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ABSTRACT

Modeling Producer Behavior by Using

the Third-Order Translog Cost Function

Aminu Said

Concordia University, 1992

The introduction of flexible functional forms based on the
second-order Taylor’s series approximation, has gonc a long way in the
study of producer behavior. However, since they are based only on the
second~order Taylor’'s series approximation, they impusc some rigidities
on the formulas derived and are not equipped to estimate, among other
important economic concepts, the curvature of demand and supply curves.

The objectives of this thesis is to explore the contributions of
third~order flexible functional forms in the study of producer behavior
To this end the third-order translog cost function is examined both
theoretically and empirically in the study of producer behavior. The
major theoretical findings of the study are that there is (1) a
reduction in the bias, (2) more flexibility in the derived economic
relations {(such as variable share elasticities, Allen Uzawa eclasticitics
of substitution), (3) additional restrictions for more rigorous testing
of the maintained hypothesis about the underlying technology and (4) the
introduction of sensitivity parameters to estimate the curvature of the
demand function.

Next, the performance of the second and third-order translog cost
functions are put to an empirical test by using KLEM (capital, labor,
energy and intermediate materials) data in the U. S. manufacturing
sector 1847-1971. First, the bias in the estimated demand functions
from both models is calculated and compared. The results show that
there is a reduction in the bias when the third-order function is used.
Second, the second-order cost function 1is tested for specification
error, using the likelihood ratio test. This function is rejected in

favor of the third-order translog cost function. Third, the share
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elaslicities are estimated using the new formula and are found to be
variable rather than constant, as assumed in the case of the
second-order cost function. The flexibility of the share elasticities
in turn play an important role in making formulae containing share
elasticities, such as the Allen partial elasticities of substitution
(AUES), more flexible. The estimated AUES values, by using the new
model, ranged from greater than unity, to less than unity. This implies
that substitution possibilities between any two inputs have changed over
the years. Fourth, the estimated measures of curvatures are used to
analyze the rates of change of demands and of the share of inputs as
well as measures of the sensitivity of some concepts such as share
elasticities.

Finally, the linear and nonlinear restrictions for various
separability types are derived for both the second and third-order cost
functions. The set of restrictions obtained for each type of
separability is then tested for significance. The results obtained from
the second-order model led to the rejection of all but one type; the
utilized capital specification. On the other hand, the third-order
results show the rejection of all separability types. This result is
achieved due to more rigorous testing, made possible by additional
restrictions provided by the third-order approximation of the cost
function and the precision of the variables involved in the formula to
determine functional separability. The implication of this result is
that the demand analysis of the U.S. manufacturing sector must take all
four inputs namely capital, energy, labor and intermediate materials,
into account. The forecasting of investment demands for any of the
inputs cannot be made by using the information relating only to the

sub-set of these inputs.
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CHAPTER 1

INTRODUCTION

Empirical analysis of demand and supply has been a rapidly
expanding area of research in the past few decades. The analysis of
markets in terms of demand and supply suggest that attempts must be made
to estimate, not only the slopes of these curves, but also their
curvatures and other economic concepts that are relevant to producer and
consumer behavior. The use of curvatures in economics will be discussed
briefly in Chapter 2.8.

Traditionally economists have been using simple functional forms
like the Cobb-Douglas and the constant elasticities of substitulion
(CES}. The simplicity of the above functions was achieved only at the
expense of Iimposing many restrictive assumptions about the underlying
technology and producer behavior. It 1imposes strong separability,
hence, unit elasticities of substitution resull between any two inputs
in the production process. The CES function did relax the assumption of
unit elasticities of substitution, but assumed them to be constant and
hence equal. This implies that in a multi-input production function the
existence of complementarity is ruled out a priori.

In order to eliminate the rigidities of the above forms, flexible
functional forms like the translog and generalized Leontief functions
(based on the second-order Taylor's series approximation) have becn
introduced. The advantages of such forms include the following:

(a) the ability to estimate the slopes of demand and supply



cxzpressed in terms of their arguments. (b} the ability to estimate and
test various maintained hypotheses concerning producer behavior and the
underlying technology.

The economic concepts that will be tested are generated from the
objective function as first and second derivatives with respect to input
prices and output.

The introduction of flexible functional forms based on the
second-order Taylor’'s series approximation, has gone a long way in the
study of producer behavior. However, since they are based only on the
sccond-order Taylor's series approximation, they impose some rigidities
on the formulas derived and are not equipped to estimate the curvature
of demand and supply curves.

Qur objectives in this thesis are (1) to identify the short comings
of second-order flexible functional forms; (2) to explore the
contributions of the third-order functional form in modeling producer
behavior; (3) to provide the theoretical justification for considering
the third-order translog cost function in applied empirical studies.

The basic shortcomings of second-order flexible functional forms
are identified as being the truncation bias, rigidity of some of the
cconomic relationships derived from these functions (such as the
constancy of share elasticities, the 1inability of the formula in
measuring Allen elasticities of substitution to give a value both
greater than and less than unity as prices change during a study period)
and the inability to measure rates of change of functions derived as the
first derivative of the objective function (such as input demands and
the share of an input). These shortcomings menticned above are likely

to render imprecision in the results calculated from any formula



obtained from the second-order cost function and in the restrictions
derived from it.

We extended the second-order flexible form to a third-ovder to
review the following :

a) reduction in truncation bias, b) to see if the formulas and the
restrictions derived from the objective function are more flexible and
c) to see if parameters to measure economic relationships that could not
have been measured by using the conventional flexible forms could be
introduced.

The questions that must be answered in extending the second-order
cost function to a third-order form can be listed as follows:

(1) Does the extended model fulfill the requiremenis necessary to
qualify it as representative of the desired behavior 7

{2) Is the extended model superior to the existing onc in term: of
reduction in bias, precision of the formulas and restrictions derived
from it 7

(3} Does the extension add anything new to existing theory in the
study of producer behavior ? In other words, are we able to investigate
economic relationships within the extended model that could not have
been done by using the existing model 7

(4) Are the theoretical Jjustifications for extending tLhe
second-order translog cost function supported by empirical
investigations as applied to producer behavior 7

The above questions were all answered affirmatively in the course
of our study.

This thesis is organized within the following framcwork. In

Chapter 2, the literature is surveyed. Special emphasis is placed on



the methodology of the second-order flexible cost functions that give a
_locally well behaved region. The review of the lilerature includes:

(a) a brief survey of duality theory.

(b) the examination of regularity conditions.

(c) the structure and properties of important functional forms

within the class of locally well-behaved functions.

(d) the derivation of economic relationships that are of concern to

producer behavior.

(e) the examination of criteria used for choosing a particular

functional form.

(f) the derivation and examination of the restrictions that are

necessary for functional separability.

In Chapter 3, the second-order translog cost function will be
extended to a third-order form. The third-order translog cost function
is shown to be superior to the second-order form for both theoretical
and practical purposes. The new conditions for aggregation and
homogeneity (reflecting the budget constraint), symmetry and negativity
{reflecting the consistency of choice) were derived from the extended
model. All of the economic relationships that could be derived from the
second-order cost were derived from the extended model. The models were
then compared. The additional economic relationships that could not
have been derived from the second-order function, were derived from the
alternative model, and their contributions to the analysis of producer
behavior were presented. The major objectives of this chapter were to
demonstrate theoretically that there will be (1) a reduction in the
bias, (2) more flexibility in the derived economic relations (such as

variable share elasticities), (3) more flexible formulas (such as Allen



Uzawa elasticities of substitution), (4) additicnel restrictions for
more rigorous testing of the maintained hypothesis about {he underlying
technology and (5) the introduction of sensitivity parameters to
estimate the curvature of the demand function.

In Chapter 4, the performance of the second and third-order
translog cost functions were put to an empirical test by using KLEM
(capital, labor, energy and intermediate materials) data in the U. S.
manufacturing sector 1947-1971.

In this empirical analysis various tests were performed Pirst,
the second-order cost function was tested for specification crror, using
the likelihood ratio test. This function was rejected in favor of the
third-order transliog cost function (the alternative model). The
implication of this is that the results estimated from the rejected
model are no longer reliable and one should turn to the third-order cost
function to analyze the U.S. manufacturing sector. Sccond, positivity
and negativity conditions were tested and were all satisfied. Third,
the share elasticities were estimated using the new formula and werc
found to be variable rather than constant, as assumed in the case of the
second-order cost function. Fourth, the share elasticities were
estimated at every point and at their means for hypothesis testing. The
flexibility of the share elasticities in turn played an important role
in making formulae containing share elasticities, such as the Allen
partial elasticities of substitution, more flexible. Fifth, the Allen
partial elasticities of substitution were estimated by wusing a
third-order translog cost function. The Allen partial clasticities of
substitution estimated for every data point from the third-order cost

function showed more flexibility, since their values ranged from greater



thun wunity, to less than unity This property of Allen partial
clasticities, which has far reaching policy implications was obtained
due Lo the variable share elasticity (rather than the constant one
derived from the second-order function) embodied in the formula to
measure substitution possibilities. This implies that substitution
possibilities between any two inputs have changed over the years. The
Allen partials were also calculated at their means and hypotheses
testing performed. Sixth, the bias in the estimated demand functions
from both models was calculated and compared. The results showed that
Lhere was a reduction in the bias when the third-order function was
used. Seventh, the estimated measures of curvature were used to analyze
Lhe rates of change of demands and of the shares of inputs as well as a
measure of the sensitivity of some concepts such as share elasticities.
I'tnally, some policy implications were drawn by using the estimates and
Lhe formulae derived from the third-order cost function.

In Chapter 5 the linear and nonlinear restrictions for various
separability types were derived for both the second and third-order cost
functions. The set of restrictions obtained for each type of
separability was then tested for significance. The results obtained
from the second-order model led to the rejection of all but one type;
the utilized capital specification. On the other hand, the third-order
results showed the rejection of all separability types. This result was
achieved due to more rigorous testing, made possible by additional
restrictions provided by the third-order approximation of the cost
function and the precision of the variables involved in the formula to
determine functional separability. The implication of this result is

that the demand analysis of the U.S. manufacturing sector must take all



four inputs namely capital, energy, labor and intermediate materials,
into account. The forecasting of investment demands forr any of the
inputs cannot be made by uzing the information relating only to the
subset of these inputs. Chapter 6 includes the summary and conclusions

of the thesis.



CHAPTER 2

LITERATURE SURVEY

Traditional functional forms like Cobb - Douglas and CES are simple
to use in empirical studies and are globally well behaved. However,
they are unable to provide a second-order Taylor series approximation to
an arbitrary function and hence, are not flexible in the sense of
Diewart (1971}. As a result of this inflexibility, they are often
inadequate for testing many economic hypotheses relating to the second
derivatives.

These shortcomings have led to the development of flexible
functional forms such as the translog and the generalized Leontief. The
flexible functional forms do not impose any a priori restrictions for
local first and second-order properties of the function. This allows
for the testing of many restrictions which the traditional forms could
not meaningfully handle. The flexible functional forms do have their
drawbacks. They are well-behaved only locally as opposed to globally.
1n some cases the local region could be too narrow to allow a meaningful
analysis. However, within the region where they are well-behaved, they
are said to approximate the underlying producer technology to the
second-order. Depending on the point of interest in the study of
producer (consumer) behavior, one could use any of these forms to
estimate the parameters and test different hypotheses relating to the
study in question.

In this chapter I will show that the most popular flexible form,
the second-order translog, is not flexible enough when studying factor

substitutability over time. The share elasticity derived from a



second-order translog cost function is conctant and this imposes some
restrictions on the values and signs of Allen Uzawa elasticity of
substitution (AUES). This observation is one of our molivations for
extending the translog to the third-order which is the subject of this
thesisl.

This chapter will examine the following topics. 1In section (2.1),
the theory of duality between cost and production functions will be
reviewed briefly and the advantages of using a cost function over a
production function will be presented. In section (2.2), the regularity
conditions needed for an arbitrary cost function to represent producer
technology and some important characteristics of producer technology
will be examined in detail. In section (2.3) traditional func®ional
forms will be discussed. In sections (2.4) and (2.5) many of the
commonly used flexible cost functions will be cnumerated and their
properties discussed. In section (2.6} the criteria for choosing
functional forms will be discussed. This will help us learn more about
the structure of most of the applied functional forms. In sectlion
(2.7), the derived results from a second-orderr translog cost function
will be discussed. In Section {(2.8) the merits and shortcomings of the
second-order translog cost function will be discussed. In addition, the
third-order translog cost function will be introduced and its merite

will be briefly discussed.

2.1 Duality
The development of duality theory between cost and production

functions is attributed to Samuelson (1953-4) and Shephard (19%3, 1970).

1 Additional drawbacks will be discussed in the relevant sections and

will be summarized in section (2.8).
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A given technology can be represented by a production function or by its
dual, the cost function. The standard form of a single output primal

f'unction can be written as follows:
T
y = f(x), x=(xl,..‘,x) , (2.1.1)

where  is a production function and y is the maximum amount of the
output that can be produced given the vector of inputs, x and if we are
also given the vector of input prices,

T

W = (wl, ...,w ) > 0, where T indicates transpose,

n

the dual minimum cost function can be defined as:
Clw,y) = M)i(n(wa : f(x) =y, x> 0). (2.1.2)

The minimum cost function needed to produce a given level of output is
represented as a function of input prices and output in (2.1.2).

The cost function has sgeveral advantages over its primal
representation. First, there is a simple relationship between a cost
function and the conditional factor demand functions since by Shephard’'s

lemma,
x‘(w.y) = 6C(w.y)/awl. (2.1.3)
Second, it has been argued that since prices are more exogenous than

quantitiesz. estimation results that arise from using the cost function

are more reliable than those from the production function. Third, the

Varian, 1984, Chapter 4.

-10-




demand elasticity and elasticity of substitulion formulae are a lot
simpler, due to the explicit nature of the derived input demands
Lastly, given that certain regularity conditions are imposed, a cost
function can be given a desirable form, without having to solve the
minimization problem [ Despotakis, 1986].

We now turn to the investigation of regularity conditions that mus!

be satisfied in order to have theoretical consistency.

2.2 Properties and Characteristics of Cost Functions

Certain regularity conditions are traditionally imposed cn neo-
classical cost functions. To examine these regularity conditions., a
single output, N input prices cost function is considered

1) Domain:- the cost function given must be a positive function for

positive prices and output:

Clw,y) =2 0, 2.7 1)
2) Monotonicity:- It must ke non-decreasing in input prices and
output:

>
If WoE W then C(wl.y) C(wz,y).
(2.2.724)

and if Y, > Y, then C(w,yl) > C(w.yz)

1If Clw,y) is differentiable, the monotonicity condition implies that-

6C(w,y)/8wi z 0 and 8C(w,y)/dy > O, (2 2.2b)

-11-



or if the cost function is in logarithmic form,
Si = 8lnC(w.y)/61nw’ z 0, (2.2.2¢)

(2.2.2a) and (2.2.2b) imply that any increase in factor prices can not
lead to a reduction in the minimum cost needed to produce a given level
of output, also, producing a higher level of output for given factor
prices does not lead to a reduction in the minimum cost. Due to
Shephard’s lemma the monotonirity condition implies that input demands
and inpul shares in the total cost are non-negative.

3) Homogeneity:- the cost function must be linearly homogeneous in

input prices:
Claw,y) = AC(w,y) , for A >0 {2.2.3a)

1If the cost function 1is differentiable the above condition can be
expressed as follows in levels form by using Shephard’s lemma and

FEuler's theorem:

n n
Clw,y) = Z w 0C(w,y)/8w = Z wox (wy), (2.2.3b)
= i i o1 i i

tnus the following adding up property holds,

n n
1 = 2: s - Z_I [81nC(w,y)/a1nw 1. (2.2.3c)

Conditions (2.2.3a) and (2.2.3b) imply that a proportional change in all
factor prices leads to the same proportional change in minimum cost,

-12-



whereas the logarithmic format indicates that the shares of inputs in
the total cost add up to unity
4) Concavity:- forr 0 = A = 1 and two input priice vectors wlnnd W o

€

C(Aw1 + (1 - A)wz,y) = AC(wl.y) + (1 - a) Clw_,y),
or if C(w,y) is twice differentiable the concavity condition requires

the matrix,

62C(w.y)/3w awT is negative semi definite. (2.2.4)

Since a negative semi-definite matrix must have non-positive elements on
the diagonal, (2.2.4) implies that if the price of a ftactor is increased
with all other factor prices kept constant, the total cost will increaae
at a decreasing rate. The concavity condition and Shephard's lemma 1t hus
imply that factor demands are non-positively sloped

Not only does a cost function satisfy (1) to (4), but any general
functional form that satisfies (1) to (4) is a cost function and hence
represents a technology. One need not solve a minimization problem tuo
get a desired functional form if one can verify that (1) to (4) arc
satisfied or if one imposes (1) to (4) on arbitrary function That is,
one can take any complicated functional form to represent a specific
technology as long as the functional form satisfies (1) to (4). Thie
adds more flexibility in choosing a functional form that is best suited
to a particular examination of a producer behavior

The differentiability and symmetry conditions are commonly
satisfied for cost functions used in empirical work so that factor
demands, factor shares and concavity conditions can be derived as

(2.1.3), (2.2.3c) and (2.2.4) respectively. By Young's theorem,

_13_



HZC(w,y)/awi w = a"'C(w,y)/awj dw, so that 8X /8w = 8x /6w,
J

Y oi#j (2.2.5)

A cost function may also exhibit one or more of the following
technological characteristics:

5) Homotheticity:- a technology will be homothetic if:

Clw,y) = I'ty) Gl(w), (2.2.6a)

i.e. Tactor prices and output independently affect the cost function and
therefore, the function representing output can be factored out of the
cost function as shown above. If the cost function is differentiable

t he above conditions imply-
a”lnﬂw.y)/alnwi dlny = 8S (w,y)/8lny = 0 Vi, (2.2.6b)

1.e. the shares of an input are independent of output:

6) Homogeneity of the technology:- if the function representing
output in the total cost above is given the following general form, F(y)
= yT, then the technology is said to exhibit decreasing, constant or
increasing retuns to scale as Tt > 1, T =1, T < 1, respectively.

7) Substitutability: A cost function can also be used to measure
substitutability among inputs. The most popular measure is AUES.
Knowing the degree of substitutability among inputs is a matter of great
importance for both producers, in making their price policy, and

government policy makers in determining the impact of tax and subsidies
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on the demands for the inputs in question. The degree of

substitutability is measured by the following formula:

Clw,y) 6ZC(w,y)/awl awJ }

O}j(w,y) = z C(w,y) Ci (w.y)/xix . (2.2.9)
{8C(w,y) /8w } {8C(w,y) /8w } ) )

This formula measures a normalized response of an input 1 due to =«
change in the price of another input j. This and other formulas that
are relevant in producer behavior analysis will be discussed for
different functional forms in the next section.

8) Functional Separability:

Inputs i, and j are said to be homothetically separable from input k, ifl

[a/aw} [c /c] = [c cC -ccC ]/c2= 0 (2.2.10)
k i3 1 jk J ik

where Cl and Cj are first partial derivatives of the cost function wilh
respect to respective factor prices, while Cjk and Clk are the
first-order derivatives of the factor demand functions with respect to

the separable input price, and C represents the cost Function3.

2.3. Traditional functional forms and their properties

In this section some traditional functional {forms and their

properties will be discussed. Where there is no particular interest in

how output affects costs, only the unit cost functions will be
discussed.
3

A detailed discussion of separability is presented in section (2.4)
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Cobb-Douglas (Cobb~Douglas, 1928)

n
InC(w,y) = 7, * Y 7, In W, + In(F(y)). (2.3.1)
i

This form can be taken as the first-order expansion of 1nC(w,y) in

powers of 1lnw and 1ny (Lau, 1974). (2.3.1) will be linearly

homogeneous in input prices, it:

n
Za’=l, i = 1,...n. (2.3.2),
1

Since the Cobb-Douglas form is globally consistent, the regularity
condit ions discussed under (2.2.1 - 2.2.4) will be satisfied. The above
i

function has a constant share , Sl= ¥., and a unit elasticity of

substitution (o = 1),
Constant Elasticity of Substitution, CES, (ACMS, 1961):

g 1-0]1/(1-0) (2.3.9)

where Y ¥, = 1 is required for linear homogeneity in input prices and o

1

is the constant elasticity of substitution.

This form is more flexible than the Cobb-Douglas form as it allows
the elasticity of substitution to be different from unity although it
restricts them all to be constant and equal. This function |is

attract ive due to its simplicity and its global consistency.
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2.4. Flexible functional forms and their properties

Generalized Leontief, Linear, (Diewert, 1971)

nn
Clwy) = FWI(Z T 7, w2 wj'z) (2.4.1),
b

where F is a continuously, monotonically increasing function of y and

§1J = ;“ YVooizj. For constant returns technology, Fl(y) = y. This
function satisfies conditions (2.2.1 - 2.2.4) locally This function
collapses into the fixed proportion Leontief cost function if 5 =0V
1)
iz]. By Shephard’s lemma, a factor demand function can be derived as
follows:
-~ 172
6C(w,y)/6(wl) = xl(w,y) = ¥ 7., (w) / wl) “ Fly). (2.4.2)
)
The factor demand function (2.4.2) is non linear in variables bu! lincar

in parameters, and thus it is not a difficult function to estimate
However, since it involves onutput problems may arise if the data on
output is of poor quality, or may be impossible to estimate, if the data
on output is wunavailable. One could alternatively estimatcec n-1 sharc
equat ions derived from (2.4.1) which vill not have output as an argumcnt
assuming homotheticity but will be non-linear in both variables and
parameters. The non-linearity in parameters clearly makes computation
more difficult and may also present convergence problems. Hence, using
the share system of equations in such circumstances may not be a good
idea.

The parameter ;U can be related to the partial AUES as follows

{Diewert 1974, p 116):
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-1/2 -1/2

o J(w,y) = Clw,y) 71) . |

i Fly) 7 xixj for vV i=j (2.4.3)

The magnitude and signs of vij will be influenced by the parameter

;ij in (2.4.3). The larger ;, is, the greater will be the substitution
i)

between two inputs. If we set parameter ;ij equal to zero for V i#j,

the elasticity of substitution will be zero, corresponding to the

clasticity of substitution derived from a fixed proportion Leontief cost

function.

Generalized Square Rooted, non-linear, (Diewert, 1974)

nn
Clw,y) = F(y)( T L7 w w ) (2.4.4)
o

Equation (2.4.4) 1is a generalization of a Leontief Cost Function
(non-linear version). For the non-linear version, the whole matrix of
prices is raised to the power 1/2. Unlike the simple Leontief fixed
proportion function, this format does not impose a zero elasticity of
substitution. However, the derived conditional input demand from both
linear and non-linear formats, will involve output in their arguments.
This will present problems similar to those discussed 1in the

previous case.

Generalized Quadratic Mean of Order p (Denny, 1974)

n n , 1/p
Clw,y) = F(y) [ TYa W WP ] (2.4.5),
P

This is an extension of the Generalized Leontief Cost Function, where
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(2.4.5) reduces to the linear and non-linear format as p =1, and p = 2,

respectively.

Translog (Christensen et al. 1973)

InC(w,y) =3 + ¥ v Ilnw, + 7y Iny + 172 3 (lny)?
0 ; 1 1 Yy Yy
n n n
/ . 46
+ 1/2 § ? 71; lnwl lnwJ + ? yiy lnwl 1ny (2.4 6)

This is a second-order approximation of InC(w,y), in powers of lnwl and
Iny with symmetry, le = 3)1 YV i#]J imposcd. The function should be
non-negative in 1input prices and output Itee first  Jogarithmic
derivative should be positive (monotonicity requirement) and the matrix
formed by a second-order derivative should be negative semi definite

(concavity requirement). The necessary and sufficient conditions for

the above cost function to be linearly homogenecous 1n input prices, w,

are:
n n n
Y ¥, = 1, v =0, and ¥ vy =0, (2.4 17},
X IR LY
where 1 and j represent input prices.

The translog cost function is linearly homogencous in oulput, if we

impose the following conditions:

y=- 1=y =35 =0, (2.4.8)

Finally, if all the interaction psrameters are zero, the Translog Cost

Function reduces to a Cobb-Douglas function.
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Input Share Equations

If we differentiate (2.4.6) with respect to all components of the
logarithm of w, we get the share of the respective input in total cest.
The share of input ’'i' is given by:

n
dlnC/alnwia Si\w,y) = [ac/awi]wl/c =7 + ;711 lnwj + 7y, lny,

i,jg=1,...n (2.4.9)
The system of the share functions, (2.4.9), is defined by S‘(w.y) =
wlxi/C(w,y) , where x = E)C/awi je the input demand functions (using
Shephard’s lemma). The share function is homoceneous of degree zero in
factor prices. The shares must add up to unity and each share must lie
between zero and unity, by monotonicity and cost exhaustion
respectively.

However, this latter property can not be a global property of the
shares derived from a cost function higher than a {irst-order Taylor's
series approximation. This is evident when we examine the share
equation given above. If we keep all wj except one constant, then the
share of an input moves with the magnitude of the particular input
price: As W 0, lnw1 > - o = S1 < 0, similarly as w1 -0, lm-l1 > o0 = Sl
> 1. Therefore, the translog c¢ost function 1is not globally
consistent, unless y.o=r = 0. In this case we get the Cobb-Douglas

j iy

cost funct ‘1on{l

4See Appendix to Chapter 2 for a local and global consistency of a
translog cost function.

-20-



Functional Separability and the Translog Cost Function.
In terms of the translog cost function, the functional scparability

given by (2.2.10) requires the following:
Sy - Sjy' =0 (2.4.10),

where, C =CS/w, C =CS/w , C =C[3 +SS]/ww,
i [ j ) ) jk } oK

C‘lk = C [7ik + SlSk]/wlwk. (2 4 11}

If one considers a three input translog cost f'unct ion, for
example, (2.4.10) can be written as (for separability between inpute |

and 2 with respect to 3):
Sy - S» = 0. (2.4.12)

From (2.4.10), if one has 3“( = ylk = 0, which is a linecar restriction,
we get the sufficient condition for separability. [If on the other hand
7“‘ and ij are nol equal to zero, then one has to take the sharc
equations into consideration. Therefore, substituting for Si and SJ and

rearranging, one gets the restrictions for global separability:

n
[7’;7’5k - 7j7ik] + 1[ [’-.m’,-k - wjmarw] Inw =0 (2.4.13)

If the equality in (2.4.13) is to hold, the following conditions must
hold:
=0 (2.4 14)

- = 0 and -
[8%4 7 71k 7lm'a'jk ‘ijwik
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Therefore, the non-linear global separability restrictions can be

obtained by wusing (2.4.14):

[Wi/qj] = [y]k/yjk] = [7im/3rjm] (2.4.15)

If, for example, three inputs are under consideration, the global

separability of input 1 and 2 from input 3 can be given as follows:

[31/32] = [?13/323] = [31]/721] = [’12/’,22] (2.4.16)

One can then derive three independent restrictions. For local

separability, it is only necessary to use the first set of restrictions,

[31/32] = [313/723] (2.4.17),

since the shares reduce to 7, at the point of approximation. As for the
global restrictions, Denny and Fuss (1977) were able to show that the
second set of restrictions yield the following form:
2 =
LI L 0 (2.4.18)

where the first set reduces to the form given by (2.4.18).

1928 7 Y203 (12-3)
A% U (13~2) (2.4.19)
%3 7 %2 (23~1)

The non-linear restrictions given above, have undesirable

consequences on the flexibility of functional forms. Once imposed, they
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become separably inflexible (e.g. Denny et al.). Instead of an exacl
test, they suggested the use of an approximate test that does not depend
on all values of the parameters. Blackorby et al. (1977) arrived at the
same conclusion.

Functional separability was assumed in the traditional functional

forms. In order to test for separability in a function, the function
must at least be quadratic This 1is something that is lacking in
traditional functional forms like the Cobb-Douglas. The importance of

separability is emphasized in the study of demand and supply mainly for
the following reasons:

a) it allows optimization in stages, enabling decentralicsed
decision making and avoids having to deul with scverul vuriables at the
same time.

b} it allows for the use of aggregates when individual input prices
(quantities) are unavalilable.

c) it Justifies the use of net output or value added if primary
inputs are separable from intermediate inputs.

d) it plays a major role in functional form specification, and
hence, influences generality and simplicity of the form tov be used.

The development of flexible functional forms in the seventies led
to the testing of functional separabiiity cxtensively. Among primary
studies, we cite Berndt and Christensen (1973a), Berndt and Wood (1975),
and Denny and Fuss (1977)5

Since the objective of this thesis is to compare and contrast the
second-order with the third-order translog cost functions, we def'er the

detailed discussion of production studies until section (2.7).

S For details on various types of separability see Blackorby et al,
1978.
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Translog Multi-output, TLM (Burgess, 1874)

n n nn
InClw,Y) = 7, * ¥ ¥, 1nw +y T InY + 172 ¥ ¥ L lnYk lnYl
i K k 1
n n nn
+ 12 ¥V o Inw lnw + ¥ . Inw Iny . (2.4.20)
Py M bk
This function was suggested by Burgess (1874). it has properties

similar Lo that of a single output version, except that it is not
defined if one of the firms does not produce some of the outputs under
consideration. This problem was solved by introducing a Box- Cox

transformation of the output ( Caves et al 1974) given below:

Generalized TLM (Caves et al.,1974)

n n A
InC(w,Y) = Y, ot Z arilnwi + ¥ yk[[Yk - 1]/%]

i i

o o A A
+ 12 L Ly [[Yk— 1]0\] [[Yl- 1]/7\]
k 1
n n nn A
+ 1/2 : Y L 1nwi1nwj+§ E Yo 1“”1[Yk - 1]/X (2.4.25)
i
where the zero output level is well defined: fk(0)= - (1/A). In the

limit the Box~Cox function is,

A _
[fk(y) = (Yk—l)/A] =lny as A 0.
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2.5 Other flexible functional forms and their properties

Generalized Cobb-Douglas (Diewert, 1973b)

InC(w,y) = 7,0t 7y lny + 1/2 3 (lny)2
Yy

n
+ ? Y 7., ln(wi + wj)/2 + ? 7., In w 1lny. (2.5.1)
)

This function cannot be derived from a Taylor's series approximalion,
but it allows us lo test some of the properties thal were imposed, o
priori, on the Cobb-Douglas function (for example homotheticity and
elasticity of substitution). The necessary and sufficient conditions

needed for the cost function to be linear homogeneous in input prices,

w, are:
n n
Y =1, and } .= 0 i,j=1 n (2.% 7)
1) y

where i and j represent input prices.
In order to have a homothetically linear homogeneous cost function in

output, the following conditions are needed:

¥y -l=9 =3 =0, (2.5.3)
y Yy iy

Ifr 7;' = 0 in addition to (2.5.3) then the Generalized Cobb-Douglas Cost
J
function reduces to Cobb-Douglas. The estimated parameters and, hence,

elasticities from the above function will not be invariant to the

arbitrary scaling of factor prices by 172 (Wales and Woodland, 1979)

Extended G.C.D (Magnus, 1879)
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n
InClw,y) = 1, t yylny + 1/2 ?/yy(lny)2 + ¥
i

™o

71) ln(Bi Wt Bj wJ)

+
e

¥ In w Iny. (2.5.4)
iy i

1f Bu>0 Yk, symmetry requires 3i) = 7}1 Y izj and linear homogeneity

will be satisfied if } ¥ v, = 1 and } v, = 0. In order for the B 's
i i

to be identified, they must sum to unity. This form was suggested by
Magnus, 1879, in order to solve the problem of scaling in the
generalized form. He has introduced a scaling factor Bi. to replace
1/2, relating to the second-order parameter. In doing so, he introduced
new parameters to be estimated, which is undesirable because of a loss
of degrees of freedom. The above cost function will be homothetic if
3 = 0 Vi, homogeneous if 7y =y = 0 Vi, and exhibit constant returns

iy yy 1y

to scale if,

The shares from this function can be derived as follows:

n
S‘(w,y) = 2 ? 71) Bi

The derived shares equations are non- linear in parameters and, hence,

-1
wi(Bl Wt Bj wj) + 7iy Iny (2.5.5)

present another problem in estimation due to lack of convergence and
usage of more computer time.
The partial elasticity of substitution can be derived by using the

standard formula (2.2.13):
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o-”(w,y) =1 - (23UBlijle) / (Blw‘ 4 ijj) S (w,y) S)(w.y).

1

i=j (2.5.6)
The sign of the above formula will be determined by the sign of 3”
since the shares are positive by monotconicity and the Bl terms can not
be less than O by linear homogeneity (Guilkey,1983, p 595). Therefore,
the magnitude of ij will be equal to unity if ylj = 0, (the

Cobb-Douglas case), greater than unity if 31) is negative and will be

less than unity if ¥ is greater than zero. This magnitude can never
1]

be greater than unity in one period and less than unity the next
regardless of price levels or technological change. Thie is a weuakned:,
suffered by all partial elasticity of substitution formulus derived from

less than thrice differentiable functions.

Generalized Box Cox, GBC (Berndt et al. 1979)

n n
C(w,Y) = [A/2 Z Z 7, w?/z \47)‘/2]1”‘ yBIW. Y (P4 /)
1 1

The above form incorporates different flexible cost functions as A takes
on different values. For example, the linear and non-linear Generalizcd
Leontief, and the translog -cost functions are embedded in this function
This form is very ﬁseful in comparing flexible functional forms, as it
incorporates most of the important functional forms. Its drawback 1-
that the disturbance term is not distributed normally and hence, it may
create a problem when carrying out hypotheses testing (Guilkey et al.
1983, p 595).

Modeling producer behavior, by using Taylor series approximation

has been criticized by White (1980). He claimed that the Taylor Series
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approximation provides a poor approximation of the underlying structure.
His criticism has led to the use of flexible forms that do not depend on
Taylor's expansion such as Jorgenson’'s differential equation technique,
{Jorgenson, 1986), Fourier series approximation, (Gallant, 1981) and
Mini flex laurent expansions, (Barnet et al 1985} .

R.P. Byron and A.K. Bera (1983) showed that the calculations made
by White were incorrect, and were able to show that the bias tends to
disappear as we use a higher order approximation. In their particular
example, the third-order Taylor expansion reduced the bias considerably
and the second-order forms showed superiority over the first-order

forms, (Cobb-Douglas).

2.6 ghoice of functional forms

The choice of a functional form depends on the nature of the study
in question. The form must adequately describe the problem at hand and
must also fulfill certain mathematical requirements ( Lau 1986). Among
other things, the following criteria are seen to be important in the
choice of functional forms.

1) Parsimony in parameters: unnecessary parameters should not be
included in the form, since they create multicollinearity and degrees of
freedom are lost.

2) The parameters included should be easy to interpret and must
have an intuitive economic meaning.

3) Linearity and explicitness in parameters are desirable, since
the former renders computation simpler.

4) Interpolative and extrapolative robustness within and without

the data set, respectively, are also desirable. The former is important
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for hypothesis testing while the latter is important for forecasting.

5) A wider domain of applicability is also desirable. The set of
values of independent variables over which theoretical consistency is
satisfied, should be large if possible.

8) The function must retain its flexibility. Flexibility can be
def'ined as the ability of the functional form to generate all
combinations of economic effects of interest. It should not impose any
restrictions, a priori, on certain economic effects, for example on the
elasticity of substitut.on or share elasticities.

Depending on the study at hand, some of these criteria arc
absolutely indispensable while a trade-off can be made with others. Lau
(1988) suggests that flexibility and theoretical consistency within the
neighborhood of some values of the variables should not be sacrificed.
One could however, depending on the case, restrict the domain of
applicability, or limit robustness to a smaller range of values

Various criteria were used in past studies in order to determinc
the appropriate functional form. We discuss some of these studices

below.

2.6.1 Data Specific Studies

1) Berndt, Darrough and Diewert (1977) fitted threec flexible
functional forms (TL, GL, GCD) using Canadian expenditure data. Their
study showed the translog function to be superior.

2) Applebaum (1979a) developed a flexible generalized Box-Cox
form, that incorporates, CD, CES, TL, GL, GSRQ and Quadratic. Based on
fitting the generalized Box-Ccx form with the U.S. manufacturing data
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(1829- 1971), GL and GSRQ performed relatively better than the other
forms considercoed

3) Berndt and Khaled (1979) used a slightly different generalized
Box-Cox form using (1947-~1971) U.S. manufacturing data. Their results
were inconclusive for TL, but they were able to reject the restrictions

of GSRQ.

2.6.2 Ability to Trace a Known Technology

Guilky et al. (1983) assumed a given technology, CES, and
investigated the ability of GL and TL to trace it. They were interested
in the range of the data set where the two forms approximate the given
function. Their Monte Carlo study showed that the performance of GL and
TL. depended on the value of O}J(elasticity of substitution). The closer
O}J is to unity, TL out-performed GL; the closer olj is to zero, the
more GL out-performed TL. This confirms the fact that the TL which is an
extension of CD with GU = 1, is better suited when UU deviates from
zero, or is close to unity. The GL which is an extension of Leontief
Fixed Proportion with U” = 0, should perform better when aiJ is close

to zero. Therefore, if the elasticity of substitution 1is known

beforehand, it will give us an idea as to which form should be used.

2.6.3 Analytical Approach

Caves and Christensen (1980) used an analytical approach to study
the global properties of GL,TL and EGCD. The investigation was
conducted in such a way that the tracing ability of each form for a
known technology was examined under certain conditions as the function
deviates from constant returns to scale, as it deviates from
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homogeneity, as AUES (crU) deviates from 0O and 1, and as AUES deviate
from each other. Their controlled study showed that the TL function was
superior within the domain of applicability. They have also noticed the
deterioration of TL as AUES departs from unity and as they diverge from

one another.

2.6.4 Economic Effects at a Point

Despotakis (1986) compared functional forms in terms of their
demonstrated economic effects within the domain of applicability. By
taking the first derivative of the economic effects at a point, he was
able to show the difference between GL and TL. He argued that the {irst
and second derivatives of the flexible forms are not function specific,
while the third or higher order derivatives are. (From this, one could

conclude that the higher order flexible functional forms are better

suited for comparing different forms). When he took the first
derivatives of the second-order terms, such as elasticitly of
substitution, he in effect considered a third-order flexible form, such

as the derivatives of ij‘ BC)j/c'iwk, which are readily found in the
third-order forms as C”k. Based on this line of investigation, he was
able to show the following stability conditions for the two forms he
considered: AUES= 1 , AUES = O for TL and GL respectively

As was expected, there is no particular form that performs well,
all the time. This 1illustrates the point that in absence of a priori
knowledge about the technology, one has to search for an appropriate
functional form corresponding to the study in question. Since the
purpose of searching for an appropriate functional form is to be able to
express the objectives of producer studies explicitly and be able to
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test. them within the model, the next section will deal with attaining

these objectives,
2.7. Further Properties of Second Order Translog Cost Function.

In this section we will examine some of the above mentioned points

of interests derived from a second-order translog cost function.
Expansion Elasticity

We get the measure of the biases of scale parameters by differentiating

the cost function with respect to all the components of the N+1

arguments:
¥ = azlnc(w,y)/alnw dlny. (2.7.1)
1

(2.7.1) shows the impact of scale on the share of an input in the total
cost. If 7iy 3 0 then the share of a particular input increases, stays
constant, or decreases respectively, as the level of output increases.
Expression (2.7.1) can also be interpreted as a measure of the response

of cost flexibility with respect to input prices, since the cost

flexibility (cost elasticity with respect to output) is defined as:

n
81nC(w,y)/8lny = t(w,y) = y + ¥ lny + Z v lnw . (2.7.2)
y yy - iy i

Cost flexibility can be defined as the reciprocal of returns to scale
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measured as the elasticity of output with respect to all inputss:

T(w,y) = 1 7/ (8ln y/81n %) {2.7.2)

Thus, for example if T(w,y)< 1 the duai production function exhibits
increasing returns to scale locally, total cost will increase less than
in proportion to an increase in output. Since 3ly is the first
derivative of t(w,y) with respect to log of input prices (also known as
scale bias), it reflects the sensitivity of cost flexibility with
respect to changes in input prices. 1f y‘y z 0, one can say that the
cost flexibility increases, remains constant, or decreases as input
prices increase. I’ the cost function 1is homothetic, the cost

flexibility will be independent of factor prices. In terms of anput

demands, a similar exercise yields output elasticity of factor demand:

3lnx {(w,y)/8lny = e = (y + S t{w,y)}/S (271%)
1 1y 1y i 1

Output Elasticity of Cost Flexibility

The logarithmic second-order derivative of the cost function w.r.t., Y,
will give the responsiveness of cost flexibility as outpul changes

8°1nC(w,y)/8(1ny)? = T, (2.7.4)

If the production function exhibits constant returns to scale, the cout

flexibility will be independent of output, that is y =1, y = 0. In
y yy

For more detailed analysis refer to D.W.Jorgenson, 1986,pp 1886-188Y
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addition, if the cost function is also linearly homogeneous in factor
prices the term in (2.7.1) zi = 0 Vi, and the degree of returns to
y

scale and its reciprocal cost flexibility will be equal to unity.
Share Elasticity

The share elasticity is a measure of substitution obtained by

differentiating a cost function twice w.r.t. all components of w7,

azlnC(w,y)/alnwialan =7, (2.7.8)
J

It shows the response of the share of an input S‘, to a proportional
change in the respective input price. If it is greater than zero, the
share of a given input increases, it remains constant if it is zero, and
decreases if the parameter estimate is less than zero in response to an
increase in the corresponding input price. In terms of the derived
input demand, a proportional change in the demand of the first input
with respect to changes in the price of the second input, results in the

following:

aln)x‘(w,y)/alnwj = (ij + SiSj)/Si = eij, (2.7.8)
where this can be interpreted as the cross elasticity of demand for

input i, with respect to the price of input j. The own elasticity of

demand for input i can be written as:

7 D. W. Jorgenson, 1986, p 1886.
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Allen-Uzawa Elasticity of Substitution

(2 7.8)

This formula relates input elasticity and the share of an input to total

cost. Unlike the input elasticity, equation (2.7 6), it i

where,

e =C w/C, S = w)C / C
)

By substituting (2.7 8) in (2 7.7), one gets a symmetric

symmetric.

(2.1.°1)

(2.7 8)

Al len-Uzowa

elasticilty of substitution in terms of the cost function, and its first

and second-order derivatives:

in terms of shares, using equations (2.7.6) and (2.7.6)’

reduces to:

o =(y +SS)I/SS =1+35 /585 Vi = j,
1) i) i j 1 J

i.e. ¥ <0 =220 <1 andy >0 =0 > 1,
1) 1] 1) 1)

o = (y +S(5-1))s8 for all i =j.

..35_.

(2.7 9),

the formula

{2.7.10})



where Ci = (§C/8w ) = S (C/w’), Cj = SJC/WJ,

) i

C = /¢ f = ) . 4
a°c dwidwj ((,/wiwj)(arU + stj) (2.7.11)

Substitutability plays an important role in determining the incidence of
taxes. Its magnitude reveals the nature of substitution between inputs
and the nature of the underlying functions. As Gi) is positive or
negative , factor i and j are said to be substitutes and compliments,
respectively. If Gij = 1, then the function is Cobb-Douglas. If o is
constant and equal but different from unity, the function is a CES
funct ion. Finally if it is =zero, the function is a Leontief Fixed
Proportions.

In empirical work the signs and magnitude of AUES is used to
determine substitution possibilities between inputs. The formula given
by (2.7.10) is capable of generaling a magnitude equal to unity and less
than zero when 3ii < 0. This implies that two inputs can exhibit a
slight substitutability when okj between O and 1. However, at the same
time this magnitude could move to less than zero for different input
prices in the same data set. When this happens the two inputs can
display complementarity. However, the flexibility of this formula does
not go far enough to move inputs from high substitutability, a magnitude
greater than one, to complementarity. This is because the elasticity of
substitution derived from a second-order translog cost function depends
on a constant share elasticity and, hence, can not generate a magnitude
greater than one and less than one for a given set of data. This result
is obvious from equation (2.7.10). In this formula, the shares are

positive and, thus, the sign of oij will be determined by the sign of

the constant share elasticity 31] . Once the sign of parameter 71) is
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determined, it wil] stay the same for the whole period, regardless of'
the levels of input prices and technological change. On the other hand,
a third-order translog cost function exhibits a variable share
elasticity and, therefore, is capable of correcting this shortcoming.
The formula for o, can be used to test for concavity of the cost
function in input prices. At the point of approximation, the input
shares, Si(w,y) reduce to T, Thus, given a concave translog cost

function o, must satisfy the following condition

o= [a + 7 [3 - 1”/3?5 0 (2.7.12)
1 i1 1 1 i

The points of interests discussed in this scction and other
important obJjectives such as technological change, can be tested by
using the relevant functional forms. The functional forms were applicd
in competitive markets such as the U.S manufacturing (Berndt and Wood,
1975} and in regulated industries such as transportation, communicat ion,
and electric power both in the U. S and Canada (Christensen and Green,
1976, Stevenson, 1980, Brown, et al, 1979, Fuss, et al, 1681,
Christensen, et al, 1983).

The merits of the translog cost function are its ability to measurec
and test important producer behavior and to avoid the use of output in
the share equations when constant returns to scale is imposed I'he
latter property is important especially when output measures are either
unavailable or of poor quality. The shortcoming of the translog cost
functions or any cost function derived from a second-order Taylor's
series approximation is that the approximation does not go far enough to

represent important producer behavior discussed in the next section and
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in the following Chapter. In addition to these shortcomings, the
formulas derived from a second-order cost function have certain
rigidities. If relied upon, this could result in serious policy errors.
This point will be discussed in section 4.9 Chapter 4.

The merits and the shortcomings of second- and third-order translog
cost functions is the subject of the remainder of this chapter and

thesis,

2.8 Third Order Approximations

The second-order Taylor series approximation has been used to model
producer behavior. The approach does not put many a priori restrictions
on producer technology. In addition to estimating the slopes of the
input demand and output supply functions, it allows one to test the
traditionally maintained hypotheses of homogeneity and separability.

Having explored the strength of the functional forms that are based
on the second-order approximations one may observe certain shortcomings.
The second-order Taylor series expansion may suffer from truncation
bias, since it ignores all terms above the second-order. The truncation
bias could be reduced through the use of higher order forms . As shown
by Kmenta (1971) and Byron et al. (1983) the truncation bias becomes
smal ler as one goes to the higher order forms.

However, these benefits do not come without costs. The most
important cost often mentioned is the loss of degrees of freedom as more
explanatory variables are included. If the true underlying cost
function is in fact a second-order translog, or if the second-order
translog is an adequate approximation, the estimates of the first and
second-order parameters as well as functions of them such as the Allen
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Uzawa elasticities of substitution will be less efficient so that
confidence intervals will be wider and hypothesis tests will have less
power. Thus there will be a trade off between reducing bias if the true
model is third~order or more, and parameter efficiency if the true model
is second-order or less. The problem of loosing degrees of freedom
becomes serious when the effective sample <ize is small compared with
the number of factors of production.

The potential seriousness of this problem arises because the number
of parameters for a third-order translog function increases with the
cube of the number of factors of production. For a unit logarithmic
homogeneous cost function without the symmetry assumption the number of
free parameters to be estimated will be: p (1 + p + p2). where p = the
number of share equations to be estimated i.e. n - 1. When a function
is extended from a Cobb-Douglas to a second-order translog cost function
the loss in the degrees of freedom will be p2. This number will
increase by p3 when the third-order translog cost function with 'n’
factors is considered. The loss could be very large when 'n’ is large.
However, the number can be considerably reduced using economic theory.
For instance, for four factors we only need to estimate three shares
reducing the loss in degrees of freedom from 64 to 27. Homogeneity and
symmetry restrictions reduce the number of free parameters from 27 to
only 10. Without the use of restrictions from economic theory we would
have been forced to estimate 84 parameters. With these restrictions, we
were only required to estimate 18 free parameters.

Flexible functional forms allow wunrestricted estimation of
parameters that represent substitutability, technological change,
economies of scale, etc.. Estimates from a third-order translog yield
derived demands, or input shares which involve second-order terms, as
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opposed to only the first-order terms in the case of second-order
approximations. This should yield better approximations to the true
functions. This should give superior estimates of the elasticities of
substitution and factor demand price elasticities.

The third-order forms also allow the examination of the curvature
of input demands. This requires analysis of the third-order derivatives
of the cost function.

One example where knowledge on the curvature of factor demand would
be to determine the magnitude of change in a factor price as tax is
levied on factors of production. Take the case of monopoly. If factor
demand is a linear one as it is the case derived from a second order
translog cost function, the change in factor price will be less than the
change in the amount of tax as the linear marginal cost curve shiftsl.
This result is due to a constant slope of the factor demand curve. 1In
general a tax may increase the price by more or less the amount of the
tax. Factor demand curves derived from a third-order translog cost
function are non-linear in variables. Therefore, their slopes change.
The change in the slope can be learned by looking at the curvature of
the non-linear factor demand curve. Thus depending on the curvature of
demand curve, one can find a higher or lower factor price increase
compared with the amount of +the tax 1increase on the factors of
production. Another interesting feature of higher order forms is found
when testing for functional separability. As indicated earlier, the
flexible functional forms become inflexible once non-linear separability
restrictions are imposed. If we are using the TL function, it collapses

to a partial CD (Fuss et al., 1978). Lau (1977) suggested that in order

! J.E. Stiglitz, Ecoromics of public sector, Chapter 17,pp 411-438.
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to determine whether the results obtained by using the second-order
forms can be maintained, requires the investigation of higher order
forms. Lau (1977) also states that regularity conditions can be tested
more rigorously, since the higher order forms have more restrictions.
Indeed it seems possible that one could find a larger domain of
applicability once higher order functions are investigated. These and
other related subjects will be investigated in the remainder of this
study.

Finally, it should be noted that the additional terms that enter
into the third-order forms have an intuitive economic meaning.
Extending the flexible functional forms to the third-order approximation
not only gives better econometric result but also more flexible economic

representations.
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Appendix to Chapter 2

Regularity Conditions at the Point of Approximation - Second-order

Translog

To clarify the conditions needed for theoretical consistency of the
arbitrary cost function, we present Lau's, (1986) analytical approach
below for two input, single output second-order translog unit cost
function.

First, in order to derive a unit cost function from (2.4.8), it is
assumed that (2.4.6) is symmetric in factor prices. Second, it must be
linearly homogeneous in factor prices and exhibit constant returns to

scale. Hence, the unit cost function can be expressed as followsg

2
lnc(wl.wz) =y, t zllnw1 + (1-71)1nw2 + 1/2(7“)lnw1

2
ylllnwllnw2 + 1/2(711)lnw2. (2.A.1)

The local and global theoretical consistency of the translog cost
function, can be examined by using (2.A.1), without any loss of

generality.

Local Conditions

The local theoretical conditions will be analyzed 1in some

neighborhood of factor prices, for example, for w1 = w2 = 1.

By using symmetry and adding up property Vo =77 and Voo = ¥

11 11’
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MY R Rt

c(1,1) = e >0 (2.A.2)

vC(1,1)

1]
(0]

8C/8w 2 0O ¥0 (2.A.3)

(1-71)

vC(1,1) = 8%1nC/8(1nw)%.C

8°1nC/8(1nw )*  @*InC/81nw 81nw,
=C
2 2
61nC/61nw161nw2 8 lnC/B(]nwz)
?1(71_1)+311 71(]_71).‘311
70
= e = 0
v, (I )y, Doy,

(2.A.4)

Condition (2.A.2) is always satisfied since an exponential function

is positive. The monotonicity requirement, (2.A.3), states that, thc

gradient of C (the first derivative of the cost function with respect to

all components of W) must be non-negative. This local non-negativity
requirement is satisfied if 0 = LS = 1. Condition (2.A.4) is a local
concavity requirement, which states that the matrix of second-order
partial derivatives of the cost function, with respect to all the

components of W, must be negative semi-definite. In order for this to

hold, the following conditions must be satisfied
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{(y - = 0, AL
7, 7] 1) + 7, =0 (2.A.5)

We know that 7, is positive by non-negativity and between zero and one
duc to monotonicity. Therefore, a sufficient condition for (2.A.5) to
hold is y - be non-positive.

Global Conditions

In order for global consistency to be achieved, the monotonicity
and concavity conditions must hold for all price levels. This means
that the gradient and Hessian matrices, (2.A.3) and (2.A.4), will be a
function of input prices. Hence, as long as LA is non zero, one can
find a value for the variables that viclates the concavity and
monotonicity condition {this point will be discussed in greater detail
in Lthe next chapter in terms of the third-order cost function). Thus,
global consistency requires that the interaction parameters, 7“, must

0
be Z(:'r‘ol

1, = 0 and 3, be between O and 1. (2.A.6)

If this global consistency requirement is imposed on (2.A.1), then the
unit cest function loses its flexibility, since it 1is reduced to a
Cobb-Douglas form. This is the explanation underlying the reason why
flexible cost functions are said to be well behaved locally. However,
for most studies, the local consistency conditions are sufficient.

To sum up, we make the following observation. The gradient and the

second-orderr partial derivative of the unit cost function with respect

L. Lan, 1986, p 1535.
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to all input prices at some neighborhood of factor prices were analysed

The analysis showed that the translog unit cost function will be locally
consistent if 0 = 315 1, which is the non-negativity requirement. The
concavity requirement will be satisfied locally (w1 =W = 1) if 31(31-1)

+ LA = 0. The translog function will not be globally consistent since
both the gradient and the second-order derivative of the unit cost
function will be functions of input prices and as long as Y, is non
zero, one can find a wvalue for the variables that violate the
monotonicity and concavity conditions. The simple forms like
Cobb-Douglas and CES, on the other hand, are globally consistent since
they do not contain the interaction parameters However, the absence of

the interaction parameters in these simple forms Timitss thear

flexibility
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CHAPTER 3

THEORETICAL STRUCTURE OF THE THIRD ORDER TRANSLOG COST FUNCTION

The purpose of this Chapter is to show how some of the shortcomings
of the traditional flexible functional forms discussed in Section (2.7)
may be remedied by considering third-order translog cost functions
(TCEH). In particular, we focus on three aspects. First, the
third-orderr forms would significantly reduce the truncation bias
introduced by using only the second-order functions. More specifically,
the bias would now be of the fourth-order and above. Second, the
flexibility of the third-order forms would enable us to study economic
relationships rigorously (such as factor demands, factor shares and
clasticities) than could be examined by using only a second-order
function Finally, a more rigorous test of the hypotheses can be
carried out in the present model since there will be more restrictions
in every case considered. Thus, with the present model, one can achieve
more flexibility and precision in representing producer behavior.

In this Chapter, a third-order translog cost function representing

producer technology is developed. The model will be introduced in
Section (3.1). In Section (3.2), the theoretical consistency of the
mode]l will be examined in its general and particular forms. In Section

{3 3) measurcs used to represent producer behavior will be derived and
compared with those derived from the traditional second-order translog
cost function In Section (3.4), the restrictions for functional
separability will be derived and then compared with the ones derived

from the sccond-order traunslog cost function. In Section (3.5),




concluding remarks will be given.

3.1 The Model
In order to achieve completeness, the third-order laylor's series

approximation of an arbitrary cost function can be expressed as follows

n n
InC(w,y) = 1Iny + 3 lny+ Zylnw + I3 Ilnwliny
o y i 1 1y 1
i=1 151
1 2 n 2 n n
t5 |y (Iny)"™+ Z9 1Inw(lny)™+ ¥ T3 Inwlnw
vy 1yy i i) i )

1=1 1=1 )-=1

nnn
+ ZZ 3 lnw Inw Iny| + 1 ZITy Inw 1nw Inw +) (lny)J (3.1 1)
1y 1 3 6 1)h ] ) h yyy
1) 1 )h
A édlnC H?lnf
* ’ = l }] . = :_—.! =
where ao nCiv .y ) 3; alnw ’n) dinw ¢lnw ’
1 1 ]
y = élnC/alny, y o= e y = AnCo
Y Y 1 Y Yo aliny)!
_&nc , -onc
iyy 51nw 6(lny)2 1y dlnwldlnw)ulny
1
.3 2
, = &lnC , -@anC
yyy 6(lny)3 1 3h dlnwldlnwjdlnwh

L] L
where all derivatives are evaluated at w , y , y = aggregate outpul, w =

input prices.
Equation (3.1 1) is a third-order approrimation of an arbitrary

function. If it is to approximate a cost function representing
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producer technology, the function must be thrice differentiable and the
regularity conditions given below must be satisfied in order for

theoretica! consistency to hold.

3.2 Regularity Conditions

The cost function must be a real valued function for positive input
prices; higher output levels should not lead to a lower cost level;
higher input prices should lead to a higher cost level and it must be
concave in factor prices. These general conditions were given by
(2.2.1), (2.2.2a), (2.2.2b) and (2.2.4), respectively for the
second-order translog. Those conditions also apply to the third-order
Lranslog cost functions (TCF).

(a) The function must be symmetric in input prices, w:

- sl - - ‘ V= jen V1= hti S
3, T R LN Y i J#h i J,» ¥ J h

= 9 = 7 = 9 = 7 = ¥ v i=zj*h, ¥ = ¥

) . y12]
11h 1hj hi ) 1hi hij1 1ih ijy iy

(3.2.1)

(b) In order for (3 1.1) to be linearly homogeneous in input prices

the following restrictions are needed:

and I 3, = 1 (3.2.2)
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If any arbitrary function, such as equation (3 1.1), passes  Lhe
above-mentioned regularity conditions plus the general conditions stated
in the earlier paragraph, it is said to be theoretically consistent in
approximating a true cost function. Then, due to the duality between
the cost and production functions, equation (3.1.1} can reproscent
producer technology.

In addition to the above properties, the third-oroer translog
approximation is said to be homogeneous in output if the following

conditions are satisfied:

The translog approximation will be 1linearly homogeneous in

output (constant returns to scale), if the following conditions hold

(y - 1) =9 =3 = =y =y =0V i,y (3 2.4)

Even though conditions (3.2.4)} are of scme interest, they are nol
required for the theoretical consistency of the cost function

In order to illustrate all of the above mentioned regularity
conditions so that the similarities and differences between propertices
derived from the second- and third-order functions can be seen, we
propose using a simplified version of the general form of the coot
function (3.1.1). The assumptions and the derivation are discussed in
detail in the appendix to this chapter. In the appendixz a linearly
homogeneous, two 1input, third-order translog unit coot function i

examined.
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Lzamination of (3.A.10) to (3.A.12) reveals that positivity of the
cost function, the share equations and the concavity requirement at the
point of approximation (1,1) are similar to the ones derived for the
second-order translog cost function. If these conditions are satisfied
the translog function is said toc be well behaved locally.

However., the conditions (3.A.10) to (3.A.12) are neither necessary
nor sufficient for the fulfillment of regularity conditions at any other
set of factor prices. Thus, to obtain a meaningful cost function, the
unit cost function must be examined at every input price level. The
conditions given by (3.A.13) to (3.A.15) are necessary and sufficient
for global theoretical consistency of the third-order translog cost
function. These conditions include the corresponding conditions derived
from the second-order translog function as a special case when the
third-order parameter 31“ is equal to zero. Therefore the conditions
derived from the third-order translog function involve more variables
and parameters, and hence allow for a more rigorous test of regularity
conditions compared with the ones derived from the second-order
f'unction. However these conditions cannot be satisfied at every set of
tactor prices, since one can find a value that will viclate these
conditions Therefore the third-order form, like the second-order,
cannot be said to be well behaved globally. This does not mean that the
conditions given by (3.A.13) to (3.A.15) cannot be satisfied for a

specified data set. In fact, if they are not satisfied for the data set

being used, the results derived are not meaningful. The sufficient
condition for global consistency is given by (3.A.18). If this
condition is imposed. the third-order function will lose its
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flexibility, just as the second-order function will lose its flexibility
i.e. become Cobb-Douglas. Thus, the advantage of using a third-order
function over the second-order one, lies not in gaining global
consistency, but rather being able to test the regularity conditions
more rigorously for a given data set made possible by the additional
restrictions found. This result confirms a suggestion made by lau
{1986).

If a function satisfies the above regularity condition, it also
represents product ion technology according to duality t heory
Therefore, several points of interest in the study of producer behavior
can be derived and examined. The third-order cost function allows the
derivation of additional expressions that are useful for examining the
sensitivity of the function with respect to all of the variables Theee
additional expressions should make the results more reliable as they
represent a reduced bias due to a higher order approximation In
addition to the above advantages of the third-order form overr the
second-order form, some important economic relationships in the study of
producer behavior can also be derived from the present modell Thie
added information contained in the third-order 1CI makes it even more
interesting. In order to appreciate the usefulness of the third-order
approximation, equation (3.1.1), its derivatives will be examined in the
next section.

Equation (3.1.1) is left in its most general form Lo enable us tao

derive and examine economic concepts that concern producer behavior The

See equations (3.3.11) to (3.3.17).
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only condition that will be imposed is symmetry, (3.2.2), 1in the
variables involved.

3.3 Points of Interest

The main motivation of using flexible functional forms is to be
able to examine issues such as input shares =and various kinds of
elasticities within a given model. These points of interests were
reviewed in Chapter 2. To show the advantages of using a third-order
translog cost function over the second-order, the traditional points of
interests examined in Chapter 2 and some additional ones are re-examined

below
Input Share Equations

Given the local theoretical consistency of the model, the share of
an input in the total cost 1is derived by taking the logarithmic
differentiation of the cost function (3.1.1) with respect to input

prices.

Y
el el sl(w,y)

n
= + Z lnw + lny + 2 Inw In
? j TRV A STV R

N h—

n n
2
f Elyljhlnwjlnwh + wiyy(lny) (3.3.1)
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Equation (3.3.1) is linear in its parameters, which was also the
case in the share equations derived from the second-order translog cost
function, but non-linear in variables, unlike the ones derived from the
second-order TCF. Furthermore, it contains additional terms that werc
missing in (2.7.7), due to the higher order. These extra terms make the
present share equation a second-order approximation of the true
underlying share equation as opposed to usual share equations which are
only first-order approximations.

The attractive features of (3.3.1) are the following: first, the
shares estimated in the present model tend to reduce the truncation
bias. Second, the additional terms in the share equation enable us to
examine both the slope and the curvature of this derived function.
Third, it responds to changes in the interaction between input prices,
and output, yuy. and between input prices, 31”{ Fourth, 1t casily
collapses to a share equation derived f{rom the seccond-order cost
function by setting 3‘)y, 3‘y>. and 7ijh to zero.

The derived input demands can be easily obtained by multiplying
both sides of equation (3.3.1) by (C/w). This leaves (UC/le) in the
left hand side, which is the i-th input demand by Shephard’'s Lemma
However, the input demand derived from bolh the second and third-order
cost functions are non-linear in both parameters and varijables

Instead, the share equations which are linear in parameters are used for

estimation purposes. The shares and input demands are homogeneous of
degree zero, and are also non-negative, which 1is required by
monotonicity. Finally,the sum of the shares add up to unity by cost

exhaustion.
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Cost Elasticity and Returns to Scale
Cost elasticity, also known as cost flexibility, can be derived by
differentiating the log of the cost function with respect to the log of
output. The reciprocal of this derived expression is known as a measure
of returns to scale.
dlnC _ 4aC

gln- _ bt ¥ - =
3iny 5y C = (W, y) 3y + yyylny + I ziylnw‘

Inw lnw | + £ 7% 1lnw lny (3.3.2)
1 v b= Y

+
N i—
<
=)
<
N
+
™Mo
M3
e

The cost flexibility is non-decreasing in output and linear in
parameters. Iff the underlying technology exhibits constant returns to

scale, cost flexibility will be equal to returns to scale:

T{w,y) = [ ?) } = 1, regardless of the order of approximation.
y

However, if the dual production function exhibits decreasing or
increasing returns to scale, then (2.7.2) and (3.3.2) yield flexibility
measures that have different magnitudes. This is due to the fact that

the latter includes parameters 7y , 7%

, and 7y that are not
yyy iy lyy

available in the former. Furthermore, the cost flexibility obtained
from the third-order cost function is more reliable than the one derived
from the second-order for the following reasons: first, it takes into
account the interaction between input prices and output, and also

between input prices. Second, it reduces truncation bias as it is a
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second rather than a first-order approximation of the true function

Share Elasticitiies

The share elasticity, arj(w,y). the measure of substitutability
between inputs, (1i,j), is another important economic relationship whosc
precise estimate is crucial. This functicn can be generated by
logarithmically differentiating the cost function twice with respect to

the log of input prices:

. 2 n
3 1InC .
W, = ——————— . =
’Jlj( y) 3 lnw olan )xj 2 31)!\ lnwh * "i)y Iny vizi
1

(3 3.3),
where the * indicates that the parameter or the variable source is @
third-order translog function.

0, the share of a particular input

AtV

Depending on whether 3:)(w,y)
is said to increase, remain constant or decrease as the respective input
price changes. Equation (3.3.3) is responsive to changes in input
prices and the level of output as opposed to the fact that equation
(2.7.7) exhibits a constant share elasticity Since there is no
economic theory that suggests it should be constant, the variable share
elasticity is more flexible in terms of economic interpretation, whercas

n

the constant share elasticity results when 23”' = ar” = 0 for
) y

h=1
Vi, j,h in (3.3.3). Therefore the variable share elasticity, given in
equation (3.3.3) is a first-order approximation that responds to the

variables involved.

The first derivative of (3.2.1) with respect to input prices can
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also represent the derived factor demands. In terms of derived input

demands, the cross price elasticity in the case of third-order translog

cost function is derived as follows:

n n
1 2
exp {7, * 7ylny + ‘iz‘lnwl+ ?wiylnwllny *t 5 [vyy(lny)

Clw,y)

n n
12,Ulnwllnw ii jizuylnw‘ lnwjlny]

n
+ T Inw (lny)2 +
i=1 fyy : 1

t MDD
n M3

1}

(LI o -]

n n
T Ty 1Inwlinwlnw + 3 (lny)3 (3.3.4)
- tih ! J h yyy

M-

C n n
(w,y) = =— + 2 Inw + lny + Z Inw In
Sin (MY =, my” g Iny ):13‘“ ,Iny

n n
[7 (lny)2 +Z Zy 1nw lnw] (3.3.5).
1yy j21 h=1 ijh j h

N~

The cross input price elasticity of factor demand is defined as:

Jo.
5 % s:ij {3.3.86)
i
Bx‘ c n
where — = 7 + 73 lny+Zy 1lnw + ss (3.3.7)
owJ w‘wj 1] ijy oy M h i J

and is obtained by substituting (3.3.5) and (3.3.7) in (3.3.6):



n

€ = + + + /
by - gy oy Iy h§17ijhlnwh s;5,)/s,

= (?ij(w.y) + sisj)/si (3.3.8)

The elasticity formula, (3.3.8), depends on the variable share
elasticity, W:J(w,y}, and the share equations which are second-order
approximations. However, the corresponding expression obtained from the
second-order cost function depends, on a constant share elasticity, a\y
and share equations that are the f{irst-order approximations. Since
(3.3.8) depends on the share equations derived from the third-order, our
earlier remark with regard to this bias applies here as well.

The cross price elasticity of factor demand corresponding Lo the
second-order cost function is obtained by setting all the sensitivily
parameters in (3.3.8) to zero. Furthermore, (3.3.8) is similar to the
cross input-price elasticity of factor demand formula provided by Allen
(1938) which 1is expressed in terms of shares and elasticity of
substitution, cij = sj Uir However, the expressions in 5, and o, will

be different, since in our case they represent the third-order cosl

function rather than the second-order.

Measure of Scale Bias

This measure is derived by differentiating the log of the cost

function twice with respect to input prices and output.

Sy = OC L v B lnw (3.3.9)
Zliy Y= alnwialny ’Jﬁy 7ny y j"lyl)y )] T
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The: above measure is known as scale bilas or expansion elasticity,
.

and is denoted by 7 (w,y). It shows the influence of an increasing
1y

output level on the input’'s share in total cost.

Depending on whether z:v(w,y) z 0, the share of a particular input
in total cost 1is said to increase, remain constant or decrease,
respectively, as the level of output is increased. Comparison of
equations (3 3.9) and (2.7.1), shows us the former is flexible since it
responds to further changes to w and y. q:y (w,y) could also be used to
measure the responsivencss of cost flexibility, T(w,y), with respect to
changes in input prices; as

n

) (w,y) =3 + 73 1Iny+ Zy Inw = equation (3.3.9).
ly ly 1yy =1 i)y )

Here too, 3' (w,y) is responsive to input prices and output, unlike ¥,
ly y
in equation (2.7.1), which did not respond to further changes in either

of the variables.

In terms of input demands, the t'ollowing measure can be derived:

lny + s,r(w,y)]
iyy i

= 1 [7' (w,y) + s r(w,y)] (3.3.10)
Si iy i

where e: (w,y) is elasticity of input demand with respect to y.
y
Ixpression (3 3 10) depends on a variable expansion elasticity as

opposed to a constant one, on the share equation, and on cost
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flexibility which 1s of second-order rather than the first-order Fhue,

the formula (3.3.10) should result in a better estimate

Sensitivity of Cost Flexibility

Differentiating the cost function twice with respect to oul put
logarithmically will give the measure of the sensitivity of  cost
flexibility, ¥ (w.y)

yy
2 n
i CInClw,y) -
y (wyy) = 2BMYT oy iy s 1y
1

Yy y s lyy

o inw (3 3 11}
dllny) yol ‘

Yy

Depend:ing on whether 3;\ fw, y! f 0, the cost fleabrlity 1o ard to
increase, remain constant, or decrease respectivel, as the Jevel  of
output chunges In the sccond-order tranclop cogt function, thie
measure was again assumad to be constant [, ther third-order case, thi
measure is a testable hypothesis as to whether it 16 Inereacing,
constant, or decreasing with respect to changes n output  Jevel
Therefore, the measure derived in the third-order 10 doce not rule ont
the assumption made in the second-order TCt of being o constont meaoure,
but allows more possibilities

As shown above, the economic relationships derived from the
third-order TCF are more general, containing the properties of the
economic relationships from the second-order ICI as a special casce  They
allow more flexibility because the derived relationships represent nope
properties. They are also better approximations of important meesure:,

as the derived relationships represent higherr order approzimations,

reducing truncation bias
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In addition to the above differences, other important economic
relationships-, such as sensitivity of share elasticity, the rate of
change of cost flexibility, output sensitivity of share elasticity and
biases of scale can be derived only from cost functions of higher than

second-order. These issues are examined next.

Sensitivity of Share Elasticity

In the usual second-order cost function, the share elasticity is a
constant lhee third derivative of the cost function is zero. However,
in the present model, the share elasticity, 3:J(w.y). depends on input
prices and out put Differentiating (3.3.3) with respect to input prices
yields 1 These parameters are useful in examining the sensitivity

1)h

of the share elasticity as shown below.

N
¢ oind S = (3.3.12)
olnw ¢lnw dlnw 1)h

3 ) h
The degree of sensitivity of the share elasticity depends on the
magnitude of 3l)h. Alternatively, 3 " could bte taken as the measure of
1)

the rate of change of a share of an input in the total cost.

One would like to know, not only if the share of an input will
decrease as input prices increase, but also if it is going to decrease
at an increasing, decreasing or constant rate. This can be learned only
if cost functions of higher than second-order approximation are

considered. For instance, if 3”(w,y) < 0 and wi_h > 0, the share of
j

input will decrease at an increasing rate as input prices change.
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The Rate of Change of Cost Flexibility

Differentiating the cost function thrice with reapect Lo out put
gives the rate of change of cost flexibility

ar

LT = T e e = 3313
3 iny {6(lny) 3yw ‘ :

Y
—

If, for ewample, v (w,y) > 0, and Yoy S 0. the cost flesibility will
increase at a decreasing rate Thus, we do not nave to assume that the
rate of change of cost {ievitnlity is constant, even though 1t may well
be the case, 1if 3yy= 0. This 1s a testable hypothears within the

model

Output Sensitivity of Share Elasticities

The third-order form wiil generate the response of  the <hare
elasticities not only with respect tc "w" but also with respect to
“yv". Differentiating the log of the cost flunction twice with respect to

the log of input prices and once with respect to the lopg of output pives

us the desired measure,

3% 1nc

- 33 14)
3Tnw &lnw 1ny L (
1

This measure, T will give the response of the shure clasticity a.
)y

output changes. Alternatively, ¥ can be defined as
1)y

gt

= (3.7 14y
Wi;y dlnw &lnw 7
! ]
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Lguation {73 3 1) measures the rate of change of cost flexibility as
input priceo change If 7:y(w,y} > 0, and yljy > 0, the responsiveness
of coot flesibility is said to increase at an increasing rate with
respect to input prices. Furthermore, ZUy can be interpreted as the

L]
sensitivity of the scale bias, ¥y (w,y) (expansion elasticity) as input
1y

prices change,

‘ 47 1nC
y o= oo S |92 (3.3.16)
1)y colnw olnw uvlny
] )

.2 .

where, t{!r¥1~——~ =3 (wy) (biases of scale)
dlnw olny 1y

1

,lnwm() {w,y)} measures the slope of biases of scale.
¢ 1y

Depending on whether 3 i 0, the scale bias may increase, remain
1)y

constant, or decrease, respectively, as input prices change.

Output Sensitivity of Biases of Scale

Similarly, the response of the biases of scale with respect to a
further output change can be found. Differentiating the cost function
twice with respect to y and once with respect to w, will generate the
appropriate measure,
a”1nC a |a8%1inC

iw a(iny)? 91y |31 = (3.3.17)
blnwia(lny)a dlny 31nwi81ny lyy

Fquation (3.3 17) evaluates the biases of scale as output changes. The
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response of output sensitivity will be measured by the magnitude ot 3

J

fyy

in equation (3 3 17). The above additional economic relationships,
equations (3 3.12-3 3 17) can be tested within the model instead of

assuming them to be part of the maintained hypothesic

Technical change

By suitably reinterpreting the constant term (In 3“) as a function
of time, the third-order translog cost function given by (3 1 1) can
embody Hicks-neutral technical change In this case, time would not
enter the model interactiveiy, which woeuld prevent the examination ot
non-neutral technical change To allow for such @ posaibiritty 17 muot
be introduced to represent the state of technology 1n an interactive
manner. As well, if constant returns to scale is imposed the number of
parameters involved becomes manageable Thus, the underlying technology
can be specified with the following third-crder, unitt-coot, transiop

approximation.

n n
In(C/y) =1lnc=1ln3 +3IlnT + £33 lnw + 3 9 Inw In 1
9 t P -1 i 1 . 1t i

n n
+ 1 1 Ty lnwilnw + £ y Inw (In 1)+ £ % 4 Inw Inw In 1
= 1) 1 ] . tt 1 it i )
2 li=1 j=1 i 1)
2 1 |oon 3
+ wu(ln T) * 5 ?Sji aruhlnwllnwjlnwh + ytu( In 1) (3.1 1)

Linear homogeneity in input prices implies that Z 1, t
i

[N
1

63



L 0O, 1n addition to conditions given by (3.2.4). JIL(W,T) is a
measure  off bias showing the effect of changing technology on cost
shares This measurce is obtained by the logarithmic differentiation of
(31 1) first with respect to factor price and then the state of
technology '1° This measure would be a constant if it were derived
from a second-order cost function. It would not respond to further

changes Lo either technology or to different levels of factor prices In

this case 1t takes the following form.

o Ines o Inw eln 1 = 7 (w,T) =3y + 3 InT + 7y Inw . (3.1.1)"
1 L8 1t 1Lt 1)t )

Depending on J:t(w.1) = 0 technical change is said to be input i-saving,
i-neutral or 1-using. Because of this variable measure of technological
change, (compared to a constant one) the effects of technology on the
cost shares can be more reliable, as this measure represents a higher
order approsimation. Further more, if we differentiate (3.1.1)" with
respect to T we obtain the measure of the rate of change of technical
change, LI We find not only that the technical change was input i’
saving but also at what rate it has been 1nput saving. This is a
feature that could not have been derived from a second-order objective
function. Differentiating (3.1.1)" with respect to input prices gives,
7i“, a measure of sensitivity of technical change as input prices
change; again a feature found in an objective function higher than a
second-order approximation. Finally, the measure of technological bias

derived from a second-order function is given as a special case of

(3.1.1)" when 31“= L 0. Having discussed technical change in terms
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of the third-order translog approx.mation, Hicks-neutrality will be

assumed hereafter

Additional Advantages:

Additional advantages can be gained by considering higher order
functions in that they provide better approximating formulac, such -
Allen-Uzawa elasticities of substitution (AULS) AU'S is a useful way
measuring the percentage change in the ratio of the two inputs involved
resulting from a one percent change in their relative prices. | R
known that AUES depends on the derived relationships, from the coot
function, such as the share clasticities and shares of 1nputs I he
better these derived relationships approximate the true relationshipe,
the more precise will be the formulae that depend on them In order to
clarify this point, the AUES will be derived in terms of the derived

relationships from the cost function in question

- # L I
o =c¢cc 'cc, (33 1&)
1} 1) 1)
where,
» »
. oc c .
cC = — = — (3 ),
1 aw w )
1 1
- -
d oc c .
c = i— = =~ (5},
) aw W )
3 )
2 * hd n
- & ¢ (o] s o
c = - = ¥y + Z7y Inw + % lny + 5 ¢ (3.3 19}
i) Iw dwj W W 1) he1 13h h 1)y 1)
1 1] =



Substituting the set of equations (3.3.19) in equation (3.3.19}),

the formula for al can be written in terms of shares:
)

»

Ty Inw + s_.s.]/sfs . (3.3.20)
1jh h i J i)

o = [3’ + ’Jl Iny +
! Jy h-1

1)
Comparing (3.3.20) with (2.7.12), we find that the former has extra
expressions in it These extra expressions incorporate the sensitivity
of the share eclasticity with respect to both input prices and the level
of° output, However, the AUES formula derived from the second-order
function ignores sensitivity effects Moreover, the shares in equation
(3.3 20) are different from the shares in equation (2.7.7) in that the
former represent closer approximations to the true relationship. The
formula (3 3.20) may help to reduce the criticism of bias towards the
clusticity of substitution estimate in the second-order translog cost
funct ion. It may be very useful in policy matters to find a precise

formula tor this important economic relationship.

3.4 Functional Separability

A production function is said to be weakly separable if the
marginal rate of substitution between pairs of factors in the group is
independent of the levels of input outside of the gr‘oupz. If such is
the case, the function can be divided into subsets, and sequential

optimization can be carried out without loss of any information. A

See M Denny and M. Fuss, 1977
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o

sufficient condition for sequential optimization 1s the existence of
weak homothet ic separability If the separable groups are homothetic 1n

their arguments, the condition for weak separability and weak homothet ic

separability are the same. This permits decentralized decision making
based on sequential optimization. The decentralized decision making

becomes important if the production process involves a larpe number of
inputs. The presence of separability further allows the use of
aggregated data when disaggregated data is unavailable or is of poor
quality. However, it would be improper to use aggregated data in the
absence of separability, since the various interactiron parameter:s will
be 1ignored Berndt and Christensen (1979b) defined separability 1n
terms of the Allen-Uzawa partial elasticity of substitution (AULS) I he
AUES between factors in the group and a factor outside the group must be
equal, i.e.

c =o ,i,jel”, kel

4 (34 1)
ik jk

where 1° is the weakly separable partition of the input set

In order to derive the conditions required for scparability in
terms of the cost function and 1ts derivatives, a peneralized unit cont
function will be used3 The condition for weak separubility can be

4
expressed as

— (c:/c ) = (cic -cc )/c =0, (3.4 72)

See E.Berndt and D.Wood, 1977
See Berndt and Christensen, 1973b.



L] * L] * L ] - - "
where, ¢ = ¢ & /W, c =cs/w, ¢ =cly +s s )J/WMm,
i P } ) ) JK jk )k j ok
2 n
. . - * a ]nc
= = —m—— = + x> 1
ka cly s Su)/w Yo 71k dlnw 6lnw 7ik 3Vikm nwm
i k m=1
for i # Kk andm=1,2,3 (3.4.3)
L2 n
*ooadne v o3 1w for ) #= k and m = 1,2,3
7];« dlnw c”vlnwk k) 1k Z kM m A
} m=

S 5.8 indicate the shares of the respective input in the total

cost.

Lgquation (3.4.2) can be rewritten in terms of shares, by
substituting equation (3 4 3) into equation (3.4.2) and rearranging

terms,

[s y -'s 3”(] + Z [sl a)km - s, 3“““] lnwrn = 0. (3.4.4)
m

If we had a second-order translog function, the equality of both . and
s)k to zero would be a sufficient condition for separability. However,
with the third-order cost function, the expressions in the second
parenthesis in equation (3.4.4) makes the condition for separability
different from those required in the second-order case. Therefore, a
suffiicient condition for separability is not only that LA and 7jk be
zero, but that Y ikm and 3jkm be also zero. If any of these parameters

is different from zero, global separability will not be satisfied.

In such a situation, the restriction for local separability Iis
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derived by substituting (3.3.1) for s. and the analogous expression for
)

s: in (3.4.4) to obtain.

( +Zy Inw) (3 +Z3 lnw +
Jkm m 1 am m

ZXZ3 Inwlinw)
3k 1mh m h
m h

m m

- 1 _
(7“( + : 3ikmlnwm) (a) + i 3Jmlnwm * 3 z :z‘. 3jmhlnwmlnwh) = Q.
m 1

Next, expanding (3.4.5) and rearranging the terms yields the following

expression:

( - + Z - n
3i’)k ? 17“() (7Jk)\m Jxka jm)l wm
n n n
+ Z Z - Jinw lnw + - w
’ jk))mh 71\(3 ymh m h z ()1) Jkm 7 13 1km) In w
m h i
(3 4 t)
n2 2 n nP M
+ 20y 1 =y )[lnw] +Z2 y 3 -y )[lnw] Inw = 0
Jkm am T 1km jm m n jkm’ 1mh Lkm™ jmh m h
m m

In order that equation (3 4 6} become =zero, as required by the
separability condition, it is sufficient that the expression in the

above six parentheses be each equated to zero as shown below

7, 1), =0 .
LIS AU I (11},
yjkyxmh - 3ik3)mh =0 (1115,
LA AT SR (1v),
?jkmylm B 7kaym =0 (v),

B9




- = Vi),
'ijmwi mh 71km7jmh 0 ( )

where m, h = 1, 2, 3 In a three-input case, the possibilities
are
i =1 =2, k=3 — 12-3 (1 and 2 separable from 3),
i =2, =3, k=1 — 23-1 (2 and 3 separable from 1),
i =1, j=3, k=2 — 13~2 (1 and 3 separable from 2).
In general, if 7), zjkh, ijm' ijh 7)k' yjm and yjmh are not zero,

the separabilily conditions can be expressed in terms of ratios:

_’ .!k 1m imh ikm ikm (3_4‘7)

'rom the above restrictions, only the first three equalities are
independent. Given these equalities, the condition for separability may

also be expressed in the usual manner:

&y -5y =0 (3.4.4)"

The analogous expression to (3.4.4)’ for the case of second-order
functions would have produced only the first two sets of restrictions in
{3.4.7), while in the third-order case, it will produce the first three
sets.

To clarify this point, a three input price-symmetric translog cost
function for CRS technology is considered. From this function, the
following share equations (with cross-equation symmetry imposed) are

shown below:
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s = + Inw + +
v V11 1 lelnwz 3131nw3

1 2 2 2
5 711&““”1) +7122(1nw2) +3133(1nw3)

+ Inw Inw_ + Inw Inw_ + Inw Inw
7112 1 2 Y113 1 3 2{123 21 3

s = + Inw + lnw_ + Inw
7 712 1 7?.2 2 723 3

2 2 2
7“2(1nw1) + 0y (lnwz) +7233(1nw3)

+

222

N

+ 3 Inwlilnw + 3y Inw lnw + 7 Inw Inw
122 1 2 123 1 3 223 2 3

= + W+ +
s 1 313]n . armlnw2 3331nw3

? 2 9
7 (lnwl) +7223(1nw2) *3333(1nw3)

N -

113

+ ¥y Inwlilnw + 3 Inwlinw + 7 Inw lnw, (3 4.8)
123 1 2 133 1 3 233 2 3

The separability restrictions of the type (12-3) for instance, can
be expressed in terms of ratios by using s and s, as in (3 4 4}’

y ¥ ¥ Y. > ¥ 7 ... Y. .o,
12 111 112 122 _ "113 _ "123 _ 133 (3.4 9)
4 4 Yioa  ¥oon 2373

Similar separability condition can be derived for the variales (23-1,

13~2).
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If one is interested in finding the exact test for separability of

t he Herndt and Christensen type, equation (3.4.4)° must hold for every
i

i nput p."icr"J In order to derive both linear and non-linear exact

separabllity restrictions, the following specific formats of (3.4.4)’

are used; each representing a specific separability type:

s3. -853. =0 - (c_=0_), (12:7)
23 2 13 13 23
L ] L] »
S¥,, " r'f’w =0 - (012 = 023). (13-2)
sy -y =0 (e =0 )., 123-1) (3.4.10)
Y 13 3 12 1?7 13

The third separability type can be derived from the other twe (since o

=c, = U]”),lher-cf‘ore. only two are independent. In (3.4.10), it is
also evident that each separabtility type imposes equality restrictions

between o y and o , ¢ @5 was required by the definitions of separability
) )

in terms of AUL:
Case (1)

The linear restrictions required in order for separability to hold

are derived {rom (3 4 10y

0,

L
"
'
1
o
3%
1
C
a
]

{12~-3)

| g .
> See Berndt and Christensen 1973a, b.



= 0, = 0, = =
712 7121 31?2 0. 3123 0.
(13 )
= O' = . = =
723 3231 0 Yoso 0. Yous 0.
= O‘ = . = . = R
312 3121 0 3122 0 21 0
(23 1)
= O’ = = =
713 7131 0. 313? 0, 313;1 0 44 1)

The linear restrictions corresponding to the sccond-order case are
limited only to the first column of equations (3 4 11) However, 1n the

case of the third-order function the following complete  lTinear

restrictions are obtained from (3.4 11}

If complete lincar scparability were imposed on the trancolop untt cod
funct:ion, the function reduces to Cobb-liougla Wi happena anee

compitte separat .oty Lnoall anputs would imply that ail anteraction

parameters be zerco Thuo, all partial AUbs muct 1] be oqual to unity,

le. = o = o = 1 In order  to ltert for wvaryow typees of
13 23 17

separability, onc should start from the most restrictivze caoe It the

hypothesis is not accepted, one should test to see whether or not any of
the three sub-cases in equation (3.4 11) are screpted ' none of  these
situations are accepted, then the non-lincar restractions must be teoted
for weak separability

Case (2)

Separability of inputs 1 and 2 from 3, given the violation of condition

(3.4.12), can be derived from equations (3.4.9). [from the wecond and



third equalities, Berndt and Chmstensen6 derived one constraint of the

form
2 .
y = (v )7y (3.4.13)

txtending this approach to the third-order introduces two more

independent non-lincar restrictions of the form can be derived:

v = ‘3ijh)?/7”h' for i=j, and h = 2,3, (3.4.14)
1 Share equat tons 2 and 3 are to be estimated by deleting
share cquat1on |

The formulae given by (3.4 14) collapses to that of the Berndt and
Christensen type (3 4 131 corresponding to the second-order form, that
15 forr h = 0, since the third-order parameters vanish The
rectractions, piven in (3 4 150 and in (3.4 14) do not depend on specific
ceparabiiity type Repardless of specific situations, we will get one
restraction from (3 4 13) and twe restrictions trom (3.4 14) The
addirtional non-linear restrictions found in the case of third-order cost
function should enable us to test functional separability more

rigorously than would be the case if the function was only of the

second-order Next, from the first set of restrictions in (3.4.9),
three more restrictions for the intercept term are found. These
restrictions do depend on the specific separability type. They are

derived by using the linear homogeneity in prices assumption (see Berndt

6 See Berndt and Christensen, 1973a.
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and Christensen, 1971 for derivation)

The complete set of linear and non-linear restraictions  for
separability are summarized 1n terms of f{ree paramcters (taken trom
the equation chosen for estimation, that is ¢ and s;\ See lable 34 4 1

«

below



Table (3.4.1)

Separability I 1near Separability Non-Linear Separability
Type Conditions Conditions
12 4 = 0, =0 =1 + { /
Ty Tion 73 y2?23 ?22)
2
= (, = 0 = /
LY ¥ oan Y33 [P
2
= 3 /
a7 V032" 202
3 2
Y = /3
330 223 T 2e?
s} = 0 = 1 o = z 1
1 "y 13 24
13 g y = 1, = } = {y -1y v
1 1.4 3 03 Ter
=0, = ( = 4,
Ry Yo ’ 7, PP
= "‘ 4
Ty Tosn o
3 ?
' =3y, N
171! ‘)‘)i ?:/J
¢ = o = o =0 =% 1
1o 1¢ 12 23
] ] y = 0, » =0 = ;
10 120h Ty Yo Yo" 0
=0 =0 = 3%,
313 ! ’13n 333 323 3?2
T3 ¥on2"? 202
_ 3 32
¥ 333 7223 222
o =0 =1 v =0 =1
12 13 12 13

where h = 2, 3 represent the shares that are to be estimated.



If one 1is interested in finding the approximate scparability
restrictions {(Denny and luss, 19/7), the shares in equation (3 4 4) muet
be evaluated at the point of approximation, w, oS ] Fhie reducer the

shares to their respective intcercepts

Thus, the condition for weak separability will be piven ao foliows,

where y = + 2 LY = + X antom Pooo
1K 1K LK ‘» ¥ JKIL
m h
or Yy o - oy v = U alit v -y - a3 1)
S JEEN 4 P km }oaen
[rn oraer  for sppiccamate TNy oparat bty ool o the o downy

cond.t:on mier oo

In both the wear and stronyg separabiinzty coaceo, the third order funct o,

introduces additional  reaotrictions  reprecented by the third or-ded

parameters, )k. and L In (3 4 19) we only need the cqgunlity
1 km ykm

between the ratios, 3y 737 = 13 /y = 9 /Y for wenk separshilrty to
1 ) 1k 1k Lk ykm
hold. On the other hand, for strong separability, «all the ynteraction

parameters must be zero.
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3.5 Concluding Remarks

In Seetion (3 23, we have shown that the third-order cost function
hae, o locally well behaved region Jjust like the second-order cost
funct jon However, since the third-order translog cost function has
more restrictions that must be satisfied than the second-order one, it
allows for more rigorous testing of the regularity conditions

In Scection (3 73}, we have shown that the economic relationships
deriverd from the third-order cost function reduce truncation bias (but
foewer depreaece of freedom, higher standard error), hence, the estimates
are more reliable 1f the csteded mode! 1s the true model In addition
te thie, the retatysnships derived were shown to be more {lexible and
1ot porated the propertie of thuse derived from the second-order cost
functron ac special cacns Ihis enatled us to e.amine the response of
come  of those derived flunctions to further changes 1n the variables
tnvolved  Turthermore, the fleribility and superior estimates of the
coonomie relationships resulting from the third-order cost function
Should pive better approsimating formulae, and this may have important
caonsequences,  for public policy Allen 7awa's  elasticity of
cubstitution is one example Since this formula is based on some of the
et imated relationships, it is important that the estimates be as
accurate as  possible. Moreover, the third-order translog function
enabled us to derive additional economic relationships that could not
have been obtained from the second-order cost functions. Thus, the
third-orderr f{orms added more flexibility to the already flexible
functional forms.

In Section (3.4), we have shown the test for functional
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separability is richer 1n the case of the third-order cost tunction In
this section two additional separability restrictions were found, due to
higher order It 1s also evident from this section that the function
st11] maintains more flexibility after imposing partial scparabilaty

restrictions, untike the second-order function



Appendix to Chapter 3. Regularity Conditions at the Point of
Approximation - Third-Order Translog.

To demonstrate the regularity conditions clearly in terms of the
third-order translog cost function, the following assumptions are made.
a) The cost function is linearly homogeneous in input prices (see
condition (3.2 3))

b) It exhibits constant returns to scale in production This
elimnates wll the output variables and the interaction terms between
output and anpuat prices oan (31 1) Thus, the translog approximation
can be ecprecoed an terme  of 1ts unit cost without any loss of
gonerality

o) It 1< assumed that there are only two inputs in the production
function Thie reduces the number of parameters in the system The
reyularity conditions ¢nan thus be eupressed 1n a  somewhat simple

ffachion

d) The cost ffunction, and hence, the unit cost function, are symmetric
noanput prices The symmetry restrictions are
Y, o= C ) =) = . = = (3 A1)
1. "o 110 1 3211 P 721? 3221

where the subscripts 1 and 2 indicate the first and second input prices
respectively. Imposing the above four conditions on (3.1.1) yields a

third-order translog unit cost function:

NI~

_ 2 2
Inc wrwg —1m0+31mﬂ-+%hw2+ P“Hn%) +7%Hn%)]
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1 “ A
Inw = <
312 n llnw2 + 5 [3”;)(1nw1) lnw” + 31:’;‘(Irmwl.) lnwl]

3 3 ) ,
[)nl(lnw )T+ )?R(lnw‘) ] (3 A )

The share equations corresponding to (3 A.2) can be  derived by

differentiating it with respect to input prices logarithmically

cinc ¢ 1 :: <
SUI 2 g (w ) o= y <+ £y Inw + = X DI Inw inw
clnw 1 1 i . 1 ’ vih } h
1 ro1 )] 1 h
where 1, 1. h = 1.7 (4 A Y

Written out ewplicitly, the share equat tone ate

S = vy + 3 Inw + 2 Inw o+ v Inw
1 1 11 1 1. 2 110 1 2
1 (1w 1° Clnw ) (s A
+ I nw )+ nw A q)
2 ’111 1 71:’.* v
@ o= + Inw + Inw + Inw Inw
2 32 31;' 1 322 2 71?? 1 Al

(lnw )?] (3.A )
222 2

?

W +
[a“?(ln 1) 7
The above equations assume that the following cross ecquation symmetry
holds:

(1) (2) (1 (2) (1) (2)

12 = 712' y112 - ar112' J122 = 3122 ) (3.4 6)
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Superseripts

taken

indicate the share equation from which

the parameter is

In order for the adding up condition to hold, the following must be

true:
+ = 1 =» = (1" );
a] ?? 32 31
(?2) (2) (1)
=0 => = - and = - , by symmetry;
3!1 12 3ll 712 711 312 y y Y
(1) (2) (2) (1)
+ = {0 = = - d = - ;
12 3?22 ?1? 722 ']” a12
therefore, = ,
]11 )?2’
() (2) (1)
+ =0 ==\ = - and = -3 by symmetry;
”lll 311'{' 11 3112 }111 112 y Y Y
(1) (2) (1) (2) (1)
+ = () => = - but = - '
112 )12? 3112 3122 3112 3111
. (2}
therefore, = .
11 1.0
(B (1) (1)
+ 0 => = - but = ;
’l(’l’ )2’.'.’ ) 122 ]12? 3122 ?111

therefore, 1 = -3
oo 111

Finally,

function can be reduced to the f'ollowing:

lnc(w1.w2) Iny + 3llnw1 + (1—31)1nw1 +

(4]

by using the adding up and symmetry conditions,

(3 A.7)

the unit cost

2 , 2
[yll(lnwl) + 71‘llnw2) ]

DNI—

1 2 2
3“lnw1]nw2 t s [ylll(lnwz) lnw1 - ylll(lnwl) lnwz]
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1 3 3 . .
+ & [ym(lnwl) 7111“nw'z)] (3 A 8)

Equation (3.A.8) can be used to investigate the local and global
consistencies of the third-order translog cost function without los:. of
generality
Local Consistency

In order to derive the restrictions required forr local theoret1cal
consistency, the unit cost function (3 A.8} will be examined in the
neighborhood of some input prices as opposed to all prices Forr thiy
purpose, we will assume that all prices are equal to unity

Ww o =wWw =1 (3 A )

The conditions that must be met for local theoretical consictoency

are:
)0
cil,1) =¢ " =20 (3 A 10)
Vel(l,1) = (8c/0w) = [91339 ?] = 7, > 0 (v A 119
dlnw w
[ -
1 y”
.2
Vee(1,1) = 8%/ (6w)? = |2 “‘C—E °—?~
8llnw) " W'
Y y (y ~V)+y, 7y (1-y ) -7
=eo 1 1 1171 1 11 <0 (3',\ 1?),

71(1*31)_711 (31-1)71*- 711

i.e.(3.A.12) must be negative semi-definite; where V indicates the
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gradient of cost with respect to input prices.

By comparing equations (3 A.10) to (3.A.12) with equations (2.A.2)
to (2 A.4) derived from the second-order cost functions, we find that
they are similar in structure. Therefore, as in the second-order case,
the third-order cost function satisfies the local regularity conditions
Global Consistency

In order to derive the restrictions for global consistency, the
third-order cost function is examined in the neighborhood of all sets of

input prices.

1 2
c(wl.wz) = exp [lna0 + yllnw1 + (l—zl)lnw2 t 5 all(lnwl)

3
a(lll(lnwl)

[e2] 0

1 2
- 311 lnw]lnw2 + 5 yll(lnwz) +

2
ylll(lnwz) lnw1

Nl—

y  {lnw )zlnw +
1 1 2

N —
—
—

—

3 (lnw?)a] 20 (3.A.13)

1 2
o+ lnw - Inw + = lnw
{31 311 1 711 2 2 Z’111( n 1)

2
/ *
ar“l(lnwz) } W

Nt—

-y Inw lnw_ +
11 1 2

<]
aQ
b
x
[
(e}
v
o

1 2
{(l 71) 3r“lnw1 + znlnw2 5 zlll(lnwl)

2
alll(lnwz) }/w2

N =

+y Inw lnw -
11 1 2

(3.A.14)
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2
d c 2 1 0
— = c/ + - = -
o2 c/w {[31 y“lnw1 ynlnw2 + 5 3111(1nw1) allllnwllnw?
1
+ 1 3. . (lnw )2 (y -1) + ¥y Inw - 3 1nw
2 111 2 1 11 1 1 2
1 2 2
* 5 311(1nw1) ylnlnwjlnw2 + ylll(lnwz) ]

Yw, w >0 (3 A.1H)

The above three sets of conditions involve all of the input
prices. However, equation (3.A.13) remains a real valued function sincec
it is an exponential function In order {or monotonicity to hold, both
N and LI need to be zero in (3.A.14) As long as these parameters
are non-zero, we can find values for v and ., that could violate thisg
condition. Hence, global monotonicity requires the following
restrictions:

1 = v,z 0; Y, "%, " 0 (3.A.186)
Equation (3.A.18) implies that if a third-order translog cost function
is required to fulfill global monotonicity, it will be reduced Lo a
Cobb-Douglas function, since all interaction parameters will vanish by
the monotonicity restriction. Although the monotunicity requirement
causes inflexibility, as was the case in second-order function, the

restrictions are different (comparc equation (3.A 16) with ecquation

(2.A.6).
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Finally, since the cost function is assumed to be linearly
homogeneous in input prices, the condition given in ecquation (3.A.15) is
both necessary and sufficient for global concavity. The restrictions in

this case would be the same as equation (3.A.16) imposed on equation

(3.A.15) and will give us:

c/wf [71 (7,-1) ] <0 (3.A.17)

which will always be satisfied given equation (3.A 13) and Y, is between

zero and one.
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CHAPTER 4
ESTIMATION OF THIRD ORDER TRANSLOG COST FUNCTION

AND HYPOTHESIS TESTING

In the previous chapter, the theoretical background of the

third-order transliog cost function was developed. The special features

of this model were outlined and discussed. In this chapter, a specific
data set, involving capital, labor, energy, and intermediate materials
(KLEM) f'or the period 1947-1971 for the U.S. manufacturing sector will
be used to estimate the model discussed in the previous chapter.
Various hypotheses will be tested and the results compared with those
derived with the traditional second-order translog cost function.

It was found that, due to the higher order cost function, the
additional parameter estimates were significantly different from zero;
the estimated share elasticities were not constant; and the Allen
partial cross elasticity of substitution changed signs during the
period. These results suggest that the higher order cost function
provides a bet er specification of the underlying technology than the
more traditional approach.

In Section 4 1 the model will be discussed. In Section 4.2 the
estimation procedure used will be compared with alternative methods. In
Section 4.3 the data set that will be used in this study will be
discussed and empirical results presented. In Section 4.4 a test for
model specification will be carried out. In section 4.5 the estimated
share elasticities will be examined and hypothesis testing will be

performed. In Section 4.6 the stability of share elasticities with




respect to input prices will be examined. In Section 4.7 the estimated
Allen partial elasticities of substitution and price elasticities will
be analyzed. The issue of capital-energy complementarity will be
examined in light of these new results and the new formula for the Allen
partial elasticity of substitution derived from the third-order cost
function . In section 4.8 the bias in the estimated factor demands from
the second and third-order translog cost function will be compared by
using the information inaccuracy criterion developed by Thiel (1967).
In section 4.3 some policy implications of our findings will be
discussed. Finally, section 4.10 will include a summary and conclusions

of the chapter.

4.1 The Theoretical Model

Assumptions
The extended theoretical model will be developed under the
following assumptions:

(a) The U.S. manufacturing sector could be represented by a thrice
differentiable aggregate production function, or a thrice
differentiable cost function.

(b) The production function relates the aggregate output, y, with
the four inputs previously mentioned, KLEM.

(c) This production function exhibits constant returns to scale
and is Hicks neutral with respect to technological change.

(d) The firms are price-takers in the input market.
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(e) The cost function can be approximated by a translog functionl.
The Model

The four input KLEM model can be written as follows:
n

InC(w,y) = In @, + X 7, lnwi+
i

N
—‘M o]
—M

7U1nwilnwj

—M
™M 3

7/Uhlnwilnwj1nwh + lny (4.1.1)

Ml

where, C is the total cost, y is aggregate output, w is vector of input

prices, wn T ylf y‘“ are unknown parameters to be estimated, and
4]

i,j.n = KL,EM Equation (4.1.1) is a third-order Taylor series

approximation of a «cost function. This will also represent the

underlying production siructure if the assumptions discussed in chapter
3 section (3.2) are satisfiedz.

The cost minimizing share equations for KLEM can be derived as the
first-order logarithmic derivative of 4.1.1.

n

= + Inw +
yl J 7i) J

—M™M 3
oM S

y”hlnwjlnwh (4.1.2)

AR

where 1, j, h =K, L, E, M. As was mentioned earlier, equation (4.1.2)
collapses to the formula derived from the second-order translog cost

function when Vi = OvVvi,J,h
§

: This assumption ensures comparability with recent studies, for
example Berndt and Wood (1975).

2 Recall that the assumptions were symmetry in input prices, positivity
of the cost function and the cost shares of all inputs involved with
respect to input prices, and the concavity of the cost function with
respect to input prices.
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4.2 Estimation Procedures

First, we assume that the cost shares differ from the logarithmic
derivatives of (4.1.1) by a random error term Therefore, an additive
disturbance term is added to each equation. Since the shares add to
unity, the disturbance terms in the four equations sum to zero for cvery
observation. This will present a problem if one intends to estimate the
whole system (4.1.2), since the variance-covariance matrix of the
disturbances based on the four cost share equations will be singular.

To overcome this problem, one of the cost share equations is
arbitrarily dropped and the remaining n-1 share equations arce estimaled,
subject to the linear homogeneity of the production function, as well
as, the general conditions discussed earlier {Chapter 3, section ?)
The estimates of the parameters of the deleted equation can be recovered
from the other equationsg. However, invariance problems may arise
depending upon the estimation procedure adopted. Invariance arises when
the parameter estimates depend on the particular equation deleted Thie
creates a problem since the results depend upon the equation which 1o
dropped. The second problem related to estimating share equations ie
the existence of common parameters across equations. This renders =z
single equation estimation technique ineffective, since one cannot
impose cross equation symmetry restriction when this method is uscd
Lastly, when n-1 share equations are estimated it is likely that the
disturbances are contemporaneously correlated.

To alleviate the above problems, iterative systems estimation

See Berndt and Wood (1975).
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procedures, Iterative Efficient Zellner (IEZ), Iterative Three Stage
Least Squares (I13SLS), and Full Information Maximum Likelihood (FIML),
can be used. These systems methods take the contemporaneous
correlation of the disturbances into account. Symmetry restrictions can
also be imposed, since equations are simultaneously estimated. As well,
given convergence, the parameter estimates will not be sensitive to the
particular equation deleted. Although, the systems methods solve the
above mentioned problems, they do not perform equally well with regard
to the endogeneily and efficiency problems4

The 13518 method would be preferred if the prices that appear con
the right hand side of the share equations Lo be estimated are believed
to be endogenous. However, this method has its own drawbacks.
Applebaum (1979) indicated that I3SLS estimates could be sensitive to
the instruments chosen. In view of the fact that we would like to
compare the performance of second and third-order translog cost
functions that use a different number of instruments, it would be
inappropriate to use a system that is sensitive to the choice cf
instruments The use of additional instruments in the third-order case
is necessitated by the additional right hand variables required. The
additional instruments would be needed especially if one follows the
procedure used by Berndt and Wood (1975). In that paper, the right hand
variables (price ratios) were regressed against the ten instruments

chosen, and the fitted values from these regressions were taken as

Endogeneity problem arise when the right hand variables are
determined within the system, while efficiency problem refer to the
magnitude of the variance.
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instruments. Since our model involves more variables on the right hand
side than the second-order cost function, it would require more
instruments. Thus, any differences in the estimated results might be
attributed to the differences in the number of instruments used, and not
necessarily to differences in the two models.

In order to make sure that the two models are invariant to the
estimation method, we have chosen the IEZ method of estimation. Thiw
method of estimation has been used in several past studies for the U S
manufacturing sector, and no significant differences in the values of
estimated parameters between this technique and I3SLS were found (Berndt
and Wood, 1879). OQOur results confirm this conclusion

We have a'so uced the FIML (results not reported) method as an
alternative estimation technique. This procedure and the 1L/ produced
identical parameter estimates and log likelihood functions These
results confirmed that when convergence 1is achieved, ( 1 e when t he
diagonal elements of the co-variance matrix of the residuals equal the
sample size) the IEZ estimates converge to the FIML estimates, (Kmoenta
and Gilbert, 1968). We found the I1EZ method to be more cconomical and
efficient in spite of the fact that the results were i1dentical for the
purpose of hypothesis testing.

4.3 The Data and Empirical Results

The Data

This study uses the KLEM data on U.S. manufacturing, 1947-19371,
where, K, L, E, and M represent capital, labor, energy and intermcdiatn
materials respectively. This study uses data on the quantities and

prices of the four inputs, and aggregate output which were compiled hy
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Berndt and Christensen (197%)

Regularity Conditions
The cost function is well behaved if the derived input demands are

strictly positive at every data point, g%— > 0 and if the cost function

i

is concave in 1nput prices. The share equations were found to be
positive at every data point and thus the first condition was fulfilled.
The Hessian matrix was examined for negative semi-definiteness in order
to ensure the concavity condition. This condition was met at every data

point except for 1947 and 19485

Comments on parameter estimates

In Table 4 la we present the 1EZ parameter estimates of the KLEM
third-order cost function for U.S. manufacturing, 1947-1971, with the
restrictions discussed above. In order ‘o test for the existence of
serial dependence of the disturbance terms in the estimated system, the
Durbin-Watson (DW) statistics are reporteds.

The DW stat istics are 2.0795 for the L equation, 1.7325 (E), 1.8650
(K), and 1 9675 (M). These values are generally higher than the ones
calculated from the second-order translog cost function. The

corresponding values are 2.1516 (L), 1.1807 (E), 1.3087 (K), and 1.8517

o The intermediate material and the labor equations failed this test in
1947 and 1948, respectively. Although not all of the share equations
fail the concavity test in those two given years, we did not attach any
meaning to the results obtained in this particular region.

6 Durbin, 1857. has suggested that the DW test appropriate to single
equation models, may be applied to each equation in simultaneous
equat ion systems
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(M). The degrees of freecdom for the estimated system is 3N-k, where N
is the sample size 1n each equation and k is the number of parameters in
the estimated system Since we have estimated three cquation:d the
effective sample size is 75 The corresponding degrees of freedom are
56. The critical value for the two tailed test for a = 025 is 2 0]
The estimates and the t statistics for the parameters or the dropped
equation were calculated using the information provided in the estimated
system

Almost 70/ of the new parameters introduced in the third-order
translog cost function were significant By limiting the cost function
to the second-order, some explanatory power of these parameters was
lost. The fact that several newly introduced sen<itivity parameters
were different from =zero 1mplies that we will have variable share
elasticities rather than constant ones The rate of change of the cout
shares can no longer be assumed rnonstant, since the sensitivity
parameters 3th measure these effects

The 71) were used to represent share elasticities in the
second-order cost functions In the present conte=t can no longer be oo
interpreted, since the second partial derivatives of the third-order
translog cost function with respect to i1nput prices are 7:) {defined 1n
4.5.1) In particular, the 3ij’s, the sensitivity parameters ?ljh's and

the level of all input prices will be factors in determining the

magnitudes and signs of variable share elasticities

4.4 Test for Model Specification

The purpose of this section is to determine whether or not the



second-order translog cost function was misspecified. Since we are
using the [EZ estimator, the likelihood ratio test was used. The
likelihood ratio test is computed as follows: LR = 2(L1~LO), where L1 is
the value of the likelihood function for the unconstrained model
(third-order translog cost function)} and L0 is the value when the
constiraints are imposed (the second-order translog cost function). The
LR is distributed asymptolically as a chi-squared variable with degrees
of' freedom equal to the number of restrictions.

After estimating both models, the following values were obtained:
[l = 3b6. 460, L0 = 344.567, with the degree of freedom being 10, [(i.e.
t he number of parameters estimated in the unconstrained system less the
number of parameters estimated in the constrained system). The null
hypothesis that was tested is yuh = 0 Vi, J, h. The calculated LR =
23.79 while the critical value is 1?05 = 18.307 (df = 10). Since the
calculated statistic is well above the critical value, the null
hypothesis is rejected. It is also rejected at a = .01. This implies
that the U S. manufacturing sector should not be represented by the
second-order translog cost function. This result also allows us to
claim that the estimates of several economic relationships from our
mode |l are superior to the ones obtained from the second-order function.

In the sections to follow, we will compare the results obtained by
using the second and third-order translog cost functions. The
elasticities calculated from the second-order function are reported for
selected years, since the values arc stable over the study period. The
results obtained from the third-order function are reported for the

entire period since the values change from sub-period to sub-~period.
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4.5 Share Elastici_ﬁi_e_s

The share elasticities derived from the second-order translog cost
function are constant, since they are the seccond partial derivatives
As was argued in the previous chapter, there is no reason to assum
constant share elasticities. The share elasticities derived from the
third-order translog cost function are variable and contain constant
share elasticities as a special case when the third-order parameters are
zero. As can be seen in {4.5.1), the share elasticities generally
depend on the levels of i1nput prices The general cxpression for share

elasticities after 1mpcsing constant returns to scale can be written as.

=9 +)r_\'_3 h]nwhEyi (4 5. 1)

where, i.j.h = K. L ,E,M. Fquation (4.5.1) collapses to the traditional
formula when 9 n = 0 v i, g, h However. as was shown in Scction
!

(4.3), most of the LI parameter estimates are different from sero
3
The share elasticities calculated using (4.5 t}, are reported for the
whole period in Tables 4 3a, 4.3b, and are also calculated at the mean
in Table 4 3c.

The share elasticities reported change from year to year in
magnitude and at timcs, even in sign. A change in sign from posit ive to
negative implies a movement from an inelastic region to an elastic
region of the input demand function. This flexibility 1s not permitted
when the share elasticities are derived from a second-order functlion.
The variable share elasticities derived from the third-order translog

cost function would appear more plausible.

The own-share elasticities are reported in Table 4.3a The own
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share clasticity of capital, w;k, remained positive for the whole
period? The average magnitude of the 7;k’s. ;;k (= .028), was slightly
higher tlan the constant share elasticity, LA (= .025). The estimate
of' ;;k was also statistically significant (t = 4.344). Examining the
entries year by year shows that both the magnitudes and significance
levels changed. The positive entries indicate that the share of capital
increased as its own price increased. Since our model is of the
third-order, it is possible to compute the rate of change of the share
elasticities, by examining the sensitivity parameter Winf In Table
4. 1a, 3ﬁkk' is reported to be insignificant as the t- statistic is only
0.987. Therefore the capital share elasticity does not vary as its own
price increases over the years, ceteris paribus. The fact that the
share of capital, Sk, increased with respect to its price, also
indicates that the underlying input demand is price inelastic (this is
conf'irmed by the fact that the own price elasticity of capital is less
than one in absolute value, Table 4.4a).

The values of the own share elasticity of labor, WLL’ also remains
positive throughout and are highly significant except for the years 1968
and 1971. On average, the results obtained from our model are
consistent with the ones found by Berndt and Wood, i.e. positive and
highly significant. As for the sensitivity of this elasticity, the
relevant sensitivity parameter ¥, “es found to be negative and

significant (t = - 2.898). This implies that the share of 1labor

increased at a decreasing rate with respect to its own price.

»
For 1870 3, was negative, however the t-value was insignificant.
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The own share elasticity of energy, 3;8. on the other hand changed
signs from one sub-period to another, but the values remained low and
mostly insignificant with the exceptions of a few cases. Thus, on
average, the own share elasticity of energy was found to be
insignificant, unlike the result reported by Berndt and Wood, 1975,
This finding does not imply that energy demand was insensitive Lo its
own price, but rather that when all other prices are allowed to adjust
the own price change does not alter the share of energy in the total
cost. As a matter of fact, the own price elasticity and own elasticity
of substitution for energy reported in the tables below are significant.
Since the estimate of the sensitivity parameter, ¥ epp was positive and
significant (t = 2.785), it implies that the factor shares of ecnergy
increased at an increasing rate in the period that showed a significant
positive value, and it decreased at an increasing rale for the year
1970, the only year that chowed a significant negative entry.

The intermediate materials share elasticity remained positive and
significant up to 1964 with the exception of the years 1956-58 and
1961-64 which showed positive but insignificant entries. After the yecar
1964, the signs changed to negative but not all of the entries were
significant.

The cross-share elasticities are reported in Tables 4.3(b) and (c).
While the cross—-share elasticities are symmetric, 7:J = 7;V i,jg =
K,LLEJM; i # j, the rates of change are not. The value of these
elasticities change signs and magnitudes over the period. The following

conclusions can be drawn:

(1) The share elasticity of labor with respect to the price of
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intermediate materials, 1:H, has a highly significant negative entry up

to 1963. This implies that the share of labor decreased at a decreasing

rate, since, LA is also negative and significant (t = -2.444). In
*
the same period the share of intermediate materials, 7HL , With respect

Lo the price of labor also decreased by symmetry, but at an increasing
rate since, LA is positive and significant (t = 4.398). Between
1964 and 1971, the signs of 7:" changed to positive, but the values were
not significantly different from zero.

(2) The share elasticity of labor and energy with respect to cross
prices (i.e. aEL) was positive and significant up to 1956, and then
became insignificant for the next two years. Thereafter, the signs
changed to an insignificant negative in the year 1959 and then to a
highly significantl negative. This result is different from the
cross-share elasticity estimated using the second-order function which

was reported to be negative and insignificant. By contrasi, until 1958,

the shares of energy and labor increased with respect to cross-prices in

the third-order case. The former increased at a constant rate, since
Y er is insignificant, while the latter increasea at a decreasing rate,
since 3LLE is negative and significant (t = - 4.26}. From 1959 onwards,

energy and labor shares decreased at a constant and a decreasing rate,
respectively, with respect to cross prices.

(3) The share elasticities of labor and capital showed identical
sign reversals, over time, to those discussed in (2). The signs were
positive and significant until the year 1955, positive but insignificant
for the following three years and then changed to negative but

insignificant until the year 1962. The period 1963-1971 showed a
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negative, significant relationship. The results presented in table 4. 3¢

show that at the mean, QLK. is negative and insignificant which
coincides with those in Berndt and Wood (1975). This average tendency
definitely hides those significant positive and negative entries
repdrted by our estimated results from the third-order cost function.
In terms of our result,the share of labor with respect to the price of
capital increased until 1955, and then decreased al a constant rate. On
the other hand, the share of capital behaved like the share of labor,
but at a decreasing rate, since the estimate of the relevant paramcicer
¥ g Vs negative and significant (t = - 3.509).

(4) The sign of 3;K remained negative for all fifteen significant
entries. There were a few positive entries but they were all
insignifice t. Thus, the overall result in this case was found to be
consistent with the ones reported using the sccond-order cost function.
The share of capital decreased at a constant rate (t = 1.737), while the
share of energy decreased at an increasing rate with respect to cross
prices (t = 2.613).

(5) The share elasticities of materials and capital were found to
be mainly insignificant and negative, confirming the results obtained
from the second-order cost function with some exceptions. The
exceptions were the significant negative entries for the years 1854-55
and the significant positive entries for 1868-70. The relevant
sensitivity parameters ¥ and Ypgy WETE also insignificant, implying,
the rate of change will be constant.

(B) Lastly, the share elasticities 7;" were mainly positive and

significant only for the years 1867 and 1869-70, with the signs becoming
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negative and significant in the years 1954-1855. The rate of change of
the share of energy with respect to the cross-price increased (t =
2.34), while the rate of change of materials decreased since the
estimated 7EEH was negative and significant, (t = - 2.731).

In order to demonstrate the similarities of the estimates of share
eiuwsticities between the second and third-order cost functions, we have

reported the share elasticities calculated at the mean and performed the

following tests :

HO: aij =0 v i,j = K,L,E,

Since the t-statistics and the estimates of share elasticities at

the means, ;:j , were calculated using the information provided in the

estimated system, the degrees of freedom remained the same as above.

Hence, the critical value is still t‘ = 2.01. Based on this critical
- -_— - -
value, all but gLK, yEE , IEM' and 7MK were found significantly

different from zero (Table 4.3c).

By examining the share elasticities at their mean, an interesting
comparison can be made with those computed from the second-order cost
function. First, the share elasticities, ;:x , ;;K , and E;H were found
to be insignificant a’. with the second-order cost function. Second, 7EE
was significant in the second-order cost function, and the corresponding

value in the third-order case ;;E was found to be insignificant. Third,

the 3 was found to be insignificant. 1In our model the corresponding
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expression, WLF maintained the same sign but was found to be highly

significant (t = - 3.211). Fourth, the signs of all the significant
e - - - - -
share elasticiti . .
ies (7LL Co % Yk n v Ve and £ ) are the same

as the ones reported in the second-order cost estimates reported by
Berndt and Wood (1975).

From the above observations, one can conclude that the sharc
elasticities computed from the second-order cost function reflect
average tendencies, with the exception of underestimating the
cross-share elasticities between labor and energy. Although, average
values convey an important message, some detailed information may be
lost in the process. The basic importance of calculating the share
elasticities from the third-order cost function, aside from precision,
is that it brings out all the details lost in Lhe process of averaging
The variable share elasticities computed from our model give the
detailed behavior of the shares, depending on the levels of input prices
involved and the sensitivity parameter estimates, 31”{

4.6 Sensitivity of Share Elasticities

The sensitivity parameters, 31jh’ measures the change in the
cross-share elasticity (3:j) with respect to a change in a factor price

(lnwh). For examrle consider the following specific share clasticity .

= + + + 1 6.1
e T Tke T Yrwe lnwL * Vee lnwE ¥ xen lan ke lnwx ( )

Thus the variable cross share elasticity, z;F. depends not only on the

cross prices directly involved but also the prices of labor and
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intermediate materials. By examining the estimates of yi”‘ (Table

4.1a), we conclude that only the prices of materials (3KEH, t = -

2.039), and capital (7KKE, t = 2.613) significantly affect the value of

L] * L]

-
, , , and ,
KM v LE 7LM aIF_‘M

L ] ]
yKr By using the relevant formulas for yKL, r

we conclude that:
(i) 7;L is sensitive to the price of labor and slightly sensitive
to the price of materials;
(ii) 7;H is sensitive to the price of labor and slightly sensitive
to the price of capital;
(i1i1) 7:E is sensitive to the price of labor, while 7:H is
sensitive to the prices of labor and materials and also slightly
sensitive to the price of capital;

(iv) UEH is sensitive to the prices of energy, materials , and

capital.

4.7 Energy-Capital Complementarity

The debate as to whether capital and energy are substitutes or
compiements has produced numerous papers in the seventies and eighties.
The differing results have been attributed to differences in data sets,
differences in the way the input quantities and prices were constructed,
differences in calculating short and long term elasticities and
differences in the separability assumptions. Berndt and Wood (1979)
attempted to reconcile the different results on energy-capital
complementarity obtained by different authors. Their theoretical and
empirical study was based on the assumption of wutilized capital

scparability. Based on this assumption they were able to decompose the
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price elasticity into gross price elasticity and expansion clasticity.
They point out that two inputs can be gross substitutes while they can
also display net complementarity. The decomposition of the net price
elasticity into its components 1is Jjustified if the separability
assumption they made were valid.

In Chapter 5 we show that this specific form of separability is not
acceptable. However, the authors have suggested that this debale
requires further study, especially in the area of model specification.
In this thesis an attempt is made to explain the different resulls by
way of a new model specification Berndt and Wood (1979} indicated that
when more than two inputs are involved in a production process, there is
no theoretical basis from which one can determine whether any two inputs
are net substitutes or complements. Thus, when more than two inpuls are
involved, attempts should be made to bring the effects of all the inputs
involved directly into the measurement of the substitution relationship
between any two inputs. The AUES formula generated from the third-order
translog cecst function involves the variable share elasticities ( as
opposed to the constant share elasticities) and the shares of the two
inputs involved. The variable share elasticities embody the cffects of
all input prices to determine the substitution possibilities between any
two inputs. The AUES derived from the second-order cost function, on
the other hand, was shown to be inflexible, in that the value gencrated
can only be greater than unity or less than unity for all observations
The implication of this is that two inputs cannot move from a period of
high substitutability to a period of complementarity regardless of the

level of input prices.
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After imposing constant returns to scale on (3.3.20) the AUES can

be rewritten as follows:

= (7/”+ § LN lnwh + S‘SJ)/SXSj (4.7.1)

o
i) J

where, i, j, h = K, L, E, M i=%]

and o = (y + £y Inw + S (S-1))/5% 4.7.2)
it ii h ith h i i i

The additional relationship that helps us to determine the
substitution possibilities is the factor price elasticity. After
imposing constant returns to scale, expression (3.3.8) can be rewritten

as follows:

e =(y + £ 3 Inwn+ SS } /S , i#] (4.7.3)
1) 1} S i)h h i) !
e = 1{(y +Z 7 Inw +S (S-1))/S , i=] {4.7.4)
ii i h " iih h 1 i 1
where i,j,h = K, L, E, M
Expressions (4.7.1) to (4.7.4) provide the corresponding

expressions for the second-order case when the WUh's are set to zero.

The expressions T ¥ Inw and X 7 Inw which are absent in the
h “tjh h h “ith h

second-order cost function case, allow the value of the AUES to move

from less than zero to greater than unity, depending on the signs of the

parameters and input price levels. Depending on the sensitivity of the

share elasticities with respect to all the prices inveolved, two inputs

may exhibit a period of complementarity and one of substitutability

during a given time frame. Using the above formulas we have computed
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the corresponding values at every data point ~nd also calculated them at
their respective means for hypothesis testing. These resul.s are

reported in Tables 4.4a-4.4c and 4.5a-4.5e.

Empirical Results

The own AUES and the own factor price elasticities are reported in
Tables 4.4a and 4.5a respectively. With the exception of 1947 and 1948,
where the concavity requirement failed, the wvalues of own price
elasticities were consistently negative. The negative signs attached to
the Allen partial elasticities of substitution indicate that the Hessian
matrix formed using the parameter estimate was negative semi-definite, a
requirement for concavity. Furthermore, the negative signe attached to
own price elasticities indicate that the factor demands curves are
downward sloping. By examining Table 4.5a, we find that the magnitudes
of the own price elasticities are different from the ones derived {rom
the second-order function. We find a substantial responsiveness of
energy demand to its own price (EEE = -.86, Lt = - 5.524), even higher
than what was reported by Berndt and Wood (197%)

The signs and magnitudes of the cross AUES and the cross-price
elasticities help us to determine substitution possibilities between
factors of production. The signs and magnitudes of various elasticities,
are changing over time and thus, differ from the ones reported based on
second-order cost functions (see Berndt and Wcod, 197%, pp 264-265,)

Examining the above results, we cbserve the following.

(1) Energy and labor show a substantial substitutability up to

1958 which is also highly significant The values for the AUES between
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encergy and labor (UEL) range from 1.38 to 4.7 and the cross-price
elasticity hetween energy and labor (cm) ranges from .067 to 0.24. The
cross-price clasticity between labor and energy (CLE) range from 0.37 to
1.1. From 19589-1961, the relationship changed to one of sligat
substitutability (.17 = alE = .60, .21 = CLE s .80, .05 = sEL < .18),
but only the value in the year 1960 was significantly different from
zero. Beginning in 1962, the signs became negative, but remained
insignificant up to 19865. The negative signs became significantly
different from zero thereafter. This implies that during this period,
energy and labor showed substantial complementarity, since the values
for the Allen partial elasticity of substitution ranged from - 3.18 to -
1.31. This result is different from the slight substitutability of the
two inputs obtained with a second-order cost function.

{2) Labor and capital displayed substitutability up to 1961, and
the entries remained positive for the next two years but insignificant.
Thereafter they apparently displayed complementarity (Table 4.4b, Table
4.5c). However, a close examination of the significance levels of the
relevant Allen partial elasticities reveal that the negative values were
not significant. Within this latter period one may conclude that were
few substitution possibilities between labor and capital. The results
obtained from the second-order cost function predict that these inputs
were substitutes for the whole study period due to its rigid formula.

(3) Energy and capital showed substantial complementarity during
the periods 1949-53, 1956-1858, and 1969-71. With the exception of the
above eleven years, capital and energy did not demonstrate any

significant interdependence. The signs of the elasticities changed but
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the positive entries were not significant. On average, this finding
coincides with those deriveo from the second-order cost function

(4) The signs of the AUES between encrgy and intermediate
materials remained positive throughout and thus displayed a substantial
substitutability in the years 19851-53, 1956-58, 1960-63, 1966-6/, and
1969-70. In the remaining years there were no significant substitution
possibilities. From the above result we can conclude that the
substitution possibilities between the above two inputs were not stable
in the study period.

(5) Capital and 1ntermediate materials showed substantial
substitutability for all of the eight significant observations in the
study period. The other observations were marked by changing osigng,
which were insignificant

(6) The signs of the relevant elasticities between labor and
intermediate materials were consistently positive for all significant
entries However, the substitution possibilities changed from slightly
substitutable during 1953-63 to quite substitutablc during the period
1864-1971.

For completeness, the following hypotheses were tested at the mean

of the data :
H:Er =O,
o] 1)
H: ¢ =0
a ij

The own-AUES for capital, labor, energy, and intermediate: materials
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are all negative and significant (Table 4.4a). The corresponding
own-price elasticities are all negative and also significant (Table
4.5a).

Using Table 4.4b we conclude that:
(1) Energy and capital are highly complementary (O'EK = - 4.73, ey

= -.25, € = .21, t = - 2.93), which is consistent with the result
found from the second-order cost function.
(2) Energy and intermediate raterials are quite substitutable.
The estimated values are o = 1.64, ¢ = 1.03, ¢ = .07, t = 4.35.
EM EM ME.
These are consistent with the ones derived from the second-order cost

function.

(3) Labor and capital display slight substitutability, since the

estimated values are o = .68, ¢ = .04 , ¢ = .18, t = 2.8.
LK LK KE

{(4) Labor and intermediate materials also display slight
substitutability, since the estimated values are O'LH = .B39, CLH = .43,
and £ = .18, Lt = 13.94.

Mt

{(5) Capital and intermediate materials also show slight
substitutability. The estimated values are o = .71, ¢ = .04, ¢

MK MK KM

=.44 , t = 2.35.
(6) The substitution possibility between labor and energy is
insignitficant, since the estimated values are o = .31, ¢ = .01, ¢
LE LE EL
- .08, t = 1.45. These however, have the same sign reported from the
second~-order cost function. These results are similar to Berndt and
Woods' (1975), except for the slight differences in magnitudes.

For purpose of comparison, a brief summary of earlier studies

related to the issue of capital-energy complementarity is reported in
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Table 4.86. The different findings reported in these studies have been
attributed to distinctions between the long and short-run, and
differences in data aggregations. In our view, these explanations are
inadequate.

The differences in the results obtained here emanate from the
additional flexibility provided by the third-order specification The
flexibility of the formulas wused above highlights the loss  of
information related to input substitution implicit in the rigid formula«
der:ved from Lhe second-order cost specificalion We believe that ow

results reconcile the differing results on substitution posaibilities,

4.8 Measure of Bias

In this secticn, the argument that the third-order translog coet
function reduces truncation bias is investigated empirically. We use
the "information inaccuracy values" technique advanced by Thiel et al
(1967) as goodness of fit indicators. The information inaccuracy of the

factor shares for the i*" cbservation is given by

1 =.63(S - s )*/s (44 1)
1
where the é . is the estimated share of an 1nput for the '1Lh observat on
n
and S X represents value for the actual share’'s of an input
n
The information inaccuracy is defined as being the mean inaccuracy
over all observations:

T
I =(/ME 1 (4 8 2)
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I =.5%(S - s ) /(s (1-5 ) (4.8.3)
i n ni ni

wher-e T is the number of observations.
On the other hand, the inaccuracy measure for a specific factor for

.t . . .
the i'" observation is approximated by:

1 =((/T)z 1 (4.8.4)
n i=1

The actual and the predicted shares from both models are presented
in Tables 4.2a, 4 2b, 4 2c, and 4.2d. Based on the 1EZ estimates, the

f'ollowing mean measure of information inaccuracy values are calculated.

Second Order Third Order
1 .000234 .000141
TK .000094 .000064
Ti .000073 .000042
TE .000037 .000025
YM .000164 . 000073

From the above results the following observations can be made:

(a) The information inaccuracy for the individual factors are
smal ler than for all the factors combined for both models.

{b) The measure of linaccuracy calculated are smaller in the case of

the third-order function compared to the second-order function, since
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the former are closer to zero. This is true for both individual factors
and all factors combined.

The above results support the hypothesis that the bias is smaller
when a third-order translog cost function is used rather than the
second-order. This 1implies that the shares of inputs from the
third-order function are superior in prediction performance than those

derived from the second-order form.

4.9 Policy Implications of our Results

Since the signs and the significance levels of 0}) derived from the
third-order cost function changed over the study period, policy
implications derived from the second-order cost function estimates may
not be appropriate. For example, the estimated AUES from the
second~order cost function UEE and e arc negative and GLE is
positive. These signs suggest that energy and capital are complements
while energy and labor are substitutes. Hence, the lifting of price
ceilings on energy types would reduce the energy and
capital-intensiveness and increase the labor intensiveness of producing
a given level of output. Examining the signs of the above measures of
substitution possibilities, we find similar policy implications only if
the predictions were made based on the estimates until the year 1858.
After this period, energy-capital complementarity weakened up to the
last three years of the study period, i.e. there was no significant
substitution possibilities among the inputs mentioned. More
importantly, the energy-labor substitutability has changed to that of

complementarity. Therefore , the lifting of price ceilings on energy
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types during this period would not alter capital intensiveness, but
would reduce labor intensiveness. It would not increase the latter as
was suggested by the estimates of the second-order cost function. In
addition to the above, it was predicted that the general investment
incentive would incre.se energy and capital demand, since, based on
second-order estimates, they were found to be complements. Hence, the
investment incentive program was found unattractive to a government with
objective of energy conservation. In light of our result, the policy
conclusion arrived at using the second-order cost estimates of AUES do
not hold, if the predictions were based on the substitution
possibilities existing throughout most of the 1960’s. Therefore, a
fiscal stimulant, such as tax incentives to reduce the price of capital

would not affect energy conservation policies.

4.10 Summary and Conclusion

In this chapter a number of significant results were obtained. The
third-order parameters that were assumed to be zero were found to be
significantly different from zero. The second-order translog cost
function that was believed to represent the U.S. manufacturing sector
was found to be misspecified. The share elasticities that were assumed
to be constant were found to be variable in most cases. The AUES
revealed that substitution possibilities did not maintain a
uni-directional relationship for the whole period. They moved from a
regime of substitutability to one of complementarity. Due to the
sensitivity parameters introduced in the third-order function, we were

able to analyze the rates of change of important econownic relationships




such as the cost shares, and also analyze the stability of the share
elasticities. Furthermore, unless one 1is satisfied with average
tendencies of the variables, our results suggest that Lhere is a need to
examine the movement of important variables such as the AUES period by
period. This is made possible due to the flexible formulae derived from
the third-order function. Finally, the variable AUES suggests that
there is a need to re-evaluate policies from time to time, since the

substitution possibilities can change during the policy period.

114




TABLE 4.1a.

ITERATIVE ZELLNER PARAMETER ESTIMATES

OF THIRD ORDER TRANSLOG COST FUNCTION
US MANUTACTURING, 1947 - 1871

T

PARAMETER ESTIMATE PARAMETER ESTIMATE
T 7

s . 0534 Y -,0170
kK (27.182) KLE  (~0.491)
7 . 0386 7 . 1780
KK (1.883) KLH (1.994)
WKL . 0364 WKEE 0. 1844
(3.340) (1.737)

zKE . 0030 7KEH -.3611
(.202) (~2.039)

zKH -.0791 aKHM . 4740
(-2.221) (1.385)

zL . 2500 ac . 0432
(89.002) (36.403)

JLL . 1275 yEE -. 0586
(6.023) {~-1.498)

7LF . 0255 ILLL -.2227
(3.235) (-2.998)

LA -.1894 qLLE -.1354
(-6.457) (~4.260)

Yy .B6533 Y in . 49861
(170.857) (4.398)

2y . 0300 T er . 1707
(0.589) (1.792)

yHH . 2385 7LEH -.0183
(2.714) (-.137)

3KKK 0.1204 ILHH -.6558
(0.987) (-2.444)

ZKKL -.0231 7EEE . 7588
(-0.593) (2.785)

WKKE -.1936 ?EEH -1.1149
(-2.613) (~-2.731)

WKKM -.2808 WEHH 1.4943
(0.987) (2.340)

¥ -1.3124 T -. 1380
M (1. 227) KL (-3.509)

t* statistics are given in parentheses
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TABLE 4.1b. ITERATIVE ZELLNER PARAMETER ESTIMATES
OF SECOND ORDER TRANSLOG COST FUNCTION
US MANUFACTURING, 1947 - 1971

PARAMETER ESTIMATE
7K . 0570
(41.800)
yxx . 0297
(5.005)
L -.0004
(-.096)
UKE -.0102
(-3.014)
3KM -.0191
(-1.935)
3L .2534
(119.582)
yLL L0754
(11.077)
3LE -.0044
(-1.810)
7, -. 0706
(-6.559)
7, .0443
(50.119)
ZEE .0188
(3.508)
¥ -.0041
(-.479)
7, .B453
(191.828)
Vo .0938
(4.034)

*®
t statistics are given in parentheses
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Table 4.2a. COST, ACTUAL AND FITTED SHARES FOR ENERGY AND

. NTERMEDIATE MATERIALS FROM THIRD ORDER TRANSLOG COST

FUNCTION, U.S. MANUFCTURING 1947-1971.

COST SEFT SE SMFT SM
1947 182. 373 .432397E-01 . 425335E-01 .653381 .B659127
1948 183. 162 .509155E-01 .512662E-01 .626326 . 613399
1949 186. 532 .489239E-01 . 507523E-01 .B54308 .644113
1950 221.709 .446461E-01 . 4860648E-01 .6488B55 . 656084
1851 255.845 .453024E-01 .448221E-01 .B845569 . 649915
1952 264.8670 .458006E-01 . 4453987E-01 .640547 . 6386391
1953 291. 161 .462156E-01 . 43L807E-01 .B633632 . 640707
1954 274. 456 .454253E-01 . 478683E-01 .631453 . 624108
1955 308. 808 .457392E-01 .451722E-01 .630454 . 637599
1956 328.286 .483863E-01 .457561E-01 .631820 . 639389
1857 338 634 .478334E-01 . 482025E-01 .628319 . 629624
1958 323 319 .462136E-01 . 483578E-01 .627562 . 818663
1859 358. 434 .453467E-01 . 456288E-01 .619674 . 618483
1860 366. 251 .452257E-01 . 458453E-01 .621677 . 6188396
1961 366. 161 .450269E-01 . 464030E-01 .620523 . 6161869
1962 3380. 667 .446258E-01 . 452995E-01 .619124 .B616127
1963 412 188 .434648E-01 .44B6879E-01 .617535 .619619
1964 433. 767 .432622E-01 .439178E-01 .B17758 .618135
1965 474.970 .426733E-01 .411386E-01 .617154 . 624233
1966 521.291 .422078E-G1 .401368E-01 .616907 . 621627
1967 540. 341 .415838E-01 .407408E-01 .616892 . 618369
1968 585. 448 . 394924E-01 .397063E-01 .620108 .613884
1969 630. 452 .409595E-01 . 396303E-01 .B615492 . 615967
1970 623. 445 . 426283E-01 .434792E-01 .609927 . 606417
1971 658. 237 .443653E-01 .447938E~01 .615860 . 619401
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Table 4.2b. ACTUAL AND FITTED SHARES FOR CAPITAL AND LABOR

FROM THIRD ORDER TRANSLOG COST FUNCTION,

U.S. MANUFACTURING 1947-1971.

SKFT SK SLFT
1847 .533543E-01 .510855E-01 . 250025
1948 .566414E-01 .581730E-01 266117
1848 .434424E-01 .460185E-01 . 253325
1950 .489060E-01 . 499073E-01 . 257793
1951 .512496E-01 .503896E-01 . 257879
1952 .505577E-01 .481616E-01 . 263085
1853 .517103E-01 .472836E-01 . 268442
1954 .537277E-01 .563479E-01 . 269399
1855 .533883E-01 .525759E-01 270418
1956 .501885E-01 .460388L-01 . 268605
1857 .516183E-01 .503328E-01 212229
1958 .533824E-01 .601535E-01 . 272842
1959 . 582287E-01 .618550E-01 . 276750
1960 .588523E-01 .578840E-01 L277245
1961 . 559826E-01 .580338E-01 . 278467
1962 .557475E-01 .557730E-01 . 280502
1963 .5708538E-01 . 560083E-01 .2813814
1964 . 562803E-01 .545189E-01 .282/00
1965 .575560E-01 .546665E-01 . 282617
1966 .574212E-01 .546020E-01 . 283464
1967 .555758E-01 .5442739E-01 . 285948
1968 .560139E-01 .575830E-01 . 284386
1869 . 545891E-01 .540971E-01 . 288959
1870 . 531844E-01 . 525498E-01 . 294259
1971 . 4551380E-01 .467507E-01 . 294156

118

2412704
L2762
.259115
247943
. 254873
. 286549
. 268318
L2174

2646453
268806

L2
.212825
. 273033
23T
. 278394
. 282745
L2967,
. 283428
. 279961
. 283634
. 286462
. 288827

280306

L291554
. 288054




Table 4.2c ACTUAL AND FITTED SHARES FOR ENERGY AND INTERMEDIATE

MATERIALS FROM SECOND ORDER TRANSLOG COST FUNCTION,
U.S. MANUFCTURING 1947-1971.

1847
1948
1949
1950
1951
1957
1953
1854
1855
1956
1957
1858
1858
1860
1961
1962
1863
1864
1865
1966
1967
1968
1969
1970
1971

119

SEFT SE SMFT SM
. 442865E-01 .425335E-01 .645280 . 659127
. 483620E-01 .512662E-01 .639051 . 613399
. 497967E-01 . 507523E-01 . 645659 .644113
.473141E-01 .460648E-01 .642055 . 656084
. 459200E-01 .448221E-01 .641330 . 6439815
. 467630E-01 445987E-01 .6386390 . 638691
464677E-01 436807E-01 .635043 . 640707
.453782E-01 . 478693E-01 .633768 . 624108
. 461085E-01 .451722E-01 .6331086 . 837588
.471711E-01 .457561E-01 .635825 . 6393389
.464001E-01 .482025E-01 .832713 . 628624
. 455863E-01 .483578E-01 .631324 . 618663
. 438793E~01 .456288E-01 .625170 .619483
. 442595E-01 .458453E-01 . 626232 . 518896
. 440283E-01 . 464030E-01 .624916 .616168
. 438520E-01 . 452885E-01 .622683 .616127
. 428259E-01 .446978E~01 .618003 .619619
.432336E-01 .438176E-01 .617511 . 818135
. 424305E-01 .411386E-01 .616457 . 624233
.420157E-01 401368E-01 .616068 . 621627
421999E-01 .407408E-01 .614996 . 618369
. 416675E-01 .397063E-01 .609948 .613884
.419069E-01 . 396303E-01 .613061 . 615867
.424721E-01 .434782E-01 .611720 . 806417
. 454788E-01 .447838E-01 .808138 . 618401



Table 4.2d. ACTUAL AND FITTED SHARES FOR CAPITAL AND LABOR

FROM SECOND ORDER TRANSLOG COST FUNCTION,

U.S. MANUFCTURING 1847-1971.

SKFT SK SLIT SL
1947 .870227E-01 .510655E-01 . 253401
1948 .533147E-01 .581730E-01 .259272
19489 .451696E-01 .460195E-01 .259378
1850 .503945E-01 .499073E-01 . 260236
1851 .522754E-01 .503896E-01 . 280475
1852 . 508245E-01 .491616E-01 263723
1953 .512601E-01 .472836E-01 . 267229
1954 .530812E-01 563479E-U1 .267173
1855 . 526820E-01 .525759E-01 .268104
1856 .485793E-01 .480388E-01 2684245
1957 .502398E-01 .503328E-01 .270647
1958 .523390E-01 .601535E-01 L 270751
1959 .564567E-01 .B618550E-01 .274494
1860 .546521E-01 .578840E-01 . 274856
1961 .548369E-01 .590338E-01 .216218
1962 .548050E-01 .557790E-01 . 278660
1963 .565723E-01 .560083E-01 .281499
1964 .560617E-01 .545183E-01 .283194
1965 .574593E-01 .546665E-01 . 283653
1966 .576681E-01 .546020E-01 .284248
1867 .562891E-01 .544279E-01 .286515
1968 .581502E-01 .575830E-01 .280234
1968 .556413E-01 .540971E-01 . 289391
1970 .528065E-01 .525498E-01 . 2393002
1971 .486232E-01 .467507E-01 .296759
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.247274

277162

.259115
. 247943
. 254873
. 286549
. 268318
.271674
. 264653

268806
271841
272825
2/3033

.277375
. 278394
. 282735
. 279615

2834289
2719961

. 283634
. 286462

288827

. 290306
. 297554
. 289054



TABLE 4.3a. OWN SHARE ELASTICITY ESTIMATES OF THIRD ORDER TRANSLOG COST
FUNCTION. US MANUFACTURING, 1947 ~ 1971 ESTIMATE

S S ) S
KK LL EE MM

1847/ . 0396 . 1275 -. 0586 . 2385
(1 883) (6.023) {-1.498) (2.714)

1948 L0721 . 0860 . 1073 . 4699
(3.219) (5.8530) (3.913) (4.836)

1949 0178 . 1417 -.0194 .1921
( 769) {7.032) (-.653) (2.318)

1950 . 0288 . 1230 -.0198 . 1985
{3 136) (7 527) (-1.046) (3.701)

1951 . 0250 . 1231 -. 0480 . 1481
(2 735) (7 740) (-1.768) (2.229)

1852 . 0266 . 1132 ~. 0200 . 1654
(3.177) (8.616) {(-1.153) (3.351)

1953 L0284 . 0988 -. 0085 . 1383
(4.204) (10.196) (-.487) (4.426)

1954 . 0389 . 0897 . 0132 . 1832
(4.558) (9.882) (2.220) (6.971)

1955 . 0368 . 0882 .01586 . 1741
(5.078) (10.457) (2.710) (7.177)

1856 . 0148 . 1108 -. 0278 .0704
(.929) (10.070) (-1.302) (1.207)

1957 . 0200 . 08972 -.0159 .0706
{1.900) (11.981) (-1.054) (1.787)

1958 .027 . 0882 -. 0073 . 0839
(4.634) (12.733) (-.708) (3.734)

1959 . 0417 . 0586 . 0235 . 1202
{2.579) (8.227) (2.052) (2.805)
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TABLE 4.3a. OWN SHARE ELASTICITY ESTIMATES OF THIRD ORDER TRANSLOG COST
FUNCTION. US MANUFACTURING, 1947 - 18971 ESTIMATE, Continued

Sxx SLI “EE Snn
1960 .03089 . 0689 . 0009 0646
(3.593) (12.204) (.086) (2 633)
1961 .0299 . 0850 . 0004 0467
(3.449) (10 993) (.048) (1 793)
1962 . 0285 . 0585 . 0035 0207
{3.423) (8.408) (.407) {727)
19R3 .0325 0437 .0130 0084
(2.450) (4.361) (1.019) { 194)
1964 .0336 0379 . 026/ L0111
(2 651) (3.361) (2.027) { 276)
1965 0346 . 0339 0201 - 0024
(2.150) (2.741) (1.281) (- 046)
1966 .0304 . 0352 0057 -.03/%
(1.899) (2.8021 ( 348) (- /25)
1967 .0218 . 0369 -. 0064 - 0956
(2.101) (2.782) (-.455) {(-2.017)
1968 .0335 .0127 0374 -.0621
(1.869) (.892) {1 566) (- 841)
1969 .0130 . 0359 - 0229 - 16/7
(1.372) (2.373) (-1.482) (~3.096)
1970 -.00286 . 0408 -.0431 -.2648
(-.155) (2.372) (-2.453) (-3 B39)
1971 .0074 0258 . 0392 - 1698
(.324) (1.239) (1.315) (-2.027)

-
t statistics are given in parentheses
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TABLE 4.3b. CROSS SHARE ELASTICITY ESTIMATES OF THIRD
ORDER TRANSLOG CCST FUNCTION. US MANUFACTURING, 1847 - 1971
S S
LM LE EM LK KE KM

1947 -. 1664 0255 . 0300 .0364 .0031  ~.0781
(~6.457)  (3.235)  (.583) (3.340)  (.202) (-2.221)

1948 -. 1578 .0502  -.1880 .0216 0305 ~.1242
(~5.273)  (2.708) (-3.733) (2.342) (1.832) (-3.219)

1949 -.2132 .0405 . 0243 0309  -.0454  ~.0033
(-6 000)  (3.678)  (.578) (2.274) (-3.169)  (~.094)

1950 ~.1789 . 0293 .0128 . 0660 -. 0221 -.0334
(-7.000)  (3.848)  (.484) (2.864) (-2.831) (-1.8089)

1951 -. 1694 0200 . 0505 0263  -.0221  -.0291
(-6.918)  (2.868) (1.322) (2.970) (-2 276) (-1.418)

1957 - 1541 .0207 . 0225 0203 -.0232  -.0237
(-7 524)  (3.454)  (.930) (2.676) (-3.338) (-1.477)

1953 -.1280 .0148 . 0106 0134  -.0200  -.0218
(-8.561)  (3.161)  (.669)  (2.373) (-3.871) (-1.829)

1954 -. 1167 0153 -.0227 .0117  -.0059  -.0438
(-8 845) (2 826) (-2.832) (2.405) (-1.072) (-3.313)

1955 -. 1127 .0144 -.0222 .0102 -.0078 -.0392
(-9.000) (2.683) (-2.606) (2.227) (-1.588) (-3.352)

1956 -. 1371 .0127 . 0552 .0136  -.0400 .0116
(-6.975)  (2.126) (1.716)  (1.739) (-3.682)  (.466)

1957 - 1127 .0071 . 0397 .0084  -.0308 .0024
(-8.361)  (1.763) (1.788)  (1.537) (-4.155)  (.148)

1958 -.0996 .0048 L0211 .0067  -.0185  -.0127
(10 051)  (1.631) (1.501)  (1.677) (-4.107) (-1.540)

1959 -.0502  -.0051  -.0250  -.0033 .0085  -.0449
(-3.749)  (-.957) (-1.267) (-.575)  (.705) (~-1.936)
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ORDER TRANSLOG COST FUNCTION. US MANUFACTURING,

(CONTINUED)
S S
LM LE EM

1860 —-. 0598 -.0070 -.0151 -
(-7.057) (-2.838) (1.215) (-

1861 -. 0501 -.0104 .0194 -
(-5.399) (~3.856) (1.486) (-1

1862 -.0344 -.0152 . 0225 -~
(-3.038) (-4.4100 (1.708) (-1

1963 -. 0056 ~. 0229 .0122 -
(-.316) (-4.169) (.6820) (-2

1964 . 0036 -.0232 -.0015 -
(.182) (-3.8696) (-.088) (-2

1865 0137 -.0278 . 0057 -
(.814) (-4.051) (.232) (-2

1966 .0174 -.0323 0285 ~
(.785) (-4.679) {1.199) (-2

1867 . 0233 -.0372 0573 -
(1.061) (-5.154) (2.757) (-2

1968 . 0608 -.0415%5 . 0060 -
(1.887) (-4.262) (.181) (-2

1969 . 0367 -.0456 . 0928 ~
(1.510)} (-5.056) (3.800) (-3

1970 .0424 -.0524 . 1423 -
(1.5980 (-4.601) (4.234) (-3

1971 . 0506 -.0380 . 0435 -
(1.717) (-4.640) (1.045) (-3

t. statistics are
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.0021
.541)

. 0045
L111)

.0089
.923)

L0152
. 152)

.0184

419)

.0200
.261)

. 0203
.342)

0230

.828)

0320

.664)

.0270
.128)

. 0308
.383)

.0384
.571)

(-1.

(-3.

(-3.

(-3.

given in parenthesecs

1947 - 1971
5. S
KE KM

. 0030 —-. 0289
823) (-1.588)
0094 -.0160
.8923) (-1.254)
.0108 - 0088
.333) (-.68/7)
.0023 -.01H
317) (- 7H6)
0020 - 0132
274) (-.651)
.0021 -.0170
234) (- 696)
.0018 -. 0084
.222) (- 364)
0138 L0150
.317) (.834)
. 0032 -. 0046
.304) (-.157)
.0243 .0383
520) (2.014)
.0467 . 0802
761) (2.698)
.0447 .0757
044) (1.994)




TABLE 4.3c. OWN AND CROSS SHARE ELASTICITS AT THE MEAN

ESTIMATES OF THIRD ORDER TRANSLOG COST
FUNCTION. US MANUFACTURING, 1847 - 1971

ESTIMATE
Share Estimated T-
Elasticities Coefficient Statistic

g .087 11.819
LL

S .004 .625
EL

S .046 2.039
MM

S .028 4.344
KK

S - .054 -6.324
LM

S -.009 -3.211
LE

S .018 1.692
EM

S -.005 -1.303
LK
i -.014 -3.549

S -.010 -.961

KM
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TABLE 4.4a ESTIMATED OWN ALLEN PARTIAL
ELASTICITIES OF SUBSTITUTION THIRD ORDER
TRANSLOG COST FUNCTION.

US MANUFACTURING, 1947 - 1971

O-LL O-EE O-HH O'KK

1847 -.960 -53. 473 . 028 -3.830
(-2.769) (2.539) (.158) (.421)

1948 -1.543 22.758 . 601 5.834
(-7.352) (2.140) (2.390) (.775)

1849 -.739 ~-27.550 -.079 -12.584
(-2.491) (-2.272) (-.448) (-1.127)

1850 -1.028 -31.393 -.068 -7.378
{-3.883) (3.354) (-.485) (-2.015)

1951 -1.027 -44.8657 -. 194 -9, 000
(-4.200) (-3.332) (-1.195) (-2.503)

18562 -1.166 -30. 359 —-.182 -8.373
(~-6.270) {-3.622) (-1.619) (2.4086)

1953 -1.340 -23. 227 -.231 =7.720
(-9.858) (-3.996) (-2.891) (-2.466)

1854 -1.476 -14.8610 -. 124 -4.488
{-11.919) (-5.438) (-1.957) (-1.839)

1955 -1.493 -13. 416 -. 148 -4.831
(-12.630) (-4.793) (-2.348) (-1.802)

1956 -1.188 -30.643 -. 408 -13.018
(-7.802) (-3.348) (-2.748) (-1.813)

1957 -1.362 -26.871 -.413 -10. 884
(-12.414) (-4.0890) (-4.120) (-2.651)

1958 -1.481 -24.049 -.355 -8.220
(-15.912) (-5.179) (-5.652) (~5.030)

1959 -1.848 -9.603 -.301 -3.865
(-19.643) (-1.743) (-2.693) (-1.007)
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TABLE 4.4a ESTIMATED OWN ALLEN PARTIAL
ELASTICITIES OF SUBSTITUTION THIRD ORDER
TRANSLOG COST FUNCTION.
US MANUFACTURING, 1847 - 1971 (Continued)

o‘LL O'EE O-HH GKK
1860 -1.711 -20.693 -. 441 -7.003
(-23.237) (-4.815) (-6.974) (-2.751)
1961 -1.782 -20.998 -.490 -7.314
(-22.962) (-4.739) (-7.287) (-2.951)
1962 -1.822 -18.628 -.561 -6.538
(-20.756) (-4.556) (-7.576) (-2.912)
1963 -1.988 -15.148 -. 597 -6.538
(-15.762) (-2.333) (-5.208) (-1.8533)
1964 -2.083 -7.853 -.580 -6.153
{-14.835 (-1.162) (-4.593) (1.413)
1965 -2.114 -11.396 -.627 -5.942
(-13.568) (-1.233) (-4.352) (-1.085)
1966 -2.080 -19.512 ~. 720 -7.184
(-13.389) (-2.018) (-5.275) (-1.391)
1967 -2.046 -26.718 ~.872 -8.837
(-12.633) (-3.259) (-6.994) (-2.860)
1968 -2.359 -3.566 -. 774 -6.185
(-10.461) (-.279) (-4.050) (-1.181)
1969 -2.031 -37.058 -1.068 -12.958
(-11.256) (-3.946) (-7.4863) (-4.031)
1970 -1.826 -46.188 -1.351 -18.704
(-9.740) (-4.819) (-6.919) (-3.180)
1971 -2.101 -1.822 -1.071 -17.383
(-8.625) (-.120) (-4.842) (-1.621)

]
t statistics are given in parentheses
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TRANSLOG COST FUNCTION. US MANUFACTURING, 1947 - 1971

TABLE 4.4b ESTIMATED CROSS ALLEN PARTIAL
ELASTICITIES OF SUBSTITUTION THIRD ORDER

. 160

-.801)

.0b4

.409)

. 286
.303)
.070
.B33)

.018
.155)

.08Y

798)

247
936

.314

.009)

. 339

.A475)

. 182

769)

. 341

342)

418

.3975)

L7007

o o o o o
EM KE KM LE LM
1847 2.061 2.338 ~1.268 3.363 -
(1.140) (.345) (-1.276) (4.567) (-
1948 -4.885 11.574 -2.502 4.3863
(-3.108) (1.792) (-2.294) (3.472) (
1948 1.760 20.365 . 883 4 266 -
(1.355) (~-3.006) (.741) (4.873) (-1
1950 1.440 -8.112 -.082 3.542 -
(1.832) (-2.620) (-.034) (5.351) (-
1951 2.725 -8.522 . 118 2.717 -
(2.085) (-2.044) (.175) (4.50 (-
1952 1.765 -9.008 . 268 2.719
{2.113) (-3 022) (.483) (5.437) (
1953 1.362 ~-7.330 . 334 2.196
(2.436) (-3.470) (.708) (5.659) (2.
1954 .208 -1.370 -.291 2.249
(.799) (-.572) (-.8653) (b 231) (4
1855 .231 -2.172 -. 165 2.160
(.778) (~-1.101) (-.487) (4.918) (4
1956 2.768 -15.1869 1 365 1.859
(2.626) (-3.488) (1.851) (4.182) (1.
1957 2.319 -11.463 1.075 1.542
{3.153) (-3.827) (2.061) (5.034) (4.
1958 1.726 -6.511 .544 1.377
(3.635) (-3.483) (2.213) (6 185) (6
1959 . 110 3.471 -.245 . 597
(.185) (1.009) (-.285) (1.402) (8
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880)

o
Kl

3.

(4.

(5

et

499)

. 43?7

091)

811

. 150)

108

. 197)

808

.551)

70¢7

.263)

.01
.317)

. 596
.049)

790)

. 794

(2.

342)



TABLE 4.4b ESTIMATED CROSS ALLEN PARTIAL
ELASTICITIES OF SUBSTITUTION THIRD ORDER
TRANSLOG COST FUNCTION.
US MANUFACTURING, 1947 - 1971 (Continued)

[ g o (o8 28 [0
EM KE KM LE LM KL

1960 1.536 -2.552 . 428 .446 .B53 . 867
(3.502) (-1.284) (1.277) (2.191) (13.186) (3.673)

1961 1.694 -2.746 . 540 .172 .710 .710
(3.677) (-1.365) (1.602) (.891) (13.074) (2.932)

1962 1.813 -3.344 . 746 -.214 .801 .432
(3.830) (-1.787) (2.005) (-.691) (12.358) (1.494)

1963 1.454 . 079 .573 -.866 . 968 .G57
(2 027) (.030) (.986) (-1.890) (9.429) (.070)

1964 . 944 . 168 .620 -.894 1.021 -.156
(1.169) (.050) (1.010) (-1.710) (8.949) (-.386)

1965 1.217 1.845 .523 -1.313 1.079 -.211
(1.272) {.487) (.707) (~2.378) (8.448) (-.504)

1966 2.092 . 253 .764 -1.700 1.100 -.246
(2 250) (.047) (1.115) (-3.030) (8.732) {-.553)

1967 3.235 -4.976 1.438 -2.127 1.132 -.446
{3.968) (-1.945) (2.707) (-3.536) (8.137) (-.910)

1968 1.243 2.431 . 868 -2.683 1.345 -1.011
(.821) (.524) (1.048) (-3.083) (7.385) (-1.281)
1969 4.680 -9.874 2.140 -2.849 1.2086 -.710
(4.801) (-3.209) (3.766) (-3.779) (8.875) (-1.307)
1970 6.471 -138.605 3.471 -3.179 1.236 -.974
{5.019) (-3.577) (3.771) (-3.4865) (8.401) (-1.8671)
1971 2.591 -21.151 3.701 -1.908 1.280 -1.870
(1.712) (-2.902) (2.757) (-3.057) (7.798) (-2.315)
t. statistics are given in parentheses
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TABLE 4.4c ESTIMATED OWN AND CROSS ALLEN
PARTIAL ELASTICITIES OF SUBSTITUTION AT THE MEAN THIRD
ORDER TRANSLOG COST FUNCTION.

US MANUFACTURING, 1947 - 1971

Allen Partial Estimated T~
Elasticities Coefficint Statistic
p -1.757 -23.386

LL
o -19. 153 -5.524

EE
. -.479 -8.416

MM
o -7.8860 -3.473

KK
s 1.635 4.354

EM

o -4.735 -2 930
KE

. .710 2.353
KM

pe .311 1.454
LE
p . 689 13.938
LM

P .682 2.7797

KL
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TABLE 4.4d ESTIMATED ALLEN PARTIAL
ELASTICITIES OF SUBSTITUTION SECOND ORDER
TRANSLOG COST FUNCTION.
US MANUFACTURING, 18947 - 1871

AES 1955 1860 1965 1970 AT THE MEAN
Tk - 7.2657 - 7.3401 - 7.3954 - 7.2714 -7.3007 (-3.516)
T, ~ 1.6807 - 1.6400 - 1.5881 - 1.5345 - 1.6427 (-18.166)
T ~-11.8620 -12.0152 -12.1455 -12.1428 -11.9723 (-4.483)
T - .3453 - .3575 - .3751 - .3833 - .3557 (-6.014)
T .9738 . 9754 L9773 . 9761 .9748 (3.695)
. - 3.2131 - 3.2310 - 3.1477 - 3.5632 - 3.2699 (-2.308)
Cn L4291 . 4658 . 4392 . 3885 . 4297 (1.458)
T .6426 . 6368 . 6329 . 6450 .6406 (3.226)
LM .5814 . 5886 . 5858 . 6086 .5886 (9.424)
o .8592 . 8517 . 8428 .8418 . 8537 (2.796)
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TABLE 4.5a ESTIMATED OWN PRICE

ELASTICITIES THIRD ORDER
TRANSLOG COST FUNCTION.

US MANUFACTURING, 1947 - 1971

CLL E:EE’ CHH
1947 -.237 -2.274 .018
1948 -.428 1.167 . 369
1949 -. 191 -1.388 -. 051
1850 -.255 -1.446 -.443
1851 -.262 -2.002 -. 126
1952 -.311 -1.354 -. 117
1953 -.360 -1.0156 -.148
1954 -. 401 -.699 -.078
1955 -.395 -.606 ~. 094
1956 -.318 -1.402 -.260
1957 -.370 -1.295 -. 260
1858 -.404 -1.163 -.220
1959 - 508 -.438 -. 186
1860 -.475 - 948 -.273
1961 -.488 - 974 -.302
1962 -.515 -.889 -.346
1963 -.558 -.677 -.370
1964 -.585 -.345 - 365
1965 -.582 -.469 - 391
1966 -.593 -.783 -.447
1967 -.586 -1.088 -.539
1968 -.681 -.142 -. 475
1968 -.580 -1.469 -.658
1970 -.573 -2.008 - 820
1971 -.607 -.073 -.663
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TABLE 4.Sb ESTIMATED CROSS PRICE

ELASTICITIES THIRD ORDER
TRANSLOG COST FUNCTION.

US MANUFACTURING, 1947 - 1971
CLE 8EL ELH CHL
1947 . 143 .832 . 105 -.040
1948 .241 . 303 . 033 .015
1948 217 . 105 . 184 -.074
18580 . 163 .878 . 046 .173
1951 .122 . 692 .012 .005
1962 . 121 . 725 . 055 .023
1963 . 0386 . 560 . 159 . 064
1954 . 107 .611 . 196 .085
1955 . 976 .572 .216 .080
1956 .090 . 527 . 123 . 052
1957 .074 .419 . 215 .083
1058 . 087 . 376 . 259 114
1959 . 027 . 163 . 438 . 193
1860 .021 . 124 . 404 . 181
1961 . 008 .048 . 437 . 198
1962 .010 . 080 . 494 . 227
1963 . 039 .242 . 560 .271
1964 .034 .253 .631 . 289
1965 .050 .368 .B873 . 302
1966 . 068 . 482 . 683 .312
1867 . 087 .603 .B70 . 324
1968 -. 107 ~. 778 .825 . 388
1969 -. 113 -.827 . 743 . 350
1970 -.138 .946 . 750 . 368
1971 . 086 . 551 .792 .370




TABLE 4.Sc ESTIMATED CROSS PRICE
ELASTICITIES THIRD ORDER
TRANSLOG COST FUNCTION.

US MANUFACTURING, 1947 - 1971

LK CKL CEK EKF
1847 3.727 .822 . 118 2
1948 2.438 .674 .673 15
1948 2.835 .988  -.937 -24.
1850 2.875 771 -.455 -11
1951 3.133 .761 ~.430 -10
1952 2.518 .673  -.443 -11
1953 1 975 .526 - 347 -9
1954 1.9687 .41 -.077 -1
1955 1.883 L4572 -.114 -2.
1956 2.003 .541 -. 698 -20.
1957 1.697 .434 -. 577 -15
1958 1.687 .3388 -.392 -9
1959 1.038 217 215 4
1860 1 087 241 -.148 -3
1961 . 897 .188 - 162 -3
1962 547 122 -.187 -,
1963 .076 .016 .004
1964 -.207 -.044 .009
1965 -.287 -.058 . 101 2.
1966 -.356 - 070 .014
1967 -.618 -.128 -.271 -6
1968 -1.515 -.292 . 140 3.
1969 -1 030 -.206 -.534 ~-14
1970 -1.291 -.230 -1.030 -28.
1971 -2.247 -.540 -.989 -34.
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076
369
066

. 668

523
346
786
917
805
821
072
748
H23
179
605

. 107
. 233

558

. 354

97t
484
463
606
833



TABLE 4.5d ESTIMATED CROSS PRICE
ELASTICITIES THIRD ORDER
TRANSLOG COST FUNCTION.

US MANUFACTURING, 1947 - 1971
CEH CHE CHK SKH
1947 1.359 . 088 -.065 -1.268
1948 ~-3.003 -.251 ~. 146 -2.840
1949 1.134 . 089 . 041 . 937
1950 .845 . 066 ~. 003 ~-.058
1861 1.771 . 122 . 006 . 145
1952 1 128 . 078 .013 . 322
1953 . 873 . 060 .016 . 397
1954 . 130 .010 ~.016 -.351
1955 . 147 010 . 009 -.205
1956 177 . 127 . 083 1.7865
1957 1.460 112 . 054 1. 406
1958 1.068 . 084 . 033 122
1959 . 068 . 005 -.152 -.321
1860 . 951 . 070 . 248 .574
1961 1.044 .079 . 032 . 726
1962 1.117 . 042 .416 1.005
1863 . 901 . 065 . 032 . 763
1964 . 583 .415 .034 . 839
1865 . 760 . 050 . 286 . 720
1966 1.301 .084 . 042 1.084
1967 2.001 . 132 . 782 2.047
1968 . 763 . 048 . 050 1.245
1969 2.883 . 186 . 116 3.282
1870 3.924 . 281 . 182 5.372
1971 1 605 . 116 .173 5.735
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TABLE 4.5e STIMATED OWN AND
CROSS PRICE ELASTICITIES AT THE MEAN THIRD
ORDER TRANSLOG COST FUNCTION.
US MANUFACTURING, 1947 - 1971

Elaticities Estimated Coefficient T- Statistic
e ~. 482 -23.386
- - JE S S
CEE . 858 H.524
£ -. 300 -8.416

MM

€ -. 420 -3.473
KK

e .037 2 197
LK

£ 187 2197
KL

£ -.253 2 930
EK

£ -.212 2 930
KE

£ 1.026 4.34%4
EM

€ .073 4 354
ME

£ . 038 2 353
MK

€ 445 2.353
KM

€ 014 1.454
LE

£ 086 1.454
EL

€ . 431 13.938
LM

£ .189 13.938
ML
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TABLE 4.6 SELECTED STUDIES OF CAPITAL-ENERGY COMPLEMENTARITY DEBATE

Data and Observation or

Author Country and Industry
Berndt and U.S. Manufacturing
Christensen

(1973)

Hudson and U.S. 9 Industrial
Jorgensen Sectors

(1974)

Berndt and U.S. Manufacturing

Wood (1975)

Brendt and
Wood (1979)

Fuss (1977)

Hazila and
Koop (1984)

Chung
(1987)

Said (1991)

U.S. Manufacturing

Canadian
Manufacturing

Uu.s. 34
Producing Sector

U.S. Manufacturing

U.S. Manufacturing

Time series
1929-1968

Time Series
1947-1971
Time Series
1947-1971

Time Series
1947-1971

Pooled Data
1961-1971

Time Series
(1958-1974)

Time Series
1947-1971

Time Series
1947-1971

Assumptions & Cost

.%mca:opwc:aw::nnmos Main Results

l.inear Homogeneous
and Separable
wﬁx_.xb.rv

Homogeneous and
Separable
(K,1.,E,M)

Linear Homogeneous
and Separable
(K,L,E,M)

l.inear Homogeneous
and Separable
(K,L,E,M)

Homothetic
(K,L,E,M)

Homothetic
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X
]

capital, K = capital 1 (i

J

=

equipment or structures in 1973), L = labor, E = energy,

materials, I = non-resource intermediate input.
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CHAPTER 5

Testing for functional separability.

Specification of aggregate production functions, relating output to
capital and labor, proved to be useful in empirical analysis of producer
behavior. However, the use of aggregates of labor and aggregates of
capital 1in aggregate production functions like the “CD" and "CES"
assumes functional separability (Leontief, 1947 a,b). The multi-input
version of "CD" and "CES" also impose functional separability, since
there are no parameters to take into account of the interactions among
the inputs in question (Berndt, 1973).

In order to resolve the rigidities of traditional! functional like
"CD" and "CES", various flexible functional forms were developed.  The
properties of these forms were discussed in Chapter ? These form.
allow us to use disaggregated inputs, and also takes inlo account the
interactions among the inputs involved. Hence, separability becomes o
testable parametric restriction.

The theoretical aspects of separability were discussed in both
Chapters 2 and 3. In Chapter 2, the linear and non linecar separability
restrictions were derived by using the second order translog cost
function In Chapter 3, the derivation was extended to a third order
translog cost function.

In the present chapter, the number of inputs will be extended f{rom
three to four and the separability restrictions will be derived for
every possible form of aggregation. We will then test for variou.,
separability restrictions derived from the third and second-order

translog cost functions. The results will then be comparcd.



The data to be used in examining the separability issue is the same
as those used in Chapter 4:KLEM, for U.S. manufacturing sector
1947-1971. The estimation techniques used also remains the iterative
Efficient Zellner.

The fitted cost share equations derived from the third-order
translog cost function with and without the separability restrictions of
various types were estimated. Based on the likelihood ratio test, we
were able to reject all types of separability restrictions, including
the utilized capital specif’icationl, which could not be rejected by
using the restrictions derived from the second order translog cost
function. Our findings suggest that there will be a loss of explanatory
power if the U.S. manufacturing sector were specified in terms of
capital and labor aggregates, implied by the value added specification.
This will also be true if it were specified in terms of the aggregate
index formed by energy and capital, on one hand, and labor and
intermediate materials on the other, implied by the utilized capital
specification.

In section 5.1, a four input production function and the
corresponding cost functions will be specified and the assumptions
needed will be outlined. In section 5.2, the restrictions needed for
various separability tests will be derived from the third-order translog
cost function. In section 5.3, the empirical test results will be
discussed and compared with the second-order results. In 5.4, the

conclusions of the Chapter will be presented.

! The value added specification is based on assumption that the

aggregation of capital and labor is permitted, while utilized capital
specification allows the aggregation of capital and energy.
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5.1 Specifications

it is assumed that a consistent output aggregate (Y) for the U.S,
manufacturing sector exists, such that Y= f(K,L,E,M,T),where, K,L,E,
and M are capital, labor, energy and intermediate materials respectively
and T is the technology index. In order to be able to assume that the
U.S. manufacturing sector can be specified in terms of Y, K, L , E, and
M, we must assume that the four factors of production are functionally
separable from other inputs which might have some influence in the
production process. Thus, the four inputs, KLEM, may be taken as a
sub-aggregate index. We also assume the existence of a corresponding
sub-aggregate cost function which 1is represented by a third-order
translog cost function, (4.1.1). As in the previous chapter, we arce
also assuming symmetry in input prices, linear homogeneitly in inpul

prices, constant returns to scale and Hicks neutral technical changez.

5.2 Separability Restriction

In this section the linear and non linear separabilily restriclions
will be derived from a four input third-order translog costl function
The general formula used by Berndt and Christensen (1973b) to derive the

separability restrictions is still applicable:

. = P
Sj LAY S, ¥in = 0
(5.2.1)
. .
where, LA + E Yitn In W i#h 3jh = 3jh + E wjhn In W J#h,

i,j,h,n = K, L, E, M S: and S; are the shares derived from the

2 The technology index, T, is thus subsumed in the constant term of the

cost function or production function.
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third-order translog cost function.
F'or the value added specification separability takes the form

((K,L), E,M). In this case, K and L. will form a weakly separable set

under the following conditions :

o o_.
k “EL L ‘Ek EL EK
and (5.2.1a)

. o o .
K "LM L "KM LM KM

Berndt and Christensen (1873) show that there is a correspondence
bet ween the weak separability restrictions derived from the production
function and the cost function if the former function is homothetically
separable.

The weak separability restriction given in (5.2.1) can be satisfied
in two separate ways:

(a) since cost shares are positive by monotonicity, all of the
paramelers in sz equal zero;

(b) the ratio of shares (S;/S:) equals the ratio of 7.’5

-

(3)1/3:j) Condition {a) results in a linear separability restriction.
This restriction is a symmetric one and as was discussed in Chapter 2,
imposes a partial Cobb Douglas specification. Condition (b), on the
other hand, results in nonlinear separability restrictions, which are
not symmetric. These restrictions may force certain Allen partial

clasticities of substitution to be equal to each other , but not equal

to unity, as in the former restrictions.
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5.2a Linear Separability Restrictions

The linear separability restrictions imply symmetric relations in a
separable group. For example, if inputs K and L form a weakly scparable
set in group [(K,L), E, M], the remaining inputs E and M are alsc weakly
separable. This implies that the value added specification is symmetric
(Berndt and Christensen, 1973), i.e. flg(K, L}, E, Ml= g (K,L)}, h(l,
M)]. Similar results can be shown for the utilized capital
specification.

The four inputs under consideration can be put in two groups in
seven distinct ways, (Berndt, 1973c). Group one specifies one input
against three, while group two considers two against two inputs in terme

of the dual cost function:

. D bl . )y ) ) )
[(P ), (PL,PE,PH )1 [((:L).(PK,IE,PH)], [(p 1, (IK.I].IH)],

and [(P ), (P ,P ,P_ )]
H K''L ' E

group I1:
. . ) > b
[(P,P). (PP [(P, PO, (P PN [P, PO, (P, DI
Since the derivation techniques were discussed in Chapters 2 and 3, we

will simply list the restrictions corresponding to cach separability

type in table 5.1 below.



Table 5.1 l.incar Separabilily restrictions

Separability Type

(group 1)

Parameters AUES Restricted
Restricted To Unity
to Zero
! (P, ,
1 { lK) (P PE PH)] L LA Tl

7KE BrKEi e
?KH 7KHi UKH
vi=K L, E, M

2 T ) »)

L l(}L), (P, PE, PH)] L YL, T
71E ?LEx GLE
3LH ann oLH
vi=XK, L E M

3 2 P

: l(lil' (Px' FL‘ Pn)] BKE 3KEi okz
2’l.E 7Lr-:i GLE
asn 3EMx GEM
vi=ZK, L, E, M

4q ? K P

1 [(PMI. (1 I: LH Yen T, Ten
3LM 3LH1 WLH
3EH 3EM1 UEH
vi=K, L, E, M
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Table 5.1 Linear Separability restrictions (group 11)

Separability Type Parameters AU[S }{;sir'ictt‘d
Restricted To Unity
to Zero
L1. [(PK‘PL)‘ (PE'PH)] (2% gt Tk
Tk Txma Txm
LATS Y Tk
I u LY %1

vi=K L, E,M

L2. [(PK'PE ). (PL’PM)] I Kl Kl
£ LS Tem
the . T
Yoy Tom %

L3. [(P,P). (P ,P)I Yo %
T LY T
iy Tim ®in
Tem Tem “in
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The relevant equations to be estimated after imposing the above
linear separability restrictions and the homogeneity assumptions are

given in the appendix to this chapter.

5.2b Non-Linear Separability Restrictions

Unlike the previous case, the non-linear separability restrictions
are not symmetric. Aside from the seven linear separability
gspecificat ions discussed above, there are six additional distinct ways

of" aggregating inputs into groups of two:

group 111l:
(e ,p), PP, (P, FP), P, P 1, [(P, P) P, Pl
K1 E' M K E L ] K M L E
bl 8 > .
l(iL. l}). FK. PM]. l(PL. PH)' PK. PE] and [(PE, Pn)' PK. PL }.

In the literature surveyed, the Allen partial elasticities of
substitution are noted to be closely related to the concept of
separability restrictions. Non-linear separability imposes restrictions
on the values of the AUES.

(a) The scparability type in which a group is composed of one
input against three, for example, [{(K), (L, E, M)] requires the equality
of" all three AUES In the above example the restrictions will be okE =
Tl T T which implies that the optimal mix of the three inputs in

the separable group be determined. If that is the case then an optimal

mix of an input with the sub group aggregate will be determined.

{b) A utilized capital specification, for instance, [(K, E), (L
M) ], imposes the equality of all relevant AUES:

o o =0 -0

KL KM Lt EM
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which means that it assumes the separability of both (K, I') and (1, M)
The acceptance of this separability type allows for further aggregation
of a consistent index of the two of sub-groups, 1.e¢.. ¢ = f(px.pL.pl,pH)
= fl(p;.p:), where p; is the index of P, and Pe and p: is an index of P,
and Py Alternatively the sub-groups can be analysed separately without
any loss of valuable information.

(c) In the value added specification, for example, [(K, 1), 1}, M,

there are two ways in which AUES can be restricted:

This type of separability restriction implies two stage optimization
First, the optimal levels of the two inputs in a scparable sub-set must
be determined. Second, the optimal mix of the sub-group with the re<t
of the two inpuls must be determined. If the separability restrictions
could not be rejected, it implies that one can analysc the substitution
possibilities between capital and labor by ignoring the information on
the remaining two inputs, namely energy and intermediate materials

The derivation of the non-linear restrictions was shown 1a Chapter
2 and 3 in terms of three inputs for the second and third-order translog
cost functions respectively In this section, we will extend the number
of inputs to four and, hence, more separability specifications will
emerege. The corresponding restrictions for the sccond-order translog
cost function were shown by Berndt and Christensen (1973) We will list
the restrictions corresponding to each separability type

In group | (defined in terms of AUES in (a) above), there are

twelve independent restrictions in each section, thee  firot {ive
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restrictions are those that would have been derived in a four input

second-order translog cost function. The next seven restrictions in

each section are obtained due to the third-order extension carried out

here,

Non-Linear Separability Restrictions
From the Third-Order Translog Cost Function

Separability Type (group NI)
Nla [(P ), (P ,P_,P )]
K L' E' M

- / s = /
LT T TS LA™ Tew T T
By _ y a2
3&; 3LF 3L1‘ yn 75 LLZEM 3LE
_ e _ 2 2
3HM )rn 3Ll T JEEE 3LLE 3LE 3LL
SRS SR M, Y ey = /Y
1 MM EFM 11 31&’ LEM yEEH 7LL LE
2 2 2 2
= / = /
BEHH Tem Ym0 Iip T um T eEm LT 3LE
) = y _ 2 /?2
LFE Tin e L T umm den wEEM LE
NIb. P, P,
[( L) (PK PE PH)]
- -1 /oy = (y - /
e (3L ) e’ Ui Ty (VL D LTS
I Y Y. = 72 / ¥°
Lt te VeM 0 M ee  u Tew 7 Yim
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7 =%, 7 32 N = 2y
LEE tL Juw Yem T eun Y rEn 3LM IR 3n1
= J/ =
‘7LEH 75»1 LLA JLH ! 3er aLH aun / 3u
_ / 2 a
Feee T Tl Yo Teew T Tim o Ywew T Yeew Ym0 2

= / + l . = /
Te (3L I in 7LL) Ty TN
Tew T T T Tl e
= 32 / = /
3m4 LM 3LL ' 3H:M 71»1 3Lu 3“
_ y = 4 2
}LMH a'LLM ’LH 3lL ' 7£MH “LLF w2
= / = 2 /
Yiee T T Tur Tu T eru e Yo T 0
2 2 2 >
= / , = /
7EEE LERE> 7LE vu. Lgv Toew Yo 70
NId [(P ), (P ,P ,P }|
M L' b
= / = 4 +
35: 3L yLE z(LL ’ 3»1 (31 ZLH/?LI)
2
= / = /s
BEH arLE yLH WLL ! 7FL 71& Jn
= 32 / ; = /
?HH LM 3LL ’ YLEE yl.h 7Lu 7(.1,
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= / = AN
7nn er 7lln 7LL ’ 7EEH 7LLH 3(LE 7LL

- y = /¥
7’1m4 JIH arLuq zu_ ’ 75}1»1 arLE 7l_l.u a(l_M ?LL

_ 2 ;.2 _ 2 y 2
L yur 3Lr 3rLx_ ! 7mm 71_1_M 7LM 3rx_L

Separability Type NII

In this group (def'ined in terms of AUES in (b) above),

there are

also twelve independent restrictions. The first five in each section

correspond to the second-order translog cost function, while the rest

are additions due to the the third-order function. The restrictions

cach scction are identical, except for the intercept terms.

completeness all restrictions are reported below.

Separability lype (group NII)

Nlla [(PK,PL),(PE.PH)]

= - / +
L ( LT / I ) LTS ( 7L AT )

= / = / =42
g w1t LIRS Le Yim 7LL’ Yee 71_2 71_1_

= 4° Y =y i Y =
3m4 3LM L’ 7Lx~:1r_ LE 7Lu: L.’ “EEM 3u: 7l_u: Wul

2 2 _ ,

3nm 71»1 7LLF yLL' aum 3LH BrLLM LT

- ) ) - 2 s o2 _ 2 y
Yoow Yiw T L e T 31.LE 7LL’ me Iom T 4
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NITb. {(P,P ), (P, P )|
K' ¥ LM

L E “LL LE LL LL LK
= ( / + + / =
7)1 HLH 3LL 7LM) (75 arLn 3LE)' 3EH ’LF 31n 311
2 2
= / , = / \ = /
3Er: 7u_ 3LL BHH ?’Ln 3LL 7Lu 3u: LLF 311
= 5 e _ ’
3EEM LE 3LLL LM 7u af:rm LM 1t T
E / = /
3um 3LM 3LLH 3u’ 3LEH 71»« ’xu 311
_ 2 2 2 , .2
Teee iF T LLE T T LM T IGRIT
Nllc ((P.P ), (P,P )]
K M ¥
= /2 + / +
7L ( 7»1 7LL LM ) ”Ll yu 3u: )

E LE LL LE M T LE LM
_ Y 2 y
Yew = Ve Ten 7 Y Yop © Y LT
= y2 s Y =y _ 7 /
LA 7u1 3LL ' LEE LE LI LAY
2 2
= / = /
?EEH ?LE Yie Tim ar1.L ' ¥ enn Tim T LAY
= / = /
7um an LLM 7L.L ’ 7’an 7Ln 71 LE 711
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Separability Type NIII

In this group (defined in (c) above) there are eight independent
restrictions, of which the first three in each section correspond to the
sccond-orderr non-linear restrictions. There are five additional
independent restrictions arising out of the third-order function. These
restrictions are listed below.

Separability Type (group N111)

Nllla. ((P,P ), P, P 1]
K L E M

3= Oy ety gty oD
LA AL A ARG T B
I S S TP AR Bl
L L T TR AL T TR R A
LI AV TS (TS SVER B P
Yoy = L0 2 7)) Gty )b m
Ve T L0 T G Gy ) = o /9 D00 0y
Y T LU ) Oy Gy ) - G /o V-,



NITlb. [(P, P), P ,P ]
X' E L' M

= / + +
’JEL 3’li: ( ‘HLL 3LM) ( 3lL!’
= + / ) -
'JHH ?EH ( yLL 7LH) 7[1‘ J
= + Y / +
JLLL 31.[‘. )LLF_ 3[“1 (311 )
= + /
WLMM 3LEM [ ( JLL )IH) 3KL]
= + /
ZFHH [ 3l'-:EM ( ?Ll 3LM 31} ]
= / + )Y (5 + 2
J EEE J LE )LL ) LM LLE LLFM
= iy )7 / ) - (2
?HHM 3LL 7LH :’EF_H 3LL EM

= + /
7EE UEH ( WLL WLE ’Jl M )
= + / +
?HH ?LH ( 7LH 'JLH aLI
= + / )
'ILEL 3(LE.M ( 7LL 7LL VLH




LHM LM LLM LEM LL LE
= + / +
¥ euu LAY ( LA Yeew 7 Tl T Yk )
= + P -
Ve ( LT 7LE) ( Teen 7u:n) / 7Ln) Ve
= / + )2 + + 2
¥ ymy Yow " T e LITR" L ? LN
NIIld. ((P, P}, P ,P ]
L E K" M
IS / LAY
= / s = /
TeE YiE AT Tin Yew 710 YiE
= / =
31.&1 71_1—: 3Lu: ?’LL ! 7L}:M 7u. ?LE / WEEH
= / = /sy )®
LR I Tenw LT Tiim LI Y ¥ eEm
2
= /
¥ e ( LAY ?’LL) TR
ITIE. , PJ), P,
NIIIE [(PL M) « F’E ]
= / , =
LAY Iy Yy Tim e T YL Ve LA
Y=o /g = /
MM LM L’ ¥ EE 3r|_1_ a(r:mi arLM
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LLE LL °EMM LM
= / =
7LEM 7LL 7EHM 7LH ’ a(l_mtl WLM arum 4 aLL
y - 2 ) o2
MMM i YL I
NIIIr. [(P_, P), P,P ]
E M KL
= / y = /
£ Ty Vg LAY Vep Tie Ven LA
= / s = /
2w Yiw e LA LI Yie Ve 2w
= / , = /
¥y T im ?LEM LAY 7 eum Yin Yeen T
_ y y - 2 s
7EEE Y1 e Teen LAYV 2{mm 7Lu 7EEM WLE

5.3 Empirical Results

We have estimated the third-order translog cost function using data
for the U.S. manufacturing sector with the linear and non-linear
separability restrictions imposed respectively. The function was found
to be well behaved in that the positivity, as well as the concavity
requirement were satisfied at all points except for the years 1947 and
1948. The convergence criteria were met in every case. The likelihood

ratios (LR) are reported in tables 5.2 and 5.3 below for all the
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separabllity restrictions given above.

Based on the likelihood-ratio test, we were able to reject all
types of lincar and non linear separability restrictions, including the
one case that Berndt and Wood (1875) could not reject: the separability
restrictions derived for the utilized capital specification. The
utilized capital specification has played a major role in modeling
industrial demand for energy, since this specification has, in general
not been rejected. This utilized capital specification replaced the
vajue added specification since the latter specification was rejected by
previous empirical studies ( for example, Berndt and Wood, 1875). The
uti1lized capital specification was also used to reconcile the important
debate on energy-capital complementarity. Berndt and Wood (1979) argued
that it 1s possible for two inputs to display both gross
substitutability and net complementarity. Their argument was mainly
based on their ability to decompose the net price elasticity into gross
price elasticity and the expansion elasticity. This enabled them to
test their proposition empirically. The gross price elasticity was
calculated by taking the logarithmic partial derivative of an input with
respect to a relevant input price assuming the constancy of all other
inputs outside the separabl~ set. This implies that the effects of
laborr and the intermediate materials were ignored in the exercise in
determining energy-capital complementarity. This exercise would be
valid only if the utilized capital specification could not be rejected.
Hence, the rejection of this specification in the present study implies
that future work on energy demand or any of the remaining factors of
production in U S manufacturing should take all inputs into account.

Howewver, ourr model in general does not over reject compared to the
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second-order translog cost function. This fact is revealed by
examining the entries of the LR obtained for the two models Comparing
the absolute wvalues of the LR obtained by imposing the linear
restriction it may seem that the third-order function over rejects

However, since we are comparing these LR values with the critical value
based on the degrees of freedom, we find that this 1s not the case The
LR value obtained from the non-linear restrictions are clearly smaller,
even in absolute value, when compared to the ones from the second-order

function.
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Table 5.2 Test Statistics For Linear separability Restrictions

Scparability Type Number of Test Statistics
Parameters restricted (LR).
to Zero
Brd Order an Order 3rd Order 2nd Order.
(v (e ,r ., P ) 12 3 67 46.79
K 17t
(pP), (P ,P ., P ) 12 3 285.39 291 B2
1 K" 1’ H

(P AP P P ) 12 3 318.08 286.02
I K 1 M

(P, (P ,P . P )} 12 3 285.80 268.54
M K 1 L

(PP}, (P P ) 16 4 81.45 58.51
KL £’ M

-

(PP, (P P ) 16 4 34.00 10.32
K F l M

(PP (P P ) 16 4 70.77 49.08
EoM K L

? 2

x', (3) = 11,34, 1" (4) = 13.28, 1_201(12) = 26.22, 7‘.201 (18) = 32.
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Table 5.3 Test Statistics For NON Linear separability Restrictions

Separability Type Number of Test Statistices
Parameters restricted (1R
to Zero
3" order 2™ order 3" order 2™ Order
(P ), (P .P P ) 12 5 274 8/ 651 00
K L F M
(P ), (P ,P P ) 12 ) 4?2 a7/ 68 26
L K L M
(P), (P ,P,P ) 12 3} 83 20 106 10
E K L. M
(P ). (P,P P ) 12 3} 320 89 309 623
M K L E
(P ,PJ.(P_,P 12 5 84 4/ 69 39
K L E M
(P ,P), (P .FP ) 12 5 104 29 251 0f
K E L M
(P ,P ), (P, P ) 12 5 H4 6L /8 L
K M K L
(P .,P).P.P 8 3 °7 91 a4 1/
KoL
(P ,P),P.,P 8 3 21 81 234.13
KET LM
(P ,P),P . P 8 3 38 44 43 16
WM LE
(P .,P),P. P 8 3 29. 71 HO Y7
L’ ¥ ' K E
(P ,P_),P ,P 8 3 4% 34 311 64
L E K M
(P ,P),P,P 8 3 33 17 18 12
VMK L

2

- 2 = 15 2 = 20 ; (17) = 26 27
x°,,(3) = 11.34, 3" (5) = 15.09, x" (8) = 20.09, x" = (1?) 5 2
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5.4 Summary and Conclusion

In this chapter we have derived and tested various separability

restrictions both from the second and third-order translog cost

f'unct ions The results from the second-order function were consistent
with the ones reported by Berndt and Wood (1875). However, we have
included four cases that were not dealt with in their paper. It has

been our contention that the second-order translog cost function is
biased as shown in Chapter 4; hence, results obtained from it are not
reliable

Our separability results emerge from the precision of the formulas
used to derive the required restrictions. Expression (5.2.1), which
def1nes the necessary conditions for separability, embodies variable
share clasticities and the share of inputs. The advantages of the
third-orderr function lies both in the variability of share elasticities
and in that the estimated share equations are far more accurate compared
to the second-order This point was established in Chapter 4. In
addition Lo this, the restrictions derived from the third-order translog
cost function are numerically greater than those from the second-order.
Therefore, the third-order specification allows us to perform a more
rigorous testing of functional separability.

In this chapter we found that the results differ between the second
and third-order functions, which have important policy implications.
The analysis of substitution possibilities and forecasting of investment
demands of various inputs relies on separability results. The issue of
the value added specification was settled, since like Berndt and Wood

{(1975) we find that the data did not substantiate it. However, at least

159



for the U.S. manufacturing sector, they could not reject the grouping of
capital and energy { what they called t he utiliced capital
specification). However, we find little support for this hypothesis
We note that although, our model has more separability restrictions, it

does not over reject these restrictions when compared to the

second-order cost function. This fact can be discovered by examining
the likelihood ratios given for various separability tests The 1R
entries are actually smaller in absolute magnitudes In the case of

linear tests the absolule numbers seem to be  larper than  the
second-order case, but for hypothesis testing we have o take Lhe
degrees of freedom into account When this was done, we found that our
model has smaller log-likelihood ratio wvalues compured to  its
counterpart. Thus, the present rejection of the only kind of
separabi lity (utilized capital specifiication) that hac. survived carlier
analysis, is not due to over rejections, but because the estimates are
superior and the formulas used to test separability are more flexible
and precise. Therefore, our result on utilized capital specifiication
suggests that any future empirical work on the demand analysis of the
U.S. manufacturing must take all four inputs into account tvident 1y,
the above remark does not necessarily hold if one were to adopt a
different set of inputs (and/or use different definitions of inputs than
used here). Our analysis suggests, however, that one has to undertake a
very careful testing of the possible separability restrictions before

one is entitled to use indexes to support separable groups of inpute
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Appendix to Chapter 5.
The Imposition of Linear Separability in the Four Input Translog
Cost function:

1.1, The zero restrictions listed in table 5.1 with the linear
homngeneity restriction with respect to prices, force the parameters Vex
and kx to be zero. Thus, the share of capital equation will be left
only with the intercept term The rest of the system takes the

following form:

‘al S N S (1nw£ - lnwL) Yy (lan- lnwL) +
3 {Inw Inw - Inw_ Inw - .5(lnw )2] +
Ll [ E E M L
3 [inw Inw - 5{(lnw )2 + 7 (.5( lnw )2
ILM L M L LEE E
- lnw_ Inw 1 + 3 5(1nw )2
E H LLH H
S, vy, (lnwL - InwE) * T, (1an— lnwE) +
y [ Stinw ). Inw Inw ] + 7 {lnw lnw_-
LLE L L M LEE L E
2 2
Inw Inw - .S5(inw )" ] + 7 (Ilnw_ Inw - .5(lnw.) )
L M E EEM E M E

2
* Y .5(1an) .

S =93, -« Yk (lnwL - lan) g, (lnwE - lan) +
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2
. 17 -
Y en { 5(lnw£ lnwL lnwﬁ_ ]+ U llnwb lan

- lnw Inw -~  5(lnw ] +
LA ( g ) ] 3 llnwl Lo
- S5(lnw )" | (52 2
M
L2, In this section the separability and homogeneily restriction
render bhoth Y and 7L“ to be zero Thus, only the intercept ternm
survive these csero restrictions in the labor share equation Since we

have used the parameters of the deleted cquation (capitall te pet the
equality of }LL to be equal to zero, the restricted version takes the

following form (The estimates of parameters of capital cqualtion can

still be recovered using linear homogeneity restrictions)

SL =7, + . ( lnwt—lnwx )+ Yen ( lan - lnwK )
+ 3 [ .5(lnw )2 - Inw Inw + S(lnw )° | + 9 [ Inw
EEE E X E K FIM ¢
Inw + ( 1nw ) ° ~lnw Inw_ - Inw Inw |
M 3 X E K M
SM =3, Ty (lnwE - lnwK) + LA ( lan - lnwK )
2 2
+ ¥ [ .8(lnw_ )" + .5(lnw )” - Inw Inw |
EEM E K K E
+ ¥ [inw_ 1nw_ + (Inw )% - 1nw lnw
EMM E M X K E

.-

+ 7 ( 5(lnwE

+ .50 1nw )" - Inw Inw | (% 2 3)
MMN K K M
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1.3 Aftrer imposing |3 and the linear homogeneity requirement on
the ohare equat 1ons, the share equation for energy is reduced to its
intercept term, since 3EE and Y eEE will be zero. The corresponding

cst imated system of equations will be:

St (lnwl - Inw ) 4y (1an— lnwx) +
) [ Stlnw )?+ 5(1nw )% - 1nw lnw | +
1 1 K 14 L
2
b} [ tinw ) + Inw Inw =~ Inw Inw -lnw Inw |
1M K 1 M X L K M
? 2
+ {{ %(inw )" +(lnw )" -~ Inw lnw |
I MM M K k M
S = 9 + 3 (Inw - Inw ) +3 {( Inw - 1Inw )
M M LM L K MM H K
2 2
+ ) [ S(lnw )" + .5(lnw. )" - 1lnw Inw - Inw 1lnw_ ]
LLHM l X K L K M
+ ) [lnw Inw + {lnw )2 - 1lnw 1nw ]
1 MM M K K L
2 2
t Ay [SUIDW )T 50 1nw ) Inw lInw ] (5.2.4)
L4 In this case, the intermediate materials equation is reduced
to its intercept term, JHH = 3HHH= 0. The corresponding restricted

version takes the following form.

S », Y, HnwL - lnwx) Y (lnwE- lnwx) +
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? 2
L l(lnwl) + bllnwx) - lnwK Inwl ]+
?
1 - -
LI {( nwK) + lnwL lnwE lnwK lnwl lnwK lnwk ]

+ 3 1.5 (Inw 2° + . 5(1nw )’ Inw Inw_ |
- 3 K K I

SE P N ( lnwL-lnwK ) o+ L { lnw} - lnwK )
[ 5 (1 7o 1 ‘ ¢
. _
3LLL { nwl nwK nwl + .o(lnwK )|
2
+ 3 [Plnw )7+ Inw Inw - inw lnw -Inw 1ow |
LEF K 1 £ K 1 K b
2 ? 2
+ 3 (.5 (Inw )" + .51 (lnw )" = 5 inw )
FLE B P K
- lnwK lnwL ] {(H 2 %)

Group 11 Linear Restrictions.

L1. Restricting parameters to zero and linearr homogeneity
restrictions allow us to express all the parameters of the restricted
system only in terms of 3LL, 3Luf 3EL, 3Em and their respective
intercept terms. Thus, we get the following restricted system to be
estimated.

S -7 + 7 (lnw~- 1nw]) + ¥ [ 5(Inw )2+ 5(1nw )°

L L K LLL K L

L LL

- lnw 1nw ]
K L
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- -— 2 —-—
S =y + ¥ ep ( lnwﬁ lan ) + x| .S(lnwE ) lnwE lan

= - _ 2
Sn =7, t Y, (lan lnwEJ + ¥ere [lnwE lnwM .S(Ian )

-.b(lnwF)z . (5.2.6)

The non zero paramecters can be recovered using the linear
sceparability and linear homogeneity restrictions.
1.2 The parameters 1n this group can be expressed in terms of the

intercepts and » , 3 N T S The restricted three share
Ll LLL EE EEE

cquat 1ons are.

S -3 + 9 (lnw - Inw } + 3 [.5{lnw )2+ .S5({1nw )2
L 1 LL L M LLL L M
- Inw Inw |
M
< . - 2 _
bF =t Y, ( lnwE lnwK ) * Vpp [ .S(InwE ) lnwK lnwE

_ _ _ 2
SH =2,t (lan 1nwL) YT llnwL lan .5(lan )
2 -
~.S(lnwL) I. (5.2.7)
L3 The restricted above equations 1in this group takes the

following form:
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. 2 2
SL =3 + th (]nwL— lnwE) + LA [.b(lnwl) + .S(InwF)

- Inw 1nw_].
L E

P _ e 2
ST ¥, ( lnwE lnwL ) * L { .o(lnwE )" o+ InwL lnw}
-5(1nw )° ]
2
= - 5 -
SH Yt N (lan lnwK) * Y (. (lan ) lnwK lan
2 3
+ S(InwK) l. (H »2.8)
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CHAPTER 6

SUMMARY AND CONCLUSION

The wuse of flexible functional forms based on second-order
approximation has received wide applicability in the empirical
investigation of producer behavior since the early seventies. The
atlractive features of these functions include: the ability to include
the effects of (he interaction of the right hand variables on the
dependent variables, the ability to test the traditionally maintained
hypothesis within the model (such as functional separability,
homogeneity in both prices and inputs, returns to scale, and
technological change), the ability to derive input demands clearly
expressed in terms of their arguments, and the ability to measure and
test the significance of different types of elasticities, including the
Allen Uzawiu elasticities of substitution, which are not assumed to be
either equal to unity or constants. This flexibility in the derived
Allen partial elasticities of substitution has made a major contribution
in determining the substitution possibilities among irputs involved in
the production process.

The advantages of using a third~order cost function in terms of (I)
econometric modeling, (11) theoretical and (III) empirical analysis of

producer behavior are summarized below.

(I) Econometric modeling
Modeling producer behavior by using a third-order translog cost

function includes parameters that are not considered in the second-order



translog cost function, and all of these parameters have economic
meaning. The disadvantage of the loss of degrees of freedom was
minimized by using various restrictions such as symmetry and linear
homogeneity in input prices and output.

The extended model and the restrictions needed to qualify any
arbitrary function as representative of production technology were given
in sections (3.1) and (3.2). The additional restrictions were found to
be helpful in testing more rigorously certain requirements that must be

fulfilled by any arbitrary function.

(I1) Theoretical justification

(a) Reduction in bias:

Kmenta (1971) and Byron et al (1983) have rightfully argued that
limiting functions to a second-order Taylor series approximation
introduces truncation bias. Using an arbitrary Taylor series
approximations they were able to show a significant reduction as one
goes to the third-order. We put their claim to an empirical test bascd
on the U. S. manufacturing sector and the results obtained confirm their
claim. The reduction in bias 1implies superior estimates Many
time-honoured studies in demand analysis like Berndt and Wood (1979) and
Lau (1986) have suggested the need to investigate an alternative model
specification in order to settle many unresolved issues and allow for a

more rigorous examination of producer behavior.

{(a) Flexibility and Precision

(1) Functions derived as the first-order partial deriva ives of the
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e stended function are better approximations of the underlying function
they reprecent, than ones derived from the second-order cost function.
Ihee reacon 1 that these functions are sccond-order rather than the
firwt-order approsimation . Thes» functions include input demands, the
share of 1nputs, cost flexibility, measure of technical change, and
measures, of returns to scale.

{¢) Tht functicns derived as second-order partial derivatives from
the objective function (cost function) are not constant but flexible.
Heneo,  we pet variable  share clasticities, variable measure of
coonemice,  of  scale, variable technical change, variable expansion
elag 1eities, (scale bias), and variable output sensitivity of cost
fleaabiiity an o result of the third-order nature of our model. All
theoe measures  are assumed to be constant in the second-order cost
ffunctions,

finally, duc to the above variable measures, we also get more
fle<ibility in the following quantities

{1) The Allen Uzawa elasticities of substitution formula (AUES) now
ineludes o variable share elasticity  that allows adjustment of output
and anput prices Ilhe variable share elasticity included in the AULS
formula allows the measure to exhibit a magnitude greater or less than
unity, depending on the level of input prices and output involved. This
resylt is a major contribution in determining the substitution
possibilities between inputs over a given period. The Allen partial
elasticities of substitution formula derived from a second-order cost
function, on the other hand, limits the magnitude to be either less than
unity or greater than unity. This implies that any two inputs in a set

that  include many inputs in the production process will remain
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substitutes or complements regardless of what happens to the level of
input prices, output, and technological chiange overr the whole period
under considerat ion

(ii) The own and cross price elasticities of ftactor demands will
also be more flexible, as they too depend on variable share
elasticities The relevant formula derived from our model will be
flexible enough to indicate a movement from an inelastic to an elastie
region of the factor demand curve, since the value of the own price
elasticities can now range trom preater than unity to less than unity

{1ii) Gutput elasticities of 1nput demand are also more flesible
than the ones that are derived from the sccond-order function Ihe
flexibility of the former depends on the variable expancion clastreaty
while the latter depends on the constant expancion ela tioity

(3) Taking the third acrivative of the cost function 1o a0 nhew
aadition to the analysio of producer behiavior The reculting new
measures (that are of  great amportance 1n the  study  of producer
behavior) include (1) The rate of change of 1nput demand with penpect
to prices and cuatput, (1) the ratec of change of the Share of an input
with respect to input prices and output, and Cirr) the rate oft coot
flexibil:ty with respect to output The lict also 1ncludes measure:s of
sensitivity such as those of share elasticities with rewpect to anpu
prices, output and input price sensitivity of bias of sCale fhewe
measures now allow us to examine the fullowing
(a) the rates of change of functions derived as the first-order partaal
derivative of the cost function and also
(b) the sensitivity of the functions derived as the sccond-order partial

derivative of the objective function with respect to jils argument
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In the case of the second-order cost functions, these measures

cannot be derjved since they are assumed, a priori, to be zern.

{4) tunctional separability

The precision of the estimated parameters, shares and share
elastirities, imply the unblasedness of the expressions from which
various separability restrictions are derived. The restrictions
necessary {'or various kinds of functional separability were derived for
both the <econd and third-order translog functions in terms of three and
fowr nput proaces lhe restrictions for the second-order function are
obvicusly the ame as the ones given by the ewisting literature in the
anialysis of producer behavior When the objective function is extended
to a third-order form, we are able to derive additional restrictions for
every  separability  type The additional separability restrictions
derived can casily be recognized as extensions of the second-order ones
the numbers and the ways in which these restrictions are derived are
given an thapters, 2. 3, and S The larger number of separability
restractions derived, allow for more rigorous testing of the existence
of separability among 1nputs and if the test passes these strict
restrictions, the results can be more reliable than ones obtained from
using the second-order cost function { since the restrictions depend on
varlable share elasticities and shares which are better approximation of

the true functions).

{111) Empirical Validation

In order to give more credibllity to our theoretical contentions,

we have in Chapters 4 and 5, analyzed the U.S. manufacturing sector
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1847-1971 empiricaliy. using the third-order translop cost function We

compared the results of the third-order translog

cost function with

those of the second-order translog cost f'unct jon The  main

findings were as follows

(1) In order for any arbitrary function to be called a coot

function, 1t must be a real valued function It

respect to input prices and be concave 1n factor pr

must  inerease with

Lees, The positavity

requirement was met at every data point since the arbitrary function and

the shares derived from 1t were positive The concavity requttement wae.

also met at cvery data peint ercept for 1930 and 1448 Thie requirement

was checkel by using the repati o cemi-detinater s o ot the e cpar,

matris bacd oL the THZ e timnten

& On the v pdiarit, cornedit Lone et thard o der tanct o
wWoere o sat Lo, the  spe ot gty bee ! Wet arroie b o fhe
second-crder ftrunc L og oot b n et i e clenr by reepecte 1o baena ot
the third-order oot funton hew resurt W an amportant one, an

that the results derives from the rejected mode] were not v, e liable g

the ones derived {rom the alternative mode]

{31 In Chapter 3, we have arpued thiat the 0y

uniccat i bras oob b

economic relatjonships eotimated trem the third-order  tranclop oot

function will be smaller than the one derived from

function. We have taken the predicted share of

thee econd-order oot

inpute, from the two

models and computed the measure of inaccuracy given by lhiel et al

(1966). Based on this measure¢ we found a smaller level of jnaccuracy in

the predicted shares derived from the third-order cost function.,  Since

the shares of inputs are closely related to factor demandes and alao

enter into most of the important formulas that

are used to analysce



producer behavior, the reduced bias should make a significant difference
1n the reqults

(4) The variable share elasticities derived from the third-order
ffunction contain the constant share elasticities as special cases. The
empirical recults showed that the share elasticities were in fact
changing over the years, although, the constant share elasticities were
not excluded from the third-order model Because of the variable share
clasticity formula, we were able to investigate if in fact the shares
responded to factor price changes at a constant rate The results
obtained by esamining the <ipgnificance of the sensitivity parameters
(included 1n the respective formulas) showed otherwise It 1s true that

ome shares e<hibited a constant rate of change with respect to some

thput  price. However,  ‘they also responded at a decreasing or
tnereasiny rate with respect  to the remaining prices Thus, the
constant s ate of  change  f shares assumed in  the case of the

second-order functiorn 1o incorreect

Wee haw alae pertormed hwpothesis testing to find out whether or
not the estimate i hiare elasticities were different from zero The
elasticities were estimated at every point and at their respective
means, The ones estimated at every data point showed a significant
variability for a number of cases, while the ones calculated at their
means showed results similar to the ones obtained from the second-order
cost function on a year to year basis, with the exception of the own
share elasticity of energy and the cross share elasticities of labor
and energy In the second-order case, the own share elasticity of
encrgy was found to be significant, while the cross share elasticities

of  labor and ecnergy was found to be insignificant. The share
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elasticities estimated at every data point and a! their respective means,
by using a third-order function showed opposite resulte forr both the
former and latter However,  the sccend-order cost function resulte
reflect an average tendency and fail to reflect what 14 goiny on year by
year or from one sub-period to the ne+t sub-period

(5} The encrgy-capital complementarity debate hae been the focal
peint 1n the analysis of producer behavion The use of tlexaible torm,
in empirical analysis certainly allows us to examine complementarity and
substitutal Lity i the production procecs Howeveer o the praydit e an
the Alts ¢ rmaia o not allow o the posaaba bty that any twe anputs,
the produ ' 1on process whe shoeshab o cuboritutab by sy om0 one period, me
actually e<hibit ~omplementarity 1o ansther b perao The AUES value
calculat-d trom the cocard-crpg tran lop coot ffanectyon remaihed otabde
in magnituic ang c1pn Whole the ones cal ilated fromn the more fie.ible
third-~rder trame . 00 0 0 ot dod et pemnan, Stat e o bty
mapnitude and <sipr Peramone o ot the oppnpdicance Tewe po af U
estimated Allen partial elasticities of substitution between encr gy and
capital at every point reveals that these twe anpaats did not remain
complement . for  the whe o per o [riringy most o 19604 there was ne
significant relationship between theare two rnpaut o Note that energy and
labor were found to be substitutes by the ceotimates of the relevant
formula derived from second-order cost  function sased  on o the
third-order formula, the substitution possibilitieg have changed during
the study period. The two inputs remained substitutes until the mid
1960's and then showed high complementarity for mo<t of the remaining
period The estimated values of factor price elasticities have also

changed in magnitude and sign over the period. The above results imply
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that there were changing substitution possibilities between any two
tnputs, during the twenty five year period under consideration This and
~imilar findings in this thesis, suggest that there is a need to examine
policies perjodically, to see 1f the substitution possibilities have
remained the same as expected

However, energy and capital complementarity analyzed at the mean of
the third-order f'unction was in agreement with the results derived from
the second-order function, displaying substantial complementarity, while
cherypy  and  labor substitutability estimated at the mean was not
signitreantly daifferent from csero, since the positive and negative
vaalues  forr Allen elasticities of substitution were almost evenly
matche Heneeo on the average, there was no apparent dependence
between thoeoe twe variables fhus, average tendencies again cover up
whiat has haopened dur ing cach sub-period

From the above results, one can conciude that the contradictory
reculte on the question  of substitutability reporrted by different
authors  are  all reconctlable The different results obtained by
difterent authors appear to be due to the different data sets they used
and to the difterence between the short run and the long run values of
the  wvariables  underr investigation The debate on substitution
possibilities took a wrong turn, simply because the models used in the
past  studies were rigid in that they excluded the possibility of
observing the relationship between the variables period by period.
Thus, it is entirely possible to report energy-labor substitutability
based on a data set dominated in the early years of our study, while it
also possible to get energy-labor complementarity if the study is based

on the latter vears of our study period. It is equally plausible to get
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different results depending on whether one examines short term and long
term substitution possibilities An advantage of ourr model e that it
nests all these different tendencies into one and reveals the internal
structures ot the variables in question, thereby, reconciling the
different results obtained in the past

(b) We have also found different estimated soparability resulte

that could not have been found by using a second-order translop cost

function We tested seven linear separability types and thirteen
non-~linear separability typer  from both the second and third o der
translog cost {unct: one In the case of the second order function we

have regje~tad all buw one linear sepurabality type 11?1,,.*',‘. ll'l

In the cas: «f the third-order trancicp coot fanction, bl ot e

separability types were reje~ted, deciroavely By e-anmininy the T o
the linear separabiiity restrictione the foweot entyp e obtained werne
for the separat:lity type | H‘y. I’l’ b, ‘i'l . i’H! P ofor both modeds, However

in the case of tree trgri-osrder coot function 1t was ot low cnouph tog
accenpt ance In the case of notilinear separabrivty, proup HL type, e
lowest entry was, for the grouping of capital with the agprepates of
labor, energy and intermediate materiale (H"J.ff’ JE b ffor both
models Tor the group NIl types, the grouping of capital and Tabor with
energy and intermediate matcerials [(I’K, Pl), ‘Pr’ }’M)] does  less damape
to the data in both models. In the last nonlincar separability type
NIII, there 1is a consistency between the linesr and  non-linear
separability types in the case of the third-order cost funrtion in that
the lowest entries are for [(PK,PE), PL, PH] The lowest entry in thie
group for the second-order cost function, linear case wac like the above

while the lowest LR entry for non linear case in the sceond-order cost
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function was HPL,PH), Px’ PL] Comparisons of the LR entries of the
models showed that our model did not over reject the separability
restrictions when the degrees of freedom were taken into account.
Hence, the regection of the utilized capital specification by our model
was not due to the over rejectjon but was due to the precision of the

estimates and the restrictions derived from our third-order cost

ffunction.

Areas for future Research

[otimate based on third-order translog function revealed resuits
on some of the important questions concerning the study of producer
behaviornr It could be worthwhile to revisit some of the contentious
155U tn the study of produrer behavior Such issues include the
testing of the neo-classical theory, the choice of functional forms
(preferably by extending the Bor-Cox function used by #pplebaum or
Berndt and Khuled to o third-order form), the guestion of technological
change, and the measurement of the i1nputs and input prices involved in

the U S manufacturing sector
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