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. A . ABSTRACT

Mesh Generation for Finite Eiex‘nent Analysis -

Thi Nhu Hanh Vo = B
. The finite element analysis in engineering applications
comprises three phases: domain discjretization, equation solving and oy
error analysis. Nﬁmerous works | t.oward the automatiog of .th‘e
Va(a;;:is with computer teclrinology have" been done:_ The domain
discr'etizagion or mesh generation is the pre-p?ocessing Phase which
Nplays an important role in the achievement of accurate solutions.
There exist several mesh generators, semij-automatic and aut,omatic.
.
whlch have been lmplemented and repox'ted by the authors in
research literatures on this toplc. The work presented in this thesis
. is another contribution to ‘this. figld of research on automat{c mesh
generation. ‘A brief overview of tﬁe ﬁnite. element analysis end the
finite element mesh requirements is given, followed by -a complete
‘review and classification of mesh generation methods reported -in
. the’ hterature One partxcular and promnsmg techmque for producmg

>

two-dlmensmnal meéshes is descnbed and the successful
/ .

LY .
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implementation and enhancement of the method are presented,

showing the advantages and efficiency improvement over some

> AN
currently available mesh generators. ‘ ¢
, \ | y %
t ¥ . - .
& ’
-t
A .
—_— B '
L] ’ ‘ * -
° »
. ! .
e‘ '
) ¢ .
h >
L) - [}
N ) v
o/ : .
ey , .‘ . »
— , - P -
: . ‘ Yy . ,
¢



I am grateful to my thesis’/supervisor Professor T.D. Bui for

i .
suggesting this topic and for hig valuable guidance in ‘the course of

this work.

I am indebted? to my amjly and friends' for their continuous

support and 'exfcduragenhe ‘throughout my studies to complete this

work.

- T would lik_e to thank the staff of the - Computer Center, and

the Department of [CComputer Science of 'Concordia University for

‘bhexr assistance in usmg the computing Ms

i
My spec1a1 anks go to Dr. Z C. Li for the dxscusswns related

to the application of this work, and to W. White for proof-readmg

-

roject was supported in part by the Natural Sciences

L]

ineering Research &?iqil' of Canada and b3; the Centre de

-



B bt rw‘:—“ T S L ! . ]
LY
< .
. ] /
- - i
.

-

"TABLE OF CONTENTS

a——

; TITLE PAGE.......coooererr S — i
SIGNATURE PAGE...rorrvercri T— SRR |
ABSTRACT.......cvvvrne e e ................. N
ACKNOWLEDGEMENTS. ..c.cvuvvsissmmerssssssisee ST RCH————."
TABLE OF CONTENTS...oceevevssmsrsesssessn SRR
LIST OF FIGURES.....coooommmmmmrsssrmsmsssmssmmsssssssssssessessese rerseeeessstrraens x

© LIST OF TABLES.....c.... — s S

@ - ) ' 3
CHAPTERS | |
-1. FINITE ELEMENT ANALYSis AND MESH GENERATION........ 1

Introduction........ceciueeinsieccetennnsasnene s 1
" 1. Finite Element Analysis......iee. | wesssnerenee ....... e ievesesseaenesessssssness 2
2. Finite Elemen't Mes‘hé's...‘..................tZ ....... ORI 6
2.1 Finite Element: Type and T, 7
2.2 Selection of Finite Elemetﬁ: Meshes.....:........M ..... . 9
23 Mesh b ormation Requirements
‘ of the Finite Element Method......owoo et 18
. 3 Tx"iangular Meshes........... st s e s N 14 ,
3:1 Delaunay 'I‘riéngulatjon ................................ — veoneennee 14
8.2 Local and global .
' Triangular Mesh Optimizatidn......cceverenes ST ..18



. . vii Qg

3.3 Mesh Validitj\/ in the Context of

Finite Elemgnt'Analysis ...... f\ ........... pessrarenitneneanve SO
4. Mesh Generatlon ............................... w23
- 4.1 "Mesh Generation:——ihput and Outpilti........i ....................... 23
4.2 Feat;x;'es of Automatic Mesh Generation...........ccceererreree 25
) . .
o. METHQDS FOR FINITE ELEMENT MESH GENERATION...... 29
, ﬁ ; N\ IDroduction. .. st ) ..... 1 .......... tossasesas sonvenne 29
_ | \1; Classification of Mesh Generation Methods.........cceeveneeee. evesase 31
1.1 Mesl; Topology First...... ........ oo 34
| } o 12 Node Flrst ........... eesesennsessssaains - : ———:
1.3 Adapted 'Mesh Template........ccc.u...n. eeresenesssiranensens eeernnneanes 36
1.4 Simulténeous Creation of Nodes and Elemerits..._ ....... .37
* 2. Two-Dimensional Mesh Generation Method: ..... fresrsassossen venees 38
2.1 Mesh Smoothing Approach..p................: ............... S 38
,»‘ ‘ 2.2 Node Connection Approach..........ccivecveneennens R, resaenes 41
~ - 2.3 Mapped:-EIement Approach.......ceiecanne. R —— 61
| \’ 24 Conforrtllal Mappiné Approach..........cceevernninee, sservestessonse .62
2.5 (;‘;gd-Ba;sed A;;pr(;ach ....................................... veverone ’ 54
2.6 Topoiogy Decorﬁposifgion...: ..... ~—" .............. ....57'—
, _ . 2.7 Geometri DecompoSition........ceuvcessiivecesreense , .......... 59
) Z.é ‘Performance Evaluation............ reeesseseeseesseeen rassssnrsnsenies 61
3. ’I:hree-D_imensional Mesh Generation......a........emserereee RN . .
‘. 81 Nod:’ Connection Approgch:.................'........:... ..... vencsenns ‘ 1
v A



g 0 AR RS T YT T AL T S L RN I o G TR M B 20 e oV it e MV v B Tt e e oY o o . B

3.3 Grid-Based T — 69
3.4 Topology‘ Decomposition...........ccun evasesssnsssrsansnrusinses ,,.....:..76
3.5 Geometry DeCOMPOSIION. cvoussmmmmvsiessussssessinsrrssrsn -
3.6 Performance Evaluation........ceceennieenneenenrsicneacessenes I l..73
Il A TRIANGULAR MESH GEN'ERATOR .......................... e 4 -
Introductlon. ....... esrisasnrenss sessrsrsestessatrintesanas coostsbesasansusens ’. ........... B
1 The Advaricing Front Techmque for Mesh Generatlon .......... 76
1.1 Node Generation.........coeeermmeesseseinisecsssnssusesessaens R | |
A R ¥ 0 LTI LY S — wereeeeeeeseens e 81
| 2. Mesh Generation by Layers......... \ ..... S 89.
u a1 Generatlon of Interxor Node Pomts...;..; ............................ 90
2.2 Tnangulatxon.,........,, .............................................................. 94
3. Implementation of a 'I\vo-DimensionalL-
' . Mesh Generatox; ..................................... ...... J—— 99
":— 3.1 Node Generation..;.............;........:.ﬂ ........ e AN [ O )
' 3.2 The Two-Dxmensxonal '}‘nang'tﬂator..........: ....................... 113
3.3 Smoothmg Module......veurerienreeresneimnneneas eeeseeeeeasssessarenesens 120 | .
_ .34 Data'Structures ........... .......... reeerisesebestessastbe s s saespesresaen 124~ )
, 4. User Intc;ffape Using |
Interactive Computer Graphics.........cuseeesnes SE— crenrrenee 125
| ~4.1 How To.Use the Interactive ‘
U Mes‘h\ Generatoxl'....'.............‘ ........................... rsersssnessssnensien 126

-

> e (3’:\2‘\"»%‘%



ix 'hl

L - ‘ %. .
4.2 Inside the Interactive: Mesh Generator..........cccvececanann 134
43 Portability of the Mesh Generator Interface................. 136
' c -
X , 5. Time and Space Complegities.....ccccersrrrrerereronienssensesiesnsisesssers ...186
5.1 Time Co—mplexit);.’; .......................................... essreriassensesnses 137
5.2 Space éomplenﬁt& ........................... ererseesnnersererssasesantsanaanaes 140
IV. CONCLUSION.....evmririrssssssnsrsssssssssssces e raasns S— 142
APPENDIX.....oouroreseesloeeressssessssssassssssssonsens  ereeeesesseope fesssesssssamessraetes 144
. T e . ‘
REFERENCES........ccoisiiminientnnnnessntsnesessseiss it nivnsssanisssssessssssssss 164
.
' %
&
A
- » .
p
! )
r 2




LIST OF FIGURES (

2 —.
1.1 Finite elemént analysis........ccccerernvrrererveressnnnne S — S '
| 1.2 Triangular elements.......cccoecumecneces rerreessesesserenesnensasssrens o— 2o 8
1.3 Quadrilateral mesh refinement..........omvvecemeceeemerenseasens F A 11 AN
14 Mesh ;)pthnization ................. ......... s e 12
1.5 Voronoi teséellgtion and Delaunay triang'u]ation.......................:..17 ' *
1.6. Diagonal swap testv ..... , 19
" 1.7 Isoparametric 0ITT12513 T R R ;.;21
2.1 Classifica‘tion of' mesh generation methods.........cccovevcviiicnnnnnnne. ﬁ\
2.2 Connectivity in the Laplacian equation....: ....... .............. 39
2.3 MQ- snioothing teChniqUe......ceeerrereeeecsrenerenersneecsasrenns )*40
2.4 Circle test for a point Pu.......ccmirinciniininnsininniesesesenn, ..... 43\‘_‘ . -
2.5 CSG po‘int generation........... ereeenmannereeseenesanees .................. a...45 e
2.6 Fully surrounded nodes for triangula‘tion.‘ ............ é .......... sererenseneas . 4:7
2.7 Fully surrounded edge..: .............................. nsrassesnessssassasens p— 5,48 ’
2.8 Splitting a regmn ...................... \ ..... 49
2.9 Tterative .insértion.., ........ \ ................ vereaniens "’ ..... 50 )
2.10 Isoparametric mapped element...'......................; ............................ Bl o °
2.11 Conforméal mapping 8pproach............icisesssinesssnesseessns 53
212 Grid-based .Iapproach.‘ ....... e R , ........ seeeensB 5
2.13 Quad-tree representation.............ceeereeererees cnesratreneee e ar e ...56 E ‘
- 2.14 Boundary triangulation..........ccceveeruennen ,\57 . |
'y



%

T o ro. .
A .o .. e
2.15 Invalid nexghbors conﬁg'uratlon\for ) treessananens wireeen B8
2.16 Triangular refinement:.........:....e.. F ........ “ ............ .50
2.1'7 Geometry décomposition......ooeumvcueeiitiiiiseniinennnane, evens ( ...... y .::.60
2.15 Mesh patterns for’ transmon reglon ........... R ) ......... /él .
2.19 Fully surrounded edge in 3D0 ..... ......... 68
"2.2‘.0 Cubic mapped element............... I evreees .......... feeeivensnensasedebosfones 6% ‘
2:2"1' 'Boundary octant cuts ........... yererersserenes '“' ...... \ ............. 70
2.22 Subdxvxsxon of a tetrahedron .......... 6 ........ ;e....../. ....... emeeeersieseen 71 -
12.23 Polyhedron cutting.......ceeneee Arssendiessssssn it duinss ....... terereeseares Boenn T2
.31 ﬁffect of domain grien?ation on . '/ﬂ A - : R
quad-tree xeﬁresentat?on..................:...f.f. ...... / ........ 75
3.2 Intersection test.............. | ‘ ........... " ..... : ,.79
3.3 Node generatlon‘ for multxply-conneeted reglor\h.;: .................. ' ..’:....'80
‘V34 Advancmg front tnangulatlon .......... venesensnitsnsneses S - KRN ) ~
35 Triangle's quahty ........ reverenes ' ....... ; a; ......... ,...:....(.,..57 2/
| 3.6 Intermedlate stage ‘of tnangulatmn.....:.‘.....-. ......... h gg.
3.7 Generatlon of pomts by layers ........ : ...... :-....;._; ..... rrvesaras 0491 (“ .
38 Segment vahdatmn............: ............ .......... ..... | ‘ ......... X , ...... ' veeeene !'1)3 ' .
39 The set of nodes to test....t............',...‘,‘.:......;'...'..t...'..' ......... _ ..ﬁ....z.:.'...-....‘.'95 . ” 2
3.10 Maximum ACB test ................................. ﬁ_\ ..... e 198
| 3.11 Domam subdmsmn...’............f....:........:.....r; ........ enrrenereesetersensdresns 101 .
3.12 Pomts generated by NODE-—GENERMI‘OR........‘......, ...... :...:..'....193
3.13 Locatmg a pomt in 8 Tegion...cucwunnn, - eereeeieeseeesateessnend? 106
3 Q ‘A * s « ™ b



xii - .

~ . -

K}

3.14 Fmdmg unage P of a. pomt | T pressrresineesanne eeveerernen ...108 °

-

+3.15 Reglon enclosure..... I reeemuesssssseserrasesanessessssssssssessassasassqassanens 110 -

3.}6 Generéting points on a layer segment........ccccceeuuneen. feeseennesseeneee 113

= ‘

3.17 .Apex node selection.........c.coeeurreessnene verveesens USRI S 116

—— »

-~ 3‘18 Mesh generated from fifure 312 veverenaserrassserssuessnssessansessiessessense 119

- 319 Smoothed mash from figure R — I 17 .

320 Screen layout ........... eeseessessssacrasaesssrnsarennsnnreronessrrnne vereeerassesneserioneens 12T 2
) .
- N .
- h8
° 2
’ »
14 o / o -
Y
4
. [ 3
\
A ,
- R
K L
<5 \
] R :'1, t
! .
, .
A ‘“
. t
) ~ ° -
1 re <& N ©
- - -~ Y
r. v
€ . /
t ! -
»” ¢ '
& ‘, 4 ’ )
. <, r
' t
L < ¥ , - é ,
. ) 9 .
'S - \ X



LIST OF TABLES

2.1 Storage ;equi;'ement of triangulation methods..............ccoeureeeen. 62
2.2 Time complexity of Iterative insertion triangulation................... 66
''31 CPU time for triangulation of a square........... vreereeans cernninerreanes 140

S/



& L. —

Chapter One ' .

FINITE ELEMENT ANALYSIS AND MESH GENERATION

) - INTRODUCTION
o

Mahy practical broblems ariging from various fields 141
engineering are either extremely difficult or. impossible to solve by
conventional analytical methods. "Such methods involve the.

determination of several mathematical functions, to express the

-

. relations among the posted variablesthus predicting the behavior

of some variables in terms of the others. In tl;e _past, it was a
commor: practice to simélify c{n?plex problems by reducing them to~
the least form .from which an analytical solution that is not too
difficult to obtain and bea’rs as much resembl;ance' as pt;ssiblg to
the _sqglution of: the original pi‘oblems. Error analysis must always

be carried out as a posterioi" process to determine the degree of

accixracy of the a'pproximat:,e  solutions. Another form of -

approximation, - the numerical analysis based on the discretization of

* the problem’s ~domain, has shown to be as much efficient as the

i

'anﬁ'll;tical simplification methods, and yet they are much .easier ‘to

L4



analyze and the solutions cap be ohtained within acceptable error
norms. The accuracy of numerical apprq)dmation‘;often depends on
how the problems are discretized: th‘e finer the discretization is the
greater the accuracy ‘gained. This condition is .not difﬁcult“ to
achiev-e, as the computg;' t@chndlogies provide a powerful tool of °

analysis for discrete problems.

1

+This chapt‘er ‘presents one of the most popular numerical
techniqués in engineering: the finite-element met}iod. A brief
description of the method ds it is.applied hy means of ‘comlputer
software will show different research topics related to the method,
of. which mesh generation reveals to be an impc;rtant and
intefégtin-g topic. |

1. Finite-Element Apalxsis

4

. The ﬁnite-plerhent qiethod was ‘orig:idnally developed by
en'gine-ers in the 1950's to analyze large structural systems.
Applicatior} of thé finite element method to non-structural problen‘xs
such as elementary ﬂow and electrqm‘agnetism in the '1960’8 hgs‘
opened the door to a wide class of problems in engineering to |
which the 'mlethod has shown to be powerful. Expansio;i of
ap‘plicfition‘. of the method to other fields - now becorhes popular,

~

such as a recent successful use of the method for problem; in

¢ A
- *



pattern recogﬁitioh [LI88). As the finite element method matured

in applicatione, " the original concept was replaced by a robust
theoretical analysis founded on the class{cal. variational calculus
and Rayleigh-Ritz methods. There have beerr since many
~ contributions " to ‘the | development of the mathematical theory of.
Finite Elements, leading to several vaﬁatioqs of the metl}od', which
we shall refer to .as finite-element methods or finite-element °

analysis, in subsequent discussions.

In general, each nﬁnite-elerr'lent method is - en approximationb
procedure for solving differential equations of boundary and/or
initial—.value type -in engineering and. mathematical physics. The
procedure employs subdivision of the solutlon domain jinto many
smaller regions of convenient shapes, the so called finite elements,
such as triangles and quadrilaterals, and use approximation theory
to quantize behavior on each finite element. Suitably dispesed
coordinates are specified for each element, and the action of the
differential equation is approximately replaced using values of the
dependent h\’ra'riables ‘at ‘the element nodes. Using a variational
princfple, or a weighted-residual methed, the governing differential
\equations i ére t.hen transformed into finite-element equations
goverhmg each isolated element. These local equations are collected
together to form ‘a global system of ordinary differential or

algebraic equations including a proper accounting of ‘boundary



4 ’
conditions. The nodal values of the dependent variables am
determined from the solution of “this | matrix equation system lwhose"
complexity depends‘ largély 'on. the number of  finite elements
.involved in’ the djscretizat?on. It is clear that the ﬁner‘ t};e domain

(is subdivided, the greater the accuracy of the solution is. This

raises the question:|“To what degree the discretization should be’in

order to obtain a good solution ?” Since the computational cost to
carry out analysis on large number of elements is rather‘}ligh, an
adaptive. ‘scheme i5 abplied to arrive at an adequate s‘olution
within some acceptable' error norms: an error analysis must follow
the solution of the equation system, whieh may recommend finer

discretization of the domain.

(1‘

It follov}s' from the above description of a complete
finite-element approximaltiorf p;'ocedure that any cempu"tel;
implementation for ﬁnite-elementgz analysis should comprise three
disti“nct but closely related modules whose functions are: well-defined
(see ﬁgure' 1.1).

. The ﬁrﬁte-element pre-processor is responsible for the proiihction
of an approximation of the problem’s domain by a discrete
representation. I;asic ‘input required i consists of ' the domain'
boundary and seme parameters defining the 'variation in size of

the finite elements in the discretized domain. The simplex chosen

to be the type of the finite elements is often fixed beforehand, but

*

<

-~
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™

could also be given as input .data to the pre-processor. The
ensemble .of simplices produced" by the pre-processor, which
completely covers the domain such that no two simplices intersect,

i

. | )
. is called the mesh representing the .domain ‘in discrete form.

problem definition : satisfactory solution

| - /.

FE discretized ,l FE I golution : FE | . /

pre-processor domain processor post-processor
LA |
H

new . density requirement for discretization ‘ /

Figure 1.1 Finite-element analysis

The finite-element processor accepts a mesh of the dom and
other data such ‘a8 boundary conditions and materials, then
proceeds to find the solution of the diﬁ‘erential. equafion at each

- node in.the mesh. The calculation starts with a/ computation of
the stiffness matri:; and lt;ad vector associated wx/th each individual
finite element. THese matrices and vectors m;é/ then assembled into

— a large equation system ﬁsingc information on the adjacency of
elements in the mesh. The last step is f,o find the‘ solution of this.
matrix system, usually by some numerical method, and thus obtain

the value of the solution at each element node in the mesh.

- ’
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In the last stage of “a finite-element analysis, the éolution '

obtained previously. from the processor is fed. into the post-processor
for er;'or analysis. The type of error norm being ‘used })y the
post-processor kdepends heavily on the requirement of the problem.
The result of this analysis offen gives indication on the density
distribution, that is the degree of finess, of the ‘treated mesh, and
thus provides the mesh generator\ with new requirements to
( ‘improve the mesh: Acceptable solutions satisfying all problem

conditions would be signaled by the ‘post-processor, terminating the

~ finite-element analysi;s for the input problem:.

2. Finite Element Meshes

~

A finite element mesh, by deﬁn_itioh, is a ’discretized form of a ’

given domain (also refered to as region). The discretization is a
- H

subdivision of the domain enclosed by a boundary into a number of

adjacent smaller- silbregions of simple shape, which completely fill
v

the region. Such division is not unique for a given domain since it

depends bn several factors such 'as element type, number of

elements, element size, and element density distribution. However

not. all subdivisions are ‘suitable for finite-element analysis. This ig -

obviously due to the fact that the local function on each element
is itself dgpendent. on the element type ‘and shape, therefore

affecting the \resulting matrix system and consequently the

-~
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~ tsoluti,oxis. Thus one may ask “How to choose a good. m@t suitable -

o

. ] R
for analysis, so that the¢ number of iterations in the analygis -is °
minimum?”, Several criteria for selection of finite - element meshes

Iy

A satisfying the demand are presented below.

( prTES

2.1 Finité Element: Tvbe and Shape

The domain disqretization in finite-element analysis has no
other purpose tfxan that of simplifying the problem. It is therefore
obvious that the type of element chosen 4"t0 fill the doma“iﬁn should
have a relativ;aly simple interpolation functiox;. The most commonly
“useldq element types are triangles and" quadrﬁaterals in two,

dimensions, “and their counterparts, tetrahedra and/ bricks in three

a3

dimensions.

For each of these geometric element types, variations can be-

formulated to increase the degree of the associated polynomial -

»

) ° funétion. For‘ example, a ‘three-node triangular "elemeni: has linear
shape function while a six-node triangular element’s shape function
is. quadratic. | o | | : J -
) o . .



3-node triangle ‘ 6-node triangle

Figure 1.2 Triangular elements

\
\

« The choice of an element type depends on the govertiing
differential equations, the number of” elements desxred the required
accu.racy of the solutlon, and the avaﬂable computmg resources.
Firstly the element must represent denvatl'ves up to the order
. required in the solution procedure. Secoﬁdly, if a large njumeer of
elements is to be used, a sizﬁple form ot' element would give.
sufﬁciegt accuracy, but more cemplex elements would be necessary

with only a few elements in the subdivision.

Another factor which also affects the final solution is the,
shape of each element in the mesh. It has been proved [CAR84]
that poorly shaped elements lead to unstablhty of the resulting
matnx system. Long and thm elements are to S: avoided whenever
ipossible,' and elements should have a shape close to t_he ideal

element of the same type, e.g. equilateral triangle is. best for

triangular elements,
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\ .‘ o 9
Elements within a mesh can be conve;rted to another type .
with corresponding® changes | in the subsequent calculations. ’/(
Quédrilaterals ‘and ’bricks are easily converted to well-shapgd / ,'
triangles and tetrahedra of similar éizes. Conversely, triangles and'.)
tetrafl‘edra maf be subdivided into ,quad_ri'laterals and bricks, but
tﬁ: resulting elements ma}: not-: have goodwshapes since the angles
around t};e‘/ newly introduced nodes are large for a :Zn;;le,
subdiv@sigx? obtained by adding straight ’li.nes. This problem can be‘
correc/ted by moving the interior node points such that - all elementswﬁq

have nearly optimal shapes.

./ ‘ . '
2.2 Selection of Finite Element Meshes

I\ general there exists more than one configuration of the
r'nesh produced for a given domain. The differences are in the type
‘of elements, either a mform eleﬁlent type or a mixtur? of several
.types, and in the shape of each~ element in the xp,esh. bompaﬁsons
are usually made é.)mong meshes of only one ,elemen; type. The
requirements of finite element meshes can be desqribed in terms of
?bdu,ndaryﬂ fitting, mesh density and conformity, element shapes, and
nun,xbe'ring of elements and node po}ﬂts..

22,1 Adequate boundary approximation

e
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A finite element mesh should represent,"a reg‘idg as close to

.t:.h;e original domain as possible, that is the) boﬁyndary fust be well
e 'ap{pggximated.' This requirement can be fuiﬁlled within an
act;ce’%:;b‘;le deviation provided that ‘the boundary shapje can be
replaced aby a series otj short straight lines which form sides of
elements adjacent to the bouriaaw. Sharply curved bounds;ries
requife a dense distribution of small elernnents for a good
approﬁmation.

2.2.2 Mesh density and conformity

Analysis on uniform -1'nesh‘ size often reveals to_Pe inaccurate
when a coarse mesh is used, or requires too much computatic;nal (
éffort when the mesh is :den;se. In practice a sufficiently accurate
solution can be found w;th less computations- by using a small
number of elements, but the element sizes vary following the rates
ofchange of the solution. A concentration of /relativély‘ small
elements is needed in the subrégions of the domain wh;aré the
variables are likely to 1nchange' rapic{ly, such as around the
sing';ilarities of the domain where : the solutions are often of

. gregtesb intérest. Other less important subreéions can bge,(.
accommo'dated with a m01"e coarse mesh and yet do not seriously

affect the accuracy of the final solutions.

1 ]
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A mesh must accommodate changes in element sizes’ from one

LN

subregion to another. This tréx;si_tion may affect the finite-element

bl

) comptitation if the mesh-is not conform, ite.- adjacent elements do

not share a who_le edge or face. Mesh cox;fom;ity is easy %Yo
mainta@n for triangular meshes, but trs:msition from large K .
.quadrilaterals to smaller ones often resnilts in a non-conform mesh
when the mesh is refined. Non-conformity can be reqpedied by
eithér ‘?nociifying the finite-element ﬁrocéss\lo accomfnodafe jirregulei;

meshes [SIM79s] or accepting a new element type or shape into

the mesh (see figure 1.3). B

5 @. " W

Figure 1.3, Quadrilateral mésh refinement: (aj with triangles
(b) with quadrilaterals -only

~

22,3 Qverall element shapes ‘ o —

It" is. always desirable to have all elements in the' mesh
bearing an ideal shape so that the finite-element matrix system is .
LT l . . . .

stéblﬁ. In practice the irregularity of the doha,in boundary often

makes ideal configuration impossible to obtain and. so - ‘only»
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~ 2.2.4 Numberihg of elements and nodal points

relativelsx- googl meshes can be .produced. Local mesh optim_ization

prodlices better individual element. shape and = global " mesh

in the mesh. Local and global optimizations do r)ot always élve the

same result (see ﬁgure 1\1)

4

N
«

@ N ; (©)

Figure 1.4 (a) Origifial mesh (b) Locally optimized mesll

(© (a}loba\lfly opti_ml.zed‘ mesh ' ‘ \'_

After discr"etizing the problem’s domain, . the ﬁmte-element

methods compute the stiffness matnx and . load vector of each
-9

mdmdual element and then assemble them into a large matnx
system to be solved The matrix is always- sparse, i.e. it contéms

seve_ra.l- zefo. .entries, so that computational ‘cost can be .greatly
. 4 . ‘ . . T, \
reduced :if the non-zero entries are organized into some special

form :the.t' is ‘simple to solve eucH as symmetric banded rxlatrixa. - !
Since. only element -adjacency information is used t’e build up the

K . P - o : ¢ ° . S

o

‘ .
“ . . . -
B
\ . . . .
* o
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matrix, ordering of the elements and nodal points is' an important K

-

. =~ ‘factor for cost saving. In fact, algorith}ms for element and node

re-ordéring constitute a well-defined topic in the design  of .
\ h . .

finite-glement pre-procesdor. \ ‘ o . © .

-

'S

' . ¢ 23 Mesh Information Requirements of the Finite Element Methods

3 °

‘We close our geﬁeral discussion on finite element meshes with

L

the t;lési'n information required to proceed finite-element _analysis,

~
v

- S spéciﬁcalfy the assembly of the element matrices and vectors.
Simpé’on [SIM79s] outlined three g%nera} information reqﬁirem"enté
.« for the lists .of mesh representation:

a) The need for ! element descriptions in forminé the

| ’ v .ﬁnitelelement. e'qugtions; '
) . " b) The need fo%& “geom;tric adjacency information for vertices or
. elements; and . i
o g;) The need to d;etermine which element of the-mesh contains
- a given p;ﬁn.t P of the region. B |
. I’Tabiés% of connectivity and adjacency provide adequate
" structures to meet the requir;nients. It is even sufficient to have
(. " only conr:gctivity (element definition) siﬁ‘ce list inve;'sions' of the
table would g'i;fe adjacency 'in‘formatio-n. -
‘ , \/_ . } * -
N . , n : '
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3. Triangular Meshes

In two-dimensional analysis, the triangle is the mést widely
used simplex because of its simple shape function ar;d its
‘suitability for apprommatmg boundary curves. of different shape
complexxty, from regular to sharply curved boundanes Therefore it
is not \surpnsmg that most of the literatures on the problem of
meéh generatioﬁ is devoted to' triangular meshes in two dimensions
and tetrahedra in three dimensions [BUE73,SIM79s,THA80,HOLSS].
The general criteria for fmite element meshes apply to triangular
meshes as \well. Local and glébai optimization .proceAures are well
developed and shél}—lbe presented' in details. The local optimization

results from the properties of a special class of triangulation, the

‘Delaunay triangulation, consi'deréd to be optimal for convex .hull

triangulation . [WAT83]. Global optimization, commonly known as

mesh smoothing, applies to a completely generated mesh while

local optimizatioﬁ is applied every time an elemént is generated.

The vaiidity <of triangulér meshes ' with respect to finite-element

applications can be verified to ensure stability in the finite-element

calculations. " . L '

3.1 Delaunay Triangulation

»



R |

Definition 1.1 [CLI84]

-

A region of the plane’ ‘is“ convex if and ox}ly if for any two

. points contained in the ;'egion the line segment connecting the two
points' also lies in the region. The convex hull of a finite ‘set of
points in the plane is the smallest convex 'i:egionJ which contains
the points. Such a convex hull is’ ;:lc;sed and contaiﬁs all the
points which define it, and the.‘ conve'; hull of a ﬁnité set ‘of

non-collinear points has at least three of the points on its

boundary.

" A Delaunay triangulation (also termed as Thiessen, Dirichlet
tessellation) of a given set of points is a set of triangles formed

by joining these> points such that they completély cover the convex

1

hull of the points. Delaunay triangulation is the dual geometry of

b .
the Voronoi tessellation defined below.
Definition 1.2 [MAU84]
| Lét P = {bl,pz,;..,pn}, n>2, be a’ finite set of n different
points, ‘not all collinear, in the Euclidean plane, and let ’d(pi,pj) be
~  the Eucliden distance between point P; and pj. Then 4

Vm = ﬁx : d(x,pm) < d(x,pk), Vk%m}'
F,is the Voronoi polygon surrounding the : point P The set of
Voronoi polygons of Py ' Po ey P, defines the Voronoi tessellation

of P.\
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. edges’ such that:

' points of -P are cocircular. When four points are on the sam

18

-

It is clear that the Voronoi ‘tessellation of a given set of -
points is uniq{lq. The duality was established by Delaunay [DEL34] ¢

who showed that the dual of the Voronoi polygons is a |,

L4

'triéngulation of the n points. - ' .8

Definition 1.3 [MAUS4]

\An edge of a set P of n points is a line segment between

two points p; -and pj in P. A triangulation T of P is a set-of v

-

v A

w

" (a)' No two edges ‘intersecig (except possibly at the endpoints); y

and ‘ ; Cooe T
(b) It is mnot possible to add* another edge to T without

violating (a). - . . o i

The interior of a triangulation are triangles and the outer /

edges form the convex hull of P. o

n

Definition 1.4 [MAUS84] -

L

‘A" Delaunay triangulation ‘is a triangulation- where the

. circumscribed circle of any triangle contains no points of P in its .

interior. Given a ‘Voronoi tessellation of P, ‘the dual Delaunay .

‘

triangulation is obtained by joining every two points in P whose

Voronoi polygons have a common edge,. assuming that no four

o 1

73

- . i

circle, cqnnection; of these points forms a quadrilateral and either

P .
S 3 . [

v
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of the diagoné.ls is chosen to be an edge. This phenomenon is

called degeneracy in the triangulation [BOW81,WATS81].

-« — —- Voronoi

Delaunay

Figure 1.5 Voronoi tessellation and Delaunay triangulation "\

&

‘ Tliere exist several triangulations of a set of bpoints P but the
Delaunay triangulation of P is unique, and the -number of triangles

and edges is pbnstﬁnt for all the triangulations of P [LAW77).

Theorem 1 1 [MAU84 CLI84]

Let there be M points on the convex hull and N, mtenor
pomts in P. Then there are t tnangles and e edges in any
triangulation of a planar set P of n points, where _

| t=M o+ 2N - 2‘
e=2M+3N -3
M+N-2<tg2M+2N-5

€

" Prooff  The Euler-Poincaré theorem

L o
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regions + vertices — edges = 2
holds for any connected planar graph.

There are M boundary edges in the triangulation. - Each
interior fegion has 3 edges which gives 3t+M edges, each being
'corl.lnted twice. Therefore 2e = 3t + M.

The number of regions is t+l (t interior regions and the
con\;ex‘ hull), and the number of vertices is M+N. The e'q'uation is

(t+1) + M+N) — e = 2
Substituting e = %(3t+M) and solving for t gives
t =M+ 2N - 2 |
and . hence e=2M + 3M - 3 | )
The inequalities follow from simple observations. ‘
) “ - QED.

Delaunay tnangulatlon is optimal [WAT83] and its empty circle

property is in fact used as a criterion for the local optimization of

-

triangular meshes. . . 4

3.2 Local and Global Trianguiar Mesh Optimization b
The local optimization procedure (LOP) attempts to improve:~
each element shape individually. The test is made on the basis of
two adjacent triangles at a time. If the quadrilateral formed by

the two triangles is convex, the test would make a decision on

{
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whether or not the diagonal (the common edge) shou}d ‘be swapped

D,to‘ satisfy some criteria of Delaunay triangulation. The procedure is

formally described below [CLI84].

Definition. 1.6

A pair. of 'triangles (pl,pz.p3) and (p2,p1,p4) of" a t{iang;llation
‘T, whiE:h share a common edge form a quadrilateral of T denofed
(p 4,p2,p3,p1). The quadrilateral' is said to be strictly convex if the
diagonals PPy and P3P, i'ntersect at a point inside the segments
P{Po and PgP 4 A swapﬂin~ }:his case is’ the\ replacement in T of
(pyPgbg) and (b1 B by (BgDyPy) and (@pgpy). Note that the

swap leaves the number of triangles and edges unchanged.

N

Figure 1".f>‘ Dia‘gbhal swap test

‘!\

Definition 1.6

| Given an interior edge pipz w{th corresponding quadrilateral
(pi,p 4,p2,p3), the local optimization procédure peﬁ‘ormg a diagonal |
swap based on either of the féllowing criteria: . L

a) The mé-;q-min angle criterion selects the pair of triangles ‘which

-



4

- 20 '

)
'maximizes the minimum of the six interior angles ‘when'

(pl,p 4,p2,p3) is strictly convex. A swap is made on the diagonal

éhly when the quadrilateral is strictb\convex and the new pair of
\ 8

Al

triangles satisfy the max-min angle criterion. 1“

b) The circle criterion selects the pair of tridngles whose

circumscircles do not cqnfain the remaining ‘vertices in their
interiors. The swap is performed only when the fourth vertex of

the quadrilateral is. interior to the circumcircle of the other: three

vertices.

The above criteria can be shown to be equivalent [LAW77].

There is another criterion employed by some authors [SIM79¢),
<
choosing - to minimize the ~maximal angle. Equivalence to the

max-mtin angle has not been proved, althomgh it does produce
. ) .

adequate meshes. -

In addition to the local optimization, a triangular mesh can be

i .

improved globally by a procedure called mesh smoothing. Several

techniques are available, the most popular one s Laplacian

smoothing which seeks. to re-position each node to the centroid of

_the polygon formed by triangles sharing the point. This

" re-positioning can be done iteratively or simultaneously by 'setting

up a set of equations' for each interior point using the Laplace

equation for point i, ' *

)
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1 i
P, = — P,
Vool et g

o

where Pj are the coordinates of the vertices of the surrounding

polygon and n, is the number of such vertices. Figure 1.4(c)

*

illustrates the result of La‘p}aéian smoothing ori a triangular mesh.

LY

In some 'cases, the Lﬁplacian scheme does not work well. A
correction is. p;'opoéed byy Hermann [HZER76]"' which adds a

weighting factor w to- the Laglace equation of a point i:
' " Vo, .

1 % . . ’ a

PQ = (P . + Pn] - ank)

i ei(2-w) n—1 N X

-where ei-_ is the number of elements around node i_-and 0<w<l.
The posi?xons of pnj’ Py and p ok 8re as in figure 1.7. This

isoparametric smoothing resumes Laplacian when w = 0.

.
\

‘ Figure 1.7 'Isoparainetric smbothing

Isoparame.tx"ic smoothing 1is mostly wused for quadrilateral
- meshes; f(3£ triangular meshes the Laplacian scheme -is sufficient.

(3

‘L\»
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'3.3 Mesh Validity in the Context of Finite Element Analysis

This section. discuspes§ the nodal numbering ~f‘or a triangular
mesh so that the matrix system obtained from the assembly of
élement ‘matrices and vectors Yyields correct‘ solutions. Simpson
ESMBl] defines the order of local nodal numbering :within each
element o b;a' counterclockwise, al'ﬁhou'éh it is immaterial which
node is defined first. If a clo;kwise order of numbering is used, the
element area will be negative, resulting in serious errors in
subsequent analj;sié. The 'author has devised a two-dimensional
mesl'; ver'iﬁ'cai.:ior.l' algorithm fo& triangular meshes .[SIM81] which
can be ‘described in terms of the following condii;ions for a given .
planar triangulgtion:'

a) The tﬁangle vertices ;a.re specified in countercléckwise order;

b) Either the th ‘edge of the kth' element "*is Rxe only edge
joining its endpoints (i.e. the k't‘h element is a boundary element),
or there is exactly one element number n having the,same edge.
In the later case, the direction of this edge in k and n .must be
different; : ‘

c) ﬁo boundary edge !intersects' more tfxan one element except
at its endpoints; and

d) A vertex . can have at most one boprgdé.ry edgé directed

<

away from it. o
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It is clear that this test only applies to conforming triangular

meshes.

4. Mesh Generation )

At the early stage of finite-element analysis, meshes were
produced manually by the analysts who also prepare domain
description and node numbering. Coarse meshes are not too

difficult to obtain but they usually cannot satisfy the accuracy

requirement of the analysis. Generating finer meshes is tedious and .

* requires large amount of man-work which makes ﬁmte-element ]

methods not recommendable despite its simplicity and accuracy. A
solution to this problem is to‘let the computer do the discretization
vfrork,h hmuch faster and more accurate, suitable for the anc.lysi‘s.
Before bresexﬁ:ing any mesh ‘generation blgorithm{ we shall first

address the problem in its general aspect, namely the’ information

" and desirable features for automated meshing techniques.

4.1 Mesh Generation: Input and Output

H

Since computer instructions can only deal with’ discrete data, it

~ must be possible to &pecify domains in some suitable form.such as

functions or sequences of discrete data points. A domain is defined

to be the. region enclosed by a set of boundary curves from which
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we identify one external boundary defining t'k'le largest region
enclosing all other internal boundaries which represent holes. In
two d\imensiggs, boundaries are closed curves, and in three
. dimensions, they 'a.re surfaces that defines a closed region. A mesh
can be aut:omatically produced solely from the .deﬁnition - of
boundaries. Simple g‘hd ‘regular boundary sha}nés can be deséﬁbed
by‘ functions of two or three variables, while functions of arBit;'ary.
irregular shapes are not easy to -find. E this ca:se, .a curve in 2D

can be approximated by a set of consecutive line segments. Mesh

generators ususally pake “meore than just domain definition as input,

but: also control parameters on the final mesh such as density

distribution of elements, number of elements, etc. Representations

of these parameters vary from one imptementation to another.

L '
Meshes generated by compﬁter generators always have at least
the connectivity information ab(;ut the mesh, i.e. element definition
#nd the number of elements in the mesh. As discussed previously,

this connectivity inforngation relies on a specific numbering scheme

of the nodal points, which can be stored in lists. Another useful .

‘but optional output is the table of element adjacency which gives
the elements adjacent to each element. Of course this inforrgatior}
can be visualized by means of some graphics device since the

vision of the mesh- is always more desirable to the users of the

mesh gen;:rai:ors. In fa?:t, any .mesh generator should have built-in



mteractxve graphlcal interface to make mesh generators’ truly

.

convenient and efficient tools: in computer-aided - finite-element

analysis.

4.2 Features of Automatic Mesh Generation

’

-

With the advances of computer technology and the 'outgrowth
of research on the topic, automatic mesh generation is becoxning =
- an integral part in almost ‘any finite- element analysm software.
‘package Due to the w1de apphcablhty of ﬁmte-element methods,
| :some mesh generators are developed specifically for certain fields of
application, e.g. [COR87). However there ~are also .general-nurpos°e~ n
mesh generation algonthms devised by sex;eral authors' using
dlfferent approaches These algonthms when mplemented show to’
" work well, but cor}'ectness proof is often omitted, and4 thus cannot
guarantee absolute generality, e.g. [CAV74, NEL7é] Nevertheless,
the desxgn o}' algonthms producmg‘ﬁmte element meshes should m‘
pHPCIPIGﬁChIWe the following features of automated meshing
techntques [HABS1]. |

&

a) Precise modelling of boundaries

No error beyond the dlscretlzatlon error mherent to the
chosen . ﬁmte-element model should be introduced by the mesh
generataon process. Boundary nodes should lie preclsely on the

boundary of the structure In two-dmen51ona1 structure the locatlon

‘1
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shapes are obtamed Meshmg must not be limited to certain

of mtehor nodes 1s less cntxcal provided that aceeptable element

shapes of boundary curves a}nd should support highly complex

boundary shapes

B) Good correlatlon between the mtenor mesh and information

a

on the mesh boundarv

14

The curvature and node spadings on the -boundaries of the

2

region should be well reflected to the interior of the mesh to allow )

control on- the “element size in any’ region Lof the domain in a

.pre"dictable fashion. This would ease the refinement gf the mesh

/
/

and avoid unnecessary refinement leadirgg to wasted computations.

¢) Minimal input_effort - i ]
; . , Lo .

The amount of data pi'ovicfed by the 'user should be

reduced to & minimum without affecting the generated mesh. This

will also reduce. the .chances of introducing human- error 'into. the

_ analysis. -The “input information. should be in a convenient form

EN . . -

. 7 . 0. . N 4 )
and easy to communicate to the computer. : : .

d) Broad range of app!icabil_itz , . .

ot

it .18 desirable to have a small set .o‘f mesh generation

¢ ?

,. techniques that are applxcable to a wide vanety of structural

topolog1es rather than° to use a large gset of spemal-purpose mesh )

2

Qo

generators Thas would create a convement user interface in that ' K

users don't have to learn to use part “of the system every time '/ A

o .
'
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they come up with new structural problems.

" ) General topology

“

No restriction should be aposed on the topology of the
mesh within a "region. This maintains the regularity anc’l good

shapes of the mesh elements.

.'D Automatic to'pdlogy gen&ation'
- Element connectivity should be " created without user-
intervent_;ion. This reduces the amount of ihput required and
t;utomates‘ the process of generating meshes.

g) lj"avourable element shapes

. r Any element in the automatically generated -mesh should

possess shapes that are as 'close to idealﬁ as possible to avoid

o

ill-conditioni}lg in- the finite-element model and reduce subsequent
. s I» . ¢
errors in the analysis. : .

h) Optimal numbering, patterns

F
' The arrangement of node$ numbers should be in such a

way thit ,@e ‘resulting matrix system , is favourable to the

technique used to solve the system. For example, a matrix with

-

minimum bandwidth requires much less computations than an

© .
equivalent but sparse matrix. , . Pooms,

i) Computational efficiency .

o

Good response and minimum use of resources are—tommon’
) . » * .

°

* requirements to all’ software i,ools, -with' no exception "ta finite’

-
— ' »
.
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\\eilement mesh generators. These are expressed in terms lof storage -
— ’ Ay -

) ’ - ;\:-v","
used, response time and computer time to generate mesh for

arbitrary domaind

v

Not all of the above features are present in currently available
mesh geﬁqrators. Precise boundéry' fitting and, minimal user input
are well incorporated in any developed mesh generator, as well\as (
additional improvement on element sha;;es. Not all bomindary
topolqgies could be tested so that the rque'stion of generality cannot
have "a definite answer. Optimal numbéring patterns représent a
Sost-process fof me;h generation; independent algorithms exist for
this p;eros,e. The efficiency question, especially in terms of time
complexity, isl difficult to discuss due to the lack 3‘ standard
analysis procedure for mesh generation algorithms, andsis often
omitted for heurisiic algorithms described. in most research

publications on mesh ‘generation.

In the next chaptérs we shall explore the design and
implementation of a mesh generator in greatér details than the
general deécription in this chai)tgr. We w'ill focus our attention .on
general-purpose mesh generators “keeping in mjnd the above

~

characteristics. -

2
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Chapter Two

METHODS FOR FINITE ELEMENT MESH GENERATION
. . ' S

INTRODUCTION

-

The first survey of confputer application in finite-element
pre-processing appeared in 1973 by Buell and Bush [BUE73] with
".reference to 3ﬂapers related to finite-element analysis and mesh

generatlon The survey covers schemes for node and element

generation as two independent classes of algorithms. These

techniques’ use ’rhe idea of element transforrraation from the
variai;ional' formulation of finite-element models,. in . which
ealculations are carried on a master element and trmsferred to the
actual element in ; fhe ‘ model The sécond{i sarvey, presented by
Slmpson [SIM795] only six years later reveals conmderable progress
in the ﬁeld The review focuses on 1deas pertment to the demgn of
software, namely basm representatxons of meshes with selected data
structures, reqmrements and venﬁcatxon of automatxcally generated
meshes. The class1ﬁcatlon scheme mcludes four distinct approaches

r_e@ricted to the generation of atrian,g'ular meshes. The methods are
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classified by their basxc concepts, which are completely , dlfferent
between the deﬁngd classes. The class of coordmate mappmg ‘
algor’it‘hms uses mathematical transformation from./ é‘,mmply-shaped
, 'reé'ion to the actual domain. The local mesh reﬁnéin)ent class uses
repeated subdivision of a given coarse mesh until th;e mesh meéts
some . specified analysis requiremenis. The class of 'vertgx d
triangulation metilods separates the generation into two phases:
node generation and element ‘generation. The fourth class contains
boundary contractioy methods which ‘gerllerate nodes and e‘iement;r »
simultaneously by shrinking the ﬁndary. 'This survey by %on/
‘emphasizes on the software sic\i'e' and preser.xts' 'typica1 method for |
each class. The brief ’review given by ;Phaéker in 1980 [THAB80], by
contras‘t, includes a more complete enumeration of the technique;s‘

“available up-to-.date,‘ with a brief description of ‘a few approaches,

but no classification is explicitly proposed. Other computational "t
/ :

aspects such as boundary specification, modes of operation
(intera..(;tive, batch) and post-;;rocessin‘g to reduce ’matn'x Bahdv‘s}‘dth
by re-;n'dering of nodes and elegdents are also mentioned. Another
surv\ey by Watson and Philip [WAT83] _toucfxes only a particular
‘problﬁnil in triangular mesh generation, namely the connection of
nodal points to obtain phe mesh. The authors define three different.
systeinatic triangulaiion methods: Optimal, Greedy, ’ and Delaunay

+ triangulations, each ‘using dxfferent criterion to select suitable
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elements. Some comments on the efficiency of these methods are

" also given: ON®) for Optimal triangulation, O(NzlogNz) for Greedy

triangixlatio.q,- and O(NZ) fot Delaunay triangulation. These bounds

have not been mentioned in any other publications except for the

" class of Delaunay triangulation. The latest review on finite element

;nesh generation methods by Ho-Le [HOLS88] contains an up-to-date

x\'efei'ence list. and a broader classification scheme applying to

t\;vo;dimensional mesh generation as well as three-djmensional

methods. The review '1s complemented by a companson of _the
\

various ‘approaches based on cntena descnb‘ed in chapter one:

element type and shape, _mesh density, and t1me efﬁclency

In this chapter, we present our review of finite element mesh
generation techniqt/yps focussirig on triangular meshes. The order of

presentation is: classification of methods, description ef 2D methods,
YQ.

~ performance evaluation - of 2D methods, and a brief description of

3D methods.

1. Classification of Mesh Generation Methods

S

In this éection, the mesh generation methods, semi-automatic.

" and automatic, a¥e classified. The classification scheme is similar to

‘classes, arranged ly their different nature of generation techniques:

[HOL88] with some modifications. There are basically four main

.
-~ (%
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mesh topology first, n'ode first, adapted mesh template, and
simultaneous generation of nodes and elements. Each‘ of these
_classes he.s one , or more subclasses. The complete classification is
presented in ﬁgure 2.1. The mesh generatlon methods are classified
based on the order of creatlon of the two basxe\ output sets, the

. set of nodes and the set of elements.
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1.1 Mesh Topology First

In "this approach, the configuration of the- mesh is determined *
first. This topolog:y consists of the number of elements, the number
of nodes, and the interconnection between nodal points to form the
elements. Once the mesh topology has l_)een detefxnined. the mesh

‘ smoothing technigues used in the global ‘optimization [HER76] can
- be used to find the exact nodal positi—ons. A typical and generally
| used technique - is | to solve a set of Laplacian equations created
from the internodal connectiog previously def’med;’n under the
constraint tha! boundary nodes are fixed. This‘is the same scheme
which Qés ﬁpreser;ted in chapter one  under the local and global
mesh optimization section. The problem ‘witﬁ this appro;ac\Q is that
there is no known algorithm #for creating t}he mesh topology for .
arbitrarily-ghaped dgmain; thus the scheme can onl; be used as
# | cofnple&neritary post-processing for other autorﬁatic mesh ' generation

schemes.

PR

- 1.2 I\fode _First

The meshes are created in two phases: . generation of nodes
and creation of element connectivit$h The first step produces
additional nodes inside and on the boundary of the' domain

according to the density distribution parameters given by the user
: :

~
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_‘ or determijned by the processor. The next step is to establish the

connection between- the ‘nodes to form triangular . or quadrilateral
elements. These elements are formed in such a way that they- do
not overlap and do satisfy 1‘:he criferia associated with subsequent
analysis. - Enhancement of the generated meshes by some smoothing
technique is optional but recommended for the meshes generated by
these methods. This class has only one subclass, the node
connection or vertex t".riangulation approaéh. Numerous algorithms

for the triangulation phase are available in research literature.

1.3 Adapted Mesh Template

The mesh fof the object of interest is ada;ﬁd from some
predefined mesh template. The mesh templﬁfe is usdally a regular

and optir'nal mesh of simple geometry' such as triéngle, rectangle,

unit cube, etc. Such geometry does not give any dif;ﬁculty in the

generation of the mesh since simple formulas can' be derived to-

calculate the. nodal positions and element connectivity [FEN75].
y | S

~There are three subclasses identified by the template used to

create t.heymesh‘es: grid—based approach, mapped-element approach,

and conformal mapping approach. -
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. 1.3.1 Grid-Based Approach =

" An iﬁﬁnite ;rectangular or triangular grid is superimposed on
the aomam to be ‘meshed. The gnd elements that fall completely
outsr’de the domain are discarded, and the ones on the boundary

' .
are adJusted to fit into the domam Meshes created in this manner

always have good shapes for interior elements but boundary

elements may be \;ery irregular.

)
1.3.2 Mapped-Element Approach

The domain is subdividled into a set of four-sided (or

three-sided) regions, each of which is then mapped to a rectangular . -

mesh in the unit square (or a triangular mesh in an equilateral
triangle) via a mathematical function. Each region in the
. subdivision is called a macro element. The subdivision may be

carried out manually or automatically. Automatic subdivision may

be difficult to obtain for comfylex boundary shapes.

¢

1.3.3 Conformal Mapping Approach

The mesh template is a polygon P that has tke same number
of vertices as the simply-conhected region R to be meshed. The
polygon P is constructed in such a way that it c be easily

meshed ang a conformal mapping F from P to R is\found based
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on the correspondence between the vertices in P and R. The mesh‘
ih P is then mapped onto R using this mapping function. Again
the effectiveness of the method depends on ‘the shape of the

boundary as in the ‘'mapped-element approach.

1.4 Sim\iltaneous Creation of Nodes and Elements _.

In this class, there is no distinction between the node and
. element generation phases, and yet no mesh template is used to
N ’ \- 94

obtain the mesh. The two different subclasses are mesh refinement '
*

and geometry decoxhgosition approhchés. In the mesh refmeinentv
approach, an initial mesh is constructed from the boundai'y' nodes
and refined by subdivision of elements ini;o -smaller ones until the
desired' ‘density is met. Oddly shaped elements may be introduced
as t.hé mesh is refined. The geometry decomposition approach
attempts to generate good elements by considering the object
geometry while decomposing the object inta elements or simple
regions, and then generating elements. The efficiency of this

approach also relies -on the geometrical complexity . of the object’s

boundary. ,

We have described the four classes of mesh generation
techniques in general terms. The next sections fresent the distinct

methods in twovdimensions and three dimensions with a

>
by

3
i

Lo



Q9

38

performance evaluation for 2D methods.

2. Two-Dimensional Mesh Generation Methods

’

This section reviews the -methods published in the litek?ture on
2D mesh generation, in particular for triangular meshés. The
methods will be presented using a descriptive, Pnon-algo'rithmic
-language because the. .diversity of these techniques lﬁakes it
difficult to ‘give the algorithlﬁs for each of ;hem since they are not
"available in the referenced [;ublications. ‘We shall present these
" methods using the classification scheme given previously at the
subclass -level. The performance evaluation will not be given for
each individual subclass but r-ather at the end of this review since
it §v0u1d be easier tq‘ have an idea: of -the relziltive efficiency of the '
various methods. More than one representative methods may be

+ described within & subclass depending on their properties and

significant differences with other methods of the same category. . v

2.1 Mesh Smoothing Approach

Given a boundary description in discretd forra, that is by( point
vcoordihates and a layout (connectivity) of elements in the mesh,
the generatipn procedure consists of establigshihg a set of equations

whose, unknowns are t\h}e nodal positions of interior points and -
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then golving for these coordinate values.” The most commonly
employed generati(;n procedure for arbitrary geometries and element )

. layouts is due to Wilson as cited in [HER76). This' procedure is

\ T ~
called the - Laplacian scheme which wuses equations' on the

connectivity of the nodes, -

J . o -
o ’
™ n, ' .
1
x, == Yx.
, s B
and ‘ S
1 n. "
0 Y =TT LY. o
o0y

for points in two dimensions, where ‘xij and yij are coordinates of

the points directly connected to point i. Figure 2.2 illustrates this

relation for n, = 4,

Y

-Figure 2.2 Connectivity in the Laplacian equation -

¢

The construction of the set of equations for interior mnodal
positions is performed by establishing the abgové equation for each
point inside the domain, replacing fixed bouhdary nodes by their

known coordinate values. An illustration of the method on a simple
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L3

sqt'lare with 8 nodes on the bdpndary and only one in;.erfor node is

in figure 2.3. ; ! ‘ -
’ ¢ 2 . \ \-‘
: P .
' P, s P, .,
|
\
’ Pzr---é*s——'—‘Ps
pb— ' )
8 P, 5 '
(a) o (b)
- T ’
) -Figure 2.3 Mesh smogthing"tep}irﬁque
(a) Mesh topology ® Laplacian smoothing
. . . - . \
3 ? r S
For this simple mesh, we only need to solve the equation for
o o point P9, ]
: . . | /)
: ‘ Xg Z(x2+‘x4+x6+x8) '
, 1 . .
) Vg = 3g0g t Y4 * Vg * ¥Q
4
" Other schemes to improve the Laplacian scheme exist as .
- variations of the original one [HER76). Despite ‘its simple
& - . ' .
) formilation, mesh smoothing is not very attractive bec_ausé it is
. not very efficient. The problem is that there is no way to prédigt o
o o . a - N
the mesh topology except by ~ using )oth'er automatic mesh
* .o \ , , N
I génera‘tioh tech_nidues.» Therefore mesh smoothing is often used as a \

global  optimization - procedure for . meshes generat;ed by other

methods.

-

s L C .
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\ ' » s
2.2 Node Cannection Approach '

. ! .
This approach divides the mesh generation process into two

distinct phases: addition of new ‘nodal points and triangulation of a

set of points. New points are inserted imn such a way that they

satisfy given density control parameters" or functions in different,

regmns of the domam to be meshed In the connection phase,

nodes are Jomed by edges thc}v form Eenerally good elements
<

?

suitable for analysis. Criteria to determine good elements have

been described in chapter one on finite element’ meshes.

. 4

2,2.'1 Node Generation

Essential input to a mesh generator is a set of boundary node
Q< . IS

coordinates, or a set of fuﬁc_tions describing the domain boundary.

> Boundary nodes:/ are sufficient to, dorm ' elements, but a mesh

¥4
obtained in this way usually has no \use in the analyms Nodes

¥ - -

must be introduced inside the domain and sometlmes on the

w

[ 25

\

boundary to satisfy dens1ty requirement. Some mesh generators, by

contrast, use the node spacmg on the boundary to determme‘ the

density of interior nodes [TANS87]. Interioxj‘ nodes can lpe generated ‘

-

manually through some interactive device as in "'[FRE70] or
-y ¢

- automatically , by the mesh generator as ‘most of recent



implementations. There exist several algorithms for automatic node.
. h]

\

generation. These can be classified into two typés: random and
; .

non-random insertion algorithms,

a) Randor;l insertion
Nodes are generated through the use of a random number
generator inside each small are:a of thg domain” to be meshed. The
first scheme was developed by Suhara .?nt:l Fukuda [FUK72] and /
‘ . followed by a number of authors [CAV74,MO0S83]. In thisﬂ schen‘xe,;
” .;.square grid is superimposed on the domain, each grid cell ' has
size proprotional to 'the density parameter which also serves as a
conditién to accept or reject a point randomly positioned‘ within the .
cell. To avoid the formation qf dcute angle, an imiagixlary boundary - o
is used m pla;:e of the inbut boundary during the node generation- -
process. This ‘imaginary boundary is ‘obtained by shrinking the
original domain by a certain’ factor determined from the required
density. A new hode Pin a grid cell is recérded only if it satisfies

hY)

-~ the conditions:

®

i) P is inside the region bounded by the imaginary .

. boundary, and

ii) P is not too close 'to any previously generated nodes.

The first check can be done by 3®begmining whether P is to
the left of all- boupddry segments traversed in counterclockwise

order. However this condition .breaks down when the domain is not °

>
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cor;\}ex. In this case dtg;\iDVe test must be used- [MQB83]. The
dlistance between P and other points must not be smaller than the
aensity allowc_ed. If a circle centered at P of-radius equa} to the
square size - does. 1}0t contain any other points, P is acceptéd as a

new node. Otherwise it is rejected.

\ L 75\ ]
\ ( ’ ) /
. ) /
) \ ~—/ /{- \." .
. . ,..‘ i L T
‘ ) ‘*’ i .
Figure 2.4 Circle test for a point P ’ _
2 ," If P is rejected, another position within the cell is randomly
N L]
o generated and tested as above. Once the number of attempts has ’
pasée'd' a predefined ‘value; that cell is dropped from consideration
’ and the process is repeated for the next cell. -
R For different zones of different. density, the . nodes are
. ‘ 4 - .
- generated inside each "zone independently using the associated
density parameter to ‘determine tl;e grid ‘cell dimension.. .

b) Systematic (non-random) 'insertio'fg
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@

Non-random methods generate' nodes -at ﬁxod co.lculated
positions. This scheme see;ns to be oreferred over random insertion
since the method can be ’deﬁse&lﬁ in ouch a way that deosity
requirement is gua;anteed with a lowest number of validity tests
for each point. In [SHA78] the authors’ use the same, gnd cell
concept as Suhara:Fukuda and ‘others, but take re'(?Eanguhr grid ? ‘
cells and choose only two fixed posmons in each cell to be two
\[ points. These pomts are guaranteed to be well dlsplaced from
each other and only a test against the boundéry needs be done.
McGirr and\ Kraulis [McG84] use circle test on ‘a - fine grid for each
mtersectlon of grid lines. A simple and fastér scheme devxsed by
Lo [LOHB85] generates points on the honzontal lines crossmg the
domam These lines are equidistant and pomts are generated in a
zxg-zog manner on consecutive lines. ’I‘hls method reduces the
number of validif.,y checks between points as gbove. In [JOES86] the
authox:' generates nodes by combining the domain shrinki,ng. idea
and zig-zag node placement on horizontal lines. More “checks can. .

" thus, be eliminated.
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Figure 2.5 - CSG point generation
(a). Two overlapping sets of points

(b) Combined set of points
N . . )

Figure 2.5 illustrates the constructive %solid geometry (CSQG) \
scheme employed by Lee & al. [LE§E84]. The domain is considered
to be a combination bf several primitives such as triangles,

rectangles, and circles.- Each primitive has a prédeﬁned set of

interior nodes, When combining the primitives, points cap be

e’limina‘ted so that no two points are too close to each other.

Other remaining points may be moved to fit the boundary of -the
domain.

»

2.2.2 Triangulation @ = = °*

c

There exists a largé number of triangulation methods in the’

literature on two-dimensional mesh generation. All methods attempt

to arrive at an optimal configuration for the mesh produced, and
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usually Delaunay triangulation is used as model. A difference

\ between each individual method is on the complexity of the domain

to whicl; they apply. Some methods oﬁly work on convex regions,

. - others are designed to handle any type of shapes. However there

| is another, more logical way, to classify triangulation‘ methods by
considering the id;a employed to perform the tf'iangulation. We

have three distinct schemes: the fully-surrounding schemé? the

problem-reduction technique, and the it@x}tive insertion.

" a) Fully-surrounding scheme
The two basic primitives of the mesh topology, node and edge, -
play the key role in this scheme. A node-based method can be
found in [FRE70] and an edge-based method is devised by Suhara
and Fukuda =  [FUKT72] and widely used
[CAV74,SHAT8,NEL78,MOS83].
Frederick & al. made the following observation: A node which
’ is shared by a number of triangles cannot be used in any other -
\ . triangle if the gnglc; surrouding it by the sharing triangles is 360?.

Such node is said to be fully surrounded. Thus triapgulation can
be done by fully surrounding each node. When all points are fully
surrounded the triangulation terminates. Obvioqsly several tests
must be perfoi;med to ensure no crossing of triangles and best

suitable i:riangles are obtained. For boundary nodes which cannot

<
/
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be fully surrounded, imaginary points are added to maintain 'the

<

consistency of the method. These “ghost” points are deleted once

the triangulation is completed.
ghost points

.Figure 2.6 'Funy-surrodrided nodes for triangulation

~ ' Sirhilaﬂy, the edge-based methods use the fact that an ¢dge
cannot belong to more than two triangular elemerlxt.s m the mesh.
Thus a fully surrounded edge has exactly two elements sharing it
for any interior edge, while a boundary edge belongs to exactly one
element. St;hara and Fukuda’é method takes a predefined base
" from existing elements and forms a new element by choosing an
appropriate point among the nodes. This method requires several
tests against the boundary and the existing elements.
Improvements were made by Nélson [NEL78] to reduce the number
p of tests for element crossing. The ad\}ancing-front method ojf\Lo
[LOH85] completely eliminates the element crossing test. Similar
method is used by Lee & al. in their constructive solid geometry

approach to mesh genﬂeration.'
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, ~ .
| 4 ’\ External boundary
Figure 2.7 \S\xlly surrounded edge

Other ‘methods in this same catego;'y are the fully surrounded
nodes ‘and edges in [MAUSB4] to give bpth the Delaimay
triangulation and the convex hull of a set of pointg\. McGirr & al.
construct the Voronoi diagram then find the dual 'Dt_alam;ay

triangulation [McG84]

'b) Problem-reduction technique

s
Lewis and- Robinson [LEW78] wuse the &uicksort’s
divide-and-conquer idea to design  their trianglilation scheme. The; |
triangtllatiox{ of a region R can be achieved by
i) splitting R into two sub-reﬁons, R, and R, by
creating a new boundary across the region; and
ii) solving the triangulation problemf;' for Rl and R,
s?parately. |

Figure 2.8 .illustrates such region cutting operation.
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['e] ]
R )  re——— Rl u R,
~ | ) Figure 2.8- Splitting a region

Sub-regions are .divided until triangles with no .interior points

~J . :

are found these being the elements of the triangulation. Triangles
) contammg interior pomts are splitted by two lines joining an

interior point to two vertlces The same idea is found in [LEES80],

algorithm 1.. y ’ - h .

c) Tterative insertion

In contrast with the odivide-and-conquer technique, the iterative
" insertion técnnique builds a new triangulation from an existing
triangular mesh by inserting a.new point and update the mesh 56 - :
that " it remains optimal, usually equivalent to a_ Delaunay IK i
tnangulatlon ‘The commonly used and representatxve scheme can
-be attributed to Watson [WAT78] as wel] as to Bowyer [BOW78]
who gives a sumlar result at the same time. The scheme works as

follows. Given a set of points, the construction starts by finding a
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sﬁper-triahgle that compléfely encompasses all the data points to
be triangulated. This is equivalent to an_initial mesh. When a
.point P is introduced into the triangula'tion,u we first find an
existing triangle which encloses P, and form three new triangles: by
connecting P to each of its vertices, with the original enclosing
triéngle then deleted. After the insertion of P the triangulation is -
optimized by applying the swap test [LAW77]- described in chapter
one. Once all points have been inserted, the triangulation of the
convex hull of the set of data poin';,s is completed. Smce this
algc;rithm is ap;/)licablg only to, simply;connected convex domains,
some pre-processing must be done Yor arbitrary .input don.lain ’ such

as subdivision into convex regions [DEF85,JOE86s].

(
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2.3 Mapped-Element Approach

The widely used method in this approéch is first. described by
. Zienkiewics and Phillips [ZIE71]. 'i‘he essence of this scheme is the
use of isoparametric curvilinear mappings of quadrilaterals. A
unique coordinate mapping of curvilinear coordiﬁates ¢m) and
Cartesian coordinates (x,y) for an eight-node p;irabolic, quadrilateral

of figure 2.10 is given by

T
X = iEINi(f,'))xi ) . k
o 1)
8

y = X N.(§nmx,. e
=1 L.

in which Ni(E,n) ,ié a 'shape function associated with each node i.

and (xi,yi) are doordinates of the eight boun;iary nodes. -

Figure 2.10 Isoparametric mapped element:

k ‘
. ' - . !
at
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Typical shape functions for a variety of elements can be found
in [ZIE69]. If the coordinates (xi,yi) are known,. then' the Cartesian
_coordinates of any specified point ({,n) in the quadrilateral can be

found by ixsing equations (1). ' L

Therefore the mesh generator operates in two phases:
. i) Subdivision of the domain .into n-node po.lyg'ons. n = 3,
- 4 depending on the type of the mappéd eler;lent used.
"iiy Calculation ;)f the Cartesian ;:oordinates for nodes
correspondihg to the nodes inside the mﬁpped element whicfh‘

alréady have a mesh defined.

There exist other methods using different mapping schemes
such as transfinite mapping, discrete - transfinite mapping [HABS1],

and composite mapping [CRA87].

Mapp:ed element approach is simple but has some drawbacks,
such as a restriction on the mesh topoiogy, e.g. the number of
elements along opposite sides for quaglrﬂaterai mesh must be the

same which propagate throughout the subdivision.

2.4 Conformal Mapping Approach

" This approach uses the same mathematical concept as in the
mapped-element approach, but employs polygqnal mesh template in

general. A gcheme developed by Brown and Hayhurst [BRO82]

/
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 using the Schwarz-Christoffel transformation works as follows. A
" two-dimensional sMply-come&ed region to be meshed can be )
modeled with a straight-sided pofxgon P by ;ﬁproximaté‘
discreti::zation of the boundary curve. A polygon Q- is associated
with P such that Q and P have the same number of vertic;es and
a mesl} car.l be easily produced in Q. Since the Schwarz-Christoﬁ'el
transformatior.l maps an upper half infinite plane onto the ipterior
of a gen;aral polygon, two mappings F and G are defined to map
. the upper half e-plane onto the polygons P and Q. Then the mesh
in Q is mapped to P.by the comi)osite mapping H = e Figure

2.11 illustrates this strategy.

Y
| e-plane
AN

P -
I R

‘ H
Figure 2.11 Conformal mapping approach

Conformal mapping has an advantage of .generating good |
elements because of the angle-preserving nature- of the mappfng

used. However the scheme is restricted to two-dimensional regions

f
.
/ :h
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that are simply connected, and it may not be easy to fu}d' the

inverse mapping G used in, the composite mapping H.
Multiply-connected regions must be subdivided into si;nply

connected subregions in order to apply the method. Other mapping

" scheme can be used such as in [DEN78] the author uses only one

.
Loe

mapping and the ﬁmte-element equation assembly to find the mesh

in P from an ideal mesh in Q.

2.5 Gx_'id-Based Approach

»

'The .idea is to \ superpose a rectangular grid onto a planar
- domain and adjust the ‘boundary cuts to obtain the ,actqal' mesh,
- The ﬁd‘st published work is dué¢ to Thacker & al..’[’I‘.HABOs]. There

are two main considerations when using the grid-based- approach:

i) Choice .of the superp jing gnd and -

ii) Boun“ﬂary appronmatlon . . ' %i,

w

In fact methods belonging to this category .diffex;/ rﬂainly by

these two ‘factors. In [HEI82] the authors use a rectangular ‘mesh_

geométrically distorted to match the node sepaiations' of the

polygon bounding region to be meshed (sez“ figure 2.12)." Using only

the nodes of the superposed mesh which are /j&side the region, a .

. set of ‘interior triangular, elements is formed by appropiate
diagonal bisection of the mesh rectangles. This results in' one or

4

-
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_ more areas of meshed elements isoldted from the region boundary

P_'

by an un-meshed stri . The boundary elements to fill this strip are
formed by connectiné tth sides of the interior mesh elements that
are ex;;ose('i- to the un-meshed area to the boundary 71{12:35‘ The
final step is to examine the - shapes/of. the elements, especiall'y _

those containing boundary nodes. Boundary crossing must also be

checked to ensure no invalid elements are included in t_he final

-

configuration.
in: s
- ‘ T '
HH ll H J\ \k\\\\LA ’ -
117 TR )
[
\s . -
r ' “ (’, -
.ot ' ) ~
Figure 2.Yo Grid-based approach .
A “\ 1] 5
. ) LN '
Another popular scheme pioneered by .Yerry and Shephard
»

[YERS83,SHE84] uses the quad:tree model as ~the mesh template.
The quad-tree structure of a two-dimensional object corresponds to -

" a set of non-overlapping quuares; referred to as Auadtants, that are ’

/& - > PR
stored - in a hierarchical tree [KLI76]. The object to be me§}1\ed_ is/
. . o 4
placed in a square universe that entirely encloses ‘it. This square

represents the root of .the tree, and is t};en subdi\zded into four’

<
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quadranés corresponding to the children of the root. The suhdivisions
is repeated for each quadrant. until all quadrants are at some
satisfactory level to model the boundary curvature. 'The next step
is to classify each quadrént aming inside, outside, or ngtially
inside 'the object. " Quadrants partially inside the object have their
cut points with the boundary joi}led up to eliminate -re-entrant
corners of h these squares. To- allow _smooth -transition for
non-uniform subdivision no two adjacent quadrants can differ in
more than. one level in the tree. 'F};om this stage, quadrilateral or .
triangular elements, or a mixture of them can be formed. The last
adjustment is made ap- the boundary elements where nodes may be

slightly displaced or merged to model the boundary sl{ap,e. Figure

2.13 gives the quad-tree’ model of a c¢ircle.

=TT T~
A J N O -
[ 1
L \
TR .
X /x . Top four-levels of the tree
~ : : : \
. : B8 o | S |
- | : T Full Partial Empty

Figure 2.13 \
. _ S 1

Quad-tree representation
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I

The quad-tree approach shows a structural solution to mesh
generation :and is becoming a popuiar scheme, improved by several
authors, e.g. [BAE87,KEL86]. In fact this method s highly (suitable
for usg in an integrated geometric modelling environment for. finite °

element modelling [SHES5,SHES7].

2.6 Topology Decom Josxtxon ’

" The eséence of the topology decomposition approach, or local

mesh refinement, is to subdivide elements in an existing mesh into

. smaller elements of the same or different type until the mesh

meggs a certain density required. Preparation of the initial coarse
mesh can be done’ manually or automatically by some method |

which performs nodal conneptlon for0 boundary nodes only, e.g. see
figure. 2.14. a \

2

'"F;.g'ure‘ 2.14 Boundary'ft.rié.ng'ulation
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[ 7T

The remaining taslt is how to precess the subdivision of each
eleﬁlent in the mesh eo that new elements have the same type, if
a uniform type is reqmred and the mesh is regular. Obvmusly no
complication arises for rectangular grids where the only possxbxhty
is to add two crossing segments’ that cut ‘the four sndes of a
rectangle, glvi’ig four = smaller ' rectangles Eowever analytical
problem could occur becagse of mappropnate (non-conforming)
neighbouring between elements sharing a common edge (see figure
2.15}. There exist tiifferent solutions to this problem, for example
by modifying the mesh or by making special conditions in the

\

finite e}ement equations [SIM79s].

\(a) N (b)

Figure 2.156 Invalid neighbor’s configuration for P

Refinement of triangular elements can be done in several

' ) ‘ )
wdys. The simplest way is to insert a node inside a triangle and
connect it to the three vertices to obtain three smaller triangles.

The choice of the. new node is wusually the triangle centroid -

'[KLESO] or. alternatively the incentre of the ti'iangle [FRES87].

/
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Rivara [RIV84,RIV87] bisects a triangle by the mid-point of the
\ -

longest side. Non-conformity occurs if one triangle is bisected . along

a common edge with ‘another triangle that is not refined '(seg

figure 2.16b).. Hence after the individual bisections, a " correction

14

procedure must follow; or it may be incorporated at each biséction

. step.

(b) L

A 4
c ‘ : ‘
' (a) / ' '
Figure 2.16 ‘Triangular refinement: (a) Using the centroid

(b) Bisection with,non-con'formity

[

2.7 Geomei;i'y Decomposition

Most hhods in this subclass are designed to _deal with
simple convex polygonal regions. As a consequence the trianguylation
must be prgceeded' by a preliminary subdivision of " the input
domain into convex parts. The inesh éeneration procedures are.

recursive or .iterative. In Bykat’s method [BYK83] a convex region

is subdivided into two halves, also convex. Then nodes are inserted

{ 14
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along‘ the division line as necessary to - match the dex;sity"'
requiremeng.*The sam?“bﬁgrations ar/e repeated for each of these
subregions until the subregioqs‘ are triangles and the process
terminates. Iterative algorithm works by removing one or ', two
elements at a boundary 'strip until the region remaining to be
meshed is null. In- the. element removal schemes [BYK76,SAD80],'
two non-collinear edge-s are takeq and dne node is added on each
edge such that the two segments with one common eildpoint ﬁx'awe "
equal léné'tﬁ: If the internal angle « between the two segments is
not greater than ¢ for some predefined value ¢, then only one
triangle is removed by joining tixe other two e£1ds. If « is ;great_;er

than ¢, two triangles are removed by choosing a point within the

region such that it is equi-distant: from the non-common endpoints
) '

and the triangles are close to equilateral.

- . #=90"

s Figure 2.17 Geometry decomposition

A Y
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A

.Lindholm’s method [LIN83] operates on boﬁndary segments by
shrinking the boundary of the domain and triangulating the region
,bet'w;een the old and new boundaries, one segment at a time.
Tanig'lthi [TANS7] triangulates ;'ectangles by horizontal cutting of

the region and forming triangles inside each band subregion.
L=N+M

L\
NS

N =2

Figure 2.18 Mesh pattefns for transition region

.
~

2.8 Performance Mation

When mesh generation methods are introduced in the

ﬁqite-elgment - analysis literature, the pufposé' ig to relieve the
engineers from the tedious work of manually- producing the mesh
of the dom;in of interest. Hence the lack of algorithm analysis in
most of published works is easy to mderstgnd. And since methods
are often described in speaking language‘ rather than ﬂgorithmk
language,u precise comments on their performance are difficult to

formulate. In this s'eétidn, we will present an overview ‘on the

‘space and time con:iﬁlexities reborted by some authors or resulted
. * )
]
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from our observation for the imethods described in previous sections.

2.8.1 Space Complexity

»

Memory" requirement from most mesh generators is linearly
I;roportional to fixe nhumber of points to be triangulated including
both sets #”df boundary and interior nodes. The data structures
involveki in the generatio;x are the key factors to deterfnine the
space complexij;y of the metil(;ds. Watspn [WAT81]. claims for N
points, O(I‘{(n'l)/n) for his n-dimensional triangulation by insertion
algoﬁthm hence O(N%) for two-dimensionalh case. This figure ié
e;rajuqfed to 16N by C‘orrfec and Chapuis [COR87'1;_ There are some
other Boupds on the space requirement given by different authgrs
for their methods‘ Ol.‘ their implementation of availablg mefhods.

These upper -/ lower bounds are summgrized in table 2.1.

Table 2.1 Storage requirement of triangulation methods

i

Sloan Lawsc}n Watson Shamos
[SLO8T7] [LAW77] [CORS87] [CLI84]
14N+6 18N 16N 30N
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Cline-Renka 1 | Cline-Renka 2 | Green-Gibson |Correc-Chapuis
' [CORS87] [CORS87] [CLI84] - [COR87] j
ON 16N 211N - 23N

In most of the methods in table 2.1 the core memory needed
is used to store list structures. These lists define a tabular form of
nodal connectivity and coordinates which is suitable for the

algorithm being used.

;t should be noted th;at the above upper //lower bounds are
from ,the methods in the class of node first ‘mesl; generation., For
t}}ev remaining three classes no comments on the space com'plexity
have been mentioned in published works and it is not easy to

predict exactly their spéce requirement.

2.8.2 Time Complexity

No- standard time analysis exists for mesh generation methods-
since these are &a way deé&ﬁptivé a.nd heuristic except for a
small number of algorithms that are based on known algorithms
such as sorting, searc‘hing afld merging [LEES8O,WAT81]. Our

discussion will be restricted to the time claimed or disclaimed by

A
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authors referenced in this review, but when only empirical results

are given shall we give our remark or estimate of the time

t

required. It should also be noted that the figures quotéed in this
presentation’ are not based on any standard operations since
" comparisons are done with different criteria “hence different set of

4

standard operations.

For the' mesh smoothing approach, as well as adapted mesh

template methods, the time efficiency is unkx"lo vn and does not

seem to have any interest to their authors. The\figures are not
easy to estimate since it depends on. several factdrs _such as
mathematical complexities for methods using mapping techniques,
or geometric tests for grid-based methods. Most time analysis can
be found for tl}; node connection (vertex tﬁangulb.ti&l)' approach.
There exist dif:f'erer_lt figures evex'l for mesh generators which use
the same Basic scheme. This is the cése of the iterative insertion
method for triangulation v;'here Léwson gives O(N4/3) fLAW77], Lee
and Schachter O(Nz)‘bu't O(N3/2) empirically [LEE80] and observed
O(N1'4) by Shapiro [SHA8Z]. Construction of Delaunay triangulation
'by this method is primarily based. on sorting and searching, hence
" has lower bound O(NlogN) as claimed by Sﬁamos [PRES5] but

disagreed by Maus [MAU84] VE’TIO says that radix sort requires only

O(N) time. We summarize the various figures of some iterative
- . -~
o
ipsertion algorithms in table 2.2. '
A
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Table 2.2 Time complexity of Iterative insertion triangulation

(BOWS1) [CLI84] [CORS7] | [DEFSS]

8/2 | 812 : 2 3 |
ON ) ONN ) . O(NlegN) {O(N) - ON)

[LAW77] | [LEES80] | [MAUS4) [SLO87] | [WATS1]

= 4n 2 NTE
oN") | o’ | o) o | o™
—
. _ . . z‘
The divide-and-conquer algorithm by Lee and ¥chachter

[LEES0] uses O(N"logN)f for sort and merge operatlons Lew18 and
Robinson [LEW78] comecture the same figure for their scheme but
this .is disclaimed by Lee and Schachter who gives O(N ) to it.

The fully surrounded  edges by Suhara and Fukuda and others all

&

_ require O(NZ) arithmetic operations and scalar comparisons. Lee’
[LEES4) and Lo [LOHSS) provide only a-few empirical results but
leastl squares fitting does .not give any meaningful figures although
Lee claims O(N) for his method. ‘

In the cldss of algorithms 'creating nodes and elements

. & o :
) simultaneously, Kleinstreuer [KLESO0] gives/ O(N2) fgr his mesh . -
F
reﬁnement method mainly for the initial triangulation of the

boundary points. Thxs same process takes O(N ) and even O(N )

for\multlply—connected regxons by the generator in [DEF85].

]
%

.
- f\!‘
.
.
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. From the above summary, it is clear that comparison between
mesh generation algorithms of different categories 'is difficult and
does not lead to any clear issue on the choice of which method to
" use as best. The decision is up to the implementor’s development

. : "z
‘ . -
phiJosophy who takes what he thinks most suitable for his needs. -

-

- . 3. Three Dimensional Mesh Generation

' «

While the designs ‘for two-dimensional mesh generator are
abundant in the research literature, the same topic in _three
dimensions reveals to be challenging because of the greatly’

increasing complexity; hence very few results as corﬁpared to 2D

are reported. In fact 3D mesh generation is just l;ecoming an

active area, while develoi)ment; still goes on for 2D mesh

. generation‘. Our review of 3D mesh generation tgchniques will
follew the "same clg?ification given in tile first section. We shall

réport on- the 3D methods avhilable at hand which are the most
representative metixods, somé¢  being extended from' the

j two-dimensional methods. Not all two-dimensional approaches have
—their counterpart in three dimensions, such as the mesh smoothing

and ;:onfdrmal mapping methods; thus some subclasses will be

)

exempted in th¢7 next presentation.




3.1 Node Connection Approach

Watson [WAT78] and Bowyer [BOW78] give similar iterative
schemes for n-dimensional triangulation. In three dimengions,

Watson’s algorithm starts with a tetrahedron T containing all

0
points to be triangulated, and ne§v 1internal tetrahedra are formed
as the points are inserted one at a time. The circumsphere
criterion genera'lized ‘from Ehe circle criterion on two ‘dimensions is
used to update the ﬁlesh at each insertion. A newly inserted point
is .tested to determine which circumballs of th; existing tetrahedra
containi the point. The associated tetrah;dra are removed leaving a
polyhed'ronl containing’ the new point. Edges connectiné the new
point to all triangular faces of the polyhedron’s surface are Lcreated,
deﬁning tetrahedra which fill the polyhedron. The result is\ a new
Delaunay - triangulation 'which includes the new point.

ivendish & al. [CAVS85] obse™e several problems with Watson's

proach and apply improvements in their implemented version.

The fully-surrounding method is' extended to 3D by Nguyen
[NGU8Z], using thé condition that a line (edge) is fully surrbunded
by an angle of 360° in the space (see figure 2.19). The advancing
front method- by IW [LOHS85] is foupd in [LOHS87] with the faces

replacing‘the edges in 2D.

&

2




[1-2] edge to be
surrounded

Ie

o~ N “

Fully surrou.nded &¥ge in 3D

. ’.
Node generatlon in 3D does ‘not give aRy addltlonal dxfﬁculty.

Figure 2.19

hf_gce is often discarded from discussion..Only the posltlomng for

. convement tnangulatlon is concerned ‘and is resolVed differently by

Y

implementors to their needs For example, Cawvendish & al [CAV851

generate nodes as in 2D on imaginary planes cuttmg_the object.

3.2 Mapped-Element Approach

\ . -
The same concépt in - two dlmensmns ‘ applies =for'

-

three-dimensional problems The extensmn have been st‘udled and

1mplemented by . the authors who desxgn the two-dxmenslonal
schemes. They replace the quadrilateral” temjblate by .a cubic

" template and apply ’the mappmg after subdlwdmg the object to be

meshed Flgure 2.20° ﬂlustrates Zienkiewicz and Pthp 8 template for |

3

three dimensions [ZIE71] o

[1-2-3] base triangle /"“\
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© "+ Othet- fypes of mappings -are l'possible, e.g. l_)lended interpolation
‘ s " used by Cavendish & al [CAV77], “discreté transfinite mapping by

{ .. Mhber & al [HAB82,PERS2]. T
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K S From all 2 the—«fa@%)ensmnal grld-based methods, only the‘
(o ,
o quad tree method is extended dlrectly to three dnnensmnal w1th'
) / httle changes mn proeédure. The quad tree representatlon is
. replaced by the octree- eqmvalence in . 8D «with qugdrants
LY N ? substxtuted by oodmts. Agam the work focuses on boundary fitting
o ' L. - for the ob_]ect enclpsed‘m the unit cube. Howevei:, the process
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' Figure 2.21 Boundary octant cuts

»”

Yerry 'ang*” Shephard [YER84,YERS5,SHES7] allow only & fixed .
- number . of possible cutting posil?)ris on the sides of an octant
which are at the corners and the mid-points~ of ea‘cil_ side. Exact

N ,
, . position on the boundary are merged to these cuts after the mesh
foe : ¥
is created Kela & al (KEL87] devise similar scheme in thei f
f . }
- modified- octree mesh generator

g

3.4 Topology decomposifion _
The three-dimensional mesh gerierator‘ OMEGA [WOR84\] using |

- +
.topology decomposmon has two algorithmic components, the

triangulation and reﬁnement modules The tnanguiatxon divides a
N - , ~ . 3D polyhedron mto tetrahedra after “all polngnal faces have been-

tnangulated individually. 'I‘hls ;s eqmvalent to tn"angulatxon of




¢

simple polygon with no interior nodes in two dimensions. The

reﬁnement increases the 't!umber of topological entities éuch as

eﬂges an‘l nodes in each . simplex, triangle or tetrahedron. The

subdmslon of a tetrahedron in the refinement may yleld. tetrahedra

and/or polyhedra (see figure 2.22).

Figure 2.22 - Subdivision of a tetrahedron

[

For’; thé .boundz‘aryl triangulation, Woo and Thomas [W0084]

employ two operators to dlg out a tetrahedron from a polyhe‘dron

/ s
'w1th no holes (see fig'ure 2.23). Th15 is similar- to geometry_

decomposition in two Qimgnsions. The coarse mesh is then refined

by subdivision ‘of tetrahedra.

o )
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‘ , ( F‘i(gure 2.23  Polyhedron cutting

3.5 Geometry Decomposition

b 5

’i‘hree-dimensional' methods in this approach \do not operate ,
around the ot;ject boundéfy as in t\:vo dimensions, but rather follow
a fixed del:or;lxposition pattern_by cutting the object .in\t:)\smaller

"olﬁjects of similar type, triangulat/.ing each of these smaller objects
~and 're-est,ablishing the connection. Imakufu & al: [IMABO]\ asi( the
ysér -to deéompose the object into blqéks of simp}e geometry sucl:x.
.as pentahedral, hexahedral, and th'q ggnei'ator t;akes care of the
local - mesh generation and inter-b‘lock‘ connection. A different
échemé by Boubez &_ al. [BOU86] operates on the progs.-sections of
an object. Séﬁal cross-séddions through 'an .object logically divide it
. ato nsiices of finite thickness, with two coxfsoec;ti‘ve sectior‘m taken

to define the top and bottom surfaces of a slice. The slices are
. ¥

processed individually ana put \bacli together to form a compigte
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three-dimensional’ mesh. " \/

3.6 Performance Evaluation

There is very ‘little that can be said about the ~time and space
éomple,xities §f three-dimensional mesh genéfapion algorithms. ' In -
fact the main cdﬂcem of rgsearchers at this —early develoi)ment
stage is" on how to gef a v:_a.lid 3D mesh, rather than efficiency :)f
ghe' methods. Howe;ver we ‘can quote a few results available. ‘

:6/3

Watson [WATBIJ claims O(NZ/S) space dnd O ) time for his

.

algorithm.. Boubez & al. report a figure of 0.0325N2+0.3037N least

squares fitting from experimental results.




L ("Jhapter} Three

A TRIANGULAR MESH GENERATOR

INTRODUCTION

Chapter Two presente a complete review of techniques in
two-dimensional and three-dimensional mesh generation methods
following a logical _ classifiecation. The four main «lassegs of mesh
generation methods are mesh topology first, node ﬁ\rst, adapted

Eal

mesli template, and simultaneous node and element creation. The
conimon objective to all of these classes is to create finite element
meshes with minimum wuser effort; that is, to fully automate the

process. oGenerality‘ shows to be an important factor; by this we

mean' the ability of treating simply-ghapecl domain‘ as well as.

arbitrarily-shaped, simply or multiply connected input domains. The

qﬁestion of efficiency also needs  attention of the "authors when
designing and 1mplement1ng a mesh generator. Of the four classes,
the only general approach is node connection in the class of node

first algorithms. It is simple to ‘understand and implement and

possesses llowing nadqantages ‘that usually cannot be found in.

.vﬁ‘l
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other generation s!:x:ategieé. N

a) No limitation to the ‘domain boundaries so the otii?ntation
of the domain does mot much affect the resulting mesh. Fig‘t:re 3.1

showgs' an example of the effect

a

/

‘.

in “the quad-t\re.e method.

<

A

Figure 3.1 Effect of domain orientation

P

»

on quad-tree representation
v, ’

of domain orientation on the me‘sh’

X

N

b) Openings “Within , the domain c(hx be tackled easily;

subdivision of the domain into convex polygons is not required.

{ .
. le. the number of elements around a node is not fixed and the ,

/ B .
relative  positions of the nodes ®are not predetermined by

mathematical formulae.

d) No need to search "for any mathematical relation .Aamong .

boundaries, hence less effort and no ‘computatidnal errors are

introducedr

L

Y

¢) Ability to maintain the greatest pc;ssibility of mesh patterns, -
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The above advanta\gesl make node connection approach ' a
-general and i).ro‘misi‘ng' scheme fc?r mesh genergtion. Therefore we
choose to adapt this approach to implement our ;,wo-dimensional
mesh generator which we shall describe in thit; chapter. The next
sections will preéent the following tppics: de'scriptior; of the methods
@o‘riginal and enhanced versions, details of the implemenfjtion of

the me;sh generator, description of the interactive graphical

interface, and finally, time and space efficiency. s

/
J

/
4

1. The \\;Advancing Front Technique for Mesh Generation

. \ _
‘The\ original idea is due to, SH. Lo [LOHS85] in his
) implementation of 4a two-phase mesh generator. The name '

“advancing-front” descril‘)es the triangulation algorithm’s essence.
' v

‘The method l;és been found to' be simple, efficient and have a
”—’ .

promising p'ossibilit); of extension to higher dimensions as yvell as
other properties suitable for finite-element analysis [LOH87). The

main advantage-of the method over other popular schemes such as
‘Suhara-Fukuda metlm-surroundéd nodes is the reduction of

validation tests of potential new nodes and elements. The

4

triangulation  algorithm has some flavour of Cavendish’s scheme.

)

[CAV74] but node generation . is completely different and more

efficient.

}
/



1.1 Node (Generation .

©

Instead of using a superposed square grid, the method worfcs
on iloﬁzontal lines cgtting the domain for which ir.lterior nodes are
to be yadded. The horizontal lines are uniformly displaced with the
aistance determined from a density ‘parameter. ‘Nodes .are then
added on each line at the same interval spacing. This produces
uniform distribution- of points within the region bounded by the
boundary. For varying density‘ distributions, the domain must be
subciivided into a number of regions, each of which having uniform .
distribution, and meshes- are’ g‘,eneraéta\d/ indepgndently for each
region. However the node distribution on the ‘common bounda;y
separating regions must be exactly the same so thaf the meshes
for the regions w—hen. combined is the mesh for the input domain.
The algorithm to generate tunifo'rrhly‘ distributed ix;teﬁor nodes is -
given below. |
© algorithm GENERATE—NODES : : ™

/* generate' uniformly distributed nodes inside a domain given

e -

a set of boundary points coordinates (x,y) */

r

be‘gin !

Lt}

1) Sort out the y . and y of the doma'in;
: ’min max
2) D@w imaginary lines between Ymin and Ymax at regular

interval equal to the average element size of the region;
' .

M,

-~

RJ
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? always* even;

reglons boundary in step 3. 1 we ' examine the boundary segments‘

-~

78

~ 8) For each of these horizontal lines do : -
8.1) Determine the intersection of the line with the region

boundary and arrange the cut .points in ascending

SN \ - v

magnitude of x-values. The number of cut points is

*
’

3.2) The cuts are considered two by two with no

repetition, each pair determining a line segment on B

which* nodes are generated at regular distance. Each

potential node position must Be‘ checked so that it is

»

not too close to the boundary and any given fixed

¢

node;

end for;

3}
end.

To determine the interséction of a horizontal line with the
for possible cut points. Consider a’ boundary segment PQ with
x, = x(P), yi = y(P), x, =, x(Q), Yo = = y(Q) and the horizontal line

= C. Thefe is intersection if

(1) (y1 C)(y2 C) <0, or

- N\
(ii) (y1 C)(y2 0 = 0 and (C>y1 or C>y2) .

" The two cases can be easily derived from figure 3.2.
\ ' S . -
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Figure 3.2 Intersection test: (i) intersection within PQ

Y

- (ii) intersection at P or Q .

(4

The third possibility (yl—C)(yz-C) =0 and (C<y1 or ‘C<y2)
needs not be tested in this context since the segments are}

consecutive; hence this test would capture twice the s:am

intersection point. .

' The condition 'in step 3.2 is verified by simply calgulating the . °
" distances between the potential point and the boundary nodes as =

L o well as with the fixed nodes, then com‘pa.rixig it with a constant

determined from the density parameter of "that region. -.

Figure 3.3 “shows how the algorithmm  works on

¢ multiply-connected region. - - s

» . ".",.‘ Coe s



mesh is required for the analysis.

'[SUH72,CAV74] or data scanning method [FRE70];

- 80

Ymax

o/ @& MNa g
AR
Yomie \/ ‘ .

; Figure 3.3  Node generation for multiply-connected regién.

For each region in the dog:ain it is assumed- that the spacing
of the ﬂboundary nodes define the density for that region. Thus no
additional points ne:ad be generated on the boundary. However it is

now the usir's responsibility to organize their input nodes so as to

reflest the desired density/This task becomes. tedious if a fine

t

The following advantages can be extracted from the above noc}e ‘

' géneration algorithm: ‘ ‘ .

i) It is simpler than methods ﬁsing superposed: square grid

. 1 4
ii) Th@ node spacings nee&; not ‘be checked every time a node

is genexzated; thus validity checking now reduces to on!y testing

against bounda;y" nodes."

r



i
|

¥

; around the boundary and discard all interior edges that are shared

B

81

4

However domain subdivx/'s'wn is still needed since the method

only generate uniformly distributed nodes.

1.2 Triangulation

Assuming that the input consists of a set of boundary nodes
deﬁningv an arbitrary domain and a set of nodes lying ipside the
({omain, we wish to establish the interconnecti;m between the
nodes to form a triangular; mesh of the given. domai;. The first
concern of any trianghtion algorithm is to ensure that no.
triangular elements are formed outside the specified domain. Thus
some ch(ecking must be performed for this purpose. To simplify -the
task and make¢ a clear distinction between the domain to be

L i
triangulated and its outside, we assume that a counterclockwise

_ order is used for tile nedes on the external boundary that encloses

the whole domain and a clockwiset grder is used for all the nodes
.on the internal boundaries. Ey virtue of this ordering, the domain
to be nieshec-l. has an interior area always §ituated to the left of
the line segments com.lectixjng any two consecutive boundary node;.
Therefore it is easy to verify the position of element or node with
,respect to the domain boundary. The advancing-front méthod for
tfiangulationl then works- as ‘follows. The idea is’ to form triangles

»

By two recorded .t.ri'angies and all boundary edges that belong to



-~ -
.82 ' :
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-any, recorded triangle. This is exactly the fully-surrounded edge

’concept:; as described in chapter two. The’ triangulation usually' .
works from the external ® boundary inwards, thus continuo?sly
/ ’ reducing the ;'egion to® be meshed‘ '(see figure 3.4). At ,a'ny- ti'me: X
during the proées:s, the region tol be mesh;:d comprisés' a set .of

free . nodes (nodes that have pof been wused in any recor;ie'd -

)triangles) and those partially surrounded eZées which form the |
boundary of the regiqc:n. The tr_iangulate_él region between -the
original cPl;ounda.ry and the - reéion to be me;hed is ig"nored'
{ N : . .

completely in subsequent ex'a}mination. We call the boundary of the

unmeshed regidn the generation front of the triangulation process.

+

o

2. [
Free _ .. . : J
points Lo LT . .Generation
* - .. ‘ . a' * ., . frOht
3]
. ¥
/ . N by
Lovg
I. = ‘E )

Figure.3.4  Advancing. front triarigulation -
T

In brief, we define two dynamic 'sgts for the method.. The
‘ geperatiori front is a set of interior edges belonging to only one
'trialigle' and free boundary edges ?i%‘i being part of any tria'pglé.

?

\
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P ' o

The set of frte nodes includes a\}l interior nodes which have not
bee’nl selected to form triangles. As, the procoss goos on these two
sets change every' time a new eleroent" is recorded} and eventually
become empty when the fneshldis comdleted. The go‘neratioi’; front is:
initialized with the boundary segments and the set of free points
,includesu all the interior points..A triangle base AB is s.elecped from
the 'segments on the front, usually the last one that st added.
An apex node' C is selected from the set olL free points and the
front nodes different from nodes A and B. The selection is m /d
‘such that node G, lies to the left of vector AB and triangle ABC'
is optlmal as compared to all other possible chmces of C. Once a
tnangle ABC is recorded the base AB is- removed from_ th.e/ front
since it becomes fully _surrounded and either AC or CB is chosen
to be the new. base if lit was not already on the front. Note that
any edge that belongs .to two triangles is cleaned up from the"

unmeshed region' at every such iteration. If the selected node C
: . .

/m was a free node then it will be deleted from the set of available
v .

nodes and added to the generation frorit. This type of .dpddting'
both the “front and the- set of ’free .nodes guarante;es_ that the
termination condition will be met _.at some point in ' the
t;'iangulation; thus the algorithm must terminate.

v ‘ ' ( '

v
’
. -
rd ' -
\
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boundaries, external and internal, and the set of free points

Y T84

The main difference and adw}aﬁtage of the advancing front .
method as compargd to other fully-surrounded edge algonthm is the'
dynamic changes of the unmeshed reglons boundary and the set of
points involved in the -element selection procedure. At the beginning

rd

of the .triangulation, the generation front is exactly the domain

‘co'mprises all the interior node points. While lthe input domain
boundary remains unchanged‘ throughout the process the generation
front wﬂich defines the actual\ domain to be meshed changes
dynamicallyn and testing for domain crossing element need only be
done against this new boundary. Also t‘he checking of tile node
pointE lying in the meshed region so as to sel.e;, a new apex néd'e'
of a triangle is completely eli?ninated. These are two main

;gulation process. A

reductions in the tirhe complexity of the tri

compiete algorithm in;,erpreting the advancing-front technique is

Kl
v

‘given below and an illustration can be found in figure 3.6.

algorithm ADVANCING—FRONT

/*  Generate '.a triangular mesh ‘uéing he advanciﬂg-front

technique. The input, output and ‘notation are \as follows.
Input: i) A s;et of boundary nodes B, in counterclockwise

c order for exte;'r}al t;oundary aﬁd .‘clockwise order‘for

internal boundaries; !

ii) A set of interior node points I

N~
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o . : toos '

Output: A triangular mesh. : I

Notation: F: generation front

P: set of free nodes

AB: directéd line segment (vectqr) o
* )
. begin .
1) Set F — B; S : ) .
' P | ’

2) While F ‘and ‘P.are not empty do
2.1) Sf:t AB + last segment of F;
J T «F U P;’,
2.2) Select a suital;le point C € T so that
triangle ABC is opti;nal among other (;i' in T,
2.3f If AC gnd/or CB intersect any segment of the
s gengratipp front then | . i A
c23pT-T-{Ck
| ' 2.3.?) Repqaat/f.rom :s:ep 2.2'
D ) end if;
2.4) Record “triangle ABC;
2) Update F and P
endrw,hile R ! A C e

end. )

"4

e
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The 'cg'iterionn for selecting the apex node xC- in sf,ep 2.2 as
‘describe'd in [LOH85j relies- on the even distribution of the‘cinterior

nodes generated by the 'method given in section 1.1. It states that

the consideration of the minimum value of the norm,[AB2+B02] is A

' /—\J\ obtainable' from the system of.the interior nodes and the boundary
nodes. However this criterion may not be sufficient to,K guarantee

the best triangulation for  irregular boundariés. The following test
P . ' . -
must be conducted .after applying the minimum norm criterion.

-

Select two nodes that are closest to the given base.AB using the

N‘/.)minimum norm qﬁtex:ion\ say Cl and 02, such that the areas of

triangles A301 and ABC2 are positive, i.e. C1 and’ 02' reside on’

the -left hand side of “vector AB. Then the following Iquantities,
called the quality parameters are computed fgr each potential apeic

’ node Ci’ i=1,2

area(ABC,)

| .
: 1 ap%c B0 A

érea(C,BC,)

LT G .BEC. B c/ |
1B 1B +CCy

. area(ACIC2) .

)
1

T 2 2im a2 :
ACI+9102+C2A , : L

Al = 1Hnax ( ﬂl’- 81°)

.:‘ | \

sufficient to determine the point C, ensuring the best triangulation |
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area(ABC,)
. = ®
2 " AB%c. B2ic A2
2 2 .
[ ; ﬁz = —ﬂl [}
- | |
1\2 = max ( B , 62 )

_The t;eleéted node C is the node which has the large} value
aX. The q‘uantity o, measures the quality "of potential triangles
ABCi, .i =.1, 2. The bigger/i{he a value phe better is the shape 'of
the ﬁiangle (.see figure 3.6). This value must also be positive to
keep the counterclockwise ordering of triangle corners. The

~ para?ii:y A is ﬁsec_i to judge the quﬁty of the trianglés ihat

 could be formed as a consequence of the choice of 'Cl or 0'2.

60

a = 0.1443 va = 0125 : a = 0.1083

(4
1

[

Figure 3.6 Triangle’s quality



Figure 3.6 Intermediate stage of triangulation:
node C is cho.sez{‘ to- form- AABC
A .

-

/" Althouéh .the’ metﬁod already eliminates a cbnsiderabie amount
of time for eleri,xent .cfossing veriﬁcatidn, th;a time required,to select
a s;.titable point for every glement is quite l;a.rge,‘ ’espe‘cialily if the
r%odes have a dense distribution and we must compute the glorm

"',A"C2+BC2. for each free node an.d front node. Can we determine a
. fninimum number of nodes to éo;xlx;are based on ‘their closeness to
the generation front thus save processing time? - The answer is

“Yes”. We now pr ose an improvement ‘on the described method of




L

2. Mesh Generation by Lavers

. -Most of triangulation methods require some verifications _before

]

a. potential element is accepted as a new element of the mesh.

“Thls test is necessary to ensure the v idity of the mesh bemg
construct(ed at any time durmg the process. In fact these checks

are unavoidable for any triangulation method based on the

node / edge surrounding scheme. the advancing-front method,

validation is carried out at the gelection of new elements: eech

potential node mnst be examined using the minimum norm

-criterion then further compan n between the most suitable two

‘nodes to take the best one./ We propose an enhanced version of
the above method from the /following observatlons
a) There are quite a/few_points that need not be checked at

“all if they are too “fdr” from the ‘base vector, in other‘ words,

i

there may be o¢ne or more points falling inside the resulting
triangles. .
"t b) In fact th pointé to be tested are those which are closest

to the ger,rerati front.

holes. The advancing front ' then works from the

boundary/ inwards and our inogel~ looks like a continuously

t
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. shrinking unmeshed domain. Sinee the elémegt’s base vector is
always taken fror'n‘ the boundary (front) the points of interest are
"those that—are closest to thé boundary: T(: identify these points we
need an ordc;ring écher;le so that this c;a.n be done 'quickly"
otherwise we ar.e' jﬁst adding' more processing time to the
triangulation. This ordering 'uof. the generated  points can be
iﬂcox;porated directly into the node generation. bhase as we will see
in the next section. The new trian)gulation sche;xxe that follows will

be easy to catch.

b . ”

¥
) "y
2.1 Generation of Interior Node Points

Points are now .generated by groups called layers. Layers are
defined “from the external boundary inwards; the first layer is
exactly the external boundary. “The next layer is :bbtained by
sqanning the p‘révious layer to produce new segments at some
d{stance from that léyer. This distance between layers obvim;ly
must reflect the mesh density required. Since the negf la):er is
alwajs adz;pted from 'the previous one and the generation moves
from the extgal boundary toward the domain center, th; “plain”
region for new points becomes smaller and smaller agd eventually
will be null, which marks the end of the %tion process. In
pract.ice the generation can te;'minate as soon as the last layer

. i1 .
. has only one segment or it encloses a triangle which' has area
- ) ‘\
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smaller than some tolerance calculated from the mesh density

x

/"—\\

parameters.

Using this method /of calculating new nodes a discxzete
representation of the boundary would make it easier to implement
the algorithm as well as\ingutti,ng' data: By virtue of the ;liscrete
repreéehtation each layer is ;eqtiiv_alent to a set of ‘line segments )
defining a closed curve. The ;;gments do not_ hgve uniform length}

and more points are added between the two endpoints if the

segment léngth is greater than twice the required density.

Layer 1
Layer 2

: “ Layer 3

i

I { >

4

|
|
Figur@ﬂ lGenération of points by l;ayers

The following a]gorith éxprésses the above idea in a more

' systematic view. We assume a discretized boundary which is a set

A=

~

of consecutive line segments.

algorithm GENEMT%-NODE&BY-%AER



5. .,
> Generate nodes inéi’d‘e a domain given a set of boundary

©

‘segments | ) ' . .
N(;,tatign: #(L) ... number of segments in 1hyfr L
' .area(L) ... area enclosed 'by layer L */
begin
! 1) Cur;'ept_ layer « eﬁemd boundary
i\lew layer «~ { } Lo
2) For' i.°- 1 to'#(Current layer) do
" ©2.1) Determine the .distance d between two layer;s .y

’
2.2) Compute the image segment i’ at a distance d from

¢ ‘segment i 7
2.3) 'If segment i’ is invalid then next i
2.4) New layer — New layer + {segment i} c«s
-. end for . | |
3) Current ~ New layer

4) If area(Current layer) = Tolerance repeat from step 2

end:

The ﬁéf,ance’ between two layers may vafyk\each segment if

the mesh density is not uniform throughout the domairi. Hence

this distance must be determined for each segment of the current

layer. The image segment can be defined by caiculgting the two

‘new endpoints such that they are at the computed distance from

the current segment éndpoints while 'respécting the shapé of thg

A

-~

w1 g:l'&?m@,
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. node generation.

93

. current layer. Computing the intersection (of two lines #is one way

to find an image points. NS

The validity of a generated::segment depends en the following-

factors:

a) The segment ‘is completely or partially - inside theé region‘
encloéé’d by the current layer. If it is partially inside the region,

only lthe §ub-segments Wthh/ lie commpletely inside are taken for
Cy . .

M

. .

b) The length of the segment cannot be gmaller than.the

-density associated with the region it happens to ba in..#

W _ Layer 1

~_ s . ~_ -+t | ~Layer 2

;.
- C
L o \‘_‘_‘}}*‘ invalid by b)
- T
J s
only. C is taken by 'a)

.

Figure 3.8 Segment Validation
. [ /../

To prove the correctness of the algorithm, we first observe that

the algonthm 1is - guaranteed to termmate because of the decrease
in size of the reglon enclosed in the last generated layer It

obviously generates points by layer and all these points resgde
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‘region . (th'e whole input domgﬁn at the starting time of the

94
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inside the domain. Thus the ’algorithm is \:alid -and perfectgly

suitable to generate node points inside a given domain.

2.2 Triangulation ~ B (

We use the advancing front techmique with fully surrounded

edges for our triangulation module. The essence of the advanciné

‘front is reflected froth the definition of two dynamically chanéing

sets for which we shall keep the same names: the geheration front
and the set of free .nodes.” To recapture briefly: the géneration

front comprises all edges which are adjacent 'to the unmeshed

process); the set of free point -contain\s all points in’sfde the
unmeshed region, that is those points whicuh have not bee;l used in:
any recorded triangular elements. In the context .of fully surrounded
edges, any interior edge must be part of exactly two elements and
any boundary edge can belong to exactly one elemgnt It~ cakbe
easxly seen that, for _our advancing frorit model, an ,edge is»
discarded if xt satisfies the following two condxtxons: “

i) It is on the generation front, and

ii) It is used as a based vector to form a new element.
No consecutive discarded edges resume in the removal ' of the

common endpoint from subsequent consideration. Thus when all

points have been removed the triangulation is complete.
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N . - ‘ ' - ] .
.o . ) c,T

In our enhanced -version &'e - keep the. same’ contents of the

K

1

. o

generation fron&; -however the set of. free nodes is .narrowed to

contain only potential nodes lying approximately closest td aﬁe
. . . " P

generation front. If we classify the nodes by layers, then at " any-

time in the process the set of afr’ee_ nodes ‘ci_)ver:s only a few layers

of points~ .instead of ~the _whole set '.of interior nodes. The -

. vériﬁéatiop time that is saved ’by using’. thé definition becomes
) \ oy

o - VY . ” . ¢ . ™. .
quite significant ' when there is a large number of interior nodes

»”

involved.

(a)

-

Figure 3.9 - The set of 'node_s to test
“(a) Advancing front . (b) Enhanced versian
- A . o -

Al
1Y

.To keep the front movement  uniform, that, 'is, .Al%;ys froila. the
' external bpundary‘ im;qards, ‘we initializé.'tile generation ~fron1:,' by
the external domain bqundary‘ ax}d le!; | ir;tema;llaboundg:}" \;xodes bg'
part‘ of thé _int;erior nodes with some spééiai ‘cons'iderati'on. The new
alg:)rithﬁl 'is : 'gix}e’n° bélow. '

J . ) , .
t ' ’ o f 2
N »

14

. .
y - - - v
.- 1 N N ! 1 -
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algorithm NEW—ADVANCING—FRONT
/* Generate a triangular mesh using the enhanced
advancing-fx:ont technique. The input, output and notgjcion are

as follows. ' - .
~ Y

* Input:i) A set of bowedary nodes B =E U H, in

N counterclockwise order for external boundary E and

clockwise order for internal boundaries H,
a ) ¢ ;
ii) A set of interior node points grouped into layers

- D., i = 1, e 9 I
| \4
Output: A triangular mesh.

. Notation:~ F" 'éeneration front )

- P: set of candidate free nodes
A AB: directed line segment (vector)

pre
I: current layer

1) Set F ~ E;

PA[ 6.

heb Y

~ -1« Oy . ¢

AB +~ last segment on F;
.'2) While F and P are not empty do
~ 21) K P is empty and kn then P — L, . end if

22) T~ FuPp - , . .
. i .
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2.3) Select a suitable point C € T so that
triangle ABC is optimal among “%ther Ci in T;

2.4) If AC and/or CB intersect any ségment of F then

24D T+~ T-{Ck y
/ 2.4.2) Repeat from step 2.3°
end if; L

,? 2.5) If there is any. point in Ll +1 fa'lling inside
triangle. ABC theh,

' ».\> 26D P - P UL, e

c 262 T - T U L
| ‘7’2.5.3) Repeat from step‘2./3{
end 1f,
2.6) Re'cord triangle AJ_BC;
2.7) Update F and P;
"7 2:87 Set AB ",‘.A'C or CB or, last segment on F
" - .end wl;ile _ -7

end.

. The algorithm is similar to the one’given in previous section,

"The differénce is *in the deﬁnition of P and how the process
.‘continues " after recordmg an element by not choosmg any front
edge, but one from the newly formed element to be the new base

vector. Step 25 can be’ omitted for regwns of 51mple shape, but

‘hlghly re-entrant regions mlght cause some non-valxd element to be

L
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formed Asince the layers represent an approximate‘ replicate of the
domain boundary. Howe.ver thié' probability is‘ éinal} and does not
affect much of the processing timé. Finally w; als’,o reduce the
‘testing fime_by using a different but, of equivalent eff:act, criterion
to select a suitable apex node of a triangle. We need only' examine
the apex angle A/CTB and take point C which maximize this a‘.ngl‘e.

This condition guarantees both the minimum norm and good

element shape and yet simpler to perform.

A . B
TN
Figure 3.10 Maximum ACB test

-3

Cé is most .suiiéble

:
In the next sections we present the ‘details of the
implementation of a mesh generator using the destribed method.

This includes™ description of. the node generation module, the -
. _

the interactive user interface

& .

by computer graphics, and performances.

| triangulator, the smooihir;g module,

»
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) *
8. Implementation of. a Two-Dimensional Mesh Generator

. "\'
The mesh generator described in this sectipn is written in

Fortran and runs on a VAX 4 workstation. 'I\{'\e deSIgn and s
1mplementatlon of the generator itselfl have passed through several
selections and trials of various methods in [CAV74,NEL78,LOH85]
bef;ore arriving at the final vex:sidn which shows to be a net
improvement over the implementétidn qf ) the tested schemes. The
program structure consists mainly of th;'ee modules each hairipg
' indep.endent tasks: node generation, triangulation, and smoothing.
Then gxegut.,iot,n- of these modules follows ph;a s‘ame logical order, with
output from' one module K being fed back to the next module as
'lmput Input data for the first module ‘are user-deﬁned and output
from the last module is a triangular mesh of the input region
;satisfyinng certain analysis and density criteria. Thus our main
program simply contains calls to the inodules for each problem
.deﬁnition read in.
program MESH—GENERATOR
,
#* Generate triangular ‘meshes */
begin
Repeat g
1) Réa;d domain boundary B’ and densi‘ty D for ’region R;
2) Call NODE—GEI\IERATOR' using (B,D) giving interior nodes



- order for internal boundary. The density parameters' are defined by

100 : .

L
3) Call TRIANGULATOR using (B,]) giving mesh M;
4) Call SMOOTH.usingc -_M giving mesh M
5) Output M’ |
until end-of-input

end.
[

The boundary data are the (x,y)-coordinates of K the boundary

" points in counterclockwise order for external boundary and clockwise °

~nly

rd
partitionning the domain inte sub-regions, each has a density

defined by giving desired inter-nodal distance within the sub-region.

These sub-regions are either disjoint or one may contain several
others but partial inclusion, i.e. RinRj%ﬂ and Ri¢Rj and Rj¢Ri, is
not allowed, and the sub-region boundaries are input’ all in

co{lnterclockwise order of the node coordinates.

o
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: (@ . ® o
Figure 3.11 Domain subdivision

(a) Valid definition (b) Invalid definition (
\

[

The next ‘sub-sections describe in order the node generator
‘ ' <, -
module, the triangulator nodule, the smoothing module, and the

data structures of various entities used in the -program.

4

3.1 .que Generation

n

Given a planar domain and its subdivsion’s density, the node
generator produces new nodal position on_the bolundaaryh and inside-
the domain to satisfy the required density. In view of the new
advancing‘ front triang'ulati'ox'l,. nodes are genérated by layersﬂ. The
idéa was described informally m previous section and we now
present all details concerning the actual js.~@mplemeptat§on and give
more realistic aléorithms, starting with the main one and then

related problems whose solutions are-not :frivial.
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algm{h'm NODE—GENERATOR

. N .
/* Generate new node points.

Input: i) A set of external bsundary nodes B in \'

counterclockwise ofder,

l . '
ii) A set-of internal bounary nodes # in ‘clockwise

oY

order,

.\m) Definition of subregions R Ry o s Ry ~and

assoclated densities dl’ d,, .. dk.

' Qutput: Set of boundary and', interior nodes satisf"ying the
y __rei;uired density.
*/
i) ‘Add new Aiooundary points to the external and internal,
Boundary; |
2) Eliminate collinear points in B and # giving workin
B’ and #; |
3) Let L = {1, ,l } be the "current layer, and /

L’ be the layer being generated ’ /
/
L -~ B'; . //
‘ . // 1
~ 4) While #(L)>3 do . A
. /
4, 1) L' - e' //
oS
42) For 1*—1 to #(L) do /'/
4.2.1) Find the 1mage l/ofl o " N /:/
' ) 1
// //



422) If 1; is valid then add it to L’

‘'~ end for;
43) L « L}

4.4) Generate points on layer L

end while
end. ‘
&
, o .
;- {
A/Y‘/
/, ) R | | R
// . Figure 3.12  Points generated by NODE—GENERATOR

/ There are several steps in the above algoritl'_xm‘ that need be
, ‘ elabprated on. We give them in the’following list for easy capture.
| i) Addition, of new points on a polygonal boundary curve
(step 1). o L ' \
ii) Eliminate collinear points on a boundary curve (step 2).
This éxtra pre-processing is not necessary, but .sinc(; the boundary ,
is used . repeatedly for validity tests and the processing time is

proprotional to tﬂg number of points, a pre-processing step to
‘ !
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-,

{sduce the number” of ;points to minimum is strongly recomrder}ged,
iii) Find tHe image L° of a point L requires the knowledge of
the region it is\in so that the distance between the old and image

-

' points can be determined from the density parameter to compute li'

’

(step 4.2.1). U -
iv) A point is valid (step’ 4.2.2) if it lies inside the domain
and it is not too_ ciose to f)reviously generated layer. Close?gss can
bfe verified ;By' comparing~ the _disténces within an acceﬁtable
tolerance. - °

v) Generation of ad&itional points on a layer given: only the

non-collinear endpoints_ of layer segments (step 4.4). -

The problems (i) and (v) are similar \In the "sense that we

compute new points on Jeach segment of a polygonal boundary

- ' (layer). The ;nain_\cl"gference is how to deal with( boundary cutting

segment which might be present for layers within a

e ‘ multi;;ly—connected domain. Problems (iii) and (iv) both require the
: In/Out test of a point in an arbitrary region. We describe -these

glgorithmq in. the next sub-sections. . .
N - ' e i}

8.1.1' Locating a point inside an arbitrary multiply-connected” region

This pperation represents the most time consuming part in our

node gentration algorithm. Given a point located somewhere in the

plane and a domain, determine the position of the point ‘about the

-
~

< e
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domain, i.e. it is inside or outside or on the domain boundary. It

is easy to see that if all :‘ the boundary segments are ordered
counterelockwise,' a point residing inside the domaih must be to the
left of all sﬁch directed \segments of the bounadry. Thus the
pro{ lem could be' solved by sxmply checkmg the position of the
point "with respect to each boundary vectoL" and an outer point will
be to the right hand side of at least one boundary vector. The
'test wpuld WOrh perfectly if the domain is convex or comparison" is
made against the closest vector which contains the projection of
the point on the line segme'nt. This breaks the process into several
cases- to be able to deal with erbitrary regions. We use’ a’s;tler }
!
method in our node generator module which adepts .to general

situations_.

|

leen a boundary curve and a point P(P P) draw an ° '
horizontal half line y = Py starting at X = P and growing to the - |
‘positive d1rect10n, “then count the ‘number of cut pomts the half-line
makes with the boundary If thJS number is odd then P is mslde
" or on the boundary curve, othermse it is outsxde For a multiply
connected reglon P is in the domam if 1t is mslde the external

curve but outside of all internal curves.

-
N

for




L _ Figure/ 3.13 Locating a point in a region

R .
4
/ ’ -
»

2
| / The algorithm: for simply connected. regions is call

" SIMPLE—REGION. For' mmti;i;y -connected * regions the algorithm
MULTREGION should be applied.
algorithm SIMPLE—RBEGION ( R, P )

LN , - ‘ / ’ I3
/* Returns true if P is inside or on the boundary of region R,
. ) \
' false otherwise. */ -
begin

1) Initialize n ~ 0 2) For all palrs of consecutive pox{nts of

boundary curve of R do

x2,y2) be the coordinates of the two

points, compute
T = 07 PYGy Py o
2.2) If (T>0) or (T=0 and PyS_y'1 .and Py.<_y‘2) then
there is no intérsection
else if the intersection point is not duplicate

oo . (7]
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o

algorithm MULTREGION < 0, P)

n—n+l-: ' ) )
end if ' h ‘ ¥

end do; +

el

3) If”"ﬁ”\xg( odd return true else return false

end.

5

o

/* Returns %rue if P is inside the region 0, false otherwise.
Let o0t represent the bounddry curve(s) of the region,

am = U an, where 30n is the external boundary.
i=1

K o IR
begin |

- 1) If SIMPLE-—REGION (an,P) = false return false;

2)f Found + true;
.‘ .

\\ i~ 1;

’

3) While 1<n and not Found .do
3.1) Found ~— Stb/[PLE—REGION(aﬂi,P);

R IR .

end while;

4) return (Found) L/ /

end. .

, o N

v ° - . ’ .
3.1.2- Determination of the smallest region containing a point

{
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Since regions with different dens{ty parameters can overlap ‘in
the gense that one may contain several\ot};ers, th; smaﬁest region’
in which a, point P lies must be found in ‘ofder to have “the
associatéd density value, This value is used later to compute an

fmage point of P by intersecting the two lines parallel ‘to the lines

intersecfing at P, ¥

Figure 3.14 Finding image P’ of a point P

> ]

To accomplish thig task we first rieed the enclosure information

of the sub-regions, i.e. each .region contains which regioné. THis
information can be )gnbﬁlied by the user along with the domain

subdivision or can be C‘\’saut.oma\tically determined. using the mnext

1}

algorithm. , ' R ;

»

algorithm ENCLOSE ( R )

k)
< )

I Determines the imxﬁediate enclosure ENC(@) for eac‘h’ region
subregion R, i=}2,..n of R. ¥/ ,

M , -
. s .

_begin
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/* Step, 1: Determme enclosure ENC@) for et h R "'/

-

1) For 1*—1 to n do
1.1) ENCG) « .9; o | e
1.9) For j=1 to n do o
I R, s in R; then
ENC(@ ~ ENCG) v {j} .
' . “end if . | |
| end for (j) .
‘ end for (i)

»

/* Step 2: Determme uﬁmedlate enclosure' from ENC(I) */ .

2) Forl'—l tondo ' ’ | o o ov

2.1)'M «~ #ENCH); ,

2.2) While M>b do ' BN
2.2, 1) J ~ M element of ENC(l) |
222) if J.is in the enclosure of some: kE.ENC(l) i

then
ENC(i) ENC(x) - b}
~ end if; . ¢
223y M~ M-1
‘end for; 0 )
3) return (ENC) ‘;v,

) j » x ° T »
, '
5 . 4

. o : Y : . 1Y




Step 1 determines all the sub-regions - internal to each ;egion;

Step 2 ‘refines the result by eliminating all multiple levels of

’ enclosure,” that - is retaining ofxly tpe sub-regions immediately

¢

cont;ained in each reg®n. Figure 3.156 claﬁﬁes this idea. -

- ‘ -" R2 Rs
| BT

°

. |R,

N

4

ffié’ure 3.15 "Region enclosures-
&
The regions ~Rl’ R., and R3 all reside inside ‘R5 but oniy R2
and R3«are “immediately enclosed” in R5, ie. ENC(é) - {2,3}. The
'y . . :

\ . .
\actual result can be viewed as -a. tree structure.in which the

."ch‘il‘dren of each node”™are the immediately enclosed sub-regions and

‘the root is the exteg'nai reé’ion. The smallest sub-region containing
a point can be déter_xgé@d by traversing this tree from the root
" o ) ' ’

-~ node down to the appropriate 'leaf node. .

v ! ’

4"‘/.

+

313 Generating’ points on _a line segment
- . Y - ¢ -
&

- Given two endpoints of a line segment, we wish to compute

C(

~_ "the posigion of n ﬁoin.té, for some. value n, ﬁhg" on that segment. .

In the context ‘of node generation the number of points n or



. equivalently, the distance between two consecutive points is
. .

determined from thé density p'araxfleters associated with the two

endpoihts. Let J1 and 32 be two segment endpoints with
u associated densities d1 and d2 respectively. Their coordinates are

(xl,yl) and (xz,yz). We have two cases:.

-

<

Uniform distances between twa consecutive points are used.:

The number of intervals and al‘:he x,y displacements dre respectively,

- 0,
n=l—d-—J+1
X, .- '
A |
dy =\n -1 .
yz'yl‘ =
d=
y -n-1

Case 2: d1 # d2

~ Assuming without loss of generality that di<d2’ the points are

placed . at increasing distances from J1 toward 32. The/number of

intervals and.the displacement . of .the ith point with respect to J 1
are ¢
2|J.J,| : :
n = [T%‘Q—- U+ 1 . y
1 2 '

qx_d+(l 2(2 1dQ
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qjy -4+ 2(1—1),2 1 dy)

where dx = dlcosa, dy = dlsina, and a is the slope 'og‘ the line

¢

passing through J1 and J2.

T

3.1.4 Generating points on a layer

We use the above -calculations to add " new points on each
segment of a layer. A problem arises when we have holes inside ‘
* the dorhain: the segmerits may cut these ' hole boundaries by a
number of . intersections (see figure 8.16a). In thu-; case the points "
on the sub -segments out51de the domain need not be computed at
all. Our solution is to determme the cut points, and consequently
the"sub-segmen.ts, and then generat;e points on those éﬁb-s‘egrhents
internal to.the domain only (see figure 3.16b). If all the cut points
are orderea, then these: intervals are defined by p\airs of
consecutivé points with no 'repetition, stérting at one séément
endpoint and endmg at the other. This will ehmmate the In/Out

‘test for each point generated.



<«

. Flgure 3 16 Generatmg pomts on a l’\er segment

(a) Partlally m81de segment (b) Vahd sub -segments

We have given a complete description -of our node generation
module in the mesh generator. The next section %will repor§ on the

triangulator  which uses the points produced in the above fashion

to form a triangular mesh for the input domain.

3.2 The Two-Dimensional Triangulator

.To estlzainSh the connéction’ oetween' node  points to form -
triangular elements, our t;'igngtﬂation lix.iodule uses exactly the
‘en.henc'edm advencing front - scheme -described in secpion' 22.. The
input is a set of l_:mi:lndary nodes and lay_&s of interion nodes. fThe'
" triangulation works from the external. boundary inwards, with all
generated elements residing..behind the generatxon front ‘A base

vector is chosen from the front at each iteration and a point 1s




114

-

< :
\selected from the front and the closest layer to give new triangle

The front and set of free nodes are then updated and the process

is repeated unt11 the front is null and there -are no more free

pomts.

A -

At the implementation time we are facéd with ‘the question 'of:
internal boundary nodes: Do we include the internal boundary in
. ﬂth‘e‘ front - gﬁ initialization time ‘or leave them as interior free
points? The consequences ‘of each choice are as follows::—,

i) If the internal boundanes are part of the initial generatlon
front, that is those edges that are considered as already used once,
then we have a generation front composed of several closed curves
and a base vector .n;ust be carefully chosen ,s0 that no illegal
/ednnection can occur. This is in fact a data structures design 'and
rnan’inulation problem.

‘ ii) If the 'internal boundary points are taken as interior nddes,
we need 'tb reme.ml;er that an edge formed by two& such points

cannot be re-used -as a base vector in subsequent generation. This

is an -algorithm design problem.
s ¥

‘We have ghkosenr to employ the "second approach in our
t.riangulator to make‘ it easier to inlf;lemeht and understand In
the algorithm NEW—ADVANCING—%‘RONT (section 2.2), each time
" a triangle ABC is recorded, the generation front and the set of

free pomts are updated accordmg to- the following four cases: either
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‘the point C is a free node or it is already on 'the front and there

\

\ are three possible coriﬁgu_rations.

&

Figure 3.17 Apex node selection

01 is free point, 02 is front point

. By incorporating the fully-surrounding idea, ‘we propose the
treatments for each of these cases as follows. Assuming P is the
1. i o

set of free nodes to be tested, F is the: generation front, AB is the

base vector and C is the selected point.

Case 1: C belongs to P, remove CT‘?&m P and add edges‘AC and

CB to F, take either vector AC or CB as the new base.

Case 2: Edges AC and CB are already on the front, remove A, 'B,

C from F, choose a new base from F if any'.

Case 3: Edge AC (CB) belongs to F, remove A (B) from F, the -
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new base.is CB (AC).

. Case 4: Edges AC and CB are not in F but C is, introduce C

once more in F resulting in a disconnected front, take AC or CB
as the new base, and stack the other‘ not chosen edge for later

processing of the disconnected part.

The glgortil:nm TRIANGULATOR presented’ below is a detailed-
sequenf:ial instructions for the above method. The choice of the
second ‘approach to treat intelinal boundary noﬁes as interior nodes
requires the termination condition to be modified: either :the front
‘is null or it i§ i)recisély an internal bouhdary. N

algorithm TRIANGULATOR ,
/* Generate a triangular mesh using fhe enhanced
édvancing-front tech;iique. The input, output and .not‘ation are
as foilows. ) | . l '

Input: ) A set of boundé.ry nc,>des B =EUH, " in
counterclockwise order for external boundary E and
clockwise order fo;' internal boundaries H;
ii) A ‘set of " interior node -points grouped into layers -
‘ Li’.i =1, .., N
Output: A triangular mesh.
.Variables: F: generation front

P: set of candidate free nodes -

AB: directed line segment (vector)

g
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. N )
= . l: current layer
: . B
begin N
. 1)_Initialization: F -+ E; ) : o
\ P~ 8 _ '
- , : - AB « last edge in F; \/
b )

1~ 0
%) While F # 9. do |
91D IfP =% and | < n then
‘ 2.1.1) 1 « I41;
| - 212) P — PU L1 B
end if;

» -2.2) Select point C € PUHUF by computing
X

the maximum angle AOB;
2.3) If there is a point C'GL1 +1' falling ins{de or
on a side of AABC then
231) C — C;
2.3.2) 1‘¢- 1+ 1
, . 233 P-PUL
end if; . - o o
- - 2.4) Recdr?i ‘AAB(‘J;‘ . o L
2.5) Case C of: P . | '
2.6.1) ‘C € PuH:




PuH «~ PUH - {C}

F ~ Fu{AC,CB};
¢ . : AB — AC;
| 2.6.2) AC¢F, CB€F:
i | . | ‘ stack AQ;, L
F ~ FY{AC,CB}; |
, . BB
X : 2.6.3) ACeF, CBéF: '
F ~ Fu{CB}-{AC,AB};
AB ~ CB;
2.5.4) AC#f, BCeF:
_ F ~ FU{AC}-{CB,AB); AN
*—.' : "AB*—AC; |
' \  25.5) ACEF, BCeF: )
F — F-{CB,ABAC); o /J |
AB - 8 f'
. end case; | |
2.6) If (AB is onH or AB = ) and stack # # then
AB ~ pop(stack) | - | ] B -
else if (AB is on H o;' AB, = 8) and stack = Q‘lthen {f"' |
| 2.6.1) Search F for a new AB; %
‘-2.6.2.) If not found ox: F cbntains"orily internal nodes

.

f thex}
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Figure 3.18 Mesh éenerated from figure 3.12

The automatically generatqd meshes by -this rqetfh&d have an
A . :
optimal construction of triangular elements with respect to the

gi;'en input set of points. However the distribution of the nodes
might cause some oddly sh;aped triahéles to be formed. To comp\letg
the generation and produce good” shapes of all elements, Qe apply .
the’ global optimization I,"Ito the meshes lzy .using the f..aplacian
smoothing pfocédure described previously and detailed m the’ next

a

section.
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3.3 Smoothing mc;dule

\ In thits module we use the Lgplaci - scheme ‘to improve the
shapes of all elements in a given mesh. The Laplacian equation
. attemp{:s to re-position the nodes so that each node is. at th?,'
center of the polygon formed by the nodes surrounding xt \yThe

Laplacian operator is applied to each T‘point Pi’

1 n.
P = P, i-=12..N
\, L, - Mg R

A4

where n, is the number of pointé connected to P, and N is the
.total number of interior points sinc;: bou;ldary points must not be
aff‘eéte& by this re-positionning procedure. Assembling' 'the equz‘a!:ion(S
for all the N 1'>oints gives the system of linear equations,
£ . Ax - b,
Ay =

-‘JU‘

yvhere" X = (xl, Xoy ooy xN), and "
\
\/ \ x - (yl’ y2! ceey yN).
The . vectors _lgx and l_)y are obtained from the coordinates of

the fixed boundary nodes. -

5

To assemble the above system we need to know for each point
-ﬁ/’ " the nodes that are connected to it. Output from the triangulator
gives only a connectivity .table of the elements but not for each

‘individual point and we would ‘have to searth through' this table to



121 ’
C .
determine the equation of a single point. In practice a sequential

+

examination of ~the element connectivity table allows the

-~

construction of matrix A and vectors l_)x and lgy with only one

N

...pass. We need “to keep a list of boundary .nodes connected to each

~ _ ’
interior node so that duplicates -cannot be introduced into the

A

right-hand side vectors. It is clear that
‘ T
\ A= [Al, Agy o AN]
where each row Ai has the form
oy if . i=j
A. =10 if P. is not connected to P,
-1 if Pj is connected to P,
Also,
T
by = by, by, s By
m. o -
where * b, = )y xj,' m, is the number of boundary points connected

. =1
to Pi' The vector gy is defined in a similar fashion. .

g The number. m, of boundary points connected to a given boint
Pi ?s’ usually sgnall, only 0, 1, or'2. To keep merrlxory usage to its
lowest level using array-simulated list, we reserve a three-column
mgtrix for this purpose. Lét C denote .this 3 x m matrix. The
distribution' for each node’.Pi, i=12.,N is

C(1-2, i) = node numbers, 0 if none

C(@3, i) = 0 -marks end of list L PR
> 0 is the number of the third (and last) node"

= k<0 points to the continuation location C(*}k|)
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"ﬁ:; matrixp A and vectors b_ and b of the above linear
system are bullt by performing one pass through the - connectmty
* table of elements in the mesh. The boundary connectivity of each’
node is also establlshed dunng this 'pass. " Let CY denote the
element connectivity table and IJ a line segment (edge) with two
endpomts I and J. The - following algonthms perform the meslT
smoothlng process: algonthm 'ADD w111 msert values mtg matrix A
and vectors b~ b for a given edge; algonthm SMOOTH calls
ADD to build up the equatlon system and solve it to produce the s
final result (the new locatlons of interior nodes) ., .
lgontbmADD(I J A, b b C)

I Glyen an edge IJ in the mesh, update matrix A, yectors'lzx~
by, and the boundgry connectivity matr;x C Denote “C(.i.) the °
set of nodes- connected to node i. */‘
pegin . | : o 1}
1) If I and J) are both boundary nodes'RETURN;' S
2) If either I or J is a boundary node then
)seume I 1s the mten’or node and J is the boundary
node */ ' AN
\ . 21) If J is not in C(1:) then
| 2.1.1) CO) ~ CM+HJ);
212) bD = b D A : ,

b (I) - b (I)+J



o .' _ call ADD(bc,A,b b C)

o

128

else o
'2.2) If the ‘cohnectio'n. IiJ ‘ is not recorded then
2.2.1) AQD ~ A(ID+1;
AT < ATIW
2.2.2) A(LJ), «~ -
AP < -
erfd if o
end if §

end.

algonthm SMOOTH ( CY, X, Y ) ’ . v‘
o Applies Laplac1an smoothing scheme to the mesh given by
the connectivity table CY and nocf{e point coordinates X, Y. ¥ Q
begin

1) Imtlahze matnces A, C, vectors b b to zero;

2) /* éonstruct A, C b b * , .

For e = 1 to number of elements de' . | _
2.1). Let triangle abc - CY(e); { " 'g
*2.2) call ADD(a, b.Ab bo C)'.

call ADD(c,a ’A’bx by C)’, , L ,
end for; . - ) ’
3 Solve AX = b; . - e
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. Solve AY =.b_;
y

- . : ' m'
" . « o |
i - After the "linear system has. been constructed any numerical
"I " method can be apphed to obtain the solution. For this apphcatlon
- . - the 1te,rat1ve method ylelds qmte good result takmg only a few .
'\ } ) it;\lation. The initial vectors XO and Y0 are the original coordinates

 of the interior nodes. Figure 3.19 shows .an improved mesh from

previsus example.

~

ey
v /
5
U AY »
S e .
A ; N
o ‘Eigu;e '3.19 " Smoéthed mesh from figure 3.18
3.4 Data_Structures ' , oo
' . 5,
- We now deseribe. the data strugtures used .in  our
oo . vy
- ) 1mplementatxon of the mesh generator. Smce the, Fortran language
L
does not support linked list with poifiters, we sxmulate the lists by
usmg array and integer indexes aﬁspomters.
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v
¢ 1

\Q‘e node points are stored by their two-dimensional coordinates
(x,y) “in different rarrays using the same order in“'ivhici; w;';E),int
numbers are the i_ndéfzes. Boundary nodes are :atored consecutively
as well as points" within a single layer. Pointers now. mark the
starting and ‘ending locations of nodes belonging to the same
group. The foﬂo@g convention ié used:

1) B‘oundary nodes occupy high positions, e.g. 1, 2, etc.
ii) External boundary has highest number in the ordering of

boundary curves.

iii) Layers are counted from the external boundary inwards.

]

For the trianéulation module the linked list' structure is used
to represent the generation front ‘internally. Each poin:ib has
pointers to -its preceding and following nodes if f.hey. are on™the
front, or a negative vaiue if there is no connection in the
corresponding direction. The - list Qf potential free nodes contains
‘onl'y node numbers and no other structures. Finally the element
conhectivity table is a 3xN array where each column contains the

node numbers of the triangle’s- corners in counterclockwise order.

.

4. User Interface Using Interactive Computer Graphics

4
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Automatic mesh generation reqtlﬁres some form of input from
. th.e -user to define the domain‘ for which a mesh is lto be
generateca. The input usually is a discretization of tI;e“ actual
. boundary curves .and the work of px;epariﬁg data might become
tedious for complex boundary shapes. Interactive systems; as part
of the CAD/CAM tec(hnolog)_', makes good user-interface ~in the
ﬁnjté element analysis and other applications. An interactive mesh
generator allows tile analyst to enter data directly into thé

. computer with a simple tool and to be able to physically view'and

modify his/her input on a graphics screen. Therefore interactive . |

interface should alwayi accompany an implementation of mesh

generator.

o

In phe next sections we present an .interactive 'mesh generator
. implemented on —a VAX/@PX Station ]I’ using GKS graphics. The
program is easy to use and can be adapted to a different system
without additional complexity. Our report comprises; three parts: the
u;er’s view - ﬁow to use tﬁe ‘mesh generatox;, ‘the technical viiew -

the program, and the portability of the program.

4.1 How to use the interactive mesh generator

-

The generator is mouse-driven. Movement of the mouse on a

planar -surface will change the 'cursor position on the graphics

screen. Preéssing a button on the mouse will eﬁt§r user’s request to
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* e ‘l . .
the program depending on the position of the cursor at that time.7

The screen is" physically divided into three regions: heading,

workspace, and command space. These regions are placed side by

side as illustrated in figure 3.20.

Moge 2T MESH GBNERATION ver 1.0

AVAVA \
/\
R

Help Smooth Qriginal’ txit

Figure 3.20  Screen layout

The heading dispiays the name and version of the software as .

well as the mode (2D or 315) that is used for the session. The
. . / !

workspace is where the user can %eﬁne a “problem” by entering

data points. The commands are classified by levels as in ‘a tree

structure where each command might have a set of sub-commands.

-

.The command space shows all thue commands available at the,

. current opérating level thus allows direct selection using the mouse.

The keyboard is not used in general excei)t when a file name

7
- *e
. -~
1 * B
» . '

.~y
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must be specified by the user for \storiage and retrieval operations.

The mousé-driven ‘system makes it easy to enter data and

commands. The leftmost button is used heavily throughout the

N

int‘eractiv.e ‘session. The button next to the leftmost one is used
ocqsidnaﬂy to signal no input or break on input for special
purposeé such as compietion- of a boundary curve. Since" the cursor
moveme‘nt covers the Wholc;{creen, the user has freedom to switch

;tions at any time. is important to remembe}' that the

taken by the generator relies entirely on the position of the
rsor 'wher‘l thé leftmost button is pressed and the current level of
operfation. Any other buttons other than the two leftmost will not

have effect on the program.

The commands available are organized in a tree-like fashion,
O

that is, each command has its own sub-commands and so on. The

sub-commands of any command (option) ‘are &iSplayed only when

that option .is selected. Exit points are providéd at every level

_allowing the user to travel up and down in the tree. The software

B

also offers HELP facility at all levels to assist the user in using ’

the mesh genergitor.

We shall now scribe ih details the operations of the,

interactive mesh generatpr and how to define problems which are

ﬁleaning’ful to the progra

LY
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. 4.1.1 Problem Definition: Domain and Subaivision

To the mésh generator, a domain is defined 'by a set of.
boundaries :Vlti‘l one external boundary ‘and zero or more internal
boundaries representing holgs inside the ;iomain. Each\;boundary is
a’ clo§ed curve dicretized il;to a set of consecutive lfne segments,
An‘ advantage of using dis'cretized boundaries is the simplification
of input, since -complex shapes might req\}ire several complicated
functions to describe them. This form of boundary polygons is
entered using a point by point basis with respect to the follgwing
rules: S

i) Boundary points must be in counter-clockwise order;

« i) The first bogndary to define must be the external boundary.

A problem is simply defined by entering the bbundary points
in the above "“o/rder. “Yet to allow more user control on the final

A

mesh, it is possible to specify additional requirements for the mesh
4 density as dt;scﬁbed in prev-io?s sections. Domain subdivision
determines the different sub-regions of the domain which éarriés
d'iﬁ'erent density parameters. The deﬁnition' of the sub-regions is
e very much similar to that of ‘the domain with one additional line
| segment specifying the element size .within the sub-region. By

giving the length directly on screen the user can view the element

size and have a pretty good idea of the distribution on the final °
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mesh. If the subgiivisior{ is not given, the generator will produce
uniform element size depending on the smal_lest length of all
boundary segments, It .is worth mentioning t‘hat automatic
introduction of new boundary points to match the required density
is provided- so that the users only have to enter the minimum

number of points for the boundary curves.

4.1.2 Operating the mesh generator

At the first level of the command tree. there are a number of
. main options which we shall refer to as operation modes. Within

~

each mode the user can selé"ét fhe operation to be performed. Each
s'electi'on of the currently displiayt;d choices switches the oper;tion
mode and command menu. Two standard options ;t every ievel are
HELP and“ EXIT. Selecting HELP mode causes the system to
‘displ‘ay information available on tXxg current mode. The EXIT option
@1 bring back the menu of the '.previous level and the EXIT at

the top level terminates the intetactive session and returns control

to the. operating system.

‘The available modes of operations are:
1) Define: to enter problem definition.
et
2) Mesh : to obtain the desired mesh.
{3 View : to browse data or meshes. 4/\/

4) Save : to save data or meshes in files.
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- B) JLoad : to retrieve saved data or meshes.

6) Reset : to clear the workspace. , p

We give detailed descriptions of each mode and its menu in

" the next sub-sections.

''''' 4.1.2.1 DEFINE mode

This mode ‘allows the user to inpue data poin 3 These points
are entered by moving the cursor to the desired loca'tion and
pressing the leftmost button. A line connecting the ‘new point and
pre;riously entered point will appear e,n the screen. To terminate
ipput for a polygonal boundary, press the t?utton next to the
leftmost after the last point has been entered. A line segment -
joining the first and last point will then be automatieallylr drawn to

\

complete the polygon. The definition of domain and sub-reglons

must always respect the convention given in the prevxous section.

With the standard HELP and EXIT the two other choices in
this .DEF]NE mode are’

(1) DOMAIN: allows input of domain boundary points. The

actual operations are:




&
.

4.12.3 VIEW mode
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g density. A boundary definition -must be followed by two- points

defining .the element siz‘e for that sdb-region. The operations are:
DRAW : to enter. boundaliy points.
ERASE to remove previously entered points.
MODIFY j)ENSi’I‘Y: change the dehsity of a
defined sub-region.

*

4.1.2.2 MESH mode

-

After defining the problem the user has .choices on the quality

of the mesh he wants to see on the scréen, either the

intermediate un-smoc')thed mesh or the. final mesh after passing
through the .émoothing procedure. The reason is that &moothed
meshes geﬁerally .have better element shapes while somegimes the
original meshes _ might— be preferred .for Some QSJ

conveniences. T};e two choices in this mode are ORIGINAL for
original mesh displayed, and SMOOTH for smot.)thed mesh. To view
the ,other mesh not displayed as result without repeating the
generation, the user can go to the VIEW mode and select the

/
mesh to be displayed.

»

alytical,

b
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This option allows the users to quickly browse the data and
meshes, if there is any. The twg choices are pA’fA and MESH..
: The‘ MESH option offers either ORIGINAL or SMOOTH | as in the
MESH mode. =~
412.4 SAVE mode : »

Any data or, n:'xeshes created ‘«duri_ng an interactive session can
be saved in files for later refe_rence or modification. The program /
stores data in a special format which can 6rﬂxly be interpreted by
the generator when the data is loaded back into the session. The
users have freedom -to choose the name of the file onto which
in;‘ormation will be saved. Underﬂthe VAX/VMS operating system
these file names have a default exte'ngion DAT. The ’DIREQTORY'
option a.llo'ws the users to view the names of all such files on the

graphics screen. .

-41.2.6 LOAD mode

3

/

Previously saved data and meshes can be loaded Bacl; into the

workspace under this operationl mode. The three choiées on the
menu are DATA -}load a problem definition, MESI-i - load. a mesh
(original and smoothed), and bIRECTORY - display all file m‘mele
with éxtension .DAT in the current :iirectory. The ,usér is requestéd

. to enter the file name of his choice and the system will verify

AY

o
N
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whether the file contains valid data before actually loading
information. The retrieved information will then overwrite the

corresponding data residing in the workspace.

4.1.2.6 RESET mode

There are two options under thi;s mode. The user can choose
to erase only the mesh and the subdivision ;E:S"Wiamd with the
active domain in the. workspace, or to clean up the workspace for
a new problem. Daté which have been reset are lost and cannot

be recovered unless they were previously saved in system files.

The above description has covered all the six operation modes

of our interactive x;esh generator. The I-IELP screens yviﬁch, are

actually displayed by the HELP option can \be found in appendix 1.

4.2 Inside the_interactive mesh generator

This section is concerned mainly with the design and
implementation !of the mesh generator interface. The program is
written m f"ortran and .use}» the GKS graphics software on a
VAX/GPX Station II The basic program structure follows a

tree-like pattern. The tree of commands is simulated using array of

‘father/child nodes. There are two main variables:

1) TREE: array nxm where TREEG]) is the location of the ji*
child of the i node in the tree when 0. If j=0

»

ke

&
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TREE(,j) denotes the. location of the father node of
the -it® node.

2) NUM-CHOICES: array(m) where NUM-CHOICES(®() is the

th node. Note that this

4

array might be incorporated into TREE but we keep it

number of children of the i

apart for clarity' and fast access.

ﬁased on thjé structure the flow o('\control within t};e brogram;

is established by branching to the appropriate subroutine accordix{g
to the. choice entere:d by the user. The mouse-driven system is
supported .by the GKS functions which return th‘: (x,y) coordinat!es
of the cursor location on the screen when a button is pressed. The
program then uses. these values to determine which part of the
scfeen tl;e cursor is in and proceeds appropriate actions. The other
GKS functions used in the interface include line draw,in‘g, text .
writing, lmarking, and filling. GKS offers segment type variable to
\, store éraphical data on the terminal screen, but redrawing the
segments causes the screen to flash up, hence although - it is
convenient to use segment variables to_' switch displays, this
inter;‘ace does not,- employ this techniq;le. However it is ript difficult
to adapt the program to use segment type variablés on some c;ther
type of graphics te als‘ “that support transparent. segment

t

re-drawing.
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)

4.3 Portability of the mesh generator interface '

The mesh generator and 1ts mteractxve graf:hxcs mterface -are
wntten in Fortran and use GKS graphics software for color
.momtor on a VAX/GPX Station II. All Fortran syntax and
functions in the prograrri are stan@ar;l; hence no mediﬁcation is
necessary to run it on other systems." Ho'wever many GKS
subroutine calls might require minor or major ehanges wit'en :ixsing.
‘different graphics softwere. An ekample is the hdiﬁ'erer‘xce between

PLOT10 and GKS for line drawing‘.\ PLOTlO does not support
multiple hne drawing as does GKS; a smgle subroutme call in
GKS must be replaced by a “for loop to draw a sequence of line
segments, Since the segment type variable, a special feature of
t}KS is not used',' the program can be adapted easily to other
systems. The last dlfference worth mentlomng is the avaﬂablhty of
different fonts on GKS which other graphlcs packages mlght not
support. Using this feature just makes the screen appearance moxje
attractive and does not have any effect ‘on the behavior\ of the

mesh generator, - o
p—

¢

5. Time and Space complexities
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As disrusééd in chapter Two on the complexity of algorithms
for me§1; generation, it is difficult to give a net pithure of the
'tim;a arxd spéce ef{iciency ;f mesh genérafors_. In this section we
will estimate thé si)ace arnd time requirement of the

implementation reported .previbusly "and make some empirical

comparisons with some program -available in the literag.ure‘..l

5.1 Time Coxriplexity

In the followiné discussion the basic . operation for the time
C(;mplemty is often mot a single operatldn such as comparison, but
rather a c‘q;'mpanson of the result from performimg a set of
arithmetic operations ;md comparisons; hence the given figure only
represents an .estimatie of the complexity. |

A

5.}11 Node Generation

‘For the generation of node points on the boundary and inside
the domain, we base our . discussion on y algonthm

NODE—GENERATOR of section 3. 1 Let n be - the number of

boundary. nodes'and N the total number of points genjrated. The R

number of segments .per. layer is bounded )abdve by 'sin'cg we are

" dealing with continuously shrunk’ boundary. Hence the time taken
to generaté layer. segments is O(n). ’Finding the interseéf:ion?of the

. 7 . S
segments with internal holes is also O(n); For L layers the

-

total -




N

. ¢ /
as other methods of node generation with simplicity gained.

time is O(nL) and since the number of ‘points—per layer is also

bounded above by n this figure is equix;‘ail‘ent to an ON) time

' complexity for the node generator. This achieveme;lxt is the same

k4

° N ’

-
5.1.2 Triangulation .
In the triangulation algorithm (cf. sectiom-:'. 2.2 and 3.?), a
r;umb'er‘ of tes‘:sa must be performed each time a new element is
rgcor.ded. We shall refer to this set of ’operétions, simply ag a |
compai'ison :n subsequgnt discussion on the time analysis. Let Fk
‘and Ak dgnote the Lriumber of points on the generation front and °
in the set of potential free pc.;ints at the kth 'iteration. Also lét
there be n boundary' ;)oints, p interior points, -and a maximum of 1
pginis per layer. Then the followihg holds: , S ] . -
' ' 0 < Fi+A, € nH g 2nu ) ‘
Tb\e number of 'tﬁ?ngles Ne is knom (ttgo ;atisfy the relation ‘*‘,
[MAU84] | . . ¢ ;
- \Ne=2p+n'—2" ’ r
The total nﬂmber of compansons is then at most w )
zf’(F LA € kf (D) o el
< (2;)+n«-2)(n+l)‘ o | |
o< 4pn+2n(n—-2)a ' | -~ s
< 2,(p+n)2 | e "
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Since the total number of nodes is N = n + p we have an

approximate .O(Nz) time for triangulation. ’

In‘the original advérioing front method, the upper bound for
Fk+Ak is n+p. . If we ‘compare the relative efficiency of the two
algorithms asymptotically when p is large as compared to n, ie.

n<<p then

because the number of points per _layer is bounded above by ;he
numub.e;' of bo'undary' points. Hence the advancing front with layers
shows an | increase in the efﬁciency when the number of interior

points is large.

Most ofx empirical comparisons of performance of mesh:

generators are ‘obtained from test domains of simple form such as

P4

square or rectangle [MOSS8L, HOL88] We follow the same pattem
and use an unit square and a” circle as test domain. The only
program available at hand is that of Nelsoq [NEL78]‘ which
; improves on Cavendish's [CAVT 4].' Table 3.1 shows the time in-

CPY seconds for the mentioned program running on ‘the same

VAX work-station.-
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Taple 3.1 CPU time for triangulation of a square (in secs)

N  Nelson .  Adv.Front Adv.Front w/Layers
120 010 0.04 0.03 *

25 0.43" 011 - 0.10

101 9.70 1.97 ‘ 123 7
225 53.72 10.24 464

Another program for triangulating a convex hull of a set of
points from Sloan [SLO87] were also tested but the result is
'restr"icted to simpfe. convex domains with no internal holes, hence
ca;'mot be compared “to our general mesh }generator. Testing -on

S

arbitrary domain revealé th;t Nelson’s program does not work
co‘rrectly, as expected for some convex ‘domain. In fact efficient
treatment of 'geperally-shapeld domains always resumes in _some
trade-off between the time complexity and the geometry complexit?y.

Our mesh generator is faster. and produces correct results for both

concave and convex domains with or without internal holes.

S 7

;N

5.2 Space Complexity .
In the node generation prograxh pefm_anent storage required is .

for the node coordinates and pointerg- of node location delimiters. .

We need at most 3N memory words for this process where N is

the total number of nodes on the boundary a‘nd inside the domain.

-
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; 5
1

In@ t};e triangulation process the linked list used f;or both. F
and P requires 3N words.. The set of free ;mdes is just two
pointers to' denote f,hc‘a range of nodes in the list. We use the
.sax;le mem01:y space for node coordin;itesav The table of connectivity
is a%sSXNe array, where Ne- ;s the number of elgmex;ts.
Ne‘ = 2N-n2, n is the number of bourgdary( nodes. There&re t}}e
total storage réquil;ed is at most - |

*

SS3N+3N+§3(2N-n-2)
< 129N '

The result is satisfactory as compared to the storage required

by other x\pethods reported in chapter two.

~—

[N




Chapter Four

CONCLUSION

Mesh generation for finite ‘element analysié is an active
research area in the field of computer applications in quineerixig.
It# plays an imp;)r{,‘ant role in thg success ’and popularity that the
finite element methods have gained m every application and
continue to expand to areas other than enginee;'ing. We have
covered the con;:éﬁt and ‘position of mesh generation w1th1n a finite
element analysis ‘process. Since ;;he field has grown rapidly ﬁ"rom its
eé.rly days, the review in the second chapte'r gives an overview of
the direction,.‘of the résearch and the valuable ‘échievements' of
several authors, Investigation and implementation clf a mesh
generator represent a challenging task to_ put the computer to
automatically prodﬁce ‘meshes. A user interface using graphics
. facility makes thegenerator a truly useful tool of 'a.nalyéis for the

engineers. . .

.
Lo

F
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Our presentation has. emphasized on the geneJration of a
particular class of meshes in two-dimension, the triangular meshes,
since this class is widely "used 1n the real world. Other classes of
mesh-es such as grids and mixed elément type meshes are also
mvestlgated in the’ research hterature Although three-dlmensmnal
analysxs is the ultimate. and more practlcal aim of engmeenng

\

applications, research in three-dimensional mesh generation has just

P

S

become active recently in parallel with the two-dlmensmnal mesh
geg‘eratlon Two-dimensional mesh generation géfnams a “hot” topics
since researchers are looking at generalization of mesh generation
methods " b'y expansion from low to hiéh dirﬁension, rather than
developing separate and dedicated aigorit.hms. In fact the. concept‘
of bottom-up development is convenient and easy to follow,
espeéially in the énalysig of algorithm efficiency. It is exactly this
feature of the adv’anéing frox;t method which exposes M(ssibility
of expansion to higher dimensions as confirmed }'\lzy‘ Léhner in
[LOHS7], that we have chosen to implement and enhance on. This

work hence represents an important starting point for. further

investigation of mesh generation into higher dimensions.




- APPENDIX

THE INTERACTIVE MESH GENERATOR HELP SCREENS

Mode: 2D ) MESH GENERATION

ver 1.0

HOW T0 USE THE MESH GENERATOR

DEFINE: to enter the definition of the demain io be meshed
MESH: to generdte trianguiar mash for the defined domain
VIEW: to view current domain dcfiniti;n and generated meshes
SAVE: 10 save current domain ond/or meshes

| LOAD: to load previously eaved domain and,/ or mesh dota
RESET: reset all or port of the domoin specificotion

EXIT* return to VAX/VMS system

Use the mouse to enter command by pressing the the leftmost button, __.;
The middle button has different functions within each optional mode.
Other buttpns are not used.

Press retum o end help

b

] Help Define Mesh View Save Load

Reset

Exit

A *
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- Modej 20 | fmsg ca'}xngmmﬂ ‘ Ver'i’.o
’ ' ’ - DEFINE

In this option, you co;\ interactively specify tha domoin for which the mystern:
will generate an appropriate triongular mesh according to your requirementa.

The minimum input from you would be the boundary pc:'u'stsT given with respect {o A
the following ruies: . -

. 1) Points are entered in anticlockwise order, and ' -
i) The external boundary must be given first.

a

You can also give the distribution density requirerment for different

regions of the domain. In this case, o boundary specification is followad o
. by two points defining o line segment whose distance represents the density
of that region . g ‘

| . 2

Press retum to end help . . .
L3
4 /’ {
|_Define
Help ’ " Domain - Subdivision Exit




DRAW: enter the boundory pofith In couniorclockwlce (ccw) ordor by proastng the
leftmost button; end sach boundary by pressing the mlddle button,
Speclfy the external boundary first,

ERASE: remove a point on a boundary by moving the mouse cursor to that point and
prese the laftmost button, °
After arasing a point, if you want 4o insart point on that boundary, movs
the cursor to the opened end of the boundary (in CCW order), en ter that poln'l
then continue entering new polints.

EXIT: retum to previous menu. ’ ’ ) .
Press retum to end help

. ) . §

e

_Define /Domain

Mode: 2D =" " MBSH GBNERATION - WVer 1.0
DEFINING A DOMAIN
. Use the mouse's left bulton toselecl'ah Qyﬂd’h ond enter polnts. .

Help l . Draw Erase Exit

N
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.Mode: 2!)' a

MESH GBNERATION

Ver 1.0

DEFINING A SUBDIVISION

Use the mouse's left button to select on option and enter polnts.

DRAW: enter the boundary points In cauntaerclockwlea (CCW) ordar by pressing the

leftmost button; end each boundary by pressing the middle button,
you are then requlred to enter iwo polnis defining thaTequired denslty.
Specify the external bgundory first,

ERASE: remove a polnt on a boundary by moving the mouse cunsor to that point and

press the lefimost button,
Aftar erasing o point, if you wont to Insert point on that boundary, mave

the cursor to the opened end of the boundary (in COW order), enter that point

than continua entering new pointa

MOD.DENS.: to change only the density of a region, move the cursor to any po{nl

on the reglon's boundary, enter the polnit, then enter two polnts for the
new density -

EXIT: retum to previous menu. .

Press retum toend help

>

N Erase

Mod. Dens.




Mode: 2D MESH GENERATIGN

Yer 1.0

. . GENERATING TRIANGULAR MESH

Use tha mouse's left button to select an optlon.

SMOOTH: display the'produced mesh which has been passed through o emoothlng

processor for belter element shapes. . -

ORIBINAL: display the generated mesh, non—optimized. ,

EXIT: retum to pravioua menu, : A

Press retum to end hélp \

&
e
. Iy : /
‘ ) ! ' '
Mosh .
Hélp - Smooth ‘ Original Exit
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‘Mode: 2D MESH GENERATION | 1 ver 1.0
DISPLAYING DATA/NESH )

- i

In this option, you can view currently octive derhain definilion and generated mesh.
Use the mouse to enter your choice

EXIT. retum to previous menu.

Press retum to end help '

Help - " Data ' Mesh Exit




150
P ‘ - N
Mode: .2D MESH GENERATION Ver 1.0
7
. .
| VIEWING T. RIANG'ULAR MESH
Ua‘e the mouse’s iefl buiton 1o select on Gixtion,
SMOQTH: display the produced mesh which fias been passad through a smoothing
processor for betterslement shapes.
ORIGINAL: display the generated mesh, non—optimized.
EXIT: retum to pravious menu.’
Press retum to end help
| 2 )
~ I
, .
Smooth Original Exit
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Mode: 2D MESH GBNERATIOR ver 1.0
<> “
a gl
SAVING DATA/MESH

This opllon allows you to save the current domaln definition
and/or meah in a flie for reviewing or latar modilcation (using the LOAD opﬂon)

Use the mouse's left button to selact an option. .
Enter a file nome (new file} to store data/mesh at the prompt. "

'EXIT* retum to pravious menu.

. N

Press retum to end help

.0

elp ' . Directory " Data , Mesh

Exit




> Mode: 2D ME8H GBENERATICN Ver 1.0
1
LOADING DATA/MESH
‘ This option allows you to load previously sayed domaln/ mesh,
’ Use the mousa left button to select option. :
| . Enter a file name containing data/mesh at the prompt.
\ EXiT: retum to previous menu. o .
Prass relum o end help ’ ¢
‘ .
4
= r (- i" ‘
' ' ) .
’ ’ J i e
< g . | »
.. t
PN | LY
\ Help { .1 ' Directory Data Mesh Exit-
. 0y . ) v . /
2y )
v ! . A\
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H
’ &
N
Mode:' 2D MBBSH GBNBRATIOR ver 1.0
.. ] 9 o
. ) ¢
RESET :

This option allows you to change the subdivision of the domain, or
to claor the work space to stort over.

Use the mouse left b‘uﬁon to selebt’bﬁ{on.
SUBDIV/MESH: resst the subdlvision to nil, and consequently the ossocloted meshes.
ALL: cleor all domoln definition and meshes. ' L

EXIT: retum to previous menu,

Press retum o end help h :

Help . Subdiv/Mesh A1l Ex'it
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