

S134: were you convinced by those, those —--

G222: I'm convinced through word not through induction, and
if this is indeed the case when you showed it here, in
this particular case, I can see it.

S$135: Umhmm
G223: But in several other proofs that I've done, I can't
see it. I have problems --- [working?] ---

§136: Let's well, where were you convinced in this case?

G224: Because for each multiple on this side you multiply
the other [see figure 13]

S137: Because I think the only one the inductive argument
has convinced you have seen what you have seen is the
pattern of proof for each individual case

G225: [?2?)

S$138: Because you can prove it for n equal, I don't know, 1
and 2 and 3

G226: Ok

S139: You see how, you might use the --- concrete Ns, you
could show it at one, you know, one shot, to prove an
infinite number of a, of assertions --- I think that

because you know so much about induction
G227: there's one in particular is proving that K squared,
is equal to K, what is it 2 K plus 1 K,

Lldern)lie 1)
-
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Figure 14: G's writing at line G227

S140: What is it?

G228: K squared will be 2 K plus 1 K plus 1 no? is that
right?

E231: Are you thinking about the sum?

G229: over 6

E232: about the sum?

G230: showing that this, yeah the summation, that this is

E233: squared
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S141: And you don't, you're not ---
G231:t§? I can't this I had problems with, I remember doing
is

S142: So lets' try this problem now, ok? ---. we have this
[Item 8, the two sequences A and C)---

[long silence]

S143: Here's a definition by recursion

E234: Umhmm

S144: You know what the first are, and then you know what
the next is when you know what, do you understand

G232: Yeah ---

S145: Have you any idea what the two sequences are?

G233: 1 2 just give me a minute

S146: calculate

E235: if you, if we have a sequence from the previous ah
element of this sequence we take the second coordinate
and put, it in the first place, and the second place is
obtained by

S147: summing

E236: summing both of the coordinates

S148: Ok what are, could you write some of the first, terms

E237: It will be the first one, ya? ok the first one is even
by this, the second element of this sequence is given
by, I take this one and put it here and the second one
is given by adding, ya? Ok?

S149: this goes

E238: This goes here and, this one is obtained from this and
this by

S150: summing

E239: summing

E then began to determine the actual terms of the
sequences. She began with the A sequence. After finding
several terms she switched to the C sequence:
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Figure 15: E's calculation of the first terms of the A
and C sequences.

E248: Ok we add in this way, this one and this one

§156: the previous two

E249: ya 2 and here 3 and again this one and this one gives
us 3 and 5, this one and this one give us 5 and 8

G240: now its 5

§157: Ok so what did you get?

E250: we, we get the same thing, the same

G241: well write it down in general

E251: we get the same sequence

$158: Then if you can define it a different way and still
get the same thing how can you?

G242: recursively, isn't it,

E252: No I think we can find, we have to find a formula to
to come from one sequence to, to the second --- isn't
it?

E was uncertain how to begin. G suggested that the
sequence was related to 2n-2. He then found he was wrong.

S162: What are you trying to do? Have a general formula?

G247: Yeah, I'm trying to find the general formula for this
one here

S163: And ~--

G248: And generalize this one

S164: And show that

G249: And show that they're equal

E258: umhmm

G250: so if we prove a general formula for this, prove by
induction through here

E259: But you are ---
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G251: No it's prove by induction that your formula does
indeed give you this recursive sequence, and then do
like wise with this one give a general formula, prove
that it does indeed show through induction for n
greater than

S165: Two inductions

G252: two inductions, yeah and if the formulas hold then if
they're equal well you can get that they're equal

S166: You can use one single induction

G253: You can use one induction?

S167: Ya
G254: On both, because your assumption is that they're both
equal --- yeah that they're equal

S168: No, Yeah but you can show this by showing that A 1
equals C 1 and then assuming that A N is equal to C N
show that A N plus 1 is equal to C N plus 1, and then
you move on. Maybe you're not going to [be?] convince
--- hm?

|
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Figure 16: E's writing at line S168

E now suggested finding a general form for each
sequence. S said this was not a good idea. G wrote:

Figure 17: G's writing at line G259

This was considered useful.

G259: Case that they both start off at the same place so
: their sequence will indeed be the same, no? --- Given
3 that C 1 C 2 starts with 1, A 1 B 1 starts with 1
E266: Ok but
G260: No?
E267: no, I don't think so, ok,

A
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G261: I I
E268: You know that they are the same and you are trying to,
hm?

G262: I think that if you can show this case and you can
show this case the only thing that differs in this and
this are their---

E269: But you write the same ---

G263: Yeah but you might assume that you start at different,
you might start differently here, as opposed to here,
where here you can start with 2 2, but since they both
start with 1 1 then you can show that these two are the
same, can't you?

E considered to herself. G continued to try to see a
way to build up from the beginning of each sequence.

G268: I think you should show this for this and you should
show this one here for this one

S$176: Oh

G269: that's what I was saying

S$177: so umhmm

G270: ‘'cause if you can show this to be true for this case
and this to be true for this case then you've already
implied that this one you've taken both sides, and I
think it's proof enough instead of trying to go
directly from here to here with some, by formulating it

E273: But how are you going to do it? You can see, you can
make it only by induction I think, There's no, there's
no other

G271: You have to show that, you have to show that both
sequences are

S178: Yeah, but even in that, in that solution you have to
use induction

E274: Ya, there's no

G272: You have to use induction to show that the sequence is
the same, or you can prove inductively that this, these
two sequences will yield the same

E275: umhmm, then there's formula for A N and there's
formula for C N OK? and we have to show that the first

G273: Start with the basic,

E276: Ya

G274: the basic case

E277: the basic case

S179: the basic case is, you have it

E278: Ya, the basic case we have

S180: You don't worry about it

E279: We don't have

$181: You have everything there, from 1 to 5 ---

G275: OK, our assumption is ---

E280: Yes, and we have to extend about 1, about 1, each of
these elements
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| G276: yes

They conferred.
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Figure 18: E's writing after line G276

E did most of the writing while G agreed. G objected to
the use of an assumption at one point. E explained that the
important thing was the method of going from one term to the
next which was always the same in each sequence.

E303: It is possible probably to make it formal [activity?]

S192: yes

E304: But it is, it's too long! --- [Oh god?] because you
know, I started to do it you have so many indexes here

G294: Let's assume this is true

They continued to work on the problem. S then led them
through the argument, summarizing the relevant points in
what they had done.
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E316: that's the whole thing

S201: the so that you can use this induction step and show
this formula because the previous are OK hmm?

G301: yeah I can see that

S202: But, you can't---

G302: I can't, I don't know how to put it down in,

S203: Ok you can see it

G303: yeah I can see it

S204: well that's just a matter of some technicalities

G304: That I ---
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G305: I am convinced

S$206: You will be if you proven that

G306: I'm convinced well for the next step I can see it as
well

§207: Umhmm you see the method

G307: I see the method

S208: You see the method

G308: yeah but again, proving by, induction ---

S then switched to items 11 and 13:

S§210: doing mathematical induction well, we have already
discussed this. I didn't expect you to talk so much,
before I asked this question. so let us come to this,
you know, in empirical sciences we are using something
that's called indvction, which I suppose someone is
doing some ethnographic research enters a tribe and
sees three people, they all have blue eyes, so he jumps
to the conclusion, Oh all the people in this tribe have
blue eyes. How does this kind of reasoning differ from
the mathematical induction?

G310: well we have to ---

S211: We start from some previous, some {yes this
extension???] we start from some, small numbers, a few
cases, yeah

G311l: I'm not, personally I'm not convinced with it so

S212: You're not, not as much as with, the empirical as well
as mathematical induction doesn't convince you

G312: [not much at all???]

S213: but you were convinced in some cases

G313: In some cases yes, I was

S$214: well I don't think you have to make it because just as
with this assumption that the sum of angles in a
triangle is Pi --- This is an assumption that we do
because it works in certain domains of experience. It
can be applied in, you knecw, local places of the earth
where you have, on the flat, on the flat you have, you
know, the sum of angles is Pi As you, suppose you take
very big triangles on the earth as, as a globe, as a
sphere then you get those triangles the sum of angles
of which is bigger. So this geometry it is a theory of
local parts of the earth, which look flat, and I think
that with Mathematical induction is, has the same
status, a status of an axiom, this is an axiom of our,
and it have the same status as our assumptions about
logic, as about geometry. You have Euclidean, you have
non-Euclidean geometries so you don't have to be
convinced, about it so much, because there may be
theories in which this doesn't work ---

G3l14: I'm curious, when you mentioned about the tribe, I'm,
I don't know, I find it ambiguous sometimes, obvious I
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can't see why you're doing, I can't see it for all
cases for instance, some I find trouble seeing it, with
others it's evident, it's obvious, but some of theu I
ask why do you prove, it's obvious

S$215: And =ometimes not obvious, even after proving

G315: that's right, yeah.

S then asked E her opinion of Mi. E felt that one
problem was the lack of experience many students have with
MI. G asked how much experience E had had, and whether she
had studied here (in Montréal). E replied she had not. S
then showed them item 9: "Show n(n+l) + 11 is a prime
number”. They plugged in numbers. S pointed out all they got
were prime numbers.

G325: but how far do you go, in the case of proving that, Pi
is, or any [ir?]rational number for instance, doesn't,
doesn't have, for instance the, how do you know it
doesn't end somewhere along the line, and how do you
prove that by induction, for instance, In that case

S$225: to prove

G326: prove that, prove that Pi

S226: Pi is, is not rational

G327: yes

S$227: do you prove that by induction? No no I think that to
prove that it is not rational is somewhat difficult, it
is one of the biggest theorems of algebra, you have to
prove that

S commented on the difficulty of such a proof, and E
tried to remember if it had been among the proofs she had
seen done by induction. S said that it couldn't have been.
She then returned to n(n+l)+11, and asked them to try n=10.
She pointed out that MI avoided such situations, of being
unsure of the truth of statements, by providing a way of
proof. G asked why they didn't see more MI in schools. S

‘ said that the difficulty of the method, and the lack of need
; in early grades, kept MI from being used extensively. G

¢ commented that he felt most of the students in the class he
- saw MI in hadn't understood it. E mentioned that she felt

, there was a general lack of study of logic in her
classmates. G felt that he generally understood proofs, it
was just lack of practice with MI which caused him problemns
when working with it. S said she though that the assumption
in the induction step often caused students difficulty, and
G agreed that this was a problem.

F G337: Well exactly when, if you're not sure your assumption

¢ right, but if it's based on a previous assumption

1 S240: Yeah

G338: and that assumption yeah, it's recursive but it's
based on a previous assumption, for instance how would
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you prove this? would you

S$241: Well you can't prove it because it's false, it's false

G339: How would you prove it false?

S242: by a counter example

G340: Ok I can see the contradiction but how would you prove
it false through induction?

$243: No no

E333: you can never prove it by induction you have to prove

8244: I'm not showing that all of them, none of them is a
prime number, I am showing that one of them is not a
prime number

G341: well, that's easy, that's a straight forward

§245: That's because this is the, the contradiction, the
negative of this theorem is there exists

G342: Oh I understand, I completely understand but proof by
contradiction, that's proof by contradiction

S246: No this is not. proof by counter example

G343: How about if someone just started proving this through
induction, where would he fall upon that false case,
for instance 10? What method?

S247: well, No, No methocd. You know, mathematical induction
doesn't give you even the idea, the idea has to be
discovered, like that

G344: No it doesn't, it doesn't. then

S248: you have to disprove it

G345: How do you know, you know you've gone wrong somewhere
along that way

S249: well, you know, that's kind of chance through
ingenuity you have to have insight, you know, to prove
that, you know you can have 41 here and it's more
difficult so to discover the, Great mathematicians have
come up with this formula saying this will give us all
the prime numbers or an infinite number, this proves
that we have an infinite number of prime numbers, and
one century later someone discovered that for 40 it
doesn't work

S discussed the precess of discovery in mathematics,
and the place of proofs in providing certainty for
empirically derived conjectures. She mentioned that they
had seen how MI could be used in this way.

G348: It doesn't make much sense

S$252: Mathematics doesn't make sense?

G349: No, mathematic makes sense. mathematics is very
logical,

S253: Except this, except this

G350: Exactly, I don't like this at all

S254: Maybe we should stop the experiment

G351: I can move forwards, I can move backwards, but I have
to move somewhere to show my conclusion, now it's
either I can prove it wrong or I can Like I said we can
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imply things from right to left or from left to right
but we're going to come to, we're going to come to a
final agreement, but this doesn't, you have no, no
concrete way of knowing that this is indeed proof
enough that's what I don't understand
§255: This, but this counter example is proof enough?
G352: For me? that's fine

The session ended at this point.

Stage One, Group Being Made Skeptical

The session began with some questions about the
Fibonacci sequence. Both J and H said they had heard of the
Fibonacci sequence. J also knew the rule for generating the
sequence and was asked to explain it to H.

J3: OK so, the next one is the sum of the two previous ones

H3: Oh, I see it, I see it yeah

R5: OK, how would you write that as a, an expression or a
formula, algebraically

J4: should I write it here?

R6: yeah

J5: OK F n plus 1 F n plus F n minus 1 --- so that's for

R7: Does that make sense?

J6: That's for the term, like each term

R8: Umhmm

H4: That's right. You should put A N is equal to 1, but I
mean it's right

J7: Ya Ya and the condition that F F 1 and F 2 is equal to
1, because otherwise it wouldn't work, how to start

H and J were then given the question: "Is there
anything special about the sum of the first n Fibonacci
numbers? Is it related to the sequence in any way?" They
read over the question and H asked for a clarification of
it. R restated the question for the specific cases n=3 and
n=4,

J11: we must [?] first terms [?] second term in terms of
all these terms then you have F 1 plus F 2

J12: then you have [?] F 2 then you have --- then you have
F 2 plus F 3, plus F 4 and then you have F 3 plus F 4

H9: Funny how the first, if you add like this, It's like
you're adding

J13: and so you get

H10: 2 times each one

Jid4: 2 ---
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Figure 19: J's writing at line J14
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Figure 20: H's writing at line J1l4

H and J had been working separately, and were asked to
compare their work at this point. They felt that they were
doing the same thing.

H13: I'm not writing anything down, just a bit but that's
what I was thinking .. like adding these things to

some sequence --- Why?
R14: Just wondering ---
Hl14: So F,

R15: Is this getting you anywhere?

J17: Not, not really because, mm I cannot write formula for
this, for the sum, because there's like nothing , we
know that each of them repeats two times, you're adding
every number, every previous number in the sequence two
times to get the, the sum of the N Fibonacci number,
numbers but I don't know --- hmm let's see --- they're,
you just take mm minus --- N minus 1 --- --- well I
don't know how, to formally, describe my, my idea but,

R16: Perhaps if the two of you compare your ideas you'd be
able to put something together here?

H15: It's the same, it's the same thing see
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like all

adding these two terms

Ya all of them will, will be counted like twice

well not all of them, the end, the end points, the last
one, see you won't count, like let's say if you did it
say for a certain set here

Ok

This one would not be counted in, at all, this one
would be counted once, would be counted in twice, see
it would be like this, from here to here would be 12,
this which is equal to 1 plus 1 and you add this one
again plus 1 both twice, because they'd both be counted
twice, plus 2, hmm, 2 plus 1 for this one because
you're counting this one, like this [see figure 20]
Umhmm equals 5

and then 3 plus 2 would equal 5 and and this would be
right here, I screwed up this 5 12 7, so, [see figure
20)

Is that the sum of the first 5?

This one right here yes, first, first 5 let's see not
this, I don't think so yeah 7, 1 2 3 4 5, but this,
here it's counted 1 2, this is like, as well, and we've
proven, this series, this series of numbers when you do
this do you, is it A 1 and A 2 are equal to 1 or is it
that, they assume that A, A 1 is equal to 1, this is
equal to like 1 plus 0, I'm just curious, ah it's
irrelevant actually
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Figure 21: H's writing at line H20
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Yeah, Just define A 1 and A 2 as being equal to 1 is
the easiest way to do it

A 1 equals --- s0o A 1 plus A 2 plus --- plus A 1 plus A
2 --- plus A 2 plus A 3

[Reading] is it related to the sequence in any way. by
sequence we mean like geometric sequence or ..

No No to the sequence of Fibonacci numbers itself
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To the sequence ah ha

Yeah is the sum related to the sequence, in any way
other that being the sum of certain terms of the
sequence

The sum

The obvious way

so this right here should, you should be able to find
the relation. found

If there is one

If there is one --- mmm

A4

Have either of you calculated any of the sums to, to
just know what they are?

Ah no I didn't want to actually, I did this right here,
I did the first 5 the sum of 5 to see what it is in
some expression, to see how it comes out and, --- it
does this, so

At this point J checked the first five sums, while H

continued to work on the problem generally.

R27:
H28:
R28:
J28:
H29:

J29:
H30:

J30:
H31:

J31:
H32:
J32:
H33:

the sum of the first 5 is 12

Right

Is there anything special about 12?

mmm

No, why, Want do you mean, I don't think so, well, it's
just a number

No

Is that what you want? Yeah, it's just a number. Is
there anything special about 12? It's just a number.
No

Now if you want a pattern to get any sum of any N,
that's different

No I don't think so, I don't think there's

There's a pattern?

There's a pattern

No I think there probably is a pattern

They were then asked to consider particular sums, and

whether there was anything special about the sums.

H37:

R33:
H38:
J36:
H39:
J37:

H40:

NoO -~—--- 2 --- I mean, I guess you can make a pattern
for this, but no there's nothing special about it
What would be the next one?

uh

20 --- you are adding 1 ---

20

OK the difference between this and this is, no, that's
nothing

235 --- 2 2 [something too quiet to hear] --- No I

don't think there's a pattern, I mean, let me see this,
2 47 12 8 12 is 2 12 4 ---
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R34: Is this a true statement?

[ For all n: Fqy + F, + F3 + ... + F, = Foo - 1 ]

J38: uhhuh --- F plus 1 minus 1 --- Yeah it is --- umhmm ---

R35: Do you think that that's a true statement?

H41: Uh,

J39: No, it is

H42: 2 4 7 12 8 20 --- is

J40: mmm 1

H43: N Is that the summation of the series or is that like
each term

R36: Well F 1 is the first one and F 2 is the second one,
and F 3 is the third one

H44: Oh OK
R37: and F 1 plus F 2 plus F 3 is the summation
J41: yeah that's true --- that's it

H45: What is, what did you say it is 12? yeah it is, let me
see it, yeah it is, yeah it's true

R38: Ok you'll buy it?

H46: yeah
They were then shown the statement:

The Fibonacci sequence is given by:

Fo= 1 n - - n+2|n - 149 n + 569 n-4
60 24 24 60

H brought out a calculator. J began checking for n=1.
H began with n=8. After considerable calculating:

H52: I might have made a mistake. But, my calculator says
no, but did I make a mistake, that's the question ---

R44: Which N did you try it for, on the calculator?

H53: 8, I got 23, but I may, I may easily have plugged this

wrong ---[tried again] --- No, I must have done
something wrong, I get something completely different
this time, again --- [tried again] ---

J50: --- [still working on n=1] --- 6

H54: I keep on getting different answers, anyway

R45: Maybe 8 is cursed or something

H55: I'll try something else, it might be --- 12, 12 divided
by 60 ---
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J51: It doesn't seem to be working for ---

H56: No, I don't think it's working, unless I'm doing
something wrong in particular

J52: It does work for, I was trying to check it for 1

H57: No, Ah, is it?

J53: It doesn't say that it doesn't work for 1, so it should




be working for 1 also if it's valid

R46: Umhmm, Yeah it should work for any N

J54: For any N, there's no restriction, so when you try to
add , 1 60 pluc 1, minus 24, see that's 2, ---

R47: So you tried it for 12 and 8

H58: Yeah it didn't work, but perhaps I might have made a
mistake, I guess not, Is it, Is it true?

J55: 569 60

R48: well you're supposed to figure that out

J56: minus 4 OK

H59: Yeah, but I could easily be making a mistake, Oh, you
put it in for 1, did it work

J57: No it didn't, but maybe, maybe I made a mistake

H60: 60 minus --- plus 2 --- ah shit, for 1 it does [?] work

J58: It does work?

H61: well I mean, we know, It worked for this one but maybe
not fc this one [pointing at a later number on list of
Fibonacci numbers) we have to take one, arbitrary one

J59: Maybe you made a mistake somewhere? So it does work for

B62: Ok let me try this for 8, try it for 8 again, 8 ---
[calculating] --- time 8 plus 2 ---

R49: You can just hit equals to close each set of brackets
if you wanted to

H63: What?

R50: do it that way. The reason it's set up tnis way,
actually, 1is so if you're doing it on a calculator you
can do this calculation, hit equals to close this
bracket, and then

H64: Yeah, I, that's what I did the first time, I thought
it'd be easier

R51: Just in case, the brackets are messing you up somehow

H65: --- plus 2 ---

J60: equal, ya

H66: why do I keep on getting, I'm getting 50 for a while,

that's what puzzles me, obviously it's not 50 --- I'll
do it one last time and then I'm saying no. But I'll
make sure I'm doing it right ---[calculating] --- no,

it doesn't work, unless I'm pressing it wrong it
doesn't work, no. Ok I get F 8 I get 50, that's the
answer F 8 is 21

They were at this point given a table of prime numbers
less than 10000, and the statement: " For all n: P =
n(n + 1) + 41 is prime ". They were asked if they thought
the statement was true.

They copied it down, H accidentally writing 2n for n2.
They were asked what they were thinking of.

H71: Ah I, I'm thinking of, all pair numbers, if you square
them with give you a pair, something that's pair, is
dividable, and adding up to a pair is going to give you
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impair, it's going to be odd, Now I'm looking, I'm
thinking, I'm just thinking in terms of

J65: No

H72: when you, I'm determining when you, odds number what
happens when you add them up, and so

J66: must, if there was a way to get a multiple of 41 in
here then you'd, then it wouldn't be a prime number
anymore then sum of these two

H73: What? What are you saying?

J67: If you were to get, a multiple of 41 here, in the
start,

They then began to work separately on J's idea of
checking n(n + 1) to see if it could be a multiple of 41.
After some time H announced:

H77: No it's, not true

R57: Why not

J71: why don't you think it's true?

H78: What I did is, but you're right, well, I mean, at
first what I did, but then I used your idea, see I did
N sguared plus N plus 41, ok you're saying that this is
a multiple of 41, you're right, so I did N squared plus
N is equal to N 41 N

/’f‘{‘(:/f\/—\\ (,zu\"‘q
npyozdd AN
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Figure 22: H's writing at line H78

J72: No
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dividing by N is, 1 plus n equal to 41
41 6 7 times 8, 6

(v l '3\»0%9 (4}\){(0)?2,

Figure 23: E's checking at line J73

let's try N is equal to 40, plug it in and it's equal
to 41

What are you doing?

No I'm just trying to know if this expression, can ever
give me like a multiple of 41

H resumed his explanation of what he had been doing.

His work began with the equation: n? + n = 4ln

H85:

J79:
H86:

J8o0:

AT ® 4
O

L\@
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Figure 24: H's writing at line H85

Ok so divided by N I get 1 plus N is equal to 41, so I
tried the number N is equal to 40, just to see it,
yeah? Or I mean, it could be any N for that matter,
Why?

It could be any K here, actually, there's still K here
because I'm just taking an arbitrary N right, could be
any N, show I'm just working so it came out to 1, so
try, plug in 40, gives me, gives me, 40 squared plus 40
plus 41 gives that ["1681") and dividing by 41 gives
41, as it should

I still don't understand, what you are saying is N
squared
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H repeated his explanation. This time he represented a

multiple of 41 as "41k" rather than "41n*, but then decided
*k" could be "n" after all.

n
N - @4\

b N Ol
N\<le

Figure 25: H's writing at line J84

J84: Ok so you want to find

H91: In fact it's the square, this squared

J85: So you want to find N for which this could happen, Ya?
--- and your N is 40?

H agreed and then repeated his explanation again.

J91: umhmm, so your N is 402

H98: see if I took

J92: So your N is 40 and you're getting, ok when you
multiply 4v by 41

H then showed that the same procedure would give 81 as
a counter example. He also mentioned that there would be
others, and J agreed.

R61: Are there any values less than 40 for which,

H103: It's going to be

J97: No No

H104: Of N less than 40 you mean

R62: Umhmm

J98: of N less than 40 Ya, I don't think so

R63: Why not? you don't think so. You don't know

J99: Because here you, the number up here that you get is,
[converginous???] 41 times 41

R64: What are you

J100: No No no

R65: when N is equal to 40 Yeah,

J101: When N is equal to 40 yeah

H105: My guess, Id' say, Would be No either, but that's just

Rt
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a total guess, less than 40
J102: No there could be, there could be other numbers less
than 40

They were then asked how they would find out if there were
counter examples less than 40. H tried to determine
something based on the same procedure which gave him 41.
After some time R told them that they are all prime. H
stated that he was trying to modify his method for multiples
of numbers other than 41.

R72: OK, general math tip, if you only have 40 cases to
prove you may as well prove every case

H112: No that's too long, I wouldn't

R73: I mean, that would be

H113: Isn't there a method of doing it?

R74: It's the only method I know

H114: Oh, OK. I'm sure there's another method, I knew it
wasn't a multiple of 41, any of these things, unless,
but I did not know if it was a multiple of anything
else

R than gave a bit of history, of the empirical
discovery of the statement, its tentative acceptance as a
formula for primes, and its eventual disproof. He then
showed them the statement: " For all n: if n is prime then
F, is prime " H began with the rule for generating Fibonacci
numbers and asked for confirmation that he had understood
the problem.

R80: yeah, Is that true, Is that a true statement?

J105: No

H120: Yes it is, I think so

J106: [OK?])

H121: yes it is, Am, Am I right? I'm almost sure this is
right, it should, let me think about this, if, say this

is not a [multiple?] number --- 2 ---
J107: 1 2 11
H122: 19 --- what are you doing? are you doing

J108: I'm just trying
H123: Actually it's a good idea to check them
J109: I'm trying to check them ---

R reminded them that they had a list of all the prime
numbers less than 10000. H asserted that it was true, but
was unsure. He gave an argument based on the pattern oi
even and odd numbers in the Fibonacci sequence. R asked if
he had confused prime with "pair". He said he had not, but
that he knew that prime numbers would be odd. He than saw
an unspecified flaw in his argument. Meanwhile J had been
checking using the table of primes.
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J112: Yeah, by observation, this seems to be right
H130: Uh

J113: Correct, it seems to be true --- um but ---
H131: --- 2 2 2
J114: oh no --- so

H132: No No it's not true

J115: It's not true

H133: What? Is it true?

J116: No it's not, because I found a counter-example
H134: Ah, you saw an example that it's not true?
J117: Ya

H135: Now wait

J118: Because 17 is prime isn't it?

J had not seen 1597 in the table of primes. R pointed
it out. She then checked Fq, 4181. H continued looking for
a general proof or disproof.

H139: F of N minus 1 --- What was the, that thing, that you
showed us before there, the, let's say that the
summation of each one is equel to F of N plus 2 minus 1

R88: Umhmm

H140: and that's summation of F of N?

R89: Yeah ---

J122: I found another counter example, 4181

H141: Is it, is it prime?

J123: No it's not and 19 is prime

H142: What's the number? F 19

J124: 4181

H143: 4181

J125: 81 yeah

H144: Ok well it isn't then, it's not true, she found one, 1
guess, wait, it does seem, it does seem to skip it ---
Ok it's not true because we found a case which is not
true

R90: Ok, so we've looked at

H145: Is it true though? or is it not true? Ah I, no

R91: What do you think?

H146: It's not true, but maybe. It's not true. but, did we
make a mistake?

J126: then you shouldn't ask, you shouldn't ask

H147: But did we make a mistake looking at it, Is it true of
is it not true?

H's confusion was based on uncertainty about whether J
had missed 4181 in the table. On checking for himself he
became sure it is not true. R then reviewed the four
statements they had looked at, noting that three had been
found to be wrong, and the first one had been accepted
without proof. They were asked if observation had been
their only evidence, and said that it had been. R pointed
out that observation had misled them in the case of the



247

prime-Fibonacci statement they had just seen. They returned
to the first statement to try to prove it.

H163: Oh it's the summation of the thing, oh, it'd be too
long to do all that I don't want to do it that way

R107: Ok, well how many do you want to do before you're
absolutely sure?

J137: It can go forever --- so there must be a way to prove
it

H164: Oh yeah, let's just think about this logically,
summation F of N is you're adding, you're adding A 1

J138: N minus, N plus 2 minus 1

H165: plus A 1 plus A 2 plus --- A 2 plus A 3 plus --- plus
A 4 is equal toA 5, A 3, A2, A 3, that's A 3, A 4, no
this, shit, A 3

J139: We can try to prove it by induction

J then wrote the proof:

—’F/\ _‘J:_Z-t—ooajr-‘\r\ = I~ '—1
O =B

Figure 26: J's proof by MI

Meanwhile H continued in the way he had begun, trying to
break down the sum into previous terms of the sequence.

R108: What are you trying to prove here?
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Figure 27: H's writing at line H172

H172: You see I'm taking this, see I'm trying to find the
pattern, you see, I know this is always true, and this
is like the summation till, till F of N, till the value
of N right, Now I know what F of N plus 2 is equal to
this ok and I know that it is also possible to break
this down to small expressions, same with this one, and
them up and see if this is equal to this minus, is this
equal to this plus 1, so like, basically we just

J146: Ok this is

H173: It might be true, but it's long

J147: I think I can prove it by induction

R109: OK, she thinks she's got a proof

H174: Oh she's got---

R110: Are you going to look at it?

H175: Fine with me, I know I could work it out here, I just
don't feel like doing it, well, I mean, I could, but,
see if this works it would be very nice

J148: So the, the first, the base step would be proving this
for 1

H176: yeah

J149: it obviously works because when F is, when N is 1

H177: It's good

J150: it's only 1, 2 minus 1 is 1, then you, you write the
inductive, you have the induction step, write this in
this form and assume that this is right, this one is
right for K it must be right for K plus 1, so [see
figure 26}

H178: OK, let's see is it right for K?

J151: Ya, if it's, if it's right, right for K, it must be
right for K plus 1, so you just write K plus 1, so here
you will have K plus 3 --- minus 1, then you replace
this, by the expression direct inside, and what you
have left here is F K plus 1, it is obvious that when
you take this one and this one [see figure 26}
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H179: it's F of K 3

J152: K 3 and you have this minus 1 here what is exactly

H180: yeah it works, it's good

R111: Why does it work?

H181: well, I mean, because it works

(laughs]

J153: Because it's proven

H182: Because that's the proof, because it makes sense, it's
obvious it's true

R112: well

J154: well that's the formal proof

R113: Ok, isn't this proof based on an assumpticn that it
works for K?

H183: Well didn't she prove that it works for K? I

R114: yeah but she assumed that it worked for K

H184: No No , shouldn't you assume for like F of

J155: mm well

H185: I don't know, to me, I, I mean if it works for one F
of K then it works for all F of Ks period, and we know
it works for some so if it works for one, I mean, it
works for all, that's right

J156: yeah we know that it works for

R115: well the prime one worked for a bunch of them and then
it stopped

H186: no, yeah but we didn't prove it, this is true, this is
obviously true, I mean, we did, like, 8 and if it works
for 8 it works for all, I mean, this is true, the proof
is fine, I mean, if it works for F of 8, ok, then it
works for F of 9, and also works for F of 10, it works
for F 11, and so on and so forth, it works for
everything, right

Each was then asked whether they believed the other
person understood the proof. They felt they both did.

R120: OK, what do you have to do, in math, to figure out
whether or not a statement is true?

H191: [once you get er five???] well, if it's true?

R121: Yeah, I mean I've been giving you statements and
saying is this true and,

H192: You got to prove it for all cases that its true,
actually every case, prove that there is no single case
that is not true

J159: first you have to check if it's all, if it is true,
like, if you cannot find any counter example that's the
way I think --- It's very

R122: How far do you go searching fo counter examples?

J160: Through every natural number

H193: eventually, you can make an , you can take a pretty
good guess but, mostly what you have to do is try to
find some pattern to find, for all the examples

J161: and the you can
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H194: [?27?]
J162: and then you must think why, why it works, why, how it
works and why, how you can prove it

The distinction between proving "why" something is true
and "how" something is true, was then discussed. H said
that it depended on the way of proving. J stated that an
existence proof which involves the actually construction of
the thing which is proven to exist, showed both how and why.
H said that if you understand a proof then you understand
both why and how, but if you don't understand then you don't
know why.

R127: If I tell you that the sum of the first 87 Fibonacci
numbers is not equal to one less than the 89th
Fibonacci number

H202: yeah, what would I say?

R128: What would you say?

H203: You're wrong

[laughs)

H204: and if, and if I knew, and if I found out that it was
true then I'd go "Well, shit", what can I say? I mean,
obviously from that it's true, end of story, I mean,
it's true, It should work for everything, I mean, if it
doesn't then there's something extremely wrong with our
minds, because we don't understand what we're doing,
but no, it should work, right?

R129: Would that be your reaction? If you found that for the
87th

w H205: If somebody told you

R130: then with 87 this doesn't work anymore?

J169: ya, I would, I would ask for an explanation, a
detailed explanation

R131: An explanation of what?

J170: Why?! Why does it work?

R132: Where would you think the problem was? Where would you
guess the problem would be?

H206: The person who's telling me that calculated

incorrectly
J171: There was something wrong in the computer
H207: what?

J172: There was something wrong in the computer when you
were calculating this, this 87th Fibonacci number

, Because there isn't any formula for formula for like

3 Nth Fibonacci number, you would have to calculate all

4 of them

’ H208: What?

J173: When you want to get a certain number F 87 you have to

H209: You have to work them through of course, it'l]l take a
long time

J174: Ya so the, I was just wondering

H210: you can't get just one, just
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J175: If there was, if there was any formula for this, like

H211: Ah, Jjust to get the one out? You mean, just take

J176: Just to, ya

H212: Just to get that without having to calculate the one
before .

J177: You have, you have to calculate everything from the
beginning, then adding them extending from here, to get
the next one you have to add this and so to get from
this point to 87 would take you some long time

R133: Well it only took me about two minutes to do this, but
I just wrote a computer program and it did it.

J178: Ya

R134: If it did, If you were absolutely sure that yeah, it
didn't work for the 87th Fibonacci number, would you
then conclude that there had to be something wrong in
the way you had done your proof?

H213: Of course

J179: mmm

H214: But I don't see anything wrong with it. Do you see
anything wrong with it?

J180: No, there cannot be anything wrong with this proof

H215: yeah but, yeah, but if that was true then there is
something wrong with this for sure, there'd be no
question about that, If you prove something that, you
know, is not true then there's something wrong with it.
I mean, if it's not,

R135: is there something wrong with that proof?

J181: No, no

H216: No there's nothing wrong with that proof, it's fine. I
think so, let me see. No, that's fine

J182: No, there cannot be anything, anything wrong with this
proof, like,

They were then asked for their criteria in determining
whether & proof is correct. J mentioned a lack of weak
points, a step by step process, and a correct application of
certain rules. H only said that a proof is correct if its
validity cannot be questioned. J was asked if her proof went
from step to step. She mentioned the basis, and the "rules
of induction".

R138: Ok, you're using the rules of induction, what are
these rules of induction?

H221: I [wouldn't do?] that anyway, I never saw that before,
It's a pretty good trick. Induction, what's that?

R139: You've never seen a proof like this before but you
believe it's true

H222: No no no no but I mean, it's true, I mean, looking at
it you can tell it's true. i mean you can see, yeah,
it's true, It works for K plus 1, I mean, obviously it
works for all of them then. I mean, you try any value
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of K then it works. I mean the, the K, I mean, I mean,
it is true

J187: No

H223: But, I mean I've never seen this before

R140: Ok, so you're saying

J188: [That it's actually?]

R141: that there's a rule, and you're saying, well it's
obvious

H224: Well, I mean, this is true

R142: so you're both looking a different proof here

H225: Well, I mean, this is true, there's no question that
it's true for K plus 1, now induction now, I get

J189: You use induction when you are trying to find, when
you prove the truth of some statement for N using the
fact that, that the statement, that the previous
statement was true, the statement for, for, here you, I
am trying to prove that K plus 1 is true using the fact
that K is true

R143: OK, how does that help you to prove something?

H226: What, sorry

R144: How does what she just said help to prove, to prove
something?

H227: well, she knows [laughs]

R145: Well you might be able to help

H228: what was the thing?

J190: How this fact, helps me to prove.

H229: I mean, oh ok, I mean, well if it works for 1, Ok? and
it works for K plus 1, since we know all numbers exist,
you know, that every number goes 1 plus 1 and you get
all numbers, I mean, it's all numbers, all values of,
all the numbers you can get, you can get all numbers,
right? I mean, if you add 1, you know it works for any
K,

J191: umhmm

H230: works for some K, sorry, some K, not any K, some K,
and it works for some K plus 1, and if it works for
that, if it works for a value then it also works for
the value K plus 1, and it works for all values K plus
1, K plus 1 you can consider this, you want some value
N and it works for the one plus that, so then that one
has to work, and the one plus that has to work too, and
so on, and so on, right?

H231: And that is how she proved it. that is how she really
proved it.

The session ended at this point. In some discussion
afterward H seemed uncertain as to the truth of the
statement they had proven, and wanted assurance from R. R
refused to answer and asked what H thought. H then asserted
that the statement is true.
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Stage Two

The first statement was given to G and H:
For all n 2 3,
(Fa)2 = (Fpq)(Fp) + 1
(F, is the n* Fibonacci number)

H had a bit of trouble remembering the recursive rule
for the Fibonacci sequence. G knew the first six terms.

H402: I'm just looking and saying, ok, this is saying F of N
is, square root of that, and I'm just looking if you
multiply 2. I don't know what to do, [with this?]
sequence --- 3 --- Because if you put a 3 this would be
2 times 3, would you say?

H403: No that's ok

G403: well, we can work this one out and, maybe use, for any
value N, we have a value N minus 1 tlmes N plus 1, we
can multiply those two values, and, kind of, find an
equation out of that. you want me to start writing it
now, N squared, assuming N is the value we're looking
at, N minus 1, would be again N minus 1, N plus 1,
multiply that through, you get N squared minus 1 plus 1
yields N squared which is plain and simple, so this is
a true statement

(N-0
Cr’h"l)

//)Z./{—/'/
:/7?"/')

7}1/&

Figure 28: G's writing at line G403

H was asked if G's argument made sense to him and G
repeated it for him. H pointed out G's confusion of the
indexes with the actual numbers.

G407: Yeah this will be true for the first 3 but it won't
be true for these ones here for these numbers here
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Figure 29: G's writing at line G407

H407: well why won't it it only starts at

G408: Because, yeah

H408: 3 anyway, but why won't it be true for these ones?

G409: Because it's not exactly N minus, this value here is
not exactly, assuming we're at 8, N is equal to 8

H409: No No No, put in 3, N is equal to 3, I mean, it starts
with N is equal to 3, put 3, is 2 times 4 plus 1, 9,
square root of 9 is 3, so it's right

G410: yeah

H410: Put in, put in 4, you

G411: vyeah but

H411l: No No No put in 3 here --- this means like N is equal
to 3, 4, 5 whatever

R reviewed the meaning of the indexes giving a specific
example of F; H then tried to work through the statement for
n=4. He asked what F,,, indicated and G told him it was
“the following number"”.

H418: F of N minus 1, is equal to F of N minus 2 plus F of N
minus 3, right?
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Figure 30: H's writing at line H418

G416: N plus 1

H419: F of N plus 1 is equal to F of N plus F of N minus 1,
is that true? yeah, now multiplying these two out
together, N minus 2, --- N minus 1, N plus 1 is equal
to F of N squared that's what they're saying, [it's
squared in here?] F of N squared is equal to F of N
plus 1, no minus 1, plus F of N minus 2 squared. Which
is, Now, F of N times F of N --- this is getting a bit
boring, minus 2, and then plus, do you want to continue
working this? I don't know if it's going to get
anywhere, I think it should be able to ---

S$403: What's your idea?

H420: I just want to see if I can get some expression here,
to equate this thing and 1'11, I'll take some arbitrary
ones and see if it comes out something here, ---
[generally?), and if it works I can equate, generalize
it.

G417: Or would it be wiser to look for a sequence, up until
we can find something that contradicts it, but well,
that might take forever

H421: well I don't know, see the problem is you can, if you
do that if it's not true Ifine, if it's true

G418: yeah

H422: there's a problem. You're, you're through, it'll take
a little while , I I mean
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S404: I think you should follow your idea, and you should
follow yours for a while

H423: Let me, let me just, you know, waste time

S405: Umhmm, ok

H424: Probably,

S406: Your idea was to try the first few

G419: yeah the first 3 here, yeah, assuming N is equal to 2

$407: so that's true?

G420: yeah it does work for this

S asked what G was referring to, and G answered n=2. H
pointed out that the statement was only meant to work for
n>2. They then tried it for n=3 and found that it didn't
work.

Figure 31: G's writing at line H430

H430: 11 square root 11

G427: yeah,

H431: is not equal to 3, that's if you read it like that, I
read it like, I don't know, so it's Ok, it's not true,

you guys,

G commented that it shouldn't have taken them so long
to find it didn't work. They were then shown the second
statement:

The number of diagonals in a convex polygon of n sides is

n(n - 3)
2

G430: the number of diagonals, [reading]) of a convex polygon
of n sides ~-- ---

R412: Do you have any questions about the statement

G431: Is diagonals referring to slant,

H434: Going from one point to another, diagonal

G432: yeah

R413: Within a fiqure

H435: Yeah, within the figu-e --- ---

G433: [?]

S411: a hexagon isn't it?
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Fiqure 32: G's sketching at line G433

R414: No an octagon -

S412: Octagon, the greek names, they're so confusing --- how
many do you have?

G434: But is it to each individual, vertex?

S413: Yeah, from each to each

G435: From each to each

S414: Umhmm

G436: So, not including this and this

S415: No because it's a side

G437: So we have N times N, we have, assume 1 2 3 4 5 out of
the 8, so it's N minus 3, and then we have N vertices -

-- but that's, how many diagonals --- a vertex, vertex,
right [wondering about pronunciation]
R415: Umhmm

G438: yeah, the number of diagonals in a convex polygon ---
so why is it divided by 27

S416: If you start from this --- is it the same a starting
form there?

G439: Yeah, we're back to the same diagonal

S417: yes

G440: OK Minus --- minus, we come here, but then we've
already got one, so this goes down to, no that's not
necessarily true, the first one, it'll be N, times N
minus 3 plus N minus 1, N minus 3
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S418: Why are you adding?
G441: Hold.on, for the second one, --- equals 3, then
assuming we've taken this one here, we've got 1 2 3 4 5
again, ---

R416: Maybe the two of you should compare notes to see if,

G442: yeah this is, it's a true statement but, it's just
proving that once we get to half of them then

R417: Why do you think it's true?

G443: all of then they're going to start repeating, at that
point

H436: yeah, well that's the problem here,

G444: yeah

H437: but why, why do you say it's a true statement? --- ---

G445: OK, what I have here is what I, what I assume to be
the total number of vertices not including, this
includes, having the same vertex crossing over twice,

H438: But you have

G446: but this is not necessarily

H439: For each N

G447: so for every N

H440: Ok it's true

G448: For every diagonal

H441: No No, let me see it, wait a minute. N minus 3, It's
the minus 3 that's bothering me

G449: No the 3 is fine

H442: I would get this to be N times N minus 2 divided by 2

G450: No because let's say you're taking this one here,
you're taking the first one here, 2 3 4 5 Ok you're not
including these 3 vertices here, it's N minus 3

H443: you're not including which ones?

G451: This one this or. and this one, these three vertices

H444: well you aren't doing this one, you're doing this one

G452: Yeah, that's 1 this is 2 this is 3, this is 4, and
this is 5

H445: Oh Ok I mean, I get it, It's true then, yeah

G453: yeah fine, well, then, it doesn't explain the

H446: wait wait wait

G454: dividing that by 2

H447: N minus 3, N, each N, times N minus 3

G455: Oh Yeah, this point will intersect with the first
divided by 2, this one 1 2 minus this,

H448: This is just half of one

G453: yeah fine, well, then, it doesn't explain the

H446: wait wait wait

G454: dividing that by 2

H447: N minus 3, N, each N, times N minus 3

G4535: Oh Yeah, this point will intersect with the first
divided by 2, this one 1 2 minus this,

H448: This is just half of one

G456: maybe I can, --- can I use different colours here? do
we have a time limit on each one?



R418: Yes

S419: No
G457: We do, we don't, or
R4192: no
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Figure 35: G's sketching at line G458

G458: --- assume this is true for the first, how am I going
to visualize this, I 'll just go this way --- stupid
diagram, assume for this has it's --- oh god, --- N
minus 5 as well --- let me just use this --- 8, divided
by 2 you said

H449: It's right anyway

G459: It's right

flaughs])

G460: It's true, let's just take it. Yeah, but why?
H450: why?

G461: If you know for every one you hit over here
H451: see

S420: Why did you divide by 27

H452: Why? because, well, I mean, Because, you get, because
there's a repetition 2 times , repetition of each one,
you'll repeat each one, or, say you have a polygon, you
start at any single, well, I mean, at any convex thing.
I thought it was minus 2, but I realized it was minus 3
here say, let's say you have here, you take it here,
for each one you'll have N minus 3 like

S421: are you sure ---

H453: diagonals, for each one, now you can do this, this is
true,

G462: N times

H454: wait let's say N times for each one, but only half of
them because you'll repeat one, two times

G463: you're also repeating at the point

H455: and you're

G464: But how do you show that, do you want that shown? or

H456: But, you will, you will repeat, that's obvious, I mean
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S422: Ya

H457: I think

G465: It is ob, well yeah you can see

R419a: Descartes liked to say "it's obvious" too, but nobody
believed him.

S423: well I think it's by construction, that's how you
construct the

H458: wait wait but you will repeat half exactly I mean,
It's

R420: Why exactly half?

H459: well because you'll take each, you'll take one point,
see you take one point here, you go here, then
eventually you're going to have to come back to this
point, but this point you've, by the time you've taken
every other point you've taken this point, everything
here, you'll do that for half of the points. wait, I
don't know

R421: Do you buy that G?

G466: I'm still working on mine here

H460: It's true

G467: yeah I can see it's true but,

H461: I mean, --- ok construction what, do you want us to
make this elaborate thing? and start with like a three
sided one and go upward?

S424: umhmm

R422: yeah?

G468: For 1 and 2, we have n minus 3, n minus 3, for, for 3
we have this one which is the same so its, these are
all original, 1 is the same, 2, 3

S425: This is an octagon again [see figure 35]

G469: 5

S426: Is this

R423: yes

S427: Suppose when you start at the fourth vertex

G470: the what?

R424: if you try with just a, oh ok

G471: If we start with a fourth

S428: ya

G472: well we get repetitiveness on

S429: this one

G473: On one and here you'll get repetitiveness, on one and
here you'll get repetitiveness on 1 all the way until
that, so in essence you're you're you can subtract

S430: why subtract? --- ---

G474: the way I see it is you ca" write this formula another
way, --- we have N --- if you have N , can you do this?
Minus N divided by 2, for each individual point, and
this one would be to that one, [too low to hear,
working with figure 35) Isn't this sigma, for, in this
case, for I is equal to, to 1 to N

H462: Anyway, it is true, there's no doubt it's true, why
are we still on it?
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G475: Because for each one you go through one has already
been cover for that particular one, after the fourth

H463: Yeah what I was looking at was for impair, impair
numbers, how do you say impair? odd, odd number of
things but it still should work for that too, I mean,
It works for everything

G476: yeah but how can you show that? do you want us to show
it, or is it enough to

H464: No, we can explain it, it's easily explained, you take
N, you have N sides, N dots, ok, like N things, ok

G477: That's right

H465: and N N N what are these points called again?

R425: Vertices

H466: Vertices, that's it, N vertices ok, well there will
be, starting from each vertices thsre will be N minus 3
diagonals, right? now, so, N minus 3, now you have N of
them, so times N, But, if you look at it an N sided,
polygon, convex polygon, what you will, you will see
recurring is that, you would have, by, I mean, It's, I
mean, half of them will be repeated. I mean it's true

G478: yeah

H467: What do you want me to say?

G479: I can see it, yeah, I

R426: Does that explain it G, are you satisfied?

G480: yeah I'm satis, yeah the logic is the same, but I'm
trying to, to show it

S431: You wanted to subtract here

G481: No this is wrong, this is not true, but what I

S432: He was trying to subtract some those that repeat
themselves

G482: Yeah yes, It started, here 1 repeats then 2 start
repeating, then 3 start repeating and, yeah, until half
of them start repeating

S433: OK, then why didn't you just divide by 2

G483: So you could just divide by 2

R427: Ok

G484: Is that good enough?

R428: good enough

H468: you'll buy it now ---oh, no not these things again [on
seeing a table of the beginning of the B sequence]

H and G were instructed to attempt to find the pattern
in the B sequence. H noted that it is similar to the
Fibonacci sequence. After some time, G stated that each term
was the sum of all the previous terms. G noticed that this
pattern does not apply to the third term and H rejected his
suggestion.

H474: no I say that at first, I was wondering, I thought so
but no ------ I'm seeing something very interesting
that does recur, is you notice that, see here it's 10
for this one it's times 2 minus 1 but not for this one,
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for this one here though it's times 2 minus 1, see this
one here, times 2 minus 1 this one here, it's not, it
happens for every other, it skips one every time it
does that, so there's obviously something between there
that says something, it's pretty [unreal?] 171 times 2
is 342 minus 1 is 341, let's try some numbers (further
on?] from here, --- [?] times 2 minus 1 , yeah it works
for that one too but it doesn't work for all of them,
OK well, I mean, I see it, the other cne is plus 2,

S435: Maybe it's minus or something

H475: What?

S436: Plus or minus

H476: yeah, plus or minus, yeah, actually, that's it plus or
minus, put, to the end, what we've got here, between,
[?] this is times 2 minus 1 times 2 plus 1

G489: 21 43, can I,

H477: times 2 plus 1, times 2 minus 1 times 2 plus 1, times
2 minus 1 times 2 plus 1, yeah that's it

H asked if this is the pattern, and S agréed that it is
one of them.

G491: If it's odd, if it's odd, if it's odd, you add 1, you
take all the previous ones except the

H479: You want to write it down?

S438: he's got another one, ok

G492: No for, for the odd what you're saying is that
assuming 3 is odd, you take the previous 2 and add 1,
s0 it would be,

H480: yeah, well, yeah, 1It's another way of doing it

G493: you add 1, and for B even you take all the subsequent
ones, ah, not the, the previous ones, down to the first
one

H48l: Yeah, well in any case it's the

G494: the additive of all the previous ones down to the
first one

R431: Now I don't understand, those sounded very different
to me

H482: yeah but, I'm pretty sure there's a relationship
between them, I'm sure you can figure out why

R asked G and H to write down their rules, in
preparation to discussing the relationship between them. H
checked some values to see if he had written down his rule
correctly.
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Figure 37: H's sketching at line G500

G500: I came up with this here, what did you come up with?

H487: But it's the, I'm, it's the same thing because the
idea of it is behind this thing here is, it would

G501: yeah

H488: I mean it comes down to the same thing, I mean, it's
just another way of doing it well, I mean, obviously,

it has to be --- If it's, I'm just going to make sure
if this comes out perfect, if so I'll just make sure, I
might have you know, put this wrong, 3 --- for 3 it's

going to be 3 times

S summarized their rules as “doubling and adding or
subtracting 1" in the case of H, and "adding the previous"
in the case of G. G noted that 1 needed to be added for the
odd case. R then asked if the two rules meant the same
thing. H immediately said they were, because they produce
the same sequence. S then gave H and G the problem of
showing that the rules did in fact produce the same
sequence. They both began by rechecking their written rules
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for correctness.

G506: I just want to make sure of a few things First of all
I made a mistake here, for N is odd, plus 1, assuming 5
we have 11, takes you to 8 9 10 plus 1 is 11, assuming
for this sequence 43

H495: well anyway, this is right,

G507: 32 37

H496: now prove

G508: 40 41 42 plus 1 is 43, all right it works for that, I
can take it for

H497: Ok that's good enough, did you want to work it
through, did you check?

G509: yeah, let me just check maybe one more

G510: should we be working these out inductively or?

S446: oh yes please

R438: We thought that you would. but I guess we were wrong.

H500: To do these things, or do you mean

R439: Well all of these there are simple inductive things
that,

H501: well to be honest I don't think I've ever really used
induction, so I never used it, I've never, I I

S447: You never used induction

H502: I've never seen it, I've never, I mean, I've seen it 1I
guess but I didn't really

G511: First year students haven't been introduced to
induction, not in Vanier, not in Dawson College, they
may have had some, you know, maybe some older

H503: Right, I've never seen it, so I know, Now when I look
at it I know what it is

S448: but you had it at the

G512: yeah I had it in discrete mathematics

H504: I'm not, I'm not very, I'm just not really at ease
with it so I try and do something else unless I

R440: well as a hint all of these things were chosen because
they could be done fairly easily with mathematical
induction, so if you're having trouble,

H505: well anyway, these two, this is right, this is right,
now what you want us to do is make sure these two
things are the same?

R441: Yeah

H506: why did you have to come up with this?

G513: let's see what's going on over here, 2

H507: N is odd, ok let's start with it, ok inductive, start
with like a low one then you say n plus 1 is equal to
that same thing, ok we'll do that now, say B equal,
whoops, no we're not supposed to look at this right?

H was instructed that he could look at the listing of
the first terms, but not to use it as part of his proof, as
the table only gave a sample of the infinite terms of the B
sequence. G then summarized his rule for H, and began to
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figure out how H's rule worked. G was uncertain how to
begin, but noted that the same odd/even cases applied to
both rules. H, meanwhile, was examining G's rule. He noted
that the first term needed to be given explicitly to begin
the sequence. There was some confusion as to the indexes in
G's rule.

H522: what are you saying? It's odd so you sum 2 2 5. Now B
4 Ok Now, now let's work with induction, or whatever
it's called, now, are you familiar with it?

G528: What's that?

H523: do you know what is?

G529: let's see, I am familiar with it, you could say,

H524: Ok well

G530: I never liked it, I never paid much attention to it

H525: Ok let's work it through, right, let's take a shot at
this, --- F of N plus 1, I'll do here, F of N plus 1 is
equal to, that's not going to get me anywhere, 2 F of

far) = Y5 b (J\g\ﬁ* ')

Figure 38: H's writing at line H525

G531: N

H526: N

G532: Plus

H527: plus minus 1, N plus 2, that didn't give me anything

S suggested splitting the odd and even cases and
proving each separately. H suggested that n was always odd,
but this was apparently a slip of the tongue as he corrected
himself when S questioned his use of “always".

G535: We can take sigma here to N 5 plus 1 but, assume this
is B N this has to he B N minus 1 minus 1 to simplify
matters,

S462: Does it simplify matters?

H537: No not really, maybe I, see the idea of it being, I
know what that is but I

G536: Adding 1 to this will take us to B N plus 1

S463: Are you am concerned that B, This being odd? maybe
you're concerned with this being,

H538: No

G537: Well, this can be anything, this'll take us to all
previous ones, adding, this is fine
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H539: the way induction works you take 1 and then you choose
that it works for any N plus 1

G538: yeah and

H540: any K plus 1, that's right

G539: yeah for any N plus 1 N is odd, this'll hold true

R suggested that G explain MI to H. 1Instead H
explained it:

H542: I think I, is this you, you start, you say, if each
for each you find one that works, and then you say if
B K works then, you should prove that 3 K plus 1 works
then it works for all B

G542: yeah

H543: all, right, is that it?

G543: That's the way I see it too

G544: You've assumed, you've assumed a hypothesis that if it
works for a particular then it will work for that

H545: Now what we're going to do is take this thing, and
I'll show, ok I know it works for at least 1, now I'll
show if it works B K an odd one, I'll work with the odd
one then I'll show that it works for the B K plus 2
which is still odd, which will come to this, [in? and?)
both of the previous two are equal then it works for
all odd numbers, then we'll try for the even, and see
what it does
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Figure 39: H's writing at line H545

G545: OK, let's go
[laughter]

H pointed out that they already had the basis of their
proof as they had derived their rules based on the first
cases. He also expressed his intention in the induction step
of proving that if "it works" for B, then it works for B,,;

K, in this case, he said was odd. He then wrote his rule for
k+2. G watched and made suggestions. G noted that they
could use k+1 instead of k+2 and show the even case based on
the odd case. H said they would work out the even case
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later. R pointed out that they were only working with H's
rule.

R455: you have to show that there's some kind of equivalency
between them

H563: I want to see, do something with this

G561: You want us to find the equivalence between this and,

R456: That's all you're trying to prove is that these two
things are equivalent

H564: I'm trying, see

R457: Now whether any of them relate to these numbers

G562: Yeah well I, that still won't prove, won't prove,

H565: No, if I can prove for all numbers

G563: that it works, I have to prove that mine works, he has
to prove that his works,

R458: NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo, you can't do that.
you've only got 30, 24 of them there and there's an
infinite

G564: Ok

R459: number, so there's no way you can be sure

H566: All I have to do now is prove that N, I don't, Ok
this B K here is equal to your B K

S464: Yeah your B K just mark it by a prime or something

H567: Ok B K your B K prime here ok I know it's equal to
your B K prime, now I want to prove that my B K 2 is
equal to your B K prime plus 2, see that's what I got
to prove, now ok, I assume, now your B K prime is equal
to what? the summation, I is equal to 1, to Nor N
minus 1? [see figure 39]

G565: N minus 1, for B N

H568: Ok well, but B K is odd so plus 1, B odd, ok?

H produced G's formula for k odd, and G ag-eed that it
was correct. He also produced G's formula for k+2. He stated
that the objective was now to prove one from the other, and
that he saw how it could be done. G commented that going
from multiplying by 2 to a summation would be a difficulty
in their proof.
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Figure 40: H's writing at line H573

H573: No, it's proven you see because here

S§465: You can use the previous

H574: Ok here U, take U is equal to this is like this is the
same thing here, U is equal to K minus 1, saying that U
here or U here, now if you put here U again, like I'm
saying, U, U 2 here is this is this the same thing if
this is equal this has to be equal, you see what I
mean? [see figure 40)

G570: yeah, that's for, fur, a value

H575: Maybe, oh maybe not, hold on a second, --- ok maybe,

G571: would you care to explain the transition between here,
K minus 1, you got this

H576: maybe I,

G572: what's happening here?

H577: well, I mean, It seems to be equal to me

G573: For, for a given value K plus 2, where K is odd, why
did you take K plus 2?

H578: Why? because I wanted it to be odd again, the next odd
one, ok, this is K plus 2
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R461: The problem I see with this

G574: OK, but that's not the problem

R462: here, this is

H579: My assumption that,

R463: this is indicating the number of terms that yon're
adding up, this is indicating which term in the
sequence you are, I don't see how the two of them , you
can just say, well their the same thing, so

H580: Ok hold hold on, I do know this

R464: [we can just change it?)

H581: ok here look look, I do know this is N minus 1,
right?, Ok, N minus 1 this is what, ok so now I'm
getting all confused

G575: yeah, but it's a recursive sequence,

H582: This is N minus 1

G576: you can, can't you,

H583: K minus 1

G577: can't you take your basic step, can't you take,

H584: K minus 1, look, what I 'm saying is,

G578: a given value K, and through that you'd have to show
trat K is, satisfies, is satiefied through this, but
this will take you, hold on it's , and then it'll take
you to K minus 1, and that one will take you to back,
back, back all the way to the first step, this is the
way I proved mine, but his

G579: Hold on, I think I got sormething going here, it's kind
of hard to explain,

H586: Aam I right in saying, if{ this is egual OK? for A K
minus 1

G580: Can I see your

H587: and K minus 1 here, is it the same as saying, it's U
here, and U here? because it's the same, because these
are the same ones right? [see figure 40]

H588: these are these are the same expressions

S467: Ya, sure

H589: Now here it's again the same expression

R pointed out that it is not always possible to
substitute into variables. H saw the problem. H asked G if
he had made any progress. G was uncertain about how H's rule
worked. H explained that his rule was the same for both even
and odd cases, and proposed working on the even case.

G586: My idea is that it, you you, for each one if, if it'll
build up now, if you take something for his here,
given, if you find a certain value ok, for through his
formula then you can find this value, I, it's a
recursive, hold on, let me try to, write this down
concretely, ---

B i ot e Tt kb min
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Figure 41: G's writing at line G586

H595: was yours here,

G587: summation I is equal to 1

S469: Is it because you can always rely on the previous?

G588: yeah you can always rely on the previous one, that's
all it is, and, up until it takes you back to the
basic, the basic one, your first one.

S470: You have it

G589: That's good enough? That's what I've been trying to
do,

H596: So what are we trying to do?

G590: you're taking a particular value for, for yours OK,
let's assume that we found it to be, F of 15 which is a
thousand, 10923 ok

H597: Umhmm

G591: We found it through yours, now we can take, that and
plug it into inine and find a value, before that one,
which would be this one here, but then you can apply
the same rule over and over, recursively, up until you
come to your basic step which you've proved to be true,
that's what I've been trying to say.

R and S discussed whether or not MI w&as being
described.

S471: I think you've grasped the idea

G592: It's kind of taking, for mine it's kind of taking it
back to the basic step

S472: the idea of mathematical induction, isn't that so?
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R467: Does what he is saying connect with what you think

H598: Yeah, well, repeat it, what, I really didn't

G593: Ok assuming for the first one, yours applies ok, for N
is equal to 2, [see figure 41]

H599: right

G594: right, we found it to be 1,

H600: ok, it works, ok

G595: Ok, for mine, again we found it to be 1, now for odd,
assuming its N is equal to, for, what did we do here,
even? Ok assuming for even numbers, N is equal to 4,
ok, now for N is equal to 4 we assume that, N is equal
to, for my sigma, what's N equal to 4 through your
formula? after you're plugging it in? For N is equal to
4? 3 here, what would you come up with?

H601: Oh Oh ok

G596: You should come up with 5 right?

H602: Right, yeah, I gquess

G597: 1Is equal to 5, well assuming that my basic step is
true, and assuming that, we have to prove both of them,
though, we have to prove the odd and the even at the
same time so we can do mine recursively finding it true
for my basic step finding it true for 2 finding it true
for 3 and then I can solve for 4 because I'm using my
sigma, I'm using sigma notation, so we'd have to, know
indeed, that the previous ones are true, do you see? do
you follow?

H said he did not follow. G described his process for
the case of n=4. He built upward from the basis of n=1. He
dercribed using each rule to go from case to case, proving
each as he went along.

G606: Is that proof enough?

S473: yeah but

H612: It's not like a really, but I mean the idea

S474: the idea is there, you prove that you can rely on the
previous

G607: On the previous

S475: by using the general, Ns or Ks or whatever

H613: yeah

G608: yeah

S476: But the idea is, it's you can rely on this kind of
reasoning, because it will come back, you know, because
of this recursion

G609: it's an imply-ance, it's I think, it's you imply the
first, knowing that the first one is true, you can
imply that the second one is true, knowing that the
second one is true, you can imply that the third one is
true, and so forth, but you can't, I couldn't go from 3
to 10 for instance, without having to go through, 4 o
9, so I'd, I mean it's more of a implication, through
my numbers
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H614: yeah, it'll get all the numbers

G610: yeah. and we'd have to prove that, for each one of
mine yours is true

R then asked if the following statement is true: *“2B, +
By = Bp". H compared it to his rule, and noticed the
similarity, that something doubles. G also worked from H's
rule. G checked some examples to see if the rule worked.

S483: wWhat is it that you are trying to prove? ---

G617: Actually I should

S484: I mean, the equivalence of H's formula and this?

G618: yeah --- what am I doing here, minus, --- B N is
equal to B N plus 2 minus B N plus 1 over 2 --- He
says that B N equal to ~----- this couldn't possibly be
true --- dividing by 2, this must always give you a
sequence of even numbers --- these here, yields
integers, in order for this to yield integers this top
portion here itself, will have to be an integer

H625: No, it isn't true

G619: So

H626: what?

S485: even

G620: it's not true
S486: even

G621: ah, yeah an even number, an even integer
H then announced that it was not true, though he felt
he might have made an error. G also expressed a belief that

it might be false based on having shown the difference of
two terms to be even.
B #
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Figure 42: G's writing after line G621

S then asked R if the statement was false, and R
replied that it is true. H and G then reconsidered their
arguments.
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R474: assume that H's is true
H632: well it is true

Based on the assumption that H's rule was correct they
continued trying to prove the statement. S asked G to
differentiate between Bs based on H's rule and Bs based on
R's rule. G described his argument. He had arrived at an
expression in which the difference of two terms was divided
by 2. This, he asserted meant that all the terms had to be
even. As not all terms are even (in fact none are) he felt
the statement was false. R pointed out that all the terms
are odd, so all the differences are even, which is what G's
expression required. H then announced that the statemrent is
correct. He described his proof which involved rewriting
each term of R's rule in terms of H's rule.
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Figure 43: H's proof of R's rule for the B sequence.

H642: So I multiply by 2 I come out to this thing, came up
here, I reduced this and I came into the, I came , to,
let's see, then I had another pattern that B, this 2 B
N plus 1, is that what I'm saying? no I lost myself
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G638: No I

H643: It's right though, I mean, it made sense I just lost
where I wrote this, because I, I do, wait here it is, 2
N B, here it is 2 B N plus 1 is equal to this,
expression here, well actually, I'm missing one of the
things, plus, there's plus a constant 2 here times 1
minus 1 to the power whatever, I mean, It was, N plus
11 think now, sho»st this in the other side, now which
one did I have to shoot on the other side? --- oh no,
here it is, this is it, I have it, I shot the plus,
here, how did I get that again? [laughter] It worked
because I came to the conclusion, I had B N is equal to
2 B N plus minus 1 which proved this.

§503: Ok the idea is there, I don't think we have to

G639: you had to multiply by

H644: It's just a matter of working it out again, But I
mean, that's what I was planning to do, It's just long,
and I have this problem that I'm not very neat

§504: So what is the idea of the proof, once more so, did
you check for some N, small Ns or not?

H645: No, I didn't

S505: No you didn't

R481: so you don't know if this works at all

H646: I think that in general I don't ever bother, I just

$506: Just work the

H647: general

S507: Induction step and you don't bother about the first,
whether the first

H648: This isn't really induction

R482: you've proved it in general but you don't know if it's
true for anything

H649: It's not true for any specific one, ok, it's not true
you know, but if it is, I assume it is because you
wouldn't have put it, Ok, I assume that you guys are
not just going to let us put 1 or 2 and then it's not
going to give it, right? Anyway, so I work it out and I
get it so I just find and expression for this, find an
expression for this, and prove, since I know that this,
I can prove that 2 times this plus this will equal to
this, just by working it out, it's not very complicated
to do it, you have this

S508: Well, are you relying on some assumption that it works
for some previous Ns, do you do that?

H650: um

§509: did you rely on some, or is it a straight forward

H651: well no, it's very straight forward, because if this,
if this true, ok, 2 times this plus this is equal to
this, ok, and what you're, the statement is, what,
what's the statement again? --- oh here it is, if the
statement is this and it, you, you're saying that this
statement, will produce this, well if this is
equivalent, the N plus 2 is equal to this, well, I
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mean, obviously, this reduces to yours. so then it is,
it's not relying on any

R then summarized H's argument and commented on its
lack of use of MI. This led to H mentioning his lack of
experience with MI his desire to work with it more. R then
began to introduce the Binet formula by recalling H's claim
in the first session that there was no formula for the
Fibonacci numbers. H did not remember having made such a
statement.

R489: Ok this is it:

Statement D:

For all n 2 0

th

where Fn is the n Fibonacci number

G642: Can we do this for homework?

H660: Whoa

S517: the formula of Binet

H661: Of what? what's it called?

S518: Binet

H662: Binet? French guy? --- so what's the question?

R490: do you buy that, do you think it's the formula for the
Fibonacci sequence?

H663: You just told me it was, I mean, I trust you

R491: Proof by reference to authority, ok that's, that works
a lot of the time

S$519: it doesn't look very friendly does it?

G643: No

H664: I doesn't really

G644: those square roots there

$520: It doesn't, the Fibonacci numbers are all integers

H665: yeah that's why

S521: and you have those square roots of five, you know

H666: your telling me it's true

R492: But on the first glance, you say "Oh yeah sure, that
looks like it" ?

H667: well I don't, no, at first glance it doesn't look like
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it at all, but, it could be true because, obviously you
think

$522: why don't you just plug in 1?

R493: just to be sure

G645: well zero's , equal, would be, but that's evident

H668: 1 it's going to be, so 1 this is the same thing,
conjugate, take that, 1 over, square root of 5, 1 plus
square root of 5, 2, 2, minus one half plus square root
of 5, 2 --- minus one half,

$523: You get rid of the square roots

H669: times square root of 5, oh one half plus, 1 yeah ok

fine 1
S524: you get rid of the 5 the squar~ root of 5
H670: yeah

S525: Show the proof

R494: I won't keep you, I have a very simple proof here,
here's, the proof is in three lemmas followed by actual
proof, this is

H671: What does that mean, a lemma?

$526: A lemma, an auxiliary theorem, that helps you to prove
the main one

R495: Yes

G646: Because it's been proven

H672: why are you showing it to us anyway?

$527: just a special case, you know

R496: So you believe me

H673: yeah but how are we supposed to figure this out
ourselves?

R497: No no no no it took me hours

§528: especially to type it into the computer ---

R498: to begin with we need a lemma to show that for all N
greater than 0, this expression here, can be expressed
in terms of an integer, C and D are both integers here,
plus this horrible thing times another horrible thing

H674: Which is, you know, very true, I mean, obviously, I
can see that

S529: very true

R499: It's very true.

H675: I can see it

R500: you can see it, ok

H676: this is seeable

R501: So we don't need to look at the proof any more

H677: No NO this is seeable, let's see what the rest of the
proof is

R502: When you say it's obvious do you mean you understand
what this means

H678: Yeah, I understand what it means

R503: Or it's true

H679: and it seems true to me, I mean, maybe I'd be
surprised, well, the lemma is true for the case N is
equal to 0

R504: Ok, we're going to do this by induction first we show
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it's true for the case of N equal 0

H680: induction hypothesis

R505: trivial 1 equals 1

H681: umhmm yeah

R506: Ok then we're going to start off with this hypothesis:
assume that this is true, for K, and then on to the
rest of it,

G647: K plus 1

R507: then we show that K plus 1, is going to be of this
form too, now, this, right

G648: C D yeah right

§531: --- and this is substituted ---

H682: times C times that

R508: and then it's algebra

G649: you worked it out, you got D plus, let's see, this
thing, which is just another integer

R509: Ok, Lemma 1, that was easy

H683: oh there's three, there's three or four lemmas?

R510: there's three

H684: I thought that was the whole proof

R511: No no, it goes on for pages, here's lemma 2, define
two new sequences, C and D, by,

H685: aha

R512: as C N being those C things that you get

G650: Ok

R513: and D N being those D things that you get, D N is
always a Fibonacci number, in fact it's always
Fibonacci number N, and this is shown by showing that
it's true for D 0, for D 1, and then showing that the
same recursive, the same

H686: induction yeah

R514: recursive rule that, applies for the Fibonacci
numbers, applies [they studied the proof] Do you buy it
so far? [they continued]

H687: here where C N, C N plus 1 is equal to D N

R515: Umhmm, if you notice when we did this, going from

S§532: from here

R516: from here to here, C and in the next case became D, so
this is the, the C for N, for K plus 1 is equal to the
D for K

H688: Ok C N plus 1 is equal to D --- --- . DN plus 1 is
equal to D N plus C N

R517: Umhmm

H689: OK yea’ ., then D N plus 2 is equal to D N plus --- C N
plus 1 is equal to D N

G651: What's that you have here

R518: Which is?

H690: the Fibonacci

R then continued with the proof (the full text of which
appears in Appendix A). The proof of Lemma 3 was described
as similar to the proofs of Lemmas 1 and 2, and was omitted.
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The proof of the theorem itself was then introduced, and
described as algebraic. S commented that the formula is not
at all obvious, and everyone agreed. She felt this was a
good example of an occasion in which MI is useful. G was
asked if he believed the formula is true, based on the
proof. He said yes, but that at first glance it didn't seem
very likely.

R527: How does the inductive argument indicate that it's
actually true?

G662: for this particular lemma here?, no, in the second
case, where is it

R528: Where it's the proof of the lemma, yeah, here's the
entire proof of lemma 1, the horrible inductive one,

H695: That means induction, I H means,

R529: yeah that's where it referring to this induction
hypothesis here. ---

G663: well you prove that it is indeed a Fibonacci number, I
think that it kind of backtracks

R530: umhmm

G664: to the fact that this is true, but it's not evident,
it's just not evident

R531: Ok

S536: So mathematical induction's backtracking for you,
isn't it?

G665: I, you could say that

S537: are you feeling better with mathematical induction now

G666: Yeah but, I think I'm going to start spending some
time with it, I think I should start doing some
exercises with it,

$538: using it

G667: Practicing it, using it yeah, just practical
experience,

R532: One last question, why does mathematical induction
work?

H696: Well because you don't skip any numbers, you can't
skip, numbers, they're all there, every number exists,

G668B: Why, did it work?

§539: yeah ---

H697: I mean if it works for K plus, if it works for any
number, and it works for the number plus that, then it
works for all numbers, because all numbers has a plus,
K has one more,

G669: well, It just kind of backtracks, like if, you
mentioned something about backtracking it's taking you
back to your hypothesis, it's tracking back to your
hypothesis

R533: well where are you starting? when you back track

G670: when you back track?

R534: yeah

G671: you're starting with your, K plus first step

R535: step
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G672: for instance, and backtrack that down to you initial
hypothesis, and you prove that to be true if you can
show them to be the same,

R536: How do you do the jump from showing that you can do it
for any number, to showing that you can do it for all
numbers?

G673: that's the difficult part, [laughs] that's the part 1I
hate

H698: If you show that you can do it for one number, and if
you show that you can do it for the number plus, well
then you can do it for all numbers

R537: Well then you can do it for any number, if I give you
a number you can do it, but does that show that you can
do it for all numbers?

G674: Not necessarily, I don't, see that what have a problem
seeing

H said that the infinite number of numbers was related
to the way MI works. S observed that this is not sufficient,
and mentioned MI's status as an axiom of number theory. H
asked what the axiom actually said.

R538: It basically says if you can show it is true for any
natural number ithen, then you can show, then you can
say it is true for all, and that's the axiom

H704: yeah but what, how does it say, how does it come to
that, how does it come to that conclusion?

R539: it says, if you can prove something for 1,

H705: yeah

R540: and you can prove that if it is true for N then it is
true for N plus 1,

H706: Yeah

R541: then you are justified in leaping to: It is true for
all natural numbers

H707: yeah, that's what I'm saying, that's what I said,
isn't that what I said?

G679: See that's what, the jump, this leap, that's what I,
what I find, that's what I

S543: You can't believe it

G680: yeah, well I could, but there might be a number,
somewhere within that sequence,

H708: No it can't be, it won't

G681: Why?

H709: It's saying every N plus 1

G682: No you have to take it step by step but I mean one
implies the other, I don't see how you can make that,
that jump for, you can prove something for N, ok let's
say you could prove something for N plus 1 but there
might be a number within that sequence, that does not
work

H710: No but then you are skipping a number, then you're not
saying it worked for all N plus 1
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G683: Yeah but what

H711: If it does work for all N plus 1, then you're not,
then you can't skip a number, you get all the natural
numbers

G684: that's right, but you're not checking every one

H712: Yeah, but you don't have to, you just check it
generally speaking, if it works N and it works for N
plus 1, and it works for 1, then it works for all

G685: Not necess, yeah, see, you gave a sequence, but assunme
that you gave us a formula that works for everything,
but it doesn't work this one, and we've applied, our

H713: you can't come to the conclusion that it doesn't work
for all N plus 1

G686: is that true, I don't think that's true, I think you
can assume it, that it is true, and just by
backtracking, check your initial hypothesis because
your hypothesis was based on the first few numbers, and
it won't be correct for the entire sequence,

H714: No but then it won't be true for all N plus 1 either
S544: you will not be able to prove that it follows from the
assumption that it's true for K because your K is

anything

G687: Yeah, but let's assume that your K was chosen outside
of that

S545: you are not choosing a K, a particular K

G688: But you're not checking every case either

H715: if you say it works for one 1 and it works for K plus
1, and it worked for 1 too

G689: Fine, but you're not going to go, if there's an
infinite sequence of numbers you won't check every
single one

H716: yeah, but you don't have to,

G690: you don't, see that's [finalized? I'm lost?] see 1I
understand, I understand how it works, I'm not
completely, I haven't used it and pract, you know, I
think I need more practical experience with it, but I
think that, you haven't accounted for every single one,
unless you've taken every one sequentially

H717: You mean, one by one?

G691: yeah,

S546: for an infinite number

G692: yeah for an infinite number

H718: Forever

G693: of times, yeah,

H719: there's no resting, like, eternity, not for his life,
for eternity

G commented that no one agreed with him. S said she
didn't. H attempted to explain MI to G by restating the
axiom as it had been stated to him.
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§550: I have a proof, I have a, tool for proving, when I'm
proving the induction step, you know, from K to K plus
1, I have sort of, in one, in one shot, I have proved,
all those steps, you know, I've proved for all

G698: ok

§551: All those steps, each one from there to there, I can
go, I know I can go, it's proven

G699: Ok yeah, ah, no

$552: Ok so I haven't, It can't happen

G700: it's a hypothe

$553: look, I've proved it

G701: Initially it's a hypothesis

S$554: No, it's a proof

G702: Ok if it's a proof initially then that's fine

S§555: I've proved that if I have, if this is, it holds true
then I have, you know

G703: ok, ok then I, I will believe it

S556: it can't happen that something doesn't work for some
K, particular K it can't happen

H722: yeah it can't , I mean, or else you can't prove that
it works for all K plus, K plus 1 from, for

S557: Unless you can't prove that it works

H723: yeah

R asked if G had meant the induction hypothesis when he
mentioned a hypothesis. G said that he had. R said that that
was not proven in the beginning, it was assumed. H stated
that the purpose of the proof is to prove the assumption. R
then said that all that was actually proven is that if one
case is proven then so is the next. S and H then added that
it is necessary to start with something as well.

H727: A question, let's say if yen find, if you do that, and
you find, say 10 can you backtrack, can you assume that
all the ones lower than that too are true?

R545: What do you think?

H728: What do I think? But you've only proved one, and let's
say you have no means of, like, lets say you can't
just theoretically if, is it automatically true that
the ones behind it are true? That's what I mean.

S reminded H and G of a proof they had seen in class,
which had been by induction. H didn't remember it. S then
described the proof, which involved proving the cases n=0,
n=1, and n=2, at which point it became clear how to prove
the ¢eneral induction step.

G706: yeah, but for instance, ok, you give us a particular
sequence of numbers ok, this is what we start with, you
give us these numbers, here we have a sequence, now
our, assume our formula works for this particular
sequence, but from 24 on there's a continuing sequence
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of right, but they completely deter [differ] from our
formula, we checked for this case here, then we've
already set up our, we've assumed that what we've
written down is proof enough, but that's not proof
S564: Ok, that's true,
G707: that's not proof, I'm not willing to say this is proof
H731: ok but that's not part. what are you saying? that
this is not part of this sequence?

R asked if the two rules for the B sequence that H and
G discovered had ever been proven.

R548: Did you ever prove either of those?

G710: No completely

H732: Not like, no

R549: Ok

H733: Who would, I think everything is a hypothesis

R550: Could you prove this?

H734: No, I mean, if it's, yeah,

G711: not for an infinite amount of numbers, No, unless you
can tie it to the fact that it is a continuing sequence
such as the natural numbers,

H735: What are you saying? that after this it is not part of
the sequence anymore?, say you put any number here?

G712: assume

H736: Say I put 27 after this, say B 25 is 27

G713: yeah something that,

H737: Yeah, ok, I get what you mean, ok, now I understand
what your problem, yeah

R551: OK

H738: it's not

R552: second question: could you prove that if your formula,

H739: is true

R553: well, could you prove that the sequence determined by
your formula is the same a the sequence determined by
his formula

H740: yeah, well that's pretty much what we were trying to
do before .

R554: Yes, but do you think it's possible, were we giving
you a possible task, or an impossible task?

H741: I think it's possible

G714: yeah but you have to prove one in order to show that
the other is also true

H742: no no

G715: Just because we tie ours together we might not come up
with the same conclusion that's not necessarily the
right conclusion

H743: No no

G716: So even though we tried to tie it together, that
wasn't proof enough, I don't think that was proof,
proving that mine was indeed true for this sequence,
which if we check each and every single one then I




286
could say it's proof enough

S explained that her motivation in asked them not to
look at the first terms of the sequence was to force them to
concentrate on the equivalence of the sequences actually
produced by their rules. H said that if they had not made a
mistake in discovering their rules then they must produce
the same sequence. He restated this, saying that it meant
there must be a way of proving, but just finding two rules
from the same finite sequence does not constitute a proof.
The session ended at this point



First Session with A

Rl: These are the first few Fibonacci numbers. Can you
figure out what the pattern is to this sequence?

Al: hmm. Ok what I'm doing is right now I'm looking at, how
it gets smaller, how they combine, how it's
progressing, --- so it's gone up by 13. the next number
down is 13. it gone up by --- 8! --- ok I see. What it
is is that you, add the first number to the second to
get the third number. You add the third number to the
next number to get --- so it progresses.

R2: ok, um How would you formulate a rule for producing the
Fibonacci sequence if you wanted to give specific

instructions?

A2: why do I think you want me to do algebra? --- actually I
couldn't write it in algebra. I could if I sat here for
fifteen minutes and --- something like that.

R3: ok could you express it verbally?

A3: yeah I could --- you just take the first --- you start
with the first number --- um, you double the first
number --- you start with 1 --- you double it --- so
you have two ones, --- you add 1 and 1 --- that
starts you off in the sequence, you get the 2 --- then
you add --- --- so you could say each numbers ---
let's say its --- A B C --- ok what you're doing is
--- A plus B --- gives C --- and then C plus B ---
gives A --- 1in another sequence --- oh, no ---

‘cause --- the number D --- so how would you explain
that? --- start with two ones --- and then you ---
add them together and that gives you the third one and
then you add the third number --- your result the, the
the, --- second number --- ??? up two steps and back
one ---

R4: what do you mean "up two steps and back one?"

A4: if you look at this thing as a ladder progression ---
you start by going up to here --- you add these two
together you get this result --- and this result, go
down one step and this is your addition --- and that
gives you ??? --- goes up three --- and you go back
down to your second number --- 2?

A was then asked to square a Fibonacci number and
compare the result to the product of its predecessor and
successor in the sequence. She noted that the difference
was 1 and expressed tnis as a general rule. She was then
asked to pick a prime number. She picked 3. She was asked if
the third Fibonacci number is prime. She responded "No" due
to confusion about the definition of prime number. She was
corrected.

R24: so you picked a prime number and you counted along the
Fibonacci numbers, the Fibonacci sequence that many
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numbers and you came to another prime number. if that
were true in general how would you state it as a
general rule? that that works.

A24: and moved three along and its a prime number too ---
80 if I move 5 along --~ 12 3 45 ?2?2 --- 13 which
2?2 ~-- if I move 13 --- 12 3 45678910 11 12 13
2? ---

R27: How would you make a general rule to say that that
works? ---

A25: um I'd say that --- starting from the base point of 1
-~- if --- I'm trying to get for myself what it is ??
--- each prime number has got a --- corresponding ---
number, Fibonacci number --- which if you count along
-~-- that chosen prime number starting from the base
point 1 you reach --- another prime number ---

A was then asked to add up the first 10 Fibonacci
numbers. She did so. She was asked to compare her result
with the product of the seventh Fibonacci number (which is
13) and 11. She observed that the two were the same and
described this as a general property. She was unsure about
the generality of all three statements, especially the
second, relating to prime numbers. Hr uncertainty turned
out to relate to composite numbers. She was sure it worked
for pvime numbers. A also accepted the first statement, but
not the third. The first statement seemed to her to fit
with the way the Fibonacci numbers work. After trying
another example she found that it did not work generally,
but soon discovered the alternation of adding and
subtracting 1 which makes it a general statement. At this
point notation was discussed, using F, to stand for the nt
Fibonacci number. A continued to express belief in the
first statement in its modified form. After trying one
other case for the third statement A was convinced that all
were generally true,.

R39: How confident do you feel?

A40: Very

R40: Very confident? Do you think it's true all the time?
most of the time?

A41: The whole time, because its math I'm going to say yes,
all the time

R41: ok, so you're sure that I could never come up with an
example were it wouldn't.

A42: no I'm not

R42: so your not that sure

A43: well no. Actually, if you're just dealing with straight
Fibonacci numbers but I don't know what happens, do you
get into ??? Fibonacci numbers?

A discussion of the nature of truth in mathematics
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versus the nature of true in other fields ensued.
Mathematics was described as determining truth based on the
ability to derive statements from other statements based on
an agreed upon set of rules. The nature of prime numbers was
again discussed and the first six prime indexed Fibonacci
numbers were tested for factors. Confidence in all
statements was established, but the context of a study made
A suspicious. When asked if the 19th Fibonacci number is
prime A began by multiplying 19 by 19. She was confused at
this point between the Fibonacci numbers themselves and
their indexes. A then produced a list of the first 19
Fibonacci numbers. She stated that she was unsure of Fy
being prime as she thought only Fibonacci numbers whose
index is a prime Fibonacci number would be prime. The
investigator indicated that all primes numbers were
intended, not just prime Fibonacci numbers. The counter-
example to this general rule did not effect A's confidence
that it would work if the index is a prime Fibonacci number.
Methods of becoming more confident of statements in
mathematics were discussed. A suggested that a number of
examples would increase her confidence. When pressed for a
more sure method she said: "what you have to do is do a
proof there". She remembered having done proofs in the
past. The F,notation was discussed again.

R43: is there a largest number that you could stick in it?
[n in F,]

A44: no

R44: why not?

A45: because there must be a larger number there's no limit
22?2

R45: Are Fibonacci numbers unlimited?

R46: Yes, because then you keep multiplying [she meant
adding) to the right. You can always have numbers to
multiply and you get it 2?2

The nature of truth in mathematics was again discussed,
but in a general way. The statement: "the sum of any
consecutive Fibonacci numbers is a Fibonacci number” was
shown to A and she was asked if she accepted it. She
believed it to be true because of its relation to the way
Fibonacci numbers are generated. She then tried an example
and disproved the statement.

Transcript of Second Session with A

The interview began with a discussion of the notation
F, for the n* Fibonacci number. The recursive rule for
generating the Fibonacci sequence was expressed in this
notation. A manipulated the rule algebraically, to create a
subtractive form. The three statements she had worked with
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in the first session were shown to her in symbolic form. A
checked the statement "(Fn)? = (Fn+l)(Fn-1) + 1" again, and
noted that the alternation of adding and subtracting 1 was
missing from the statement. She was then asked about the
statement: "The sum of the first n Fibonacci numbers is one
less than the second Fibonacci number after the ones added

up. "

R52: How would you write this: with symbols

[ laughter]

R53: maybe you should try a few actual examples before you
-—-- try and write it

AS51: I can't understand what you wrote --- the sum of the
first N Fibonacci numbers, so N being we don't know how
many numbers, we don't know how many Fibonacci numbers
we're dealing with --- the sum of the first n Fibonacci
numbers is, 1 less than the second Fibonacci number,
after the ones added up [reading] ---

R54: Maybe you should try and example by picking a number -
-- for n to be

AS3: should I take?, OK, n, say n, say of, says its 4, the
first 4 Fibonacci numbers starting from, the beginning,
so the sum of them is, 1, 2, 4 5 6 7, so we have, 1
plus, 1, what does n equal 4, 1 plus 4, 2 plus 3, is
equal to ---, I

don't like using the same n, did you choose n in particular?

R56: no you could use any letter you want

A54: Q --- is equal to 1 less than the second Fibonacci
number, after last one --- so that'd be 5 6 right ---
--- 80 its 4, 1 2 3 4 5 6, 6, makes 7, and the sixth is
8, minus 1, is 7 so it works --- and how would I write
this?, um, what we're doing, the number of Fibonacci
numbers is Q so ---

A had some difficulties with notation when trying to
write her statement which were cleared up at this point.

A63: the sum of the first, the first, so lets say you want
9, Fibonacci numbers, then Q is equal to 9, right --- Q
is equal to 9 so then you'd have, so then --- so then
you could just put it in automatically that its equal
to 9, then you're looking at, Fl1, F2, F3 --- F4 F5 F6
to F Q, is equal to F Q plus 2, minus 1
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Figure 44: A's equation at line A63

R67: does that say it then?

A65: yeah ---

R68: do you think that this statement here is actually
true?

A66: I don't know, I didn't test it

R69: try and figure out if its true or not

A67: , 2?22, so, 1 plus --- 1 plus 2 plus 3 plus --- 222, 89,
that's --- Am I surprised? [laughs]

R70: what happened?

A68: well so far, so good, but I don't know, I don't think
that that's the most successful way to figure this out,
If I was to just sit here going, like I said before its
not as if I can, try every single Fibonacci number I
can possibly think of, so let's look at this first, ---

R71: It would help if you'd talk to me about what your
doing --- so I'll have some idea of what you're
thinking about ---

[laughs]

A69: ok I'm thinking to my self, ok here you have this

equation right?, now you want me to tell you whether
its true or not, ok so I'm thinking to myself, there's
no way I'm going to sit here all afternoon, and crurch
numbers, just so I can find out whether its wrong ---
especially as I suspect that I'm not going to find one
---22?, so, is there some way you can do this?, so 1
look back to my ??, and I, what is there to manipulate
in this formula?, that would make it prove itself?, ??
--- I was thinking I could try and use one of these
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formulas ~-- ???, to see if I could, prove [do]
something with them, but I don't know, hoe long does
this have to go one before I get to give up? ---

[laughs]

R72: well I'm hoping that you wont give up, that you'll get
it

A70: that I'll get it? that I'll figure out a proof?

R73: or a non proof

A71: or a non proof? ok --- aaagh! ok, just tell me
something, what I'm asking for in fact is a clue, can I
have a clue, should I be using these, problems?

R74: it doesn't really relate to what's going on at all

A72: ok --- this is the base point ??2? ---

R75: it looks like exactly what I would have written it ---
this is my version, Fl plus F2 plus dot dot dot plus F
N equals F N plus 2 minus 1, so your formula should
look like [mine] and it does, I think you got that ok

A73: ok so now should, but you don't give a proof [looking
at R's sheet]

R76: no

[laughs]}

A74: let me just think ---

A took a short break to collect her thoughts at this

point.

A75: F Q F 2 minus 1 --- if I want to get rid of the um,
this --- minus 1 ok, and just reduce it to F Q plus 2,
then the question is, I forget this, do I have to do F
Q plus 2 minus 1 --- times F Q plus 2, or would I just
go plus 1, plus one over here and, minus one from this
side

R77: if you add one to the right hand side you'll also have
to, add one to the left hand side, to make it balance
out

A76: I can't remember does it change signs or it doesn't
change signs???, so if I go minus 1, so I quess minus 1
and then, its like that plus 1?

R78: umhmm

A77: and that reduces this to F Q plus 2?

R79: yeah

A78: so then F Q minus Fl, plus F2 plus F3 dot dot dot 2?2?22
--- F Q, plus 1, Fl1 plus F2 plus F3 ?222?, F3 plus that
is equal to F Q, plus 2

R80: ok

A79: so now what do you get?, now if we do F Q plus 2 ---
and we do, how would we get rid of this 2?, is there a
??? for that, can I do ???, can I ask you or do I have
to do it myself?, ?2?, so I've got F Q plus 2, that
f9 plus 2 lets say, we want to get rid of plus 2, so we
want to --- subtract it, to get it to Q right

R81: well the Q there isn't, [interrupted by A] ---

s svssurl
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80 let's get rid of this, get rid of this, so what
we've got basically is, 1 plus 2 plus we don't know

you can't really just subtract something, from an
index ---

ok, right, yeah, um ---, is there a way of simplifying
this side of the equation so I don't have --- fl plus
f2 plus ---

not really, there are simpler notations but

no ---

you don't want to fool with them

ok um, let's see if this is true [the modified
1+F4+Fp+. . . +Fg=Fg,3], um, 1 plus 1 plus 2 plus 3

---, plus 5 plus 8 --- plus 13 plus 21, plus 1 is
222, 22?2, 2, 2 4, 12, 32 --- 54, 54, 108 ---, 108 s0
that works too --- but that doesn't prove it, just for
that number???, ok --- this is ridiculous, [laughs]

A second break occurred at this point

F Q is an index, F Q index plus 2, is?? plus 1 --—-
right --- how to prove this, it's weird working with an
index

well would you be more comfortable looking at a few
more examples, to get an idea about how ??, or looking
back to where you first came up with, how the, when you
first were using the indexes???

um --- 2??, the first plus the second equals the third
is how it, is how it works, so the first plus the
second would give you the third, the indexes 2?22, do
that with that 2?2, 2?, ?2?2?, the first and the second,
this is the third one, ?, ?, it would prove itself if
this F Q, were ?? this F Q, which it should

you mean if the last Fibonacci number you added here
was —--- two before this Fibonacci there on this side

yeah

ok ???, say it could be, how does that prove it?

um well to me that doesn't prove it

ok

I don't see how anything could prove it, I've never
understood proofs in all my life, I shouldn't give up -
-- Is there a way?, can I write an actual formula
that's going to prove it?

maybe

ohhhh! [frustrated]

why don't you work with a few more examples?, pick Q
to be a small number, and try a few

Q is equal to 3 ok?, so 1 plus 1 plus 2, plus one is
equal to ---equal to ---5, and, or on the other hand,
or if you do it this way, 1 plus 1 plus 2 --- is equal
to 5, and this is equal to 5 minus 1, so, I prefer this
[pointing], cause this equals this, but --- so lets
see, does that work?, 2 3 4 5 yeah, did this work?, 2 3
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?2??, 2 3 4 is equal to 4, that works, yes, so let's say
Q is equal to 5, in that case ??, 1 plus 1 --- 1 plus 1
plus 2 plus 3, plus 5 ---, 15 5 10, I've made a new
rule, all the Fibonacci rumbers added up, the sum of
the, of the --- the sum of the first few Fibonacci
numbers, plus 1 is equal to, the second Fibonacci
number, after the ones added up., that we know too,

what we don't know is how to prove this ---, that's ,
yeah ---, this reminds me of the puzzles with wire we
used to play with

R91: yeah

A91: for some odd reason --- 3

R92: what are you thinking about now?

A92: I'm thinking about how I can figure how, write this
down so that you get, an equation that gives you F Q is
equal to F2 [F Q7?], and I think that would prove it ---
--- that's all that I'm doing here, I'm saying 13 is
equal to 13, that's this one right, I can break this
down, and work it out so that, F Q equals F Q, that's
really what I have to do to prove it ---

R93: Now all you have to do is find the proof [277?]
[garbled)

A93: yeah, because it's, I don't know what to do with these
numbers, and um, and how to deal with this sum factor,
all these numbers, that's a question too --- --- 1
wonder what happens if I do this ---

R94: what are you doing? [?2?]

A94: ok from the beginning, what would happen if I do like
this, right, like this ---, Fl1 plus F2 plus F3 plus £f4,
that left over, plus --- --- but we don't know if
that's F Q, because its ---, I don't know david

R95: How do you mean separate?

A95: I don't know, get it on its own

R96: Each of these is just being added, you could add them
in any order, if you wanted to add it last, you could
do that ---

A%6: but isn't it F1 and then all the way to, F Q, but then
you've got this tree, and you don't know where it goes
--- and you say yes, it goes off --- and it would get
more weird if you went like this, Q ---I don't think I
adding another variable to this would help any ---

R97: probably not

A97: ?2??, I don't know, I think that my problem is that I'm
trying to, think about --- ways of manipulating
symbols, so that they mean something, that that they
show, that this side of the equation is equal to this
side of the equation, I'm trying to do this as if its
numbers, and not, but it becomes kind of dubious [???]
~-- lets go backwards some., the sum of the first n ---
Fibonacci number is one less then the second ---
Fibonacci number after the ones added up ---I don't
really think that its right, I just want to check if
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its wrong

R98: well to do that you'll need to find a counter example
--- maybe you should start looking

A98: for a counter example --- a counter example, I'm
trying to figure out what, this would be like this ---
--- does not equal

R99: yeah so you'd have to find a case, when its not equal
--~there's lots of paper here

A99: yes [laughs]

R100: so far you've checked for which Fibonacci numbers?
--- first you ---

Al100: 2, didn't I do 2 3 4 and 5?7

R101: yeah, maybe you should check it for 6 and 7

Al0l: ok --- I'll check it for 6 --- 1 plus 1 plus 2 plus 3
plus 5 plus 8, this is, that's 20, did we say its plus
1l or minus 1?, plus so it works, 1 plus 1 plus 2 plus 3
plus 5 plus 8 gives me 20 plus 13, would give me 33,
and that's, that's right, oh wait a second [!!!], ha
ha, ok, wait I almost got a flash of something, let's
look at that again, 33, that means the sum of all
these, is going to be, 10 ---immediately the sum of
those, so 33, plus 34, is going to be, 3, 67 ---

R102: where did this 337

Al102: oh sorry 13, 33, plus 21, is going to be 53 --- uh
oh, it didn't do it, let me try again, 1 plus 1 plus 2
plus 3 is, 1 plus 1 plus, 2 4 5 6 7 7 and 12 12 3 3 33,
that's the 34 here because, two more is 34 and now it's
true, so we go back to 33, 33 and 21 is --- 50 50 54 so
it's right for this, well it mean actually something
different, it means that ---, well I'm just looking at
all of the fiqurirng this out, now is I just, I really
don't have to add all these numbers up --- because
everything, I proved up to here, is just that, the fact
that, this Fibonacci number minus 1 is going to be the
sum of all those, before here, which is what I'm trying
to prove, that, that ---

The remainder of the session was not recorded due to a
technical error. The following summary is based on the notes
taken during the session.

A realized that she didn't need to add up all the
numbers because she knew the sum is one less than Fg,. She
adopted a procedure for determining if 3IF; = Fg,p-1 :

(1) Determine ZF.4 from Fgy-1 (2) Add ﬁq to get ZF,

(3) Check Foe ON list and subtract 1 (4) compare.

She used this to check ZF; = Fq,,-1 for q=33

She was then encouraged to try the next case.

She applied her procedure.

She eventually arrived at Fy-1 + F3, = F3g - 1 and
recognized that this was true based on the formation rule,
but she could not put together the steps to form an
argument.
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The session ended at this point.
Third Session With A

R110: remember that? [showing A statement]
The sum of the first m Fibonacci numbers is one less
than the second Fibonacci number after the ones added up.
Fo + F, + ... +Fn=Fn+2—l

A was asked to check the statement for n = 6, 7, and 8.
After taking a moment to recall what the statement meant she
did so.

Al121: oh right is one less than 8 so the second Fibonacci
number after the ones added up and you did it for 6 and
that's 8 so yeah this is this 1s the second one after
all the additions to 6 so it's number 8 is the one
we're talking about the one after the ones added up is
is 8 and the Fibonacci number is 21 and the oner added
up is 20 plus 1 is 21 so yes it works

R122: ok could you try it for 7?2

Al22: ok so, it should be 34? so it should equal minus 1 so
it should be 33 the sum of, of the first seven
Fibonacci numbers

R123: ok

Al23: so 1 and 1 is 2 4 is 7 is 12 is 20 is 20 is 33 33 plus
1l is 34 so it works

R124: ok could you actually write out the sum so we can see
it?

Al24: ok whoops 2 plus 3 plus 5 plus 8 plus 13 is equal to
F9 minus 1 which means wait let me figure out 34 minus

1

R125: ok how about if you wanted to do it for wanted to do
it for 87

Al125: 8? 55 so that should equal that now we just want to
check it

R126: umhmm

Al26: so just do the sum of the first 8 so you do the last
one was 33 so 33 which is the sum of every thing up to
sss wait yeah, up to seven so 33 plus 21 which is 50,
uh oh is that right?

R127: is something wrong?

Al127: yeah

R128: what's wrong

Al128: it's not working Is it because of the way that I did
it?

R129: what is your difficulty?

A129: well instead of, oh no instead of adding them all up
again I just decided that the sum of the first oh
that's what's wrong

R130: what's wrong?

Al130: no the first, the sum of the first 7 is 33
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R131: umhmm

Al31: right, I believe so yes the sum of the first 7 is 33
and now we're doing it for 8 so 33 plus 21 should equal
the F10 minus 1

R132: ok

Al32: and it doesn't

R133: ok what is 33 plus 21?

A133: it's fifty --- four oh wait it does work [laughs] 54
ok so now

A was then introduced to the problem of determining the
number of pieces produced when the plane (represented by a
pancake in this case) is cut by n lines. She initially
confused the problem with a problem she remembered of
determining the maximum number of pieces a pancake can be
cut into with any number of lines. This was clarified. A
was asked how many pieces could be produced by one line.

Al47: one half, two pieces

R148: I was a little worried when you got infinity I thought
the answer was two too [laughs] ok, how about if you do
two slices two perfectly straight cuts

Al48: then you can have let's see you could have three

R149: ok
Al49: or you could have four
R150: ok

Al150: if you put one on top of the other you could have two
because you've cut in exactly the same place as you did
before

R151: how would you have two oh ok

Al51: if you're being sneaky

R152: ok but what's the most you could have?

Al52: 4

R153: 4, ok how about if you made 3 cuts? What do you think
would be the most that you could have?

Al53: may I draw?

R154: sure that's why you've got a piece of paper and pen

Al54: 2 31 2 31 2 3 the most you could have?

R155: umhmm

Al55: 1 2 3 4 56
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Figure 45: A's sketching at line A155

A was asked about exponents and seemed to understand
them.

R159: what would you say to the statement that if you make
say k cuts of your pancake you're never going to get
more than 2 to the power k pieces --- [A writes] never
gets you more than that

Al59: well it works with 1

R160: ok

Al60: no no wait it doesn't work for 1 isn't 1 to the power
of oh right 1 to the power of 1 is 1 but then you get 2
cuts of the pancake from 1 to the pcwer this isn't 1 to
the power 1, 1?

R161: yeah but you should be doing 2 to the power of 1

Al6l: oh sorry right 2 to the power of 1 2 hmm well it works
for 2 it works for 1 3 6 works for 3 4 8 4 works for 4
works for the first 4

R162: ok, can you see any reason why if it works for 4 it
should work for 5?

A162: can I see any reason?

R163: umhmm

Al63: yes

R164: what kind of reason?

Al64: because it seem to be describing the way to figure out
the maximum number of slices that you'd get like 8 is
the maximum like it gives you it actually gives you
that why? I don't know it's just a sense I don't under-
-~ It's hard to answer why It'd be a guess because it
works for the first four and there seem to be a pattern
involved I guess that I expect that the pattern will
continue but then like when I think about like when you
do something like infinite cuts

R165: hmm we'll deal with finite numbers of cuts

Al165: ok well yeah yes I think so yes

R166: can you explain why you think so?

Al166: um it's hard to explain --- because of the nature of
pancakes and cutting? [laughs]
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R167: ok that's an interesting idea

Al67: because because because there's a pattern you can see
it when you look at the pictures

R168: well how does the pattern work?

Al68: each time that you add another line you are bringing
it up sort of x number of cuts

R169: ok

Al169: but then it it doesn't change its nothing weird
happens each time you add a line there's only so many
more pieces you can add its it doesn't seen that
anything unexpected is going to happen when you get to
50 slices

R170: ok lets look at this pancake that you sliced up in
nice parallel lines here

Al170: ok
R171: if you added another cut
Al71: uhhuh

R172: how would you put a cut so that you would get the most

| number of new pieces

| Al72: oh what an interesting thing so you get the most
number of new pieces

R173: umhmm

Al73: put one right in the middle

R174: ok what happened to the number of pieces?

Al74: it's just doubled

R175: ok why would it double?

Al75: because I just split the number of pieces in half
making 2 a whole new set

R176: ok

Al76: so you'd be looking at 2 sets I took this one set of
of 4 and I made it two sets of 4

R177: if you had a pancake cut up any way at all and you cut
it again could you ever more than double the number of

pieces?
Al77: no
R178: ok

Al78: no you couldn't which is why this 2 K pieces works

R179: ok could you explain in a bit more detail why it works
rather than just saying that whatever I just said is
why it works

[laughs]
Al79: slave driver ok because ok because 2 to the k is in
" fact doubling your number right?

R180: yeah if you're going from 2 to the k and then you're
increasing k by 1 then you're doubling

Al180: and so what you're saying in this for k cuts of
pancake never gives you 2k pieces you're just saying
what you just said to me and what we said which is that
you can never more than double it

R181: ok the statement that you can never more than double
it applies specifically to if you've got a pancake and
you just put one cut
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Al8l: yeah

R182: how can we generalize that to this statement which
says that whatever k is

Al82: ok

R183: does it follow?

Al183: yeah because you're adding them 1 cut at a time um it
does follow I don't know how to explain it um when no
matter how many times you slice it you can't do more
than double what you already have like if you even if
you if you slice it 8 times you can't get more than
that 16 and you can look at that by cutting if you're
trying to get maximum slices the cake The number of
cuts of pancake doesn't really matter

R184: why not?

Al84: its the same sort of it's the same relationship over
and over it doesn't matter if it's two slices or
fifteen slices when you look at it when you look at
sort of the pattern of what goes on when you cut if you
look at maybe I don't know look at it as pancake, or
cake and slicing it doesn't there's a sort of a maximum
number that you can of slices that you can cut actually
like if you I mean I don't know I'm having a hard time
describing it what is it that you want me to try and
say?

R185: that would be telling

[laughs)

Al185: oh no Am I supposed to be describing

Figure 46: R's sketching at line R189. The two
parallel lines were added later by A.

R186: maybe I'll confuse you a little bit instead um you
said that for three cuts the maximum number of pieces
was 6

Al186: yeah, uh, no, did I? no I didn't

R187: you did. did you mean that?

Al87: No I didn't I meant 8

R188: you meant 8

Al88: or no 9 do I mean 9 or 8? hold on, let me see if you
slice it 3 times there we go 1 2 3 4 no its not 1 2 3




yeah I guess it is 6 which makes sense what am I
saying? Of course it makes sense because doubled 3
doubled is 6

R189: How many pieces?

Al89: [laughs] Those aren't terribly straight lines

[laughs])

R190: you can redraw it

Al190: 7 it's 7 7 pieces

R191: ok
Al191: hmm
R192: now, does that cause a problem with this statement?
Al192: yes

R193: how? what is 2 to the third power?

Al93: 2 to the third power is 6 2 times 2 is 4 no it's 8

R194: ok so it still says this is still within this range

Al194: yeah but let's see now if we did something wonko with
this kind of like um we did another line and we did
like ~-- this right

R195: ok

Al95: so that's 4 k equals 4 and that's 1 2 3 456 7 8 9 10
and 2 to the 4 is 2 times 2 is 4 times 2 is 8 times 2
is 16 hmm

R196: so we're still ok

Al96: still ok

R197: but that doesn't necessarily prove anything

Al197: no It might be that you'd have to get pretty damn
creative about the way you cut

R198: ok if you got a creative as you could possibly get
what would be the maximum increase in the number of
pieces?

Al199: the maximum number you could

R200: if you add another cut how much could you increase the
number of pieces by?

A200: maximumly?

R201: yeah

A201: it would be if you could do an incredibly crazy cut
and divide, bisect everything once and thus double the
number of slices of pie

R202: ok

A202: would be the maximum I think

R203: ok the maximum would be double

A203: yeab

R204: ok if you start of with a pancake

A204: but you couldn't do that with a straight line in this
case

R205: um not in this case no but perhaps you could if we had
arranged the lines differently to begin with

A205: yeah

R206: but could you ever more than double it?

A206: then you'd have to go through some sections more than
twice

R207: can you do that with a straight line?
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A207: Here I don't know if it's a very strangely sort of
shaped section I suppose you could right? no you
couldn't no

R208: ok so on the first cut what would be the maximum
number of pieces you could make?

A208: 2

R209: ok because you've got 1 piece to begin with

A209: right

R210: when you haven't made any slices you've got one piece
so we do a cut I don't really care where it is

A210: yeah

R211: so after one cut we've got at most 2 after 2 cut what
would be the maximum?

A21l1: 4
R212: after three what would be the maximum?
A212: um --- 5 no [laughs] not Fibonacci numbers ok

R213: we had four pieces

A213: 6 nc 7 we've got 7 we've even got seven with that but
maybe even more

R214: theoretically what would be the theoretical maximum

A214: theoretical maximum?

R215: I mean we start we've got 4 pieces from 2 cuts

A215: 6 but we know we can do more than that we can double 3
9

R216: what are we doubling when we do a new cut?

A216: the number of slices 8

R217: 8 ok so right this is cuts and this is slices

Figure 47: Chart made by R at lines R208-R220

A217: ok how about for 4? 12
R218: how do you get 12?
A218: oh sorry it looked like a 6 from here [the 8 from 3

cuts] 16
R219: ok and for 5?
A219: 32

R220: could I keep doing this?
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A220: yes?

R221: how long?

A221: until we ended up not having any possibility of making
any more slices because we'd run flat out of pancake

R222: ok, fine so could you use this to show that you could
never have more than 2 to the power k pieces?

A222: I imagine you could, yes

R223: because 2 is 2 to the first power and 4 is two times 2
is two to the second power

A223: 2 times 2 times 2 is 2 to the third

R224: because each time we just multiply by 2

A224: yeah 2 to the fourth 2 to the fifth yeah

R230: If we do something analogous in this case to adding
another slice and seeing what happens,

A230: umhmm

R231: In this case it would be adding the next Fibonacci
number, and seeing what would happen. Here we're going
from, say when we went from the 4 case to the 5 case

A231: right

R232: we were adding another slice

A232: right
R233: and it doubled
A233: right

R234: here when we're going from say 4 to 5, we're going
from adding up the first four to adding up the first
five.

A234: right

R235: and we're looking at how the sum changes, when we add
up the first four we get 7

A235: right

R236: which happens to be 8 minus 1, we notice, which is
neat because that means that this works out for 4,
great.

A236: right

R237: I should put the plus signs in just so we can tell
what we're doing

A237: and we add those up
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Figure 48: R's chain of implications written about line
R238

R238: Now we can add these up a couple of ways. we can add
them up by going 1

A238: you get 12

R239: plus 1 is 2 and da da da da da

A239: or we can do 7 plus 5 is 12

R240: or we can do 7 plus 5 is 12. ok. Now where did that 7
come from? that 7 was

A240: the sum of the first four

R241: uhhuh and it was also 8 minus 1

A241: yeah

R242: ok. Let me rearrange this a little bit. [writing] like
that.

R242: ok

R243: Now, what's interesting about 5 and 8? anything?

A243: Added up together they equal 13

R244: Ok what's interesting about 5 and 8 and 13?2

A244: 13 is, 13 is the seventh Fibonacci number!

R245: Does it have anything at all to do with 5 and 8?
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A245: yes, because, yes, this is the rule we did way back
then. yes, now I remember. yes because 5 plus 8 gives
the third Fibonacci number.

R247: ok, let's see what happens, now that we know that this
works, if we add the next one on. --- we add it on
there and we'll add it on here. ---

A247: you want to see what happens. like you add it all up
and you see what happens?

R248: No no no no. what happens specifically when we add
those two?

A248: the 137

R249: umhmm

A249: we get 21, and 21 is, lo and behold, 8 plus 13, which
means the seventh Fibonacci number plvs the eighth
Fibonacci number gives us the ninth Fibonacci number.

R250: ok, so what would

A250: which minus itself gives us, minus 1 gives us the sum

of
R251: umhmm
A251: the first eight.
R252: right

A252: so the first, ok,

R253: if we look at

A253: and that's the eighth, is that the seventh? so the sum
of the the seventh, did we say that 13 plus 8 was 13,
so the sixth and the seventh the sum of then, gives us
the, added up minus 1 gives you the sum of the first
six

R255: if we add on the next one here, whatever the next
Fibonacci number is, it's 13, so we have this whole
mess, da da da, plus 13 should give us,

A255: let me see let me see, let me tell you should give us,
what was this 21? all right, 21, plus 34. Oh sorry 21
plus 13

R256: ok because we added 13 to

R257: this junk over here so we should just add 13 to this
junk over here and it'll still be equal

A257: that's right, and minus 1

R258: but we happen to know these two because they're
consecutive Fibonacci numbers are going to give us the
next Fibonacci number

A258: right which means you have to add 34 on to the other
side

R259: no, the 34 was

A259: oh right

R260: 21 plus 13, it was already there

A260: but if you go up another one you have to

R261: yeah, when we go up to the next one we'll add 21 to
there and we'll add 21 here and 21 plus 34 will give us
the next Fibonacci number

A261: yeah

R262: and then the next one we'll add a Fibonacci number
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here, we add a Fibonacci number there and we get the
next one

A became distracted for a moment at this point and
missed R's description of the general case.
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Figure 49: R's induction step at line R267

R267: OK, what I'm doing here is I'm following this pattern
that we were developing here. We had some Fibonacci
numbers, and we figured that they were equal to some
number

A268: right

R268: and then we found that when we added on the next
Fibonacci number, and the some number we had over here
tot eh same Fibonacci number to make it all nice and
equal

A269: we got that, and it worked

R269: we get the next Fibonacci number

A270: right

R270: because we happen to have two consecutive Fibonacci
numbers over here

A271: yeah

R271: Now what this says is, say we've got a bunch of
Fibonacci numbers

A272: to K yeah

R272: and they happen to add up to the next Fibonacci number
2 down
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Oh what, that 2 that 2

that 2, this is just saying OK we go up 2

OK Ok , see I was thinking

from the Kth Fibonacci number

I was thinking it was F K plus 2

Ah no, this is all down here

ok great

this is just like 2 beyond that one

right

ok

what's, minus 1, right.

minus 1, just like it always has been. now we add the
next one on, so that's K plus

K plus 1

1, and we add it on to the other side as well

right

to make them, because if this is equal to this and we
add the same thing to it then it will still be equal to
that

right

if we add different things, we'll be in trouble so
we'd better add the same thing. So we've added the same
thing here

right

and then what do these two add up to?

F K plus 3

Ah Ha! ---

minus 1

right, so what we've shown is that if

the sum of

Uhhuh, you were saying?

That the sum of the Fibonacci numbers to F K plus 1,
we could just as easily call it F K

ok, but I want to keep F K being this particular

ok,

F K whatever it is

added up is F K plus 3

ok, now

minus 1

yeah, that works, if this works. Do you see that kind
of relationship?

Yeah because you've just made, this was completely
balanced so this works and therefore this works, you
just done, you haven't changed it you just added that
to both sides, it's equal, but then that actually
equals this and if that equals this then that works
because this works, yes

ok, so this says that if we know, if we figure out
somehow, that this silly statement I wrote is true for
a given Fibonacci number K, then it will also work for
the next one. Is that OK? Because this is the Fibonacci
2 beyond the last one here.
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A291: right, Yeah

R291: ok, so we've shown that if it works for a Fibonacci
number than it works for the next Fibonacci number

A292: That shows that it works for, that the 2, that the
second one after though, not the next one but the one
following that.

R292: How do you mean?

A293: well, it's because, we're dealing with like, the
Fibonacci number, but the third one like

R293: ok

A294: not the next one

R294: But we want the second, we want

A295: but that's because we want the second one over here

R295: we want the second one after this one, now

AR296: oh, right

R296: see we're looking at the next Fibonacci number, we've
added on another Fibonacci number

A297: oh right

R297: to this side, so now we want to move from

A298: but where is, wait, we,

R298: the seccnd after

A299: But we don't have the F K plus 2

R299: Ok, well we, what we have here is actually F K whoops,
that's an F, K plus 1, because that's the last one in
the list

A300: right, oh yeah

R300: right, plus 2

A301: Right. Plus F K plus 2, plus F, yeah, right, Got it

R301: ok

A302: ok yeah

R302: Now this algebraically shows that if we know it for
one Fibonacci number then we know it for the next
Fibonacci number, and we know that we know it for all
these little ones that we've been playing with, can we
then say that we know it for all Fibonacci

numbers?

A303: --- -—- My heart tells me to say yes.

R303: OK, your heart tells you to say yes. Well why is your
heart telling you to say yes? is the next question

A304: Because what you've shown here, and what I've seen,
and what we've been discussing, is a series of
relationships, and this is a series of relationships,
that makes up Fibonacci numbers, it makes them what
they are

R304: OK

R305: So if you're doing, this is, yeah, this is the way
they work, this is the way they develop, so I would
say, that's why I would say, for any Fibonacci number
it's nature, it's being a Fibonacci number, means that
it will work along these these things that are in its
nature as a Fibonacci number

R305: That sounds very mystical
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[laughter]

A306: I know

R306: If I know that this statement works, well we worked it
out for the sixth

A307: Fibonacci number and we have worked it out, we've
worked these out all the way to the 32nd Fibonacci
number, before

R307: OK, we worked it out to the 32nd Fibonacci number,
does this kind of argument say that it should be true
for the 33rd Fibonacci number?

A308: Yes
R308: So we could say that we know it for the 33rd Fibonacci
number

A309: Yeah, and then we could say that we know it for the
34th, because we know it for the 33rd, we know it for
the 34th, and if we know it for the 34th, then we know
it for the 35th, and if we know it for the 35th, then
we know it for the 36th, and so on, and so on, and so
on, and so on, and so on

R309: Can we say that it works for every Fibonacci number?

A310: Yes

R310: Why?

A311: How do I explain that? because once, we've, we've
actually worked it out, ---, well, I mean, it couldn't

have just, I mean there obviously a thing that it could
just change for some reason, something could just go
wrong in the whole pattern in question and it could
just not work

R311: ok and then we wouldn't know that

A312: no

R312: Do you think

A313: But, No, It doesn't seem logically

R313: that this ever goes wrong?

A314: It doesn't seem logically that it should though,
because ---

R314: Well where would it go wrong?

A315: Ok, if, ok at the beginning here

R315: ok

A316: this, this makes absolute sense because it has,it sort
of the basic way that Fibonacci numbers work, Now here,
this F K, adding it to both sides. It wouldn't go wrong
there because you're just adding a number to both
sides, it's not, you're not changing the first one,

R316: ok

A317: ok, and this third one is just, is just a growth from
the first, the second one. So if it, it wculd have to
go wrong anywhere, it's going to go wrong, it would
have to go wrong right at the root of the problem up up
here.

R317: ok with the 'if we knew it for the first Fibonacci
number, then we know it for the second'. The thing that
could be wrong is that we didn't know it for the first
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Fibonacci number

A318: Yeah

R318: ok we kind of have. We've got

A319: OK so if it's going to go wrong , it'll go wrong at
the beginning

R319: this says, if this then

A320: But it won't, it won't go wrong at the beginning,
because the beginning just describes what Fibonacci
numbers are. ok So then that, The first one is the
description of what Fibonacci numbers are, how they,
how the pattern evolves the Fibonacci numbers and how
they are going to develop

A322: so if it's going to go wrong because, the Fibonacci
numbers don't work the way we think they do

A323: at all

R323: ok so if this was going to go wrong then this whole
thing would have to not be true at some point

A324: yeah

R324: we know that it's true for

A325: a lot of Fibonacci numbers

R325: a lot of Fibonacci numbers and from that

A326: and we think it's true for all Fibonacci numbers

R326: Ok why do we think it's true for all Fibonacci

numbers?
A327: Because, Because --- I don't know, to me just for, at
a certain point it just comes down to trust.
[laughter)

R327: what are you trusting in?

A328: I'm trusting in that this development. Like, I'm
trusting in the fact that it always grows in this
particular manner charted

R328: ok

A329: we've gone through them all, they follow this pattern,
OK but you trust that they will just continue to follow
this pattern, that I mean, that somehow randomness or
some crazy fluke of nature won't happen so that, for
some reason, like Fibonacci number 17 million decides
that it's going .to do something completely wonky
because it just stops working for whatever reason.

R330: The pattern that we're looking at, that we're talking
about with the Fibonacci numbers is thrat of you add up
a Fibonacci number ancd the next one

A331: it gives you

R331: the one after that

A332: the one after that yeah

R333: so as long as that works for all Fibonacci numbers

A333: then this is true

R334: then this is true

A334: yeah

R335: ok. That's the definition of the Fibonacci numbers so

A3345: Yes it is

R336: it better bloody work for all of them
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A336: exactly exactly, that's what I mean, but there is a
bit of trust in there, don't you think?

R337: well, yeah I suppose so. ~--- ok

A337: but then if it does stop working then it's not a
Fibonacci number, and if it's not a Fibonacci number
then it doesn't have to work along according to that
pattern.

R338: That sounds good to me

A338: It's a tautology isn't it?

R339: Is there anything similar, or anything, well there's
lot's of things different, in this adding another slice
to the pancake, and, or at least, is there anything
fimilar, here we have an argument that said ‘e never
get more than 2 to the power K pieces

A339: umhmm

R340: and here we have an argument which says that this
weird thing about Fibonacci numbers works.

A340: umhmm

R341: Is there anything related about the way our arguments

went? ---Do you even remember how the argument went?
A341: yeah--- because, let's see, --- because, in both cases
we started with the very simplest examples
R342: ok

A342: and we, we made some statements that were true abhout
those very simple examples

R343: ok

A343: and they seemed to be true as they developed. Starting
with our, one slice of our pancake and moving up to 2,
and coming to the point that we noticed that 2 cuts of
a pancake never gives you more that 4 slices, and how
do you write that? and what does that mean. And in a

similar way we started with the Fibonacci numbers because we
started with our first Fibonacci number, and I way way
back, and we started

very simple and started building up

A344: until we started trying to, starting from the simple,
building up to much more complicated, or not more
complicated but more bigger ideas

R345: How did we go from the very simple cases to everything
which is, a bit of a jump.

A345: Trust, No. Well basically what we did was we proved,
well in the case of the Fibonacci numbers, we, we
showed that the things that we, everything that was
bigger that we did was just simply changing the way we
made our first statement --- like these things are all
developments of the first statement

R346: ok

A346: taking this, and reworking it and twisting it around
into other things --- but it's all based on that

R347: ok, this transition from if we know it for K then we
know it for K plus 1 is based on that

A347: yeah
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R348: and here we had an argument that was based on cutting
it, that if

A348: double it

R349: knew it for one, we could never more than double it so

A349: right
R350: s0 we would know it for the next one
A350: yeah

R351: ok, how did we go from those specific thing, if we
knew it for one we knew it for the next one to the
everything statement?

A351: —----- because, I don't know how to answer that.

R352: ok

A352: I mean I probably, if I really though about it for a
while, that to me is the biggest thing, it's the
hardest thing to describe in everything, it always
comes down to you asking me is this for it all and I
always have to give you this this vague answer because
it's, I have a hard, I think it's very hard to explain
that leap. In some ways it seem very simple but in some
ways I find it very tricky

R353: If I said show that this is true for the 328th
Fibonacci number

A353: I could

R354: Could you do it?

A354: I could show it, yeah

R355: How would you do it?

A355: I would just, If I wanted to do it the painstaking way
with a calculator work it all out.

R356: OK, do you have to?

A356: NO, because I could Just fool around with the numbers
and and actually knowing a few, a couple of numbers I
could know the sum of all the numbers and figure it out

R357: ok

A357: prove it

R358: Do you know this for the sixth Fibonacci number?

A358: yes

R359: then do you know it for the seventh Fibonacci number?

A359: Yes and the eighth, yes yes and that's how we come to
this belief in it going on forever

R360: ok

A360: and the same thing with the slices of pie. You know it
for the first, so then you know it for the second, and
you know it, therefore you know it for the third,
*herefore you know it for the fourth

R361: Therefore you know it for all of them

A361: Therefore you know it for all of them

R362: ok, so you can always make that, you do it one step at
a time?

A362: yeah

R363: and you can work one step at a time from the little
tiny cases

A363: all the way up to the higher ones, yeah
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R364: ok, That's called the principle of mathematical
induction

A364: Is it?

R365: It's very big in math

A365: yeah?

R366: yeah

A366: hmm, But you see to me there's a certain, a certain, I
mean, maybe it's wrong, but I always, maybe it because
of my, not being a mathematical person but I always
think that some things just, I, I don't look for that,
I don't look for that moment of irrationality where it
just doesn't work, that inconsistancy, I find it
incredibly to say that it would work, for all of them
because you go from one to the other and to the other,
somehow that doesn't prove it to me.

A367: Because practically, here on paper, in the short term,
but

R368: Do you think it doesn't prove it to you because it,
the same kind of argument wouldn't work in

A368: yeah

R369: real life for things like the sun.

A discussion of empirical induction followed. A say
that in the case of empirical induction there is no link
between each consecutive event. She also saw that nothing
unusual could happen in the case of MI, because of the link
established between each step. It was also pointed out to
her that the logic used in everyday life must account for
errors in perception, while the logic of mathematics can be
precise.

R383: that's that. I had one actual question. A couple of
times when we were doing the last one, you were looking
at, trying to get. Well, you had this written down
basically, and you were fooling around with it, and you
said that you were trying to get it to 'prove itself'

A383: umhmm

R384: What does it mean for a mathematical statement to
'prove itself' or do you know what you meant by that,
or were you just saying it?

A384: I was desperately trying to think back to my calculus
classes, and the proof she was writing on the board, in
which she would take this and then build down from it,
or build up from it, and it would prove itself. And
that, starting from this she could, she would work it
[in a search?] in such a way, what she did to this
formula would, it would prove that this formula worked,
that's what I meant.

R385: How would it prove itself?

A385: in this, in the course of this calculation, form this
flipping things around in the formula, putting
something here, or adding something, I don't know,
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compare, connecting it, substituting another formula
into it, which is what we eventually did, [we used
another one?), that the formula would prove itself, but
in fact, it's not proving itself. It, You're proving it
using other, we, working it with something else, or
with other elements of it, or, but then I guess, no

R386: What would be the final line in that kind of a proof?
What would it look like?

A386: the final line?

R387: yeah

A387: like, the line you started with.

R388: The line that you ended up with that would, that, your
teacher would stop at that point and say 'there’.

A388: I don't know, I don't remember, but I would imagine
that it would be the line that she started with, at the
very beginning, when she started the

R389: ok

A389: [working with it?] the base rc~t of it, which is
what's been happening sort of to us here, with the
Fibonacci numbers, like basically what I remember when
we were working on, when I sort of had to prove it
eventually what I came to was I, I think I managed to
take it and by working with things that I had learned
about Fibonacci numbers and putting them in with the
formula that I had, that it actually came down to it
could be simply, I think I simplified it down to,
almost our first, this is what Fibonacci numbers are,
equation.

R then pointed out the similarity between A's proof for
the induction step in session 2, and the general proof of
the induction step. The general plan of stage 2 was also
described, and the session was declared finished. After some
conversation, however, A caught sight of the Table of the B
sequence and asked about it. The session resumed.

R406: can you find the pattern in the B sequence?
A406: it exactly like the Fibonacci numbers up to the 5
R407: ok

A407: and then something happens --- yeah, let's see--- yeah
R408: What's the pattern?
A408: --- whoops, wait, doesn't quite work -~---- oh Ok, ---

the sum of the B sequence, up to a even number, even
numbered B sequence sequencer, gives you a, the
following number. If you work up to a, the sum of up to
an odd number then it gives you the following number, I
think plus 1

R409: Can you give me an example?

A409: let's see like, for instance, B4 it'd be the first
two, ok, their equals up to 2, so the, so it's 2 plus 1
is equal to 3

R410: ok
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A410: and now the first three, plus 3 gives you 5, right?

R411l: ok

A411: then the next, 4, 5 6 7 8 9 10, gives you 10 plus 1 is
11, and the next, 5, so you need to plus 1 for that,

R412: umhmm

A412: it's an odd, it was an even, and for the § you've got
11 plus 5 is 16 17 18 19 20 21, gives you it right on
the nose so now we should expect that, 21 --- plus
well, all these added together, 21 plus 21 is 43, 44,
42, 42 plus 1

R413: umhmm

A413: so 43 plus 43 is 86 so it stops working there.
because it becomes again plus 1. 86 plus 86, they're
they're doubling. sort of. sometimes doubling sometimes
you have to add 1

R414: or subtract 1

A414: or subtract 1

R415: with 86

A415: yeah

R then attempted to lead A to the relation B, = B, +
2B,.». He eventually succeeded and the session ended.

First Session With B

The session began with a discussion of the definition
of prime number. B was shown the statement: "P = n? + n +
41" and asked to try some values for n. She tried small
numbers of which she knew the squares.

B9: --- so is this an exercise in this formula everything
comes out as a prime number?

Rl1lb: well, are all of those prime numbers?

Bl10: I don't know, I think those are --- so far --- try
something big ---

R12b: You might want to do that one on the calculator
because I don't know what 61 squared is

Bll: How do you square numbers?

R13b: There's a button here somewhere that just does it,
there

Bl12: --- a pattern is emerging.

R14b: Can you draw a conclusion?

B13: A number squared plus a number plus 41 all would have
to be prime numbers. So far they have.

{laughter)

R15b: Do you think it works in general?

Bl4: um, I, probably, I don't know

Rl16b: what would you do if you had to be more sure?

B15: uh, myself, I have no idea. Presumably you could plug
this into a computer and get it to do it for you.

[laughter]}
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B16: I could sit around for hours and plug in many numbers

R17b: ok That's about it for those, for the moment, and
we'll shift to something else. Do you know what
Fibonacci numbers are?

B17: No

R18b: A hasn't been talking about Fibonacci numbers? I've
been hitting her over the head with Fibonacci numbers.
let's see here, Fibonacci numbers, yeah I was going to
give a history. A guy named Leonardo Fibonacci who
lived in Pisa in the 13th century came up with these
things, something to do with the breeding habits of
rabbits. the exact details of which I forget right now,
but he ended up when working with rabbits finding this
sequence of numbers, here. These are the first 35, it
does continue on after that. Can you find any kind of
pattern in that sequence of numbers?

B18: ~-- The first numbers added equals the third, and those
two equal the fourth number and so on and so forth
R19b: Ok, so if you wanted to give somebody a definite rule
for producing the Fibonacci numbers, how wou.d you

phrase that?

B19: --- I don't know, in mathematical terms? like

R20b: well just

B20: just in general

R21b: any way if you were just explaining to somebody on the
telephone how to write down the Fibonacci numbers and
you didn't want to tell them what they were

B21: --- The first number plus the second number equals the
third number; *he second number plus the third number
equals the fourth number --- And the third one plus the

fourth equals the fifth and so on and so forth

The notation F, for the n'" Fibonacci number was then
introduced and discussed. After being shown F,4 as the
notation for the Fibonacci after the ntt B was asked how the
next Fibonacci number would be represented, She answered
correctly Fp,,.

R27b: ok, that sounds great. We don't know what it is, and
it says it comes after F N plus 1 so that's all you
really want. Can you think of a way to write the rule
for producing the Fibonacci numbers using F N and F N
plus 1?2

B27: --- do something like F N plus F N plus 1 equals F N
plus 2

R28b: Ok that sounds good. Do you want to write it down
somewhere just in case we need to talk about it later?
---[garbled ?2??) ---

B28: I can't even see where the lines are going --- umhmm,
they're all even numbers

R29b: do you think that's true for all the Fibonacci numbers
when N's a multiple of 32
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B29: Up to 35 they are

R30b: ok, why do you think that's so?

B30: ~-- because the, when you add two odd numbers together
you make an even number so the, if it were not a
multiple the, the first two numbers are odd and so when
they add up to the one that's a multiple of three then
they become even

R31b: ok, that sounds great, Are you pretty sure that it's
true for all the Fibonacci numbers

B31: No

R32b: What would make you more sure?

B32: Probably if I read it in a textbook somewhere and hey
told me it was. [laughter]

R33pb: ok, let's skip on to yet another question.

B33: --- [long pause] --- The Fibonacci, If N is prime then
the Fibonacci number is also a prime number.

R34b: ok, Do you think that's true for every Fibonacci
number when N is prime?

B34: I'll say yes

R35b: Ok, Why?

B35: Well we're working on a pattern here ---

R36b: ok, how could you be more confident that that was the
case?

B36: I don't know --- ---

R37b: How did you become as confident as you are now?

B37: --- I don't know

[laughter]

R38b: Well reflect on the kind of thinking you were doing.
From never having thought about it before now you you
think it's true for every Fibonacci number. That's a
change

B38: ~-- I guess something to do with numbers seem to go in
patterns because you're always working with formulas to

R39b: ok, have you seen a pattern here?

B39: yes

R40b: What kind of a pattern?

B40: That they seem to be working in just the prime numbers
seem to correspond

R41b: ok

B4l: well, I mean, that's as far as I get anyway which is
about here

R42b: ok, looking at the three things that we've looked at
here. Are there any that you feel more or less
confident about? compared to the other ones?

B42: --- Now I've just gone and forgotten what it meant. All
right, ok. I think I feel more confident about the, the
F N when N is a

multiple of 3.

R43b: why?

B43: because I think, a long long time ago I remember being
told that if you add two odd numbers you get an even
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number

R44b: can you think of any reason why that should be so?

B44: No

R45b: ok

B45: --- I have a really difficult time reasoning out
mathematics. ---but they do seem to develop patterns

R46b: ok have a look at this one again. What do you get if
you plug in 40 for that one?

B46: --- oh my, it doesn't work.

R47b: Would you now say that that formula only produces
prime numbers?

B47: No

R48b: Why not?

B48: Because it didn't work for this one

R49b: ok, have a look at this one again. What happens if you
check the 19th prime number?

B49: there we go

R50b: there we go what?

B50: it the same as this formula

R51b: is 1it?

B51: it's the same number

R52b: I don't think so

B52: --- No it's not

R53b: You're determined to find some patterns here somewhere

B53: I am yeah

R54b: Do you get a prime number?

B54: No

R55b: What would you say now about this statement? would
you say that there's something special about F N when N
is a prime number? or what would you say, if N is a
prime number?

B55: --- well, I'd love to find another pattern here
[laughter] I can't --- can't say anything about it I
suppose. Or is this an exception, or presumably if
there is one exception there will be others.

R56b: How about the second statement about when N is a
multiple of 3?

B56: This is the one I liked most

R57b: yes, but would you still say that that's true for
every Fibonacci number when N is a multiple of 3?

B57: I'll sav that until I'm proved wrong

R58b: ok do you think that, it's possibie that you would be
proved wrong, likely that you would be proved wrong?

B58: yes
R59b: Why would you be inclined to stick to it?
B59: ~-- Because of the, it seem to me that the, it still

works out as a, with the two, two even, odd numbers
adding up together to become an even number would still
work in most cases, well yeah, would still work

R60b: ok is that kind of a pattern different from the
pattern you found with the other two?

B60: --- It is because this is, because I could see the
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pattern outside of just the denotation whereas with
this one I was looking, here I couldn't figure out why,
sorry this isn't making sense now, ---when N is a
multiple of 3 I could see the pattern in the, in the
actual numbers instead of just looking at the charts
and, do you understand?

Rf1b: Yeah

B61:

Yeah?

R62b: what would you say about trying to find out if a

mathematical statement is true or not?

B62: what would I say about what?
R63b: about how you would go about trying to figure out

B63:

whether something was true when you make a conjecture,
like you made conjectures here about these three
questions,

--- I would say you would have, have to actually have
a, --- be able to, to see, with these ones it's
basically a matter of plugging in numbers and, and
seeing what you come out with, and looking at those, at
those numbers but, there's, I never actually figured
out why it was doing that, but just that, that's the
way it worked, whereas with this one it has another,
--- I don't know, backed up by another rule? I, but it,
--- you actually have to understand why, why it, it is
doing that, --- for, like for example the N 2 plus N
plus 41, I had no, I didn't know why it was doing that
it just, why the, the numbers seemed to be working out
to prime numbers they just were doing that. I didn't
know why. Whereas this one, &t least I think I know
why, the multiples of three work out to be even because
the the other two, when you add the Fibonacci numbers
the other two are odd and then so it would come out to
be even.

R64b: How do you know the other two are going to be odd?

B64:

I don't --- that again is looking at the little charts
and they seem to work out that way ---

R65b: So you've made . conjecture that, the two Fibonacci

B65:

numbers before one that is a multiple of three will
both be odd

because, no, because you, if each Fibonacci number is
the first one plus the second one equals the third one,
--- the first, it starts out, well, then you would be
adding two odd numbers together and get an even number,
and then you add, oh, that's the same thing, I see,
you'd say, then the next one then is odd, so you'd add
that to the even and then you'd come out to another
odd, but then I don't necessarily know that the, that
the next number after an even number would be odd so

R66b: can you think of any reason why the next one after an

B66:

even number should be odd?
--- because the one before the even number was odd
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R67b: How does that make the one after the even number odd?

B67: Because if you add an even number to an odd number then
it comes out as ocd

R68b: ok, how do you know that if you add two odd numbers
together you get an even number?

B68: I don't know, I just, again something I was taught in
grade 1, --- it seems to be the way it works, again I'm
making, I haven't tested out every single odd number
adding it to every other odd number, but, --- But then
I guess you'd only have to, have to do the first 1
through 9, because that what there all going to end up
with anyway.

R69b: Why do you just have to do the first 1 through 9?

B69: because anything after that will also end with 1

through 9
R70b: ok, do you have to do all of them from 1 through 92
B70: --- I don't know. I'll say yes. It would make me feel

better if I did it all for 1 through 9, I don't know if
anyone else would have to.

The definition of "odd number" was discussed. B only
knew which numbers were odd based on the final digit. She
had learned which ones indicated even and which odd, but did
not see divisibility by 2 as part of a definition.

R76b: this is kind of an interesting digression, but maybe I
should go back to what I was originally going to talk
about. What sort of justifications would you look for,
What I want to do next is have you and A look at some
statements together and try and figure out which
statement are true and which ones are false. What kinds
of things do you think you would try and do in that
circumstance?

B76: --- I would try, to figure out why a statement would be
true, for example these examples that you've given me,
--- as I said before the ones that I was just plugging
numbers into but I didn't know why that would work out
g0 I'd have to try and figure out, why whatever
statement I was making, or whatever pattern I was
looking at would, would be the case.

R77b: What kind of an explanation would you need?

B77: --- I'm not sure ---

R78b: well would an explanation that something is true
because it works for, all the numbers from 1 to 10 be
sufficient?

B78: NO

R79b: why not

B79: because it didn't work for this one

R80b: ok, how about for 1 through 100?

B80: No, because again that's just plugging in numbers. 1'd
have to come to some sort of understanding, I have no
idea how, why when you plug the numbers in it, it works
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out to be whatever it works out to be. why that happens
R81b: ok. You say you have no idea how, How did you come to
an explanation for this one?
B8l: I don't know, I just made the, I just made the
connection. It happened to work for that one. Whereas,
for example, these ones I couldn't come up with a
reason why that was working out

The session ended at this point.

Stage Two Session With A and B

A and B were instructed to work together, and to record
whatever conclusions they reached on the paper provided. R
was to remain quiet, serving only as a source of
clarification of anything they had difficulty with. They
were to take as long as they wished on each activity.

They began by reading the first proof. A asked about
the meaning of 2 to the power n, and was answered by R.

A518: So P N is smaller than or equal to 2 N. We did this
one before. Did you do this one before?
B102: No I don't think so.

A continued to read the proof. She had difficulty with
the use of P,4. B also had a similar difficulty, wondering
if p,4 or P,+1 was meant.

A524: So the pieces, and then every time you add a new one.
That make sense.

R521: The N plus 1 is all one thing.

A525: is 2 time P N, it makes two more pieces every time? Is
that what it means? ---

R522: It doubles the number of pieces each time.

A526: OK --- so we have this one iittle piece like this ---
That makes it, now each time a new cut is made by a new
line, the new line, cuts every piece into 2 pieces.
That's right. Doubling, that's right. Cuts every piece
into two pieces?
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Figure 50: A's sketching at line A526

A was concerned that the line had not cut every piece
into two pieces, but B pointed out that it didn't have to. A
reread the proof and saw the relevance of the phrase "at
most" They each rewrote the inequality, commenting that it
was difficult to understand.

B115: And N is the number of lines. Cut, right?

A540: Yeah --- and P N is the total number of pieces. ~--
Total pieces --- number of cuts --~ [reading] Each of
the new cuts made by & new line at most cuts each piece
into two pieces. So the P N is the total cuts and you
add another one, and it's going to be equal to 2 ---
doubling, doubling the number of pieces. That makes
sense right, you get this one?

B116: When, I still don't really understand the N plus 1

A541: Well look at this, basically you have, your number of
pieces

A542: right, of your pie. Now every time you add one,

A543: one more cut, so that's plus 1. you're going to get
double the number fo pieces, cause the most,

B119: Yeah

A544: So that's what the 2 P N

B120: So 2 P N plus 1 is that

A545: That's the number of pieces plus one more cut.

Bl121: So the number of pieces

Bl122: I think the plus, the number of pieces

A546: I think that's the one more cut

A547: I think that's P N

Bl24: OK but say

A548: instead of saying P N plus --- That's plus 1 more cut,
I think . It gives you double the number of pieces.

A548a: It gives you as, it will give you as much or less
than double the number fo pieces, at the maximum it
will give you the double of the number of pieces.
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B126: OK ---

A549: So then if your number of pieces --- is, back up, if
your number of pieces then is maximumly smaller than or
equal to this 2 to the N we said up here

A550: then this this P to the N

B128: plus 1

A551: Yeah this thing here that we decided that we'd agree

on.
A552: right, is going to be smaller
B130: Than

A553: than double the ---
B131: than the pieces doubled
A554: which is, yeah, right
B132: which is right

At this point A asked about the inequality involving
exponents. She saw no connection between it and the
explanation which preceded it. R went through each step of
the inequality explaining the meaning of each one in words.
B wondered if the inequalities were transitive. R explained
that they were. A and B then rewrote the combined inequality
as four separate inequalities. B decided that the
inequalities were transitive in their separated state. She
felt, however, that the possibility of equality was lost if
two inequalities were combined.

B152: Well no I suppose, yeah that's right it can be because
if this is if this is equal to this and then this can
be equal to this also then OK it can be.

A585: OK

B153: Yeah, well that makes sense.

A586: But I don't understand is how

B154: if all of these things are true

A587: I don't understand how we get to the 2 to the N plus
1. I understand how we get to this statement, I'm
understand how we get to this statement, and I'm not
sure how we get to this statement .

B155: This?
A588: Yeah
B156: From that?
A589: yeah
B157: Why the 2
A590: Yeah

B158: P N is greater than

A591: 2 N plus 1

B159: Because it's greater than or equal to 2 to the 2 N
which is just 2 N plus 1

A592: But I don't see how this becomes equal

B160: Isn't it?

A593: At the end it's become equal, it's not greater than or
equal to, is equal to---

B161: Well this, 2 to the 2 N is equal to
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A594: Is equal to

Bl162: Is equal to 2 to the N plus 1

A595: I don't understand that

B163: Isn't that just timsing it out? timing it?

A596: Is it? --- I think I get a little freaked out when
they start playing with things in the exponents. --- up
here. ---

Bl164: So that's 3 becomes 6 12 --- -—-

BA597: N plus 1 is the number of times

B165: Yeah so that's

A598: plus 1 so 1 more cut

B166: 2 time 2 time 2 say times 2

A599: Plus 1, where's the 1 at the end? so what you're
saying here is

B167: Wait wait wait how does 2

A600: I'm going to just do it in cuts, like I understand, if
that's OK

B168: umhmm

A601: So, we're going to do 1 cut. OK? So it's 2 to the
power of 1 plus 1 which is 2 to the power of 2, right?
Which is 4. Right? And 2 --- I'm not getting 4 out of
this. Like I'm trying, If we do this with cuts what
happens here? let's say let's do 2 cuts, well let's
just do 1 cut.

B169: Well no do 3 cuts

A602: Ok 1 2 3

B170: OK

A603: So we have 2 to the power of N, N is the number of
cuts for any number N, is the certain number of cuts,
all right

B171: Yeah

A604: 2 to the power of 3 plus 1 is equal to 2 times 2 to
the power of 3

B172: No, 2 to the

A605: yeah 3 cuts

B173: Wait what's the difference between 2 N or 2 N

A606: well 2 N is 2 times 3, 2 N is 2 times 3, 2 N is 2
times 2 times 2

B174: OK Is it?

R538: Yeah

A607: OK, so what we end up with then is --- Now if I
remember correctly, I'm going to ask you about algebra
this means that it's 2 to the power of 4

R539: Yeah, 3 plus 1 is 4

A608: That's what I thought, OK so that's 2 to the power of
4 is what? 2 times 2 is 4, 4 times 2 is 8, 8 times 2 is
sixteen, --- and then 2, ok that's 2 4 that's 6 2, 2
times 2 is 4, 4 times 2 is 8, that's 8, eight times 2
is sixteen. So it works for this one.

B175: Umhmm

A609: Let's try it for 1, because I don't think it worked
for 1 --- 2 times 1 plus 1, 2 to 1
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A610:
R540:
B177:
A611:
B178:
A612:
B179:
2613:

B180:
A614:

B181:
A615:

R541:
A616:
R542:
B182:

A617:
B183:
A618:
Bl184:
A619:

B185:

A620:
B186:
A621:
B187:
A622:
B188:

A623:
B189:
A624:
B190:

A625:
B191l:
A626:
B192:
A627:
B193:

Yeah

So that's equal to

4

yeah 4 '

equal to 4, yeah

But, OK

So at least I understand how it works
So if it works for the example

Now I understand how it works, at least, but now what
are we trying to do?

Yeah

but what happens if we use 352? Should we try it with
3522

No

Do you have an exponent? Do you have something like

that on there?

Umhmm

Is it E to the X [on calculator]

No it's Y to the X

--- Yeah but I kept doing this last time and I tried

about 10 things and then He'd say well try this one.

Exactly

and it didn't work, so.

Unless we were incredibly lucky

Yeah

Like we happened to find the one case where it doesn't

work. OK so. So now what? So now what maybe we should
try and do is something like, let's, let's fool around
with this then OK? Let's say that, can we substitute
from here, and here into here? ---

Well see, It works logically, if you just move down,
if you agree with all of these statements then it makes
sense

Yeah

that this is, that this is the case

Umhmm

like if, ok if this is if if ---
Cause I mean if
P N plus 1 is smaller than or equal to 2 P N and 2 P N

is smaller than or equal to 2

It works

Yeah and and then that is that then yeah

this makes sense

this makes sense, but it's just that you have to agree

with every step along the way.

Exactly

I'm not totally sure how

Yeah

How that works. so,

So is the

so of the proof is --- is right then it makes --- yeah

like the proof is perfectly logical I don't have any
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problem with that
A628: Yeah
B194: It's just that how each part of the proof --- works
A629: Moves on to each other, yeah --- let's see --- 2 to 2

N would mean, If you multiply this times 2, we've got
2, 2 N here right? So let's say we go P N I just want

to see

B195: Well presumably wait --- let's look back at this’

A630: you do that and I'm just going to do this. And we'll
confer

B196: OK

A631: Cause I just want to try this while I have the chance.
--- ok then 2 time 2 time 2 --- this is right, going
backwards, OK forget it.

B197: Yeah so I'm just thinking of --- if you're always
doubling

A632: Umhmm

B198: Pieces --- for, like if you were always doubling

pieces it would be equal.

A633: Umhmm

B199: like everything equal, But you're not a always
doubling pieces because you're sometime you're only
cutting through 2 pieces.

A634: Yeah

B200: so then it's less than or equal to

A635: Yeah

B201: So that makes sense

A636: you can go like this --- --- Should we just say we
agree with it?

B202: Yeah

A637: For the sake of whatever. What's the next question?

R543: Why?

A638: Can you give an example where the statement is correct
or an example where it is incorrect? It is correct for
1 and 2, 3 slices OK Number 3 do you agree with the
proof? Why or why not? I agree with the proof, because
it's logical.

B203: [laughing] Oh god, all right. No --- well the proof
makes sense --- because, yeah, because each step

A639: Yeah you can substitute each into each, you can fool
around with it. and it still works.

B204: Very coherent statement --- and because if you draw
little diagrams with crepes and make it smaller and
smaller it still works. --- but it works with what it

said up here.

A640: I can't

B205: Or did you say it? how it doubles ea.'h piece?

RA641: it says it up there

B206: Or --- yeah because it's the number of pieces produced
it at most 2 times the number the line

R642: The cuts

B207: the cuts
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A and B then tried a couple of unusual examples, A
trying 4 lines, B considering the importance of the line
being straight. R presented them with three lines forming 7
regions. They counted, checked that 7 is less than 23, and
inquired as to why this example had been shown them. R
explained that they had always been drawing figures and
talking in a way which suggested that the number of regions
was only double the number of lines. The example was
intended to remind them that 2" was needed, not just 2n.

A650: OK --- --- what would you say was the , Ok do we agree
with this proof? or no? do we agree with the statement?

B212: Well the statement

A651: With this statement? Yes

B213: Why?

A652: Why? why or why not?

B214: Well we agree with the statement because we agree with
the procf. Why do we agree with the proof?

A653: Because it seems to make, to be a logical proof.

A654: It seems to describe the situation. When we play
around with it things seem to fit into each other. When
we tried it for a few sample numbers it worked. --- I
don't know why, why.

B216: well --- straight lines or something --- --- ---

A655: Let's try something here. --- -=- ——- Can we go on to
number 2? --- --- Can you tell us when you've learned
enough that we could, we could just leave it at where
we are? Can you give an example where, well we couldn't
give an example where the statement's ccrrect. Do you
agree with the proof? --- The proof proves itself,
whether it proves anything besides itself I don't know

B217: Yeah

A656: And that would be what's most problematic about it
[laughs])

R548: What do you mean by that?

A656a: I mean that, What we're proving here -- I mean yes,

we have proved that P N to, That this , I don't know. I
feel like that we have proved this little statement
here can be taken in and this can be all made true of
it, of this statement. But whether this statement
correctly I mean, --- I don't know -—-- -~--

R549: Do you have a problem, what you are trying to prove
is that statement?

A657: Yeah I know

R550: You've just said the proof works just fine

A658: For that statement

R551: If you assume that statement's true

A659: Yeah

B218: --- --- 1 suppose if this proof is trying to prove the
statement then
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A660: then that's right, then I agree. I don't know
B219: Well I don't know ---

A and B returned to reading the proof. For a moment
they thought that the example of 3 lines forming 7 regions
was a counter-example, but then saw that it wasn't. They
continued to read.

R667: That makes sense logically to me. It really does.

B225: Well it does, at most it cuts every

R668: every piece

B226: At least if it's a straight line, I mean unless you're
drawing squigglies

B227: Because it can cut it into --- 2
A670: I mean, cause how could it. it's going to cut into 2
pieces. --- yeah, if it's a straight line. --- cut it

into two more pieces ---

B228: Yeah, I mean it'll never cut it into more than

A671: Cuts every piece into 2 pieces. I, I agree with that.
That seems to me to be completely reasonable. with a
straight line. and doubling, and then doubling the
number of pieces. yes. yes. ---

They concluded that they agreed with the statement, but
without being able to say why.

A673: What would you say is the most problematic thing about
this proof? --- --- It's the sneaking suspicion that
we're being had. [laughs] ---

B231: That may just be R and may have nothing to do with the
proof at all.

A674: Yeah. --- Well I'm suspicious of anything that reduces
reality into mathematical formulas, and then asks me
whether it's true or not. I just, I think that that's
the problem, I'm just suspicious of this this this
thing. --- That's not a problem with the proof that's a
problem with me. and my suspicions.

A675: [reading] Could you make this proof better somehow?

A676: I don't know if I could make the proof better somehow.

B234: Well I probable could if I knew anything about this
stuff, but since I don't then I can't, == ~-= —ee —=-
————————— Yeah, all right what, do you want to go
back? do you want, do we agree with this?

A677: I don't know, I think

B235: I mean, can you think of a way to disprove it?

A678: No, I cannot ---

B236: So then is it true because we can't disprove it? ---

A679: All I study in school is how there is no truth. ---

B237: Well, but, I mean, log, It makes sense to me, like
this is the proof is estab estab
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B238: It makes sense to me in each step

A680: and if you go back here and you say 2 times 2 to the N
here then you go 2 times P N , yeah that's OK it's all
there it's just taking this thing and moving it around
and doing stuff with it.. It all. It's all the same as
this. This is exactly. there's just no way of saying
this. ---

B239: Can you start doing, if N

A68l: If N equals

B240: But can N only equal an entire, a whole number?

A682: Let's see, what has to go with this, 2 over 2 N plus
1, 2 divided by 2,

B241: Presumably

2683: so you get rid of that, see is equal to, if I divide
on this side do I have to divide on this side or
multiply on this side?

B242: Divide

A684: Divide on this side? --- so that's 2 N is equal to ---
1 to the power of N plus 1? --- does that work? Is that
right? Is that how you do this, to make sure that I'm
rot making an incorrect, a mathematically incorrect,
but 2 to 2 N is equal to 2 N plus 1, right, if you go
like that and like that, divide to get just 2 N right,
would that, does that work?

A expressed confusion about the exponents and R
explained. A then continued to work at showing 2(2")=2™1,
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2n=70
Figure 51: A's writing prior to line A691

B244: well see that works, when you have 2 N

A691: It equals 2 N

B245: 2 N I like that those sort of proof

A692: Apple equals an apple. No hesitation, no doubt.

A and B began activity 2. After clarifying the
meanings of "diagonal" and "vertex" they read over the
activity.

A703: The number of diagonals is equal to D N is what? The
number of diagonals

B253: Yeah

A704: what's N? the number of sides. Is equal to the number
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of sides times the number of sides minus 3 divided by
A OK I want to see if I can figure out
gsome kind of relationship between these. 5 6 9 hmm -~-
~== —-=~ -=- ~--- 2 D N is equal to N N minus 3. does
that work? if you're trying to multiply up can you do
that? OK. but --- um --~ --= --- what happens if you

divide D N by N?

R565: You get D N over N

A705: OK ---

R566: Because in one case the N is just a little subscript
to tell you which D you are talking about

A706: So 2 times the number of lines is equal to the number
of lines times, no, the number of lines minus 3 --- —-=--
-—— === —=~ —== —== -—- --- So what do we have to do
with this? We have to show that the number of diagonal
of a polygon is always

B254: Huh ---

A707: Is there something simple we can start with about
polygons?

B255: Umhmm, all these

A708: I mean is there some kind of simple

B256: If you plug all of these in they work --- for every
polygon

A709: But is there something simple we can start with? That
we can say about the number of lines? besides this?
like is there something simpler we can say about then
besides something like this? like, what's simple, like
we go from 3 sides which has none, 4 sides which has 2,
5 sides has 5, 6 sides has 9, how many does seven side
have? according to this? 7 is equal to --- what's N
again? the number of sides? D N is what?

R567: The number of diagonals.

A710: OK so D N is equal to 7 times 7 minus 3 so 4 divided
by 2 so D N is equal to --- 28 divided by 2 so D N is
equal to 14, right? so for something that's like
whatever, something that's got 7 sides, we get 14. ---

B257: hmm --- ——- ——o ——o ——_

A711: Oh wait, hey, look at this.

B258: What?

A712: 2 plus 3 is 5, right?

B259: Umhmm

A713: 4 plus 5 is 9

B260: uhhuh

A714: 5 plus 9 is 14

B261: Oh, OH these are those numbers

A715: Right, OK let's see, let's see how many we get now.
theoretically 5 we should get 6, 6 we should get 20 for
8 right? So let's see, if we do this D N thing OK so D
N is equal to 8 times 3 minus 3 over 2, so D N is equal
to 8 6 5 over 2, DN is equal to 30 over 2, D N is
equal to 15? and it should be equal to I'm wrong, Did I




do this wrong? It was looking hopeful there for a
second .

B262: Was 8 202

A716: Yeah, I was hoping it would work out to 20 but I
think, No, this 8 5 was equal to 40, sorry. Not 30, it
was equal to 40. Yeah it's right, it works out. OK so 8
sides gives 20. So this means that, this is great, so
that, we can write this a different way I think, than
this to show this. So basically what we know then, we
can make a guess and say that D N, so what we have here
is, it starts by ---- it goes from 0, to 2 --- to

B263: That doesn't work then

A717: Well I'll make the first one a bit, 2 times

B264: 2 plus 3

A718: 2 plus 3 is 5

B265: 4 plus 5 is

A719: 4 plus 5 is 9, 9 plus 6 is 14, um

B266: No 9 plus 5 is 14 and

A720: 9 plus 5

B267: 6 plus 14 is 20

A721: Yeah

B268: So it's, so diagonals are

A722: So it's 3 plus another one, ok so we've got 3 plus

B269: So it's the diagonals

A723: 2 plus 2 plus

B270: wait, the diagonals are equal to the sides minus 1

A724: Let's try this once more, 2 plus 3 is 5, 5 plus 4 is
9, 9 plus 5 is 14, 14 plus 6 is

B271: yeah, so that works

A725: But how can we write that in a mathematical formula?
If we can write that in a mathematical formula

B272: well

A726: We can fit it, we can plug it into here and see if
that still works. With that formula, and that will,
that will be,

They continued to try to describe a general formula,
without success. They also suggested that the relation they
found might be related in some way to the formula they were
supposed to prove.

B284: OK the diagonal equals --- --- =--- --- the diagonal
equals the side minus 2 plus --- the diagonal

A738: Oh wait! Wait wait wait, let me see this. what's
happening here? --- --- --- --- --- --- No I don't see
it, ——= —== -—-

B285: N minus 3 is 3 times N ---

A739: number of sides

B286: But work it this way, how does this work with your
pattern, if you have N minus 3 is this times that, then
divided by 2

A740: N minus 3 is --- N minus 3 times N --- 6 minus 3 is
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3, which means you're back to there,

B287: yeah, no, 1 mean, it works

A741: Yeah right

B288: just by plugging numbers in

A742: Yeah it does

B289: But if you yeah, I mean plugging numbers in it works,
but if you --- see it's 6 minus 3 or whatever 7 minus 3
but, see, I'm just saying, see, I'm trying to do
visually, here

A743: OK

B290: So if it's there, and N times that again, divided by 2
it equals that. and that's plugging numbers in that
makes sense, but with you're pattern of how

A744: These are developing

B291: Yeah

A745: Like we can predict right now, how many side we can,
with out using this formula you and I can say, how many
sides the next one is going to have, right?

A asked R how to write a the relation and R gave them
the relation for Ds and Dg.

A765: so then we can, if that's true, then let's see what
happens if we take --- --- I like it better when it's 2
D N. What do you think? Yeah I like it better.

B307: Which way?

A766: I like it better like this. So if we've got DD 5
right 2 times D 5 the number of slices is 5 --- is
equal to, 5 times, wait a second, what am I doing? ---
Let's wait, wait & second, 2, How would you substitute
this, OK then you would say, 2 times --- --- So you'd
go for D 5 and then, then according to D, for D 5 then,
then it should be 2 times D, 2 times --- D 4 plus 3 is
equal to --- 5, is that right? 5 minus 3? Do you think
that's true what I've written here? We're taking this
as being D?2? D 5 is equal so then we'll say for the
number D 5 OK? well so proving this equation, the one
he gave us, for D 5, for diagomnals 5
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Figure 52: A's proof for n=5 about line A766

B308: Umhmm

A767: then 2 times D 5 right, is equal to, so that's equal
to actually

B309: But that's not plugging in, No
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A768: cause we're saying

B310: Cause you've got

A769: So then I plugged in this one right? So I've said 2
times D 4 Plus 3

B311: Uhhuh

A770: Right? and then equals, and then we're talking about
the number of slices, 5, 5 times 5 minus 3 so that
would work?

B312: No. Wait, no I don't understand what you've done

A771: Ok basically I've said

B313: because you've got to take this down to

A772: So what I've done here, we're saying 2, I think, I
might be wrong about this. then we've got this one here
D 5 is equal to D 4 plus 3 right? So if we've got Now
let's solve this D N for D 5 so instead of D N we're
going to solve it, like this D N is 5 OK? We're solving
it for the diagonal with five sides, five sides OK? N
here is, where are we? Um N is N is the number of
sides.

B314: No No No wait because, yeah but

A773: So the D

B315: D 5 is the number of diagonals it's not, that's 5
diagonals it's not the number of sides.

A774: Right, right

R574: Well it's the number of diagonals you would have if
you had 5 sides

A775: Yeah, I'm not saying, so that's

B316: Ok

A776: So what we're saying now is, so we can actually say so
you can say D 5, so D 5 is equal, we're saying D 5, so
instead of writing 2 times D 5 we're going to write 2
times D 4 plus 3, right? cause D 5 is the same thing as
D 4 plus 3 That's what, OK That's what we've said

B317: OK

A777: So instead of saying 2 times D 5 we're going to say 2
times D 4 plus 3

B318: Umhmm

A778: Is equal to, Now what we're doing to do, is we're
going to say Now, I, tell me just if I'm straying here
but this should be the number of slices 5 right

R575: Umhmm

A779: cause we're talking D 5 the 5

B319: Umhmm

A780: So 5 and then we're still talking 5, 5 minus 3. So
this should work --- OK?

B320: All right, I think I understand

A781: Hopefully, so let's see. --- So this side is easy to
do

B321: So, D N you're saying D N is

A782: For this time I'm still calling it D 5, we're solving
for D 5

B322: OK -- so DN is D §
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A783: And N is 5, yeah ~-—- ---

B323: But then how do you get

A784: How do we find out

B324: 2 times 3 --- D 4 plus 3 is equal to this? Because
haven't you just said that that's that?

A785: Before I try and explain this am I on the right track
here? towards something helpful, or is this useless?

R576: Everything you are saying is correct.

; A786: OK

: B325: 0Ok

A787: So basically what I'm trying to do. I just don't want
to bother trying to explain something that's totally a
fallacy, it's really not worth it. So he's given us
this equation, right

B326: Umhmm

A788: D N is equal to, well, 2 D N is equal to N over N
minus 3, that's what he's given us, ok?

B327: Umhmm

A789: Now we, out of our own ingenuity by doing this, we
have said this. Where is what you gave me here.

B328: D 5 is

A790: Yeah
B329: D 4
A791: D 5 is equal to D 4 plus 3, so --- s0 now, we know

then that that's what, for D 5 we know that it's D 4
plus 3 OK so instead of calling it D 5 we're going to
call it D 4 plus 3

B330: Uhhuh

A792: That's the same thing according to

B331: Ok ok ok ok I understand now ok

A793: And then we've just, what we've done is

B332: Ok got it

A794: We put it all in there. OK

B333: Ok

A795: So this is what we end up with --- So this is like 5
and 2 and this has got to be 2, we'll leave this
complicated for the moment. So what is this, is going
to equal 10. Should equal 10. Now we know that D 4 --

right
B334: Uhhuh
A796: --- D 4 is is 2 right?
B335: 2

A797: Right? So 2 times 2 plus 3 is equal to 10 so 2 times 5
is equal to 10 So I don't know what we've proved, but
we have something that seems. This works. Ok. So I
don't know.

B336: So, well we've shown it

A798: I don't know if that, I don't know if this

B337: Or you've shown it anyway

A799: But does this show that the number of diagonals. I
don't know if this if this shows this though. This
shows something. But does it show that the number of
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diagonals of a polygon is always --- ---
R577: Do you know that this is always true?
A800: Well no, but it looks good to me. --- I mean. So we've
got two things which work together, that seem to be
true. --- It's a fine little game, but I don't think I

proved anything. Oh well ---

B338: I think it's pretty impressive

A801: we played with some numbers a little bit --- Show that
the number of diagonals of a polygon is always --- ---
Well if you could say, if you say that this
relationship describes the number, predicts the number
of diagonal you're going to get

B339: Umhmm

A802: And then you can, What we've done is we've built a
proof for this. and saying that this, Why did you give
us this formula? ---

R578: To see if you could prove that that was the formula

AB03: Ok, but we have if you, if we take this then I think,
personally I think that if we decide that this is true
as a statement about polygons then it

B340: this is also true

A804: then we've proved with this that this is true

B341: So we've proved that they yeah, in relation to one
another they're true, but in relation to the truth

AB05: Who knows [laughs] which seems to be the ultimate
problem.

R then requested a recap of what A and B had
accomplished. R also commented that they had made two
assumptions. The assumption that the relation they had
found was always true, and the assumption that the diagonal
formula was correct for n=4. R commented that based on
these two assumptions they had proven 10=10. A objected to
this. B recognized that their relation was unproven:

B344: Because the only the way we proved this

B345: Was to look at the patterns in this OK

A813: This, but we came to this independently, right? And we
said that independently we can know what the diagonal D
5 is by this, so then we substituted this into this
equation and it still works out. As being true,
wouldn't that doesn't that prove something besides 10
equals 10? ---

B346: Well 10 does equal 10 though

ABl4: But doesn't that prove, I mean

A815: I don't know

R585: You know that D 5 is in fact equal to D 4 plus 3
because you can look at this and say, oh look

ABl16: That's t-rue

R586: D 5 is equal to D 4 plus 3

B347: OK, so how can we reduce, wait, what can we reduce
this, to like substitute Ns and little letters for



everything in this? Letter and numbers, how can we
reduce this to a formula instead of something with
numbers? If we can reduce this to a formula and then
still prove it with that then,

A and B then began trying to come up with a general
form of their relation. R helped. A began to recreate her
proof for n=5 in a general form. She had difficulty with
the term D,4;. B also began a general proof. They both had
trouble with the role of the index of D, ;.

R595: If you represented D N minus 1 using this formula
here, like, currently you're ok, you've just got Ns,
except you've got this D N minus 1

R596: Would it be OK to write D N minus 1 by using this
formula to figure out what it is in terms of N? ---

A837: I'm going to work this out here

B362: Do you mean ---

A838: Where were we? D N is equal to, Yes we have this
problem with this D N minus 1

B363: Can you in, if you put --- —--

AB40: So this would be, if we wanted to get rid of, So D N
minus 1 would be equal to this minus 17?

They both began to rewrite the diagonal formuia in
terms of n-1. Once this was done they proceeded with their
proofs, working independently. They eventually compared
their work and found that they had different expressions.
This was partly due to A's changing the form of the formula,
and partly due to algebra errors by both of them. R helped
to correct these and B continued to work on A's proof.
B383: we go --- that's it. ?

A863: But now what do we do with that? ---

B384: Well that's D N is equal to that

AB64: OH!

B385: That's D N

A865: That's the thing

B386: is N N minus 3

AB66: So we got back to the, OK

B387: Over 2. So we did all this algebra and it was lots of
fun

A867: And we're back to what we, so we got, that's a proof.
This conetitutes a proof. This is a proof.

B388: There.

A868: What did we start with? We started with our other
equation?

B389: Wait

AB869: Interesting

B390: Where did we start?

A870: But what did we start with? [laughs] Where did we
start? We started like OK 2 right we, up here right
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Figure 53: A and B's induction step for the diagonals
formula, about line A863.
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They reviewed their proof.

R620: During the course of doing this you used this formula
that you're trying to prove to figure out what D N
minus 1 is

A878: Umhmm

B395: Umhmm

R621: In other words to prove that for the case of N you
assumed it was already true for the previous case. As
you had proved that it worked for a hexagon by assuming
already that it worked for a pentagon.

B396: Umhmm

R622: Is this a problem?

A879: Yes. I don't think so

B397: Is it, because if it weren't true then would it have
worked out?

A880: No, I guess it wouldn't have worked out --- ——- ---

R623: You don't think that it worked out because you assumed
it was true in the middle of proving it? --- ——= ---

A88l1: I don't know --- I mean basically I don't I mean, this
is This comes down to like like, what I think is my
bone about the other one we did. I think ultima some
way you're assuming that something is true aren't you?
To do this?

R asked if there was anything they could be sure of
assuming. A noted they knew how many s.des triangles,
quadrangles, and pentagons have. R asked if they knew
anything about the numbers of diagonals for those shapes. It
was noted that they could count for a quadrilateral, and
find it had 2 diagonals.

R632: That means that this formula works for quadrilaterals

A890: Yeah if it works for quadrilaterals we can work from
there using this like, using our statements up, can we
not?

R633: How would you do that?

AB891: Didn't we just do that? ---

R634: Is that what you just did?

A892: I don't know ~--- sorry, he's asking you

B403: Did we just do that? What did we just do?

AB893: We just did it for D 4 we did it for D 5, we did it
for the pentagon

R635: 22?2 See if it works for a specific case. If N is 5
here

B405: Umhmm

R636: And you assume the formula works for N minus 1 which
is 4, and you know that it works for N minus 1 which is
4 because you did an example

B406: Umhmm

R637: Then you could proceed through this just as you did in
general and at the end you get that the formula works
for 5
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A894: Umhmm -~--
R638: What would you do then if you wanted to prove it for
6?
A895: Go through the whole process again.
R639: OK --- could you keep doing that?

B407: Forever and ever? -~--
A896: I think so, yeah

R then attempted to prove the relation they had found:
D, = D,.q + n-2. The proof was confusing. R ended by
assuring them that it is true:

R644: It is true that this
B408: But why is it true?
R645: But why is it true.
A900: Why is it true?

R attempted again to prove the relation, this time with
more success. He then asked A and B to describe the
reasoning behind their proof. They described the diagonal
formula as just another way of stating the relation. They
then described the substitution of the formula into the
relation.

A913: But we know this is true Ok this is

B418: Yeah

A914: true, so when we --- put this OK, when we put this
formula into here it was still true --- I mean, but
then we ended up, back, I don't know, sorry, don't
listen to me

B419: No because because, OK we took this, Ok from this we
assumed this was true, we made it into this,

A915: yeah

B420: we put all the Ns in the right places, but,

A916: We had this problem with the N

B421: with the D N

A917: Minus 1

B422: But from this, it said that D N was this, was the,

A918: That D N minus 1 was

B423: times N N minus 3 whatever, and so,

A919: Yeah

B424: to see il this worked, to see if they yeah, assuming
this was right, and assuming this was right, because if
it hadn't been right then it wouldn't have worked out
or something like that. We substitute this for the D N
then worked it all out

A920: The D N minus 1 I think we did it. For the D N minus 1

B425: D N Minus 1

A921: yeah because we were having trouble with the D N minus
1

B426: Right

R661: So by substituting
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A922: What we called

R662: This for D N minus 1

A923: Yeah, instead we called this , we called this thing
here, we called this thing here, this. Which I believe
we got from, where we got from that. and then we
substituted in here, and we simplified it down, we
were right back to that. Curiously enough.

R663: So by assuming that this worked for N minus 1

A924: Yeah

R664: And that this worked,

A925: yeah
R665: you showed that this works for N
A926: Yeah ---

R667: OK how does that show that it works in general? There
were two assumptions, one was this, which fine I'll let
you have. And the other one was that this works for N
minus 1

B428: uhhuh

A928: Bvt doesn't that have something to do with the way
that we actually figured out that it does work for the
quadrangle? because we know that's true.

R668: OK

A929: And we know this whole thing works on a works on a,
like a working from what, from 1 equal, it builds off
of one up to the other, so if you start off with a
building block that you know is true you can keep , I
don't know. I don't know

B429: But if that was true, --- and all this is D N is equal
to D ND times N minus 1 plus N minus 2

R669: That's just saying that this works in general, yeah

B430: that works in general. Then --- if this works for N
minus 1 and it works for N --- then shouldn't it work
for --- N minus 2 or N plus 2 or whatever? if this

always works? ---

R explained that all their proof showed was that the
step can be made from one case to the next. He then
described the way in which this allowed the creation of a
chain of implications and asked if such a chain proved the
statement for all numbers.

A931: If you fulfill that requirement?

R673: Umhmm --- ---

B432: so it always works if you've fulfilled the requirement

R932: yes yes

B433: For N minus 1

R674: Ok, then we know that it works for these four, is that
enough to show that it works for everything?

A933: Well we've tried it for more than four, we've actually
done it for six

R675: these six

A934: It works for these six, I mean, this is hard, I have
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this problem

B434: But if it works, se if we've taken it down, not just
plugging number in but if we've taken it into a general
statement using N instead of numbers, and it works then
isn't that a general statement about all polygons?

R676: well you've got a guneral statement here about the
relationship between the number of diagonals for a
polygon with N minus 1 sides versus a polygon with N
sides, with 1 more side. ~---

B435: OK so you're saying that if it were N minus 2 for
example, it might not necessarily work

R677: All the, all that this does is say that if it works
for a polygon then it will work for a polygon with one
more side.

B436: Umhmm

R678: It doesn't say anything about a polygon with one less

side or two more sides, --- --- but you have shown that
if it works for a polygon then it will work for a
polygon with one more side. --- -~- —-—-- ——- If this

says it works for a polygon, or you could calculate
that it works for a polygon, with 8 sides, you could go
through this argument with 8 and show that it works for
a polygon with 9 sides. --- ——- —~- But is it true for
every polygon?

A935: Well, ultimately, what eventually happens is either
something bizarre happens and it's not true, like it's
some bizarre number, I don't know, I --- If the highway
goes straight for as far as the eye can see does that
mean that for ever straight? I don't know. ---

B437: well could we work it out if --- —-- --- But then
that's the same thing, if we we worked it out for a
triangle --- the formula works for a triangle it works
for a hexagon and it works for something that has 3
more sides --- that ---

A said she was tired at this point, and R suggested
that it might be a good time to stop. B expressed an
interest in seeing the next activity and R showed it to
them. B asked about the four statements concerning even and
odd numbers, and R explained them. R then went through the
proof using Fg and Fy as examples.

R717: Does that proof make sense? Is it OK to do that kind

of [thing?)

A969: well that's what we just did with our thing, and I
think it is.

R718: OK

B456: (whispering] but why?

A970: I'm not a philosophy student. --- I hate the question

WHY? Oh it's such an awful question
A971: There's no answer to WHY? This is like, what?
R720: Do you think it works?




AS872:
B457:
R721:
A973:
R722:
B458:
R723:

A974:

Yes I do

Except for 40

Without caring about why or not

Yeah I think it works

OK

Except for something like 42 or something, right?

Do you think that it's going to freak out somewhere
around 42 or do you think it's always going to just
work?

Well, you know, I --- I don't know. I don't know. I
can't answer that. It's too difficult. It's very hard
doing post-modernist thinking and all my television
classes and coming down to math, because I'm asked to,

it's a contradiction. --- Yes I think it will always
work.

[laughs]

R724: What do you think?

A975: NO! but it could go wonky. Who knows what's going to
happen in the infinite universe?

B459: Well I don't know. --- because I seem to recall last
time, but I can't really remember, because it was such
a horrible memory I've blocked it out. [laughs]

B460: That I did some little explanation about --- every

third one is even or something. I can't remember. It
was timsing or all the minusing or something. I can't
remember what it was, and then you said try 40. and it
didn't work. And so I'm suspicious that this may not
work. Because Fibonacci numbers are weird. But since I
can't really remember

R finished off by reminding B of the two statements she

was confusing from stage one.



