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ABSTRACT

Minimum Cost Sizing of
Rearrangeable Networks with
Multi-period Demands

Patrick Rioux Ph.D.
Concordia University, 1988

In the planning of dynamic architecture networks, considerations of dimension
ing of the links lead to a multi-commodity, multi-period flow problem on the under-
lying graph. The fact that all links of the network are non-directed greatly aflects
the formulation of this multi-period problem. In this thesis. a formulation based on
the arc-chan representation is presented. This formulation reveals an especially in-
teresting structure which can be exploited in two ways. First, the generalized upper
bounding (GUB) technique is used to take advantage of the multi-commodity nature
of the problem. GUB reduces the size of the problem to that of a working basis.
Then, the multi-period character of the problem is exploited by a decomposed trian-
gular factorization of the working basis. In each step of the algorithm, the problem
is divided into as many subproblems as there are periods, where each subproblem
has a size equivalent to the size of a single period problem. A column generation
algorithm designed in order to avoid the explicit representation of the columns is

also presented.
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Chapter 1 Introduction

Network planning methods are now increasingly applied to a great variety of
problems. Today’s society depends heavily on reliable telecccnmunication networks
for voice and data transmission as well as on transportation networks for passengers.,

p I 14

freight or others goods.

The advent of powerful and specialized computers has turned the quiet evolution
of telecommunication networks into a race to provide new and better services [1.
The North American telephone network, with more than 100 million access lines
{2] and with its increasing diversity of services, is among the most sophisticated
networks in the world. The introduction of new technologies, new services or new
concepts in such a large network must be carefully studied taking into account the
average lifetime of the equipment (more than 20 years in some cases) and the cost

involved.

Prior to digitization in the 1960’s, planners were simply provisioning for the
expected growth given by more or less accurate demand forecasts. Cost minimization
of the growth based on economic methods such as PWAC' (Present Worth of Annual

Charges) was the chief concern.

During the last 20 years, proliferating technological developments have made
possible a number of new concepts of operation providing new types of services

to customers. Planners have been unable to predict their effects on the network.




In fact. they have never kept pace with the impressive evolution in concepts and
services required. The short time horizon type of planning advocated until quite

recemtly for cireunt-suitched nctworks appeared to be no longer valid.

At the same time, planners of compuler conmunication networks [3] outdis-
tanced technological improvements. New protocols and concepts succeded one an-
other at an impressive rate, only moderated by the computational power available.
Miny reasons favoured planners of packet-suitched types of network. First, the
networks considered were much smaller than the telephone networks. Very often,
they were plannning without any, or with very little, restrictions on the structure,
whereas circutt-swiiched network planners had to deal with the evolution of a huge,
existing infrastructure. Obviously, it was impossible to consider removing the cur-
rent network and starting afresh with a new network and new concepts. Finally
computer commumnicalion necfworks have been planned as a function of the upcom-
ing technologies on a long term basis. Until recently, telephone plannners who were
unable to follow the technological development had to work on a short term basis.
Most of the efforts were directed towards develepment of new and more powerful
equipment. There was very little cooperation with planners to create long term
objectives and to define the equipment necessary for the evolution of the network in

the most promising direction.



The first organized attempt at planning has become necessary with the current
trend to enfigrate scrvees [ which are completly different in nature all in one
network. the Integrated Service Digital Network (ISDN ). This integrationin a single
network is not an easy task if we look at the list of services considered:

circurt-suniched facilities for services requiring a dedicated circuit for an unde-
termined period of time. Voice communication is the best known example in
this category.

Packet-suniched facilities for communication of digital signals with intermittent
transmission. An interactive session between a terminal and a mainframe is
representative of this type of services.

Special services capabilitics to satisfy all other types of demands. For exam-
ple, non-switched networks in which circuits are generally dedicated for long
periods of time.

Common Channel Signalling (CCS) facilities utilized by the control unit to gov-
ern all the communication among the equipment in the network.

The 1SDN network (5] also needs the flexibility of making possible the intro-
duction of services required in the future with a minimmm impact on the network

itsell,

At present, the CCITT (International Telegraph and Telephone Consultative
Committee) is responsible for defining the standards and protocols necessary for
an organized evolution of the ISDN concept. Based on the CCITT reports [6,7,8!
the first field trials started last year and will continue until 1988. The first totally

operational ISDN network is not expected before early 1990.




A key problem with Integrated Services Networks is the non-coincidence of the
demands. Non coincident demands occur in presence of demands at different periods
in time and when all links are not domninated by the demand of the same period.
There are many reasons for non-coincidence: traffic patterns which are different
during business hours compared to evenings ; time zones (there is a time diflerence
of 3 hours between peak traffic in Montréal and Vancouver), etc. The presence of
non-coincident demands may hecome an important problemwhen the network does
not have sufficient flexibility to react accordingly. The solution to this problem is to
use a network with dynamic archifecture. By Dynamic Network Architecture (DNA)
we mean the ability of a network to allocate the spare capacity where it is needed.
Traditional telephone networks are currently unable to adapt their architecture to

the state of the network.

Another important factor is that a cost eflective implementation of ISDN relies
on the principle of dynanic architecture. 1t is inconceivable to implement all the
capabilities of ISDN at every node. Using DNA, it will be possible to reconfigure
the network in real time and give the impression of being directly connected to all

services from every node in the network.

The prime objective of DN A is the dynamic allocation of resources and services
to customers. The second goal is the survivability of the network. It does not have
the spectacular eflect of the first goal but its importance is far from negligeable.
The surviviability is the ability to maintain services under link or node failures.
Obviously, concepts such as DNA and rearrangeable networks are important steps

ahead in the consideration of survivability problems.



What made possible the concept of dynamic archiecturdis a new piece of equip
ment called DXCS (Digital Cross Connect System) or slow-switches. The DXCS can
rearrange the interconnection of the circuits at its ports via remote control command
[9]. Tt enables reconfiguring the circuit pattern of the network under the command
of a central control unit. The presence of DXCS in the network and the concept of
dynamic architccture are relatively new facts for planners. No planning methods for
nelworks using DNA are known so far. A few heuristic algorithins have been pub
lished on multi-commodity,multi-period sizing and routing. but none of them looks
precisely at our problem. Most of them are direct adaptations of planning methods
currently used for curcuit-surfched or packet-switched networks. At present, tele-
phone companies in their field trials are systematically oversizing the network until

an adequate method is made available.

The sizing of a DNA network with optimal routing is a minimum cost multi-
commodity,multi-period flow problem on a non-directed graph. The multi conminodity
aspect arises because of the presence of a different demand for each pair of nodes. We
must mention that for a given period there is only one type of commodity per pair
of nodes. This last observation and consideration of the non-directed characteristic
of the network permit the use of the arc-chain formulation presented in Chapter 2.
Demands are given in numbers of circuits required between each pair of nodes for
each of several periods. The reason for a demand in circuits instead of traffic units
(Erlang) is the presence of multiple services on the same network. Demands for
many types of services in ISDN are given in circuits whereas the demands for voice
communications are in traffic units. The best method to standardize the demands

for all types of services is to convert every demand into circuit requirements.




The key difference between the problem addressed here and most of the work
done in the area of network planning is the presence of non-coincidence in the
demands. Though only a few papers have considered the joint problem of multi-
commodity flows with multi-period demands. extensive research has been done on
the multi-commodity flow problem for a single period [10,. The case of directed
graphs is especially well covered in the literature :11,12, 13,14,15,16.17,18]. Aronson
and Chen 119,20 considered a multi-period problem on a directed network. But

they were concerned with the minimal cost routing rather than minimal cost sizing,.

Our formulation of the multi-commodity, multi-period problem is based on the
arc-chain representation. Only a few authors have published using the arc-chain rep-
resentation. Most of them [21,22,23] have based their studies on the Dantzig- Wolfe
Decomposition algorithm {24] which is constructed to consider problems having a
set of general constraints (master problem) and a block diagonal set of constraints
(the subproblems) . In 1967, Dantzig and Van Slyke [25] published a new algorithm
called Generalized Upper Bounding (GUB). This algorithm is designed to consider
problems where the block diagonal constraints are linear convex combinations. As
we shall see, this algorithm is perfectly suitable for our formulation and it will be

the basis for the algortithim developed in this thesis.

The multi-period aspects of the problem have not been studied as thouroughly
as the multi-commodity aspects during the last 20 years. When considering the
non-coincidence of demands. planners were mainly interested in routing techniques.
Sizing methods were simple extensions of the algorithms used for routing. A paper

published in 1971 by Y. Rapp!26] was the first significant effort in the field of network



-1

planning dealing with non-coincident busy hours. At that time, the ISDN and DNA
concepts were unknown. Considerations of the multi period aspect were restricted to
dynamic routing schemes because of the underlyving static network. The solution to
the problem of non-coincidence appeared to be the use of dy namic routing algorithms
[27.28,29, 30,31]. The idea was good for a curcut-switched network almost exclusively
dedicated to voice communication. The reality is now totally different. it would be
impossible to implement a dynamic routing scheme sufliciently powerful to support
ISDN. We need a network which is capable of operating on much broader objectives

than dynamic routing of calls.

Consideration of circuit requirements instead of trafic demands for a multi
period network was discussed first by Zadeh |32 and Yaged [33,34,35] in the carly
70’s. The multi-period aspect studied is the growth over time of the network, given
dynamic routing capabilities and circuit demands for the next several years. Al-
though we are concerned with non-coincidence, which is a totally different element
of the multi-period problem, those papers are important in the sense that they were

the first to examine circuit requirements in a multi-period context.

The mention of rearrangeable networks and slow-suniches in the literarture is
recent. Most of the papers on the subject address only the simpler parts of the
problem. In the case of slow-suitches (DXCS), the possibilities enabled by their use
in the network are not fully known, and consequently very little information on the

subject has been made public by telephone companies.




ftearrangeable networks have not recieved all the attention expected precisely
heeanse of the Jack of knowledge outside the private sector on the equipment avail-
able to support the concept. Akiyama (36 in 1979 and Winnicki and Paczinski [37]
in 1980 proposed similar rearrangement procedures. The performances of rearrange-
ment algorithms are compared in a report by M. Larocque 38] published in 1985.
In both cases, the prime interest was the rearrangement and not the sizing of the
network. It is possible 1o derive a sizing method from a routing algorithin but the
guality of the result is not always good. In the case of rearrangeable networks, the
configuration will not be rearranged often, the process is sufficiently slow to allow
the time for an optimal routing. The question that remains is to find the minimal

cost network that satisfies the demand of each period.

It would be impossible 1o make the last assuimnption at all levels in the network.
For instance, it is necessary to take into account the type of routing (hierarchical or
dynamic) to determine the number of circuits required to respect a traffic demand.
The routing of calls has to be done so fast that we cannot assume optimal routing.
Different approaches to this problem with traffic demands and hierarchical routing

are given in a paper by A. Girard [39].

One approach in an unpublished paper by K. Kortanec and G. Polak {40,41] has
attr;ncted our attention. The authors use a formulation very close to the formulation
developed in this thesis. The difference is due to the type of demands. Because
of a demand in traflic units they must consider the effects of the routing. The
extra constraints generated prevent them from using the GUB method to solve the

problem. The block diagonal part of the constraints, which is composed of linear
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convex combinations in our formulation, has a general block diagonal form in their
formulation. This generalization of the constraints forces the use of a less specialized

technique called Dantzig-Wolfe Decomposifion technique (42.43).

We present in the following seven chapters a method based on the Revised Sim-
plex Method (RSM) to find the minimum cost rearrangeagble undirected network
with multi-period demands. The problem presents the multi-commodity aspect as
well as the multi-period aspect. The combined effect of the presence of both aspects

results in a problem having a large number of constraints and variables,

In Chapter 2, we address the problem of finding an adeguate mathematical
formulation for the problem. We discuss a formulation based on the arc-chain rep-
resentation of the network. This formulation presents many advantages. First, the
number of constraints is relatively small and a large part of these constraints will
be considered implicitly by the Generalized Upper Bounding technique. A second
advantage of the formulation is the structure obtained. The structure will allow
decomposing the basis by period and convert the problem into the equivalent of as

many one period problems as there are periods.

In Chapter 3, we review the Revised Simplex Method and the Generalized Upper
Bounding technique. This permits us to introduce the notation for the following
chapters and also to present some of the properties of the different steps of the RSM.
Then we show how the GUB technique considers implictly the demand constraints.

Finally, each step of the GUB is briefly described.
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The <tructure of the problem is discussed in more detail in Chapter 4. The
effect of the malti commodity and multi-period aspects on the structure of the basis
is shown. Two subjects closely related to the structure of the basis are presented.
First. the problenr of finding an initial basic solution is solved. Then we prove
how the structure of the working basis (WB) can be preserved by keeping certain

variables (capacity variables) in WB.

In Chapter 5. we present the decomnposed factorization procedure where we
start with an independent factorization of the matrices associated with the different
periods. The following step consists of permuting the working basis in order to
establish a square sub-matrix associated with the capacity variables. The second
part of the chapter is the update of the factorization which requires considering the
position of the leaving column, the type of the entering column (route or slack) and

the period of the entering and leaving columns.

In Chapter 6, we discuss the solution method of two linear systems encountered
in the RSM. The first step of the RSM consists of finding the dual variables. It is
equivalent to solving a linear system involving the basis with the costs of the dual
variables on the right-hand side. The factorization procedure affects the solution
method since the factorization plays the role of the inverse when solving the system.
The second linear system finds the representation of the entering column in terms
of the columns in the basis. Again, it is equivalent to a linear system with the basis
as the coeflicient matrix, but with the entering column as the right-hand side. We

show the reduction in computational complexity of the decomposed factorization



method as compared to the method using the direct factorization of the working

basis.

In Chapter 7, we present a columin generation method. We start by pointing
out the necessity of a column generation method in this problemi. Then we present
a method by which we decompose the problem into as many sub problems of one

period size as there are periods.

The last chapter summarizes the results obtained on the different aspects of the
problem. The results are compared with other formulations and other approaches.

We conclude by presenting possible extensions to this thesis.
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Chapter 2 Formulation

The choice of a formulation is erucial for a problem having very distinct features.
(haracteristies such as multi-commodity flows, multi-period demands and the use
of an undireeted graph can be exploited in a formulation to reveal an interesting
structure, Starting with these characteristics, we may obtain considerably different
formulations. The efficiency of the algorithms to solve the different formulations
of the same problem may vary radically. For this reason, it is necessary to find

a forinulation that allows the use of an efficient algorithm and permits us to fully

exploit the structure of the problem.

2.1 Preliminary Notions

Before we present our formulation. we will illustrate in more detail the two
concepts introduced in Chapter 1. The first is the Digital Cross Connect System
(DXCS). It has the ability to reconfigure the interconnection of the circuits at its
ports. The second is the concept of Dynamic Network Architecture (DNA) using

DXCS to produce a network in which the architecture is adapted to the requirements

of the moment.



13

2.1.1 Digital Cross Connect System (DXCS)

The role of the slow-switching equipment is totally different from the role accom
plished by the switching equipment currently used in networks. Currently, switches
are working on a real time basis. When a call arrives, the routing is immediately
determined and the switches on the route establish a circuit. This is done in a
network having a static and well defined architecture. The role of the switches is
not changed by the introduction of slow-switches; only the routing procedure will
be required to take into account the frequently changing architecture. Contrary to
switches, DXCS does not have the capability to process a call. It is intended to give

flexibility to the architecture of the network seen by the switches.

The structure of a network which incorporates DX(S’s and switches cannot be
compared to the structure of a network using only switches. First, there are no
direct links allowed between switches, all switches are connected to one and only
one DXCS. This is known as a hub structure, and an example is given in Figure 2.1
(switches and slow-switches are represented, respectively, by circles and squares).
In this configuration all the circuits provided to a switch are routed through its

corresponding DXCS.

The principle of reconfiguration made possible by the DXCS is illustrated in
Figure 2.2. In this example we are using the simplest possible network. Oniy one
slow-switch replaces the entire network. The circuit demands for each pair of nodes
are given in the table and the resulting interconnection patterns for periods T and

T’ are shown in the network representation.




Fig 2.1 Hub structure

14



# circuits ] period |{period

between T T'
AB 1 1
AcC 2 4]
A-D 0 1
A-E 1 1
B-C o 2
B-D 2 o
B-E 0 o
C-D 1 1
C-E 0 0
D-E 1 1

Fig 2.2 DXCS
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By varying the configuration of the DXCS, we are in fact changing the archi-
tecture of the network seen by the switches, In Figure 2.3, we present the resulting

architecture for periods T and T’ of Figure 2.2.

As we can see, the replacement of the network by a slow-switch permits radically
changing the structure of the network. In the event of large non-coincidence in the
demands over several periods, the possibility of rearranging the network with all the

flexibility shown in Figures 2.2 and 2.3 is undoubtedly an advantage.

2.1.2 Dynamic Network Architecture (DNA)

Obviously, one cannot think of a network consisting of a single slow-switch as
in Figure 2.2 to replace the entire telephone network. Economic and technical feasi-
bilities would be unacheivable. The solution proposed in Figure 2.1 is the hubbing
configuration. The network is replaced with a simpler network built with slow-
switches. In this configuration each node is connected to exartly one DXCS. The
slow-switch becomes the entry point to the network for all the switches clustered
around it. It is called the DNA network because of its dynamic architecture capa-

bilities made possible by the DXCS.

Before we present the implications of using a DNA network to replace the static
networks currently in place, there is one assumption we can make without changing
the original problem : all demands between switches of the same cluster are satisfied

directly at their common DXCS without using the DNA network.



period T period T'

Fig 2.3 Example of rearrangement
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Our prime objective is to minimize the size of the DN A network. Because they
are considered antomatically satisfied, demands within a cluster are not included in
the demand matrices. Another important remark concerning circuit demands is that
we group all the demands between the switches of DXCS 2and the switches of DXCS
J in a single demand d,;. This permits considering only the DNA network without
the switches and one demand in circuits for each pair of DXCS’s. For example, a

three period situation is illustrated in Figure 2.4.

We have shown in Figure 2.2 the impressive flexibility which can be produced by
a DXC('S. This flexibility is preserved witlhi DNA networks but appears in a different
way. In the case of a DXCS, the flexibility is the result of its ability to connect a
circuit between two ports whenever it is needed. With DNA, the multitude of routes
available to establish a circuit between two DXCS’s is the source of flexibility. For
example. there are 4 possible routes,or ways, to assign a circuit between node 1 and
node 2 in Figure 2.4: 1-3-2, 1-4-3-2, 1-4-5-2, 1-3-4-5-2. Obviously, we are interested

only in routes that do not repeat nodes.

Figure 2.5 illustrates how DNA can be used to reduce the size of a network with
non-coincident demands over two periods. The network considered here is simple
but it demonstrates how the total cost (size) of a network can be reduced. The
circuit requirements of period 1 is dominant on link A-B with a demand of 2000
circuits compared to 1500 circuits for period 2. The requirements of period 2 are
dominant on links A-C and B-C with demands of 200 and 700 circuits respectively

for periods 1 and 2.



1
2 3 4

5
. . d23 d24 d25 . . d23 d24d . . d23 d24
L] [} - d34d35 L L] L4 34 d35 L] L] L] d34
. » . . d45 L4 . Ld b4 d45 . . . [
] » - . ® L. L] - L] L] L. »® » »

period 1 period 2 period 3

Fig. 2.4 Multi-period rearrangeable network
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A

700

DEMAND DIMENSION
Link Per. 1 | Per. 2 current DNA
A-B 2000 1500 2000 1500
A-C 200 700 700 700
B-C 200 700 700 700

TOTAL: 3400 2800

Fig. 2.5 Example of cost reduction
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In a network having no DNA capabilities it is very difficult to take advantage of
the fact that all links are not dominated by the demands of the same period. One way
of handling this situation in a non-DNA environment is to require that the capacity
on each link be given by the circuit requirement of the dominant period on cach link.
In the case of our example (Figure 2.5), the capacities of links A-B, A-C and B-C will
be respectively 2000, 700 and 700. This gives a total capacity of 3100 circuits. This
method was proposed by R. Horn [30] in the context of network planning without
dynamuc archifecture. Its weakuess is the inability to exploit the spare capacity

introduced by the presence of non-coincidence of demands over different periods.

With DNA it is possible to take advantage of the spare capacity in the network.
Returning to the example of Figure 2.5, consider period 1 where there is spare
capacity on links A-C and B-C whereas link A-B is saturated. Consequently, for
each circuit A-C-B established at period 1 using the spare capacity on links A-C
and B-C we can reduce the capacity on link A-B by 1 circuit. As a result, the use of
the 500 free circuits on A-C and B-C does not increase the capacity of these circuits
because period 1 is not dominant for these arcs, but the reduction of 500 circuits
on A-B decreases the total number of circuits since it is dominated by period 1.
The total size of the network is now 2900 circuits (1500, 700, 700) and the demands
of both periods are satisfied. An important remark is that the circuit A-B has a
capacity of 1500 circuits which is less than the demand of 2000 circuits for period 1.
The flexibility of DNA permits allocating the 500 remaining circuits from the spare

capacity of the network.
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2.2 Type of Formulations

In this section we present the different formulations for solving the minimum
cost sizing problem in the context of Dynamic Network Architecture (DNA) and a
detailed description of the formulation selected, namely, the arc-chain representa-
tion. Clearly we are concerned with a multi-commodity flow problem. The impact
of the multi-commodity flow aspect on the formulation is largely reduced by the
presence of one and only one commodity per Origin-Destination pair (OD pair),

allowing a single arc-chain matrix to represent all OD pairs of a given period.

The main feature of this problem is the existence of demands at different periods
in time. As we shall see, it has considerable effect on the structure of the various
formulations. First, flow conservation forces the addition of the equivalent of a
complete single period multi-commodity flow problem for each period added. Since
all periods share the same network, we must ensure that the capacity variables of the
new period are integrated with the capacity variables of other periods to produce a

consistent formulation over all periods.

Another very important characteristic of our problem is the presence of undi-
rected arcs in the network. When we consider a single period problem, undirected
arcs can be replaced by a pair of directed arcs in opposite directions. The demand of
the OD pair k is then included in the formulation by defining one of the end nodes
as the supply node and the other as the sink node. The effect on the formulation for

a single period problem can be considered negligeable but in the context of multi-

period demands the influence of two-way arcs cannot be neglected. We shall see



in Section 2.4 that the orientation of the spare capacity caused by non-coincident
demands is an important factor when rearranging the network. The node-are for-
mulation is especially affected by this problem whereas the are-chain formulation
in which the arcs are not explicitly represented in terms of their end nodes is not

affected.

We will now present our formulation which is based on the arc-chain represen
tation of the underlying network. The following section will show an alternative

formulation using the node-arc representation of the network.

2.3 Arc-Chain Representation

The arc-chain representation of the network is based on a matrix A' having
M rows and L columns. Each of the L columns of A’ is associated with a route
in the network. A column [ is a 0-1 vector of length M with an entry 1 in rows
corresponding to all arcs in route [ and an entry 0 in all rows corresponding to the
arcs which are not part of I. The enumeration of all possible routes is certainly
not the most intuitive approach when representing a network. The node-arc repre-
sentation presented in the next section is by far the most common and usually the
most eflective approach to network flow problems. For this reason, very few people
have been interested by the arc-chain representation when solving the general multi-
commodity network flow problem. In fact, its use seems to be advantageous only

on problems having very special characteristics such as the existence of a different

commodity for almost every pair of nodes, with not more than one commeodity per
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pair of nodes. Another important point is that the number of routes grows very fast
with the size of the network. In the event that we cannot generate the routes only
when they are needed (column generation) then the arc-chain formulation becomes
nearly impossible to use. A column generation algorithm for the formulation we use

will be presented in Chapter 7.

The first appearance of the arc-chain representation for the multi-commodity
flow problem was in a paper by Ford and Fulkerson |23 in 1958. They were address-
ing a single period problem, namely, the maximal multi-commodity flow problem.
The formulation of the maximal flow problem is simpler than the minimum cost
problem hecause it requires only information about the structure of the network. In
the minimum cost problem another set of constraints is required to force the flow
of each commodity at the desired level. These constraints are not necessary in the
maximal flow problem since the flow of each commodity is not given but is part of
the objective function to optimize. The demand constraints insure that at a period
h the sum of the flows on the routes connecting two nodes is equal to the demand
between that particular Origin-Destination pair at period h. In our formulation all
the demand constraints of a period are grouped in a single matrix called E. The
matrix F is a block diagonal matrix in which each block is a row vector of length
[ where I is the number of routes between the Origin-Destination pair k. This
formulation has been used by McCallum [16] for solving the minimum cost capacity

erpansion problem in the single period context.

Figure 2.6 shows matrices A' , E, and the corresponding network for N = 5

nodes, M =6 arcs, A = M%_—ll = 10 OD pairs, and all the L = 32 routes.



A'

- x 2 2
n
- N
o

i
w
N

routes
connecting
_ OD -pair 13

1001:10010110110001001001010001001 ]
011q01%1001001001001001010001001
1100:001:0010011100101011001100011
001130010010011011010100001100011
' )
010110100100101010100010100010010

_0011:0012001110001101001lOOlOll100

_111ﬁooopoooooooooooooooooooooooo‘

OOOOEI 1 150000000000000000000000000
OOOOEOOOEII10000000000000000000000
OOOOEOOOEOOOIII 1000000000000000000
000050005000000011 1000000000000000
0000200020000000000111000000000000
0000500050000000000000111000000000
0000:000:0000000000000000ll1000000
0000000‘0000000000000000000111000
0000000‘0000000000000000000000l11

L--‘-

Fig. 2.6 Arc-chain and demand matrices
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Our formulation of the multi-period problem is based on the two matrices A’
and E. both of which appear once for each period. In addition to this we need
capacity variables that will provide the coupling between all periods. We have
already assigned to E the role of insuring that the circuit requirements of each
OD pair are satisfied for all periods. The matrix 4’ will represent the other set of
constraints, the capacity constraints. The role of these constraints is to insure that
the capacity of an arc is not exceeded at any period by the sum of the flows over all
the routes using this arc. In the following sections. we present formal definitions of

the two types of constraints,

2.3.1 Capacity Constraints

From a given set of flows g" , h = 1...H, where g" is a column vector of length
L, we can compute the total flow on a given arc m for all H periods. In order to
satisfy the requirements of every period. the value of the capacity on arc m has to
be at least equal to the maximal value of flow on the arc over all H periods. In fact

the sum of the flows must be less than or equal to the capacity. Thus
Agh<c,  h=1..H, (2.1)

where C is the M-vector of capacity variables and A' = (A’ml) is the M x L arc-route

matrix and is defined as follows:

A - {1, if arc(m) € Route(l), (2.2)

ml = 10, otherwise .
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Slack variables S" are added to transform Equation (2.1) into standard form.
The interpretation of the slack variables in terms of the network sizing problem is
simple; they represent the spare capacity of each arc for the corresponding period.
Thus,

.“l'gh - ](‘ - ]Sh = 0’ h = ]’“l{‘ (-,'3)

where the two identity matrices have size M.

2.3.2 Demand Constraints

The second set of constraints insures that the demand for each period is satified
between every OD pair. Each column of Eg,; = (Ey;) is associated with a route
of A’ and contains just one non-zero clement corresponding to the end nodes (OI)
pair) of the route.

Egh = dh, (2.4)

where

1, if route ! connects OD pair k, i
B = {0, otherwise, (2.5)

and d" is the K-vector of OD-pair demands for period h.
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The resulting minimal cost problem contains one matrix A', one matrix E, and

two identity matrices per period.

M
min L $yn ("n)

m=1

. g] ]
A’ 0 0 -1 V) 0 1
0 A 0 Tyasmm 11179 0
H
' g
0 0 .4 ”'] S] - 0] , (2.6)
E 0 0 o2 d
My 2
0 E 0 0 : d-
sH )
[0 o E o [d¥ ]

c, St gh >0,

where $,, is the cost per circuit on arc m,

g"

are the flow variables, for period A,

(' is the capacity variable of arc m.

sh
dh
M
N
L

K

are the spare capacity variables for period h,

are the demands for all OD pairs in period h,

is the number of arcs in the network,

is the number of nodes in the network,

1s the number of routes,

is the number of Origin-Destination pairs (Ei-NéAJI), and

is the number of periods.



2.3.3 Scaling of the Constraints and Variables

The Generalized Upper Bounding technique (GUB) is the basis of our solution
method for the minimal cost sizing problem of a rearrangeable network with multi
period demands. The GUB is intended for the solution of lincar programming
problems having a very specific structure. It takes advantage of a formulation in
which a part of the constraints has a block diagonal structure with cach block heing
a linear convex combination of flow variables. The formulation of our problem
presented in Equation 2.6 does not correspond exactly to the structure required hy
the GUB. It differs by the presence of demand vectors d" on the right-hand side of

the matrix E whereas the GUB requires the presence of ones on the right-hand side.

We achieve the GUB structure by scaling the flow variables. The scaling is
carried out in two steps. First, the demand constraints (Figure 2.7a) are divided
by the corresponding demand dk (Figure 2.7b). Then the columns associated with
routes connecting the Origin-Destination k in period h are multiplied by dﬁ (Figure
2.7c). Our objective is to exchange the d’,: for 1 without affecting the block diagonal
structure of unit vectors in E. By dividing each demand constraint by its dﬁ in step
one we are replacing the right-hand side by a unit vector and altering E slightly.

The matrix E remains in the block diagonal form but the blocks are now vectors of

1
dr’
The second step of the scaling process consists of restoring the ones in the matrix

E. 1t is done by replacing the flow variables gl" with new variables f,” such that

glh = flhd?)D(l)' It is equivalent to multiplying each column of A’ for period 4 by its
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corresponding rli’,. The new arc-chain matrices now include the circvit demands of
each period and must be labeled with the superscript h indicating the period they

represent,

The new matrix A" = (A:;l,) is defined as follows:

Aml -

h {ng(”, if arc m € Route [,
0, otherwise.
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2.3.4 Final Formulation

The final formulation satisfies the structure requirements of the GUB technique.
The right-hand side of the demand constraints is composed exclusively of ones and
the demands dif are now integrated into the structure of the network in the matrices
A" The matrix E has kept its block diagonal form where each block is a single row
of ones, forming mutually exclusive linear convex combinations of flow variables flh
(‘onsequently, in each period h there is one linear convex combination per OD pair

k,k=1.K; Y {1ioD()=k} flh = 1, where a flow variable f,h represents the {raction

of ngU) serviced by route . Our final formulation is thus
M
min Z $:mCm
m=1
] -
[ A] 0‘, e 0 -1 (;2 .01
0 4° 0 lpmxnm 17 0
- AH E1 g 0
0 0 g -
§1| = : 2.8
E 0 0 o2 1 (28)
0 E 0 0 °
o
0 0 E Hel

c,sh fh >0,

where $,,, is the cost per circuit on arc m,
f* = (f}) where f}! is the fraction of d isfied us
= (fi') where f[' is the {raction o oD(l) satisfied using route [,
C is the vector of capacity variable,

Sh are the spare capacity variables for period h,



33

M is the numbher of arcs in the network,

N is the number of nodes in the network,

L is the number of routes.

K is the number of Origin-Destination pairs ( h- \'.E,\ 1) ), and

H is the number of periods.

Equation 2.8 can be rewritten as follows:
M

in N §.,C
min ) $mCm
m=1

il

K
Y AR ash oCn=0, m= 1M LLH,
k=1{110D(l)=k} (2.9)

D fllfl =1, h=1.Kh-1.H,
{1|oD(1)=4}

¢, st k>,

where f{’l is a flow variable for period h corresponding to a route I connecting OD

pair k.

Due to the nature of our problem, the arc-chain representation has shown nu-
merous advantages over other mathematical representations of a network, the most
important being the possibility of using the efficient GUB technique. Another sig-
nificant advantage is that a routing for each period will be readily available at opti-
mality from the flow variables. We will see in the next section that the “compact”

formulation obtained is another reason for using the arc-chain representation.
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2.4 Node-Arc Representation

The node-arc representation of the network is based on the incidence matrix
F (Fum). Each of the M columns of F is associated with one of the M arcs
whereas the N rows are associated with the N nodes. A directed arc m is defined
in F by its endpoints (1;,em) where node tp, is the tail of arc m and node ey, the
head of arc . The column representing an arc m = ({m.€em) contains only two
nonzero elements ; the rows associated with nodes t;; and e, respectively, contain
the clements -1 and 1.

—1, ifnode n is the tail of arc m, (2.10)
0, otherwise.

1, if node n is the head of arc m,
Fam = {
In an undirected network each arc is replaced by a pair of arcs in opposite directions.
The node-arc incidence matrix of an undirected network can be given by ( F,—F)
in which Fx, as = (Fum)is the incidence matrix of a directed network with the arcs

m = (tj,€m) such that 4, < €. Examples of node-arc matrices for undirected

and directed networks are given in Figure 2.8.

With this representation, the origin node of a flow arriving at a given node
cannot be identified if there is more than one supply node. It would be difficult
to determine the number of circuits between each OD pair if there were more than
one Origin-Destination pairs represented by a siigle node-arc matrix. Consequently,
at lcast one node-arc matrix is required per OD pair at each period and the total

number of constraints becomes considerably large.



35

RO © © 7 ~
ﬂoo.l..ﬂo
&01001..
RO —~ = o0 ©
M..I..OOIO
MIOI..OO
L J
- N M o WD

]

¢ 3

g

3}

£ g

H O

g9

S8

g

13}

E

node

Directed graph

Fig. 2.8 a)

0 0-1-1 00
1 010-10

0100 1-1

2

3
4

F =

500001 01

node

node-arc incidence matrix (F,-F)

Fig. 2.8 b) Undirected graph



36

2.4.1 Single Period Problem

The minimal cost cizing problem for an undirected network in the context of a
single period demand has a trivial solution. It is not necessarily the case for multi-
period demands or for directed networks. When we consider just one period there
is no spare capacity available to route a circuit without adding one unit of capacity
on ecach are along a route. Each time we add a route, we are increasing the cost
of the network by the sum of the unit costs of the arcs along the route. Thus it is
impossible to take advantage of the existing capacity in order to add a route at a
cost less than the total cost of the arcs. Since the cost of the network is given by
the sum over all routes of the total unit cost of the route multiplied by the flow on
the route, the best solution is obtained by routing each demand via the least cost
path. Although we know the optimal solution, the formulation of the single period
problem has some interesting properties which will reappear in the multi-period

problem.

In the single period case, the treatment of the network as directed does not
affect significantly the formulation of the problem. In addition to the fact that
each arc is replaced by two arcs with opposite directions, only a small change in
the demand vectors is necessary. When the demand between nodes i and j is
considered, one of the nodes has to be designated as the source and the other as the
sink. It introduces a direction on the demand and therefore on the spare capacity
available for possible rearrangement. But, since there is no rearrangement of the
spare capacity necessary in the single period problem, the introduction of directions

does not affect the solution.



2.4.2 Multi-Period Problem

The multi-period problem is much more complex. In fact the trivial solution of
the single period case becomes the starting point for the rearrangement procedure
that optimizes the cost of the network. The problem arises when a direction is given
to the demand, introducing a direction on the spare capacities and thus reducing

the number of possible rearrangements.

Figure 2.9 illustrates a situation where it is possible to reduce the size of the
network only if the direction of the demand 2 - 3 is reoriented in the other direction.
In this example, we start with a spare capacity of 500 circuits from node | to node
2 at period 1, the arcs 1 to 3 and 2 to 3 each have 500 free circuits available for
period 2. It is now impossible to use the spare capacities of period 2 and reduce the
size of the arc 1-2 by establishing links along 1-3-2. At least 500 of the 700 circuits
required between node 2 and 3 must be reoriented in the direction 3 — 2 if we want

500 circuits 1-3-2 created with the spare capacity of period 2.

In a larger network we cannot anticipate as to which share of the demand should
be sent in each direction. Therefore, we have to formulate the multi-period problem

in such a way that the demand is not oriented. For each Origin-Destination pair 1

h

and j we define two demand variables bl]

and b;', representing the demands from i

to j and j to 7 respectively in period h. Another set of constraints will insure that



3
DIMENSION
source |demand|{demand|  spare before after
~sink | Per. 1 | Per. 2 | capacity [reqientingreorienting
5012
1-2 ] 1500 | 2000 period 1 2000 1500
500153
1-3 700 200 period 2 700 700
50023
2—3 700 200 period 2 700 700
TOTAL : 3400 2900

Fig. 2.9 Capacity orientation in the node-arc formulation
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the sum of the demands in the two directions is equal to the original demand df’l.

(Fo-F)h v, -0,
(Fo F)fh < b0, 0, (2.11)

h h h
b,) + b_;; . (I,J,
where 1;; is a column N-vector containing only two non-zero elements; positions 1
and j have values 1 and -1 respectively. The node-arc formulation requires H K
N(N- . . . . -
E—(Q\—-H copies of (2.11), one per OD pair at each period. In addition to the

demand constraints, there are H sets of M constraints each of which insures that

the capacity is not exceeded on any arc.

2.5 Comparison Between the Number of Constraints in
the Node-Arc and Arc-Chain Formulations

The total number of constraints with the node-arc formulation is H(N% - N? |
M). If we consider a network with H = 20 periods, N = 10 nodes and M — 25 arcs
we have almost 20000 constraints in the node-arc formulation. The problem can
be treated using the Dantzig-Wolfe Decomposition algorithm. It is then reduced
to roughly 1000 problems of 20 constraints each and one master problem of 500

constraints.

The arc-chain formulation contains H(M + Mﬁéf—l) ) or 1400 constraints for the
previous example. Because of the structure of the arc-chain formulation the last
900 constraints will be considered implicitly by the Generalized Upper Bounding

Technique. Thus, the solution of the problem is equivalent to solving a problem

with only 500 constraints.
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Review of the

Chapter 3 Revised Simplex and
GUB Algorithms

All optimization techniques based on the simplex method proceed by improving
the current basic feasible solution from one iteration to the next. The basis matrix,
which is non-singular, defines a solution as well as a value to the objective function
which is unique to this basis. At each iteration the simplex identifies an entering
and a leaving column such that the exchange of the two columns leads to a new
unique solution having an improved value of the objective function. The simplex is

applied to problems of the following form:

max z = $z
Azx = b, (3.1)
x 20,

where : is the objective value associated with the solution r as evaluated by the

objective function : = $z.

The linear system 4x = b and = > 0 is composed of a set of constraints which
determines whether a solution is feasible or not. Since the region of feasibility is
defined by lmear constraints, the set of the feasible solutions is convex. This means
that if two points a and b are feasible solutions then all the points on the line
segment joining them are also feasible solutions. The resulting multidimensional
region is called a polytope. An example of a polyhedron (a bounded polytope)
arising from a problem having three variables and eight constraints (including the

three non-negativity constraints) is presented in Figure 3.1.
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We note that the number of variables determines the dimension of the Enclidean
space in which the polytope resides whereas the number of constraints indicates the

number of facets of the polyhedron (assuming no redundancy in the constraints).

The geometric interpretation of the objective function is a scries of parallel
planes, each corresponding to a diflerent value : of the objective function. The
vector § (the gradient of the objective function) composed of the unit cost of cach
variable indicates the direction of increase of the objective value. All the points on
a plane orthogonal to the vector § have identical objective values (see Figure 3.2).

The simplex searches for the tangent plane in the direction of $.

The basic feasible solutions are the vertices of the polyhedron. The simplex
procedure maximizes the value of the objective function by moving from vertex to
vertex along the edges of the polytope defined by 4z = b, z > 0. If we suppose that
we start at the point a in Figure 3.1 and that the corresponding objective function
is the one illustrated in Figure 3.2 then a likely path followed by the simplex is the

sequence of vertices a — b — ¢ — d.

The geometric interpretation of the simplex algorithm can be divided into two
parts. First, we determine the possible edges to leave the current vertex. All edges
directed on the same side of the current objective value plane as the gradient vector
$ will increase the value of the objective function if used. The best edge would be
the one that is the most orthogonal to the current objective value plane, in other

words, the edge that is the most parallel to the direction of increase of the ohjective

function. The second step consists in determining the length of the displacement



Fig. 3.1

Representation of a constraint set
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Fig. 3.2 Representation of the objective function
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along the chosen edge. We repeat these two steps until we reach a vertex on the
tangent plane in the direction $. This point is the optimal solution to the linear

program since there is no possibility of improving the value of z = $z.

3.1 Revised Simplex Method

The introduction to this chapter may give the impression that the solution of a
linear program is relatively easy. The reality is totally diflerent. As the number of
variables and constraints increases the size of the problem becomes too large for an
eflicient solution by the standard simplex method. This problem can be avoided by
using the Revised Simplex Method (RSM), a more structured version of the simplex
algorithm. Basically, the RSM is divided into six steps based on the solution of two

linear systems involving the basis matrix 8. The RSM is presented in Figure 3.3.

The first two <« ps define an entering variable (most promising edge). In the
event that thereis no variable satisfying the criteria for entering the basis, the current
basis is declared optimal. Step 1 computes the dual variables yu associated with the
current basis. In step 2 we verify if all the constraints of the dual problem are
respected. Since there is a one-to-one correspondance between the dual constraints
and the variables of the primal problem, the variables eligible to enter the basis
are associated with the violated dual constraints. In Figure 3.3, we have used the
largest-cocfficient rule to determine the entering column; the entering column a€™

is defined as the non-basic column whose corresponding dual constraint is the most

violated. In fact, $ — pa’ is the rate at which : increases when the value of the



RSM

Find dual variables g by solving uB - $8.

1

. Choose the entering column a¢™ corresponding to

max($ - ual).
alqu( pa’)

H $) — pa’? < 0 for all j, the current solution is optimal.

. Find the representation o of a*™ in terms of the columns of B.

Bo = a®™

Identify the most restricting constraint.

B
T
min -+ = 0.

a,>0 o,
Update Xg = B~1b- G0 .
Update the basis B .

Fig. 3.3 Revised Simplex Method
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entering variable increases. The simpley algorithm always precerves primal feasiblity

and complementary slackness {42, When all dual constraints are respected we are

at optimality.

The following two steps determine the rate of variation of the basic variables
when the value of the entering variable is increased, and the leaving column a'€a?.
In step 3, we compute the representation of the entering column a™ in terms of
the columns of the basis. The elements of the resulting vector o, associated with
the columns of B, indicate the rate at which the values of the basic variables change
when the value of the entering variable increases by 1. Since all variables in the
simplex have a lower bound of 0, we increase the value of the entering variable until
one of the basic variables reaches the value 0. This is done in step 4 by identifying
the most restricting constraint. If all 6, < 0, then the linear program is unbounded.

In our problem, this cannot occur due to demand constraints.

In Steps 5 and 6, the different variables and matrices are updated to reflect the
changes to the basic variables and the basis. The new basic variable associated with
the entering column takes the value © whereas the other basic variables le take the
value :rlB — Oa,. In theory, the update of the basis is limited to the replacement of
the leaving column in B by the entering column. In practice. those columns can be
replaced either in the inverse of B or in a triangular factorization of B, since these
are two computational devices which can be used to solve the two linear systems of
Step 1 and 3 of the RSM. In the preface to his book, Chvital 42] declares that “the
inverse of the basis is an anachronism that has no place in modern versions of the

revised simplex method.”.



There are various reasons why the use of triangular factorization is superior to
the use of the inverse.

- The most important reason is the possibility of exploiting a particular struc
ture of the basis when using triangular factorization. The inverse usually
does not preserve the structure of the original matrix. For our problem, this
is an important consideration.

- The triangular factorization is (at least empirically) faster to compute than
the inverse of the basis, and consequently round-ofl errors are more serious
in the case of the inverse. In our case, the increase in calculation speed can
be theoretically established.

- The solution of linear systems based on back substitution in triangular ma
trices is theoretically equivalent to solution using the inverse. In our case,
one can show that back substitution is indeed faster.

The update of a triangular factorization is a complex problem, and will be

covered in Chapter 5.
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3.2 Generalized Upper Bounding Technique

For most large scale linear programs one must use the RSM as it becomes impos-
sible to store in computer memory all the columns of the constraint matrix. Indeed,
in some cases these columins are not immediately available, but are implicitly defined
and must he generated during the course of the algorithm. For certain structured
problems, techniques such as Dantzig-Wolfe decomposition or Generalized Upper
Bounding (GUB) technique use the RSM after first reducing the number of rows of

the constraint matrix.

The following formulation presented in Chapter 2, based on the arc-chain rep-

resentation, has the structure required by the GUB.

M
minzs,n("m
m=1
.f].
r4l 0 0 -1 I 0
2]
0 4° 0 Iparsmm -1 , 0
: : H :
0 0 AH -1 fq] _ |0 (3.2)
E 0 0 2 1 '
0 E 0 0 :
qH
0 0 E s 1]
L J CJ

C,sh fh >0,

where $,,, is the cost per circuit on arc m,
A" is the arc-chain matrix associated with period h,
E is a matrix indicating the OD-pair of each route ,

fh = (j;‘) where (th) is the fraction of d'(l)D(aJ) satisfied using route a/,



44

C is the vector of capacity variables,
Sh are the spare capacity variables for period h,
M is the number of links in the network. and

H is the number of periods.

Recall that N denotes the number of nodes in the network and A N()g )

denotes the number of origin-destination pairs.

3.2.1 Properties of the Basis B

Each of the last HK constraints in 3.2 corresponds to a period and an OD- pair.
Since these constraints are in fact linear convex combinations, then in any feasible
solution at least one flow variable from each period must have a non zero value.
Therefore all bases. which necessarily contain all the columns associated with non
zero variables, are composed of at least one route from each origin-destination pair
and period. We group one column from each period and OD-pair in the first HK
columns of the basis; these columns are called the key columns. The square matrix
in the bottom part of the key columns is an identity matrix of size HK » HK , as the
key columns comprise one column for every OD-pair and period. The upper part
is composed of H matrices K", each of size M » K, comprising the key columns of

their corresponding period. Thus. B is given by

K! 0 0 i
_ 0 K- 0 | BilM.HM
K B] : : .. : |
— . . . . i 3.3
Y I @3)
—— — —— — —— — . - __* ~
Lk nx l Cuxoum J
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GUB tran<forms the basis using a matrix T defined as
(34)

‘The effect of post-multiplication of B by T is the elimination of the matrix ' and

the subtraction of KC' from B.

K WB
BT—[] 0], (3.5)

where WB - B - K(' is a non-singular matrix called the working basis. The product
K(', which is subtracted from B, is never carried out in practice. In fact, the columns

of WB are defined as follows:

If a column is associated with a slack or a capacity variable then the column
appears in WB unchanged.

A column of WB representing a route is obtained by subtracting from the
corresponding column of B the key column associated with the OD-pair and
period of the route.

We shall demonstrate that the two linear systems solved in Steps 1 and 3 of the
RSM can be reduced to systems based only on the working basis when using the GUB
technique. Another important characteristic of WB is that the M capacity variables
remain in the working basis throughout the entire execution of the algorithm. This
is proved in Chapter 4. The other (H — 1)M columns of the working basis are
grouped by period into submatrices Q" so that

Ql
WB =

00 0 -1

ST L) 59
6 0 Q.H _:1

where QM has size M » q". Since there is a one-to-one correspondence between the

columns of WB and the columns of B and C, they take the following form after
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permuting the columns as in WB:

B' 0 0 1
. 0 B 0 1
B = . . s (1.7)
0 0 BH
oo 0 0
0 (* ... 0 0
c=1|. . . . ] (3.8)

0 0o ... g
The matrix B" contains non-key columns from A" and the unit M-vectors associated

with the slack variables.

We have mentioned that for various reasons we opted to base the solution of the
two linear systems on a factorization method rather than on the calculation of the
inverse. Since the linear systems depend ultimately only on WB, we need to factorize
only WB. The structure of WB allows for a very effective method of solution of these
systems using principles taken from factorization and decomposition methods. This

is discussed in Chapter 5.

3.2.2 The GUB Algorithm

Basically, the six steps of the GUB technique are identical to those of RSM.
The difference lies in the way the two linear systems are solved using systems of size
HM x HM based on the matrix WB. We now present the most important points

of each step along with references to the chapter or section covering the subject in

more detail.
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3.2.2.1 Step 1. Finding Dual Variables (7, ).

To find the dual variables we must solve the system
(m,p)B = (0,...,0.8;,...,%51). (3.9)
Both sides of the above equation are post-multiplied by the matrix T, giving
(w,p)[}]{ “(;B] =(0.....0.%;....,%53) (3.10)
This system can be decomposed into the following two subsystems:

#WB =(0,...,0,%,,...,85p), (3.11)

p=~-7nK, (3.12)

where the right-hand side of Equation 3.11 is composed of the last HM elements
of the right-hand side of Equation 3.10. By further exploiting the structure of WB
and K it is possible to considerably reduce the amount of work involved in solving

the two subsystems. The details of the solution are given in Chapter 6.
3.2.2.2 Step 2. Choice of the Entering Column a*™.

The entering column is determined by

in($7 - (m, p)d’), 1
aTé’é( (myp)a’) (3.13)

where @/ is a column of the constraint matrix shown in Equation 3.2.

Only the capacity variables have unit costs different from zero. and since they remain

in the basis we have $ = 0, Val ¢ B. Thus,

—(m, )@ ™ = 5;%(—(7‘-,;:)&"). (3.14)
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The value (7, )a€™ is the rate at which the value of the objective function decreases

when the entering variable increases by one unit. If - (7. )a@™ > 0, then it iy
impossible to reduce the current value of the objective function and, therefore, the

current solution is optimal.

Equation 3.14 is not solved by enumerating all the rontes and the slack variables,
and then computing —(7,p)a’ for each one of them. We present in Chapter 7
a column generation technique which solves Equation 3.14 using the structure of
the underlying network. In fact, the product -na/ is the cost of the route @ in
a network having the —x as costs on the arcs. By finding the shortest path and
adding the corresponding y we can determine the best variable cligible to enter the

basis.

3.2.2.3 Step 3. Finding the Representation of a**' in Terms of B.

The representation of the entering column in terms of the columns of the basis

is found by solving the linear system
Bo = ™. (3.15)

In order to exploit the structure of the basis, we make a change of variables using

the matrix T. Thus,

o=T

”1]. (3.16)

o2

Substituting Equation 3.16 in 3.15, we obtain the following linear system:

for] _[K WB][a1] _ .ent
BT[Uz]_[I 0 HazJ—a ' (3.17)
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From the last HK equations of this system we conclude that oy is equal to the last

HEK elements of @™,
~ent

aHh1+1

o = : . (3.18)

~ent
aHM+HK

We shall demonstrate in Chapter 6 that Koy is, in fact, the key column associated
with the OD-pair and period of column @™. Therefore o5 is obtained by solving
the following linear system:
WBap = a®™, (3.19)
i

where a*™ is composed of the first HAM elements of the column vector a¢™ —
p

KEY(a¢™). Here KEY(a™) is the key column associated with route aent,
An efficient procedure for solving this system, using the decomposed factoriza-
tion, is given in Section 6.3.

~leaqr

3.2.2.4 Step 4. Identification of the Leaving Column a

The leaving column is associated with the most restricted variable currently in
the basis, that is to say, it corresponds to the variable first attaining the value 0
when the value of the entering variable is increased from 0. It is the basic variable

B such that

Tlear B B
E _ T3
Tlear _ min al ) (3.20)
Olear 9, >0 o

1< SHR+(H-1)M

In Theorem 4.1 of Section 4.2, it will be proved that if a column corresponding to
a capacity variable is to be chosen for leaving the basis then there is a route or a
slack variable which is also eligible to leave the basis. We shall retain the capacity

variables in the basis throughout the execution of the algorithm so that the structure
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of B and hence WB is preserved. This is reflected in Equation 3.20 where the last

M basic variables are excluded {rom cligibility for leaving the basis,

Since all unit costs are greater than or equal to zero and all flows are upper-
bounded by the demand constraints, it is not possible to have an unbounded solution
(6, <0,Vi=1...HK + HM). In other words, ¢, > 0 for at least one value of

1<i<HRK +HM.
3.2.2.5 Step 5. Update of the Basic Variables o

The basic variables could be computed at each iteration as follows:

BaB = [OHMH]. (3.21)

1HI\')(I

B

The row vector 2 is obtained much more easily by simply updating the current

values of the basic variables. The basic variable associated with the leaving column
is removed and replaced with the variable corresponding to the entering column,
B

namely 5 ,, which has a value of ©. The other variables are updated by subtraction

of the product Og,.
TeBnt =0,
(3.22)
1‘? =1‘,B—G)a,, 1 # ent.

3.2.2.6 Step 6. Update of the Basis

The update of the working basis WR becomes simpler if the leaving column of

B is also from WB. So our update procedure is in two parts. Firsi we examine if the
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leaving column is also a key column. If so, it is brourht into WB. Then the leaving

and entering columns are exchanged in WB.

The details of the update procedure along with the update of the factorized form

of WB are discussed in Chapter 5.
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Chapter 4 Structure of the Problem

In this chapter. we study the structure introduced by the presence of multi
period demands in a rearrangeable network. Two subjects strongly related to the
mathematical structure of the problem are discussed: the construction of an initial
basic solution and the possibility of preserving the structure of the basis from one

iteration to the next by keeping the capacity variables in the basis.

In Chapter 3, we have shown that the solution of this minimum cost problem
by the GUB technique depends mainly on the two linear systems (Equations 3.10
and 3.15) involving the working basis WB. The part of the basis containing the key
columns is not used when solving the linear systems and this considerably reduces
the size of the problems solved in steps 1 and 3 as compared to the RSM applied
to the original problem. Although the basis used by GUB is the same as the one
used by the simplex, a transformation of variables through the matrix 7' permits

the decomposition of the basis and simplifies the solution of the two linear systems.

K! 0 0 x ]
0 K? 0 |  WB
BT = { ; s
0 0 K/ ;
e e
IHK ~HK 0 | (4.1)
Q' o 0 -l
0 Q° 0 -1
where WB = Q . M
0 0 Q” -Iy
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GUB groups its basis BT into two sets of columns corresponding to the key
coluruns and the workimg basis (Equation 4.1). The first set contains exactly one
route from each OD pair at every period forming H matrices K" of K columns each.
Since each key column represents a different OD pair and period the result is an
identity matrix Iyk , yk in the last HK rows corresponding to the key columns.
The second set is the last HM columns of BT composed of slack variables, capacity
variables and routes. The last HK rows of these columns contain only zero values

and the first HM rows contain the working basts WB.

4.1 Structure of the Working Basis

The presence of multi-period demands is also reflected in WB. The routes and
slack variables are grouped by period forming H matrices Qh of qh columns and
the last M columns are the capacity variables (Equation 4.1). The working basis
will be used when solving the systems 7WB = $WB and WBo5 = ™. These two
systems could be solved much faster if it were possible to decompose WB by period,
but the presence of the capacity variables does not permit a real decomposition
into H subsystems each of size M x M. In the next chapter, we show that WB
can be decomposed into H + 1 parts corresponding to the H matrices Qh and
to a matrix X extracted from the last M columns. Each of these parts will be
factorized separately and used highly interdependently to solve steps 1 and 3 of the
RSM. The resulting factorization of WB is highly dependent on the structure of our
formulation. characterized by the the presence of all the capacity variables in the

basis.
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In order to prove that the capacity variables can be made to remain in the
basis we first show how an initial basic feasible solution containing all the capacity
variables can be obtained (Section 4.1.1}. Then we prove that the choice of a capacity

variable as the leaving variable can be avoided (Section 4.2).

4.1.1 Initial Basic Solution

The problem of finding an initial basis has a trivial solution and can be solved
in two steps. In this solution all the demands will be satisfied by the key columns.
The working basis is composed exclusively of slack and capacity variables. The first
step consists of choosing the key routes. The capacity of each arc is determined in

the second step and finally the slack variables are selected to complete WB.
4.1.1.1 Initial Basis: Key Columns Kh

Each key column is associated with the demand of a given OD pair k and period
h. In the initial basis the routes forming the key columns will be the only routes in
the basis. Consequently all the demands d;: of period h and OD pair k will be routed
by the key variable represented by the k'h column of K*. Any route connecting OD
pair k is acceptable as the key column but in order to reduce the number of iterations
we would like to have a route that will probably stay in the optimal basis. A good
candidate for this role is the least cost route, as shown in 2.4: this solution is in fact

optimal for a single period. Using the unit costs per arc $,,; as lengths, we find the

shortest paths between each of the K OD pairs. These A routes will form the key
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matrix K. The variables associated with these routes, having been scaled, assume
the value 1. All other route variables have value 0. Since the unit costs of the arcs
are the same for all periods, these least cost paths are the same for all periods; thus
the initial key matrices KP are the same for all periods. As an example, a network

and the corresponding initial matrix K is presented in Figure 4.1.
4.1.1.2 Initial Basis: Working Basis WB

The demand constraints having being satisfied by the variables corresponding
to the key columns, we now have to satisfy the capacity constraints. In this initial
solution the number of circuits necessary on arc m at period his & ‘_,k_] K" mk- The

capacity of arc m has to satisfy the requirement of every period, so that we must

set

K
Cm = max {Z Kf’nk}. m=1,..,.M. (4.2)
h=1.H k=1

This gives M capacity variables in the basis. The basis is completed with slack
variables. There are H M slack variables, one for each arc at every period. However
only (H — 1)M columns are needed to complete the basis. At least one of the H
slack variables associated with any arc m does not have to be in the basis (has the
value 0). This is because from Equation 4.2 we know that in one of the periods,
say h®, capacity (' is equal to the number of circuits used by this period on arc
m. The slack variable value (spare capacity) is defined as the difference between the

capacity and the number of circuits used, that is,

= Cm- Z Kt (4.3)



ODpair 12 13 14 15 23 24 25 34 35 45
0O 0 0 0 0 O O O O O
di disdjy, d. 0 0 0 0 0 0 |
Kh___ db 0 0 o0 dy d, 0 0 dis 0 |2s
0

0

arcs
13

0 0 0 0 0 o dL o di 25

d dw 0 0 ©O0 di 0 di o 34

L000dy500000d;54s

Fig. 4.1 Initial key matrix
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Therefore for penod h* the slack variable S,’;; has a value zero and can be left out
of the basis. The same is true for all A arcs, leaving M(H - 1) slack variables for

the completion of WB.

An example based on the network of Figure 4.1 (M =6 and H = 4) is given in
Figure 4.2, The number of circuits needed in each arc in order to satisfy the demand
constraints using the least cost path at every period is shown in Figure 4.2a. From
the same figure we determine the capacity of each arc and encircle its value. Figure
4.2 shows the value of the slack variables S,’;, that will be in the initial basis. The
symbol - indicates the dominant period h* for each arc. The corresponding slack
variable will be non-basic. The resulting working basis and the values of the basic

variables are given in Figure 4.3.

4.2 Preservation of the Structure of WB

The structure of WB s characterized by the presence of all M capacity variables.
We have shown that there is an initial basic feasible solution with this structure.
We now prove that the structure is preserved from one iteration to the next by
preventing the choice of a capacity variable as leaving variable. The leaving variable
is determined in Steps 3 and 4 of the algorithm. Recall that in Step 3 we find the
candidate to leave the basis as a function of the entering variable by first solving the
linear system Ba = @™, All columns j such that o; > 0 are eligible to leave the
basis. In Step 4 the leaving variable is identified as the first one whose value attains

the value 0 when the value of the variable associated with d™! increases.
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1
13 [(©) o o of 0
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Fig. 4.2 a) Determining the initial value of the capacity variables

Value of slack variables S?-

13 Xx 0 0 O
14 20 20 X 10

23 X 0 20 30
25 | 10 20 x 20
34 X 0 10 0
45 | 30 20 10 X

Fig. 4.2 b) Assigning initial value to the slack variables
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Theorem 4.1: At each iteration there are at least H routes or slach variables

eligible to leave the basis if a capacity variable is eligible to leave the basis.

Proof: We first prove that if the capacity variable associated with arc in® is eligible
to leave the basis, then there are at least H other candidates. From Figure 4.4 we
see that (- is present in one constraint per period. In equation form these H

contraints are as follows:

h
~ent ™ 1-h Kh ~ 5} ﬁh ¢
GU;—I)MMn' = >_4 Kok o }__, Bl'n'q Tq T h = 1..H,
k=1 q-1
t c X h Kh g" Ny Bh
~en ~ ah
Ah-NM4+m- T Om- = S Kok ok + ) Bi-q 94 h=1.H.
k= q:l

(4.4)
We know that @™ > 0, K?n'k >0, E?n'k > 0 and that if C,,,- is eligible to leave the

basis then cr,c,;. > 0. Therefore according to Equation 4.4 there must be a route or a

. . . . . A h ‘
slack variable using arc m* in each period h with a{,‘ >0 or nff > 0 respectively.
We now have H candidates to leave the basis in addition to C,,-. We complete
the proof by showing that these H candidates attain a value 0 before or at the same
time as the capacity variable (';5-. In fact we will prove that it is impossible to have

a non-zero value for the candidates when (- = 0.

In the simplex procedure the primal constraints are not violated and the non-
basic variables are all 0 leading to the following equation for our problem.

BrB - [OHMM],

IHle (45)

= = T
1 2 H 1 2 H
where B = [IK ,:'K ...,:rK ,:rB ,:rB ...,:rB (7} .
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We now extract the H equations associated with m*

I\-
S‘ ’n k ‘rk L Bn[ q 1"' 0; h ]...}l . (‘1.6)
k_-l

If the capacity variable (' were to assume a value 0. then according to Equation
4.6 all route and slack variables using arc m*. including the H candidates, must be
equal to 0 forcing the H candidates to attain a value 0 before or at the same time
as (', We conclude that they are all eligible to leave the basis and can be chosen

instead of the capacity variable.//
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Chapter 5 Factorization and Update

At each iteration, the genrralized upper bounding technique solves two linear
systems involving the working basis WB, in Steps 1 and 3. The use of the inverse
WB ! is not recommended for many reasons. First, the sparsity of a matrix is
rarely preserved through the inversion process as shown in the example below due

to Chvital [42).

] 177} 05 05 -0.5 0.5 -05
11 ~05 05 0.5 -0.5 05
1 1 =] 05 —05 0.5 05 -05
11 —05 05 -0.5 05 05

11 05 —05 0.5 -05 0.5

As a consequence, it would be difficult to fully exploit the structure of WB when
WB~!is used for solving the linear systems. Another outcome of using the inverse
is a possible poor accuracy of the solution obuained, round off errors being non-

negligeable even with periodic reinversion of the matrix [44).

A more eflicient approach is the factorization of the working basis which consists
of a sequence of pivot matrices defined by a pre-processing of WB[45,46]. These ma-
trices triangularize WB as is done in Gaussian elimination. When this factorization
is used, the structure of WB permits its decomposition into much smaller subma-
trices which can be treated separately. The factorization can be updated at each

iteration instead of being refactorized from scratch which takes much more time.

We present in the next section a factorization method that exploits the structure

of WB and reduces the order of complexity for the solution of systemsinvolving WB
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as well as the update of WB. The section following cxplains the update process of
the factorization. The solution of steps 1 and 3 of the revised simplex using this

method will be presented in Chapter 6.

5.1 Triangular Factorization

Given a basis matrix B, triangular factorization produces an upper triangular
matrix U/ and a series of matrices Lj, Py,...,L, Pysuch that
L;P;..LyAB=U. (5.1)
The lower triangular matrices L, differ from the identity matrix I only in the pres.
ence of non-zero elements below the diagonal and are of the form
1 ;

1

Qy |

Qg 1

Qg 1

b

The L]'s carry out Gaussian elimination on Bin order to obtain the upper triangular
matrix U. The permutation of the rows is done using permutation matrices P,
obtained by permuting the rows of an identity matrix in the same order as the rows
of the partially triangularized matrix should be permuted. This moves a proper
noh-zero element to the pivot position for the next elimination of below-diagonal

non-zero elements.

The main objective of the factorization is to speed up the solution of the two

linear systems: the computation of the dual variables in Step 1 and the representa-

tion of the entering column in terms of the basic columns in Step 3. In Step 1, we
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solve the system (7, p)B = $8 which is done by defining a new vector of variables

7 such that
(myp) = ZLjPy..L1Py. (5.2)

Note that L Py...Ly Py is non-singular, so that the variables Z are well-defined. The

dual variables are computed by first solving

ZU = B (5.3)

and then by applying Equation 5.2.

In Step 3, the linear system Bo = @™ is solved by replacing @™ with
L;Pj..LyPya®™ and B with U. Then we get
Ues = LjPy...L Pa™. (5.4)
As we will see in C'hapter 6 the solution of linear systems involving an upper tri-
angular matrix is also very fast; only -M—Qg;ll multiplications and additions are

necessary for a system of order M.

Although at first the factorization may seem to require more storage than the
inverse, this is not necessarily the case. Indeed, we need only store the non-zero
column of L;; the rest is simply an identity matrix. The permutation matrices P;

will also be kept in memory as a vector, indicating in which order the permutation

should be done.

5.1.1 Factorization of WB

In the previous section we assumed that the matrix B had no particular structure
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and we proposed to factorize the entire matrix without trying any decomposition.
In fact, the matrix WB in the two lincar systems that we have to solve has a very
special structure that allows a compromise between a complete decomposition and a
complete factorization. For cach period the matrices Q" will be factorized separately
so that

R AT o L L S T (5.5)
Before we reveal the complete factorization method of WB. we show how the ma

trices L;‘ and PJ" can be computed for a given Q"
5.1.1.1 Computation of the L;’ and P]h

The upper traingular matrix {'" is obtained by Gaussian elimination on Q". It
is important to note here that the M x qh matrix Q" is not necessarily a square
matrix (qh < M). and thus there will be M - g" rows of zeroes at the bottom of {1

whereas the first ¢f

rows will constitute a square matrix in upper triangular form.

The following three-step procedure is used iteratively to calculate the triangular
factorization of Q" = (Q’r'nq). In the literature, this procedure is known as QR
factorization. 'n the first step, we define t* as the position in the matrix of the
leftmost column with non-zero elements below the diagonal. In the second step we
permute row {* with row m"*, where m” is the row with the largest absolute value

in column {* excluding the rows above t*. That is,

h h
Qmt = max “Qm!l} . (5.6)
m=t"..M
The permutation of rows t* and m”* is represented by the matrix P{‘. This matrix

is the M ~ M identity matrix with the rows t* and m* interchanged. The resultiug
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matrix Q" 1’1" Q" does not have any non-zero entry below the diagonal in the

first 1* 1 columns and has Qﬁ,.,. a« the diagonal element in column ¢°.

-

0 -

Qh _ Q?n‘l' oo T
10 0 ~ - -

o
(=]

[0 0 - - -
In the third step, we use the matrix L’l' to eliminate all the non-zero elements below

the diagonal of column 1*. L:’ is an identity matrix except for non-zero values below

the diagonal of column 17,

[ 1
1
1
h _
Ly = ap41 1 ‘
: (5.7)
apy 1]
h )
where a, = —9—’]'—'——7 i=t"+1, .. M.
Qf'f'

The matrix Qh" = L?P{‘Qh is obtained by multiplying Qh, on the left by L?. It

has zeroes below the diagonal in the first ¢* columns.

We repeat these three steps until the matrix is upper triangular. Assuming that

J iterations are necessary, we have
Lhph. . Lhphoh = it (5.8)

The total number of additions or multiplications for the factorization of an M x M

matrix Q" is given by

M 3
il M M
\2_‘ m(m - l) = T -— -? (5.9)

m=1



This value constitutes an upper bound for an M ~ ¢" matrix. We conclude that the

order of complexity for factorizing WB is O(HM3).

Example: We present an example where M 6 and FUNFE

-2 0 -2 2]

1 5 3 x|

h . '_2 0 "‘2 0
Q" - 4 0 4 9
1 0 4 K]

2 0 2 1

The first column with a non-zero element below the diagonal is column t* 1, and
the entry with the largest absolute value in this column is in row m* - 4. l’,"

permutes rows 1 and 4 of the matrix Q". Thus,

1
1
h _ 1
Py = |
1
- ]-
The result of the permutation is the matrix Qh’.
4§ 0 4 1
1 5 3 4
R |-2 0 -2 0
Q" = -2 0 -2 2|
1 0 4 3
| 2 0 2 1]

The elimination of the non-zero elements of columns t* is done by the matrix L']‘ in

which the a, are equal to —Q,;L,. Thus
tot°
[ 1 1
-0.25 1
0.5 1
0.5 1
-0.25 1
| —0.5 1]
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and

h"
Q =

O O OO OO
QWO O N A
— AN B D W WD

(=R R e B e R A

. " . . .

The first column of the matrix Qh = L;' P]"Qh is now in upper triangular form and
the leftmost column that does not respect the upper triangular form is t* = 3. The
elenmient with the largest absolute value is in the fifth row, that is, m* = 5. P:;’ will

therefore permnte rows 3 and 5.

[ 1
1
Pl = : !
1
ld
and

['4 0 4 47

0 5 2 3
|0 02 2
Q" = 0 0 0 4
0 00 2

0 0 0 -1}

(Column 3 already respects the upper triangular form. So, no elimination is necessary

and we have Lg =Iparx -

The last column is now the only one with non-zero elements below the diagonal and
we have t* = 4. The element with the largest absolute value in column ¢* is in the
fourth row so that m* = 4. P;‘ is equal to Ips, ps since t* = m* = 4; thus no

permutation is required. The final step in the factorization is the elimination of the



il f
|

clements helow the diagonal of column 4 of Q.

[ 1
1
h 1
L3 = 1
0.5 1
| 0.25 1]

The factorized matrix [ = LS‘P::'L.’SP-_{'L’;P{'Q" is obtained by multiplying the last
Qh' on the left by Lg and is given helow.
(4 0

oCc o o D
OO OO
[ B =T R A

[ I = T~ S

5.1.1.2 Decomposition of the Factorization

In Section 5.1.1.1, we have shown how to factorize a matrix of size M ~ q", gt -
M. We now present the method used to decompose WB into H 4 1 such matrices
which then can be factorized separately. This will reduce considerably the amount
of work necessary when updating WB and solving steps 1 and 3 because it is easier

to solve and update H subsystems of size A x M than it is to do the same for an

HM x HM system.

The H matrices, Q" are readily available in WB. From the factorization of each
] . ar —h —=h . .
Qh we obtain the matrices Uh,LP ,Lh,Pj', ey Lh, P,", where LP  is the triangu-

Jarization matrix of QF defined as follows:

IP" = LhpPh..Lhph, (5.10)
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This first step in the factorization of WB can be represented in matrix form by a

—=h
multiplication of WB on the left by a block diagonal matrix LP. containing the LP

as diagonal blocks.
—1

r
LP - P . (5.11)

—H
LP
The resulting matrix keeps the same form as WB, except that the Jps, ps matrices

are replaced by the [i’h and the Q" by the [/,

! -IP!
-2 e

LP-WB = v Lp (5.12)
g _[p"

We note that the {'" are rectangular matrices of size M x g" having M — ¢
rows of zeroes at the bottom. We know that \:f:] qh = (H - 1)M since only the
last M of the HM columns in WB are not in the Q" matrices. Therefore, the total

number of rows having only zeroes up to column (H - 1)M in LP - WB is given by
H
S(M-q")y=HM-(H-1)M =M. (5.13)
h=1

The second step in the factorization is the permutation of these M rows to the

bottom part of the matrix using a permutation matrix V.

U1 -LP!]
U? ~Lp?
U=V.LP-WB= - : (5.14)

UH _LPH
xT

The first (H - 1)M columns are now upper triangular. In fact, the matrix U has
a block diagonal structure in which each block is in upper triangular form. An

important aspect related to the storage of 1" is that the entire permutation matrix



is not kept in memory but rather only a vector of length H M indicating in which

order the rows should be permuted.

Even though the transformation of WB into " is expressed as the multiphea
tion of WB by the matrices V" and LP, wuich represents a considerable amount of
computation time, an implementation would not require these multliplications 1o
be carried out. In fact. after the first step when the Q" are factorized, the matrices
U'h LP" XT can be established simply by assigning the proper rows of 1" and 1.7”‘
to the matrices UF LP" and XT. The matrices {'" are upper triangular square ma
trices composed of the first g" rows of UM just as - LP" iy composed of the first ¢h
rows of —ﬁh. The last M - qh rows of each - LI are grouped by the permutation
matrix V' in an M x M matrix named X7. An example of this procedure is given

in Figure 5.1

The matrix U is almost upper triangular; only X7 is not factorized yet. In
order to simplify the update of the factorization we will not factorize X7 but its
transpose X. The reason for this is that if a column is changed in a matrix only
its corresponding column of the associated upper triangular factorization is altered.
However, when a row is changed, the result could be a complete fill-in of its as-
sociated upper triangular factorization, as shown in Figure 5.2. Consequently, the
matirix X will be defined such that changes will be done on its columns and not on
its rows. If we look more closely at A7, we see that it is composed of rows coming
from the different ——ﬁ’h. The changes to the —1’17’" appear as changes to the rows
of the matrix in the bottom right-hand corner of U/. By defining this matrix as the

transpose of X, the changes now appear as changes to the columns of XA’ and the
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Fig. 5.1 Example of a decornposed factorizatior:
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update of the factorization can be accomplished more casily this way.

The last step is the factorization of the matrix X' by the same method we used
to factorize the matrices Q". Since X is a square matrix. no row of zeroes will
appear under the upper triangular part. The result is an upper triangular square

matrix U~ such that

Ly Py ,.ondidet x ety ot (5.15)

5.1.1.3 Complexity Analysis

The factorization of WB can be divided into three parts:

1) Each Qh is factorized to obtain the ﬁh and [.

. . . —} -~
2) Given the g". the 1: atrices LP?, U", XT are esiablished from LI and {14,

3) X is factorized by LP¥X into U'X

We have demonstrated at the end of Section 5.1.1.1 that the number of additions
and multiplications in the factorization of an M x M matrix is O(M?3) (47,48]. Part
1) contains H factorizations of this type for a complexity of O(HM3). In part 2)
we start by establishing a permutation matrix V. In fact, we only need a vector of
length H M that indicates in which order the rows of LFP - W B should be permuted;
thus a complexity of O(HM). The LP" and Uh are then defined as the first "
rows of ﬁ’h and [!, respectively and this does not require any computation. The

. . , —h
same is also true for the construction of X7 from the last M - q'l rows of LP .
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The last stepis a factorization of the M x M matrix X whichis an operation of order

O(M3). Clearly the dominant operation is part 1) with a complexity of O(H M?).

The factorization of WB without decomposing the worhing basis would be of
complexity O(H3M3). This is the work necessary for the Gaussian elimination
of an HA! x HM matrix. The decomposed factorization is superior to the direct
factorization by a factor H%. In addition to this, we shall see that the new approach
considerably reduces the amount of work required to solve the two linear systems

and to carry out the Column Generation.

5.1.2 Factorization of the Initial Basis

In Section 4.1.1 we presented the special structure of the initial basis. s sparsity

allows for a much simpler factorization procedure.

Due to the nature of the initial Qh, composed exclusively of slack variables,
there is just one non-zero element per column. The factorization of such matrices
requires only the use of permutation matrices which can be defined as we construct
the initial Q". For the basis illustrated in Figure 4.3, the permutation of the H

initial Qh is done as follows.

The matrix Pll associated with Q! permutes the rows into the order 2,4,6,1,3.5.
The rows of period 3 are interchanged into the order 1,3,5,6.2,4. Periods 2 and 4 do
not require any permutation since they already are diagonal, hence P]2 = I’,4 = L

The resulting matrix LP WB is given in Figure 5.3, where we ascertain that the
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. . =—~h
first ¢" rows of each Q" are in upper triangular form and that the LP" = P]h are

readily available from the last M columns.

After the factorization of the initial Q®, we have H identity matrices I in the
first (H - 1)M columns of LP WB. Since WB has HM rows there are M rows of
zeroes (Figure 5.3). In fact, there are M - q" such rows in period h for a total of
M rows over all periods. We permute these rows to the bottom using the matrix V
and in this way establish the matrix XT. Therefore, the columns of X are the last
M- q" rows of ff’h, for all periods h = 1 to H (Figure 5.4). As a matter of fact,
for this initial factorization all factorization matrices ff’h are actually permutation
matrices and all their rows contain just one non-zero element. The matrices WB,
LP, V are all non-singular, so the matrix V- LP - WB as well as the matrix X are
non-singular. If the square matrix X is non-singular and cuch column contains only
one non-zero element then all rows must also contain one of the non-zero entries and
X can be diagonalized using only a permutation matrix P]X. The rows of X in the

last example have to be permuted into the order 1,3,5,2,4,6.

pm

and LPX = pf =
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The resulting factorized matrix is as follows:
- _1 T
-1
vX - LPX X = -
-1
-1

We note that the factorization of the imiial WB is greatly simplified by the need

for only one permutation matrix to factorize each of the H + 1 matrices.

5.2 Updateb of the Factorization

At each iteration the RSM removes one of the columns in the basis B and
replaces it with a better column from the constraint matrix but not currently in B.
The complete basis B is composed of the key matrices K" in the first HK columns
and of the working basis WB in the last HAf columns. We have decomposed the
working basis into H matrices oh containing routes and slacks of the H periods.
The capacity variables are represented by a matrix X constructed from the last M

columns of the working basis.

The factorization of the working basis does not have to be done over again at
each iteration [49]. The update procedure for the factorization method presented in
the previous section is now given with an analysis of the computational complexity
of the update. As we shall see, the update has complexity O(M?) whereas the

refactorization would require a time O(H M3).

A column a’ € WB is not necessarily equal to the corresponding column in B.
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In fact, we have shown in Chapter 3 that if @’ is a column representing a route then
it appears in WB as o7 = @7 ~KEY(a7) where KEY(a?) is the key column associated
with the origin-destination and period of route @/. From now on, we shall denote
by a7 a colmmn from the original matrix B and by a7 € WB the same column after

leav

the key column has been subtracted. The leaving column a**?* can be a key column

as well as a column from WB. In general, the exchange of the entering column a™
with a column of WB is much simpler than the exchange with a key column. For
this reason Part I of the update consists of reducing the case where the leaving
column corresponds to a key variable to the problem where it belongs to WB which
is treated in Part II (Figure 5.5). In Part II, we present the details of the update of
the different matrices LP? UM ... used in the factorization of WB for all the possible

leav come from

cases where a€?" is a column of WB. Examples where a¢™ and a
the same or from different periods with same or different Origin-Destination pairs
are given. Figure 5.5 gives the main steps in the update of WB, the details being
presented in the following sections. In Figure 5.5, S is the set of all columns in the
matrix WB representing the same Origin-Destination pair and period as the leaving

column alée?.

5.2.1 Part I: 39" is a Key Column

The key variables in the basis B are the set of variables, one for each period
and OD pair, representing a route connecting an OD pair. If a key column leaves
the basis then there must be another column representing the same period and the

same OD pair in WB to replace it or else the entering column necessarily replaces
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a'e9" We define S 10 be the set of all columns cligible to replace 3’2" and currently

correspnding to a column in WB. Thus
S = {a’|a’ € WB, OD(d’) = OD(&"‘"'), PER(a’) = PER(&I“"')}. (5.16)

After bringing a'€9% into WB, we go to Part I which deals with the exchange of the

entering column with a leaving column from WB.

5.2.1.1 |S|=0.

This is the easiest case, and it occurs when there is no other route in WB

alea®) at period PER(E""“'). But since the simplex preserves the

connecting OD(
non-singularity of the basis, the entering column has to connect OD(a"?") in period
PER(E"""’) in order to be eligible to replace 3’9" as key column. Otherwise, the row

associated with this OD pair and period in the demand constraints would consist of

zeroes in B, clearly a contradiction of the non-singularity of B.

Update procedure: The column @™ replaces column al?' in the key matrix

K'ea?, The working basis remains unchanged, and the basis update procedure is

terminated for this iteration.

5.2.1.2 |S|>0.

When there is at least one column in S which can take the place of the leaving
key column, we begin the update process by bringing a3 into WB in exchange

for one of these columns. Three questions arise when trying to do so: What are
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the effects of this exchange on the factorization? Considering these effects, which
column of S is the best candidate to exchange with a/®@'? Finally, how can we

efficiently restore the factorization following the exchange of the columns?

Effect on the factorization

We interchange column a/®®" € K9 the matrix containing the key columns
of period PER(a'%"), with a column @ € S. The effect on Klea® is rather simple.
The column a/@* is removed and replaced by @/ . The columns in the matrix Qlear
arc more affected. Since a'€9" now takes the place of a’” in WB and since a7, as
the new key column, must be subtracted from all corresponding routes in WB, the
leav _ aleav _

column a?” = @ - a9 has to be replaced by a @, In replacing

the key column with @~ we must change the columns of S in WB from a/ — glee?
to a new o) = a - &, with the exception of column a'¢a" = alee* — 33" which is

already changed. The new columns ¢/ = @ — @ can be written in terms of the

previous columns as (@’ — a'€??) — (7" — al¢*) for all 37 € S,a? # a/".

The changes to the matrix Q%" can be summed up as follows:
~leav

1) The key column a is replaced by @’ .

2) The column o/ = @7 - g'°* is subtracted from the column @/ = &/ —
alear 32 ¢S, a? #al.

3) The column o’ =&’ - alear i multiplied by -1.

In Figure 5.6.a we illustrate the eflect of this process on the matrix U'??, the
factorized form of Q'€9". The upper triangular form is destroyed to the left of column
J* = 4. The amount of work for the update could be considerable, as the elimination

of the non-zero elements below the diagonal of the columns on the left of column j*
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will create some fill-in between this column and column j*. In the worst case, if j*
is the last column of Q'€ and if all columns of Q"‘”’ correspond to columns of § a
complete refactorization of the matrix would be necessary. Therefore, the position
of @2 in Q"9 is the key factor in determining how much the triangular form is

affected. This brings us to the second question.

How do we choose j*7  The choice of @)" € S such that @’ is the leftmost column
in the matrix Q'€?" is the most appropriate. As we have shown, the upper triangular
form is not affected by the columns to the right of position j*. Consequently, the
overall upper triangular form of {79t wil] be preserved although the entries of the

columns corresponding to columns of S are changed (see Figure 5.6.b) if we choose

a’” as the leftmost column.

How can we efficiently update the factorization? This last question has already

been answered above in this section. First, a7 such that @7 € S is chosen as the
leftmost column of Q9% allowing the matrix ['€a {5 keep its upper triangular
form. Thus the factorization matrix ﬁlmv does not have to be changed; only the
columns of Q'e?" and %" are changed as described earlier. All other matrices
used in the factorization of WB remain unchanged. A numerical example is given in
Figure 5.7. e now have a'€a% jn the working basis and the exchange of a®™ with

alee? is treated in Part 11.

5.2.2 Part II: a!®@" is in the Working Basis

This is the critical part of the update, where the entering and leaving columns
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are Loth in WB, which plays the role of the basis in the algorithm. When the basis

ent leav

is not decomposed. the insertion of a®™ and the extraction of a are made at the
same time. In our case, however. the insertion becomes more delicate as we wish
to keep the partially decomposed structure of WB, and as the two columns do not

necessarily belong to the same period and consequently the same matrix Qb

The update is performed in three steps:

Step 1a. The column a%®" is removed from Qle@"

and the entering row (z¢™)T for X7 is defined.

Step 1Ib. The column a®™ is introduced in Q™.
The leaving row (rle"")T of X7 is identified.

Step Ilc. We exchange columns 2™ and z!¢®" (if necessary) in the matrix X

associated with the column of the capacity variables.

The complexity analysis of each step is done in each section as we present the

details of the update.

5.2.2.1 Step Ila: Extraction of al®®® from Q’e“"

Let a'€9" be the &' column in Q'ea* . The update of the factorization for

leat after we removed the column corresponding to a’®®" is not much

the matrix [/
diflerent from the standard update procedure. The main difference is that the
number of columns in the matrix is reduced. The leaving column is not replaced
and the number of columns is therefore reduced to ¢*¢3" — 1 as shown in Figure 5.8a.

The A row in the resulting matrix is permuted to qle‘“' ~ th position using a

permutation matrix P"fﬁ' (see Figure 5.8b).
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Finally the non-zero entries in the row q’““' of " = P}‘fi‘ﬁ"“" are made zero by a

matrix L' 9 of the form given in Figure 5.8c, where

! U
l/ .q'"”‘ j "—'.] ‘ O]( ]l

a, = — _l/ - y

i=k,...q"%" -1, (5.17)

We now have a new matrix U/!*9" that is upper triangular in the square matrix
formed by its first g'€9" — 1 rows. The matrix Qlea? is updated simply by removing

c . spleav . . c .
column /%", The new factorization matrix LP ' is obtained by multiplying the

previous matrix on the left by L{,‘_‘:'l' Pj‘;’;', that is,

new LP'" = Llfav pleavplear, (5.18)
Ah .
The matrix X7 is composed of the last M —qh rows of each matrix —LP ", which are

leav of l’}lcar

associated with the zero rows of [/, Since row q is now a row of zeroes,

—1 . .
the corresponding row of P , defined as (:re"t)T, will have to be introduced

in XT eventually (see Figure 5.9).

For two reasons we must wait until the row leaving X7 is identified before we

introduce (r¢™)T. The first reason is that the preservation of the square form of XxT

is possible only by removing a row at the same time as the row (z¢™)T is introduced.

ent and a'®?" belonging to the same period

There is also a possibility of having both a

in which case (z¢™)T might be changed in the process of introducing a®™, and since
. plear . . .

we want the final row ¢!¢?" of —LP ““" to enter XT we have to wait until Step IIb

is completed where these changes are made.

The only computation in this step is done when we multiply the matrices [/l€a?

—=leav .. . . <y -
and [P " by the factorization matrix Llf_‘:‘l. which is O(M?) because only one row

differs from the identity matrix.
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Example
60 0 -—-40 1 —40] 07
-60 0 40 0 40 0
’(al’ _ “—60 40 ‘“40 0 0 lea'p _ 40
=160 40 40 o o0 and =1 4
¢ -—-40 80 0 -40 -40
|60 -40 40 0 0] | -40]
Here b = 2 and ¢'®9" = 5. The upper triangular matrix (2" and factorization
matrix I'.‘T’lmr associated with Q'€ are, respectively,
[ 60 0 —40 1 -40] 1 0 0 0 0 0]
0 40 -8 1 -40 1 01 0 0O
0o 0 -8 2 -80 2 0 1 1 00O
0 0 0 1 0 ’ 1 1 0 0 0O
0 0 0 0 -80 6 -1 1 0 10
L0 0 0 0 0 0 0 0 -1 0 1]}exT

The columns corresponding to a'¢®" in Q'ea" apd [1'€v are removed from their

respective matrices and the resulting matrices are

Qleav -

[ 60
-60
~-60
—-60

0
| -60

-40
40
-~40
40
80
40

1
0
0
0
0
0

—407]

40
0
0

—40

0,

and l“,leav =

(60 -40 1 —40]
0 -80 1 -40
0 -80 2 -80
0 01 0
0 0 0 -8
0 00 0]

The second (k') row of f1eav i5 permuted to row g'€e? using the matrix Plear

"= P}e;a;-i‘,-leav -

'OOOCDOF—'

[ — i =R — R}

OO O O O

[— e I — I~}

O QO - OO0

-0 0 0 o

i‘,leav -

J+1
60 —40 1 —40]
0 —-80 2 -80
0 01 0
0 0 0 -80
0 -80 1 -40
0 00 0
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Row qk‘“’, is eliminated by the matrix L’J‘i']' where
U's,
- - =0,
RN Y
o = _g’lél-*_o}l 12 _ 4
“ U909 '
2 5.4
a :-[7'53+01U'13+0217'33:1 (5.44)
’ U's3 ’
_ Usg= Uy 4 agll'yg + a3ll'3y
ag = — ; =0,5.
Ulyy
The new matrix {'€?" is obtained by multiplying U/’ on the left by L’j:'l'.
1 00 0 0 0] 60 —40 1 —40]
0 10 000 0 -8 2 -80
fileav 0 01 000 ' 0 0 1 0
! = I =
new [ 0 00 10 0| 0 00 -8
0 -1 1 0510 0 00 0
0 00 00 1] | 0 00 0]
The matrix I/j’leav is updated and its new row ¢*9" is defined as (2*™)7.
1 0 0 0 0 0]
2 0 1 1 00
—lear leav plear 7 5lear 1 1. 0 0 60
new LP = L7\ PO LP =10 -1 1 0 10 .
0 05 05 -1 05 0f }=2
0 0 o0 -1 0 1) }exT

5.2.2.2 Step IIb: Addition of a®™ to Q°™

. . = —sent
The column a®™ is added as the last column of Q€™. Since ["€™ = [P Q™

5 . " 4
the effect on {7¢™ is the addition of a column z = LP™" ™. An example where

¢™ =3 and M = 6 is given in the Figure 5.10a.

The matrix X7 does not always contain the last M — ¢*" rows of -IP™ 1t

contains them only when the entering and leaving columns do not belong to the
)




Fig. 5.10 a) Addition of the entering column a®"
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Fig. 5.10c¢) Choice of the pivot element
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same period. When they are both from the same period we know that Step lla

has been executed on the same matrices as those on which Step 11b is now applied.
— enl .

Thus. only the last M — ¢¢® — 1 rows of LP™ are elements of X7 whereas the

lear +1 )sz

(q row defined as the entering column 2™ in Step 1la has not entered X7

vet. This is illustrated in Figure 5.10b.

The main objective of Step Ilb is to restore the upper triangular form of [7¢™
with a minimal amount of work and minimize the effect on the other part of the
factorization. Clearly the factorized matrices U'h of the other periods are not affected
by the changes of /€™ since the matrices Q" are totally wdependent from one
another. On the other hand, the update of U™ may affect the factorization of X
because of resulting changes in those rows of _Ip™ which are in XT. In some
cases the update of U¢™ could create a complete fill-in of I'Y, the matrix obtained

{from the factorization of X.

Choice of the Pivot Element :;, j > ™+ 1
To minimize the effect on UX, we pivot on z;, 7 2 ¢°™ + 1 corresponding to the

leftmost column of X and to a row of ~LP™" and such that z; # 0 (see Figure

5.10¢).

Case i: This is the case where there are no candidates respecting the above criteria.

This happens when the row corresponding to zgent_ is not yet in XT but all other
5=0 72 g™ + 2. Thus, I7€™ is already upper triangular after the addition of
the entering column and both the entering and leaving columns are from the same

. . . - . —ent , ,
period. The factorization of X is unchanged since the rows of LP™ in X are not
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affected in this case.

There is one more non-zero row in I7<™ the (g¢™ + 1)st one. The corresponding

. - ' \4 A . A
row in -LP""" has to be removed from X 7. We call the transpose of this row glear,

Here the leaving row is the same row that we defined as the entering row z¢™ in
Step 11a. We therefore conclude that the entering and lraving rows of X7 are the

saie, and hence that no update of X' is necessary. The working basis update is

therefore terminated for this iteration. An example is given in the next section.

Case ii: There is an element respecting the above criteria, as illustrated in Figure
5.10c. The update begins by permuting the pivot element to the (¢ + 1)st row
using a permutation matrix Pj'_‘:l. The non-zero elements under the diagonal entry
of the last column are made zero by multiplication by a matrix LS’_‘:I. This matrix
differs from an identity matrix only in the non-zero values a;, i = ¢¢™® + 2... M,
under the diagonal of the (¢! + 1)st column (see Figure 5.11a). We define ' as
the last column of {"¢™ after the pivot element has been permuted to the proper

position by multiplying /™ on the left by Pﬂtl. The entries a; can now be defined

as follows:
!

-
-~

., i=¢™42... M. (5.20)

O, = - ~,
~qent+1

The effect on the matrix X is dictated by the changes made to the last M — €™ — 1

—ent s :
rows of LP°"". As we shall see, the criterion used to choose the pivot element

considerably 1educes the eflect of the pivoting procedure on X.

The pivot procedure is in fact equivalent to multiplying the (g™ + 1)st row of

— ent
~LP™, defined as (z'9")T by a; and adding it o the tb row, for i = ¢*™ 4+ 2 to
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ent

LJ+l
Aent 010000 entAent U2z Ups 2
new U =/0 0 10 00 .EI+1U = Us; 25
0O 00100 z4
0 0 0O 1 0 0O 0 0 o
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Aent
Fig. 5.11a) Retriangularization of U
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Fig. 5.11b) Effect on U"
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M. From Figure 5.11b we can see that the addition of a column in U/* to another
column on the right does not aflect its upper triangular form. This is exactly what
happens here. The leftmost column (with a, # 0) is multiplied by the associated
a, and added to the columns corresponding to rows belonging to _IP™. The
columns to the left of this column are not affected because they necessarily have
a, = 0. The matrix X is updated by the same procedure as shown in Figure 5.11b.

The only step left is the exchange of z€®* for /€% in X which is done in Section

5.2.2.3.

The number of arithmethic operations is greater than in Step Ila but the order
of complexity remains O(M?). In fact these operations are executed when ™
is multiplied on the left by L_‘}’_‘:l and when the columns of X and U¥ are altered
to reflect the changes in ™. Clearly, the number of operations executed when
multiplying a matrix by Lj,"+'] is O(M?) since the latter matrix differs from an
identity matrix only in one column. When X and U? are updated, in the worst

case, we must add the column associated with the pivot element to all other columns,

a O(M?) operation. Thus, the overall compiexity is o(M?).

Before we present the last step of the update of WB we give three examples for
SteplIb : Example 1 treats the case (i), Example 2 addresses case (ii) when a®™
and a’®9" are from the same period, and Example 3 considers case (ii) when a®™

and a/®?" are from different periods.

Example 1: case (i) PER(a®™) = PER(a'") and 5=0,i=¢"™"4+2... M
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The matrix Q! and the entering column are, respectively,

‘0 o1 o
0 0 0
ent _ 1 0 enl 60
Q=g g™ =] 4
0 0 60
0 0 | 0]
and the corresponding matrix ['®™ and IP™ are
10 0 01 0 0 0]
0 1 0 00 100
N 0 0 —=ent 1 00 0 1 0} =™
Ient: - '
. o of *rdLP 1 00 00 0f}ex?
00 -1 =10 0 0 1]}exT
0 0 [ 0 10 0 0 0] }exT

. Tpent i .
The column a®™ is concatenated to Q™ and IP ™ a*™ to [I*™. The resulting
= . et v o
[7¢™ is upper triangular and the (g™ 4 1)st row of LP™ becomes 21€9. Since
the same row was already defined as the entering row z€™ there is no exchange

— ent v
necessary, the last M — ¢™ — 2 rows of LP™ are not affected, and the matrix X

remains unchanged.

(1 0 60 0 010 0 0]
0 1 -60 0 0 0100
" 0 0 60 — ent 1 00010
jent _ = .
{ 00 of™LP 1 000 0 of}exT
00 0 -1 -1 0 0 0 1{}ex”
0 0 O] L 0 1 00 0 0f}exT

Example 2: case (ii) with PER(a®™) = PER(a'¢?")

In this case there is a z, such that z, £ 0, 7 = ¢¢™ + 2... M. Suppose that Step 11b

is entered with the following matrices:

[0 0] [ -60]
0 0 60
Qent= ; ? and aentz 3
0 0 60
0 oJ 60 |
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(1 0] 00 10 0 0]
0 1 0001 0 0
nent _ |00 st (000 00 1 0 =z
[ =10 o and LP = 10 0 0 I 0 }EXT'
0 0 01 00 -1 -1|}eXT
0 0, 0000 0 1f}exT
The matrix X and its factorized form U4 are, respectively,
<4 <5 <6
(1 0 -1 0 0 -11 f1 0 -1 0 0 -1
-1 0 0 -1 0 0 and 0 -1 0 0 0 N
0 0 0 O 0 -1 0 0 -1 -1 0 =1
0 -1 0 0 0 O 0O 0 0 2 0 0
0 0 -1 1 0 -1 0 0 0 0 -1 -1
0 -1 0 1 -1 0 o 0o 0o 0 o0 -1

Now we introduce the entering column and define the pivot element such that the

upper triangular form of U¥ is not altered.

[0 0 -60] [1 0 0 7 associated with
0 0 60 0 1 0 A e,
cnt . l 0 0 7eni _ 0 0 60 Ient
CT =g 1 o MU =19 0 24
00 60 0 0 -60] z5# 0, leftmost
[0 0 60 | 0 0 60 | 26

Row 5 is permuted with row ¢*™ + 1 = 3 using the matrix Pf_"’_t]. Then, the non-

zero elements are made zero by the factorization matrix ij’_‘:l where ag = 1,a5 =

0.06=l.
(10 0 0 0 0] (1.0 0 0 0 0]
01 0000 010000
enl_OOlOOO ent_OOOOlO
r=1g 0 11 0 0l ™MPA1={g 01 00 of
00 00 10 0 00 100
0 0 1 0 0 1 0 0 0 0 0 1]

. -~ =—=ent .
The new matrices 1™ and LP"" are obtained by multiplying the previous matrices



on the left by LS’f:]PjTl.

10 0] 0001 0 0
0 1 0 0001 0
“7€nt — O 0 _60 A("' - 0 ] 0 O '1
¢ 00 o MMLP 0100 0
00 0 1 000 1
0 0 0] 0100 -1

, Tpent .
In X, only the columns from ~IP™ have to be updated. a, times the column
associated with the pivot element, represented by =5 in this case, is added to the
column corresponding to the entry z. The same operations are carried out on the

columns of U so that it keeps its upper triangular form. Hence, the factorization

of X and LP¥ does not need to be changed.

2{5 :.!3 Zé
] 1 0 -1 0 0 -11 . [1 0 -1 0 0 -1
A=1-1 0 0 -1 -1 ofU%=]0o -1 0o 0o o 1|
0 0 0 0 o0 -1 0 0 -1 -1 -1 -]
0 -1 0 0 0 0 0 0 0 2 2 0
0 0 -1 1 1 -1 0 0 0 0 -1 -1
0 -1 0 1 0 0 0 0 0 0 0 -1]

Example 3: case (ii) with  PER(a®™) # PER(a'¢%")

This happens when there is a z; such that z, £ 0, i = g™ + 1... M. We enter Step

ITb with the following matrices:

[0 0 —60] 307
0 0 60 30
ent _ 10 0 enl __ -30
T =1g 1 o T =1 4
00 60 0
00 0] )
10 0 001 0 0 0]
01 0 0001 00
- 0 0 60 —ent |0 00 0 10
rent — =
¢ 0 0 of 2L 1000 1 0f}exT
00 0 0100 -10]}exT
0 0 o] 0000 o0 1]}exT
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ent

We note that the entering column of X, €™, is not involved in this case. The

matrix X and its factorized form U* are respectively

%6 5 <4
[ 1 0 0 0 -1 -1] 1 0 0 0 -1 -17
-1 0 0 -1 0 0| ,pq/0 -1 0 0 0 -1
0 0 0 0 0 -1 0 0 -1 0 O 1
0 0 -1 60 o ¢ 0 0 0 2 0 0
0 0 O 1 -1 -1 0o 0 00 -1 -1
0 -1 -1 0 0 0] 0 0 0 0 o0 -1]

-~

. —=ent . .

The entering column, LP " at™ is added as the last column of 7™ and the pivot
g P

element defined as the non-zero z, of this column having its corresponding column

in X to the left of every other column of X representing the same period.

0 0 -60 30] [1 0 0 —30] associated with
00 60 30 01 0 -30| ———n
pn{- ] 0 0 _30 “Ienl_ 0 0 60 0
=101 o0 3™ =l00 0 3 24
00 60 0 00 0 30 z5 #0,leftmost
00 o0 0 00 o o] 26

Row 5 of [/¢™ is permuted with row ¢°™ + 1 = 4 using the matrix ij‘:] and the

non-zero elements below the diagonal are made zero with the matrix Lfﬂ'l where

as = -1,a¢ = 0.

100 0 0 0] 1 0 0 0 0 0
010 000 01 0000
Livi=looo 100/ 2MPi=(g 00010
000 -1 10 000100
000 0 0 1] 0 0 0 0 0 1

i

The new matrices {7¢™ and LP"" are obtained by multiplying the previous matrices

on the left by L?:IP.;T] to obtain

‘10 0 —30] 0 01 0 0 0]
01 0 -30 0 00 1 00

et _ |0 0 60 0 Fpent _ (0 00 0 10

{ o0 o 30|>dLP 0 10 0 -1 0 =glear-
00 0 0 1 -1 00 2 of}exT
00 0 0 0 00 0 o0 1f]}exT
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The update of X and U'¥ is accomplished by multiplying the columns in X and 'Y

associated with the pivot element (}) by «, and adding them to columns associated

with z]. The matrix U'X remains upper triangular.

OO DD e -
_ O OO0 Oo

ty
o~

O =0 O =D

t

DN OO = -

Cr=

-1

’

b

SO OO O —
oo oo

5.2.2.3 Step Ilc: Exchange of :*™ and 7l**

SO

oo = !

——

(=T R e e B

-1 l
0 -1
0 1
2.0
1 -1
0 -1

This is the easiest of the three parts of Step 11. The column /9" is removed

from X and 2™ is added to the right of X. A similar action is taken in U* where

the column LPX £!¢%" is removed and LP¥ 2™ is introduced as the last column

(see Figure 5.12a).

The row of UX corresponding to the column removed is permuted to the bottom

of UX using a permutation matrix PJ'\:H' As is shown in Figure 5.12b, the resulting

matrix U’ has an upper triangular form except for the last line. We can restore its

upper triangular form by multiplying it on the left by a matrix L?:H of the following

form.

(5.21)
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where
Ulpgy + S2p oy U
All -—4]:_—_&- J n
_U'n

i=k...M-1, (5.22)

Q, =

and k is the position of /9" in X. Note that a, =0, i = 1,....k - 1. The new
matrix LP¥ is determined as follows:
new LPY¥ = LY, P, LPY . (5.23)

The update is completed with this last step. The number of operations is dominated
by the computation of the a, and by the multiplication of LPY by L‘J\'“ which are
both O(M?).

Example
1 0 -1 0 0 —1] 0] 0]
-1 0 0o -1 -1 0 -1 -1
r 0 0 0 0 0 —1 Ieav _ O (zni _ 0
X=1 901 0 0 o of°* =|ol* =| o
0 0 -1 )| 1 -1 1 0
6 -1 0 1 0 0] 1] 1]
The upper triangular matrix obtained from the factorization of X is
[1 0 -1 0 0 —1]7
0 -1 0 0 0 1
x_10 0 -1 -1 -1 -1
ve = 0 0 0 2 2 0
0 0 0 0 -1 -1
| 0 0 6 0 0 -1}
lear

The column corresponding to =

€™ and LPX z¢™ as the last column in these respective matrices.

X =

O O OO i

-0 = o0

-1
0
0
0

-1
0

0
-1
0
0
1
0

-1
0
-1
0
-1
0

07

-1

]

vt =

1
0
0
0
0
0

0
-1
0

0
0
0

-1
0
-1
0
0
0

0
0
-1
2
-1
0

-1
1
-1
0
-1
-1

0.

0
0
]
]
9
0

is removed from X and U and replaced by

p
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The 4th row of U'X is permuted to the bottom by P}:H.

[1 0 0 0 0 0] 1 0 -1 0 -1 0]
610 000 0 -1 0 0 1
o001 00 0|,y |0 0 -1 -1 -1 -1
0 00 010 0o 0 0 -1 -10.
0 00 001 6 0 0 o0 -1 O
(0 0 01 0 0 0 0 0 2 0 1]
Then we multiply /' on the left by L§+l where aj = a9 = a3 = 0, ag = 2 and
ag = -2. The result is a new upper triangular matrix Ux.
1 0 0 0 0 O] 1 0 -1 0 -1 0]
0100 00O 0 -1 0 0 1 O
Ux = 0 010 0O U = 0 0 -1 -1 -1 -1
|0 001 00O 10 0 0 -1 -1 05
0000 10 o 0 0 0 -1 0
0 0 0 2 -2 1] 6 0 0 0 0 2]

Finally LPY is updated by multiplying it on the left by L5, P{,,.

5.3 Refactorization

This last section addresses the problem of refactorization made necessary by

the accumulation of round-off errors. After many changes to the factorization of a

matrix B, the accumulated round-off errors may become non-negligeable and the
refactorization of B from scratch becomes necessary. The number of changes can
be approximated by the number of matrices L; used to generate LP such that
LP B = U. We have previously defined LP as LP = LjP;...L;P;, so J would be

the number of changes currently used to transform B into .

Obviously, the optimal number of changes v giving the best trade-off of speed

versus accuracy cannot be computed with precision. In fact it appears to be difficult
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to find a good theoretical approximation. Nevertheless a value of v between 20 and
40 has given good results in practice. Chvatal [42] has mentioned that “the practical
success of this policy has been firmly established”. From now on we assume that v

has a constant value around 30.

If we had ignored the structure of the working basis (size HM x H M), then
its refactorization would have a number of operations proportional to H3M? at
every 30 iterations for a complexity of O( H3M3). The method of factorization pre-
sented in this section allows for a faster refactorization. In the worst case, three
of the H + 1 matrices (size (g" < M) x M) composing the factorization of WB
(Qemt, Qlear | gnd X) change per iteration. Hence a minimum of ‘—ﬂ’{—]l iterations
are necessary before each matrix is changed v times. The work involved in refac-
torizing (H + 1) matrices of size M or less is O(HM3). Since v is a constant, on

the average the work inv sl =d per iteration for refactorization when decomposition

is used is O(Z2L) = O(M3).
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Chapter 6 Solving (=, -2 and Bo = ae

An efficient solution of the two linear systems involved in the simplex algorithm,
(m,01)B = $B in Step 1 and Bo = @™ in Step 3, is the reason that has motivated
the use of a factorization to represent the working basis WB. The matrix WB appears
in the top right-hand corner of the matrix obtained when the basis B is multiplied
by the matrix T in the GUB technique. That is,
K Bj[l -C]_[K WB

sr=7 ¢ollo 7)=0 0 ) (61)
where W B = B - K('. We have seen in Chapter 3 that the solution of the two
linear systems amounts to solving the two subsystems using only the matrix WB:
aWB = $WB and WBay = o*™, where a®™ is composed of the first HM elements of

the vector @™ — KEY(@€™). The details of each subsystem as well as the method of

solving them using the factorization of WB are presented in the following sections.

6.1 Preliminary Notions

In Chapter 5, WB is factorized from its original form to a near upper triangular
form U having H upper triangular matrices U'" and a matrix X7 on the diagonal.

This is accomplished by multiplying the matrix WB on the left by two matrices, V
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and LP, such that V LP WB = U. Thus

U} -LP]
r? - Lp?
U=V LPWB= A (6.2)
v - LpH
| X7
where
Q! -1
2 -1
WB = ¢ N E (6.3)
QH -1

Then the matrix X, the transpose of X7, is factorized into 'Y using the matrix
LPX. The solution of the two linear systems involving WB is based on the same
decomposition principle that allowed the simplification of the update process. In
both cases, the matrix X plays the key role. In fact, after the decomposition of
WB, X acts as the basis of the RSM. A similar situation occured in the GUB
where WB took the role of the basis, replacing the matrix B. In the following
section we present the method of solving the two linear systems with the general
triangular factorization method. Then we present the method using the decomposed

factorization along with the complexity analysis of each step.

6.1.1 Solution Using the Standard Factorization Method Without
Decomposition

In this section we look at the solution of the two linear systems tWB = $WB and
WBoy = a®™ using a triangular factorization applied directly to WB. The matrix
WB of size HM x HM is factorized by a sequence of matrices L, and P, into a near

upper-triangular matrix UU. The factorization matrix is defined as

LP=LyP;...L| P (6.4)
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and the relation between LP, WB and U is given by

LP WB = U. (6.5)

6.1.2 Solution of 7WB = §WB

The solution of this system is carried out in three steps. First, there is a trans-

formation of variables using the fact that LP is non-singular. Thus
n=zLP. (6.6)

After the transformation, and using Equation 6.5, the system becomes

:U=3WB, (6.7)

The solution of this system is relatively easy since U is upper triangular. The
number of operations necessary for solving an HM x HM system based on an
upper triangular matrix is proportional to H2M?2, thus resulting in a complexity

of O(H?M?2). The row vector 7 is then obtained by substituing z in Equation 6.6

which is also of complexity O(H*M?).

6.1.3 Solution of WBo; = at™

The first step is the multiplication of both sides of the system by the factorization

matrix LP. Using Equation 6.5, the following system is obtained

Uog = 2, (6.8)
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where

= LP o™, (6.9)

The multiplication of the matrix LP by a vector is O( H* M) and the solution of a

linear system based on an upper triangular matrix is also O(H%M?).

Even though the solution of the two linear systems in the GUB is made relatively
efficient by the use of a triangular factorization, the structure of WB is not exploited
by such a procedure. The overall complexity of the two steps is currently C(H2M?).
We shall demonstrate in the next two sections that it is possible to reduce the

complexity by decomposing the factorized matrix U shown in Equation 6.2.

6.2 Solution of (r,4)B = $® Using the Decomposed
Factorization

The solution of (m,u)B = $8 corresponds to Step 1 of the revised simplex
method. The row vectors m and p, respectively of length HM and HK, are the
dual variables associated with the formulation given in Equation 2.8. The right-
hand side of the equation is a row vector of length HK + HM in which the *h
element is the cost incurred when the variable associated with the ith column of B
is increased by one unit. These unit costs are readily available from the objective
function of the problem. $Z can be divided into two parts, the first HK + (H - 1)M

elements are zeroes since only the capacity variables have non-zero unit costs. The

last M elements which are associated with the capacity variables have a unit cost
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0f$";, m = 1...M. Thus,

K B] =(0,...,0, $1...5). (6.10)

(r)B = () [} 7
The first step in the solution of Equation 6.10 consists of a transformation of the
matrix B in order to eliminate the matrix (" in the bottom right-hand corner. This is
acheived by a post-multiplication of B by the matrix T as in Equation 6.1 to obtain
the required form. When both sides of Equation 6.10 are multiplied on the right
by T the result is a linear system in which the matrix BT has a stucture that can
be easily exploited. The right-hand side is not affected by T since its last M rows
contains only an identity matrix and only the last M elements of $& are different

from zero. Thus,

(m,u)BT = 85,

(w.;l)[] 0 J=(0,...,0, $1...8).
This last system can be divided into two smaller systems:
aWB=8$WB=(0,...,0, $;...83), (6.12)
and
Kl
K2
p=-r1K=-=x . . (6.13)
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6.2.1 Solution of TWB = §"B

Equation 6.12, written more explicitly, is
Q' , -1
x ¢ . _:1 = gWB (6.14)
Q¥ -1
and the solution of Equation 6.14 is the essential part of Step 1. The use of the
mairix 7, obtained by the factorization procedure of Section 5.1, allows for an

eflicient solution technique. Invertibility of the matrix 1" LP allows us to define a

new row vector 7, of length HM such that
T =m,V LP. (6.15)

Since U = V LP WRB, the following system is obtained when Equation 6.15 is
substituted in 6.14:

[/ ~LP) ]
Ul ~-LP?
x,V LP WB =, po | =sYB (6.6
vl _—ppH
xT

where $WB = (0,...,0, $;...8)/). We rewrite the vector T, as (1r3,7ri‘,‘ ) where 7
represents the first (H — 1)M elements and 7%, the last M elements of 7,. From
Equation 6.16, the triangularity of the UM, and the definition of $WB _ we conclude

that 77 = 0 and that the solution of linear system 6.16 reduces to solving
nxxT =%, (6.17)

where 8% = ($;...8). In fact, we will solve the transpose of this system since we

have factorized X instead of X7.

. T
AmxT = ¢X7, (6.18)
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The M » M matrix X is triangularized into U* by a multiplication on the left by
LP¥ . The right-hand side becomes LP¥ $XT, a column vector of length M. The

resulting system can be solved easily because of the upper triangular form of Ux.
X_xT xoxT
U4a%" =LP" 8" . (6.19)

Clonsequently, the row vector 7, is equal to zero in its first (H — 1)M elements and

mX, the solution of 6.19, in the last M elements.

Ty = (0,...,0,7%). (6.20)
In the next step we apply Equation 6.15 in order to obtain 7 from =,. Thus

r=m, VLP=(0,..,0,2%) V LP. (6.21)

v

The eflect of multiplying LP by V is similar to the effect on the last M columns
of LP WB in the factorization process; the last M — qh rows of each n’h are
permuted to form the last M rows of the resulting matrix. In Chapter 5 we defined
the remaining qh rows of I’j’h as LPh. The last M - qh rows that were permuted

to the bottom are now in separate matrices called xh,

(LP’

Lp?
VLP= . (6.22)
LpH
- Xl XZ . XH ]

The matrices X are composed of qh rows of zeroes and of M — ¢g" rows from I’j’h
which appear in the same order as in X7, Considering the structure of V LP and
Ty, the resulting row vector # = m, V LP depends only on ¥ and the matrices
Xk, Thus

r= (wX XL wX X2, xH), (6-23)
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In practice, we would like to avoid the creation of the H matrices X* of size M » M.
This is possible since all the information contained in the matrices X" is available
in XT and since the non-zero rows of X'* are in the the same positions as in X7
(‘onsequently, it is much more efficient to use the matrix X7 and to create H M-
vectors 7! defined as follows

o T . +h
ah = (78 )m, frowmof X ¢ -LP",

U .
0, otherwise,

(6.24)
for m = 1... M. Finally, the row vector 7 can be computed using the equation
T 2y ,
n=(rl XT, a2 xT BT, (6.25)

This procedure is illustrated in Figure 6.1

The dual variables p associated with the demand constraints are related to =
according to Equation 6.13 by p = —7K. The matrix K is a block diagonal matrix
composed of the key matrices K" on the diagonal. Considering the result in Equation

6.25, the product —7K is given by
p= = XKL (2 XTKE, .. (o XTkH), (6.26)

Complexity analysis

When solving the system (7,p)B = $B it is not necessary to carry out all the steps
presented in this section.The important steps can be summarized as follows:

1) Compute the column vector LPX gx”

2) Solve the system UX 7r{‘,‘T = LPX$XT.

3) Establish the vectors#}, h=1...H.

4) Compute 7 = (waT,wl?,XT e w{,’XT).

5) Compute u = —7K.
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The multiplication of an M x M matrix by a vector of length Af in 1) reguires
a number of multiplications proportional to M2. Part 2). the solution of a linear
system based on an upper triangular matrix is of complexity O(M?). The distribu-
tion of the M elements of m¥ to the row vectors 74 in 3) is O(M). Parts 4) and 5)
are the dominant calculations; they each require H multiplications of a row vector
of length M by an M x M and an M x K matrix respectively. for complexities of
order O(HM?) and O(HMK ). But since in a rearrangeable network it is required
that the ratio of the number of links A to its maximal number A" - Ml;': D he
moderately high to allow for a sufficient number of rearrangement patterns, we have
that M = O(N?) and consequently M = O(K) for a complexity of O(H M?) in
part 5). Thus, the overall complexily of Step 1 of the RSM usiné the decomposed
factorization is O(HM?).

Example

We present in this section an example in which we solve the system tWB = $WB,
The working basis considered is taken from a problem having H = 4 periods, M = 6
arcs, and K = 10 origin-destinations. The matrices Qh composing WB, the matrix
X, the factorization matrices LP" and LP¥, and the resulting upper triangular

matrices U and UX are given in Figure 6.2.

The first step is the multiplication of LpX by $AT s = (1,1,1,1,1,1) then
[ 1
1
ppXgx” | 0

2
-1
1]
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We then solve the system

-1 0 0 0 0] 1]
0 1 0 -1 0 0 ]
x.c_ |0 0 -1 0 0o of_, | o0
Ums =1 0o 0o 0 -1 -1 o™= 2|
0 0 0 0 2 o0 -1
L0 0 0 0 o0 -1 | 1]

for which =¥ = (-1,-0.5,0,-1.5,-0.5,-1). From =¥ we can establish the =

vectors.

17 0] (0] [ 0
-0.5 0 0 0
0 0 0 0

1 — 2 - 3 4
TwEL o] > ™ Tlo| > TvT ol > T |15
0 0 0 -0.5
| 0] [ 0 [ 0 -1

Then, the row vector 7 is computed using Equation 6.25,

T T -T T
T=(m, X", w2 X", m X", X7),

= (0.5,-0.5,-1,~-1,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, -1.5,-0.5,0,0,-1,-1).
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6.3 Solution of Bo = @ Using the Decomposed
Factorization

The column @™ is either a route or a slack variable from period PER(a€™).

The top H M elements are associated with the capacily constraints and the last HK

! is a route then

elements with the demand constraints If the entering column a®
M of the first HM elements of G°™ represent a roufe as described in the arc-chain
formulation. The last HK elements are all zeroes, except for the row corresponding
to OD(@€™) and PER(a™) which contains 1. In the case where @™ is a slack
variable there is one non-zero element in the first HM rows, a 1, associated with

the arc and period of the slack variable. Since the slack variables are not associated

with any demand constraint, their last HK elements are zeroes.

The main objective of the third step of the simplex is to find the representation
of the entering column in terms of the columns forming the basis which is done by

solving the linear system

Bo = g™, (6.27)

In order to teduce the problem to the solution of a linear system using only the

working basis WB, GUB prescribes a transformation of variables such that

a=T["‘] - [[I) “ICJ ["‘]. (6.28)

o2 72

By inserting 6.28 in Equation 6.27 we obtain

: (6.29)
i)
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From the last HR equations we can see that o} is equal to the last H A elements
of @M. These elements are all zcroes except in the case where 3™ is a route. In
the case of a route there is a single 1 indicating with which period and with which

ni

OD-pair the column ™ is associated.

o= |00r1]. (6.30)

The first HM constraints contain the system Koj + WBog = (5‘"' . ‘”“ )T where
(Ae"i . e"l )T is a column vector composed of the first HM elements of @, The

column vector o is defined in Equation 6.30 and the resulting linear system is given

by

WBo, = o™, (6.31)

= (a§™ ...@" T — Koy. The column vector a®™ of length HM is

v en
where a Y

defined as in Chapter 2. If @™ is a route then ¢*™ = (Ee’“ “;,’;', 7T — KEY(at™)

~ent :

and if @™ is a slack variable then a®" (&‘i"t . '""") Notice that KEY(a¢™)

is the key column for period PER(@™) and OD-pair OD(a™).

6.3.1 Solution of WBoj = a®™

We have reduced the problem of solving Bo = @' in which B has size H(M +
K) x H(M + K), to a smaller problem WBay = a™, where WB is HM x HM.

We shall now use the factorization method presented in Chapter 5 to decompose
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the problem into A + 1 subproblems of size M x M or smaller. First, we rewrite

the column vector o9 as

o)

o=yl 6.32

2= | n (6.32)
oX

where o, h = 1... H, are column vectors of length ¢" and ¢% is a column vector

of length M. Since a®™ represents a route or a slack variable, only the elements of

the M-vector a associated with the period of the entering column are non-zero.

POMxl -
emt=| . | (6.33)
.OMxl J
Equation 6.31 now becomes
01 rOM.xl -
WB a:H = a |. (6.34)
oX :
I-OA.’X‘ J

The factorization process starts by pre-multiplication of WB by the matrix LP and

then by the permutation matrix V.

0’] i OMxl ]
V LP WB a}, v | 7P, ], (6.35)
oX '
L OMxl J

where V' LP WBiis, in fact, the near upper triangular matrix U/. When the matrix
V multiplies the column vector on the right-hand side of Equation 6.35; the last
M- qh elements of each group are permuted to the last M rows in the same order

—5h . .
as the rows of the —LP" matrices are permuied to form the matrix X7. We call
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—=enl
the first qh elements of LP°" a as a' and the last M clements. formed from the last

M — gh elements of each period. are called a”. Thus, Equation 6.35 can be writien

as
Kk —LP' Yra' 7 [Oxi1]
Uent _ Lpent ent ',
. o= | (6.36)
UH -LpH ol Oqu]
L ‘XT e _0'\' e L a"

The first system we solve is XTo¥ = a", for which the transpose is given by
oXTx = o"T. (6.37)
LPX being invertible, we can make the change of variables
oXT = ;L PX, (6.38)
When Equation 6.38 is substituted in Equation 6.37 the linear system becomes
LPXX = X = "7 (6.39)

which can be easily solved since UX is upper triangular. Its solution is then substi-
tuted back into Equation 6.38 to obtain oX . The remainder of the system is solved

as follows.
Uhoh = LPheX  h=1...H,h # PER(a*™),
(6.40)
Uhoh = o' + LPP¢* b = PER(a°™).

In each of these linear systems the matrix is upper triangular. We now have that
09 is composed of the column vectors 0% and ot h=1...H.

Finally, o is obtained from Equation 6.28.

a=[(l) ‘ICJ [Z;J (6.41)
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Like the columns of Q% in WB, the columns of (' are grouped by period in subma-
trices C'? of size K x qP. Since the last M columns of WB are associated with the
capacity variables and since they are independent of the demand constraints, the

last M columns of (' contain only zero values.

¢! Ok xM
? 0
C = Rxu (6.42)
CH 0gum
Thus & is given by
) = J=Chh h=1..H
(a(h—l)h'-ﬂ LY —(0’1“‘_”}‘.“ "'Ul).}{ o, — L. dd,
(6.43)

(Ohks Oukium) = 02

Complexity analysis

We first summarize the important steps of the solution of the linear system Bo =

aent_

1) Establish a’ and a” from the product LP¢™g.
2) Solve the linear system zU'* = a"7 in order to obtain o = (zLPX)T,

3) Solve the H linear systems

Uhoh = LPhox,  h=1...H,h # PER(a®™),
Uhoh = o' + LPhox h = PER(a™).

]

4) Establish o) from the vector a®™, and o from o”, and o*.

5) Compute o from ¢ and o9 as in Equation 6.43.

1) requires a number of operations proportional to M to find the product
LP™a. In?2), the solution of the linear system and the multiplication of the solution
by the matrix LPY are both of order O(M? )- In 3), we solve H linear systems for a

complexity of O( HM?). In 5), the last HM elements of o are obtained directly from
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a5 whereas the computation of the first H A elements necessitates H multiplications
of a K x qh. (qh < M) matrix (' by a vector of length ¢" resulting in a complexity
of O(HK M). Since both K and M are of order O(N'?), we have that K is of order
O(M); thus the complexity of 5) is O(HM?). The overall complexity of finding the

representation of @™ in terms of the columns in B is dictated by 3) and 5), and is

of order O(HM?).

Example of the Solution of WBay = a™

The working basis used in this example is the same as in the last example, the
matrices Q*, LPH . being given in Figure 6.2. The entering column is from period

1 and is defined by

0]
a 0
ent _ OMxl — ~30
a®™ = o where a = _30
Orrs1 30
30 |

The first step is the multiplication of the column vector a by the factorization matrix

LP! of the entering period.
301
0
-30
60
—-60
0

The column vector a' is constructed with the first g! (= 4) elements of LP'a. The
last M — q! (= 2) elements of LPla appear in a” in the same position as the last
M — ¢! rows of LP1 appear in X7T; rows 5 and 6 of LP! are the first two rows of

XT (see Figure 6.2) and therefore the last two elements of LP'a must appear in
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the first two rows of a”.

--60]
0
o = 0
0
0
0]
Then we solve the system zU/¥ = a"T,
[ —1 0 0 0 0 O]
6 1 o0 -1 ¢ O
0o 0 -1 0 o0 O
2 0 0 0 -1 -1 0—[—6000000],
0 0 o0 o0 2 o
6 0 o0 0 06 -1

whose solution is = =[60,0,0,0,0,0]. The column vector ¢* of length M is obtained

as follows

oX = (zLP*)T =

[=2]
(== T e T e I e B

Now, we have to solve the H(= 4) systems as described in 3) considering that the

entering period is period 1.

For period 1,

Ulel=d' + LPla-“,

1 80 10 0
0 80 0 80 1
0 0 —10 80 c'=[30 0 30 0],
0 0 0 -160
60
and the solution is ol = _?3

0
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For period 2,

29 2 .
U 6" = LP"a¥.

1 0 0 0 40
0 1 0 90 0
0 0 1 90 40|lc*=10 60 0 0 0],
0 0 0 90 0
0 0 0 0 -40
0
60
and the solution is oi=10
0
0
For period 3,
U0 = LP%o¥,
1 0 0 0 0 50]
0 1 0 0 0 0
g 8 (1) (1) g 5803:[0600000],
0 0 0 0 1 0
0 0 0 0 0 -50]
0]
60
.. 3 0
and the solution is =1,
0
| 0
For period 4,
U4a4=LP40"‘,
1 0 0
[ 0 1 o]o‘*:[ﬁo 0 0!,
0 0 60

n

60
and the solution is o? 01}.

The resulting column vector o3 is given by

o)

o

gy = H
a)‘
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Chapter 7 Column Generation

The arc-chain representation of the network leads to a formulation having rela-
tively few consiraints compared to the forinulation based on the node-arc represen-
tation described in Section 2.4. As we have seen, our formulation reveals a structure
which can be exploited in two ways. First, the GUB technique is used to take
advantage of the multi-commodity nature of the problem. Then, the multi-period
character of the problem is further exploited by a decomposed triangular factor-
ization. Therefore, the formulation based on the arc-chain matrix presents many

advantages.

The only characteristic of the arc-chain formulation that could be a major prob-
lemn is the number of columns. Since each column is associated with a route, and the
number of routes grows proportionally to N!, the arc-chain matrix rapidly becomes
excessively large. It is almost impossible to determine the number of routes in a
general network simply from the number of noacs and arcs, N and M respectively.
In fact, even when the architecture of the network is known. the problem of deter-
mining the number of routes is difficult to solve. The addition of an arc can only
increase the number of routes in a network. Therefore, by considering a complete
graph, one can compute an upper bound on the number of routes for all networks

having N nodes. This upper bound is given by

R
T 2 o > 13N for N25 . (7.1)

n!

4

n=0
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Figure 7.1 shows how rapidly the number of routes increases in a complete net-
work. In a network having 10 nodes the upper bound on the number of routes is close
to 5 million. In such conditions. it is inconceivable to consider solving any problem
with all columns of the constraint matrix represented explicitly. Fortunately, meth-
ods based on the RSM do not necessarily require all columns; only the columns in

the basis and the entering column aflect the current iteration are required.

The entering column is determined in the second step of the RSM. In Section
3.2.2.2, we defined the entering column @™ as being the non-basic column with the

smallest reduced cost. Thus

—(7,1)a™ = min {—(w,;t)&’} . (7.2)

a'¢B
If —(x,pn)a®™ > 0 then the current solution is optimal. Until now we have always
considered the choice of the column having the smallest negative reduced cost as
the entering column, but any column associated with a negative reduced cost is

eligible to become ™.

It is perfectly acceptable to choose the first column such
that —(m,u)a’ < 0 as entering column. The best compromise between the most
promising candidate and the first acceptable candidate is to find the best possible

candidate that can be obtained in a “reasonable” amount of time. This excludes

any enumeration method because of the number of columns.

In some cases, the underlying structure of the problem enables us to use meth-
ods which generate a geod candidate by solving sub-problems such as shortest path
or knapsack problems. The main advantage of these methods, called column gener-
ation, is their efficiency in finding an eligible column with a relatively good reduced

cost in a fast and intelligent fashion.



Number of Routes in
a Complete Graph
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1 0 8 6 x 10
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3 6 10 5 x 108
4 30 15 2 x 1012
5 160 20 3 x 108
6 975 25 2 x 10%°
7 6846 50 4 x 1054

Fig. 7.1 Relation between N and the number of routes
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The ability to recognize optimality only when it exists is the most important
characteristic of a column generation method. To find an eligible column having a
value —(7, 11)a’ as small as possible can be considered as the prime objective of the
column generation method, but finding a column if there is one eligible is the sine
qua non condition. In fact, it should not indicate optimality (which occurs when all
columns have non-negative reduce costs) if there is at least one route with a negative
—(m,p)a’. The next section presents a column generation method for the minimum
cost sizing problem based on the arc-chain representation of rearrangeable networks.
Then, in the following section we demonstrate that the method will not recognize

optimality when it does not exist.

7.1 A Column Generation Method

The first step in the design of a column generation method is to find an inter-
pretation of the reduce costs, —(, 1)@, which are used to determine the entering
column. Network optimization problems usually lead to a column generation method
based on the structure of the underlying network. When looking for an interpreta-
tion of the columns of our formulation, there are two cases to consider: a column is
associated with a route or with a slack variable. Note that the columns correspond-
ing to capacity variables are not considered since they do not leave the basis (see

Chapter 4), and therefore are not eligibible to enter it.

In order to simplify the presentation of the column generation method we use a
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notation where the row vectors 7 and p are divided by period as follows:

T = (Wl,...,ﬂh,..-,ﬂn)a
(7.3)
po= (e b 1P,

where each 7» and pi* are row vectors of length M and K, respectively. The variable
mh, is associated with the capacity constraint representing arc m in period h. Before

we introduce slack variables in the formulation, the capacity constraints were of the

form

Ahfh < ¢ forh=1...H (7.4)

The relation between primal and dual problems insures that all x}, are < 0 at
optimality. In primal simplex methods, such as the RSM and GUB, feasibility of
the dual problem is not preserved during the execution of the algorithm. In fact,
optimality is attained at the same time as feasibility of the dual problem. This

implies that some of the nh, will likely be positive before optimality is attained.

The product —(7,u)a’ can be divided into two parts: the first is the multipli-
cation of 7 by the first HM elements of @7 and the second is the multiplication of
p by the last HK elements of a’. If @’ represents a slack variable, then there is
only one non-zero value, a 1, among the first H M elements and all the last HK
elements are zeroes. Thus, the reduced cost associated with a slack variable is given
by the element of —7 corresponding to the non-zero element of 7. An example is
presented in Figure 7.2. A column @’ associated with a route has at most M non-
zero entries among the first H M elements, corresponding to the arcs that compose
route a’. In the last HK elements there is just one non-zero value corresponding
to the OD-pair and period of route @’ (see Figure 2.7c). Let the column vector of

length M associated with a route @/ in the arc-chain matrix 4" be denoted by o,
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For a column @ from period h = PER(d’) and origin-destination k = OD(a’), the
product —(m,p)a’ is given by —rha?’ - p};. as shown in Figure 7.2. In the network
having the -7* as cost. on the arcs, the total cost of a route @’ multiplied by the
demand dif for OD-pair h and k is equal to —7ha? . Thus, the reduced cost associ-
ated with a column @ can be obtained by a pre-multiplication of the total cost of

route @/ by the demand dif, and then subtracting [lz.

The column generation method presented in Figure 7.3 can be summarized as
follows:

1) Find the cost SP;: of a shortest path between each OD-pair k at every period
h. For a period h, the cost on arc m of the network is determined as follows:

—xh if 7, <0,

cost onarc m = { (7.5)

oo ifwh >0.

2) The best reduced cost of the routes associated with shortest paths is obtained
by the following equation,

I*= min {SPRd}-ub}. (7.6)

h H
k K

i

3) The entering column @™ is defined as the column for which

—(mp)a™ = min {I',- =k}, (1.7)

m
k=1 H
m=1 M

If —(m,p)a®™ >0, then the current solution is optimal.

In part 1), we start by defining H networks, one for each period, on which
we apply a shortest path procedure in order to find the best route between each
OD-pair. The networks are composed only of the arcs having positive costs —

the arcs associated with a negative cost being removed to prevent possible negative

cycles. Since there are no negative cycles, the algorithm due to Floyd [50] can be
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Establish the H networks.
Cost on the arc m:

-, oy mh<0
o if wR>0

Find the shortest path
cost SPP between each
OD-pair k at every period h.

Find the route such

that

1= min {sp?q4P-pLh}
pn, ESP dye - By
k=1..K

The entering column is defined
as the column for which

A

~(rr.p)acnt _ * ~h

(TH) pIiny (1 g )
m=1..M

Fig. 7.3 Column generation procedure
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used to find the shortest path between all OD-pairs of a given period in a time
proportionnal to O( N3). Thercfore, part 1) has a complexity of O(HN3) for the
solution of the shortest paths for the H periods. The shortest paths obtained would
be different if the arcs associated with negative costs had been considered. Since we
do not have to select at each iteration the route having the smallest reduced cost,

it is more efficient to use a simpler algorithm and find a good one.

The identification of the best candidate in the networks considered is done in
part 2). The number of multiplications and additions is of order O(HN?2) since
K = EQ;——Q. Part 3) makes the choice of the entering column, @™, by comparing
the best routes obtained in step 2) with the slack variable having the smallest re-
duced cost. This is done in O(H M) operations. The overall complexity of column

generation is thus O(HN3).

Example

We present in Fig: .c 74 a 5 node network with the corresponding dual variables
wm, M} and the demand between each OD-pair at every one of 4 periods. The
results of the column generation method for period 1 are given in Figure 7.5. We
notice that the arcs associated with negative costs, —n},, are removed. In period
1, the algorithm finds three columns eligible to enter the basis: the shortest route
connecting OD-pair 3 - 5, and the two columns corresponding to the slack variables
of arcs 1 - 3 and 1-4. We notice that the removal of arcs may disconect the network
but that it does not affect the result. In period 2, there is no route eligible to enter

the basis but the slack variables of arcs 2 — 5 and 4 — 5 are candidates with reduced

costs of —1 (see Figure 7.6). Period 3 is interesting because all dual variables are
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Fig. 7.4 Exampleof T and [l values
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shortest 1 1 1,41
12 - - --
OD-pair k 13 N N .
14 -- - --
15 - - -
23 2-3 1 0
24 2-3-4 2 0
25 2-5 2 0
34 3-4 1 o
35 3-4-5 1 =60 <— candidate
45 4-5 0 0
slack variables
-“:L
13 | .05+ [|€— candidate
arem 4| 63 |e— candidate
23 i
25 2
34 1
45 0

Fig. 7.5 Column generation for period 1



PERIOD 2

shortest 2 2 2
12 1-3-2 0 0
OD-pairk ;31 "1l3 0 0
14 1-4 0 0
15 . - -
23 2-3 0 0
24 2-3-4 0 0
25 - - -
34 3-4 0 0
35 .- .- -
45 . - -
slack variables
_ni
13 0
arcm |y o
23 Q..
25| 7-1.> |<— candidate
34 0 —-
45 | <-1_* |4— candidate

Fig. 7.6 Column generation for period 2
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PERIOD

shortest 3 3 3
routes path SPy -2 + B d
12 -- 0 0
14 -- 0 0
15 -- 0 0
23 -- 0 0
24 -- 0 0
25 -- 0 0
34 -- 0 0
35 -- 0 0
45 -- 0 0
slack variables
_,t;
13 0
arcm 14 0
23 0
25 0
34 0
45 0

Fig. 7.7 Column generation for period 3
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PERIOD 4

<4— candidate

<4— candidate

shortest 4 4
path SPx ug +SH d
1-3-2 1.5 60
13 1-3 1.5 0
14| 1-4 1.5 0.
15 | 1-3-2:5 1.5 240>
23 2-3 0 0
24 2-3-4 0 0
25 2-5 0 0
34 3-4 0 0
35 | 3-2.5 0 0.
45 | 4-3-2-5 0 1200
4
13 1.5
arcm 14 1.5
23 0
25 0
34 0
45 2

Fig. 7.8 column geazration for period 4
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zero. Consequently, all reduced costs are also zero and it is not necessary to apply
the column generation method for this period. Figure 7.8 presents the results for
period 4 where all the — =3, are non-negative. Thus, there is no slack variable from

period 4 that is eligible. It can be seen that

I'=-120 < min ~nh} .
=1 4

3>
-

The column for which 1* is at1ained is the one that corresponds to the route 4-3-2-5

in period 4. Hence this column is chosen as the entering column.

7.2 Proof of Optimality

The validation of the column generation method is proved by showing that if
there exists at least one candidate to enter the basis then the method can generate
such an entering column. When there is no column eligible to enter the basis the
method must be able to detect that the current solution is optimal. The proof is
divided into two parts: the first is the case when there are dual variables 72, > 0.
We show that there is always a column eligible to enter the basis and that optimality
is impossible in this situation. The second case occurs when all dual variables 7 are
non-positive. Here, we demonstrate that the algorithm finds an entering column

and that if it is impossible to find one, then we are at optimality.

7.2.1 There is at Least One Positive 7.

In this case optimality may not be reached because the presence of a postive 7,
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contradicts dual feasibility and hence the optimality criterion (without degeneracy
it would not be reached). The column associated with the slack variable of period
h and arc m has a reduced cost equal to — =}, which has a negative value. In fact,
every column representing a slack variable whose defining constraint has a positive
dual variable is eligible to enter the basis and may improve the objective function
value. Notice that these columns are not currently in the basis because their reduced

costs are necessarily non-zero.

The overall objective is the minimization of the capacity which does not favour
the presence of slack variables in the basis. In most of the problems we have solved,
the unused capacity at optimality is considerably small. We want to promote the
choice of routes instead of slack variables as entering columns, since most of the slack
variables must leave the basis in order to attain optimality. Consequently, even if we
already have a slack column eligible to enter the basis. we establish the H networks,
solve the shortest path problems, and find the route having the best reduced cost
for the given arc costs. Then, we choose between the routes and the slack variables
by comparing the reduced costs. This allows the introduction of a slack vanable

only if it can lead to a significant reduction of the objective function.

7.2.2 All Dual Variables x}, are Non-Positive.

In this case the slack variables are not eligible to enter the basis since their
reduced costs, —m},, are not negative. Only a column associated with a route can

have negative reduced cost. If we can show that there is no such route, then we are
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at optimality. In the previous section, we removed the arcs having negative costs in
order to avoid the presence of negative cycles. In this case. there is no arc with a
negative cost, and consequently, all the arcs appear in the network of every period.
Since no arc is removed, the routes found by the shortest path algorithm are in
fact the best possible routes between each OD-pair. No other routes in the original

formulation lead to a smaller reduced cost for a given OD-pair.

The costs of the shortest paths are multiplied by the demand di‘ and the dual
variable g} is subtracted to obtain the reduced costs. Then, the best route is
defined as the route having the smallest reduced cost. If it is negative, then the
corresponding route is the entering column, since there is no slack variable having
a negative reduced cost to compete for the role of @™. When the smallest reduced
cost is not negative, then there is no route eligible to enter the basis. Thus all the
routes, the slack variables, and the capacity variables have non-negative reduce costs

which indicate optimality.
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Summary and Problems

Chapter 8 for Further Study

The recent trend towards Integrated Service Digital Networks (ISDN) has forced
planners to considerably revise their approach. The principles of operation and
planning cannot be easily introduced into the existing infrastructure of the telephone
network. The diversity of services made available by ISDN introduces an equivalent

diversity in the demand patterns.

Considerations of survivability as well as non-coincidence in the demands over
several periods and the flexibility required for the integration of new concepts have
led to the development of the Dynamic Network Architecture (DNA) which allows

the virtual architecture of the network to evolve with the demand.

8.1 Summary

The first objective in this project has been the formulation in terms of a math-
ematical program of one of these concepts. The dimensioning of non-directed rear-
rangeable nelworks with multi-period demands can be formulated as a linear prograni.
The formulation obtained, which is based on the arc-chain representation of the net
work, presents a structure that permits exploiting fully the multi-commodity and
the multi-périod aspects of the problem. In addition to the structure, the formu.
lation contains a relatively small number of constraints as compared to a node-arc

formulation.
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The efficiency of a linear program is directly affected by the number of con-
straints since it determines the size of its most important component, the basis.
The formulation derived in this thesis contains HM + HK constraints which are
divided into two groups. The first H A constraints assure that the capacity is re-
spected on all arcs for each period. The last HA constraints contain at most one

non-zero element in every column. These constraints assure that the demands are

fully satisfied.

The formulation using the node-arc representation presents an interesting struc-
ture, but the number of constraints is proportional to HM3. For example, in a
problem having 20 periods, 10 nodes and 25 arcs, the number of constraints would
be roughly 27500 whereas the arc-chain formulation chosen has only 1400 constraints
for the same network. Moreover, when the structure of this formulation is fully ex-
ploited, as we have shown, the problem reduces to the equivalent of 21 problems,

each of size 25.

The reduction of the problem into H subproblems is made possible by the fol-

lowing three characteristics of the formulation:

- Theorem 4.1 proves that the capacity variables can be kept in the basis.
This structure of the basis remains unchanged during the execution of the
algorithm.

- The decomposed factorization developed in this thesis replaces the inverse
when solving Steps 1 and 3 of the RSM (Figure 3.3). Furthermore, it takes
advantage of the structure of the working basis whereas inversion would de-
stroy it.

- A column generation algorithm can be designed in order to avoid the explicit
representation of the columns.
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The application of the GUB technique to our formulation leads to the reduction
of a basis of size HM + HI to a working basis of size HM. Then, the use of
the decomposed factorization presented in (‘hapter 5 as a computational device
reduces considerably the number of operations necessary to carry out the steps of
the RSM. The advantage of this decomposed factorization is shown by comparing its
computational complexity with that of a standard factorization procedure applied to
the working basis. In the follov;'ing paragraphs we shall compare these two methods

of factorization with respect to:

Initial factorization.

Effect on the steps of the RSM.

Update of the basis.

Refactorization.

The factorization of the initial basis requires only a permutation matrix per
period. The computational complexity of the initial factorization is O( H M) with

both methods.

The factorization of the working basis without decomposing does not exploit its
structure. The computational complexity of finding the dual variables in Step 1 of
the RSM is O(H2M?). The solution of the other linear system, where the represen-
tation of the entering column is computed, also requires O( H>M?) operations. The
update of the factorization for a matrix of order HM has complexity O(H2M?2).
Finally, the number of operations required for the periodic refactorization of the

working basis is of order O(H3 M?3).
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By contrast, the decomposed factorization presented in this thesis reduces the
computational complexity of an iteration of the RSM. In Step 1, there is only one
linear system of size M to solve. The row vector r is obtained by the multiplication
of H matrices by the result of the linear system for a complexity of O(HM?). The
product of 7 by the key columns gives the remaining H K dual variables, g, requiring
O(H M?) operations. The overall complexity of Step 1 is O(HM?). The solution of
the linear system of Step 3 also requires O(H M?*) operations due to solution of H

linear systems of size at most M.

The update of the factorization is the crucial step, since it must consider the po-
sitions of the entering and the leaving columns, preserve the structure of the working
basis, and avoid aflecting the matrices associated with periods not involved in the
update process. The procedure presented in Section 5.2 updates only the matrices of
periods PER(ent), PER(lear), and the matrix associated with the capacity variables
in the last Af columns. The update of the three upper-triangular matrices requires
only O(M?) operations. The refactorization of the working basis can be combined
with the update process. We have shown that on the average refactorization requires

O(M?3) operations per iteration.

The column generation method presented in Chapter 7 is necessary if we consider
that the number of columns is proportional to N!. This eliminates any enumeration
method that would not search for an entering column in an intelligent fashion.
Instead, we have a method that decomposes the problem by periods and uses the
underlying network to directly generate a good candidate for each OD-pair based

on a shortest path procedure. The overall complexity of the column generation



procedure is O(H M%), which is equivalent, in terms of computational complexity,

to solving H problems, one for each period.

8.2 Problems for Further Study

In the context of this project. there was no cost associated with the use of a
route. It is assumed that all the costs are incurred when the capacity is installed. A
possible extension to this work would be to consider a cost for each route variable.
In some situations, it may also be interesting to associate a cost with the slack
variables. Considering costs on the flow and slack variables would probably affect
only the first 1wo steps of the RSM. The first is affected since it solves a linear system
where the right-hand side is given by the costs of the basic variables. The second
step, which determines the entering column, would be the most affected as the route
with the smallest reduced cost could not be identified simply using a shortest path

algorithm.

Another problem to consider for further study is the capacity expansion problem
in a rearrangeable undirected network. In this thesis. we have addressed the sizing
problem, given the demands for H periods without having any restriction on the
size of the arcs. Capacity expansion addresses a problem having a certain capacity
already installed in the network. The same problem may also consider upper-bounds
on the capacity of pre-defined sets of arcs. The presence of new columns in the
formulation would probably change the structure of the working basis. The effect
of changing the structure is difficult to forecast, but we believe that it is possible to

adapt our factorization procedure to this situation.
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Depending on the technology used in the network, the modularity of the equip-
ment leads to highly non-linear costs which cannot be approximated with the linear
cost function used in this thesis, The implications for the solution method can be
divided into two parts. First, the cost function becomes piecewise linear. Since the
problem must be separated into intervals having 2 minimum and maximum capac-
ity, it is necessa.y to solve the capacity expansion problem mentioned above. The
second aspect of the problem consists { developing a method based on the capacity
expansion problem that can find the interval for each arc in which the optimal solu-
tion lies. For example, an algorithm of the branch and bound type would probably

be the basis for a solution of this problem.

In Chapter 7, we presented a column generation method that finds the best
route containing no arcs having a negative cost, then it is compared with the best
slack variable eligible to enter the basis. If it were possible in a computational time
comparable to the Floyd-Warshall algorithm to find shortest paths in a network
having negative cycles, then it would be possible tc find routes with smaller reduced
costs. Since we want to promote the choice of routes having smaller reduced costs

as entering columns, the efficiency of the algorithm would be further increased by

this possibility.
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