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MODEL INVESTIGATION OF CABLE STAYED BRIDGES

ABSTRACT

The use of models as a direct aid in design of cable

stayed bridges has been investigated.

It was taken into account that the cable stayed bridge
displays a nonlinear behaviour due to large displacements
and bending moment - axial force interaction. To evaluate the
internal stresses and displacements under the action of dead
and live loads, the model analysis was performed in two sta-
ges. In the first stage, the behaviour of the structure was
assumed to be linear. In the second stage, the data obtained
on the basis of linearity was adjusted by taking into account
the actual nonlinear behaviour of the cable stayed bridge

system.

To reduce stresses and displacements due to dead load by
post-tensioning the cables, a procedure was developed to de-
termine the magnitude of the post-tensioning forces required

in cables to attain the reduction specified.

The experimental data obtained as a result of the model
investigation, was compared with a theoretical analysis per-

formed on the CDC 3300 digital computer.
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INTRODUCTION

1. Introductory note.

The cable stayed bridge is a modern and economical sol-
ution for medium span bridges, that is, for bridges having
spans too large to be covered by a nonstiffened girder and
too small to justify a suspension bridge. This type of bridge,
may be described as a stiffened girder system supported elas-
tically at intermediate points by inclined cables. The cables
are suspended from towers located at the interior supports.
Sketches of several typical cable stayed bridge systems are

shown in Appendix No. 1.

The analysis and design of existing cable stayed bridges
have been performed by analytical methods. In some cases,
however, as for example, the George Street Bridge over the
river Usk, at Newport, England l, model investigations have
been carried out, in addition to the analytical calculations,
in order to verify the validity of the mathematical model on

which the analysis was based.

Structural models may be used, however, not only to ver-
ify final analytical calculations, but also as direct tools for
design of bridge systems. If the analysis is performed on a
structural rather than on a mathematical model, the informa-
tion obtained,‘more closely represents the actual behaviour

of the structure.
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The purpose of this research is to apply the above con-

cept to the particular case of cable stayed bridges.

The reason that the cable stayed bridge has been select-
ed for this application is that, it has been used extensively
after the Second World War and it presents a great potential
for the future development of bridges. Although the exten-
sive application of modern cable stayed bridges started only
in the last fifteen years, earlier types of similar bridge
systems were known for almost two centuries, as shown in the

brief historical review of the next section.

2. Historical Note

The idea of carrying a main bridge girder by inclined
cables anchored to a tower has probably originated from its
architectural counterpart, the tower (or mast), connected by
cables to a rigid anchorage. Available information 213 takes
us back as far as 1784 when C.J. Loscher brought out the idea
of building a bridge similar to the cable stayed system
(Freiburg, Germany.) Later in 1817, a footbridge, 110 feet
long, stiffened with inclined suspension members was built

in England.

Several other bridges having the main girder stiffened
by inclined members were known from the nineteenth century.
One of them, a 256 foot bridge over the river Saale (Neinburg,
Germany, 1824), collapsed due to overloading by a crowd of

people. Two others were the Poyet system (1821, France),



Fig. 1, and the Hatley system (1840, England), Fig. 2.

FIG. 1 BRIDGE SYSTEM POYET

The Poyet bridge system had the stiffening members con-
verging to the top of the tower, whereas the Hatley system

had parallel harp-shaped chains.

FIG. 2 BRIDGE SYSTEM HATLEY

The Albert Bridge 4 over the Thames River in London,
England, (1873) had the stiffening members converging to
the top of the tower as in the Poyet system, Fig. 3. The

bridge had a main span of 400 feet.



FIG. 3 ' THE ALEBERT BRIDGE ,OVER THE *THAMES

RIVER, .
LONDON

Another bridge, actually a combination of cable stayed

1d classical suspension bridge dates back Lo 1968, 1 This is

e Franz-Joseph Bridge over the river Moldau in Prague,

eckoslovakia, Fig. 4.

FIG. 4  THE FRANZ-JOSEPH BRIDGE: OVER THE :RIVER

" MOLDAU, PRAGUE

The Gisclard bridge system was developed in France,

1908, Fig.v5, and had the main spah girder suspended el-

“ically by vertical ties. The ties were connected to a

ser which transferred the load to inclined stiffeners

verging to the top of ‘the tower.
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FIG. 5 THE GISCLARD BRIDGE SYSTEM

After the Second World War, the rapid advancement of
bridge construction brought about the need to develop new con-
cepts in bridge design. 1In order to aéhieve economy of both
material and cost, designers have gone back to the cable stay-
ed bridge concept. A leading role in the new development of
this bridge system may be attributed to Dischinger 4. Since
1950, a number of cable stayed bridge systems have been built
in various parts of the world (Appendix No. 1l). At present,
this type of bridge system is being applied more and more by

designers all around the world.

If we refer to Canadian or American achievements in the
field of cable stayed bridges, the most represen;ative is the
"Papineau Bridge" (Montreal, 1969) having.a main span of 790
feet. At the present time, however, the application of cable
stayed bridges in Canadian design practice is only in its in-

itial stage.



3. Basic concepts regarding the use of

models as a direct aid in design of cable

stayed bridges. Outline of research program.

At the present time, the analysis and design of bridges
is being carried out on mathematical models. Structural
models are employed only in the case of large bridge systems,

to verify the analytical computations.

In designing a structural system, it should be taken
in account, however, that a theoretical investigation is
based on simplifying assumptions regarding the connections
and the supports of that system, and its overall behaviour.
This is the reason why the actual distgibution of stresses
in a structure is not identical to the one predicted by its
mathematical model. By employing however, a structural
model constructed in accordance with the theory of simili-
tude, the information obtained represents more closely the
behaviour of the prototype, than the results of a theore-

tical analysis.

To ascertain the possibility of carrying out the de-
sign process of a cable stayed bridge system on a small
scale structural model, this process has been examined in

detail.

For a cable stayed bridge with a given geometrical

layout, the design may be divided into the following steps:

a) A preliminary set of sectional properties is



assumed for each member of the system.

b) On the basis of the sectional properties assumed

in step "a", stresses and displacements due to applied loads

on the system are determined.

c) Maximum stresses and displacements obtained in
step "b" are compared with stresses and displacements allow-
ed by technical specifications. If the difference is larger

than permitted by design codes, a new set of sectional pro-

perties is chosen and steps "b" and "c" are repeated until
a specified relation between the sectional properties assum-
ed and those determined as a result of the investigation per-

formed, is obtained.

The cable stayed bridge displays a nonlinear elastic
behaviour. This nonlinearity is due to large displacements
and bending moment-axial force interaction. For a nonlinear
structure, the principle of superposition does not apply,
and therefore, it is not possible to determine critical
stresses and displacements by superposition of influence line
ordinates. In this case, the analysis should be carried out

by loading the system with its full dead and live loads.

To analyse a cable stayed bridge by a "direct" method,
that is by applying the full dead and live load on the model,
difficulties are experienced by the fact that the range of
standard structural sections available for design of the

model is limited. To overcome this problem, all sectional
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properties of the model must be increased by a constant fac-
tor. This causes however, an equivalent increase of the
total weight to be applied on the model in order to satisfy
the similitude condition ky = k;. As a consequence, unless
a special loading system which would enable the simulation
of relatively large concentrated loads or of a distributed
load, is employed, the procedure of increasing proportional-

ly all sections becomes impractical and other methods have

to be found.

If instead of a true model, a distorted model, which
does not satisfy the similitude condition kA = kL2 is employ-
ed, (a detailed discussion of similitude conditions is pre-
sented in Part II, Section 2), the stiffening girder may be
designed as a square or rectangular bar. Such bars are avail-
able in relatively small sizes. Comparative theoretical cal-
culations performed have indicated however, that the errors
in evaluating bending moments and axial and shear forces by
disregarding the condition kA = k#Z may amount to as much as
8.6%. This represents a relatively large variation and
therefore, a distorted model does not represent an exact an-

swer to the above problem.

The solution developed in this research is to carry
out the analysis on two models. The first model, which is
designated as model "A", is employed to determine influence
lines. On this basis, the linear stage of the analysis may

be performed. The only load applied on model "A" is a re-



latively small concentrated load which may be handled with

no difficulty. This allows the design of model "A" with re-
latively large structural sections. To predict the nonlin-
ear behaviour of the prototype, a second model, which is de-
signated as model "B", is employed. On this model, "B", the
ratio between nonlinear and linear stresses and displacements
is determined by loading the model in two stages. First a
fraction of the dead and live loads is applied such that the
displacements of the system remain small and its behaviour
may be considered as linear. Then, the model is loaded with
its full dead and live loads under which it displays its
real, nonlinear behaviour. Strains and displacements are re-
corded for both cases. By comparing the two readings, that
is by dividing the second reading by the first ones, the non-

linearity of the system is determined.

As model "B" is loaded with its full load, relatively
small structural sections have to be employed in order to
keep the total weight to be applied on the system at a min-
imum. Consequently, model "B" has to be designed as a dis-
torted model. As both readings are determined on the same
model, the same distortion factor is employed however, and
this factor is cancelled when the second reading is divided

by the first one.

By multiplying stresses and displacements recorded on
model "A" by the nonlinearity factors determined on model
"B", the real, nonlinear stresses and displacements are ob-

tained.
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An alternative solution to the above problem is to em-
ploy a special loading system as stated earlier in this sec-
tion. In this case, standard structural sections may be used
and one model only will be required for the analysis of a

cable stayed bridge system.

A model investigation has been planned and carried out
on the basis of the method presented above. The details re-
garding model "A" are described in Chapter II and the inves-
tigation of the nonlinear behaviour (model "B") is described

in Chapter III.

An additional problem encountered in the analysis of
a cable stayed bridge system is the calculation of post-ten-
sioning forces required in cables to reduce bending moments
and displacements due to dead load. To obtain these forces,
bending moments and displacements are determined, at select-
ed locations, first due to unit forces applied successively
along each cable of the system and then due to dead load.
Then, by expressing the condition that the maximum bending
moments or the displacements should be reduced to a specified
value, the post-tensioning forces are determined by solving

a number of equations equal to the number of cables.

An investigation regarding the determination of post-

tensioning forces is presented in Chapter V.

The procedure discussed above, affords a good method of
analysis of a cable stayed bridge. If the analysis is to be

repeated with different sectional properties in order to re-
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fine the design of the cross sections, the model should have
interchangeable or adjustable sectional properties such that
one may repeat a model investigation without having to con-
struct a completely new model. During this investigation,

the possibility of obtaining such a model was examined.

To compare the information determined experimentally
with the theoretical data, a procedure for theoretical analy-
sis of cable stayed bridges has been established and is pre-

sented in Chapter 1IV.
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I1I
DETERMINATION OF INFLUENCE LINES OF A CABLE

STAYED BRIDGE ON A SMALL SCALE STRUCTURAL MODEL

1. Planning of the model investigation

Planning of the model investigation for determining
influence lines of a cable stayed bridge has been carried
out in accordance with the object of this research as out-

lined in Chapterxr 1.

Before the design of the small scale model was started,
it was necessary to reach decisions with regard to the fol-

lowing factors.

a) The size of the model
b) Materials to be employed for the model
c) Fabrication methods

d) Instrumentation, loading and recording of data

a. The size of the model

The main considerations taken into account in select-
ing the scale reduction factor for length, were the avail-
ability of standard structural sections as discussed in Chap-
ter I, Section 3. 1In addition to these considerations, it
was taken into account that on a larger size model, the errors
in recording strains and displacements would be less than on
a smaller size model. At the same time, as the scale reduc-
tion factor for length increases, the manufacturing tolerances

become more difficult to satisfy. A smaller model, however,
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would require less laboratory space and would be easier to

manipulate.

As a consequence of the above considerations, and tak-
ing into account as well the space designated for the model
in the Civil Engineering Laboratory, it was decided to employ
a length scale reduction factor of kL = 100. A smaller scale
reduction factor would have resulted in a model too large to
be accomodated within the space available. At the same

time, a larger scale reduction factor could not be justified.
b. Materials

In deciding on the particular material to be employed
in the model investigation, the similitude conditions to be
satisfied by the materials of the model and of the prototype
were borne in mind. The prototype was assumed to be of st-
ructural steel, this being the material used generally for
the construction of cable stayed bridges. If the influence
of shear strain on the magnitude of displacements is neglig-
ible, any material exhibiting linear stress-strain proper-
ties would be adequate for the model if the loads are applied
so that stresses remain below the elastic limit. If this
influence is to be considered, however, a material having
the same E and G as the prototype, should be employed, as

will be discussed in more detail in Section 2.

Consequently, it was decided to employ steel, as this

material satisfies most completely the requirements specified.
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Its manufacturing and instrumentation is relatively simple,

it has a high heat dissipation factor, its elastic properties
do not change in time and it satisfies similitude requirements
for shear strain, as opposed to, for example, plastics which

do not satisfy this condition.
c. Fabrication methods

To decide what types of sections to select in the de-
sign of the model, fabrication methods for small scale struc-
5,6
tural models were reviewed ~' . Of special interest was the

M.I.T. report R66-45 "Fabrication Techniques for Small Scale

Structural Models" 7.

The decision adopted was to employ standard commercial
sections for the girder and for the cables, and structural
steel plate, cut and milled to the required size for the

towers.

After examining several alternatives, it was decided
to design the tower-girder and cable-girder connections as

bolted, and the cable-tower connections as bolted-welded.
d. Instrumentation methods

The data to be determined during the model investigation
are bending moments in the stiffening girder and axial forces
in cables under a unit load applied vertically, at constant

intervals on the girder.

The number of locations to be instrumented to acquire
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data should be equal to the degree of static indeterminancy
of the system. All other data may then be obtained from con-

ditions of static equilibrium.

To determine the ordinates of influence lines of axial
forces in cables, the axial strains have to be measured.
For the influence lines of bending moments in girder, one
method is to measure maximum strains due to bending and to
multiply them by E%E such that the bending moments are ob-

tained.

A second method is to determine u;, vy, 654 uj, vj, ej,
the vertical, horizontal and rotational displacements at
joints i and j, Figure 6, and to calculate the axial and
shear forces and the bending moment at joints i and j from

Equation (1)

FIG. 6 TYPICAL BAR BEFORE AND AFTER DEFORMATION




{a};; = [s];, * (D}, (1)

In Equation (1)

{A}ij = {N;, Vi, My, Ny, Vg Mj}
(2)
{D}ij = {ui, Vi, ei, Uj, Vj’ ej}
and
[S]ij = stiffness matrix of bar ij. (3)

By the second method influence lines are obtained by

measuring displacements instead of strains.

For the acquisition of data in this investigation, it
was decided to employ the first method. The second method
was applied as an illustration only. The reason for this
is, that by applying the first method, the information may
be acquired with the aid of a small computer as will be

shown later in more detail.

Influence lines of displacements may be obtained by

employing microscopic scales, transducers, dial gages or by

8,9,10,11,12

photographic methods For this investigation,

dial gages were employed.

16.
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2. Design and description of the model

a. Similitude conditions

The cable stayed bridge system displays a nonlinear
elastic structural behaviour. Consequently, the similitude
conditions to be satisfied by the scale reduction factors of
the governing variables of this system have to be valid in
the nonlinear domain. Their derivation must be based on
principles of dimensional analysis, as these principles are

not restricted by the law of superposition.

Langhaar 13, Murphy 14, Beaujoint 15, and Preece 16

have applied the principles of dimensional analysis as laid
down by Buckingham 17 to the general case of structural sim-

ilitude.

The similitude requirements as established by Preece

for the general case of a structure are:

k_ =1 (4)
kv =1 (5)
k. = constant in all directions (6)
kukt =1 (7)
kL = ky (8)
kb = kE (9)
%jkLz = kp (10)
kq = k.o (11)
Kk =k (12)

The scale reduction factors employed in equations (4)
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to (12) are defined in Notation.

For the case of a nonlinear elastic cable bridge system,
the condition represented in Equation (4) may be disregarded
as it applies only when the nonlinearity is due to the behav-

iour of the material itself and not to that of the system.

Equation (5) represents the condition that both the mo-
del and the prototype should be made of the same material.
For the case of a simply supported steel girder with a ratio
of length to height equal to 15, for example, it may be shown
that if this condition is disregarded, the error is approxi-
mately 1%. To neglect the condition represented in Equation
(5) is equivalent to neglecting the contribution of shear
strain when the magnitude of the elastic displacement is com-
puted.

It may be pointed out here that the contribution of
shear strain to the magnitude of the elastic displacements
is rather difficult to take into account in a mathematical
model in the case of classical methods of computations, as
the force, displacement or energy equations become very comp-
lex. Also, if a computer program is employed, the stiffness
matrix of the members will contain more terms and hence, more
computing time will be required to perform the calculations.
If bending moments and axial and shear forces are determined
however, on small scale structural models which satisfy the
similitude condition expressed in Equation (5), the influence
of shear strain in the value of elastic displacements is in-

cluded without additional effort.
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Equation (6) represents the condition that the longi-
tudinal and cross sectional dimensions of the prototype and
of the model have to be related by the same scale factor kL.
This condition is extremely difficult to satisfy in practice.
If the assumption is made that sectional properties are re-
presented by I and A only, Equation (6) may be replaced on

the basis of Buckingham's Pi theorem by kI=kL4 and kA=kL2'

It may be shown that if the cross sectional properties
are represented by I and A only, the error involved for a

span to length ratio of 15 is less than 1%.

Equation (7) represents the conditions to be satisfied
by the temperature and linear expansion scale factors. 1In
this investigation, however, the data readings are recorded
at constant temperatures and the bridge system has no con-
straints which produce temperature stresses and, therefore,

this condition may be disregarded.

Equation (8) is valid for all cases of nonlinear elas-

tic similitude and must be satisfied in this research.

Equation (9) indicates that the scale reduction factor
for unit stress is equal to the scale reduction factor for
modulus of elasticity. For this investigation kp=1 and

hence ko=l'

In the method applied here, only internal forces are
considered however, and not unit stresses, hence Equation

(9) does not represent a similitude condition which needs to



to be satisfied in this investigation.

Equation (10) may be arranged more conveniently by em-
ploying Equation (9), as kgk;2 = kp. Equation (11) was not
used in this investigation as the distributed load applied
on the bridge system is given in lb. per inch and not in 1b.
per square inch. It may be shown that if the distributed
load is given in 1lb. per inch, the equivalent condition is

k. =k _k_.
W EL

Equation (12) does not apply for the case of statical

loads and may be disregarded.

Consequently, for a nonlinear elastic cable stay bridge

20.

system subjected to vertical statical loading, the similitude

conditions are

ky =k, (13)
K = kg2 (14)
kgkp2 =k (15)
Ky =1 (16)
k = k4 (17)
kgkp = kg (18)

Employing the same principles as in the deriviation of
the above conditions, similitude requirements between bend-
ing moments, axial and shear forces acting on the prototype
and bending moments, axial and shear forces acting on the

model may be established. These are

kM = kpkL (19)
kQ = kp (20)
k = k (21)
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If Equations (13) to (21) are satisfied, the model is
a true model subject to the limitations stated earlier when
discussing Equation (6). If any one of the Equations (13)
to (21) is not satisfied, the model is distorted. In prac-
tice, it is very hard to satisfy simultaneously Equations (14)
and (17) because of the limited range of small sections com-

mercially available.

If Equation (13) is not satisfied, the model ceases to
display a nonlinear behaviour. It may be shown that for lin-
ear similitude, the condition expressed by this equation is
not essential, however. If only information for influence

lines are to be determined, Equation (13) may be disregarded.

Equations (13) to (18) inclusive will be employed in
part (b) for the design of the model. Equations (19) to (21)
will be used to predict axial forces and bending moments of
the prototype from axial forces and bending moments determin-

ed on the model.

b. Sectional properties and geometry of the model.

This stage of the model design consists of the reduc-
tion to scale of the dimensions of the prototype, according

to the similitude conditions.

For the case when the geometry selected for the bridge

system to be designed is similar to the geometry of an exist-
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ing bridge with known sectional properties and the interior
and exterior constraints of both systems are similar, a

procedure to determine the sectional properties of the new
bridge, based on principles of similitude, is suggested in

Appendix No. 2.

The sectional properties and geometry of the prototype
selected for this investigation are shown on Figure 7. The
bars are marked by numbers from 1 to 31. The cables are de-
signed symmetrically about the towers and about the centre
line of the bridge system. Hence, Al = A_=A_ = A12’ A

6 7 2 -
A5= A8 = All’ = A3 =R, = A9 = AlO' The materials assumed
for the prototype were CSA G40.12 steel for the girder and
towers and wire rope bridge strand for the cables. The mod-

ulus of elasticity of the G40.12 steel has been taken equal

to E = 29,000 ksi and of the cables as equal to E = 18,000 ksi.

It has been assumed that the bridge prototype has 6
lanes and its deck is supported by 2 box girders. The sec-
tional properties represented in Figure 7 are for one girder

only.

To determine the geometry and the cross sections of the
model, first kA and kI have been calculated. As stated ear-
lier in this section, kL has been selected as equal to 100.

Hence, from Equation (14), k, = k = 104 and according to

A L2

. 8
relation (17) kI = kL4 = 10".

Dividing the sectional properties of the prototype by
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the above scale factors

p
A
A o A _ amo_am 71 105 = 0.01050 in®
1 6 7 12 Y
K 10
A
AP
Al = A o A o a2 42 = 0.00420 in?
2 5 8 11 )
k 10
A
AP
PR LS SIS L T S 37 = 0.00370 in?
3 4 9 10 )
k 10
A
p
J 6
gt = 2272 X0 - 9.02720 in®
D k 10
I
AP
Al - _D _ 496 = 0.04960 in? (22)
D k 10%
A
p
J 6
Jm - _TB_ 1.04 x 10" _ 4 41040 in?
TB 8
k 10
I
AP
Al - _TB_ 417 = 0.04170 in?
TB Kk 10 4
A
p
J 6
g™ - _TT_ .506 x 10 _ 4 40506 in®
7T 8
k 10
I
Ap 314 2
m _ ST _ .
Ap, = —'= =7 0.03140 in
k, 10

For statical loads acting in a vertical plane, the
above values may be increased or decreased proportionally.
In order to employ commercially available sections, after

multiple trials, the above sectional properties were increa-

sed by a factor of C 31.6. Consequently,



m _ .m _ _.m _ .m . 2
A2 = A5 = A8 = All = 0.132 in
m_ m _ m _ .m _ .2
A3 = A4 = A9 = AlO = 0.117 in

37 = 0.860 int

m . 2
AD = 1.570 in
. (23)
m _ -
JTB = 0.332 in
m . 2
ATB = 1.320 in
_ . 4
J%T = 0.160 in
m .2
ATT = 1,010 in

To obtain the longitudinal dimensions of the model,
the corresponding dimensions of the prototype were divided

by k. = 100.

The geometry of the model and the sectional properties

requiered are shown on Figure 8.
c. Selection of sections for the model

The sections chosen for the girder were 2 - 2"x 1"x 3/16"
channels ( U.S. Steel Corporation, Catalog of Special Sections,
Section C-597). The channels were made of ASTM-A7 steel and had
a cross sectional moment of inertia in the vertical plane of
bending of I = 0.84 in4. The area of the cross section was
1.53 in2. The modulus of elasticity was assumed as equal to
E = 29,000 ksi. The above area and moment of inertia were

close to the requiered sizes, the
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differences being 2.32% for moment of inertia and 2.61% for

area.

Before selecting channels, tubular sections were con-
sidered. This would have led, however, to a more complex
type of cable-girder and tower-girder connection that would

be more difficult to manufacture.

The towers were designed as variable rectangular shapes
milled from C-1020 steel, having a nominal modulus of elas-

ticity of E = 29,000 ksi.

For the cables, round bars were used. Preliminary in-
vestigations made with flexible cables did not give satisfac-
tory results as their elastic properties were not constant.
The bars were made of AISI Cl2L15 steel and had a nominal
modulus of elasticity of E = 29,000 ksi. Consequently,

A ... A

1 12
given in (23) in the ratio of 18/29 = 0.62. Thus

had to be recalculated by decreasing the values

m _ .m _ .m m _ _ . 2
Al = A6 = A7 Al2 0.332 x 0.62 0.206 1in

m _ .m_ .m _ ,m _ _ . 2 (24)
A2 = A5 = A8 All = 0.132 x 0.62 = 0.081 in

m_ .m _ ,m _ ,m _ - .2

A3 = A4 = A9 = AlO 0.117 x 0.62 0.073 in

The sizes selected were % inch round bars for members
1, 6, 7, 12 and 5/16 inch round bars for all other cables.
For members, 3, 4, 8, 9, the deviation was about 6% from

the requirements set forth in Figure 8 as closer sections
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were not commercially available.

A schematic view of the model with dimensions and sec-
tional properties, is shown on Figure 9. Figure 10 repres-
ents a photograph of the model taken in the instrumentation

stage.

d. Design of connections

The connections of the model were designed taking into
account the following basic requirements:
- Eccentric application of forces should be avoid-
ed as much as possible.
- The connections should enable pretensioning of
cables in order to eliminate any possible compression forces

in cables during the loading process.

A. Girder-cable connection

The girder-cable connection is represented in Figure 11.
The parts are made of C-1020 steel. The bolts are ASTM A325
high strength. The connection is movable, and it may be loc-
ated at any place along the deck. Postensioning of rods is

done by turning the nut "1".

B. Tower-cable connection

The tower-cable connection is shown in Figure 12. The
parts are made of C-1020 steel. The particular design of
this connection enables the cables to act centrally on the

tower.
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C. Tower-girder connection

The tower-girder connection is shown on Figure 13.
The connection is designed such that it may be employed both
as hinged or rigid. With the square bars "1" positioned as
shown, the connection is rigid. By moving the square bars
laterally to the adjacent set of holes, the connection be-
comes hinged. 1In this investigation the rigid connection
only is considered. A photograph of these connections is

shown in Figure 14.
e. Design of the supports

The supports of the bridge model have been designed to
satisfy the following requirements:

A. The supporting area shall be as small
as possible.

B. All supports except one should be free
to move horizontally. Hence, no constraints inducing inter-
ior stresses will be applied on the model.

C. The end supports should be capable of

withstanding uplift forces.

A detail of the interior support is shown on Figure 15.
The end support is similar. The contact width between the
supports and the girder channels is 1/16 in. To assure free
movement of the supports, a layer of 1/32 in. of grease was
inserted between the support block and the alignment plate.

The alignment plates were provided with leveling screws.
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GIRDER-CABLE
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b. CABLE-TOWER
CONNECTION
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To hold down the end supports, the device shown schem-
atically on Figure 16 was provided. The roller bearings en-
able the channels to move freely in case of longitudinal

shortening of the girder.

FIG. 15 SUPPORT DETAIL

f. Foundation

The foundation of the bridge model was constructed of

reinforced concrete piers and steel channels.



37.

HOIAIA SHDOYOA LJAITdN

META TVIHLYT 9

. _
il L _
¥ |
' | . | N
il i : I
1 | |
1N .
1N |
N I ss— S _
! |
| |
S | _
_r 4|
o ! _
_ ! |
L.
oA !
. t
| ! _
: | _
! ! _
i sl pbelhan g
R . R e |
1 .< AL
./ln\\ /,.\\ n
|
|
.
i
|
I
|
——— e lﬂl PR o oo S
i ”
i |
| i
Lo

9T °*DId

MITA LNO¥4 °VY

__ ]
_“ Lo ﬂ
‘I ..... i _
| — :
T f _
N |

S R o s pup——

. |

— .

R ———

N !
i ™

b — b=
| |
| |
..Tlrﬂl.ll\”ll_ ||||| “I
4+— Vi N 1 N
N |
m B __ _
| (.
| | !
-TIL.,I|I||L|_.|I 1
| |
_ |



38.

Figure 17 represents the foundation during erection.
For the case in which another model has to be tested on the
same foundation, the vertical supporting channels may be
moved horizontally or vertically. The vertical angles have
been provided as supports for dial gages. The water level
seen in the picture-&as employed to align the top bearing

plates at the same level.

3. Manufacturing of the model

As a consequence of the principles adopted in design
to employ commercial sections, wherever possible, to provide
simple connections and to avoid welding of built-up small
size sections, the model could be manufactured in the exist-
ing machine shop of the Faculty of Engineering without the
need of special equipment. The machine shop equipment in-
cludes lathes, drilling, milling and welding machines, a

band saw and grinders.

The fabrication was carried out within a tolerance of
less than 1/32 in. for the cross sectional dimension and of

less than 1/16 in. in the longitudinal direction.

4. Instrumentation

The instrumentation employed consisted of strain gages,
dial gages and apparatus to acquire the strain gage inform-

ation.
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FIG.17 FOUNDATION

a. CABLE

b. CHANNEL
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a. Strain gages
The strain gagelayout is represented on Figure 19

and details are shown on Figure 18.

Strain gages were applied on the stiffening girder as
shown on Figure 19. These gages enable the reading of strains
at extreme fibers and in the center of the web of the stiff-
ening girder. From this information, the bending moment at
interior support can be determined. To obtain strains in
cables, two strain gages were applied, one opposite to the
other, on each cable, Figure 19. The arrangement described,
provides information from seven locations. The system in-
vestigated has a degree of statical indeterminancy equal to
fourteen. Because of symmetry, however, only seven redun-

dants need to be determined.

The strain gages employed were 1/4 in. Micro-measurement
precision strain gages type EA-06-250BG-120. They were temp-
erature compensated for steel and had a resistance of 120

ohms. The gage factor was 2.11 at 75°F.

In the first stage of the investigation, the strains
were acquired, one at a time, with a Budd Portable Digital
Strain Indicator P-350 and its companion Portable 10 Channel

Switch and Balance Unit SB-1.

In addition, a Baldwin Switching and Balancing unit

SR-4, attached to the SB-1 unit, was also employed.

In the second stage of the investigation, the strain
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data were acquired with a DS-366 Data Acquisition System.
This system consists essentially of five parts.
A. A strain gage conditioner. This part acquires data

from the various channels.
B. A signal amplifier
€. An analog to digital converter
D. A PDP-8/L 4k digital computer
E. A teletype console

The Data Acquisition System acquires data from the
channels, performs a limited number of calculations and

prints out the information on the typewriter.
b. Dial gages

The dial gage arrangement for determination of deflec-
tions is shown on Figure 20. Deflections were determined on
half of the bridge only as the structure is symmetrical.

Dial gages from 1 to 5 measure vertical deflections at joints
2, 3, 5, 6, 7 and dial gage 6 registers the horizontal dis-
placement at joint 17. Joint numbers are indicated above or
at the right of each joint on Figure 20 and dial gage

numbers are indicated in a circle below or at the left of

the joint.

The above arrangement allows the determination of ver-
tical deflections of the stiffening girder and horizontal

deflection at top of tower. It does not provide all infor-
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mation required to determine bending moments, axial and shear
forces at joints, as described in Section 1 of this Part,

Equations (1), (2), (3).

To obtain bending moments, and axial and shear forces
from displacements, a dial gage arrangement as shown on
Figure 21 was employed. Conversion of dial gage readings in-

to joint displacements is shown in Appendix 3.

5. Loading, calibration and acquisition of data.

a. Loading

To determine influence lines for axial forces, bending
moments and deflections, a concentrated load has been applied
on the model at intervals of six inches. The load was simu-
lated by two special loading devices "A" and "B". Device "A"
was designed to apply a concentrated load at joints and at
locations between joints where device "B" could not be em-
ployed due to interference with cables. Device "B" was de-
signed for locations between joints. The schematic repres-
entation of both loading devices is shown on Figure 22 and
details are represented on Figure 23. By turning the nut
which connects the loading rod with the loading device a con-

centrated force is applied on the model.

Device "A" was designed such that there was no inter-
ference with the dial gages. Device "B" was provided with a
torsional resistant support so as to counteract the tor-

sional moment developed due to the application of loads out-
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side the shear center of the section.

During the loading process, the magnitude of the
concentrated load was maintained at less than 2,500 1lbs.
The displacements induced in the system were proportional
to the applied loads. To achieve this, two reading were

taken for each measurement and their linearity verified.
b. Calibration

Before loading the model and recording the data, the
girders, cables and loading rods were calibrated in order to
verify whether the data obtained from the strain gage read-
ings corresponded to the assumptions made regarding modulus

of elasticity and linearity of stress strain distribution.
The following items were calibrated:
A. C-597 chagnel
B. % in and 5/16 in. diameter round bars
C. loading rods "A" and "B"

A. Calibration of Channel

The C-597 channel was made of ASTM-A7 steel with a
nominal modulus of elasticity of E = 29,000 ksi. The load-
ing scheme, instrumentation and the calibration data record-

ed, are shown on Figure 24.

For a modulus of elasticity assumed as indicated

48.
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above, the theoretical strains were 1.6% less than the
strains determined experimentally. Accordingly, from the
calibration data, a bending strain of 40/4in/in was taken
as equivalent to a bending moment of 1000 lb. in. acting on

the girder cross section.

B. Calibration of % in and 5/16 in diameter round bars.

The % in and 5/16 diameter round bars had a nominal
modulus of elasticity of E = 29,000 ksi and were made of
AISI C1l2L15 steel. The loading scheme, instrumentation and

the data recorded are shown on Figure 25.

For a modulus of elasticity assumed as indicated above,
the actual strains were slightly larger than the theoretical
strains. Thus from the calibration data, a normal force of
1000 1b was taken as equivalent to a normal strain of 169

pin/in for the 5/16 in diameter bar.

C. Calibration of loading rods "A" and "B"

The loading rods were made of C-1020 steel with a nom-
inal modulus of elasticity of E= 29,000 ksi. The loading
scheme, instrumentation and data recorded are shown on Figure

26.

From the calibration data, a normal force of 1000 1lb
was taken as equivalent to 109 pin/in for loading rod "A"

and to 136 uwin/in for loading rod "B".
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c. Recording of data

The data recorded were strains and displacements due
to a unit load applied at intervals of six inches along the
bridge girder. The locations studied are shown on Figs. 19

and 20.

The strain readings were converted to bending moments
and axial forces and compared with theoretical values, deter-
mined on a mathematical model. The results are represented

in Figs. 27 to 39.

All influence lines correspond to the bridge prototype

simulated by the model represented in Fig. 9.

The influence line ordinates of the bending moment,
Fig. 33, are expressed in inches. Hence, the bending moments .
calculated employing these ordinates will be given in force-

inch units.

To calculate influence line ordinates of displacements,
Figs.34 to 39, E was expressed in lb/inz, I in in4, L in inches
and p in lbs. Hence, the ordinates are expressed in in/lb

and the resulting displacements will be in inches.
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6. Conclusions

Figures 27 to 39 represent influence lines of axial
forces in cables 1 to 6, of the bending moment at the inter-
ior support, of vertical deflections at joints 2, 3, and 5
to 7 and of horizontal displacements at joint 17. For the
bridge system investigated, once the influence lines of bend-
ing moments and axial forces at the locations indicated are
known, influence lines at any other locations may be obtain-

ed from conditions of static equilibrium.

As shown in Figures 27 to 39, the influence lines de-
termined experimentally have essentially the same configura-
tion as the influence lines determined analytically. The

differences between maximum ordinates are given in Table No.l.

The deviations are due essentially to the simplifying
assumptions with regard to connections, supports, influence
of shear strain, etc., made in the mathematical model and
also to some extent due to errors in recording strains and

displacements.

The purpose of this investigation was to initiate,
plan, and carry out an experimental method of analysis to
be employed in design of cable stayed bridges. The main goal
of such a method is to enable one to make more accurate as-
sumptions regarding the connections of the structure, com-
pared to those used in a mathematical model. A theoretical
analysis relies essentially on three basic connection types

whereas an experimental investigation may employ any



68.

0G°6T- _O0T X TTIT"- 50T X 657" 50T ¥ 0LS* LT 3utol
4 3e juswooeTdsSTp TR3UOZTIOH
0L°9T- 50T ¥ ¥%0°- 50T X 0zZ* ;0T X ¥92° L
0€°"€T- 50T ¥ 6€0°~- p0T X €GT° y-0T X T6T" 9
0Z°'6T- 50T ¥ Ty0°- 50T X ZLT" p-0T X €TC° S
0L'€T- 50T ¥ 920°- 50T X €9T° 50T ¥ 68T° €
21°S - 50T ¥ 0TO0"- 50T ¥ S8T" 50T X S6T" Z 3urtol
3 UOTIOSTISP TeOTIIAOA
L € + 0T X 91 ¢0T X T9€ ¢0T X SLE 3xoddns
I0OTIS3UT 3B Juswow burpusg
9T'v + 060"+ 06Z°T 00Z°T 9
8v°C + 9T0 "+ z99-° 9%9° S
00°¥T+ GLO+ 119" 9€G-” 14
06 €T+ TTT + LZ9° 906" €
06T + 900"+ 90% " 00%° Z
00°CZT+ 9T+ 9G€°T 0IZ°T T STged UT 92I0F TeTXY
TOTYA
INIDYIJ TYDIYTWAN
TONTIELITA TYOILIIOTHL TYINTIWIYIIXT

SHLYNI@IO AINIT HONINTAINI WAWIXVIW

TUOILIYOTHL ANV TVINIWIYAIXTE J0 NOSIYVIWOD

T "ON HTAVL




possible type of connection. Also, in a theoretical analy-
sis, many simplifying assumptions are made and numerous

second order effects are neglected, whereas on a structural
model such simplifications are not required and hence, the

model represents the actual.sstructure more closely.

It is true that at this stage of the development of
model investigations, a theoretical analysis involves less
time, cost and effort. The advantages of a model investi-
gation are, however, valuable as they provide more accurate

predictions for design.

For these reasons it is felt that model investigations
will gain more and more recognition as a design tool in the

future.
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II

INVESTIGATION OF THE NONLINEAR BEHAVIOUR OF
A CABLE STAYED BRIDGE, ON A STRUCTURAL MODEL

1. Planning of the model investigation

Planning of the model investigation of the nonlinear
behaviour of a cable stayed bridge has been carried out in

accordance with the basic concepts outlined in Chapter 1.

The general considerations regarding the size of the
model, materials to be employed for the model, fabrication
methods and instrumentation and recording of data, presented
in connection with the model for determination of influence
lines, (model "A"), were also taken into account in the plan-
ing of this investigation. On the basis of the same consid-
erations, it was decided to employ steel as the material for

model "B".

The size of the model was dictated mainly by the space
available in the Civil Engineering Laboratory. A length scale

reduction factor of kL = 200 was selected.

Instrumentation methods similar to those used for the

influence line model were applied.

2. Design and description of the model

a. Geometry and sectional properties of the model

The design of the model was carried out on the basis



71.

of the similitude conditions indicated in Chapter II, Sect. 2.

The prototype selected for this investigation was, with
the exception of the stiffening girder, the same as the one
employed for determination of influence lines. For the stiff-
ening girder, the sectional properties were taken as variable,

Figure 40.

The sectional properties of the prototype were designed
symmetric with regard to the center line of the system and the

cables were symmetric with respect to the towers.

The materials assumed for the bridge prototype were the

same as considered previously for model "A".

The scale reduction factors for area and moment of in-

ertia kA and kI were determined from the conditions kI = kL4
and k, = k;°. With k. = 200 this gives k, = 4 x 10% and ky =
16 x 108.

Dividing the sectional properties of the prototype by

the above scale factors:

P
A
AT = a7 = a0 = AT = El = 105 . = 0.002625 in’
A 4x10
AP
A? = A? = Ag = Ale EE = 42 4 = 0.001050 in?
A 4x10
25
AP (25)
AT = Al = T = AT - == = 0.000925 in’
A 4x10
P
J 6
m _ Ip1_ 2.72x10 _ . 4
Ip = o= =2 = 0.001700 in

I 16x10
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p
Ip2 _ 2.50x10°
kp 16x10°

P

Jrs _ 1.04x10°
kg 16x10°

P

Jor _ 0.506x10°
kg 16x10°

— 0.00156000 in?

4

0.0006500 in

= 0.00031625 in”

73.

(25)

To satisfy the connection design requirements, it was

portionality factor C= 4.37.

ing several trials.

Consequently

AT = A? = a7 =
) = A5 = AY =
Ay = A, = A =

Al = 4.37
m _
Al = 4.37
m _
AT, = 4.37
m _
gn = 4.37
Jm = 4.37
D2
Jt = 4.37
TB
M~ 4,37

X

X

X

X

.002625

.00105

.000925

.0017

.00156

.00065

.00032

.01145

.00458

.00404

.00742

.00682

.00284

.00138

necessary to increase the above sectional properties by a pro-

This factor was obtained follow-

in.

in.

in.

(26)

in.

in.

in.

in.
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The geometry of the model and the sectional properties

required are shown in Figure 41.

b. Design and selection of model sections

The stiffening girder was designed of two rectangular
sections (3/8" x 1/2") made of AISI C~1020 steel and having
a nominal modulus of elasticity of E = 29,000 ksi. The width
of the girder was reduced from 3/8 in to 0.36 in respectively
0.335 in. to satisfy the stiffness requirements correspond-

The actual moments of inertia
4

ing to Ip1 respectively JD2'

obtained were 0.0075 in? and 0.0069 in? which represents a
deviation of 1.06%, respectively 1.16% from the requirements

calculated in Equation (26).

The towers were designed as variable rectangular shapes
milled from C-1020 steel plate having a thickness of 3/16
inches. The nominal modulus of elasticity of the steel plate
was E = 29,000 ksi. The deviation from the nominal sectional

properties at bottom of tower was 1.4%.

The cables were designed of C-1095 drill rods with a
normal modulus of elasticity E = 29,000 ksi. For cables 1,
6, 7, and 12, drill rods were not available and QQW-471 music
wire, reheated to 900°F was employed. Reheating was neces-
sary to reduce ductility in order to achieve a better grip

at the cable-girder connection.

As the modulus of elasticity of the prototype cable
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was E = 18,000 ksi it was necessary to recalculate the cable

areas by decreasing the values given in Equation (26) by the
18

ratio 59 = 0.062.
Consequently
A" =A™ = 2™ - AM - 62 x .01145 = .0071 in.>
1 6 7 12
|
m — m —1 m — m —3 b 1 2 !
A2 = Ay = Ag = A7, = .62 x .00458 = .00284 in. (27)
AM = Al = AT =A™ = 62 x .00404 = .00250 in.>

The sizes selected were 2 - 67/1000 inches music wire
for cable 1, 2 - 42/1000 inches drill rod for cable 2 and 2 -
40/1000 inches drill rod for cable 3. The deviations from
Equation (27) were 1% for cable 1, 1.47% for cable 2 and 0.48%

for cable 3.

The actual dimensions and sectional properties of the

model are presented in Figure 42.

c. Design of connections

The connections were designed on the basis of the same
principles as for the influence line model, that is, to avoid
as much as possible, eccentric application of forces and to

facilitate post-tensioning of cables.

A. Girder-cable connection




77.

TECON JHI J0 SHIIYIJIOUMd TYNOILDHS TVYNLOV GNV SNOISNINIC Zv °DId

le -
k
._O._O_.
h ,6%€ ) ,6XE T 0t 6%€E o ,6XE
1 069000=9r
.~ 1a
L S N L | Lu105200°0=""T
"4 ﬁ ‘ - . 4
\vd ey e <
ﬁ OO.“,A «d
w XA ‘0% d
> a0 550"
- Uy,
= 1 N Czﬂ\OP
L ] \ 1

M ¥8200°0Lr

U1 7€ 100-0=11r



78.

The girder-cable connection is represented in Figure 43.
The parts are made of C-1020 steel. Post-tensioning of cables

is achieved by turning the nut "1".

B. Tower-cable connection

The tower-cable connection is shown in Figure 44. The
parts are made of C-1020 steel. Fixity of cables is achieved

by turning the screws "1".

C. Tower-girder connection

The tower-girder rigid connection is represented in
Figure 45. This connection may be modified to a hinge if re-

quired.

A photograph of the above connections is shown in

Figure 46.

d. Foundation

The foundation of the model was made of steel, Figure
47. Four vertical supporting channels, one for each support
of the bridge system, were provided. The vertical channels
were connected for stability by two horizontal channels, al-
lowing sufficient free space for the loads applied on the
model.

e. Supports

The supports are similar to the type employed for model

"A", except that the sizes are smaller, Figure 48.
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a. GIRDEK-CABLE
CONNECTION

b. TOWER-CABLE
CONNECTION

c. TOWER-GIRDER
CONNECTION

FIG. 46 CORNLECTICNG
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3. Manufacturing of the model

The model was manufactured in the machine shop of the

Faculty of Engineering.

The simplicity of the stiffening girder and tower sec-
tions enables an easy adjustment of the model cross sections
if sectional properties need to be changed. This may be
achieved by milling off the girder or tower cross section or
both. If necessary, the music wires and drill rods may be

removed and new sizes may be installed.

Fabrication was carried out with a tolerance of less
than I%E in. for cross sectional sizes and less than I% in.

for longitudinal dimensions.

4. Instrumentation

Axial forces in cables and bending moments in the stif-
fening girder have been determined with electrical strain
gages. For displacements, dial gages have been employed.
Acquisition of data from strain gages was performed with the

apparatus described previously in Chapter II, Section 4.
a. Strain gages

The strain gage layout is shown in Figure 49. Two
strain gages have been applied, one opposite to the other,
on each of the 3/16 in. tensioning bolts. For the bending
moments, three strain gages have been applied on the stiff-

ening girder as shown in Figure 49. These gages enable to

84.
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FIG. 49 STRAIN GAGE LAYOUT

O — e — «—

FIG. 50 DIAL GAGE LAYOUT
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read strains at extreme fibres and at the center of the stif-
fening girder, from which the bending moment at interior sup-

port may be calculated.

The strain gages employed were 1/4 in. Micro measure-
ments precision strain gages type EA-06-250BG-120. They were
temperature compensated for steel and had a resistance of

120 ohms.

b. Dial gages

The dial gage arrangement is shown in Figure 50. Dial
gage 1 measures vertical deflections at joint 7 and dial gage
2 determines the horizontal displacement at joint 17. Joint
numbers are indicated above, or at the right of each joint
in Figure 50 and dial gage numbers are indicated in a circle

below or at the left of the joint.

5. Loading and Recording of Data

a. Loading

To determine the upper limit for which the applied
loads are still proportional to internal forces, a concen-
trated load was applied at joint 7 and the axial force in
cable 6 due to the action of this load was recorded, Figure
51. The concentrated force was applied with a tension rod
in a manner similar to that described in Chapter II, Sect. 5.
The application of the load was made in ten increments of

35.7 1lbs. each, to a total of 357 lbs. A concentrated force
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of 357 lbs. applied at joint 7 will develop an axial force in
cable 6 equivalent to the force corresponding to full dead and

live load applied on the model.
The results of this test are plotted in Figure 51.

As represented in Figure 51, the cable displays linear
behaviour up to a load equal to 0.3P, where P = 357 1lbs. Only
after the value of 0.3P is exceeded does the axial force in

cable 6 increase at a higher rate than the applied load.

On this basis, a load equal to 20% of the total load
‘was chosen for the first step of loading, as described in

Section 1.

A photograph of the model during loading is presented
in Figure 52. Loads were applied at joints and midway between
joints. The weights employed were #1l1 reinforcing bérs, ten
inches long, of an average of 4.42 1lbs. each. The weights
were suspended from short square tubes, applied on the stiff-

ening girder, as shown in Figure 52.

The dead load applied on the model was 118 lbs./ft.
and the live load 29.5 1lbs./ft. This is equivalent according
to the similitude condition kW = kLkE to 5,400 lbs./ft. dead

load and 1,350 1lbs./ft. live load on the prototype.
b. Recording of Data

The data recorded were strains and displacements at
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90. (1

the locations indicated in Figure 49 and Figure 50 for the

two cases of loading specified.

The strain readings of loading cases 1 and 2 were then
compared in order to get the increase or decrease in stresses

and strains due to the nonlinear behaviour of the structure.

The results obtained are shown in Table No.2. The

strains indicated in this table are in micro inches per inch

and the displacements are given in 10-2 in.

6. Conclusions

Table No. 2 contains a set of information which may be
applied readily in design to increase or decrease the cross

sections determined on the basis of a linear analysis.

The influence of nonlinearity was found to be smaller

for the cables and larger for the bending moment in the stif-

fening girder at the location investigated. The result ob-
tained for the bending moment should not be generalized how-
ever, as the influence of nonlinearity on the bending moment !

in the stiffening girder will vary with the location.

The influence of nonlinearity is larger for cables 1
and 6, than for the others, as these cables undergo the lar-
gest change of angle due to the displacement of the stiffen-

ing girder and tower.

The model employed had adjustable sectional properties.
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The cross sections of the stiffening girder and tower may be
decreased by milling, and cables may be interchanged without

difficulty.

The investigation as a whole is relatively easy to per-
form and the cost of material and technical work was less
than $2.000.00. This makes the procedure described a very
practical tool for taking into account the nonlinear behaviour

in the design of cable stayed bridges.
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STRUCTURAL ANALYSIS OF CABLE STAYED BRIDGES

1. Preliminary considerations

To compare the experimental data of the model
investigation with the theoretical, a procedure for the
structural analysis of cable stayed bridges has been

developed.

This procedure contains both classical and

computer methods of structural analysis.

Several general basic methods may be employed
to carry out the structural analysis of a cable stayed
bridge. For linear analysis the "slope-deflection" or any
force or energy method could provide us with the condit-
ions required to determine the unknown redundants and thus
to solve the problem. The same applies for nonlinear
analysis, except that the solution of the virtual work,
continuity or energy equations becomes in this case, more
cumbersome and numerical iteration methods have to be

employed.

Compared with suspension bridges, cable stayed
bridges display a different structural behaviour. The

loads acting on the stiffening girder of a cable stayed

93.
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bridge are transferred to the cables at connections,
whereas, in the case of a suspension bridge, transverse
forces due to the action of suspension rods, are applied

along the cables.

The analysis of a cable stayed bridge may be
divided in two parts. In the first part, bending moments,
axial and shear forces and deflections due to dead and
live loads are determined. In the second part, post-
tensioning forces required in the cables in order to re-
duce the stresses and deflections calculated in stage one,

to specified values, are calculated.

The analysis presented is limited to the case

of a two dimensional cable stayed bridge system.

2. Analysis by Classical Methods

By classical methods, we define here the
methods of analysis which do not require the use of a

digital computer.

a. Analysis due to dead and live loads.

To analyse a cable stayed bridge by classical
methods, first a system of equations equal in size to the
number of redundants, is written. The procedure of

assembling these equations is well-known. Energy or
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virtual work conditions or compatibility requirements for

slopes and deflections at joints, may be employed.

The main difficulty of an analysis by classi-
cal methods lies in solving this system of equations.'
However, several procedures, listed below, will simplify

the calculations required. These procedures are :

A. Selection of bending moments at fixed and

flexible supports as redundants.

B. Application of the "Beam On Elastic

Supports" analogy.

C. Use of symmetry and asymmetry to reduce the

number of equations.

A. Selection of bending moments as redundants.

The selection of bending moments at fixed and
flexible supports as redundants permits the writing of a
five moment equation at each support. This yields a band-
ed well-conditioned system of equations. If the internal
forces in cables are selected as redundants, the resulting
system of equations is not banded and hence, more
difficult to solve than in the previous case. Also, the
calculation of bending moments in the stiffening girder

becomes a lengthy operation.
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B. "Beam On Elastic Supports" analogy.

The "Beam On Elastic Supports" analogy,Fig.53,

has been suggested by Smithls. Intended by its author as a

&&H £ A~ T OF T 2 & FT R

FIG. 53 BEAM ON ELASTIC SUPPORTS ANALOGY

computer method, it may also be used as a classical
method. Smith shows how to determine the equivalent
spring constant for any specific cable stayed bridge sys-
tem. For the case of movable cable to tower connections,
that is, when cables are free to slide along their sup-
ports, if the shortening of the tower is neglected, the
elastic support spring constant K - the vertical force

needed to develop a unit displacement - Fig. 54, may be

0

obtained as follows :

‘\r

FIG. 54 ELASTIC SUPPORT SPRING CONSTANT
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If N is the internal force in the cable,

then from Fig. 54

AL = sino (28)
also
. _ NL
sino = &= (29)
but
K = Nsino (30)

If Equation (29) is rearranged and substitut-
ed into Equation (30), the value of K, the elastic

support spring constant, is obtained.

K = E% sina (31)

If shortening of the tower is also considered,
the spring constant may be derived in a similar manner and

its expression becomes

K = 1 (32)

Where He is the height of the tower. The
suffix "t" applies to sectional and elastic properties of
the tower and the suffix "c" to the corresponding proper-

ties of the cable.

Further details regarding how to determine K

for a more general case, are outlined by Smith.
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It should be pointed out that this procedure
may be applied either in conjunction with available tables
for continuous beams on elastic supports or by carrying
out a complete analysis. In the later case, the solution
of the five moment system of equations, written on the
basis of continuity of slopes and displacements at joints,
may be obtained with the five diagonal algorithm presented
in Appendix 4. This algorithm represents an extension of

the well-known three diagonal algorithm.

C. Symmetry and asymmetry.

The use of symmetry and asymmetry allows the
reduction of the system of equations to one half its
initial size. Structurally, this is equivalent to the
substitution of the two subsystems shown in 55.b and 55.c

with the system represented in Fig. 55.a.

The right end support on Fig. 55.b is
capable of resisting bending moments only. It will prevent
the right end from rotation but, it will not prevent it
from moving upwards or downwards. In other words, the

vertical reaction at this point will be zero.

For the cable stayed bridge represented in
Fig. 55, by decomposing the vertical load into a symmetri-
cal plus an asymmetrical load the 10 x 10 system of

equations is reduced to two 5 x 5 systems which may be
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solved with less difficulty than the 10 x 10 system.

®

e tm o rrofRm

©

R A= R

FIG. 55 USE OF SYMMETRY AND ASYMMETRY IN CABLE
STAYED BRIDGE SYSTEMS ANALYSIS
The application of the above procedure will
reduce the amount of work required to carry out a theoreti-
cal analysis. In the cases where the size of the system
of equations is larger than 8 x 8 however, the calculat-
ions become cumbersome and the use of a digital computer

is recommended.
b. Calculation of post-tensioning forces.

To determine the post-tensioning forces
required in cables in order to reduce the maximum bending

moment in the stiffening girder due to the action of dead
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load, to a specified value, a procedure, as described

further, was developed.

Consider the bridge system represented in
Fig. 56 and assume that the post-tensioning forces in the

cables satisfy the following conditions :

X) = Xg = X5 = X499
X2 = X5 = X8 = Xll
X, =X, =X = X

3 4 9 10

The post-tensioning forces may be computed

following the steps described below

A. Bending moments and deflection diagrams of
the bridge system, due to the action of dead load
are determined and the locations of the maximum
bending moment and maximum deflection are
established. Let the location of the maximum
bending moment be indicated by "r" and the

corresponding bending moment by Mr'

B. Consider the substructures represented in
Fig. 57.a, 57.b,57.c, subjected to unit forces
acting along the cables removed from the main
bridge system. If reduction of bending moments
is taken as the condition for determination of
post-tensioning forces, bending moments at "r"

and axial forces in the remaining cables, for
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7IG. 56 iGUT-TENOICHING FCRCES IN CauplES. BASIC SYSTL.

2 1 1 1 1
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FIG. 57 POST-TENSICONING FORCES IN CaBLES. SUBSTRUCTUREC.



each of the three cases considered are calculated.
Specifically, the following axial forces and

bending moments are determined

a a .,.a a a
Case 1 Substructure a.N2 to N5,N8 to Nll’Mr

b.b.b.b b _b.Db b b
Case 2 Substructure b'Nl’N3'N4’N6’N7’N9’NlO’NlZ’Mr (33)
c c

M

C C ,.C c ..C
Case 3 Substructure c¢.N;,N;,N_ to N ’Nll’NlZ' r

1’72’75 8

b ..c

In expression (33), Ni,Ni,Ni, where i varies

from 1 to 12, are axial forces in cables due fb unit loads

applied as represented in Figures 57.a, 57.b, 57.c, and

Mi,Mg,Mg are the corresponding bending moments at loca-
n r"

tion

The above values may be determined analyti-

cally or on a structural model.

C. X the post-tensioning force in cables 1, 6,

ll
7 and 12 and X

X the post-tensioning forces in

2’ 737
cables 2, 5, 8, 11, respectively 3, 4, 9, 10 are

determined such that Mr is reduced to COMr

where C0<l is a reduction factor.

To reduce Mr to CyM_ the post-tensioning

0

forces must satisfy the condition:

Mi+XMb+X

c _
Mo+ X 2r 3Mr - COMr

102.
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The above expression may be written as

M;+XMb+X

X 2'r 3

c _
1 Mr = Mr(CO—l) (34)

Equation (34) indicates that there are many

1’ X2, X3 and two of the three

unknown post-tensioning forces may be selected arbitrarily.

possible combinations of X

If the sum of the unit stresses due to dead load and post-
tensioning is specified, however, to be identical for

cables 1, 2, 3, that is

- _2_ 3 (35)

then, for a given C the post-tensioning forces in cables

Ol
Xl’ X2, X3, are calculated as follows :
First, X2 and X3 are expressed as functions of

Xy employing Equation (35). Then X, and X, are
substituted in EQuation (34) and an expression for xl is

obtained.

To express Xz and X3 as functions of Xl,

Equation (35) is rearranged as a system of two equations

with two unknowns.

a11Xy t a5,X3 = Ayy Ay,

(36)

X, = A + A

A~ X, + A 3

2172 22

where




X

3

and

Solving the

may be expressed as

where

g

_ b M1 b

a);; = Ny O N3
A

- nC _ 1 o]

a1, = Ny A N3
A

_ b B2 b

a1 = Ny O N3
A

- nC _ 2 c

850 = Ny = g- - N3
3

A =.p1'. N—N

11 -5 N3 1

A

- 1 a _ ,a

Bip = i, Ny - Ny

A :A._z_ N_N

21~ &; N3 2

A
_ 2 a _ ,a
By = A Ny - Ny

system of equations

B + B, X

e
]

12

_ B11355 T B3y

11

w

_ B1233p 7 Byrag;

12

w

_ By1331 T By18n

21

| W

_Byp3y7 T 3518y,

22

w

(36), X

2

(37)

(38)

and

(39)

(40)
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In Equations (40), B is the determinant of the

system of Equations (36), that is

B = (41)

211%22 T 321%12

Substituting X, and X, from Equation (39)

2 3

into Equation (34) and rearranging

b c
X Mr(co-l) - BpiMy - ByMyp (42)
a b c
Mr + BlZMr + B22Mr
Once Xl is known, x2 and X3 may be determined

from Equation (39).

105.

The final forces in cables due to post-tension-

ing and dead load are

b c
N+ X3Ni (43)

oo oNLoFoxn® o+ ox
i i i'i 2

where i varies from 1 to 12.

The concept developed above is applicable to

any cable stayed bridge system.
NUMERICAL EXAMPLE.

An example based on the method outlined above,
has been worked out for the cable stayed bridge system
represented in Fig. 58. The bending moment at an inter-
mediate support due to a uniformly distributed dead load
of 6000 1lbs per linear foot is equal to 960,000 k-in. S5

was taken as equal to 0.5.
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Axial forces in the cables due to the dead

load are given in Equation (44).

Cables 1 and 12, N N 2,840.00 kips

1 12
Cables 2 and 11, N2 = Nll = 1,550.00 kips
Cables 3 and 10, N3 =Ny = 1,370.00 kips (44)
Cables 4 and 9, N4 = N9 =1,372.00 kips
Cables 5 and 8, Ny = Ng = 1,550.00 kips
Cables 6 and 7, N6 = N7 = 2,842.00 kips

The values of Ni, Nb, Ni, where i varies from

i
1l to 12, and of Mi, 1?, Mg, computed for the equivalent

three substructures, are given in Table No. 3. The bending
moments are given in lb-in and the axial forces in 1lb.

Table No. 3

AXIAL FORCES AND BENDING MOMENTS AT INTERMEDIATE SUPPORTS
DUE TO UNIT LOADS. NUMERICAL EXAMPLE

ﬁ:igingo;giznigd Substructure
a b c
Ny 1.00 - 0.47 - 0.06
Ny - 0.97 1.00 - 0.21
N3 - 0.19 - 0.49 1.00
Ny - 0.30 - 0.43 1.00
Ng - 0.85 1.00 - 0.20
Ng 1.00 - 0.47 - 0.06
N7 1.00 - 0.47 - 0.06
Ng - 0.85 1.00 - 0.20
Ng - 0.30 - 0.43 1.00
Ni0 - 0.19 - 0.49 1.00
N1 - 0.97 1.00 - 0.21
N2 1.00 - 0.47 - 0.06
M3 ~13.00 ~199.00 -325.00
r




With the above data Xl’ X2

determined from Equations (37) to (42),
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and X3

and Nf, where i

may be

varies from 1 to 12, may be determined from Equation (43).

From Equation (37)

65

a;; = -0.47 - 5= x (-0.
ajy = -0.06 - %% X 1.
a, = 1.00 - %% x (-0.
a,, = -0.21 - 22 x 1.

49) = + 0.80
00 = - 2.66
49) = + 1.49
00 = -1.21

With the above values B may be calculated from

Equation (41).

B = 0.80 x (-1.21) - (1.49)
From Equation (38)
A, = 22 % 1370.00. - 2840.00
11 - 75 -00. .
_ 65 _ _ }
A, = 22 x (<0.19) - 1.00
_ 25 _
A, = 52 x 1370.00 - 1550.00
_ 25 _ L
Bi1r Byar Byg 22

X (-2.66) = 3.00

= 725.00
1.495
=-180.00

= 0.78

B and B may be determined now

from Equations (40).

725.00 x (-1.21) - (-

180.00) x (-2.66)

By < 3
= -452.00
5 . -1.495 x (-1.21) - 0.78 x (-2.66)
12 3
= 1.29
5 . -180.00 x 0.80 - 725.00 x 1.49 _ _,08 00

21 3
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_ 0.78 x 0.80 - 1.49 x (-1.495) _
B22 = 3 = 0.95

With the above information, X, may be

1

determined from Equation (42)

=0.96x106x(0.5—l.0)—(452.00)x(—l99.00)-(—408.00)x(—325.00)
1 -13.00+(1.29)x(-199.00)+(0.95)x(-325.00)

= 1225.00 kips

X

and X, may be calculated from Equation (39)

2 3
X2 = -425.00 + 1.29 x 1225.00 = 1130.00 kips
X3 = ~-408.00 + 0.95 x 1225.00 = 754.00 kips

Finally, Nf may be determined from Equation

(43)

N=NT =2840.00+1225.00x1.00+1130.00x(~0.47)+754.00x (=0.06)
=3490.00 kips

NI=Nf =1550.00+1225.00x(~0.97)+1130.00x1.00+754.00x (~0.21)
=1335.00 kips

ni=Nf =1370.00+1225.00x(-0.19)+1130.00x(0.49)+754.00x1.00
=1335.00 kips

Nj=Ns =1372.00+1225.00x (~0.30)+1130.00x(~0.43)+754.00x1.00
=972.00 kips

Ni=N{ =1551.00+1225.00x (~0.85)+1130.00x1.00+754.00x(-0.20)

=1489.00 kips
=2842.00+1225.00x1.00+1130.00x(-0.47)+754.00x0.06

=3490.00 kips



Unit stresses in cables 1,2,3 and 6 are
identical. To achieve the same condition for cables 4
and 5, A4 should be decreased and A5 increased, and the

analysis repeated until the unit stresses are identical

in all cables.

3. Analysis by digital computer

To develop a computer program for a cable
stayed bridge, either the stiffness or the flexibility

method, or both, may be applied.

If the flexibility method is employed, bend-
ing moments at fixed and flexible supports should be
chosen as redundants, in order to obtain a well-condition-

ed, banded, flexibility matrix.

As in the previous case of the classical
analysis, the computer methods will be presented, first
for dead and live load and then for post-tensioning

forces.

a. Analysis due to the action of dead and

live loads.

A. Linear analysis

Based on the flexibility method, a computer

program for analysis of a cable stayed bridge, has been

110.
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developed. The program reads input data regarding the
geometry and sectional properties of the system and cal-

culates the values for plotting the following :

a) Influence lines for bending moments,
axial and shear forces, displacements and

reactions.

b) Envelopes of maximum bending moments,
axial and shear forces for the most critical

combination of dead and live loads.

The computer program developed, applies to a
bridge system having an overall geometry and supports as
represented in Fig. 59. The connections between towers
and the stiffening girder are fixed and the cable-tower

and cable-girder connections are hinged.

The basic steps of the flow chart of the
computer program for influence lines and envelopes are
given in the following pages. For the system considered,
the redundants have been chosen as shown in Fig. 60. The
redundants are indicated by Qi’ where i varies from 1 to

14.

In the flow chart developed, steps 2 and 3
represent the statements required to read and store the
geometrical and sectional properties of the system to be

analyzed. This data is employed in step 4 to determine
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FIG. 59 CABLE STAYED BRIDGE SYSTEL ANALYSED BY THE FLEXIBILITY
METHOD '

FIG. 60 SELECTION OF REDUNDANTS FOR ANALYSIS DUE TO DEAD AND
LIVE LOADS
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113.
FIOW CHART

COLPUTER PROGRAM FOR DETERMINATION OF INFLUENCE LINES AND
ENVELOFES DUE TO DEAD AND LIVE LOADS.

DIMENSION
STATEMENT

JOINT
COORDINATES
SECTIONAL

PROFERTIES

L, SIN, COS,
TAN, COT.

STRUCTURAL
DATA
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AMQ

ANL

DQL

AMR

7e

8.

9.

lo.

11.

12.

13.

14.
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AMA

AMA

ARL

ARQ

AR

AMJ

15.

16.

17.

18.

19.

A

20.

21.

A

22.
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i<67 >

AMAN

23.
24.
25.

AMAP
AMAN

26.



sin, cos tan and cot functions of the angles between the

cables and the stiffening girder.

Steps 6 to 23 were developed on the basis of
the computer methods described by Gere and Weaverlg'zo.
To determine influence line ordinates for 67 locations of
the unit load (the intervals taken along the girder were
one fifth of the length of one member) steps 6 to 23 were
repeated in a DO loop 67 times. The total computer time

required to execute the program on the CDC 3300 computer

is 3 minutes, 8 seconds.

The output, steps 16, 20 and 23, consists of
influence coefficients for bending moments, axial and
shear forces, reactions and displacements. The displace-

ments calculated are shown on Fig. 61.

Steps 24 to 26 determine the values required
to plot the envelopes of bending moments, axial and shear
forces for the most critical combination of dead and live
loads. Step 24 reads DL, the uniform distributed dead
load and LL, the uniform distributed live load. Step 25
scans through the matrix AMA of axial and shear forces
and bending moments at member ends. The general form of

AMA is

117.
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AMA, ,  AMA) , AMA) ¢
AMA, 1 AMA, . AMA, 68
AMA = | vveennnnn (45)
AMAg3 1 AMAg5 5 ... AMAg4 gg
B N

Columns 2 to 68 in Equation (45) contain
bending moments (lines 3,6, ..93), axial forces (lines
1,4 .. 91) and shear forces (lines 2,5 .. 92) at member
ends for 67 locations of the unit load along the stiffen-
iné girder. Column 1 contains member ends bending
moments, axial and shear forces due to a uniformly distri-
buted load of 1 kip per linear foot, along the stiffening

girder.

To obtain moment envelopes, each third line,
starting at column 2, is scanned and all positive terms
are accumulated successively in a column vector AMAP.
The same is done for the negative terms which are added
and stored in AMAN. The next operation consists of
multiplying AMAP by E?%ﬁ%é
by Iﬁﬁg%ﬁﬁ— and adding the results. This gives the

and the first column of AMA

final AMAP, that is the ordinates of the bending moments
at bar ends due to the most critical combination of dead
and live loads. The same procedure is employed for AMAN

and also for axial and shear forces.

The total computer time required to calculate
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and print the envelopes is 15 seconds.

The computer program was written in USASI
FORTRAN language for the Control Data Corporation (CDC)
3300 computer. This machine has 80k words of core
storage (one word is equal to twenty-four bits) which
represents a memory roughly equivalent to 320k bites on
the IBM 360 series. The computer has full floating point
and character hardware; eight disk drives with a total
capacity of about 65 million characters; 5 tape units,
1 printer, 2 terminals, 1 card reader, one punch, one

plotter and a multiplexer connected to the TWX network.

A listing of the computer program is given in

Appendix 5.

B. ©Nonlinear Analysis

The nonlinearity of the cable stayed bridge
system is caused by large displacements and bending
moments-axial force interaction. Relations between
stresses and strains at any cross-section are assumed to be

linear.

Analysis of plane frames which display the

above type of nonlinearity has been studied extensively in

21,22,23,24

the past decade Saafan21 developed a method

which permits the performance of a nonlinear analysis by
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successive interations of linear subroutines.

The first step of the analysis determines a
vector of displacements based on the initial geometry of
the system and on the external loads. In the second step,
an additional displacement vactor, due to the difference
between the joint loads and the resultants of internal
bending moments and axial and shear forces at each joint
is determined. In performing the second step, the stiff-
ness matrix of the system is assembled on the basis of the
deformed geometry and of the axial loads determined in

step one.

Each subsequent step "i" uses data determined

in the previous step, "i-1".

The iteration stops when the last displacement
vector obtained is a negligible fraction of the total

displacement.

b. Calculation of post-tensioning forces.

After erection, the cable stayed bridge is
under the action of dead load only. The bending moments
and deflections of the stiffening girder may be reduced by

post-tensioning the cables.

A procedure which facilitates the reduction of
the maximum bending moment due to dead load by post-

tensioning the cables, has been presented previously in
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Section 2, in connection with classical computation
methods. This procedure may be programmed on a digital

computer by extending the concept developed initially.

The released structure is chosen as shown in
Fig. 62. To determine unit displacements and bending
moments due to unit loads applied along the cables, twelve
substructures are considered. Each substructure consists
of the original structure with one cable removed. Sub-

structure No. 1 is represented in Fig. 63.

The basic equations for this case are

1 12 _ _
M Xl + ..Mr X12 = Mr(CO 1) (46)
Nf Nf Nf
1 2 _Nyp
— === _,... = (47)
1 2 12
and
Ayrp¥y T ay Xy F ay,12%12 T By,1 T Ay 0%y
Az %y * a3 X3 * .. a3 95X15 T Ay g F Ay 5Xy
(48)
a12,2%2 * 315 383 315 12%75 T B1py 1t By 0¥y

Equations (46), (47) and (48) correspond to
equations (34), (35) and (36). Aij and aij may be

expressed as in Equations (38) and (37).
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FIG. 62 SELECTION OF CABLES AS REDUNDANTS

o ey = =

FIG. 63 SUBSTRUCTURE FOR CALCULATION OF PCST-TENSIONING FORCES.



Equations (48) may be written in matrix form

as [a]*{xX} = {A}
where
8,2 22,3 - %2 12
a3, 2 23,3 -+ 23,12
[a] =
12,2 %12,3 °° 212,12
{X} = {Xz' Xq - xlz}
{a} = {al} + {A2}*Xl
In Equation (52)
(al} = (a A A }
2,17 ©3,1 -t f12,1
and
{A2} {a A A A }
2,27 93,27 S4,2 ° B12,2

From Equation (49)

(x} = [al*l{a}

Relation (46) may be rewritten as

1
Mr(Co—l) = M X, + (Mr)*{X}

where
4 12

_ 2 .3
(Mr) = (Mr, M_, M_ .. M )

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)
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Substituting {X} from Equation (55) and

taking Equation (52) into account, the relation shown in

Equation (56) becomes

from

stresses in

1

-1 1
Mr(Co—l) = M_X; + (Mr)*[a] *{A"}
+ () *[al t*{a®)x; (58)
Xl may be obtained now from
M_(C-1) - () *[a]l t*{al}
17 3 1,2 (59)
M_o o+ (M) *[a] “*{a }

and X may be calculated from Equation (55).

With Xy and X known, Nf may be determined
f _ 1 12
Ni = Ni + XlNi + ... XlZNi (60)

where i wvaries from 1 to 12

The above procedure yields identical unit

all cables.

Another criterion for determining the post-

tensioning forces in cables is the reduction of displace-

ments due to dead load by a specified reduction factor.

reduction.

A procedure was developed to achieve this

This procedure consists of determining first

the displacements, bending moments, axial and shear

forces, and reactions due to a unit force applied

125.
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successively along each cable of the bridge. Next, a
system of equations is written to express the condition
that the sum of the displacements due to the unknown post-
tensioning forces in the cables shall be opposite in sign
to the displacements due to dead load and equal in

absolute value to a fraction of these displacements. By
solving this system of equations, the unknown post-tension-

ing forces are determined.

Finally, the bending moments, axial and shear
forces, displacements, and reactions due to post-tension-
ing, are determined from the information obtained initially

by applying unit forces along each cable.

A computer program was written in FORTRAN
based on the above principles. The structure considered
is the same as for the analysis for dead and live loads,
Fig. 59. This time, however, the cables had to be chosen

as redundants, Fig. 62.

The program consists of two parts. The first

part contains the following steps:

1. The sectional properties and joint
coordinates of the structure are read into

the computer memory.

2. Sin, cos, tan and cot functions of

the angles between the main girder and cables
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are calculated.

3. The matrices AMQ, BRQ, BMJ are

calculated and stored in the computer.

4. Matrix FM is calculated and stored.

The second part of the computer program

contains the following basic steps:

1. Matrix F is computed.

2. Cable 1 is removed from the structure
and the substructure shown in Fig. 63 is
obtained. In this substructure, the displace-
ments indicated in Fig. 61, the bending moments,
axial and shear forces at all member ends, and
the reactions due to a unit load applied along

cable 1 are determined.

The procedure in detail is as follows:

2.1 The column corresponding to cable 1

in matrix AMQ is stored in AML.

2.2 The flexibility matrix F, of the

1
substructure shown in Fig. 63 is generated by

removing the row and column corresponding to

cable 1 from matrix F.

2.3 The matrix F. is modified by increasing

1
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all terms on the main diagonal of the first
12 rows by %A' The term corresponding to

cable 1, however, remains equal to zero.

2.4 The vector of displacements associated
with the released substructure 1, DQLl, is

calculated from

DQL1 = AMQ?*FM * AML

1

2.5 The vector Ql of the unknown redundants
of the released substructure 1, is calculated

from
01 = -F.ipoL
1* 1
2.6 The bending moments, axial and shear

forces due to a unit load applied along cable

1l are calculated

AM. = AMQl*Ql + AML

1

Steps 2.1 to 2.6 are repeated for all

12 substructures. Vectors AMl to AM12 are
stored in matrix AM.
2.7 The matrix of displacements indicated

in Fig. 61 due to unit loads acting along

cables 1 to 12 is computed.

DJ = BMJ L *FM*AM
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2.8 The reactions due to unit loads acting

along cables 1 to 12 are calculated.
_ T
AR = BRQ *Q + ARL

3. The post-tensioning forces in cables
are determined such that deflections 1 to 10
and displacements 11 and 17 will be reduced

by a factor Co<l.

3.1 Displacements due to the action of the
dead loads are read into the computer.
Vertical deflections 1 to 10 and horizontal
displacements 11 and 17 are then multiplied by

Co and stored in vector AJ.

3.2 Matrix JD is assembled from the first

eleven rows and row 17 of matrix DJ.

3.3 The post-tensioning forces in cables

are determined from

1,

X = JD T*AJ

4. Final bending moments, axial and shear
forces, reactions and displacements due to

post-tensioning are calculated from



130.

AMF = AMle + ... AMlZXlZ
DJF = DJle + DJlZXlZ (61)
ARF = ARle + ... AR12X12
In Equations (61) AM; to AM,,, DJ; to DJ,,
and AR, to AR, , are the corresponding column vectors in

matrices AM, DJ and AR.

The procedure developed above allows the
determination of the post-tensioning forces to be applied

in cables to reduce displacements due to dead load.

The computer program, second part, is listed

in Appendix 6.

4, Conclusions

The classical and matrix methods of structural
analysis presented in this Chapter provide the means of
determining the stresses and displacements due to dead
and live loads and the post-tensioning forces required in
cables to reduce these stresses and displacements by a
specified reduction factor Co- Although the methods des-
cribed have been worked out primarily to compare the
results of the experimental investigation performed with
theoretical data, they may be employed as general methods

of structural analysis of cable stayed bridges.
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EXPERIMENTAL DETERMINATION OF
POST-TENSIONING FORCES IN CABLES

1. Introduction

This Chapter describes the experimental proce-
dure applied to determine the post-tensioning forces
required in cables, to reduce the bending moments and dis-
placements of the stiffening girders and towers of a cable

stayed bridge.

The post-tensioning forces may be applied

before or after the erection of the cable stayed bridge.

The technique employed consists of determining
bending moments and displacements due to the action of
dead load, and bending moments, axial forces and displace-
ments due to unit forces applied successively along each
cable of the system. From this data, post-tensioning
forces required in cables to reduce bending moments and
displacements due to dead load, are determined employing
the procedures outlined in Chapter IV, Sections No. 2

and No. 3.

The investigation was carried out on model "A"

which is described in Chapter II.
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2. Post-tensioning forces in cables to
reduce the maximum bending moment at
intermediate supports

An experimental investigation was carried out
to determine the post-tensioning forces required in the
cables to reduce the maximum bending moment due to dead

load at the intermediate supports.

The first step of the investigation was to
determine the axial forces in the cables and the maximum
bending moment at the intermediate supports, due to the
action of the dead load. The prototype investigated is
represented in Fig. 7. The dead load assumed for the
prototype, was 5400 1lb/ft which corresponds to

5400 x 31.6/100 = 1705 1lb/ft for the model.

The axial forces and the bending moment were
determined from the corresponding influence lines. The

maximum bending moment at the intermediate support, Mr’

was equal to 832 x lO6 lb-in. The axial forces in cables
are given in Equations (62).

N, = N,, = 2.308 x 10° 1b

1 12

N, = N;; = 1.309 x 10° 1b

N3 = Nlo = 1.068 x 106 1b (62)

N, = Ny = 1.081 x 10° 1b

Ng = Ng = 1.301 x 10° 1b

N, = N = 2.286 x lO6 1b

132.



133.

The next step of the investigation was to
determine axial forces in the cables and the maximum
bending moments at the intermediate supports, under the
action of unit forces applied successively on the three
substructures represented in Fig. 64. To achieve this,
tension was applied along one cable at a time by tighten-
ing the nut at the cable-girder connection, Fig. 1ll. The
data determined from the post-tensioning of the individual
cables was then superimposed to obtain the conditions

indicated in Fig. 64.

The axial forces in the cables and the bending
moments at the intermediate supports due to unit forces
applies along the cables, as indicated in Fig. 64, are
given in Table No. 4.

Table No. 4

POST-TENSIONING OF CABLES. AXIAL FORCES AND BENDING
MOMENT AT INTERMEDIATE SUPPORTS. EXPERIMENTAL DATA.

Axia} forces and Substructure

bending moment 3 5 G
Ny 1.000 -0.445 -0.049
N, -0.974 1.000 -0.164
N, -0.210 -0.396 1.000
N, -0.335 -0.385 1.000
Ng -1.000 1.000 -0.200
Ne 1.000 -0.431 -0.077
M ~20.4 |-188.5 ~376.0
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a. Substructure "a"

/1

b. Substructure "b"

c. Substructure "c"

FIG. 64 SUBSTRUCTURES



The units employed in Table No. 4 are lb-in

for bending moment and 1lb for axial forces.

The reduction factor for Mr’ has been selected

equal to Co = 0.6.

The post-tensioning forces determined from the
data given in Table No. 4 and Equations (62), by employing

the procedure outlined in Chapter IV, Section 2, were

equal to
Xy = 995,000 1b
X, = 835,000 1b (63)
X3 = 457,000 1b

To compare the experimental procedure describ-
ed above with the theoretical method presented in Chapter
IV, Section 2, the axial forces in cables and the maximum
bending moment at an intermediate support, under the
action of dead load and of unit forces applied successive-
ly along each cable, were calculated. The maximum bending
moment at an intermediate support, due to dead load, was

6

equal to 870 x 10  1lb-in. The axial forces in cables due

to dead load, are given in Equations (64).

_ _ _ _ 6

Nl = N6 = N7 = le = 2.55 x 10~ 1b
_ _ _ _ 6

N2 = N5 = N8 = Nll = 1.39 x 10" 1b (64)
_ _ _ _ 6

N3 = N4 = N9 = NlO = 1.23 x 10" 1b

The theoretical axial forces in cables and the
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bending moment at the intermediate supports, due to unit

forces applied along cables, are given in Table No.

Table No. 5

5.

POST-TENSIONING OF CABLES. AXIAL FORCES AND BENDING
MOMENT AT INTERMEDIATE SUPPORTS. THEORETICAL DATA.

Axlal forces and
bending moment Substructure
a b c

Nl 1.000 -0.480 -0.060
N2 -1.010 1.000 -0.226
N3 -0.182 -0.416 1.000
N4 -0.280 -0.395 1.000
N5 -0.955 1.000 -2.400
N6 1.000 -0.500 -0.064
Mi -9.3 -173.0 -329.0

The units employed in Table No.

for bending moment and lb for axial forces.

5 are 1lb-in

On the basis of the data indicated in

Egquations (64) and Table No. 5, the post-tensioning

forces required in cables to reduce the maximum bending

moments at the intermediate supports by (l—CO) =

0.4

14

were computed following the procedure outlined in Chapter

IV, Section 2.

Equations (65).

b
|

<
I

»
Il

= 1,035,000 1b

970,000 1b

496,000 1b

The values of these forces are given in

(65)

The above forces compare favorably with those
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in Equations (63) the differences being 3.86% for Xy

2 and 7.85% for X3. Explanation for these

differences have been given in Chapter II, Section 6.

11.1% for X

3. Post-tensioning forces in cables to
reduce displacements due to dead load.

An investigation was performed to reduce the
displacements due to dead load of the stiffening girders
and towers of the cable stayed bridge represented in
Fig. 7, by employing a model technique in connection with

the digital computer.

The first step of the investigation was to
determine the displacements under the action of dead load.
Six displacements were considered. (Vertical displacements
1l to 5 and horizontal displacement 6, Fig. 20). The
conditions required to reduce these six displacements by a
constant factor determine the magnitude of the six unknown

post-tensioning forces in the cables.

The dead load assumed was 5400 lb/ft on the

prototype which corresponds to 1705 1lb/ft on the model.

The displacements due to dead load were
determined by employing the influence lines obtained
previously in Chapter 2. The results are given in

Equations (66).
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v, = 6.25 in
v, = 3.08 in
vy =17.00 in
v, = 42.40 in (66)
vg = 53.00 in
u, = 10.38 in

The next step of the investigation was to
determine the six displacements specified above, under the
action of unit forces applied successively along each

cable of the system.

The displacements recorded, were increased by
the corresponding scale factor to obtain predicted values
for the prototype. The results are represented in Table

No. 6.

To determine the post-tensioning forces in
the cables required to reduce the displacements given in
Equations (66) by a factor of (l—Co), where CO = 0.6, the
principles developed in Chapter IV, Section 3, were
followed. The displacement matrix JD is obtained from
Table No. 6 and the vactor AJ from Equations (66). To
calculate the vector X of post-tensioning forces, a
computer subroutine was written for the inversion of the
matrix JD and its multiplication by the vector AJ multipli-
ed by (l—CO). The program reads the displacements from

data cards and prints out the post-tensioning forces.
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Table No. 6

DISPLACEMENTS DUE TO UNIT FORCES APPLIED ALONG
CABLES. EXPERIMENTAL DATA

Displacements (microinches)
Cable

1 2 3 4 5 6
1 7.610 6.520 -7.900 -17.100| -21.200 | -13.500
2 -4.840 | -1.550 -2.300 -4.820 -3.750 -1.460
3 -2.180 | -2.950 -1.180 -1.270 -0.442 -0.059
4 -1.240 | -1.100 -2.850 -2.370 -0.706 -0.254
5 -2.170 | -1.210 -2.640 -7.750 -5.010 -0.561
6 3.670 3.460 -4.620 |-12.300 |-18.100 2.990
7 0.876 0.635 -0.796 -3.400 -9.250 -1.840
8 -0.147 | -0.177 0.266 0.326 -0.681 -0.118
9 -0.085 | -0.085 0.113 0.198 0.142 0.000
10 0.000 0.000 0.054 0.108 0.081 0.000
11 0.000 0.000 0.052 -0.129 -1.060 -0.207
12 0.775 0.565 -0.680 -3.420 -9.860 -2.060
The post-tensioning forces obtained by solving

the equation JD * X = AJ(l—CO) are given in Equations

(67).

In order to compare the experimental procedure
described above with the theoretical method presented in
Chapter IV, Section 3, the displacements 1 to 6 under the
action of dead load and unit forces applied successively
along cables 1 to. 12, were computed employing the computer

program listed in Appendix No. 6. The results obtained
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are given in Table No. 7 and Equations (68).

X, = 2.05 x 10° 1b

X, = 5.66 x 10° 1b

Xy = 7.55 x 10° 1b
5 (67)

X4 = 3.50 x 10° 1b

X = 3.95 x 10° 1b

X, = 3.39 x 10° 1b

Table No. 7
DISPLACEMENTS DUE TO UNIT FORCES APPLIED ALONG
CABLES. THEORETICAL DATA.
Displacements (microinches)
Cable
1 2 3 4 5 6

1 7.170 6.320 -7.610 |-15.600 [ -18.900 [ -11.800
2 -4.640 | -1.460 -2.,290 -4.,270 -3.320 -1.290
3 -2.140 | -2.850 -0.955 -1.100 -0.412 -0.044
4 -1.100 | -1.030 -2.740 -2.140 -0.632 -0.225
5 -1.910 | -1.140 -2.500 -6.930 -4.410 -0.479
6 3.180 3.330 -4.550 |[-10.500 | -15.400 2.590
7 0.775 0.626 -0.784 -2.950 -8.160 -1.620
8 -0.148 | -0.170 0.271 0.288 -0.609 -0.111
9 -0.069 | -0.069 0.103 0.188 0.136 0.029
10 -0.040 | -0.040 0.060 0.107 0.065 0.015
11 0.000 | -0.025 0.058 -0.116 -0.967 -0.188
12 0.725 0.554 -0.660 -2.930 -8.940 -1.770




X, = 2.06 x 10° 1b
X, = 5.81 x 10° 1b
X, = 6.93 x 10° 1b
X, = 3.17 x 10° 1b (68)
X, = 3.62 x 10° 1b
%, = 3.46 x 10° 1b

A comparison between Equations (66) and (68)
indicates that the difference between experimental and
theoretical post-tensioning forces varies between -8.2%

and +0.5%.

4. Conclusions

The investigations peéformed have indicated
essentially that bending moments, displacements and axial
forces in cables due to the action of unit forces applied
along the cables, and post-tensioning forces in cables to
reduce bending moments and displacements in the stiffening

girder, may be determined by employing structural models.

The use of experimental data, rather than
theoretical, enables the investigator to obtain a closer
representation of the actual behaviour of the prototype -
in this case a better prediction of the post-tensioning
forces - as many of the assumptions made in design,
employing the mathematical model, are not required in the

case of a structural model.
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VI

CONCLUSIONS

The object of this research was to develop an
experimental technique for the application of small scale
structural models as direct tools in the analysis and

design of cable stayed bridges.

On the basis of the considerations presented
in Chapter I, an investigation was performed to achieve

the objective stated above.

To carry out the design of a cable stayed
bridge by using a physical rather than a mathematical
model, once the layout of the bridge is defined, the next
operation is to select a set of sectional properties. This
may be done by applying the method described in Appendix
3. After the initial set of sectional properties is
obtained, a model may be designed by following the princi-
ples and techniques described in Chapter II. If a suit-
able loading system is available, this model is sufficient
to carry out the analysis in both the linear and nonlinear
domains. Otherwise, for the nonlinear part of the
analysis, a second model may be designed by following the

principles and techniques described in Chapter III.

For the design of an actual cable stayed bridge,
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a set of internal stresses and displacements is obtained
and compared with the corresponding stresses and displace-
ments allowed by the specifications governing the design
of that bridge. TIf the differences are larger than the
acceptable values specified, the sectional properties need

to be modified and the investigation repeated.

To modify the sectional properties of model

"A", it should be borne in mind that for determination of
influence lines, only the relative ratios between the
sectional properties of the stiffening girder, cables and
towers are essential and not their absolute values. As a
consequence, at least one of the above parts of the cable
stayed bridge, may be left unchanged. Naturally, the part
to be left unchanged should be the one most difficult to

modify - in this case, the stiffening girder.

The problem of modifying the sectional
properties of model "A" becomes more difficult if the
stiffening girder itself needs to be adjusted. This may
be done however, by decreasing the width or the thickness

of the flange Or the web thickness.

For model "A", the towers may be adjusted
relatively easily on the milling machine. The same is
true for the round bars. It should be pointed out,
however, that for an easy adjustment of the cables, modi-

fication of the present cable-tower connection is re-
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commended. This may be accomplished by welding a round
tube, filleted on the inside to part "1", Fig. 12, and
filleting the cable rod at its upper end so that it may
be removed from the tube. 1In adjusting the cables it is
not necessary to modify their cross-section along the
full length. It is sufficient to do so on 1/3 to 1/4 of
the cable length only. This implies the use of an equi-
valent rather than actual value for the area of the cable
cross-section. It makes however, the adjustment of the

cables relatively easy to perform.

The adjustment of model "B" may be performed
by milling the towers and the stiffening girder. To
adjust the cables, the wires need to be replaced with new
wires. This operation may be carried out however, at an

insignificant cost.

If the experimental data is recorded with an
analog-digital computer, as the one employed in this
investigation, the technique developed represents a

convenient and practical design method.

The results of the above research may be
applied, equally well, to virtually any type of cable stay-

ed bridge.

To bring the model techniques into the design

office, it is necessary however, to have the design by
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models recognized as an accepted method by including it in
bridge codes and specifications. It is to be hoped that
the future will bring about such a development, and the
model as a design tool, will become a working aid in the

bridge and structural engineering office.
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AFPENDIX 1

CABLE STAYED BRIDGES

Structural Systems

North Bridge at Dusseldorf, Germany, 1958
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Rhine Bridge at Rees, Germany, 1967
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APPENDIX 2

DETERMINATION OF SECTIONAL PROPERTIES OF A BRIDGE

SYSTEM BY APPLYING THE THEORY OF SIMILITUDE

Notations

£

M

Unit bending stress at extreme fibers
Maximum bending moment in main girder
Section modulus of main girder

Area of main girder cross-section
Length of main span

A dimensionless constant depending on

locations of loads and the type and
locations of supports
Uniformly distributed dead load p¢ = p° + pt

Uniformly distributed dead load given by
the structural elements of the bridge system

Uniformly distributed dead load of surfacing,
railing, etc. (non-structural elements of the
bridge system)

Uniformly distributed live load

Uniformly distributed total load (p = pd + pl)
Density of main girder material

Scale reduction factor for area of cross-
section

Scale reduction factor for section modulus
Scale reduction factor for load p
Scale reduction factor for length of span

Scale reduction factor for height of cross-
section

Scale reduction factor for moment of inertia
of cross-section

Scale reduction factor for load pS
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The procedure which follows represents a
method of calculating the initial sectional properties for
the design of a bridge system with a given geometry, if
the sectional properties of a geometrically similar bridge
system are known. The method is based on principles of
similitude and is restricted to the case when both systems
are geometrically similar and of the same material. It

may be extended to systems made of different materials.

Basic Assumptions

kg = kakp
kp = kgkg
et (1)
pn pe
£ = f
n e

The scale reduction factors "k" of Eq. 1 are
defined at the beginning of this Appendix,pt is the
uniformly distributed dead load caused by the non-struc-
tural elements of the bridge system and f is the unit
bending stress at extreme fibers. Subscript "e" applies
to the parameters of the bridge system with known section-
al properties and subscript "n" to the parameters of the

bridge system with sectional properties to be determined.
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1l
H

From £
n

=
=

J ¢ S = (2)
S S
n e

In Eq. 2, M is the maximum bending moment in

the stiffening girder and S is the corresponding section

modulus.
Substituting M = klpL2 in Eq. (2)

P L2 P L2
n e

S S
n e

In Eq. 3, k, is a dimensionless constant

1
depending on the location of loads and the type and

location of supports and L is the length of the main span.

Equation (3) may be rearranged to

pS + pt + pl
k. =k k2 = n n n ;2
S pL s £ 1 L (4)
pe pe + pe

In Eq. 4, pS is the uniformly distributed
dead load contributed by the structural elements of the
bridge system and pl is the uniformly distributed live

load.

From p® = ga_ and ps = dA_ where d is the
n n e e
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density of the stiffening girder material and A is the

area of the girder cross-section, corresponding to M,

and Eg. (4) may

Solving Eq. (6)

The
Equation (7) is

next step is to

Examgle

Given

pi s An ks
_s=kw=A_=kA=k_ (5)
p e 1
e
be written as
k
s _s t 1
F; Pe ¥ Pg * Py 2
= ki (6)
Pe
with respect to ks gives
t 1
- Pe * Pn k2
- %k L (7)
Pe Pe®1,
information on the right side of
known. Hence kS may be calculated. The

obtain kI and kA from Equation (1).

p, = 8500 lb/ft

pZ = 4200 1lb/ft
t _

p, = 1300 lb/ft
1 _

p, = 2000 lb/ft

k. = 1.25

k 1is first calculated from (7)
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_ 1300 + 2000 2 _
s = 8500 - 4200 x 1.25 X 1-2°> = 1.585

Next kI and kA are computed.

kI = 1.585 x 1.25 = 1.98
_ 1.585 _
kA =135 ~ 1.27

With kI and kA the I and A of the bridge to be
designed are determined from the I and A of the geometri-

cally similar bridge with known sectional properties.

156.
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APPENDIX 3

DETERMINATION OF JOINT DISPLACEMENTS WITH
DIAL GAGES

A procedure was developed to determine u, v, 6, the
vertical, horizontal and rotational displacement at joints
by employing dial gages only. The joint considered in this
application is a girder-cable joint. The procedure may be
extended, however to any type of joint whose displacements
are in a vertical plane and may be defined by three parame-

ters.

In order to amplify the readings and thus reduce erro-
rs, vertical square bars were cemented to the top and bo-

ttom joint bars, Fig. A3.1l.

On Fig. A3.l1 a,b and c are the readings obtained. To
determine the unknown displacements, first © must be written
as a function of a and b. Next, two equations are formed ex-
pressing the relashionship between u, v, a, b and c. With
three conditions, the three unknowns u, v, © may be determi-

ned.

If in Fig. A3.1 positive dial gage readings are taken

to the left and negative readings to the right,

_a->b
tan © = T (l)

To obtain the two relations between a, b, ¢ and u, v,

the procedure is the following,Fig. A3.1.
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For the first relation

L5 4 = H - Hcos® = H(1l - cos8)
4
L5n 1" = Hsin®6

1
L5,5" = u
L5,1" = Hsin® - u
L5 4n = tan® (Hsin® - u)

’

v - L = Cc - L5’4"

v - H(1 - cos®) = ¢ - (Hsin® - u) tane
This may be written as

utan® - v = H(sinBtan® + cos® - 1) - c = Pl (2)

In the above equations, L, : indicates the distance
4

between points i and j.

but

or

For the second relation

LO',7 = BcosO
L6“,7 = Bsin®
L6u,2| =D+ v - L6",7 =D + v - Bsin®
Lo, 4n (D + v - Bsin®) tan®
2',2
u+ B - LO',7 = a - L2,,2"
u+ B(l - cos8) = a - (D + v - Bsin®) tane
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This may be written as

u + vtan® = B(sin6tan® + cos® - 1) - Dtane® +

+ a="P"P (3)

With the above relations the following calculations

should be carried out:

l. Determine tan © from (1)
2. Determine P1 and P2 from (2) and (3)

3. Determine u and v from

cos8) cose

u (P151ne + P2

(4)

v (Plsine + P_cos®) sin8 - P

2 1
The above equations for u and v were obtained by

solving (2) and (3).

Equations (4) have been verified graphically and the

results obtained confirm the analytical procedure described.
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APPENDIX 4

FIVE DIAGONAL MATRICES

The solution of banded systems of equations may
be handled by matrix inversion (inversion by the adjoint
matrix, pivotal elimination, decomposition, partitioning), by
relaxation or other methods. If the band is made up of no more
than three terms per row, a very rapid solution of the system

of equations is the well known three diagonal algorithm

A similar algorithm has been developed for the more
general case of banded matrices having five terms per row.
This is for example the case of a system of equations of a

continuous beam on elastic supports.
Consider the matrix equation
[a] * {x} = {p}

where [A] is a five diagonal matrix having the form

-
cl dl e1 0 0 0 0
b2 cy d2 e, 0 0 0
a3 b3 c3 d3 e3 0 0
0 a4 b4 c4 d4 e4 0
Al = | _ _ _ _ _ _ _ _ o _____ (1)
0 0 an-2 bn—2 cn—2 dn—2 en—2
0 0 0 an-l bn—l cn—l dn--l
0 0 0 0 ay bn C,
L -
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and {X},{P} are column vectors having each a number

of n terms.

{x}

{xl, Xy x3........xn} (2)

{P} {pll P2: P3: ......pn} (3)

If Py is the general term of {P}, then

+ b, x + o, x, +d +

P = Xy o T hex g vox Hdix g tex (4)

The algorithm developed for x is of the form

e I R W, R " (5)
where Ak, Bk and Ck are determined by employing conditi-
on (4).

Equation (5) is valid for any value of k. Hence

Xp-1 = Pro1®x t Br-1%k41 t Ck-a (6)
and

Xp-2 = Bpoo¥o1 T OBro¥ * G (6a)

or employing Eq. (6).

+ B x. + C (6b)

+ A oCko1 OB 0¥ T Sy

X

k-2 = Pro2Pr-1¥% T ProoBro1%k+1

rearranging Eqg. (6Db).

Xk_2 = +

+ C (7)

(A _oPyy ¥ B )X ¥ A OB ¥4t A o0k k-2



Substituting Egs.

(6) and (7) in Eq.
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(4) and re-

arranging the result in a form similar to Eq. (5), Ak’ Bk and

Ck are obtained.

A - - A Br-1Pr-2 T BB Y 9

k a By oByp_1 ¥ B ) ¥ bA _, F oy

B, = - "k

k ap (A By 1 * By o) + b A ; + o
N Sl S S o 5 M = U o 'S5

k a, (Ak—zAk—l + Bk-z) + bkAk—l + Cy

for k = 3.....n
For k =1 and k = 2
C1¥p * d1xX; + €3%X3 = py
b2xl + 02x2 + d2x3 + e2x4 = p2
From Equations (9) and (5) Ak’ Bk’ Ck for
k = 1 and k = 2 are obtained
9 e _ Py
Ay = By=-¢27 €1 =%
1 1 1

A = e, - dzc

2 - bzd

B - - €192

2 clc2 - b2dl
o - -1P2 7 PPy

2 clc2 - b2dl
To solve a system of equations, first Ak—l'

(8)

(9)

(10)

(11)

Be-1
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C, for k = l..n are determined. Then {X} is obtained by

backsubstitution. For k = (n-1l) and k = n, ek = en—l =

e, = 0. Hence, Bn—l = Bn = 0. For k = n, dn = 0, hence

A = OO
n

Consequently
x =0C (12)

Next from Equation (5), x may be obtained

for all values of n

(13)

xn—2 = An—2 Xn—l + Bn—2 xn + Cn-2

The above method is applicable for both classical
and computer calculations. An example of an application of
the above algorithm for solving a system of 6 equations in
6 unknowns by hand calculation is given at the end of this

Appendix.

A program has also been written for the CDC 3300
digital computer. For convenience, the input data has been
arranged vertically rather than on the diagonal. For an
example chosen (n = 10), the above procedure needed substan-
tially less computer time as compared with a solution of the
system of equations by a Gauss Jordan elimination. One other
advantage of this algorithm is the reduction of computer core

required. The program is given at the end.
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Example of solving a 6 x 6 system of equations
by hand calculations.

Solve the following system of equations by applying

the five diagonal alogrithm:

X, + 2x2 + X3 = -4
X, * X, + 2x3 + Xy = -1
Xq + 2x2 + 3x3 + Xy + 2x5 = -2
X, - X4 + 2x4 + Xg - Xe = 2
X4 + 2x4 + Xg + 2x6 = 8
2x4 + 3x5 + Xe = 9

The coefficients of Xqpe. X represent the

matrix [A] and the right hand side terms represent the vector

{pP}.

First, Al"'A6’ Bl"'Bs’ and Cl...C6 are calculated
from Egs. (10), (11), and (8).
2 3 4 5 6
A -2 1 -1/2 -1/3 -5/3 0
B -1 1 1 1/3 0 0
C -4 -3 -1 5/3 13/3 2

Now applying Egs. (12) and (13), {x} is obtained

{X} = {lr _21 —ll 2/ ]-l 2}



SYSTEM OF EQUATIONS, APPLYING THE FIVE DIAGONAL ALGORITHM.
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COMPUTER PROGRAM FOR THE SOLUTION OF A FIVE DIAGONAL

CXX
CXX
CXX
CXX
CXX

CHRFEFINPUTH*¥% NCe UF RUWS IN A [N COLSe 1-1u OF CARD Ls RIGHT JUSTiFltue
CHr#® [NPUTH*%*%  ANY OPTIONAL TITLE IN COLSe 11-760

CHEXINPUTH*¥#  READ A(K) s B(KIs C(K)y D(KIs E(K)s wHERE K IS THE ROW
CH#* [NPUTH#¥%  AND THE 5 VALUES ARE THE RESPECTIVE ELEMERKTS IN ThE
CH*%xINPUT#**% 5 DIAGONALSs IN FORMAT 5Flue WHERE NON=EXTSTANT
Cx#¥XHINPUT*x%  LEAVE BLANKe A SLANK CARD FOLLOWSs THEN THL ELEMENT. CF F
CHEHFRINPUT * %3¢ IN FURMAT 7F1Ce

CAel

1010
CA.2

1vll

1o
1012

(Bl
11
2u
1u20
CCel

1uv30

3u
1031

CLel
31

4o
1u40
Ckel

THE PROGRAM wILL READ A 5 DIAGONAL ™MATRIX WITH N RUwS, ;
WHERE ONLY THE 5 NUN-ZERO VALUES OF EACH ROw ARE REALs AS WELL AS I
Ps wHERE P IS5 THE CuLuUmMmN VECTOR RESULTING FRUM THLZ MULTIPLICATION ]
UF A BY ThHE COGLUMN VECTOR X TrHEt LATTER BilNu CALCULATLe LY Trit
PROGKRAM USING A 5 VIAGONAL ALGORITrive

COMMUN ARKAYL(59100) sARRAY2(H9105)

DIMENSION ITITLE(LE) sAL(S 100 sA2(Es10H)
EGUIVALENCE(ITITLEsARKAYZ2) s (A1 9 ARKAY1) s (A2 yARKAYZ2)
READ INTU N THE NCe CGF RUWSe ALSO TITLL
READ 10Ulus Ns ITITLE

FORMAT{I10+4X16A4)

PRINT TITLEe CHECK IF N WITHIN LIMITS.
PRINT 1uvllse ITITLESN
FURMAT(2UXIOAL/2UXT1LU 1 XO6HKRUWSs 12HS DIAGUNALS )
IF(N oLTe Y eChke N «GTe lul? GU TO 1o

GG TO 11

PRINT 1012

FORMAT(2UX3uHNOs OF ROWS GT 10¢ QR LT 5 )
STOP

READ A

DO 20U I=1sN

READ 102Us (ARKAY1(JsIl)eJ=1+5)
FORMAT(5F1Ueu)

READ BLANK CARDe

READ 103U (ITITLE(I)sI=193)

FORMAT (3A4)

IF(ITITLt(l) oNE o &4H e UR o ITITLF(Z)QNEO 4H eUK e
IITITLE(3) eNEe 4H JGC TO 320

Gu Tu 31

PRINT 1.3l

FORMAT(2UuX42HBLANK CARL MISSING OR NO OF RUWS ThCURRECT)
STOP

READ THE N VALUES OF P IN FORMAT 7Flue N2 IS NOe OF CARDS.
DC 40 I=1sN o7

N3=1 +6

KEAD 1ub4ius (ARRAYZ(LleJ)ed=1 oN3)

FORMAT(TF1ULeu)

GET ALPHASs BETAs CAMMA FOR K=1 AND 2.
ARKAY2{(291)=-ARRAY1(491)/AKKAY1(391)
ARRAY2(341)=—ARRAY1(5+1)/ARRAY1(2s1)

ARRAY2 (4911 =ARKRAYZ(1s1)/ARRAY1(3,1)

A2(292)=(AL( 92 ¥AL(5e1) AL (4e2 ) %¥AL(391) )/ (ALI3s1)*AL(347)~
IA1(292)#A1(491))



CFel

60

CGel

CHel

80
Clel

1u9l

1092

1093

91

1091

1094

1095

167.

A2(292)=A1 391 )%A1(592)/(A1(292)%AL(491)=A1(391)¥AL(3s2))
A2(492)=(A1(3 91 ) %A2(1e2)=A2 (Ll )¥Al(292) )/ (AL(391)¥AL(292)~
1A1(292)%A1(491))

GET ALPHASs SETA ANU GAMMA FOR THE KEST OF Ko

DO 6L I=34N

TEMP=

TCAL (191 ) ¥ (A2(291=2)%A2(2s1=1)+AZ(3s1 =211 +A1(2+1)1%A2(2+s1-1)14A1(3,]1]
1))

A2(2s1)==(AL(1 sl )*A2 (3 el =1 )*¥A2(2s1=2)+AL(2s1)%A2(391=1)+A1(Ls1))/
1TEMP

A2(391)==A1(5+1)/TEMP

A2(4sT)=(A2( 19l )=AL( 1ol ¥ (A2(29s1=2)0%A2(4s1=1)+A2(4LsI=2))=A1(2s1)
1A2(4s1=-1))/TEMP

GET X(N)s X(N-=1}

A2(5sN)I=A2(4sN)

A2(5sN=1)1=A2(2sN=1)%¥A2(5sN)+A2 (4 yN=1)

GET X(K)

N3=N-1

DO 8L I=24N3

N2=N-1

A2(59N2)=A2(29N2)*A2(5sN2+L)+A2 (3 sN2I*A2(5H4N2+2)+A2 (4 4N2)

PRINT RLST OF HEADING ANL KESULTS.

PRINT 1uU9U

FORMAT(/34X36HNATRIX EQUATICN AX=Ps GIVEN A AND P //38X1IHA4HX1HX
122X1HP/ /)

PRINT 10929 (Al(Jel)sd=395)sA2(b91)esA2(1lsl)
FORMAT(27X3F13e291UXF1l3e49s1UXF1342)

PRINT 1U93s (Al(Js2)sJ=295)9A2(542)sA2(12)
FORMAT(14X4F13e291UXF13eb4910XF1342)

N=N-2

DO 91 I=34N

PRINT 1u9les(Al(Jel)ed=195)9 AZ(S5¢1)s AZ(Lls])

FORMATI(L X5F13e2s1UXF13ebsl0OXF1242)

PRINT 1094s (AL(JoN+1)9J=194)9sA2(5sN+1)sA2(1sN+1)
FORMAT(1X4F13e2923XF13e491UXF13e2)

PRINT 10959 (A1 (JeN+2)9J=193) A2 (5 eN+2) sAZ(14N+2)
FORMAT(1X3F13e2936XF1l3e431UlXF13e2)

STOP

END
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APPENDIX 5

COMPUTER PROGRAM FOR DETERMINATION OF

INFLUENCE LINES OF A CABLE STAYED BRIDGE




[aNa
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PRUOGRAM CSBRIDGE

DIMENSION X(20)sY(20)91ZJ(31)9I1ZK(31)sAXJ(31)sAXK(31)sE(31)9sMJI(31)
1sMK(31)sL(31)9SA(12)sCA(12)sTA(12)9CTA(12)sCT(8)sV(4)sR(31)s1(31)

DIMENSION FM(31,5)9sAMQ(93514)sAMOT(14993)sFAM(14+93)9F(14514) A (31
1)sLA(14) sMA(14)

DIMENSION VUL I(2609s4) s AMUL(934526) sVUM(2694) sVUMT (4926) yAMUM(93,426)

DIMENSION LEN(31)9sAMJ(93423) yAMJIT(23,493)

DIMENSION VULT (4+26) sARQ(4414)

DIMENSION DUMMY(218)

EQUIVALENCE (DUMMY (1) sMJ(1)) 93 (DUMMY (32) sMK (1)) (DUMMY (63),12J(1))»
1 (DUMMY (94) 912K (1)) s (DUMMY (125)9sAXJ(1))s (DUMMY(156) sAXK(1))s (DUMMY (
2187)4E(1))

EQUIVALENCE (VUM,VULT)

EQUIVALENCE (AMUMsAMQ) s (AMUL s AMGT sAMJT ) s (AMUMsAMJ)

COMMON AMUM » AMUL

REAL LoLENOIZJsIZK oI oLSCoLSE sLSHL T

NC IS NO OF CABLES

NC=12

NC1=NC+1

LOAD=68

N=NO OF JOINTSs M=NO OF MEMBERS

READ 1sNoM

FORMAT(213)

MT=3%M

PU=1000e/12

DO 2 J=1sN

READ 39X (J)sY(J)

FORMAT(2F10e4)

DO 9 K=1sM

READ 5+1ZJ(K) 9 IZK(K) sAXJ(K) sAXK (K) 9E (K) sMJ (K ) yMK (K)

FORMAT(2(EQe491X) s2F10e49E9atislXs212)

E(K)=E(K)/(10e%%7)

FINDING LENGTH OF MEMBERS AND PRINT

BUFFER OUT(7+1)(DUMMY (1) ,DUMMY(218))

DO 8 N=1sM

J=MJ (N)

K=MK (N)

XCO=X(J)=X(K)

YCO=Y(J)=-Y(K)

L{N)=SQRT(XCO*%*2+YCO*%*2)

LIN)=12e*L(N)

THIS PART OF THE PROGRAM WILL CALCULATE ANGULAR FUNCTIONS AND LSE

I7=1FUNIT(7)+2

GO TO(69s7969+69569) 517
SA(1)=(L(19)+L(20)+L(21)) /L (1)
SA(2)=(L(19)+L(20))/L(2)
SA(3)=L(19)/L(3)
SA(4)=L(19)/L(4)
SA(5)=(L(19)+L(20))/L(5)
SA(6)=(L(19)+L(20)+L(21))/L(6)
SA(T7)=(L(28)+L(29)4L(30))/L(T)
SA(8)=(L(28)+L(29))/L(8)
SA(9)=L(28)/L(9)
SA(10)=L(28)/L(10)
SA(11)=(L(28)+L(29))/L(11)
SA(12)=(L(28)+L(29)+L(30))/L(12)
DO 100 K=1412



[aNaNaNS)

aNaNe]

100

101

499

1050

340

20

CA(K)=SQRT(le—SA(K)*%2) 179.
TA(K)=SA(K)/CA(K)

CTA(K)=1e/TA(K)
CT21=CTA(2)-CTA(1)
CT32=CTA(3)-CTA(2)
CT45=CTA(4)~CTA(5!
CT56=CTA(5)=CTA(6)
CT87=CTA(8)-CTA(T)
CT98=CTA(9)-CTA(8)
CT1011=CTA(10)-CTA(11)
CT1112=CTA(11)-CTA(12)
DO 101 K=1sM
R(K)=1e/L(K)

PART 3

LSE=L(13)+L(14)+L(15)
LSC=L(16)+L(17)+L(18)
LS=LSE+LSC
LT=L(19)+L(20)+L(21)
V(1)=(R(31)*LSC+14)/LSE
VI2)=R(31)1+V (1)
V(3)=R(31)*(LS/LSE)
V(4)=R(31)*(LSC/LSE)

BUFFER OUT(1941) (L(1)yL(31))

I1=IFUNIT(19)+2

THE FOLLOWING STATEMENTS ASSUME A UNIFORM BEAM=3
DO 499 J=1,31

A(J)Y=AXJ(J)

I(r=12J(J)

CALCULATION OF FM MAT USING LEAST AMOUNT OF MEMORY POSSUBLE

GO TO(6991050969+69969)911
DO 340 J=1sNC
FM{Je1)=L(J)/(E(JI*A(U))
DO 340 K=245
FM(JsK)=0o
DO 20 J=NC1lM
FM(Jsl)= LIJI/(E(JI*A(I))
FM(Js2)= LIJI*%X3/(3*E(JI*](J))
FM(Js3)= L(J) %2/ (2%E(JI*1(J))
FM(Js4)=FM(J»3)
FM(JsB)= LIJI/(E(JI* T1(J))
BUFFER OUT (591)(FM{1s1)sFM(31+5))
IS=IFUNIT(5)+2
GO TO (699327+69+69+69)s15
MATRICES AMQsAML SETCe
CABLE STAYED BRIDGE-UNIFORM AND POINTS LOADS
X AND Y DIMENSION IS NO OF JOINTSSsREMAINING-DIMENSION IS NO OF MEMBERS
DIMENSION MK (31) s I1ZJ(31) s I1ZK(31)9sAXJ(31) sAXK(31)4E(31)sMJI(31)
DIMENSION X(7C)sL(31)4LEN(31)sLA(14)4MA(14),AML2(6324)
DIMENSION MJK(2+68)sPUK(2+68)9JK1(2968)sAML3(93)
DIMENSION MAMA(93,68) sAMAA(31+68)sAMAS(31+68) 3sAMAM(31,68)
DIMENSION AMP (31)3AMN(31)sSMP(31)sSMNI(31)4BMP(31},BMN(31)
DIMENSION FM(31s5)sAMQ(93514) 3AMQT(14+93) sFAM(14+93)sF(1l4s14)
DIMENSION VUL I(2694)9sAMUL(93426) sVUM(2694) s VUMT (426) sAMUM(93+26)
DIMENSION VULT(4426) sAML(93570) sDGL(14968) sQ(14+68)sAMMQ(93,68)




5
14

DIMENSION
DIMENSION

DIMENSION
DIMENSION
DIMENSION
DIMENSION

AM(93,68) yAMR(93,68) sAMA(93,68) yARL (4568) yARQ(4,14) 171.
ARLL (4468) sAR(4368) 9X1(3162),Y1(3162)

AML1(1632) sFAM2(14593),DQL2(14+68)sQ2(14+68)

DUMMY (218 )

AMQ2 (93514 ) sE1(70) sP(T70)sMO(T0)sS(70) sAMIT(23593)
DJ1(23434) sDJ(23+68) s AMX(23+93),111(68)

EQUIVALENCE (AML(1),AMMQ(1),AM(1),AMR(1)sAMA(1)),(AML(1)sAMUL(1))
EQUIVALENCE (AML(1)sMAMA(1),AML2(1))

EQUIVALENCE (AML(1)sAMAM(1))s(AML(2109)sBMP (1)) (AML(2140)4sBMN(1))
EQUIVALENCE (AML(1)9sAMAA(1)) 9 (AML(2109)sAMP (1)) (AML(2140)+sAMN(1))
EQUIVALENCE (AML(1)9AMAS(1))s(AML(2109)sSMP (1)), (AML(214C)4SMN(1))
EQUIVALENCE (AML(2419)sAMUM(1)) s (AML (4837)sAML1(1))s (AML(1)sFAM(])

1)

EQUIVALENCE (VUM(1)sVULT(1))s(AR(1)sARLLI(1)AML3(1))
EQUIVALENCE (AML(1303)sAMQT (1)) s (AML(1303),DQL(1))
EQUIVALENCE (AML(4465),DQL2(1)) s (AML(3163) 4FAM2(1))s(AML(3163)+AMQ

101)) s (AML(1) sAMIUT (1) sDJ(1)) 9 (AML(3163) 9sAMX(1))s(AML(5302)sDJ1(1))
EQUIVALENCE (AML(4465)9sQ(1)) s (AMLI(1)4sAMQ2(1)) s (AML(1303)+Q2(1))
EQUIVALENCE (VUM(1)sVULT(1))s(AR(1)sDUMMY (1))

EQUIVALENCE (AML(1)9X1(1))s(AML(3163)sY1(1))s(ARL(1)sF(1))

EQUIVALENCE (DUMMY (1) sMJ(1)) s (DUMMY (32) sMK (1)) (DUMMY (63)512J(1))

1(DUMMY (94) sIZK (1)) s (DUMMY (125) 9AXJ(1)) s (DUMMY(156) sAXK (1)) (DUMMY (

2187)sE(1))

COMMON/ 1/AML s FMs VUM VUMT s ARL
REAL LsLENsSMOsSMAMASIZJUs1ZK

REAL MJK
REWIND 7

BUFFER IN(7s1)(DUMMY(1)sDUMMY(218))

M=31
MT=3%M
LOAD=68
NRE=4

PU=1000e/12

NR=14

I7=IFUNIT(7)+2

GO TO(6995969369,69) 17

PRINT 14

FORMAT(1H1+55X s 17THMEMBER PROPERTIES,// /)

PRINT 7

7 FORMAT(9Xs111HMEMBER JOINT (J) JOINT(K) LENGTH(FT)

621

232

206

1 120

1zZK AXJ AXK E)

BUFFER IN(1951)(L(1)sL(31))
DO 621 I=1,67

I11(1)=1

I4=TFUNIT(19)+2

GO TO (69+4+69+69569) 14

DO 9 K=1sM

PRINT 69sKosMJI(K) sMKIK) oL (K) 9 IZJ(K)9sIZK(K) 9AXJ(K) sAXK(K) sE(K)
FORMAT(3(4XsI1C) 34X sFlOeb4 92 (4XsE10e4) 92(4XsF1l0e4) s4XsEL1Ce4)
BUFFER IN(591)(FM(1s1)sFM(31,5))

I12=1FUNIT(5)+2

GO TO (6992+69969+69) 912

BUFFER IN(3s1)(F(1ls1)sF(14s14))

IS=1FUNIT(3)+2

GO TO (699232+69969969)s15

BUFFER IN(2s1)(VUMT(1s1l) SVUMT(4426))

[3=IFUNIT(2)+2

GO TO (6992C6969969469)913

BUFFER IN(3s1) (AMUM(1s1)9sAMUM(93,426))



NN

207

205

10

11

12

13

718

210

I3=1FUNIT(3)+2 172.
GO TO (69+3469+69+69) 413

BUFFER IN(4s1)(VULT(1s1)sVULT(4926))

I1=IFUNIT(4)+2

GO TO (6991969969969 ),11

BUFFER IN(2s1) (AMUL(1s1)9sAMUL(93426))

14=1FUNIT(2)+2

GO TO (69+207+69s69969)s14

BUFFER IN(4s1)(ARQ(191)9sARQ(4914))

12=1FUNIT(4)+2 |
GO TO (695205969969969) 12 O
REWIND 2 1
REWIND 3 |
REWIND 4
REWIND 5 i
FORMATION OF AML

CALL EQUIA(LSE]lsXsPIKsMIK 9 JK1) f
FORMATION OF JK1 MATRIX IS DONE IN SUBROUTINE CAA

DEFINE JK1(1ls1l) AND JK1(241)
JK1(1,s1)=1
JK1(241)=2
JK1(1s68)=25
JK1(2468)=26

DO 11 K1=1+52417
IBIG=0 |
K2=K1+16 ‘
DO 10 K3=K1lsK2

JJ=JK1(1sK3)

KK=JK1(29K3)

DO 10 I1=1sMT

IBIG=IBIG+1
AMLI(IBIG)=PJUK(14K3)*¥AMUL (11 9JJ)+PIK(2sK3)*¥AMUL(I1,KK)+MUK(19K3)*A
IMUM(I15JJ)+MUK(24K3)*AMUM( 11 4KK)

BUFFER OQUT(3s1)(AML1(1)sAML1(IBIG))

I3=IFUNIT(3)+2

GO TO (69911+69+969+69)913

CONTINUE

REWIND 3

CALL UNIA(LsAMUL s AMUMZAML3,4PUsSsP sMO)

DO 12 11=1+4744,1581

12=11+1580

BUFFER IN(3s1)(AML2(I1)sAML2(12))

I3=IFUNIT(3)+2

GO TO(69312+69969+69),13

CONTINUE

DO 13 J=1493

AML2 (J)Yy=AML3 (J)

REWIND 3

BUFFER OUT (5s1) (AML(191)4sAML(93434))

T4=TFUNIT(5)+2

GO TO (69+97183699694969) 914

BUFFER OQUT(591)(AML(1+35) sAML(93,68))

IS=TIFUNIT(5)+2

GO TO (694210969969469)s15

REWIND 5

MULTIPLICATION OF DQL=FAM*AML

BUFFER IN(1s1)(FAM2(15s1)9sFAM2(14,493))

I1=IFUNIT(1)+2



@

101

758

759

760

761

766

762

20

764

767

765

768

791

792

GO TO (699101969969
BUFFER IN (5,1) (AML(

IS=IFUNIT(5)+2

GO TO (699758369969+69)915
LOAD2=LOAD/2

DO 759 I1A=1sNR

DO 759 KA=1+LOAD2

DQL2 (IAsKAY =0,

DO 759 JA=1sMT

Il

69)
1+41)9sAML(93434))

DQL2(IAsKA)=DQL2(TAsKA)+FAM2 (1A s JA)¥AML (JAKA)

DO 760 1A=1sNR

DO 760 KA=1sLOAD?2
DAL(IASKA)=DQL2(TAsKA)

DO 761 IA=14sNR

DO 761 KA=14MT

FAM(TAZKA)=FAM2(TASKA)

BUFFER IN (591){AML(1+35)3AML(93,68))
[4=1FUNIT(5)+2

GO TO (69+76636G5+969969)s14

REWIND 5

LOAD3=LOAD2+1

DO 762 1A=1sNR

DO 762 KA=LOAD3,LOAD

DQL(TAsKA)=0.

DO 762 JA=1sMT
DQL(TASKA)=DQL(TASKA)}+FAM(IA,JA)*AML (JASKA)

FORMATIIN OF Q

DO 20 TA=1,4NR

DO 20 KA=1,LOAD

Q(IAYKA)=0e

DO 20JA=14NR
Q(IASKA)=Q(TASKA)I+F(TASJA)*¥DQL(JASKA)
BUFFER OUT(2+1)(Q(1ls1)sQ(144+68))
14=TFUNIT(2)+2

GO TO(69+764969+69+69)414

REWIND 2

AMMQ=AMQ*Q

BUFFER IN{(1s1) (AMQ{(1+1)9sAMQ(93,514))
I4=TFUNIT(1)+2

GO TO(699767969+969969)s14

DO 765 I1A=1sMT

DO 765 KA=1s+LOAD?2

AMMQ(TAsKA?=0,

DO 765 JA=1sNR

AMMQ (TASKA)=AMMQ(IASKA)+AMQ(IAs JAI*¥Q(JASKA)
BUFFER OUT(&4s1) (AMMQ(191) s AMMQ(93534))
I4=IFUNIT{4)+2

GO TO(69+768969969969)s14

DO 791 KA=14NR

DO 791 I1A=1,93

AMQ2 (TASKA)I=AMQ(TAsKA)

DO 792 TA=1,NR

DO 792 KA=14LOAD
Q2(I1ASWKA)=Q(IAsKA)

DO 769 IA=14MT

DO 769 KA=LOAD3,LOAD

AMMQ (TAsKA)=0.

DO 769 JA=1sNR

173.
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769

770

771

772
773

174

216

217

49

200

201

AMMQ (TA3KA)=AMMQ(TA4,KA)+AMQ2 (1A, JA) %Q2 (JA4KA)
BUFFER OUT(4+1)(AMMQ(14LOAD3) 4AMMQ(MTsLOAD))

[I4=TFUNIT(4)+2

GO TO(699770969369+69) 914
REWIND 4

AM=AML+AMMQ

AML IN 5 AMMQ IN 4 AM TO 4
DO 774 Jl=1,s2

BUFFER IN(4+1)(X1(1)eX1(3162))
BUFFER IN(551)(Y1(1)sY1(3162))
I14=1FUNIT(4)+2

GO TO (699771969569369)s14
IS=IFUNIT(5)+2

BACKSPACE ¢4

GO TO (699772969+69969)915

DO 773 J=1+3162
X1(J)=X1(J)+Y1(J)

BUFFER OUT(4+1)(X1(1)sX1(3162))
I4=IFUNIT(4)+2 A
GO TO(699TT4969+69+69)914
CONTINUE

REWIND 4

REWIND 5

BUFFER IN(44+1)(AM(191)9sAM(93,434))
14=TFUNIT(4)+2

GO TO (699216969969+969) 14
BUFFER IN(491)(AM(1435)3AM(93,68))
IS=IFUNIT(4)+2

GO TO (699217+69369969)915
REWIND 4

AMR IS CALCULATED BY WRITING A DO LOOP FOR EACH DISCONTINUITY
SUBROUTINES ARE CALLED TO 1eASSIGN X AND LENGTH OF MEMBER TO

174.

CORRESPONDING LOADS USING SUBDISTANCE

2.THE ELEMENTS OF THE MATRIX ARE THEN
CALCULATED USING SUBROUTINE ASSIGN

FOR X=0+450 LOADS 2416

DO 49 J=1,93

DO 49 K=1468

AMR(JsK)=00

JX=12

DO 200 LO=2+12,+5

JL=L0+3

JX=JX+1

CALL DISTANCE(JXsLOyJL9XsLENsL sAMRPU)

FOR X=1100+1500 LOADS 39453

JXx=21

DO 201 LO=39949+5

JL=LO+3

JX=JX+1

CALL DISTANCE(JXsLOsJL sXsLENSsLsAMRsPU)
FOR X=900,51100 LOADS 32,38

JX=31

LO=32

JL=37

CALL DISTANCE(JXsLOsJL9sXsLENSL sAMRyPU)

FOR X=45045900 LOADS 17,31



JXx=15 175.
DO 202 LO=17927+5
JL=LO+3
JX=JdX+1
202 CALL DISTANC2(JXsLOsJLsXsLENsL sAMRsPU)

FOR X=1550+2000
JX=24
DO 203 LO=5446445
JL=LO+3
JX=JX+1
203 CALL DISTANC2(JXsLOsJLsXsLENSL sAMRSPU)
BUFFER OUT(591)(AMR({1s1)9sAMR({934534))
I5=IFUNIT(5)+2
GO TO (699220969969469)915
220 BUFFER OUT(531)(AMR(1+35)sAMR(1+68))
I4=IFUNIT(5)+2
GO TO(699780+69969+69)s14

AMA=AM+AMR
780 REWIND 5
DO 784 Jl=1y2
BUFFER IN(4s1)(X1(1)sX1{(3162))
BUFFER IN(5+1)(Y1(1)sY1(3162))
I4=TIFUNIT(4)+2
GO TO(699781969+69969) 14
781 I5=IFUNIT(5)+2
GO TO(699782969369969)915
782 BACKSPACE 5
DO 783 J=1+3162
783 X1(J)=X1(J)+Y1(J)
BUFFER OUT(5s1)(X1(1)4X1(3162))
I4=IFUNIT(5)+2
GO TO(69+784969369969)s14
784 CONTINUE
REWIND &
REWIND 5
BUFFER IN(5s1)(AMA(151)3sAMA(93,34))
I5=IFUNIT(5)+2
GO TO (69+218969+69469)915
218 BUFFER IN(551)(AMA(1+35)sAMA(93,68))
I16=IFUNIT(5)+2
GO TO (699219969+69+69) 916
219 REWIND 5
BUFFER OQUT(16+1)(AMA(151)+sAMA(93,68))
I1=IFUNIT(16)+2
: GO T0(6991220969969969) 11
1220 PRINT 830
830 FORMAT(72H1STRESS RESULTANTS FOR DEAD LOAD (CASE 1) AND MOVING LOA
1DS(CASE 2 TO 67)s////7177)
PRINT 813
813 FORMAT(TH+MEMBER64X s 10HLOAD CASES)
DO 811 JJ=1,12
Jl=(JJ-1)*6+1
J2=J1+5
IF(JJeNE«11GO TO 693
PRINT 6944+(111(16)s16=J1+J2)
694 FORMATI(6(/) 924X s6(6X+8H CASE +12e2X)s/77)
GO TO 842



693

840

815

812
842

816
817
818

841
811

441

785

1221
631

16

17
18

211

IF(J1eNE«67)GO TO 815 176.

J2=67

PRINT 8405(111(16)s16=U1,J2)

FORMATI(6(/) 91H1924Xs (6X98H CASE 1292X)s//7)
GO TO 842

PRINT 8125 (II11(16)s16=J19J2)
FORMAT(6(/)9s1H1924X9s6(6X98H CASE 91292X)9///)
DO 811 I=1,31

11=3%]-2

12=11+1

13=11+2

PRINT 8169 (AMA(I119J)9sJ=J19J2)
FORMAT (13X s12HNORMAL FORCE s1X9s6(6X9E12e6))
PRINT 817s1s(AMA(I2sJ) sJ=J1,J2)
FORMAT(3X91298X9s11HSHEAR FORCE 92X s6(6XsE12e6))
PRINT 818 (AMA(I3sJ)sJd=J19J2)
FORMAT(13Xs11HBEND MOMENT 92X 6 (6X9sE12e6))

PRINT 841

FORMAT (/)

CONTINUE

MJK AND PJUK ARE GENERATED AGAIN

CALL EQUIA(LSE1lsXsPJUKsMIKsJK1)

FORMATION OF JK1 MATRIX IS DONE IN SUBROUTINE CAA
DEFINE JK1(1s1) AND JK1(2,1)

JK1(1s1)=1

JK1(2s1)=2

JK1(1468)=25

JK1(2,68)=26

DO 441 J=1+68

JJ=JK1(1,sJ)

KK=JK1(2sJ)

DO 441 K=1,NRE

ARL (K9gJ)=PJIK (1 9J)*¥VULT(KeJJ)+PIK(29J)%¥VULT(K sKK)+MIK (19J) *¥VUMT (Ko J
1J)+MJIK (2 9J) ®#VUMT (K sKK)

Kl=1

CALL UNIV(LsVULT9sVUMT 9ARL 9K1sNRE4PUsSsPsMO)
BUFFER IN(2+1)(Q(1s1)4+Q(14+68))

I4=1FUNIT(2)+2

GO TO(69+785+69+69+69) 14

CALL GMPRD(ARQsQsARLL SNREsNRsLOAD)

BUFFER IN(1s1)(AMJUT(141)sAMIT(23,93))

CALL GMADD(ARL yARLL sARyNRE sLOAD)

BUFFER OUT(1791)(AR(151)sAR(44+67))
I1=IFUNIT(17)+42

GO TO (6991221+69969+69)s11

PRINT 631

FORMAT(73H1VERTICAL REACTIONS FOR DEAD LOAD (CASE 1) AND MCVING LO

1AD (CASE 2 TO 67)s////77)

PRINT 16 (II11(I)sI=1s4)

FORMAT (1X9HLOAD CASE s4 (15X9HREACTION 912)9/77)
DO 17 J=1s67

PRINT 18sJs( AR(KsJ)9sK=194)
FORMAT(1Xs5HLOAD +12+2Xs4(15XEL11e4) /)
I6=IFUNIT(1)+2

GO TO (699211969969969)916

THE CALCULATION OF AMJUT#FM=AMX FCLLOWS
REWIND 1

NJD=23

JZ=MT-2



DO 63 N=1,NJD 177.

DO 63 J=14JZ+3
JA=J+1
JB=J+2
K=JB/3
AMX (N J)=AMJIT(NsJ)%¥FM(Ksl)
AMX (N9 JA)=AMIT (N9 JA) XFM(K 92) +AMIT (Ny JB) #FM (K s3)
63 AMX(NsJB)=AMIT (NsJA) ¥FM(K 4 ) +AMIT (Ns JB)#FM (K s5)
BUFFER IN(491)(AM(1451)3sAM(93,34))
I4=IFUNIT(4)+2
GO TO (699223+969969+69) 914
223 CALL GMPRD(AMX sAMsDJ14NIDsMT,HLOAD2)
BUFFER OUT(191)(DJ1(1s1)9sDJ1(234534))
BUFFER IN(451)(AM(1s1 ) 9AM(93,34))
I1=IFUNIT(1)+2
I4=1FUNIT(4)+2
GO TO (699224+69969+69) 11
224 GO TO (69+225969569+69)s14
225 CALL GMPRD(AMXsAMsDJ1sNJDsMT sLOAD2)
BUFFER OUT(1s1)(DJ1(1s1)9sDJ1(23434))
I2=IFUNIT(1)+2
GO TO (699226969969+69) 912
226 REWIND 1
BUFFER IN(1s1)(DJ(1s1)sDJ(23534))
I1=IFUNIT(1)+2
GO TO (699227369+69969)911
227 BUFFER IN(1s1)(DJ(1435)sDJ(23568))
I1=IFUNIT(1)+2
GO TO (699228969+69969)911
228 BUFFER OUT(1851)(DJ(1s1)sDJ(23+68))
I1=IFUNIT(18)+2
GO TO (6991222+69+69+69)11
1222 DO 212 J=1,23
DO 212 K=1+68
212 DJ(JsK)= DJ(JsK)/10000000,
PRINT 632
632 FORMAT(74H1JOINT DISPLACEMENTS FOR DEAD LOAD (CASE 1) AND MOVING L
20ADS(CASE 2 TO 67)s//7777)
PRINT 229
229 FORMAT(13H+DISPLACEMENT43X17HLOCATION OF LOADS)
DO 230 JJ=1,12
J1=(JJ-1)%6+1
J2=J1+5
IF(J1eNE«67)GO TO 231
J2=67
PRINT 644s(I111(16)s16=U1+J2)
644 FORMAT(6(/)9s11Xs (6Xs8H CASE 1291X)9//7)
GO TO 643
231 PRINT 2345 (111(16)s16=J15J2)
234 FORMAT(6(/)911Xs6(6Xs8H CASE 91291X)9//7)
643 DO 230 J=1422
230 PRINT 2333Js(DJ(JsK)sK=J1sJ2)
233 FORMAT(/5X1294Xs6(6XsE1le&)y/)
GO TO 645
69 PRINT 6969
6969 FORMAT(2Xs18HITS ALL $*(=/+% UP)
645 STOP
END
SUBROUTINE GMADD(AsBsRsNsM)
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TO ADD 2 MATRICES
DIMENSION A(1)sB(1)sR(1)

NM=N*M

DO 10 I=1sNM
R(IN=AC1)+B(]I)
RETURN

END

SUBROUTINE GMTRA(AsRsNsM)
DIMENSION A(1)sR(1)
IR=0

DO 10 I=1sN

IJ=1-N

DO 10 J=1,M

1J=TJ+N

IR=1R+1

RIIR)=A(TIJ)

RETURN

END

SUBROUTINE GMPRD(AsBsRsNsM,yL)
DIMENSION A(1)sB(1)sR(1)
IR=0

IK==M

DO 10 K=1,sL

IK=1K+M

DO 10 J=1,sN

IR=IR+1

JI=J=N

IB=1K

R(IR)=0.

DO 10 I=14M

JI=JI+N

IB=1B+1
RIIR)Y=R(IR}+A(JI)I*B(IB)
RETURN

END

SUBROUTINE DISTANCE (JXsLOsJL sXsEsLsAMRsPU)
DIMENSION X{(70)sE(31),L(31)3sAMR(93+68)
REAL L

JQ=L0-1

X(JQ)=0e

IA=3%JX~2

JD=1A+1

JE=T1A+2

DO 1 K=LOsJL

E(K)=L(JX)

JC=K-1

IF(KeNE«35)GO TO 3

X(K)=X(JC)+20e%12,

GO TO 4

X(K)=X(JC)+30e%12,

AMR(JD oK) = (X (K )*%#2% (34 %E (K)=24%X(K)))/E(K)*%3
AMR(JE sK) ==X (K ) #%¥ 2% (E(K)=X(K))/E(K)*%?
AMR(JDs1)=PU*L(JX) /2.

AMR(JE 9 1) =—PU*L (JX)%%2/12,

RETURN

END

178.
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SUBROUTINE DISTANCZ2(JXsLOsJLeXsEsLsAMRPU)
DIMENSION X(70)sE(31)sL(31)3AMR(93+68)
REAL L

JQ=LO-1

X{JQ)=0.

[A=3%JX-2

JD=1A+1

JE=TA+2

DO 1 K=LOsJL

JC=K~1

E(K)=L(JX)

XAK)I=X(JC)+30e%*12,

AMR(JD oK) =—(E(K) =X (K) ) #3%2% (2%¥X (K)+E(K))/E(K)#*%*3
AMR(JE oK) =X (K) ¥ (E(K) =X (K) ) *%#2/E (K ) #%2
AMR(UDs1)=-PU*L(JX) /2

AMR(JEs1l)= PUXL(JUX)}%%2/12.

RETURN

END

SUBROUTINE CAA(LOsJXsJLsJO KOs sEsXsPsMOsJK1)
DIMENSION X(70)sL(31)4P(2s68)sMO(2968)+E(T70)sJK1(2+68)
REAL L MO

CALCULATES AML FOR POINT LOAD CONDITIONS

JJ=L0-1

X(JJ)=00

DO 1 J=LOsJL

JK1(1,J)=J0

JK1(24J)=KO

E DENOTES LENGTH OF MEMBERS WHEN CALCULATING PARMETERS IN THE PROGRAM
SINCE THE ORIGINAL VALUE OF LENGTH(L) MUST BE PRESERVED FOR LATER USE

E(J)=L(JX)
JJ=J-1

THE FOLLOWING 3 STATEMENTS ARE ASs A RESULT OF THE DIS<AT MEMBER 31
IF(JeNE«35)GO TO 7

X(J)=X(JJ)1+20.%12,

GO TO 9

X(J)=X(JJ)+30e%12,
P(leJ)=(E(JII=X(J) ) %%2%(2e%X(J)+E(J))/E(J)%*3

P 2sJ)=X(J)%%2% (3 *¥E (J)=2e%¥X(J) ) /E(J) %3
MO(LlsJ)=X(JIR(E(II=X(J))%%2/E(J) %%2
MO(2sJ)=X(J)%X2%(E(J)=X(J))/E(JI)#%2

RETURN

END

SUBROUTINE EQUIA(LsE1sX 9P sMOsJK1)

DIMENSION X(70)sL(31)sP(2+68)sMO(2+68)sE1(T0)9sJK1(2+68)
REAL L MO

MTA IS NO OF ROWS IN MATRIX

THIS PART OF PROGRAM CALCULATES EQUIVALENT JOINT LOADS
FOR STRESS RESULTANTSsPOINT LOADS (AML)

FOR LOADS 2 THRU 31

JO =JOINT AT LEFT KO=JOINT AT RIGHT LO=LOAD JL=END OF DO LOOP
JO=-1

JX=12

DO 10 LO=2+27»5
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J0=J0+2 180.

KO=J0+1

JL=LO+¢4

JX=JX+1

CALL CAA(LOsJIXsJL 9JOsKOsL sE1aXsP4MOysJIK1)
FOR MIDDLE PART OF STRUCTURE

Jx=31

JO=13

KO=14

LO=32

JL=38

CALL CAA{LOsJIX 9 JL sJOsKOsL sE1 94X sP4MOyIK1)

FOR THE RIGHT HAND SIDE OF THE STRUCTURE
JO=13

JX=21

DO 11 LO=39+6445

JO=JO+2

KO=JO+1

JL=LO+4

JX=JX+1

IF(JLeNE«68)GO TO 11

JL=67

CALL CAA(LO,JX 9JL9JO,KO’L9E19X 9p9M09JK1)
RETURN

END

SUBROUTINE UNIV(LsAMUL s AMUMsAML sMT1sMT sPUsSsP sMO)

DIMENSION AML(4968)9S(70) s AMUL(4526) s AMUM(44926) 3P (70)sMO(T70)sL(31)
REAL LsMO

CALCULATES ARL FOR UNIFORM LOAD CONDITIONS

THIS PART OF PROGRAM CALCULATES EQUIVALENT JOINT LOAD FOR A
UNIFORM LOAD

FIRST ASSIGN LENGTHS OF MEMBERS CORRESPONDING TO JOINT NUMBERS
JJd=-1

DO 210 J=13,18
JJ=JJ+2
JK=JJ+1
S(JJI)=L(J)
S(JK)Y=L(J)
S(13)=L(31)
S(14)=L(31)
JJ=13

DO 214 J=22427
JJI=JJ+2
JK=JJ+1
S(JJ)=L(J)
S(JK)Y=L ()

NOW EQUIVALENT JOINT LOADS ARE CALCULATED

PU=UNIFORM LOAD NOTE~-MO MUST BE REAL-CHECK WITH OTHER PROGRAM
DO 212 J=1+26

P({J)=PU*S(J)/2.

MO(J)=PUXS(J)%%2/12,

NOW THE AML MATRIX IS CALCULATED ACCORDING TO PAGE 36

DO 213 J=MT1 eMT
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AML(Js1)=0.
DO 213 K=1s26
AML (Js1)=AMUL (JsK ) *¥P (K)+AMUM (JsK ) *¥MO (K)+AML (J»1)

RETURN

END

SUBROUTINE UNIA(L sAMUL s AMUM gAML » PUsSsPsMO)

DIMENSION AML(93 ) sS(T70)sAMUL(93926) sAMUM(93+26) sP(T70)sMO(T70)sL (3
11)

REAL L sMO

CALCULATES AML FOR UNIFORM LOAD CONDITIONS
THIS PART OF PROGRAM CALCULATES EQUIVALENT JOINT LOAD FOR A
UNIFORM LOAD

FIRST ASSIGN LENGTHS OF MEMBERS CORRESPONDING TO JOINT NUMBERS

MT=93
JJ=-1

DO 210 J=13,18
JJI=JJ+2
JK=JJ+1
S(JJ)=L(J)
S(JK)I=L(J)
S(13)=L(31)
S(14)=L(31)
JJ=13

DO 214 J=22,27
JJI=JJ+2
JK=JJ+1
S(JJ)y=L(J)
S(JK)Y=L(J)

NOW EQUIVALENT JOINT LOADS ARE CALCULATED

PU=UNIFORM LOAD NOTE-MO MUST BE REAL-CHECK WITH OTHER PROGRAM
DO 212 J=1+26

P(J)=PU%S5(J) /2

MO(J)=PU*S(J)*%2/12,

NOwW THE AML MATRIX IS CALCULATED

DO 213 J=1 oMT

AML(J )=0.

DO 213 K=1+26

AML(J  I=AMUL (J oK I ¥P (K)+AMUM(J oK)y EMO (K )+AML (U )
RETURN

END

FINIS




182.

APPENDIX 6
COMPUTER PROGRAM FOR REDUCTION OF STRESSES AND

DISPLACEMENTS DUE TO DEAD LOAD BY POST-TENSIONING OF CABLES.
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183.

PROGRAM PART2

DIMENSION
DIMENSION
DIMENSICON
DIMENSION
UIMENSION
DIMENSIUN
DIMENSION
DIMENSION
DIMENSTON
DIMENSION
DIMENSICN

EWUIVALENCE
EQUIVALENCE
EGUIVALENCE

A(31)sLACLL) sMA(L4) oFAM(14+93) sF (143240 9sE(31),4L(31)
BMJU(93:22) sBMQ(93314) sBRQ(&4s14) 3sFM{31+5) sBERQL(1444)
AML(93) sFM1(31+5)sAMG (93 914) sFAM1(14493) 3FAM3(22,93)
AMQL1(93514)

QSTORE(14s12)
F1(l4s14)sDQLI14) 90 (14)9sAMLI(93912)9DJ1(22912) sAR1(4912)
FX(13913)sF4(14414)

DUMMY (93)

DJ(22s1 ) sARL(4) sAJ(12)4X(122)
JOo(12s12)

LAL(12) sMAL(12)

{BMJ s BMWsBRWsAMU) s (BMJI(57) sBRQ1)
(FM1oFM) s (FAM3 3FAML sFAM) o (FoF1)
(DUMMY oL ) s (LUMMY (32} 4E ) s (DUMMY (63 ) 4A)

s AMA(93) sDJA(22) sARA(4)

COMMON BMJsFM1sFAM3
REAL LeKAY»JD

NR=14
LOAD=68
M=31
MT=3%M

PU=luUue/12e

PUU =
NC=12

6e

READ 4,sKAY

FORMAT(F10e4)
BUFFER IN(551) (DUMMY (1) sDUMMY(93))
GO TO(6991969969569) sUNITSTF(S)

CONTINUE

BUFFER IN(25s1)(BMQ(1s1)9BMQ(93s141))

GO TU
REWIND 2

(69331969969969)sUNITSTF(2)

FM IS BUFFERED IN

BUFFER IN(491)(FM1(151)sFM1(31s5))

GO TU
REWIND 4

(69935969969+69) sUNITSTF (4)

MULT OF AMQT* FM1=FAM1(93s14)
AMG IS USED INSTEAD OF AMQT TO SAVE MEMORY

JZ=MT-2

DO 27 N=1sNR
DO 27 J=1+JZ293

JA=J+1
Jo=J+2
K=J4B/3

FAM(NsJ)=AMQ
FAM(NsJA) =AMG
FAM(N,JB)=ANMQ

Fa IS FU

WITH

(JsNI*FM(Ks1)
(JASN)*¥FM (K92 ) +AMQ
(JASN) ¥FM (K 9t ) +ANQ

(JByN)%*¥FM (K s3)
(JBsNI*¥FM(K5)

ALL ROWS AND COLUMNS INTACT

MULT OF AMQT*FAM1=F&4(14s14)

DO 47
DO 47

4=
12=

1sNR
1sNR

F4(l44+12)=0.
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47

33

34

555

39

DO 47 Jl=1sMT
Fa(l4s12)=F4(14s12)+FAM(I49J1)*¥AMQ(JL1s1I2)

DO LOOP STARTS HERE

DO 30 I1=1ls12
DO 33 J=1s14
DO 33 K=1s14
F1(JsK)I=F4(JsK)
REMOVE ROw AND COLUMN 11 FROM F1
DO 34 J=1s14
F1(IlsJ)=vUa
F1l(JsI1)=0e
FORMATICN OF NEw F1
DO 38 I2=1s12
IF(I2.EQelI1)GO TO 38
F1(I2s12)=F1(I2s12)+L(I2)/(E(I2)%A(12))
CONTINUE
DO 32 J=1,93
AML(J)=BEMQ(Js11)
SET ROW 11 OF AML EQUAL TO ZERO
12 = 3%#]1-2
[3 = 12+1
T4=12+2
AML(I2)=0.
AML(I3)=0.
AML(I4)=U.

CALCULATE DbaL
GET FIRST FAM

STORE AMQ IN AMQ1
DO 550 I=1+93
DC 550 J=1s14
AMQL(TsJ) = AMQ(IsJ)
REMOVE COLUMN 11 FROM AMQ1
DO 551 I=1,93

AMQLI(IsI1) = Oo
MULTIPLY AMQ1T*#FM1 TO GET FAM
JZ=MT=2

DO 555 N=1sNR

D0 555 J=19JZ+3

JA=U+1

JB=J+2

K=JB/3

FAMINsJ)=AMQL(Jo NI ¥FM(K 1)

FAM(N 9 JA)=AMQL (JASN) XFM(K 92 ) +AMQ1 (JB sN) ¥FM (K9 3)

FAMINsJB)=AMQL (JASN) *¥FM(K 94 ) +AMQL (JBsNI *#¥FM (K95 )
NOW CALCULATE DQL

DAL (14)=FAM1*AML

DO 39 TA=1sNR

DQL(TA)=vV.

DO 39 JA=1-MT
DQL(IA)I=DQLIIAI+FAM(IASJAI*¥AML(JA)

CALL MINV TO GET F=F*#(-1)

[4=11-1
I15=11+1

184.
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185,

DO 83 J=1lsl14

DO 93 K=1s14
FX{JesK)=F ({JsK)
DO 83 K=15sNR
K9=K~-1
FX(JeKI)=F (JsK)
DO 84 J=15sNR
Jo=J-1

DO 94 K=15sNR
K9=K~-1
FX(J9eKI)=F (JsK)
DO 84 K=1ls14
FX(J9sK)=F(JsK)
NR1=NR-1

CALL MINV(FXsNR1sDsLAsSMA)
CO 86 J=1lsl4

DO 96 K=1lsl4
FlJeKI=FX(JsK)
DO 86 K=15sNR
K9=K-1
FJsK)I=FX(JsK9I)
DO 87 J=15sNR
J9=J-1

DO 97 K=15sNR
K9=K-1
F(JeK)=FX(J9sK9I)
DO 87 K=1s14
F(JsKY=FX(JFsK)

MULTIPLY INV OF F BY -1

DO 715 J=1sNR
DO 715 K=1sNR
FOJeK)=F({JsK)¥(-1s)

QUl4)Y=—-F(-1)*¥DQL

DO 40 TA=1sNR

Q(IA)=0.

DO 40U JA=1sNR
Q(IA)I=Q(IAI+F1 (1A JA)*DUL (JA)

STORE Q IN QSTORE

DO 560 I=1sNR
QSTORE(ISI1) = Qt(1l)

CALCULATION OF AM1(93,11)=AMQ*¥Q FOR 12 CASES

DO 41 TA=1eMT

AMI(IAsI1)=0e

DO 41 JA=1,NR
AML(TASI1)=AMLI(TASI1)+AMQ(TAsJAI#U(JA)
DO 53 1=1sNC

J=3%]1=2

AML(JsI1)=Q(I)

DO 580 I=1sMT
AMI(IsI11)=AMI(Is11)+AML(I])
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30 CONTINUE

PRINT 55

55 FORMAT(63H1AXIAL FOURCES 1IN CABLES 1 TO 11 buk TO A UNIT FORCE
1ABLE 12s///77)
DO 56 J=1sNC

56 PRINT 57 (QSTORE(JsK)sK=1sNC)

57 FORMAT(12(1XsE1Ce2) /)

DISPLACEMENTS

DO 561 I1=1,12

TEMP = FM(I1ls1)

FM(I1s1)=00

CALCULATION OF FAM3(22+93)=BMJT*FM1

BUFFER IN (1s1)(BMJ(1s1)9eBMI(93,22))

GO TO(6942+69969+69) sUNITSTF (1)
42 REWIND 1

DO 43 N=1,22

DO 43 J=1sJZ+3

JA=J+1

JB=J+2

K=JB/3

FAM3(NsJ)=BMJI(JsN)I*¥FM(Ksl)

FAM3 (NsJA) =BMJ (JASNI*¥FM(Ks2)4+BMJ (JIBsNI*¥FM(Ky3)
43 FAM3(NsJB)=BMJ (JASNI #FM(K 94 )+BMJ (JBINI XFM(K95)

FM(I1le1)=TEMP

DJL(22+s11)=FAM3*¥AM1(93,11)

DO 565 I=1sNR
565 Q(I)=QSTORE(I,1I1)
DO 44 TA=1+22
DJI(IAsI1)=0.
DO 44 JA=1sMT
G64 DJIL(TASIL1)=DII(IASILI+FAM3(1AJA)*¥AML1(JAHLI])
DO 575 1=1+22
575 CJL(1s11)=DJL(1sI1)/1Ce®*7
561 CONTINUE

REACTIONS

AR1(4,11)=BRQAT*Q + ARL

DO 563 11=1,12
BUFFER IN (351)(ERQ1(191)s8BRQ1(1494))
GO TO (69961969969369)sUNITSTF(3)
61 REWIND 3
DO 564 I=1+4
ARL(I) = BRQ1(Il,I)
564 BRQ1(I1s1)=0e
DO 567 I=1sNR
567 Q(I)=QSTORE(I,11)
DO 621 IA=1s4
AR1(IAsI11)=0.
DO 62 JA=1s14
62 ARL(IAsI1)=AR1(TAsI1)+BRQLI(JASTAY*¥W(JA)
621 AR1(IAsI1l) = ARI1(IASI1) + ARL(IA)
563 CONTINUE

186.

IN
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PRINT 65
65 FORMAT(eUHIBENDING MOMENTSsAXIAL AND SHEAR FORCES DUE TO POSTENSIO
ININGs///77)
DO 63 J=1,93
63 PRINT 649 (AM1(JsK) 9K=1912)
64 FORMAT(12(1XsE1Ue2) /)
PRINT 71
71 FORMAT(45H1DISPLACEMENTS DUE TO POSTENSIONING OF CABLESs////)
DO 72 J=1s22
72 PRINT 739(DJ1(JsK)sK=1912)
73 FORMAT(12(1X9sE1Ue2)9/)
PRINT 74
74 FORMAT(31H1IREACTIONS DUE TO POSTENSIONINGs///7/)
DO 75 J=1s4
75 PRINT 76s{AR1{JeK)sK=1912)
76 FORMAT(12(1XsE10e2)9/)
BUFFER IN(1891)(DJ(1s1)sDJ(22s1))
GO TO(699115965965969)sUNITSTF(18)
115 DO 100 J=1,11
100 AJ(J)I=DI(Jsl)* (KAY~1e)#PUU/ 10U ¥*%7
AJ(12)y = = AJ(11)
DO 101 J=1s12
DO 102 K=1sll
102 JD(KsJI=DJ1(KsJ)
101 JD(12+J)=DJ1(17sJ)
DO 610 I=14+6
K=13-1
JD(124K)==JD(1ils1)
610 JD(11sK)==JD(12,1)
CALL MINV(JDsNCsD1sLA1sMAL)
MULT OF JbL #%(=1)%AJ=X(12)
DO lu4 J=1s1l2
X(J)=0.
DO 104 K=1s12
104 X (J)y=X(J)+JD(JsK})¥AJ(K)
PRINT 531
531 FORMAT(78HLFINAL POSTENSIONING FORCES TO APPLY IN CABLES TO REDUCE
1 ACTION OF DEAD LOALs///7)
PRINT 521X
521 FORMAT(// s46XsE10e3)
MULT COL I OF AM,ARs ANDLsDJ BY X(1i)
DO 611 I=1912
K=3%#[-2
611 AM1I(KsI)=1.
DO 1U6 K=1+93
AMA(K)=0e.
DO 106 J=1912
106 AMA(K)=AM1(KsJ)¥X(J)+AMA(K)
DO 107 K=1,22
DJA(K)=0e
DO 107 J=1,12
107 DJA(K)I=DII(KsJ)XX(J)Y+DIA(K)
DO 108 K=14
ARA(K)=Uoe
DO 108 J=1s12
1C8 ARA(K)=AR1(KsJ)*¥X(J)+ARA(K)
PRINT 111
111 FORMAT(///79s1X69HFINAL AXIAL AND SHEAR FORCES AND BENDING MOMENTS D
IUE TO POSTENSIONINGs////)
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PRINT 109 sAMA
109 FORMAT(3(20XsE2uve3)s/)
PRINT 112
112 FORMAT(///9s1Xs4UHFINAL DISPLACEMENTS DUE TO POSTENSIONINGs////)
PRINT 1104,DJA
110 FORMAT(41XsE1563)
PRINT 113
113 FORMAT(///s1Xs36HFINAL REACTIONS DUE TO POSTENSIONINGs////)
PRINT 114sARA
114 FORMAT(4(E30e3))
GO 70 77
69 PRINT 6969
6969 FORMAT(8HINO GOOD)
77 STOP
END
FINIS
$0BJ S LGO
$AUXsALIBSADIR





