l {v I National Library

of Canada

Acquisttions and

Bibhiothegque nationale
du Canada

Dirrection des acgusition's ot

Biblograptic Services Branch  des services brbliogiaphi ues

395 Wellington Street
Ottawa Ontano Ottawa (O ok
K1A ON4 KIAONG

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. (C-30, and
subscquent amendments.

i+l

Canada

S30 ue Welhngton

AVIS

La qualité de cefte microforme
dépend grandement de la qualité
de la these soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylogrephié2s a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, ¢c. C-30, et
ses amendenr 1ts subsequents.




Monitoring Distributed Systems

by
Honna Segel
A Thesis in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada
April, 1993

© Honna Segel, 1993



L4 |

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibhographiques

395, rue Wellington

Ottawa, Ontarno
K1A ON4 K1A ON41

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Ottawa (Ontan)

Youe e A e et e e

o Aptie ot e

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-84651-8

Canada



Abstract

Monitoring Distributed Systems

Honna Segel

In debugging distributed programs a distinction is made between an obs~r--~d
crror and the program fault, or bug, that caused the error. Testing reveals an error;
debugging is the process of tracing the error through time and space to the bug

that caused it.

A program is considered to be in error when some state of computation violates a
safety requirement of the progiram. Expressing safety requirements in such a way
that a computation can be monitored for safe behavior is thus a basic preliminary
step in the tesling-debugging cycle. Safety requirements are usually expressed as
predicates. When a state of the computation violates such a safety predicate, that

state can be said to be in error.

A predicate logic is proposed that permits the specification of relationships
between distributed predicates. This increases the scope and precision of
situation-specific conditions that can be specified and detected. It also permits the
specification of safety primitives such as P unless Q using distributed predicates.
Thus a distributed program can be directly 1nonitored for satisfaction and

violation of safety requirements.

Breakpoint conditions and predicates expressing safety may hold over a number
of states of a program. A breakpoint state is meaningful if the causal relationships
of events included in the breakpoint are unambiguous. At least two such states
exist for each condition: the minimal and the maximal prefix of the computation
at which the predicate holds. These states are specifiable as part of a breakpoint

definition in the logic presented.
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Chapter 1 : Introduction

1.0 Problem Context

In debugging distributed programs a distinction can be made between an
observed error and the program fault, or bug, that caused the error The two are
often widely separated; in sequential processes, they may be separated by time
(steps of the computation as marked by a processor clock), and in distributed
programs by both space (one processor to another) and time. Testing then reveals
an error; debugging is the process of tracing the error through time and space to
the bug that caused it.

Before the process of debugging a program can commence, it is necessary o
discover an error. A program is considered to be in error when some state ot
computation violates a safety requirement of the program. Expressing salety
requirements in such a way that a computation can be monitored for safe
behavior is thus a basic preliminary step in the testing-debugging cycle Satety
requirements are usually expressed as predicates; these predicates define safe
states and safe state transitions of programs. When a state of the computation
violates such a safety predicate, that state can be said to be in error.

When a safety requirement is violated during a program exccution, the user
desires to examine the state of the program at which the violation occurred This
state will be called a breakpoint. The user may also wish to halt the computation
at various breakpoints satisfying user-defined criteria.

Testing and debugging as described above are quite well understood in the arca
of sequential programs. Distributed programs present additional factors which
complicate the task of testing and debugging.

The class of distributed systems considered here are those that are asynchronous
and communicate via messages with finite, but unpredictable, delay. In this type
of system, processes operate according to local clocks; a global version of time is
not available. Synchronization occurs through message passing rather than
through the use of shared memory.



An instantaneous global state of the system, in which all processes are halted at
some real-time instant, is not possible in the absence of global clock and shared
memory. Flowever, it can be approximated using distributed snapshot algorithms
[Chan85], which yield a global state that could have occarred. Aigorithms
implementing a virtual time mechanism [Mat89], permit each processor to

construct a consistent view of system activity.

In sequential systems, a predicate describing a safety or breakpoint condition
holds on a state or states of a single processor. States in sequential systems are
totally ordered, so the interpretation of predicate A holds before predicate B is
straightforward. Howe er, in distributed systems predicates expressing safety or
breakpoint conditions hold cn global states of the system. As dr scribed above,
global states are not immediately given and must be extracted. While events in
distributed systems can be partially ordered using Lamport’s happens-before
relation [Lam?78], global states cannot be partially ordered in this sense. Because
of this lack of ordering, the interpretation of predicate A holds before predicate B
cannot be interpreted as straightforwardly as in sequential systems.

In related work, specification and detection of a predicate on the states of multiple
processors, such as wvariabl~ x at process A equals 2 AND variable y at process B equals
3 is fairly well-defined. One of the g oals of this work is to propose a model of
predicate behavior in distributed systems that gives a clear interpretation of the
relationships between distributed predicates. A relationship between distributed
predicates could be, for example, predicate A holds before predicate B where both A
and B are distributed. Establishing relationships between distributed predicates
permits the specification and detection of much more sophisticated conditions for
the debugging of distributed programs.

Establishing relationships between distributed predicates will also serve to
increase the expressiveness of a specification language so that safety requirements
can be clearly stated. Fundamental operators expressing safety such as P is
invariant or henceforth P can be expressed using distributed predicates on system
state. Related work in festing and debugging has not clearly linked work in safety
specification to specifications for the purposes of monitoring. Because this link
has not been clearly established, monitoring for the purposes of testing has been
limited to ad hioc specifications of safety properties. Another goal of this work is
thus to achieve a model that permits direct specification of fundamental safety



operators; an operator is considered fundamental if some safety property cannot
be expressed without it. Direct specification of safety properties permits
monitoring of programs for satisfaction or violation of safety requirements,
facilitating the detection of error in distributed program testing,.

2.0 Organization of the thesis

In Chapter 2 an introduction is given to the problems associated with detecting
conditions in a program. Related work is reviewed in light of the goals of this
work. In Chapter 3 a naive logic for specification of distributed predicates is
proposed. The problem of reachability between global states is examined and a
logic to express relevant notions is proposed. The behavior and structure of
distributed predicates, including unstable distributed predicates, is examined in
Chapter 4 and the logic is extended to describe this structure. In Chapter 5 the
relationships between distributed predicates are examined and the logic is
extended to describe these relationships. Safety operators that can now be
expressed using the extended specification logiz are presented. In Chapter 6 an
extended model is presented for specification of distribuled predicates and their
relationships, incorporating the iticrements in Chapters 3 through 5. A set of
examples is given in Chapter 7 to demonstrate the application of the extended
logic. In Chapter 8, the problem of detection is treated and algorithms for
detection are given. Conclusions and suggestions for further work are presented
in Chapter 9.



Chapter 2 : Background and Related Work

2.0 Introduction

The majority of the works reviewed in this chapter focus on the related problems
of detecting distributed predicates and halting at distributed breakpoints for the
purposes of debugging distributed programs. The different works have varying
scope and efficiency, but conform to the following approach: firstly, a logic is
proposed for the specification of distributed predicates or breakpoints; secondly, a
detection algorithm is implemented; and finally, detection triggers a halting
algorithm. These three subjects are introduced below. Two other related works on
safety specification and non-atomicity are also introduced.

2.0.1 Logics for specification

The primitive for specification of predicates and breakpoints is the assertion on
the local state of a process; for example x = 3, process 1 has entered its criticul section,
or cvent y has occurred. Predicates distributed across nodes, called distributed
predicates, are built up using boolean and comparative operators between such
primitives. The interpretation given to distributed predicates is that the predicate
is considered to hold i local states of the processes on which the primitive
elements of the predicate are defined can be composed using boolean operators to
form a consistent global state of the system.

Some preliminary definitions follow, which are general enough to apply to most
of the work covered in this chapter[Fow90, Hab88, Mil88, Spez89, Wal91]:

* Simple Predicates are predicates defined on the variables of a single process.
For example, x=true is a simple predicate, where x is owned by a single process.

* Conjunctive/Disjunctive predicates are formed by ‘or-ing’ and/or ‘and-ing’
Simple Predicates.

* Linked Simple Predicates are formed by establishing some type of ‘happens-
before” or sequential ordering between the occurrences of Simple Predicates.

* Linked Conjunctive/ Disjunctive Predicates are formed by establishing some
type of sequence between the occurrences of Conjunctive/Disjunctive Predi-
cates.

For simplicity, the above names will be used in most cases rather than switching
vocabulary when describing the work of each author.



2.0.2 Detection

Work on detection has taken two approaches. In [Fow90, Hab88,Mil88], the
condition to be detected was characterized as an atomic event. In [Spez89, Wal91]
it was recognized that breakpoint condition may hold over a subset of the state
space, and that this fact can be used to increase the efficiency and the precision of
detection. For example, it can easily be determined if two local events have a
causal relationship or if they are incomparable (neither happens before the other).
For example, in Figure 1 event el precedes event e2. By contrast, let us assume
that some algorithm is available to detect a breakpoint predicate defined as
variable x at process 1 is true AND variable y at process 2 is true. Though el and ¢2 are
ordered, there exist global states in which both hold. There are then possibly
many global states at which this predicate holds.

\ ------ x holds-------~---- /
proc1 ; } >
Ny [
e
proc 2 >

|--y holds--1

minimal prefix i i
maximal prefix
of (x AND y) of (x AND y)

FIGURE 1: events and predicates as breakpoints

Two global states over which a predicate holds are well-defined in terms of the
causal relationships in the computation. For example, the global state
corresponding to the minimal prefix of the computation at which the predicate
holds is analogous to a sequential breakpoint; everything that has occurred has a
(possibly) causal effect on the breakpoint events. Similarly, the maximal prefix is
the latest state at which the predicate holds, showing explicitly the events which



depend on the breakpoint events. The minimal and maximal prefixs of (x AND y)

are shown in Figure 1.

2.0.3 Halting

The distributed snapshot algorithm [Chan85] yields an integrated view of system
activity. For example the prefixs marked in Figure 1 are consistent views of this
simple system, as no processes have received messages that have not yet been
sent. The snapshot algorithm assumes that messages are well-ordered. It operates
as follows: A coloring scheme is used to delineate the ‘instant’ of the snapshot - if
an cvenl occurs before the snapshot, it is defined as white, if after, it is defined as
red. A process initiating a snapshot turns red, saves its current local state, and
sends a warning message on every outgoing channel. On receipt of a warning
message, a process stays red ifitis already red; if it is white it turns red, records its
current local state and sends a warning message on every outgoing channel.
When all nodes in the system are red, the algorithm is complete. The local states
that have been recorded are consistent (no messages have been received before
they are sent because of the assum ption of well-ordered message delivery) and
form a consistent view of the distributed system state.

If a predicate is locally decidable - the value of the expression can be decided on
the basis of the state of a single process - then the snapshot algorithm can capture
a global state in which the predicate holds. The deciding process initiates the
algorithm immediately after detecting the satisfaction of the predicate and before
sending any application messages. However, if the predicate is not locally
decidable, as in Figure 1, then distributed snapshot is not a good means for
detecting and halting. If a process initiates a snapshot each time its local element
holds - for example, atevent el in Figure 1, then there can be no guarantee that
the global state obtained by the snapshot algorithm will be a state at which the
predicate holds, if, indeed, the predicate ever held.

Most of the works reviewed [Spez89, Mil88, Hab88] use some optimization of
Chandy and Lamport’s distributed snapshot algorithm to halt a distributed
systemin a consistent state once a locally decidable breakpoint condition or
predicate has been detected.



2.0.4 Goals of this thesis

The specification and detection of breakpoints for use in debugging distributed
programs is in itself a worthwhile goal; breakpoints are standard tools for
debugging in sequential systems and should be available for use in distributed
systems.

However, the goal of this thesis is motivated by the idea that before debugging,
can commence, some error must be detected. Error is defined with respect to some
safety and progress requirements of a program. Sin:e progress can in general only
be detected at infinity, attention is restricted to safety requirements. The area ol
work that follows from this problem is that of explicitly connecting safety
requirements with distributed predicates so that a computation can be monitored
for the satisfaction of such predicates. [Wal91] addresses this question by using
distributed predicates to express intuitive formulations of program requirements.
[Chan88], and others, present models to specify programs, and hence program
safety, for concurrent systems. An operator fundamental to expressing safety
properties is P unless (), i.e., if some predicate P holds, it continues to hold unless
some predicate Q holds. In the next chapters an interpretation of Chandy and
Misra’s model is given in terms of distributed predicates, permitting a
computation to be explicitly monitored for satisfaction of safety requirements.

Stable properties of programs, such as termination, are relatively easy to detect
using some variation on the distributed snapshot algorithm [Hela90, Mis83].
They can be detected by checking periodically to see if they have become true.
Since the property is stable, it can be guaranteed to hold despite any gap between
detection and halting. Unstable predicates however, are less straightforward to
detect because of their transient nature. Lamport presents a model of non-atomic
actions in concurrent systems in [Lam86a, Lam86b]; the concepts presented have
strongly influenced the model developed in this thesis. The model developed here
can be seen as an interpretation of Lamport’s non-atomic actions for distributed
systems, treating unstable predicates as non-atomic events. While fulfilling the
goal of expressing safety properties using distributed predicates, this
interpretation also provides a basis for modelling non-atomic behavior in
distributed systems.



2.1 Miller and Choi, Haban and Weigel

Miller and Choi presented early work in this area, and so have had an influence
on all the work presented here. In [Mil88] the goal was to provide the user with a
breakpoint comparable to that obtainable in sequential systems - in other words,
to halt at a state at which the predicate holds. Halting at a state in which the
detected predicate holds is possible when the predicate is a Simple or Disjunctive
Predicate, as the satisfaction of a predicate can be decided at a single process. As
described in Section 2.0.3, when a single process can determine if a predicate
holds, a halting algorithm can be initiated immediately, guaranteeing a consistent
global state in which the predicale holds. [Mil88] defines Simple and Disjunctive
Predicates and Linked Simple Predicates as given in Section 2.0.1 . Algorithms
based on the distributed snapshot algorithm are provided for halting in a state at
which the predicate holds. Conjunctive predicates are defined, but no algorithms

for their detection are provided.

The goal in [Hab88] was to define distributed predicates, detect and halt. The
same types of predicates as are defined by [Mil88] are defined here, albeit in
somewhat more detail. An interactive graphical editor is provided to aid in the
construction of well-formed predicate expressions. For detection, the predicate is
broken down over a binary tree, where the leaves of the tree are Simple Predicates
and the root the value of the whole predicate expression. Detection algorithms are
provided, as in [Mil88], as part of a complete debugger architecture. For non-
locally decidable predicates such as conjunctive predicates, a halting algorithm is
provided, but the authors recognize that yielding a state in which the predicate
holds it cannot be guaranteed. To compensate for this, a local trace facility is
provided that records the local states in which Simple Predicates held.

While providing solid basic work in debugging, [Hab88] does not attempt to
address questions of monitoring for safety properties, nor is the question of
halting at specific minimal or maximal states addressed.

2.2 Waldecker: detecting unstable predicates

Waldecker’s goal was to provide a taxonomy of distributed predicates that would
serve both to categorize and to construct distributed predicates, and to provide
accurate detection methods that are reasonable in complexity. His specific focus



was unstable predicates, a class of predicates that has not been treated as
thoroughly as stable predicates.

The taxonomy provided by Waldecker is based in an interleaving model of
concurrency. The logic presented is quite comprehensive, but he provides
detection algorithms for only a subset of predicates definable by thelogic. While
Waldecker permits the definition of all of the types of predicates defined abovein
Section 2.0.1, he does not give a clear interpretation for the last two types (which
can be interpreted many ways) and restricts the detection algorithms presented to
the following types:

® Weak Conjunctive Predicate (WCP): a conjunctive predicate that holds in at

least one interleaving of a program execution, written as 30P. (See Figure 2
below.)

¢ Strong Conjunctive Predicate (SCP): a conjunctive predicate that holds inall
interleavings of a program execution, written as VOP. (Sce Figure 2 below.)

® Weak Linked Simple Predicate (Weak LSP): this holds if states in which Simple
Predicates hold can be ordered using Lamport’s ‘happens-before’, or are
incomparable, i.e., all component predicates hold in some interleaving,.

* Strong Linked Simple Predicate (Strong LSP): this holds if states in which Sim-
ple Predicates hold can be ordered using Lamport’s ‘happens-before’ relation.

¢ Disjunctive Predicate (DP): this holds if there exists some interleaving in which
one or more of the component Simple Predicates of the DI holds.

Detection algorithms are given for Weak Conjunctive Predicates, where the
predicate is defined on two processes in the presence of other processes; for
Strong Conjunctive Predicates where the predicate is defined on two processes in
the presence of others; for Strong Linked Simple Predicates, where the predicate is
defined on three or more processes. Disjunctive Predicates are detected using the
algorithms for WCP.

While the initial logic presented in Waldecker’s work is quite clear and
comprehensive, only a subset of this logic is selected for detection and it does not
provide any significant increment over any other work reviewed in this chapter.
The detection algorithms are weak, as they are not generalizable to n processes for
most types of predicates. Moreover, ambiguity exists both at the taxonomy level
and in whatexactly is detected: a WCP is indistinguishable from a Weak 1.5P, and
a SCP will be detected using either the WCP or the SCP algorithm, without
distinction. No attempt is made by Waldecker to interpret Linked Conjunctive



Predicates, ic the goal of this thesis of defining relationships between distributed

predicates is not met.

No halting algorithms are presented in Waldecker’s work; the focus of the work is
detecting satisfaction of a given predicate.

Waldecker does attempt to link safety requirements to distributed predicates. He
notes that when searching for a predicate expressing an error condition, that is, a
predicate specifying violation of some safety requirement, it is only necessary to
search for a WCP. This is because it is only necessary to detect a single global state
violating safety to assure thatitis indeed violated; satisfaction of safety requires
scanning the complete execution. However, WCP’s need not necessary express
safety violation. SCP’s, he notes, seem more useful for expressing correctness.
However, he does not make an explicitlink between distributed predicates and a
model for specifying safety. Given the lack of generality of the detection
algorithms, extending the logic further ma- not be feasible.

While Waldecker does not address the notion of minimal and maximal prefixs at
which a predicate may hold, such a notion is expressible using the interleaving
model. Cooper and Marzullo, (next section), approach this idea and show other
similarities to Waldecker’s work due to their common use of an interleaving
model of concurrency.

p ~ r ~r
procl | ? e o] —
proc2 l | 4 — >

q ~q S ~S

Waldecker: 30(paq), VO(ras),
Cooper and Marzullo: possibly (pAq), definitely (ras)

FIGURE 2: 30 (possibly) and VO (definitely)
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2.3 Cooper and Marzullo: detecting distributed predicates

Cooper and Marzullo, [Coop91], focus on the detection of distributed predicates.
They restrict the problem of halting to deciding whether the desired predicate
holds in the current state.

They use the standard approach for a predicate logic as described above - boolean
operators on boolean expressions constructed using local variables of the process.
They use an interleaving model of concurrency, and make the following
distinctions in terms of predicate detection: a predicate holds possibly if it held in
at least one state of one interleaving of program execution. This corresponds to
Waldecker’s 30P (WCP). A predicate holds definitely if it holds in at least one state
of all interleavings of the program execution. This corresponds to Waldecker’s VO
(SCP). A predicate holds currently if it holds in the current state of the program.
Cooper and Marzullo do not say why the distinction between possibly and
definitely is significant, as Waldecker attempted (o do by linking them with
violation and satisfaction of requirements.

However, some riotion of minimal and maximal prefix is brought forward: the
notion of a minimal and maximal global state that contains a particular event ¢, is
defined. The causality relationships of other events to e, are somewhat obscured
by use of the interleaving model, but this notion of minimal and maximal global
states is used in the detection strategy rather than giving the user the minimal and
maximal global states at which the predicate itself held.

Thus [Coop91] does not meet the goals of defining relationships between
distributed predicates, expressing safety, and permitting specification and
detection of minimal and maximal prefixs.

2.4 Fowler and Zwaenepol

The contribution of the work of Fowler and Zwaenepol, [Fow90], is the
identification of the notions of minimal prefix, called a Causal Distributed
Breakpoint, of a computation with respect to a predicate. They note that, in
sequential systems, halting at a breakpoint leaves the system in a statc in which
all events that have occurred have a causal effect on the event triggering the
breakpoint. In their work, local predicates equivalent to the Simple Predicates
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defired above are defined. Detection of satisfaction of a local predicate triggers a
roll-back algorithm that restores the system to the global state corresponding to
the minimal prefix of the computation at which the predicate was satisfied.

In sequential systems it is equally true that all events after a breakpoint depend
on the event triggering the breakpoint. The corresponding notion of maximal
prefix in distributed systems is not identified by Fowler and Zweanepol. In their
work, no attempt is made to extend the notion of minimal prefix to more complex

Conjunctive or Disjunctive predicates.

2.5 Spezialetti

The thesis of [Spez89] is that previous approaches to monitoring distributed
systems have not made clear to the user the distinction between the state at which
a predicate is detected and the state at which the system halts. A general approach
is developed for the task of monitoring. This approach takes into account the
characteristics of the predicate being monitored, with the goal of enabling the user
to understand the basis on which detection occurs and the distinction between the
state at which the predicate is detected and the state at which the system halts.
Characteristics of predicates that are taken into account are the number of
processes on which predicate is defined and whether the predicate is stable or

unstable.

A logic is presented that permits specification of Simple Predicates, Conjunctive/
Disjunctive Predicates, Linked Simple Predicates, and Linked Conjunctive/
Disjunctive Predicates. A method called Simultaneous Regions is developed as a
tool in detecting two or more Simple Predicates holding concurrently in some
state of the system. Detection of Linked Simple Predicates is straightforward and
proceeds more or less as in any of the works described above. No interpretation or
detection methods are given for Linked Conjunctive/Disjunctive Predicates.

The method of distributed snapshot establishes a consistent image of system
activity, and implies that the 10cal states of which the global snapshot is composed
occurred (or could have occurred) simultaneously for a global observer.
Spezialetti presents an algorithm for detecting predicates using a version of the
snapshot algorithm. However, this method requires the involvement of all
processes in the system. This may be far more expenditure than is justified for the
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detection of a predicate defined on a small subset of processes in the system. In
[Spez89] the method of Simultaneous Regions is proposed as a tool for detection
of this type of predicate.

The method of Simultaneous Regions is based on the observation that ordering of
events in distributed systems is established through message passing. Sets of
events at a process that fall in between two message deliveries can be considered
to bie local regions. Two Simple Predicates can be said to hold simultancously if
they both hold in some consistent global state, that is, if the regions in which they
hold can be considered to be sirnultaneous. Local regions are numbered
sequentially: each time the Simple Predicate value at a process changes, the local
region number is incremented. When the local region number changes, a marker
message containing the region number and the value of the Simple Predicale is
sent to every other process on which the predicate to be detected is defined. These
marker messages are considered to establish ordering among events. On receipt
of such a marker message, the receiving process checks to see if the values of the
Simple Predicates (its own, and that received in the marker message) satisfy the
predicate. If two Simple Predicates hold in same-numbered regions, then they
hold simultaneously. If a process’s region number is less than the region number

13



received in the marker message, the receiving process sets its region number to

the received region number.

Process B Process C
ng,e?__sg* B.b = F c=F
0 0
Aa=T
Bb=T 0
1

FIGURE 3: Simultaneous Regions

Figure 2 above is an example of monitoring for the predicate (A.a AND B.b AND
C.c), where a, b, c are boolean variables. Initially all variables are false in region 0.
When A.a and B.b become true, marker messages are sent to the other processes.
Since process B is already in region 1 when it receives its marker message, it does
not change its region number, and similarly for process A. Process C receives a
marker message first from Process B, increments its region number and sends out
its own marker messages. C.c becomes true and increments its region number to
2. Since a, b and c do not all hold in region 0 or in region 1, no instance of the

predicate is detected.

Since all the messages shown in the above figure are marker messages, and not
application messages, this conclusion does not make any sense. Clearly the a, b
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and c all hold in some global state of the system. The flaw in this detection
method is that it depends on ordering established by marker messages, and
detection is therefore not reliable. Successful detection depends on the arbitrary
time-delay in message delivery. Consider, for example, if exactly the same
scenario is considered, but message arrival differs:

A Process B Process C
Processe®  "BboF P

FIGURE 4: Simultaneous Regions Revisited

If messages from process A and B are delayed until after C.c has become true,
then process C does not update its region number, being already in region I, and
detection does occur, as a, b and c all hold in region 1. Detection using the method
of Simultaneous Regions is thus unreliable.

While flawed in its use of marker messages to establish ordering, the above
technique provided a basis for some of the methods proposed here. Specifically,
the idea of local regions in which a Simple Predicate holds is used as a basis for
detection. This idea was also proposed in a similar form by Waldecker.
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While [Spez89] does not present any means for ‘Linking’ distributed predicates,
expressing safety using predicates, or for determining minimal and maximal
prefixs at which a computation holds, her work does make some centribution in

the area of algorithm design.

2.6 Chandy and Misra

Chandy and Misra propose a theory and notation for parallel program design in
[Chan88]. Safety properties can be expressed using a fundamental expression, P
unless Q (if P holds, then it continues to hoid unless Q holds). unless can be used to
construct other expressions such as stable P (once P holds it continues to hold, or P
unless P) and invaria.it P (P holds throughout program execution, or P is stable
and holds at the initial state of the program). Lamport shows in [Lam80] that
enriching an ordinary temporal logic with an operator such as unless permits the
specification of a moie general class of properties.

However, neither [Chan88] nor [Lam80] gives an interpretation of these
specification tools for the class of distributed systems considered here. The
concepts proposed in this work are taken from the more abstract context of
concurrent systems to the more specific context of asynchronous distributed
systems. This interpretation makes it possible to express such safety properties in
terms of distributed predicates. Systems can then be monitored for satisfaction or
violation of such predicates for the purposes of testing and debugging or fault-

tolerance.

2,7 Lamport

In [Lam86a, Lam86b] a formalism for specifying and reasoning about concurrent
systems is presented. This formalism provides a basis for reasoning about non-
atomic actions, which can be used to show what it means for one system to
implement another - specifically, what it means to implement a system that
provides atomicity using primitives that are inherently non-atomic.

An atomic operation is one whose execution is performed as an indivisible action.
Anoperation is a class of actions, and an operation execution a particular instance
of such an action. In a high-level language an action may appear to function
atomically, yet at a lower or machine-language level inust be implemented with
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circuits that are inherently non-atomic. In [Lam86] the problem of implementing
atomic operations to a shared register with more primitive, non-atomic operations
is considered.

An operation execution is represented by a set of primitive actions or events,
where A->B means that all the events of A precede all the events of B, and A-->B
means that some event of A precedes some event of B.If s, and f, are the start
and finish events of A, then in a global time model A->B means that A finishes
before B starts, and A->B means that A starts before B finishes. For all operation
executions A and B in a set of events E, either A->B or B-->A. If A->B, then A-->B
as well.

A Simple Predicate holds over a sequence of local states of a process. This
sequence or region is identified with Lamport’s notion of non-atomic operation;
each region is marked by an initial and a final event, and regions can be ordered
using an interpretation of ‘->’ and ‘-->‘. This notion of non-atomic action provides
the basis for the interpretation of predicates as distributed, non-atomic actions,
developed in this thesis.

2.8 Conclusion

While the body of work reviewed here includes contributions to the subject of
detection of distributed predicates, some issues are left undefined or ambiguous.
Issues still undefined or ambiguous are how to establish relationships between
distributed predicates analogous to those that can be established between local
events - for example, sequence and concurrency. Several works [Wal91, Spez89]
permit the specification of ‘causal’ relationships between distributed predicates,
but do not give an interpretation or adequate detection methods.

Detection has taken two approaches. In earlier work [Fow90, Hab88, Mil88], the
condition to be detected was characterized as an atomic event. In later work
[Wal91, Spez89] it was recognized that breakpoint condition may hold over a
subset of the state space, and that this fact can be used to increase the efficiency
and the precision of detection.

Most of the works reviewed [Spez89, Mil88, Hab88] use some optimization of
Chandy and Lamport’s distributed snapshot algorithm [Chan85] to halt a
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distributed system in a consistent state once a breakpoint condition or predicate
has been detected. The utility of applying a halting algorithm in the context of
detection of unstable predicates is questionable. Either the state obtained by the
halting algorithm corresponds to a state at which the distributed predicate held,
or it does not: decreasing the temporal gap between detection and halting is not
useful unless the gap is reduced to zero. Since the distributed program cannot
spontanecously halt in a consistent state in which the breakpoint condition
(predicate) first holds (except with the use of replay facilities, described below),
the state obtained by a halting algorithm will be subsequent to the initial state at
which the predicate held. For a large class of predicates, it cannct be guaranteed
that the predicate will hold at the state obtained by a halting algorithm. Either the
user wishes to know whether the predicate held pure and simple, or wishes to
initiate some roll-back mechanisms if the predicate held. In either case, obtaining
a consistent global state subsequent to the breakpoint state is, in general,

irrelevant.

Since many distributed programs are inherently non-deterministic, the use of a
replay mechanism [LeBI87] that permits the user to record and reproduce a
particular execution of a program is an accepted method for debugging [LeBl187,
Kraw92]. Employing r-play permits the user to either utilize algorithms that will
halt the computation exactly in a desired state at which the breakpoint condition
holds, without any potential side-effects on the recorded computation, or permits
the user to roll the computation back to a such a state.

None of the work reviewed permits the specification of relationships between
distributed predicates as between Simple Predicates. Nor do any of the
specification logics presented link explicitly with models for the specification of
safety in concurrent systems, such as are presented by Chandy and Misra and
Lamport. Lamport’s work in non-atomicity will be taken as a basis for providing a
more complete specification logic, which fulfills the requirement of being able to
express safety properties in the form of distributed predicates.
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Chapter 3 : Reachability

3.0 Introduction

Distributed predicates can be used to express the safety properties of programs.
Distributed predicates can be monitored in the context of deterministic re-
execution or in a real-time context for fault-tolerant applications.

However, distributed predicates do not behave as do predicates on local
processes. Firstly, occurrences of a local predicate holding can be totally ordered
at a process just as atomic events at a process are totally ordered. Distributed
predicates are spatially distributed and hold over global states, which cannot be
totally ordered. Secondly, change occurs atomically in local predicates. This means
that an assignment to a local variable, which is considered to be an atomic
operation occurring in no time, atomically changes the value of the predicate
defined on the variable. Distributed predicates do not change value atomically;
because they are distributed over multiple processes, distributed predicates may
become true at several processes simultaneously, and false at several processes
simultaneously. Thus a logic is required that will address the problems posed by
distributed predicates.

Alogic is proposed for distributed predicates for the purposes of interpreting
specifications and performing monitoring. To interpret specifications, the logic
must capture the relationships between distributed predicates and the mechanism
of change of value of distributed predicates. To perform monitoring, the model
proposed must capture these relationships in such a way that a detection strategy
follows efficiently from the model.

3.1 Process Model

A process is an instance of a program execution, viewed as consisting of a
sequence of events. An event is an atomic transition of the local state, considered
to occur in no time (duration of zero). Events are thus atomic actions which occur
at processes; events which are considered atomic are send events, receive events,
and assignments to local variables of a process.
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Processes are assumed to communicate by message-passing only, and it is
assumed that message delay is finite, but unbounded. Messages are ordered such
that if a process procl sends a message m1 at time t1 to a process proc2, and sends
a message m2 at time t2>t1, then proc2 receives m1 before m2. It is not necessary
to assume mechanisms for atomic broadcast or causal broadcast.!

Events at a process are totally ordered. Each send event has a corresponding
receive event ind the send and receive events of a particular message are

sequenced as follows:

An event structure is a pair (E,<) where e is the set of events in a computation and
‘<’is an irreflexive partial order on E. For a given computation, e happens-before
e’ (e<e’) iff

1. e and e’ are events at the same process and e precedes €’, or

2. ¢ is the send event of message m1 and ¢’ is the corresponding receive event of
message m1l.

If not (e<e’) and not (e’<e) then e and e’ are concurrent, written as (el | e’).
A consistent prefix n of an event set E is a finite subset

ncE: (een) A(e'<e=e' e m) (1]

A consistent prefix is isomorphic to a consistent global state S. The global state of
a system associated with a prefix n is the collection of local states of the processes
immediately after the occurrence of all the events in &, and the set of messages

sent but not yet received.

3.2 Predicates

A predicate is an assertion defined on the local variables of one or more processes.
The processes on whose variables a predicate is defined are called predicate

1. To guarantce the possibility of consensus in asynchronous systems in the presence of stop-failure,
messages must be ordered and the transmission mechanism be broadcast. Messages must be ordered in the
following way: processor P, receives message m1 before message m2 when Py sends m1 to P, at real time
tl, p2 sends m2 to P, at real ume t2, and t1<t2. It is sufficient to assume the slighter weaker condition of
atomic broadcast, that either all sites receive m’ before m or all sites receive m before m’. However, for the
purposes of tus work the existence of such facilities is not assumed; unordered delivery (with respect to the
definition of ordering given above) is dealt with,
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processes. No variables are shared, and a variable is said to be owned by the
process at which it resides.

A logic for specification of distributed predicates is defined in this section and
will be extended in Chapter 6. A local precicate is a predicate on the local
variables of a sequential process. Local predicates can be specified and conjoined
with logical operators (AND, OR, NOT) and comparative operators (<,>,=) to
form distributed predicates. If two assertions are joined by a logical or compuaraltive
operator, satisfaction of the expression requires that both assertions hold in some
single consistent global state of the system.

Well-formed predicates are constructed in the usual way, following this grammar:

An assertion is a boolean-valued predicate. This boolean-valued expression is
constructed by naming a non-boolean valued variable (nbv), a comparative
operator, and a number or a non-boolean variable; or by naming a boolean
variable directly:

a =((nbv Inumber) + > | < | =) + ((nbv) | number) Ibv

Examples:

* Variable n at process proc3 is greater than 2: (proc3.n>3)

* Variable x at process proc3 is less than variable y at process proc4: (proc3.x<-
procd.y)

* A boolean assertion uses assertions to build more complex boolean-valued
expressions. It is constructed by naming an assertion, a logical operator, and
another boolean assertion or assertion:

ba=(a ! ba) + (AND | OR | NOT) + (a | ba)

Examples:

* Variable DONE at process procl is true and variable COUNT at process procl
is greater than 10: ((proc1. DONE) AND (procl.COUNT >10))

* Variable TOKEN at process procl is true and variable TOKEN at process proc2
is true: (procl. TOKEN AND proc2. TOKEN).

If an assertion or boolean assertion names variables local to one process, it is a
local predicate; if it names variables of more than one process, it is a distributed
predicate.
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Events at a process are totally ordered. The execution of an event e, leads to a state
S,: the execution of e,,, to a state S, ,; and so on. If a local predicate holds in a state
S,, then it is said to hold at the event e,.

The local variables of a process are considered to change value atomically; the
change occurs in no time. A local predicate thus changes value atomically, as the
variables on which it is defined change value atomically. These changes are totally

ordered.

An instance of a local predicate is a totally ordered sequence of events ey<..<eg;
such that the predicate holds at ey, e, and all events in between. Such instances of
a local predicate P, are totally ordered; all events in the xth instance of P; (written
as PY) happen-before all events in the (x+1)th instance of P;. An instance of a
predicate is a totally ordered sequence of events; instances of local predicates are

totally ordered:
Pf = {ncEiej<...<e A (Vee P}, Ve'e P;‘”:e<e')}.

P is the xth instance of local predicate P;.

3.3 Motivation for a Logic of Distributed Predicates

The predicate logic defined in Section 3.2 can be used to specify breakpoint
conditions; the predicate logic specifies some interesting event or condition and
the computation is halted at a global state in which the predicate holds.

Using an assertional approach in the predicate logic is equivalent to the
behavioral approach and presents some advantages. Predicates and events are
analogous: the event “x is assigned the value 2’ is equivalent to the predicate which
asserts ‘the event 'x has been assigned the value 2 has occurred’. Predicates are
appropriate to specification of more complex conditions and properties because
they lend themselves to abstraction; a condition can be specified, rather than
specifying all the possible behaviors satisfying the condition.

Breakpoints are an important tool in sequential debugging. They permit the user
to examine program state at interesting places and to track the flow of control by
using successive breakpoints. Some work has been done adapting the concept of
breakpointing to the debugging of distributed programs [Hab88, Mil88, Coop91].
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However, this work has for the most part been limited to characterizing and
detecting sequential breakpoints - local predicates as defined above [Fow99,
Mil188]. There are two drawbacks to these works. First, the type of distributed
predicates that can be specified or detected is limited [Hab88, Spez89, Wal9il:
they do not consider the cases where there is more than one state corresponding
to the specified breakpoint. Second, the causal relationships between distributed
predicates is limited: for example, specification and detection of one distributed
predicate causally affecting another is not successfully treated [Hab88, Spez89,
Wal91] and no other possible relations between predicates are considered.

The difficulty in determining relationships between distributed predicates lies in
the fact that distributed breakpoints cannot be easily ordered, as sequential
breakpoints can, using Lamport’s ‘happens-before’ relation [Lam78). The
relationship between two events e and e’ can be characterized as sequential;
depending on our knowledge of the events, we may decide that there is a causal
relationship between e and €’. But predicates, unlike events, hold over global
states; they are spatially distributed. Sinre strictly speaking it cannot be said that a
state ‘happens-before’ another state, we are unable to decide if a predicate can
have a causal affect on another predicate on this basis.

procl \\ —>
-

proc2 /| /; ’ e /01 | >

e e B

A

e<e’ Global states A and B cannot
be ordered using ‘<’

FIGURE 5: Ordering using ‘happens-before’ (<)

However, if a prefix of a computation, when augmented by some events, is
identical to some other prefix of the computation, then we can conclude that the
first prefix can causally affect the second. This idea is used in developing a model
to characterize the relationships between the global states at which two predicates
hold. This topic is covered under the heading ‘Reachability” in Section 3.4.
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Characterizing the relationship between two global states or prefixs is not in itself
enough to decide if two predicates can affect each other. Predicates hold over
many prefixs of the computation, that is, over some subset of the global state
space. They do not, in general, hold only at one global state as drawn in Figure 5.

\I —-ready-flag 1--—-- I /
procl 4 >

) \ | -ready-flag 2--—-\\I‘
proc : . >
! -/—{-ready-ﬂag 3 \\ |

\‘\! >

|-procl AND proc2 AND proc 3 READY holds-|

proc3 |

FIGURE 6: Predicates hold over a subset of the state space

To decide if one predicate can, causally or otherwise, affect another predicate,
every prefix at which the two predicates hold must be taken into account.The
concepts and notation developed in the Reachability section will be used to
specify the relationships between distributed predicates in Chapter 5. Two
problems will be addressed; spatial distribution of distributed predicates, and
non-uniqueness of initial and final states at which a predicate holds.

Discussion of applications of the expanded model will focus on uses for
breakpointing in debugging (Chapter 7, Section 7.1) and for safety specification,
for the purposes of monitoring and debugging (Chapter 7, Section 3.0).

3.4 Reachability

3.4.1 The basic relation: reachability

Let A be a non-empty set of concurrent events at PA’s predicate processes, at
which PA holds. Then n, is a consistent prefix of E found with respect to the set A:

K'\QE:(AEE)A(VEEA:E'<€=>8'EE) [2]
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and I, is the set of all such m,.

I-Iz\
Ao

r N
procl ‘>\ A

proc2 N / o

\(

proc3 A\ >

NG

(maxA)

(minA) A

A={el,e2}

FIGURE 7: I,

I, is the set of prefixs m4 of the computation which give the global states at
which events A have occurred and in which PA holds.

Recall that a local predicate is said to hold at an event e, if the predicate holds in
the associated state S,. When a predicate holds in a global state, and that global
state is a prefix of the computation found with respect to a set A, the predicate is
said to hold at the events in A.

If a prefix of a computation, when augmented by some events, is identical to some
other prefix of the computation (r; < .), then we can conclude that the first prefix
can affect the second.

This observation leads to the idea of reachability. A predicate PA holds at a set of
events A; and a predicate PB at a set of events B. We will say that PB is reachablc
from PA if some element of Il,, when augmented by a (possibly empty) set of
events, is identical to some element of ITj.
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There is some prefix 7, in I1, which when augmented by some events e gives

some prefix ng in [T

Mn,~>MNyiff 3n, e I1,,3Ing € [gin, cng (31
which is equivalent to

I'IA~>I'IB iff vae A,Vbe B: -~(b<a) (4]
Proof:

=>:(37rA € HA,BTcBe My, cng) = (Vae A,Vbe B: =(b<a))

Assume that there exists some eventa in A and some event b in B so that (b < a):
Jae A,dbe B: (b<a)

then for all &, in I, there is some a which is in t, but which is notinany ng in Il
such that:

VnAe HA,VnBe HB:ﬁ(nAgnB)

which is contradictory. Therefore, if - (% AGTg ) then —(b < a) holds for all
events a in A and all events b in B:

(Vae A,Vbe B: -(b<a)) = (BnAe HA,SnBe IIB:n:AgnB)
Assume that there does not exist any (n, c7g); then:
Vrn,eIl,,Vige Ilgn,cm,

then there must exist some b that happens-before some a:

Jdae A,Jdbe B: (b<a)

But this is also contradictory. Therefore, there must exist some x4 in I, and some
g in [Tz such that (n, S ng) .

26



3.4.2 Other relationships, using reachability

By determining if I, and [Ty are each reachable from the other (mutually
reachabie) the possible relationships between I and Iy are defined:

Is ITg reachable from I1,? Is I, reachable from [13?

Yes, yes; I is reachable from I1,, and I, is reachable from I,
. No, no; I is not reachable from I, and I, is not reachable from Iy,

. Yes, no;IT; is reachable from [, but I, is not reachable from [y,

= W N =

. No, yes; ITg is not reachable from [T, and I, is reachable from IT.

1. I is reachable from IT,, and IT, is reachable from [1y: when all events in A are
concurrent with all events in B, then there is some prefix ©, and some prefix my
which are identical:

IT, TG iff IT, ~>TIp ATIG~>T1 ), (5]

which is equivalent to

I, 1T, iff Vae A, Vb e B: (a||b) 16

The above follows directly from the definition of ‘~>'. Since I, ~>TI1 holds, then
—(b<a); and since I'IB~> I'IA holds, then—(a <b) ; thereforeal | b for all events a
in A and all events b in B.
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al 1 g
a

procl -
proc2 -

a2 . a2 b2
proc3 |b -

! event structure
proc4 { -
b2
A={al, a2}
space-time diagram B={b1,b2}

FIGURE 8: I,|[TT;

Let A and B be non-empty sets of concurrent events:
|l is symmetric and reflexive:
if l'IAll ﬂBthen HB” HA

VACE,TI,|IM,

2. If Iy is not reachable from I'l,, nor I, from IT;, then
I, Xy iff = (11, ~>TI5) A= (ITg~>1I1,) (7]
which is equivalent to

[, XTI iff 3a,a'e A,3b,b'e B: (a<b) A (b'<a)) 8}

and follows directly from the definition of ‘~>’.
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al bl
al bl
prOCl — >
proc2 >
b2 a2 A2 2
space-time diagram event structure
A=lal,a2}
B={bl b2}

FIGURE 9: [T, XTIy
Let A and B be non-empty sets of concurrent events:
X is symmetric:
if HAX HB then HBX HA
3. If [T is reachable from I1,, but [1, is not reachable from [{, then
0, =T iff (IT,~>T15) A= (ITg~>11,) (9]
which is equivalent to

I, |=>TIB iff (3ae A,3be B:a<b) A
(Vae A,Vbe B:—(b<a))

[10]

following again directly from the definition of ‘~>".

That is, some prefix n,, when augmented by some events, is identical to some
prefix mg; and there is no prefix of ng which can be augmented to any prefix ny;
and there is no w, which is identical to a np.

If I, |=>IT5 then it can be said that PA can causally affect PB in a sense analogous
to ‘event a can causally affect an event b'.
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al bl o1
a
proc] T
proc2 -
a2 b2 a b2
space-time diagram event structure
A={al,a2}
B={b1,b2}
FIGURE 10: T, |=>T1,
al bl b1
a
procl ! -
proc2 ><ﬁ -
a2 b2 a b2
space-time diagram event structure
A={al,a2}
B={b1,b2}

FIGURE 11: TT, |=T1
Let A and B be non-empty sets of concurrent events:
|=is irreflexive:

it 11, |= Ty then ~([T, |=11,)
4. Case 4 (ITy l==T1,) is analogous to case 3.

Subcases of each of (I}, |=,X) can be defined where utility warrants. Two such

cases are defined:
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1a) Special case of IT,|[TT:

I, <My iff : A € B )

\ : / /
W A= {02)
proc 2 -~ B ={el, 02}

FIGURE 12: nAél—IB

I\ Z£ITy is reflexive and transitive: if A, B and C are non-empty sets of concurrent
events then

V(ACE)IT, £,

if 11y LT and LIl then T, £

3a) Special case of (T, |=T1y), where all events in A precede all events in B:

(I, I—)l’IB) iff Vae A,Vbe B: (a<b) 112]
depicted in Figure 11,

|- is irreflexive and transitive: if A and B are non-empty sets of concurrent events
then

if I, |- ITg then ~(ITg |-I1y);

if 1, |-T1g and ITg |[=TTc then IT, |-[1c
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3.4.3 Properties and lemmas on reachability

Lemma 1: Exactly one of (|=, ||, X) holds between any two non-empty sets of
concurrent events.

Let A and B be non-empty sets of concurrent events. Then Lemma 1 says
(IT, =1y @ (It =] I1,) ® (IT,IIT;) ® (1T, X IT;)

Given two non-empty sets of concurrent events, one of the following
relationships must hold:

Jae A,3be B: (a<b) 3Jae A,Jbe B: (b<a) Relation

1 yes yes I, XTI
2 yes no I, =TI,
3 no yes My l=| 1T,
4 no no I, T

TABLE 1:Reachability Relations

Therefore at least one, and exactly one, of the above relations must hold.
1. Some clement in A happens-before some element in B; some element in B
happens-before some element in A.

2. Some element in A happens-before some element in B; no element in B
happens-before any element in A.

3. Some element in B happens-before some element in A; no element in A
happens-before any element in B.

4. All elements in A are concurrent with all elements in B; no element in A
happens-before any element in B, and no element in B happens-before any
element in A.

Let A, B, C be non-empty sets of concurrent events:

1. |- isirreflexive and transitive:

if [y |- Iy then ~(IT, I-11,)

if [, |-I1; and I, |-ITc then I, |-T1c
2. Jland X are symmetric:

if [Ty)l [Tgthen I'Ty)| Ty



if I1,X TTgthenITgX IT,
3. || and £ are reflexive
VACE, I, |ITT,
4. £ is transitive:
if I, £I1g and IMgZIlc then Iy LI
5. (I, RT1p) is treated as a predicate which is either true or false; thus it cannot, in
general, be treated as a function that yields a set of prefixs.
Where R is any of (|=, ]|, X)
(I, RITp) R (Il R 11p)
is undefined.
6. Asshown in Lemma 1:
if T1, |>TTg then Iy [=TTg;
if I14 £T1g then IT,||ITg;
i £ T1, |=TI or I4||TT; then IT,~>|TTg;
and either ITy~>|ITg or [T, XTT;.

3.4.4 Summary

A non-empty set of concurrent events A at a predicate PA’s predicate processes is
chosen. The set of consistent prefixs of the computation found with respect to the
set A is found; this set is called I, and PA holds at every prefix n, in 1. A set 11
is found in the same way.

If no event in B happens-before any eventin A, then Iy is reachable from 1,
(ITo~>ITp). If all events in B are concurrent with all eventsin A, then (Il 1y); 11, is
reachable from Iy, and I, is reachable from ITg. If some event in A happens-
before some event in B, and no event in B happens-before any event in ., then
(T |=1Tp), and ITg is reachable from I1,. If some event in A happen-before some
events in B, and some event in B happens-before some event in A, then (HAX 11y)
and neither of [, nor [T is reachable from the other. Either I'l, is rcachable from
ITg, Iy is reachable from Iy, or (IT, X ITg) must hold between any two prefixs
(global states) of a computation.
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Reachability between global states at which predicates hold is thus determined by
examining the causal relationships between sets of concurrent events at which
predicates hold.

The reachability semantics presented in this section represents an increment over
[Hab88, Mil88, Spez89, Wal91] because causality and other relationships between
distributed predicates are defined.

These relationships, (~>,C, | 1) are useful in themselves as is demonstrated by the
examples given with each definition. They are also useful as building blocks.
They will be used in the rext chapter in reasoning about how distributed
predicates occur and particularly in defining the relationships between
distributed predicates.
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Chapter 4 : Distributed Predicates

4.0 Distributed Predicates

The concept of reachability between global states at which predicates hold has
been introduced along with its notation. But predicates in general may hold over
a subset of the global state space, not just over single global states, and the
concept of reachability alone is insufficient to address the question of whether one
predicate affects another. The spatial distribution that occurs in distributed
predicates is addressed by the concept of reachabilty and non-reachabililty; when
dealing with predicates that hold over more than one global state, the non-
uniqueness of initial and final states at which a predicate holds must also be
addressed. The concept of minimal and maximal prefix will be used to address
this non-uniqueness.

A given predicate may hold several times over the course of a computation. One
occurrence of a predicate holding must be characterized and distinguished from
other occurrences before the problem of how two predicates can affect cach other
can be addressed.

In Section 4.1, minimal and maximal y are introduced. These are interesting in
themselves for use in breakpointing, as will be discussed in Chapter 7, and will be
used to specify a notion of initial and final states of an occurrence of a predicate.
In Section 4.2, a single instance of a predicate is characterized with respect to
some state of the computation. The initial and final states of the instance are
shown to be possibly non-unique. Some lemmas on the relationships between
initial and final states are given in Section 4.2.2. An example is given in

Section 4.2.3 for deciding which sets of events belong to an instance of a predicate.
The initial definition of an instance was made with respect to some arbitrary
‘initial’ state of the computation. To capture all instances of the predicate the
minimal sufficient initial states are found in Section 4.2.4. In Section 4.3 the notion
of corresponding initial and final states is presented. This will be used in the
definition of simultaneity in Chapter 5. Finally, a summary is given in Section 4.4,
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4,1 Minimal and Maximal g

Two important subsets of I, are the minimal and maximal y of the computation
found with respect to the events in A.

Let A be a non-empty set of concurrent events.
The minimal prefix of the computation with respect to A is:
min, c E: (A gminA)A(Vee Aie'<e=e'e min,) [13]

and is unique for a given set A. Minimal prefix is shown in Figure 13 and Figure
14.

The maximal prefix of the computation with respect to A is:
max, c E: (A cmax, ) A (Vee Ai—(e<e') = e'e min, ) [14]

and is also unique for a given set A. Maximal prefix is shown in Figure 13 and
Figure 14.

Lemma 2: min, and max, are unique for a given subset A of an event set E:

By contradiction:

Assume the existence of a m;, 1, such that both &, and =, are minimal  of A;
then—.(n] c 1t2) and —(m,gm).

Then there must exist some e €m, and some e, €T, such that e, & I, and
c émn

7.
But according to the definition of the set A

if e € A, thene, e T, and

if e, ¢ A, thenforsomee'e A, e, <e',sincee'e Ty, then e € m,.
Similarly,

ife;e A, thene, e n, ; and

it e, A, thenforsomee'e A, e,<e, since e'€ n,, thene, € n,.

36



Thus —~(Je e E: (ee m, A (eem,)) v(ee n,An(een))

1
S ((memy) A (n,emy))

so 1, =1, and the minimal prefix of A is unique.

The proof of the uniqueness of the maximal prefix of A is analogous.

n

Lemma 3: min, is a subset of max,.
Proof: For all e, ¢ in min, either

1. e is an element of A: then
e is an element of min, and
e is an element of maxy

or

2. if e'<e then
e is an element of min, and
—(e<e') soeisan elementof maxy,.

Since there is no event which is an element of min, which is not also an

element of max,, min, is a subset of max,.

n

Having defined min, and max,, a proof of a property of the reachability relation

£ canbe given. This property will be used in defining simultaneity between two

predicates in Chapter 5.
Recall that IT , ZIT; iff : A € B.

Lemma 4: if A ¢ B then PA holds at all iz in T,

maxu, ming
If A ¢ B, then minycming and maxgcCmaxy:

By contradiction:
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min,cming: Assume that there exists angin min, such thata is not an element of
ming. Then there must exist a bin Bsuchthatal lbor b<a.Ifal Ibthen aisan
element of B (because a element of A implies thata is an element of B, because

A < B),soa is also an element of ming. If b<a then there exists somea’ in A, (and
therefore also in B, because A ¢ B), such that a<a’. This contradicts the definition
of min, so this cannot occur. Therefore there cannot exist ana such that aisin

min, and not in ming, SO mMin,Cming.

maxpymax,: Assume that there exists a bin maxg such that b is not an element of
max,. Then there must exist an ain A such that a<b, by definition of max. But if
a<b, then there must be some b’ in B such that b’<b, because all a’s are also b's since
A < B. But this contradicts the definition of max, so it cannot occur. Therefore
there cannot exist a b such that b is in maxg and not in max,; therefore

maxyCmax,.

Therefore npe My=>npell,, by the above and Lemma 4. Since PA holds at all
n, in Iy, PA holds at all ng in IT.

4.2 Instances of a Predicate

An unstable predicate may hold multiple times throughout the course of a
computation. Each occurrence of a predicate holding, or an instance of the
predicate, can be distinguished from every other. This is straightforward when
the predicate in question is a local predicate, as such instances are totally ordered
as discussed in Chapter 3. Distinguishing instances of distributed predicates is
more complex because such instances cannot be totally ordered.

4.2.1 Initial and final states of an instance

Let PA be a predicate, and let A be a set of concurrent events at which PA holds.
Let A be the set of such sets A. Then

A ={A|PAholdsat IT, A
—~(3A, A":PAholds at IT,. A —(PA holds atIT,.) A [15]
My =T, ATl =11, ) }

and A represents an instance of PA.
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Then A, is a subset of A:

Aec Ajiff ~(A'e A: T1,. |=>T1)) o]
and A; is asubset of A:

Ac A iff «(3A'e A: T1, |=T1,) !

A, is the set of sets of concurrent events A at which PA initially holds; A, is the set
of maximal (latest) sets of concurrent events at which PA holds.

If 1Agl >1, then the initial state of this instance of PA is not unique; there is more
than one minimal prefix.

It will be useful to designate the set of minimal % (min,) of each element Ain Ay
min, = ncE: (Ae Ayj=2Acr) A (Vee A:e'<e=>e'e n) [13)
and similarly to designate the set of maximal % (max,) of cach element A in A;:
max, =ncE: (Ae A; = Acn) A (Vee At ~(e<e’' ) e en) [19]

Ajand A;may have more than one element when the predicate PA has disjunctive
elements.
Example:

* PA = (procl.x OR proc2.y)

Let Ag = {{xo},{yol}-
Let Af = {{xf},{}'fn'
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max(x)

min(x)
\XO :/
procl
proc2 /% X
/ Yo N
min(y) max(y)

FIGURE 13: Non-uniqueness of min, and max,

If the events at which x and y first hold occur concurrently, then PA has not one,
but two minimal 3, namely, min(x) and min(y).

¢ PA = (procl.x AND proc2.y)

\ Xp X
procl / < X
proc2 /)

M

Yo

min(x AND y) max(x AND'y)

FIGURE 14: Uniqueness of min, and maxy

The minimal prefix of any set of concurrent events is unique. The minimal prefix
is found with respect to each set of sets of concurrent events, as in Figure 13; if for
two such minimal x w; and 7, neither is a subset of the other (- (n; £ 7)) and

- (m, g r,) ), then the minimal prefix is not unique, and similarly for the maximal
prefix.

If the minimal or maximal prefix is not unique, then for a given occurrence of a
predicate holding there is more than one initial or final state at which it holds.
This can be thought of as an action that is distributed in space and is initiated at
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several points; the instants at which initiations occur are not totally-orderable. For
example, consider a wave receding from a beach. The action of recession is
distributed in space along the beach, and each molecule of water that changes
direction is a point at which the action of receding begins.

While not totally-orderable, there are certain relationships that obtain among the
initial and final states, and also between them. These are set out in the next
section.

4.2.2 Initial and final states: some lemmas

The following Lemmas set out the relationships of initial and final states. These
lemmas will be used in Section 4.3 in showing the relationships between instances
of a predicate, and thus in distinguishing instances of a predicate.

Lemma 5: No initial state of an instance of a predicate precedes (|=) any other
initial state of that instance of the predicate; no final state of an instance of a
predicate precedes any other final state of an instance of that predicate.

VA,A'e Ay (I, XI1,.) v (I1 IT1,.) {20

al
VA, A'e Ag (T1, XT1,.) v (IT,[ITT,.) 1211
Let A and A’ be elements of Ag.

One of ( |=,]|,X) holds between any two non-empty sets of concurrent events
(Lemma 1, Chapter 3). But = (IT, f=> ,.) and = (I1,. = I,) (definition of Ay).
Therefore one of (||,X) must hold between A and A’, and similarly forA;.

n

Lemma 6: No final state of an instance of a predicate precedes (|=>)any initial
state of that instance of the predicate.

VAe A, VA'e Ag —(11,. [=11,) [22]
From the definition of A, -~ (3A, A" TT, l=11,.).

Lemma 7: All final states of an instance of a predicate are reachable from some
initial state of that instance of the predicate.
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VA'e Ag3Ae Ay T, ~> 11, [23]

Each element of A, is reachable from some element of A,. It is possible for A, to be
identical to Ay, if there is just one set of concurrent events at which PA holds. It is
also possible for the set A to be empty if the predicate PA is stable.

By contradiction: assume some A’ in A¢ such that there does not exist an A in Ay
that reaches A’ (~(ITy~>ITx)). A" cannot precede A (~(Ily ~>I1,)), by Lemma 5, so
cither (ITyXI1,) by Lemma 1 or A does not exist. If (TT4XI1,-) then there must exist
some A” in Ay such that (Ily»~>ITy); otherwise A’ would be a member of A,. If A
does not exist, then A’ cannot exist either; by definition it would be a member of
A,. Therefore the contradiction cannot hold and each element of Ay is reachable

from some element of Aj.

n

4.2.3 Example: determining membership in A

0 ¢ \e o1 Xn
procl D _ r L \‘ 1 ! g’ Ay={{xe},{yo}

I |
proc2 / | A//YI/ | A={{xg,{y}}

I
] I I t + ]
Yo/ /I € Ye Yo ya Yoz Y2
Ny ~(rA)

initial state

FIGURE 15: Determining the set A

From some initial state, A is determined. In Figure 15, the value of the variable x
toggles between true and false at process 1; at process 2 the value of y toggles as
well. The two processes communicate infrequently. Local predicates x and y hold
respectively at xpand x, ypand y;, and at all events in between; the time lines are
shaded where the local predicates holds.

If (PA = P1.x OR P2.y), then from the initial state marked {xg},{xg,{yol {yg are all
elements of A, but {xy,} is not because then IT,, |=TTy and Ty |=I1, . Since ~(PA)
holds at [y, this is proscribed by the definition of A; therefore {xy,} is not an
element of A.
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If (PA = P1.x AND P2.y), then from the initial state marked {x,, vy} and {vo,\]J are
elements of A. (X, ;) is not an element of A because then 11y, |21y and

Iy |=>I'I(,0Lyﬂ. Since ~(PA) holds at Iy, this is proscribed by the definition of A.
therefore {xy]} is not an element of A.

~Xo \ "'Xf\e ~Xo1 ~Xn ~ X0
rocl | ] |
p /‘/ ! ! | { Ag=([Nol byl
proc2 | } | | ]I . A=l v
Y/ / & ¥ Yo Yu Yo2 Y2
initia] state HN "'(PA)

FIGURE 16: Determining the set A- P1.x> 2.y

Assume that the values of x and y toggle between 0 and 1. Let x=0 at (~x,), (~x,)
and the events in between. Then if (PA = Pl.x> P2.y), then (x,y,} and {y,,x,} are
elements of A. {xg;, y{l is not an element of A because then [T =11y and

ITy |=>H(x01, yi- Since ~(PA) holds at Iy, this relationship with [Ty is proscribed by
the definition of A; therefore {xy;} is not an element of A.

4.2.4 Determining the set of initial states

In Figure 15, the set {xy, yq,} is not a member of the set A, given the initial state
marked in the example. Yet clearly {xq, yoo} is a state at which PA holds. To ensure
that each instance of PA is recognizable, the relevant initial states must be used.

A set of states to be used as initial states as assumed in the definition of the sel A;
this set will be called I and is developed below. Every minimal prefix of the
computation at which PA holds is reachable from a member of this set of initial
states.

Let Pred be the set of local predicates with which the predicate PA is defined.
Let Pred be the set of negations of local predicates in Pred, i.c,, if

PA = ((procl.x =3 ANDproc2.y=4) OR proc3.z = 5) then
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Pred = {procl.x =3, proc2.y =4,proc3.z=5} and

Pred = {=(procl.x =3), (=(proc2.y =4)), (=(proc3.z=5))}

lLet Pred be ordered such that each local predicate is given a subscript, and let i, j

be subscripts to the n predicates in Pred:
Pred = {P, I’l, Pt

Let x be a label of the instances of predicates in Pred. Recall that instances of local
predicates are totally ordered: an instance of a local predicate is a totally ordered

set of events, and such instances are totally ordered:

l’:‘ = {ncliey<...<en (Vee Pi",‘v’e'e I’i"”:e<e')}.

Thus P’ is the xth instance of local predicate P;.

|| Pt

proc 1 .

i \i f I
proc 2 / ; " o

FIGURE 17: (I’;‘ AND Pjy)

Let o be the set of the earliest elements of P;‘ andey that are concurrent:

C e uy = X v
p(ijoxy) =le e Pi,eze P}-! (elHez) A

—Je', e P{: (' <e))]}



That is, e, from P} and e; from P;’ such that e; and e, are concurrent, and there is
no other event in P} that happens-before e}, and no event in P that happens
before e..

Let min, be the minimal prefix found with respect to the set of events

minu(i‘j'x'y) ={rcEund,jxy)gna

Vee Ib(i,j,x.y): (¢'<e) = ¢ € n)
and let x be the set of desired initial states:
= {QViVj¥xVy : Q=min by b Y
{initial state of the computation }

Claims:

1. Every Q inis a consistent prefix.

u gives a set of concurrent events, and every Q is a minimal prefix with respect
to this set of events: min ;.\ yy - Since the minimal prefix is by definition a
consistent prefix, each Q so found is consistent.

1

¥ contains the minimal prefix of each instance of each predicate in Ired, i.c.,
for each of P, P;,..,P,,.

For each P, in Pred, the minimal prefix of P is found where

* j=0 and y=0 (minimal prefix of Pil)

* j=y and y=x (for every subsequent P}): where P}=D?, the set of concurrent
events found is simply the event(s) at which P, holds for the xth time.

3. % contains the minimal prefix of each instance of all predicates in red, i.c., tor
each of (P; AND P; AND..AND P)).

Where j<>i, i1 finds the earliest concurrent events in each instance x and y of I’}
and Pjy.
4. I does not contain any other y.
Where j=i, the minimal x of each P; are found; where j<>i, the minimal y of I,
and P;and..and P, are found. Since either j=i or j<>i these are all the g found.
5. Every prefix of the computation at which PA holds is reachable from a prefix in
X
Let g = Heiixy) . Assume that there is some A; which is not reachable from
any q: A
JAe A, VQe I: -—1(Hq~> I1,)

Then either (II, |= Hq) or (HAXHq) , by Lemma 1.
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If (11, |=1I1 ) then PA held at the initial state of the computation; but if this is
the case then'[T, must be reachable from the Q that is the initial state of the
computation, so (HA |= Hq) cannot hold.

If (IT,XIT ) then this PA represents a transition from some ~PA. But if this is
the case, then there is some Q that is a minimal prefix of ~PA, from which PA is
reachable, so (IT, X Hq) cannot hold.

Since neither (IT, |= Hq) nor (HAXI'Iq) can hold,

VAe A 3Qel: (T ~>T1,)

4.3 Corresponding initial and final states

As was shown above, an instance of a predicate can have multiple initial and final
slates because the minimal and maximal x are not necessarily unique. However,
these initial and final states are related; as shown above in Lemma 5, no final state
(maximal prefix) precedes an initial state (minimal prefix), and each final state is
preceded by an initial state. In this section minimal and maximal ¥ of predicates
are identified so that an initial state can be matched with its corresponding final
slate. This clarifies how predicates change value and will be used in the definition
of simultaneity in Chapter 5 as well as in other proofs.

Let Pred be the set of predicates with which PA is defined: i.e., if
PA =((procl.x AND proc2.y) OR proc3.z))
then Pred = {(procl.x AND proc2.y), (proc3.z)}.

Let Pred be ordered such that each predicate is given a subscript; let i,j,k be these
subscripts to the predicates in Pred:

Pred =(P,D,,.., Py}

Then for any element P, in Pred, there are corresponding elements in Ay and Ay, or
if I, is stable, A only. For example, if proc3.z holds and is unstable then there
must be an element in Ay and an element in A; corresponding to the minimal and
maximal x at which proc3.z holds.

VP, e Pred ((3A,€ A, 3A'ie A ((HAi~>HA'i) vA'.={@D}))vA={3})
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If proc3.z is stable, then there will be an element in Aj and an empty element in A,,
corresponding to the minimal state at which proc3.z holds; there is no maximal
state, so the A; element is empty. (If PA consists of (P, AND P}), where I} is stable
and P, is unstable, then the final state of P, will determine the final states ot PAY)

If Ayis empty, then PA never holds.

Let the minimal element of an instance of P, be called A y; let the masimal clement
of an instance of P, be called A; then these two elements will be corresponding tor
each instance of P,

Lemma 8: Let C be any non-empty set of concurrent events. Then if 11 is
reachable from some I, in Ay, and some Iy, in A;is reachable from 11, then C
is an element of A and PA holds at C.

V(CcCE)VA e A)VA'ie A (M ~>TM ATl ~>T1,.) = (Ce A)) 2.4

Assume the existence of ¢ as defined above, but assume that —-(C e A).
However, the definition of A states that there cannot be a 'l such that Ty, ~>11;-
and I ~>I1,, and not (Ce A).If (~PA) holds at I then cither A, is not an
element of A; or Agis not an element of Ay, or A includes two instances of PA; any
of which contradicts the assumptions. Therefore PA must hold at 1 and

(Ce A).

n

4.4 Summary

An instance of a predicate may have several initial and final states. Just as the
relationships of two local predicates can be determined by considering their
unique initial and final states, the relationship of one instance of a distributed
predicate to another can be determined by considering all initial and final states.

An instance of a predicate PA is represented by a set of events A. A, is the set of
sets of concurrent events at which PA initially holds; Ay is the set of final sets ol
concurrent events at which PA holds.

The minimal prefix of a single set of concurrent events A is min,, and is unique
for a given set A. The maximal prefix of A is max,, and is also unique for A The:
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set of initial states of an instance of PA is given by the set of minimal % found with
respect to the set Ag, and the final states by the set of maximal x found with

respect to the set Ay

A is found with respect to some arbitrary ‘initial’ state of the computation; to find
all instances the minimal necessary set of I is found. Using the definition of A with
cach state in [ finds all instances of PA in the computation at minimal expense.

Certain reachability relationships hold between the initial and final states of any
instance of a predicate; these are described in Lemma 5, Lemma 6, and Lemma 7.
Each predicate P, in a distributed predicate PA has corresponding initial and final
states. This relation will be used in proofs and in defining simultaneity of
predicates in the next chapter.
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Chapter 5 : Relationships between distributed
predicates

5.0 Non-atomic actions and distributed predicates

Lamport developed the notion of manipulating non-atomic events so that
inherently non-atomic operations can be used to construct atomic operations,
such as the construction of an atomic register. Lamport specitics a concept ot
simultaneity among non-atomic actions [Lam86al. FHowever, this notion is
insufficient for the specification of simultaneity among distributed predicates.

Non-atomic actions as specified by Lamport are not explicitly spatially
distributed; the initial and final points of such an action are assumed to be unique.
Thus initial and final points may have the usual relationships among events; one
precedes the other, or neither precedes the other and they are concurrent.
Simultaneity among Lamport’s non-atomic actions is given by ‘not all of one
action precedes all of another’.

Distributed predicates, by contrast, are spatially distributed and do not
necessarily have unique initial and final points. Because of this non-uniquencess,
the possible relationships between the final state of one distributed predicate and
the initial state of another is not simply one of precedence or concurrency as it is
with non-atomic actions; rather, reachability semantics are appropriate and the
relationship is one of (||, |=,X). The notion of simultaneity among distributed
predicates is given by ‘the final event(s) of each distributed predicate do not
precede the initial event(s) of another’. The contribution of this section is to
specify a notion of simultaneity among distributed predicates, as well as
specifying the other relationships that may hold between distributed predicates.

Because distributed predicates are spatially distributed and do not necessarily
have unique initial and final points, change in value is also spatially distributed.
This mechanism of change is captured by the logic that follows.

In Section 5.1 a brief example is given pulling together many of the concepts that
have been presented. A brief discussion of the problem of characterizing and
detecting simultaneity follows in Section 5.2. The primitive concept that one
predicate may affect another is presented in Section 5.3. Simultancity and other
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possible relationships between instance of predicates, based on this nrimitive
notion of one instance affecting another, are also presented along with some brief
examples and figures. Proofs and some lemmas on the relationships between the
initial and final states of two predicates are presented in Section 5.4. Safety
operators based on the relations developed in this chapter are constructed in
Section 5.5, and finally a summury is given in Section 5.6.

5.1 Example: initial and final states in distributed
predicates

To pull together many of the concepts that have been presented, a brief example is

given.

Let x, y and z be boolean variables of processes procl, proc2, and proc3
respectively.

Let a predicate PA =((procl.x AND proc2.y) OR proc3.z)).

Let the events (marked in the figure below) at which PA first holds be (xy, yo) and
(zg); that is, xg is the event x:= true, y, the event y:= true, z, the event z:= true.

Let the maximal events at which PA holds be x;, y;, and z.

\ . X¢
procl 0

\

]
N

A= [[Xo,)'o],{zo}}

Yo ye
proc2 N / \ /> A = {{xqyd, (24}
proc3 X %
/ “ ’Zf\

FIGURE 18: Ap and A
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Then AO = {{XOI YO},{ZO}} and Af = {{xf'Yf}'{zf]}’

PA holds at every min, in min,,, at every max, in max,; it holds at any prefix I,
which is reachable from a minimal prefix of PA (some element of min,,), and
from which a maximal prefix of PA (some element of max,,) is reachable.

Thus where a predicate holds is defined using A, A,, and the reachability relation.

A; and A; will be used to determine whether two conditions, as expressed by
predicates, can affect each other.

5.2 Simultaneity and the state explosion problem

Two predicates are said to hold simultaneously if there is any global state in
which they hold. Detecting simultaneity using local states at which a predicate
holds can easily lead to a state explosion problem because all states in the
execution have to be checked. Using the minimal and maximal states at which
predicates holds, or rather using the events at which the states are found, permits
the detection of simultaneity without examining every global state. The detection
of simultaneity using this approach is thus feasible and relatively efficient.

Simultaneity is one possible relationship between predicates; there are other
possible relationships that can be expressed and detected using this approach.
These will be discussed in the next section. Defining the possible relationships
between two predicates makes it possible to specify safety operators. This is
discussed in Section 5.5.

5.3 ‘Affects’

It was shown in Chapter 3 that the relationship between any two global states
falls into two classes; one or both states is reachable from the other, or neither state
is reachable from the other. Analogously, the relationship between two predicates
also falls into two classes; at least one predicate affects the other, or neither
predicate can affect the other. A predicate PA is said to affect a predicate PBiff

1. there is some global state in which both PA and PB hold

or
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2. there is some sequential or causal relationship between PA and PB; some prefix
at which PB holds is a proper subset of some prefix at which PA holds.

PA affects PB:

PA ‘starts before, or at least at the same time as’, PB finishes [Lam86a]; some state
at which PB holds is reachable from some state at which PA holds.

PA->PBiff 3A e Ay, 3B e By I[1,~>11, [25]

The operators that define the relationships between two predicates are based on
the relationships between the minimal and maximal states at which the prefaces
hold. The same operators are used throughout; where the operands are
predicates, the operator indicates ‘affect’; where the operand is a prefix, the

operator indicates ‘reachability’.

Docs PA affect PB? Does PB affect PA?

. Yes, yes; PB affects PA, and PA affects PB.

. No, no; PB does not affect PA, and PA does not affect PB.
. Yes, no; PB affects PA, but PA does not affect PB.

. No, yes; PB does not affect PA, and PA affects PB.

W N

1. PA affects PB, and PB affects PA:

PA<-->PBiff ( PA-->PB) A ( PB-->PA)
¢ some state in which PB holds is reachable from a state in which PA holds;
* some state in wkch PA holds is reachable from a state in which PB holds.



Consider where a predicate PA = ((proc4 AND proc3) OR (proc2 AND procl),

and a predicate PB = (proc3 AND proc2). If the following situation occurs, then
PA<-->PB:

maxy

FIGURE 19: PA<-->PB
Notice that there is no global state in which both PA and I’B hold in the above
example, although each predicate affects the other.
2. PA does not affect PB, and PB does not affect PA. This means that
* no state in which PB holds is reachable from a state in which PA holds

* no state in which PA holds is reachable from a state in which PB holds

PA X PBiff —(PA-->PB) A —(PB-->PA) 6]
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R
1 N
proc ™ A={ala2)
Af={a3,a4:}
B,=(b1,b2}
Bf={b3,b4-}
proc2 | - >
Q_/‘all Az L4\ maxB
mmnA
maxA minB
FIGURE 20: PA X PB
3. PA affects PB, but PB does not affect PA:
PA |=PB iff PA-->PB A - (PB-->PA) [27]

This operator indicates that:
* there does not exist any global state in which both PA and PB hold;
* some state in which PB holds is reachable from some state in which PA holds;

* no state in which PA finishes is reachable from a state in which PB starts.

The figures below illustrate two possible configurations of PA |=PB:



dg a)<‘b0 bf/
procl | | >
r Ay={al,a2}
Al:{ll?_,d:‘]
Boz u)l ,b?_}
B={b3,b.l
proc2 \ - tb3,b
/ao a>4;0 b\
minA minB ) maxA mavBl
FIGURE 21: PA |=DPB (PA |—PB)
naxA
minB
1
procl e/‘1 .
Ai=lel,e2)
B()= {C_‘ I ,03}
proc2 \ >
EZ\ /83

FIGURE 22: PA |=PB

Subcases of each of (<-->,|=>,X) can be defined where utility warrants. Two such

cases are defined:

la) Subset of PA<-->PB: PA sim PB

PA sim PBiff 3A, e A,, EB'je B, BB’.E By, 3A' e A (HA].~>I1”.]) A (HB]~>H
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There is some state in which both PA and PB hold. This could be expressed as
3Ae A/ 3Be B: (IT1,1I11,), but looking for this would lead to a state explosion
problem: Consider the simple case of P and Q, local predicates that hold in local
instances P, and P,. Then a brute-force method of determining if there exists some
global state in which both P and Q hold is to compare each event in P, with each
event in P If two events are incomparable, then there exists a global state in
which both P and Q hold. The cost of this islle . |Qy|. By contrast, using Ay and A;
just two comparisons are required to determine if P AND Q holds. Generalizing
to k instances of P and m instances of Q, the cost of the brute force method

is (|I" ] - |Q,)¥™ . Using Ay and Ay costs only 2km.

bl al b3, a3

procl | ! >
( Ay=(al,a2}
A¢=(a3,a4}
B,={b1,b2}
proc2 } I > Bi=(b3bd]
Z a2 / b2 b&atl

minA
\ maxA

minB maxB

FIGURE 23: PA sim PB

3a) Special case of PA |=PB, where all events in A precede all events in B:
PA |- PBiff VAe A, VBe By IT, |- I (28]
depicted in Figure 21.

|- is irreflexive and transitive: if A and B are non-empty sets of concurrent events

then

if n‘.\ |‘—) nn then “'(nu I—-)I'IA),
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if T, |—ITg and I |- Tl then Iy |—T1c

Let PA, PB, PC be predicates:

1. |- is irreflexive and transitive:

if PA |—PB then ~(PB |>PA)

if PA |-PB and PB|-PC then PA |-»PC
2. <-->,sim and X are symmetric:

if PA sim PBthen PB sim PA

if PA X PB then PB X PA

if PA<-->PB then PB<-->PA
3. <--> and sim are reflexive

PA <—>PA

PA sim PA

4. (PA R PB) s treated as a predicate which is either true or false; thus it cannotin
general be treated as a function that yields a predicate.

Where R is any of (<-->, X, |=)
(PARPB)R(PCRPD)
is undefined.

5. If PA sim PB then PA<-->PB.
If PA |-»PB then PA |=PB.

Examples using these operators are given in Chapter 7.

5.4 Initial and final states of two predicates: some lemmas

To help show that the definitions of (<>, |=,X) support what is claimed for
them, recall the definitions of corresponding elements of A and A,.

Lemma 9:

This lemma will be divided into two parts; Part Two is just the contrapositive of
Part One.

Part One:

VBe B, VA € A), VA", € A ((Mg~>I1,.) = (My~>T1,.)) A
(I, ~>Ig)y = (I, ~>T1))

129]
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Part One of the Lemma says that

-if any state in which PB holds can reach an initial state i of PA, then it can also

reach the corresponding final state i of PA, if it exists;

-if a final state i of PA can reach any state in which PB holds, then the
corresponding initial state i of PA can reach it too.

I'art Two:

VBe B,VA e A, VA" € A (—1(ITB~>HA.i) =>—.(HB~> M)A

. (30]
(—.(11Ai~>HB) = —.(HA.i~>HB))
Part Two of the Lemma says that

-if a state in which PB holds cannot reach a final state i of PA, then it cannot reach
the corresponding initial state 7 of PA either;

-if an initial state 7 of PA cannot reach a state in which PB holds, then the
corresponding final state i cannot reach this state either.

PA <--> PR:

Claim: some state in which PA holds is reachable from some state in which PB
holds, and some state in vwhich PB holds is reachable from some state in which PA

holds.

This tollows directly from the definition of ‘<—>’.

PA sim PB:

Claim: it PA sim PB then there exists some state in which both PA and PB hold.

PAsim PBiff 3A € A,, BB')E B,, BB]e By, 3A' e Ap: (T1,,~> nB'j) A (I'IB].~> I,.)

Itis given that (IT,,~> I'IB.i) A (HB]~> IT,..) . Either (I, ~> HBj) or
(I, ~> ﬂm).
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If (IMy;~> HBj) and (HBj~> Im,.). then PA must hold at Il by Lemma 8, and so
both PA and PB hold at IT;.

If ——.(HAi~> HB].) , then either (HBi = I"IA‘) or (HB’XHA‘) I (['IB] |:>llm) , then
(ﬂBj~> I, ) AT ~> I'IB.’) , 50 PB must hold at [Ty, by Lemma 8 and so both I'A
and PB hold at ITy;. If (I'IB]X I'IAi) , then there must exist a some set of concurrent
events G such that (T, ~>T) A (T1g~> I,.) and (It ~>11.) A (L ~>1)

proe NN N

proc2 . [

i My "M 1y I,

FIGURE 24: (iiy XT1,)

Since (HA~> IIA.) , then some 7, is reachable from the minimal prefix of A, by
definition of ‘~>’ and T.emma 3:

I'IA~>HB iff dr, € I'IA, EnB € I'IB:nA cng and min, ¢ max,.
Therefore miny, is a subset of some my in [y
Since (ITg~>IIg) , then ming is a subset of some my by similar reasoning,

Let T, o min, U ming. Then n¢ is a subset of Ta- because both min, and ming are
subsets of my’. Then min, cn cn,.: and both PA and PB hold at r; by
Lemma 8. This completes the proof.

n
PAI=PBiff (3Ae Ay, 3B e B ([1,~>T15) ) A

—~(3Be By, 3A e A (ﬂB~>HA.) )
Claim 1: There is no prefix at which both PA and PB hold, fora given Aand B
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Claim 2: No prefix at which PA holds is reachable from a prefix at which PB holds,
for a given Aand B.

The second part of the definition says that
VBe B, VAe Ag (1T, |= IM,) v (I, XTIy) , since = (My~>T1,) and at least one
of (}=,X,1 1) must hold by Lemma 1.

Let us choose a P, in PA and a P .n PB. Then for all jand all k,
VP, VP, VA€ Ay VB'e B, VBe By VA' e Ag

(M, =g = (T, =) A
(T XM = (M, =T v (T, XTLE)))

Theretore, VB € By, VA e Ay, VA' € Ag ~(Tlg~>I1,) A= (Mg~>11,) from the
above and from Lemma 1.

Therefore no prefix at which PA holds is reachable from a prefix at which PB
holds, satisfying Claim 1.

Since no prefix at which PA holds is reachable from a prefix at which PB holds,
there cannot be an A in A, and a B in Bsuch that I, || ITz. Thus if (I1 A ]=>TIB) then
there is no prefix at "vhich both PA and PB hold, satisfying Claim 2.

PAXPBIiff —(3A e Ay, 3B e B (I1,~>I1)) A
—-33€ By, 3A’e Ap: (Mp~>11,.))

Claim 1: There is no prefix at which both PA and PB hold, for a given Aand B.

Claim 2: No prefix at which PA holds is reachable from a prefix at which PB holds,
and no prefix at which PB holds is reachable from a prefix at which PA holds, for a
given Aand B.

Let I, be an instance of PA; let Py be an instance of PB. Then
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VPj, VP ,VAe A, VB' e B,,VBe B, VA'e A
(= (Tlg ~> H’.A.) = ﬁ(HBk~> HjA) ) by Lemma 9, so there is no element of B and
no element of A such that (ng ~>n,);

(= (I'IB.k~> I'IA;) = — (I'IB.k~> I'IA.]) ) by Lemma 9, so there is no element of A
}
and no element of B such that (x, ~>ng);

which satisfies Claim 2; and since Claim 2 holds, there can be no (i, |iry),
satisfying Claim 1.

Lemma 10: Exactly one of (<—>, X, |=) hold between any two predicates.

If PA |=PB, then PA <—> PB does not hold by Claim 1 for PA |=PB; and PA X I'B
does not hold by Claim 2 of PA X PB.

If PA <—> PB, then PA |=PB does not hold by Claim 1 for PA |=PB. PA X B does
not hold by Claim 1 for PA X PB.

If PA X PB, then PA <—> PB does not hold by Claim 1 and PA |=IB hold by
Claim 2 for PA X PB.

If PA<—>PB does not hold, then neither of PA sim PB and PA |-P’B hold. (By
properties of sim and |-.)

5.5 ‘Unless’, and other safety operators

The contribution of this section is that an interpretation of Chandy’s unless
[Cha88] is given in terms of distributed predicates. Chandy’s unless is defined in
the statement space; there is no control flow of underlying events. In addition, the
statement s in Chandy’s definition is required to be unique. By contrast, the unless
specified here is defined in the event space. Because a distributed predicate may
be spatially distributed, the change in value of a predicate is not necessarily
traceable to a unique event. The concept of unless has been adapted to
accommodate the characteristics of non-uniqueness and spatial distribution in
distributed predicates.

We define ‘unless’ as follows:
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if a predicate PA holds at I, then after the execution of any event e, either PA
continues to hold or PB holds. Let PA(IT,) mean that predicate PA holds at PA:

PA (HA)implies (PA v PB) (HA ve)
where e is any e in E as defined in Chapter 3.

The transitions of interest are thus those from PA to ~PA. The definition
constructed ensures that the initial states of ~PA are considered only when they
are preceded by an instance of PA; the definition also ensures that all such initial
states of ~PA are states at which PB holds. Thus, any transition from PA to ~PA
which satisfies the definition satisfies ‘unless’ as defined above.

~PA may hold at the initial state of the computation; the initial state does not
represent a transition from PA. To exclude the initial-state possibility, the
definition requires that all initial states of ~PA be preceded by some final state of
PA. This requirement guarantees that all initial states of ~PA considered represent
transitions from PA and provides the first part of the definition.

Recall that if PA ZPB, then PB holds PA holds at PB (Lemma 2).
Recall thatif (TIg, - 11, A n, l— Ig..) then PB holds at PA (Lemma 8).

Either PB ‘overlaps’ the initial state(s) of ~PA, or the initial or final states of PB are
a subset of ~PA. Thus PB can be guaranteed to hold at all the initial states of ~PA
if both of the above conditions are met. This provides the second and third parts

of the definition:

(T, |=>I”IA) A
(40, v (T £M0,) v
(Mg l=T1, ATL, |-T1,))

L (IT,. |=T1 ) guarantees that every minimal state of ~PA represents a
transition ffom PA;
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2. (I'IBAI'IA) v (HB.AI'IA) covers the case where the initial or final states of 'B
are a subset of the initial states of ~PA;

3. (I'IB [—=IT, A I'[A [— I1;.) covers the case in which every initial state of ~PA\ is
reachable?rom every initial state of PB and can reach some final state ot I'B.

Stable and invariant properties of programs are expressed in terms of ‘unlesy’.

Liveness properties can also be expressed in terms of ‘unless’. For non-
terminating programs, violation of liveness is only detectable at infinity. For
terminating programs, termination before satisfaction of liveness can be classed as
a safety violation. In either case, the satisfaction of progress requirements can be
detected and reported. Liveness properties can be specified by using a predicate
stating the termination condition; if a predicate expresses liveness, then it should
occur before termination:

liveness predicate ~> termination predicate.

Several other operators can immediately be constructed using ‘unless”:
A predicate is stable if, once it holds, it continues to hold.

stable PA: PA unless PA

An invariant holds throughout the computation; it holds at the initial state of the
computation and is stable.

invariant PA: (initial condition implies PA) and stable PA
PA as long as PB: (~PA unless (PB AND PA)) AND ((PB AND PA) unless ~PA)

That is, PA holds if and only if PB also holds; PB may hold regardless of the value
of PA.

Examples using these safety operators are given in Chapter 7.

5.6 Summary

An instance of a predicate affects another instance of a predicate B if it “starts
before, or at least at the same time as’ PB finishes. In terms of reachability
semantics, affects means that some state at which PB holds is reachable from a
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state at which PA holds. If both predicates affect the other, then PA<-> PB.
Simultaneity, PA sim PB, is a special case of PA<—->PB. If neither predicate affects
the other, then PAXPB. If PA affects PB, but PB does not affect PA, then PA |=PB.
Simultaneity between distributed predicates with non-unique initial and final
states is defined using the corresponding initial and final states at which a predicate
holds. This reduces the complexity of determining of PA sim PB to 2km, for k
events in each of m elements if Ay, for two given instances of PA and PB.

These operators are used to construct unless and other safety operators stable,
invariant, and as long as.
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Chapter 6 : Expanded Predicate Logic

An assertion yields a boolean-valued predicate. A boolean-valued predicate is
constructed by naming a non-boolean valued variable (nbv), a comparative
operator, and a number or a non-boolean variable; or it names a boolean variable
directly:

a=({nbv)+ (G | < | =)+ ({(nbv) | number) |bv

A boolean assertion uses assertions to build more complex boolean-valued
expressions. It is constructed by naming an assertion, a logical operator, and
another boolean assertion or assertion:

ba=(a |l ba) + (AND | OR | NOT) + (a | ba)

Let ba be a boolean assertion as defined above. Then another boolean assertion
BA can be defined using the new operators:

BA = (ba + (—>1<—> |=> Isim | X lunless | as long as | stable) | ba)
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Chapter 7 : Applications and examples

7.0 Breakpoints

One of the fundamental facilities required in interactive debugging is the
capability to set and detect breakpoints. Breakpoint conditions may be expressed
as predicates on the system state. The user wants (0 examine system state where a
breakpoint condition is satisfied. To satisfy this desire the system should halt in
some consistent state in which the predicate holds. Let this predicate be called the
breakpoint predicate, and let the state at which the system halts be called the

breakpoint.

7.0.1 Minimal and Maximal Breakpoints for Debugging

In sequential systems, all events happen either before or after a breakpoint.
Events are totally ordered, and only events that occurred earlier in time can affect
events that occurred later in time; thus, at the breakpoint, only events that can
have had a causal effect on the predicate have occurred. This is not necessarily the
case for distributed systems, as events are only partially rather than totally
ordered. Previous work in the area of breakpoints in distributed systems, with the
exception of [Fow90], detects a distributed breakpoint at any global state at which
the predicate holds. Clearly this is unsatisfactory, as the breakpoint found should
make explicit rather than obscure the causal relationships of events.

To use the notation developed earlier, if the desired breakpoint is some state at
which PA holds, then the breakpoint should be explicitly some minimal or
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maximal prefix of A, rather than some arbitrary prefix of A, or even some prefix of
an element of A,.

PA=(procl.x OR proc2.y) holds
/ h'd N

min(x)
N‘N f
procl
proc2 %\
/ ,

— A/

not meaningful breakpoints

max(x)

I

min(y) max{y)

FIGURE 25: Meaningful breakpoints

Since PA holds over many global states, an additional requirement is added; a
breakpoint is meaningful if the prefix found includes or excludes events in such a
way that the causal relationship between the events and the value of the
breakpoint predicate are unambiguous.

A minimal prefix satisfying the breakpoint predicate will be called the causal
breakpoint; a maximal prefix satisfying the breakpoint predicate will be called the
maximal breakpoint.

A causal breakpoint corresponds to a sequential breakpoint in that all events
included in the breakpoint can have had a causal effect on the state of the
computation at the breakpoint. The maximal breakpoint is found as far along as
the computation can proceed while the breakpoint predicate still holds; all states
of the computation after the maximal breakpoint will be affected by events
included in the maximal breakpoint. The events included in any global states that
occur in between these two breakpoints have an undefined relationship to the
predicate; events included in these global states may or may not be causally
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related to the state of the computation at the breakpoint. Thus, these two
breakpoints provide global states that are well-defined with respect to the causal
rclationships of events inherent in distributed systems.

7.0.2 Breakpoint Predicates

Predicates that are intended to designate breakpoints and those are intended for
monitoring differ only in how they are treated during detection. With the latter,
the desired result is determination of satisfaction or violation of the predicate;

with the former, the desired result is halting at a particular global state at which

the predicate is satisfied.

A breakpoint predicate is a predicate qualified by a statement as to where the
breakpoint (halt state) should occur if the predicate is satisfied. Let predicates that
involve only conjunction or disjunction of local predicates be called ba-type
predicates; recall that

a = ((non-boolean variable | number) + (> | < | =) + ((non-boolean variable) |

number) | boolean variable

ba=(a | ba) + (AND | OR | NOT) + {a | ba). For this type of predicate
let ming(ba) be any minimal prefix of a ba-type predicate,

let maxp(ba) be any maximal prefix of a ba-type predicate,

Then a breakpoint predicate is

bp = miny(ba) | maxg(ba)

Recall from Chapter 6 that predicates using the relationships between distributed
predicates or using safety operators are called BA-type predicates:

BA = (ba + (—>l<—>|=>Isim | X lunless | as long as | stable) | ba).

For these more complex BA-type predicates the user has the choice of several
possible interesting points at which to halt the computation. If bpp is a breakpoint
predicate of a BA-type predicate, then a possible semantics is

bpp(PA sim PB) = ba(PA AND PB)
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bpp(PA X PB) = ta(PA) | ba(PB)
bpp(PA |=PB) = min(PB)
bpp(PA unless PB) = min,(PB) | max,(PA)

bpp(PA as long as PB) = bp(PA)

7.1 Examples

It is difficult to give convincing examples for breakpointing; their use is always
particular to the program, system, and bug being examined. Examples giving
programs with built-in errors seem contrived, and real-life examples are too
complex to serve as general examples. Here some examples will be given that
show the use of breakpoints in the investigation of program behavior. Breakpoint
predicates specifying violations of a program requirement can also be used to find
the minimal or maximal states of the computation at which a program is in error
with respect to that particular requirement.

7.1.1 Using ‘ba’ type predicates

A control system consists of two control processes (P1, P2) each of which controls
a physical component, and four dedicated processes (i, i, i3, iy) monitoring
conditions that affect those components. P1 and P2 receive input and calculate the
proper positioning of their component as a function of this input. Processes Pl
and P2 both receive inputs i; and i,; P1 also receives i; and P2 receives iy. Using
this input, P1 calculates a function fny, and P2 calculates a function fn,. The
relation between fn; and fn, is given by fns(fn,, fn,), where k<fn;. Where k<fny<m
an alert condition is signaled. To examine how the processes behave under alert
conditions, a breakpoint predicate is set where fn3>k. Detecting the minimal
breakpoint of this predicate will capture the values at the input processes that
resulted in fn;>k; this is turn will allow an analysis of which input components or
combination of components gave rise to these conditions.

Pl:repeat
receive(iy, i is)
x:= fny(iy,i1s)

until(false)
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P2::repeat
receive(iy,i,,iy)
y:= fn,(iy,ip,i4)

until(false)

[.et the predicate PA = min(fn;(x, y) >k) be the breakpoint predicate. Then input
processes i;..i; will break immediately after sending input values to P1 and P2.
Thus the input processes and P1 and P2 are left in the state whose result was

fn'3>k.

7.1.2 Discovering dependencies in resource-sharing

Deadlock is the mutual blocking of processes; every member of a set of two or
more processes is waiting for an event to occur that can only be made to occur by
another member of the same set. For example, if each of three processes proc;,
proc,, and proc; needs simultaneous and exclusive access to some two out of a set
of three resources ry, ry, 13, there is a deadlock when each process has seized one
resource and is waiting for another process to release the second resource needed

by that process.

A process prog; is said to be dependent on a process prog; if proc; holds a resource
that prog; is waiting for. These dependencies can be shown in a graph-theoretic
model: the processes are represented by the nodes of directed graph, and an arc
from the node representing prog; to that representing proc, shows that prog; is
waiting for an event that must be brought about by P; [Ray88].

This type of dependency graph will show deadlocks at any instant. Minimal and
maximal prefixs can also be used to show these dependencies. Let proc; be halted
in a state in which it holds all its required resources. Then the minimal prefix of
this local state shows the set of processes on which proc; depends both directly
and transitively. The maximal prefix found with respect to this local state shows
the set of processes which depend on proc,. Let

PI = (proc; holds all needed resources).
Then the breakpoint predicates sought will be

I, = miny(proc, holds all needed resources) and
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Pl = maxy(proc, holds all needed resources).

procl ~ -

s L \ /

PII m.

FIGURE 26: Resource dependencies

The dependencies observed in the above computation are proc, depends on proc,
and procy; proc; depends on proc,; proc; depends on proc;.

7.1.3 Using |=: Atomic Broadcast

Protocols for atomic broadcast are particularly important because ot their role i
enabling distributed consensus: any system that can implement ordered atomic
broadcast can also achieve distributed consensus.

An atomic broadcast mechanism ensures that for process groups Gl and G2, it a
process p broadcasts a message m1 to G1 and a process ( broadcasts a messaye
m2 to G2, then all processes in the intersection of G1 and G2 deliver the messages
in the same order. Moreover, if the broadcast of m1 ‘happens-before’ the broadeast
of message m2, then all processes in the intersection of G1 and G2 deliver m|
before delivering m2. (Delivery of a miessage is distinct from receipt of that
message. Delivery is easily implemented with a message buffer that holds
messages and orders them until it is safe to deliver them to the process)

Let us assume that such a protocol works correctly. However, if the broadeasts
constitute requests for resources, then cornsistent delivery of m1 before m2 may
put process q at disadvantage in the competition for resources. To check that both
safe orderings are eventually chosen, the following two breakpoints are set.

Let the predicate PA=(procl.abcast AND proc2.abcast) indicate that process 1 and
process 2 broadcast messages m1 and m2 concurrently.
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et PB=proci.deliver_m1, and let PC=proci.deliver_m2 indicate that for some

process i, message ml and m2 respectively are delivered.
PD = (PA 1=PB) AND (PB |=PC)) and
PE = ((PA |=DPC,; AND (PC |=PB))

If one of the P and PE is never satisfied, then the lccal state of the broadcasting
processes can be examined to clarify the decision procedure used. Setting the
breakpoint to the minimal prefix of PC, for PD, and to the minimal prefix of PB for
I, the broadcasting processes will be left in a just-post-broadcast state for

analysis.

7.2 Safety specification and checking

In deLugging, breakpoints have shown themselves to be an invaluable tool in
gaining information about the program behavior. But before any debugging can
proceed, an error must be detected. Testing programs to discover errors requires a
characterization of error. Simply put, a distributed program is in error if there
exists some state of an execution or some state transition tliit violates a safety
requirement of the program. The first phase of program testing is thus that of
safely conformance checking. When a safety requirement is violated, an error has

been detected and debugging can proceed.

Performing safety conformance checking requires tools to specify and detect
salety properties of programs. Safety properties of programs are expressed as
stable, invariant, or unless [Chan88]. Some temporal properties of programs cannot
be expressed without ‘unless’ or an equivalent operator [Lam80]. Since stability
and invariance are defined in terms of ‘unless’, ‘unless’ is a fundamental concept

for expressinyg safety.

During an initial checking phase a program may be monitored for predicates
expressing safety requirements. If such a predicate is satisfied during an
execution run, then the property has been checked for the subset of the state space
corresponding to that run. It can be concluded that the property is not wrong for
the whole state space. If such predicate is violated during an execution run, then it
may be concluded that that property is wrong for the whole state space. However,
a third possibility enists; that the property was neither satisfied nor violated. For



example, a program ensuring mutual exclusion for a distributed database is
monitored for the satisfaction of the safety requirements governing mutual
exclusion. If no process ever accesses the database, then the safety requirements
are trivially satisfied; however, this is not an interesting result for the purposes of
safety conformance checking. Thus when monitoring for predicates expressing,
safety, there are three possible results; the predicate is satisfied; the predicate is
not satisfied; or the predicate is violated.

Safety conformance checking proceeds most efficiently when the predicates
monitored express correct program behavior. This efficiency is because the ways
for a program to ve in error are many and various, but correctness is explicitly
specified. In addition, as mentioned above, it is more uscful to be able to conclude
that a predicate has been satisfied than to conclude only that it was not violated.
However, vhere the predicate chosen is sufficiently abstract to cover a wide set ol
the possible incorrect behaviors, monitoring for error can be a useful procedure.
In addition, monitoring for specific types of error can help nairow the possible
sources of violation once a violation has been detected.

7.2.1 Monitoring for correct behavior: Token-passing

Where the topology of the communication between processes is a ring
(unidirectional or bidirectional), mutual exclusion between processes can be
assured by a special message or token that circulates on the ring Each process
waits for its one-hand neighbor to pass it the token, uses the token, and sends it to
its other-hand neighbor.

A methnd for detecting loss of the token [Ray88] uses two tokens, cach ot which
serves to detect the loss of the other. Both tokens circulate on thering. A token T1
arriving at process proc; can guarantee that the other token T2 has been lost if
neither T1 nor proc; has encountered T2 since T1's last visit to proc,. This method
can be generalized to any number of tokens, and will work as long as at least one
token remains circulating on the ring,.

Let the two tokens be called ‘ping’ and ‘pong’, and let numbers ‘nbping” and
‘nbpong’, associated with the two tokens respectively, and equal inabsolute valve
but opposite in sign, record the number of times the tokens have met. Since ping,
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should have met pong the same number of times pong has met ping, the sum of
nbping and nbpong should always be zero.

The algorithm to detect loss and to regenerate the token works as follows. Initially
the two tokens are both in an arbitrarily chosen process and nbping=1 and
nbpong =-1. Each time they meet, one number is incremented by one and the
other decremented by one. Each process proc; has a local variable m,, initially
zero, that records the number nbping or nbpong, associated with the token that
last passed through proc,. When proc, receives a token, it compares its m; to the
associated number. Say proc, receives ping. If m, = nbping, then pong was not the
last token to pass through proc,, nor have the tokens met in their passage around
the ring, so the token must have been lost and proc; can generate it. Otherwise, m,
is assigned the value of nbping.

when received (ping, nbping) do
if m=nbping then
begin {pong is lost, regenerate i}
nbping := nbping + 1;
nbpong := -nbping;
end;
else m, := nbping;
end if;
end do;
when received(pong, nbpong) do
{as baofore, interchanging ping and pong}
end do;
when meeting(ping, pong) do
nbping := nbping + 1;
nbpong := nbpong -1;
end do;

At cach step of the algorithm the relation nbping+nbpong=0 is preserved. Thus

the predicate
P'T = (invanant nbping+nbpong=0)

is the constraint that the proto<col should preserve. If this predicate is violated at
any point, then the protocol has failed and debugging can commence.

74



7.2.2 Moiutoring for safety violation

Mutual Exclusion:

A problem arising in connection with communicating processes is that ot
ensuring that when processes compete for a resource that cannot be shared, only
one process may gain access to it at any given time. Mutual exclusion can be
assured through various mechanisms. In general, a process desiring to enter its
critical section must complete a permission-granting protocol; this often takes the
form of a token-passing protocol. Violation of mutual exclusion may occur in
particular when the permission-granting protocol fails, but more generally when
two or more processes are operating in their critical section concurrently.

For processes proc;..procy, let each process take the following form:

proc;:: repeat
{some code}
obtain token
critical section(}
release token
until(false)

Satisfaction of mutual exclusion requirements is independent of any particular
token protocol; mutual exclusion is violated if two or more processes are
operating in their critical section concurrently.

A predicate specifying violation of mutual exclusion is constructed as follows:
Let P; = proc, is in its critical section.

Then, for any two processes P; and P, if P, sim P} then violation of mutual
exclusion has occurred:

Vivj: Pisiij

Since satisfaction of the above indicates that a safety requirement has been
violated, breaking at the minimal state at which the violation occurred will be
useful. Thus in monitoring the detection procedures will assume a desired
breakpoint:
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vivj: min (Pl51ij)

7.2.3 Monitoring for correct behavior: FIFO ordering

[.amport points out in [Lam80] that some temporal properties of programs cannot
be expressed in ordinary temporal logic. One such property is the FIFO or first-in-
first-out property which can be expressed as follows: ‘if process 1 requests a
service before process 2 requests the service, then process 2 is not served before

processl’.

Let proc;.rl1 and proc,.r2 be integer variables indicating the logical time at which
process 1 and process 2 submit service requests.

[.et proc;.served[rl] and proc,. served [r2]be boolean variables; if
(proc;.served[r1)}), then proc; is waiting or is being served for request rl.

proc, :: repeat
request service
wait

service
until (false)

‘as long as’ expresses this property handily:
~(proc,.served(r2] = proc;.served[r1]) as long as (proc;r1 < proc,.r2)

This specification gives proc, a slight priority: if process 1 and process 2 submit
requests concurrently, then process 1 is served first (proc; .r1<=proc,.r2). However,
if more than one server is available, then process 2 may be served concurrently
with process 1. If more than one service is available and ‘proc;’ represents not just
one process, but 1 partition or set of processes, then service may cross
(procy.served X proc,.served). If only one server is available, then it always be the
case that (proc,.served |= proc,.served). In no case will process 2 be served before

process 1.
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Chapter 8: Detection

8.0 Introduction

Safety predicates are constructed using the relationships between instances of two
predicates. All such relationships are based on the reachability relationship: given
predicates PA and PB, reachability between Ay, A,, By, and B, must be detected.
Reachability itself is defined in terms of causality relationships between events.
Thus detection of safety predicates requires distinguishing instances of a
predicate, and determining Ay and A for an instance of a predicate. This
information will be sufficient for deciding satisfaction of safety predicates, since
causality and hence reachability can be determined given this information.

The complexity of the detection problem depends on the various approaches to
detection that are possible. As outlined in the previous chapter, possible
approaches in testing or fault-tolerance are to determinc if an execution run
satisfied some safety predicate or satisfied some predicates specifying violation of
safety. Criteria for choosing an approach will depend on the strength of result and
the complexity of detection that can be tolerated by the application.

Determining membership of events in a set of concurrent events A requires
determining the relationship between events. This requires some clocking
mechanism isomorphic to Lamport’s ‘happens-before’. Various virtual time
methods are available. Lamport’s logical clock [Lam78] will be shown to be
insufficient to the requirements here, as information is lost. The vector clock model
yields sufficient information. In [Spez89, Wal91], implicit vector-clock
mechanisms are used; the functionality of vector-clock is duplicated, in that the
information yielded is the same.

Detection algorithms can be centralized or distributed, and different approaches
are suitable to different applications. For example, in testing and debugging it can
be assumed that a facility for deterministic re-execution is available. In this
context, a centralized algorithm might be the simplest solution. For fault-
tolerance applications in a real-time environment, a distributed algorithm is
preferable to ensure that the detection itself is fault-tolerant.
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In Section 2, approaches to detection are discussed in the context of their costs and
benefits. In Section 3, algorithms are given for the two general approaches to
detection. Implementation considerations are covered in the remainder of this
chapter. In Section 4, virtual time is introduced. In Section 1 the concept of logical
clock is described and show to be insufficient. In Section 2, vector clock is
described and shown to be sufficient for the requirements of detection. In Section
5, the definitions of causality and reachability are expressed using vector-clock.
Consistent global state, minimal and maximal prefixs are also expressed using
vector-clock.An optimization of search techniques is given in Section 5.1. In
Section 6 approaches to control-flow in detection are considered, and conclusions

are given in Section 7.

8.1 Approaches to Detection

A predicate can be satisfied, not violated, or violated. A predicate is satisfied if
one or more instances of the predicate are detected during execution, and no
instances of violation are detected. If no instances of the predicate are detected,
then the predicate has not been violated and the safety property expressed by the
predicate has been trivially satisfied. It is important to make the distinction
between satisfaction and non-occurrence for the purposes of testing. An
implementation may trivially satisfy a safety requirement while not actually
accomplishing the intent - for example, an implementation of a distributed
database that delays all writes until all reads are complete trivially satisfies
consislency requirements. An implementation that does nothing is safe because it
can never do anything wrong. When testing, it is therefore important to
distinguish between satisfaction and lack of occurrence of a predicate. An
alternate approach is to monitor for the negation of a safety predicate. Rather than
detecting and checking every instance of a predicate, this approach searches for
only the first state in which the predicate is violated. This approach is less
complex, but the result is not as strong as no distinction can be made between lack

of violation and satisfaction.

Searching tor satisfaction of a predicate is usually the most expensive approach in
terms of the complexity of the problem, because it involves detecting and
veritying all instances of a predicate. Negation is usually much easier to detect,
with the exception of comparative predicates such as (p1.x>p2.y>p3.z). The
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negation of a safety predicate is less expensive to detect because all possible
combinations of local instances do not have to be compared. For example, finding,
the first state satisfying (p1.x AND p2.y) requires finding the first states in which x
and y hold, and then the first global states in which both hold. Finding a
comparative predicate, by contrast, requires comparing possibly all values of \
and y.

The complexity of detecting satisfaction of a predicate is based on two tactors: the
number of variables in the predicate, and the number of instances of local
predicates holding. Let the number of variables be k, and let cach variable be
represented by a process line in the space-time diagram. (Thus there will be at
most k process-lines.) Let the maximum number of instances of a local predicate
on a line k be m, the number of instances on line m be k,,,. Then the task of
detection is to find all the possible combinations of each of the k local intervals
such that each of the intervals is simultaneous with the other. (See Figure 27). The
number of possible instances of F is thus the product of the number of instances at
each line (k,,) for each line k, (k).

1 2
line 1 %\a
1

a
§ — A ——t— T
line2 N { -
NN k
line 3 cl

line 4 }1/&2 \ﬁ | \N:‘\ : A

PA =(a ANDb AND c AND d)

FIGURE 27: Complexity of detecting satistaction

Some of the combinations of local instances that must be considered above are
marked. For the portion of the computation shown, all instances to be considered
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are [albl,c1,d1), [al,bl,c1,d2], [al,bl,c1,d3], [a2,bl,c1,d1], [a2,b]1,c1,d2],
[al,bl,c1,d3), [a3,bl,c1,d1], [al,bl,c1.d2], [al,bl,c1,d3]. Thisis (k) K or 3x1x1x3
instances to be considered.

An algorithm is given in the next section for this type of detection.

The above figure assumes a boolean predicate, so local instances exist where the
local predicate holds. For comparative predicates, every change of value of the
local predicate must be considered an instance, thus increasing the number of
instances to be considered.

However, it should be noted that while detection is, in this case, a relaiively
complex task, it is less complex than searching the whole event space; the
complexity is a function of the number of instances of a local predicate, rather
than of the number of events at a local process. Thus the larger the difference
between (k) k and the size of E, the greater the reduction in complexity.

Detection of violation for boolean predicates is a relatively simple problem.
Detection of satisfaction of a predicate requires finding all possible combinations
of local intervals; this results in complexity on the order of the number of local
instances, where the number of variables is fixed. But detection of violation only
asks if there exists one state in which the predicate is satisfied: detection can
proceed by just looking for the first occurrence of a predicate without considering
all (later) possible combinations of local instances. (See Figure 28.) Thus the
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complexity of the detection is a linear function of the number of instances of local
predicates.

| m |

PA holds

line 1

al a2 a
;\ i + \ t — — T
N
line 2 X + ; \ >
line 3 \‘ ld)) — -
. dl/ d2 & 43
line 4 7 / L L | 1

-

t ™~ 1 ! -

PA =(a AND b AND c AND d)

FIGURE 28: Detecting violation, or first instance only

Detecting the first instance only is relatively straightforward. Only two instances
need be considered for the above figure: [al,b1,cl,d1] and [a2,bl,c1,d1]. In other
words, detection halts as soon as the first instance is found. An algorithm is given
in the next section for this type of detection.

Measures can be developed at various levels of detail to gain savings. Where the
predicate in question is boolean, the violation, rather than satisfaction, can be
detected to take advantage of the simplicity of the detection problem. The number
of comparisons required to perform the detection can be reduced using the
information carried by vector clock. Designing search algorithms to avoid
redundant comparisons can yield some savings. FHowever, for off-line testing and
debugging, the degree of complexity of the detection problem is not such a
deterrent as it may be for fault-tolerant applications, where a change of approach
to detecting violation may be more appropriate to the application and warranted
by the savings in detection costs.
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What are the relative strengths of conclusions that can be drawn from the
different approaches? If a predicate occurs and is satisfied in a computation, then
it can be concluded that the property expressed by the predicate is satisfied for
that portion of the state space of the program traversed by that particular
execution. Thus a result from satisfaction of a predicate in a particular run is
partial, and does not imply that the predicate will hold in all execution runs of the
program. If a predicate is zieither satisfied nor violated during an execution run,
then no further conclusion can be drawn about the state space of the program. If
the predicate is violated, then a strong conclusion can be drawn: it can be
concluded that the property expressed by the predicate does not hold throughout
the state space of the program.

8.2 Algorithms

8.2.1 Detecting the first instance of a predicate

Let the ordered instances of a local predicate holding on a line k be referred to as
k,, k1, k- Let C be an array of size k.

Initially, set C[k] :=k;.

repeat

if C[x] sim C[y] for all x,y in k, then SUCCESS
else, for all C[x] : C[x]<Cly], C{x]:= k4
if i+1>m or C[x]>C[y] then FAILURE

until SUCCESS or FAILURE

The algorithm works as follows: All elements of C are initially set to the first local
instance for every line k. For example, in Figure 28, C is initially set to {al, b1, c1,
d1]. Eachinstance k, in C that precedes some C[x] is replaced with the next
instance on line k; in the example, the next step would be C=[a2, b1, c1, d2]. If this
results in a set of simultaneous local instances, then the distributed predicate can
be tested for these values of the local predicates. If there are no more instances on
line k (i.e. if i+1>m) or if for some line k there is no instance C[x] simultaneous
with C[y] then the local instances are not anywhere simultaneous and the
distributed predicate cannot hold.



The complexity of this search is linear in m and k.

8.2.2 Detecting all instances of a predicate

Let the ordered instances of a local predicate holding on a line k be reterred to as
k,, Kis1, .., k. Let C be an array of size k.

fori=1tok
forj=1tom
Clik=i;*/ fix the instance k, /*
for all x<>i, set C[x]:= i, */ first instance of eachjon linc i*/
repeat
if C[x] sim C[y] for all x, y, in i then SUCCESS
*/ predicate can be tested on the local instances in C*/
else if C[x]<C[y] then C[x]:= x,,,
if j+1>m (for any C[x]) or C[x]>C[y] then FAIL.URE
*/ C[i] is not a part of any instance of the distributed predicate ¥/
until SUCCESS or FAILURE

if SUCCESS then */ first instance including C[i] has been found]
for a=1 to k, a<>i
forb=jtom
Clal := ap,q
repeat
if Cl[a] sim C[b] for all a,b, ini then SUCCESS
*/another instance including C[i} has been found */
else if C[a]<C[b] then C[a):= x,,,,
if b+1>m (for any Cla]} or C[a]>C[b] then FAILURE
Cla) := X */reset to local instance of first instance found*/
*/ Cli] is not a part of any instance of the dist. predicate */
until SUCCESS or FAILURE

The algorithm works as follows: The search is fixed with respect to some instance
of a local predicate on line k. This is referred to as k, and is assigned to Cli] in the
algorithm. All other elements of C are initially set to the first local instance for
every line k. For example, in Figure 29, C is initially set to [al, b2, cl, d1} when
Cli] is fixed to b1. Each instance k, in C that precedes Cli] is replaced with the next
instance on line k. If this results in a set of simultaneous local instances, then the
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distributed predicate can be tested on these values of the variables. If there are no
more instances on line k (i.e. if j+1>m) or if C[i] preceded some element of C, then
the local instance C[i] that was fixed does not form a part of any instance of the
distributed predicate. Thus the first loop finds the first instance of the distributed
predicate found with respect to C[i). The second loop just finds all other instances
with respect to C[i] by examining the instances that lie between the minimal
prefix of Cli] and the maximal prefix of C[i].

PA holds

. al a2 l a3
line 1 $ — + i J'_ - -
- \\« b1 \
line 2 + ; >
line 3 — — P
. d1 d2 \ l d3
lined ey —— ——p

PA = (a ANDb AND c AND d)

FIGURE 29: Finding all instances of PA

The algorithm may detect an instance of a distributed predicate more than once;
this can be optimized at some level of implementation. For example, in Figure 29
the instance of PA labeled above is found when fixing C[i] to bl and c1. The
looping is necessary because each local instance may form part of more than one
instance of a distributed predicate; for example, local instance d2 in Figure 29
forms part of two possible instances of the distributed predicate. The first is found
by fixing C[i] to d2; the second by fixing C[i] to a3.

For each local instance k,, determining if k, forms part of an instance of a
distributed predicate is linear in m(k-1). There are m instances in that line k, and k
lines, making the complexity quadratic in m%k (k — 1) to find the first instance of
the distributed predicate with respect to k,. To ensure that all instances are found
requires the second loop of the above algorithm. Worst-case consideratiors {os
this loop bring ccmplexity to (k) k,



8.3 Virtual time and logical clock

Determining whether local intervals are simultaneous requires some mechanism
for determining the causal relationships between the initial events and tinal
events of intervals. Specifically, given an interval k, and another K, determine the
causal relationship between the final event of k, and the initial event of k, and
between the final event of ky and the initial event of k, must be determined Some
clocking or timestamping mechanism is required.

Various virtual time methods are available. Lamport’s logical clock [Lam78] will be
shown to be insufficient to the requirements here, as information is lost. The e tor
clock model yields sufficient information. In [Spez89, Wal91], implicit vector-clock
mechanisms are used; the functionality of vector-clock is duplicated, in that the
information yielded is the same.

8.3.1 Virtual Time

Events at a particular process are totally ordered by their local sequence of
occurrence, and each receive event is ordered with respect to its corresponding,
send event. Events are related and the causality relation, expressing that the
future cannot influence the past, is at the heart of any notion of virtual time

In asynchronous distributed systems a common time base does not exist, but it is
sufficient to create some approximation that has the desired characteristics of real
time. The common concept of time is that of a set of instants with a temporal
precedence ordering satisfying certain conditions:

1. transitivity

2. irreflexivity (together with transitivity this implies asymmetry)
3. linearity

4. eternity Vx3dy: (y <x) AVy3dx: (x<y)

5. density Vx, y: (x<y) = 3z: (x<z<y),or discretencess

Density is not required for all applications - for example, digital clocks, and can be
replaced by discreteness. Any implementation, in hardware or software, that
satisfies these characteristics can be considered correct. Here a system of logical
clocks that fulfills conditions 1 to 5 will be considered. This system of logical
clocks will be used to timestamp events so that the causality relation 1s preserved
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8.3.2 Logical clock

Recall that a computation is represented by an event structure E where F consists
of a partially-ordered set of events e. A loyical clock C is a mechanism which
assigns to any event e in E a timestamp Cle) of some time domain T A logical clock
is a function that maps an event onlo the time domain T: C:E->T. T is a partially
ordered set such that:

(e<e') =>C(e) <C(e).

In other words, if e can causally efiect ¢/, then C(e) is earlier than (has a smailer
timestamp than) ¢’

The following properties then hold [Mor85]:

1. If an event e occurs before event e’ at some single process, then event ¢ is
assigned a logical time earlier than the logical time assigned to event ¢

2. The logical time of a send event is always earlier than the logical time of the
corresponding receive event.

Using a clock C, for each process P, and the set of integers N tor the time domain
T, the local clocks obey the following procedure:

1. When P; executes a send event, a receive event, or any internal event, the clock
C, ticks: C; : C+d (d>0)

2. P; includes a timestamp of the send event with each message sent.

3. When P, receives a message from P, with timestamp t, C, is advanced:
C; := max(C,t) + d (d>0)
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Usually the value of d is one. Updating of the clock occurs just before the local
cvent, so that the timestamp of the event is already the new value of the local

clock

ell el2 el3
proc | i ; | >
e2l e2?
proc 2 } + .
e31
proc3 | >

FIGURE 30: logical clock

Two events are independent (concurrent) if they have the same timestamps. For
example, in Figure 30 ell, €21 and e31 are all stamped ‘1’ and are concurrent. If
C(e)<C(e’) then it can be concluded that ~(e'<e), that is, the future does not
influence the past. However, it cannot be concluded whether e<e’ orel | e’. This is
a scrious problem: by looking at the timestamps it is impossible to assert that
some event could not influence some other event. This type of logical clock is thus
not usable for the application of reachability, because the precise causal
relationships between any two events cannot be determined.

This method is therefore not appropriate to the purposes outlined here because
essential information about the relationship between events is lost; it is impossible
to distinguish between causal ordering and concurrency.

As Mattern argues in [Mat89], a linearly ordered structure of time is not adequate
tor distributed systems. A partially ordered system of vectors forming a lattice
structure is a natural representation of time in distributed systems. Causality is
represented in this way without loss of information.
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8.3.3 Vector clock

Anidealized external observer having instantancous access to all local clocks
could achieve a consistent view of the system This intormation can be stored ina
vector, with one element for each process’s clock value. While instantancous
access to all local states is not possible, cach process can build its own consistent
view of the system state. Each process P, has a clock C, which consists of a vector
of length n, where n is the number of processes in the system At cach local event,
clock C, “ticks’ by incrementing its own component in the vector, Clit

Cli):=Cli] +1
The timestamp of any event is now a vector, C,.

Each time P; sends a message, it appends the timestamp of the send event Fach
time P, receives a message with timestamp C, P, updates its view of the system by
using the sending process’s perception of system state, as follows:

Cilk]:= max [Ci[k], C/lk] for cach k from 1 to n.

(1,0,0] (2,0,0] {3,0,0]
procl i i | —
(0,1,0] [0,2,0]
proc 2 ] f -
(0,0,1] [0,1,2]
proc3 } y o

FIGURE 31: Vector Clock

In general, e<e’ if C(e) and Ce’) are related as follows:
vk, C, [k] st[k], (i#j).
In this case, we can say that C(e)<Cf(e’).

More specifically, e<e’ if
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C ] <C L] ~C LT <C ]
This second definition clearly leads to a more efficient implementztion.

For example, in Figure 31, the send event at process 2 is stamped [0,1,0]; the
corresponding receive is stamped [0,1,2]. The send happens-before the receive by

the definitions given above.

Two events e and ¢” are concurrent if C(e) and C/(e') are related as follows:
- (C <C)) A —1(C] <C),

and we say that C(e)]|C(e’).

Again a more specific description is possible: e|le’ if

C,hl <C (il /\C][il <Clil,

which also leads to an efficient implementation.

For example, in Figure 31, the event after the send event, timestamped [0,2,0] is
concurrent with the receive event at process 3, timestamped [0,1,2] by both

definitions.

Thus vector clock fulfills the requirement that causal ordering be distinguishable
from concurrency; using timestamps as the clock vectors gives enough
information to decide the exact relationship of any two events.

8.4 Using Vector Clock

A global state of the system is givea by a matrix of length n of clock-vectors C;.
This can be understood as an nXn matrix where a row k represents process k’s

pereeption of the state of the system (the local states of processes 1 through n),
and a column k represents the state of process k as perceived by processes 1

through .

A consistent global state of the system is given by a vector-clock matrix that
conforms to the following constraints:

Vij: C,lil 2 C L]
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By contradiction: if
3, j: C,[i] < C] [i]

then process j has received a message originating in process i that process 1 has not
yet sent, as recorded by C[i]; otherwise process j has only received messages
originating in process i that process i has sent.

3,0,0 1,0,0
proc 1 { . ] {‘ ] _
3191
proc 2 . = % .
[0,2,0] [3,3,0]
proc 3 . i ‘ ‘ -~
{0,0,8] [0,0,9]/\{,0,101
minimal prefix of event stamped [3,4,9]

FIGURE 32: Minimal prefix using Vector Clock

Associating a set of concurrent events A with their timestamps, the relations of
Chapter 3 can be directly restated in terms of vector-clock.

Let N be an array of nXn clock vectors C,, where N conforms to the requirement
given for consistent global state.

Let a timestamp C; be associated with each element of A, and let the set of these
timestamps be called A..

Let A_ be considered to be a kXk array, where k < n, so that every element of A is
an element of N. A also conforms to the requirement for consistent global state
given above.
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Then a predicate PA can be said to hold at A, just as it was said to hold at A.

The minimal prefix of the computation found with respect to the set A, is an nXn
matrix such that A_is a kXk array in N and for all element, ijin N

Vi j: C 1] = Cl[i].

The maximal prefix of the computation found with respect to the set A_is an nXn
matrix such that A, is a kXk array in N and for all elements i,jin N

Vi C 1] ZC,[i]

Definitions of reachability relations are given without proofs, as they follow
directly from the definitions of C (e)<C,(e’) and the reachability definitions given
in Figure 3. Only the most specific version of each will be given for simplicity in

developing detection strategies.

C(A)~>C(B) iff Vae A,Vbe B:=(C(a) <C (b))

C(A)IC(B) iff Vae A,Vbe B: (C(a)||C(b))

C(A)XC(B) iff 3d,a’e A,3b,b'e B: ((C(a) <C(b)) A (C(b") <C(a")))

C(A) |=>C(B) iff (3ae A,Fbe B: (C(a) <C(b))) A
Vae A,Vbe B:—(C(a) <C (b))

C (A)Y LC (B) iff : C(A) cC(B)

C(A) |- C(B) iff Vae A,Vbe B: ((C(a) <C(b)))

Similarly, definitions of A, Ay, A,, and I (the set of initial states) can be found by
substituting C(e)<C(e’) for e<e’ in all definitions.

91



These equations define the detection algorithm requirements at the most general
level. Given the vector-clock basis, any detecti-n algorithm must simply provide

a structure for deciding if the vector-clock timestamps satisty the desued relation

8.4.1 An optimization using vector-clock properties

In each detection algorithm is a line describing the task

determine if a set of local instances of k variables are simultancous
(determine if C[i] sim Cfj] for all i,j in k).

Specifically, this means that for an interval a marked by events a, and a,, and an
interval b marked by intervals by and by, the two intervals are simultancous it
(ag<bp) and (by<ay).

The number of comparisons required to complete this task is 2(k- D! (where the
array C is of size k). While this cost is not a critical factor in determining the order
of complexity, reducing this cost can greatly increase the efficiency of an
implementation. The cost of finding a set of k, which are all simultancons can be
reduced to 2(k-1) by using an incremental approach and by using the properties
of vector-clocks.

Recall that e<e’ if C,(e) and C(e) are related as follows:
vk, C, [k] st[k], (i=j).

Rather than doing k! comparisons, the minimum of each C[k] must be found 1.et
the minimum of C;[k] := x. This requires only k comparisons - one for cach C[k]. It

C,-[k]<x, for each k, then C,<C;.

Initially comparing one element of C to another gives the seed for the running
component-wise comparison. At each step this component-wisce score is updated
This means that for each Cl[i], instead of comparing it to all C[j], (j from | to k],
only two comparison 1:eed be made, that between Cli] and the running
component-wise comparisons, to determine if C[i] is simultancous with C[j.

Given an array C of local instances, determine if C[i] sim C[j] for all i, j.
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Lot Cliy] be the vector-clock timestamp of the minimal event in local instance C[i];
let Cliy] be the timestamp of the maximal event in local instance C[i]. Let CC be an
array having the same structure as C, initially empty.

CC[1]:=C[1]
fori=2tok
start := element-wise minimum of each CC[xy], for x=1..i-1.
finish := element-wise maximum of each CC[x], for x=1..i-1.
if ~(C[i] < start) and ~(finish < C[ip])
then CC[i] := C[i]
else FAILURE */exit */

Example:

Let Cbe initially [al, b1, ¢1, d1]. Assume the first iteration has occurred and
CC:=[al, b1], and C[i] = c1. Then at this point start = [3223] and finish = [3333].
Using the vector-clock definition of ‘< defined in the previous section, clf<start,
leading to failure: al, b1, c1 are not all simultaneous.

{100C (2000} {3000} {4000} 15000}
' f gt

! {
dl T d
\ \ [3203) (3303] [34(3)
1

line 1 !
7]
line 2 ,

!
(2010/ bzo; T [203g l >
line 3 ! , - (3107 (3408]

(0001] [0002] [0003) (0004]  [0005] [3406] '

line 4

S

FIGURE 33: optimization using vector clocks

Now let C=[al,bl, ¢2, d1). Here after the first iteration we have the same values of
start and finish as above. When Cli]=c2, start<c2f and c20<«finish, so c2 is
simultaneous with each other local instance in CC.
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This reduces the number of comparisons necessary trom 2(h-D! to 2(k-1) For an
array C, determining if an element C[i] is simultaneous with all other elements in
C required 2(k-1) comparisons; to check all elements of C against each other
required 2(k-1)!. Using the above method determining it Cli] is simultancous with
all other elements in CC requires just 2 comparisons. Checking tor cach kn the
worst case thus costs 2(k-1). ((k-1) because C[i] need not be checled againstatselt;
by definition a local instance is simultaneous with itsclf )

8.5 Control

8.5.1 Centralized

A centralized approach assumes that the information collected about the local
predicates instances by the process or by some local debugging monitor is
forwarded to a central location for evaluation.

The detection scenario assumed is that the initial program run occurs in the
context of deterministic re-execution. The information necessary for detection (the
local intervals at which predicates hold) is collected during this run or during an
re-execution. This information can then be evaluated off-line by a ceniral
monitoring process, and satisfaction or violation of specified predicates decided.
If abreakpoint is desired, the time-stamp of the events at which the breakpoint
should occur, corresponding to a minimal prefix, can be provided through the
analysis done by the central monitoring process. This state can then be re-created
through the deterministic re-execution facility.

8.5.2 Distributed

Programs for continuous detection of safety requirements can be composed with
a distributed program to provide error detection and fault-tolerance. Where
safety requirements are monitored on an on-going basis, a record is created of safe
states; when a violation is detected, rollback to a recent safe state can proceed
Such a detection method should be distributed to ensure that error-detection is
itself tolerant of processor failure.

1. P1 keeps track of its local predicate instances. It includes in cach message sent
its record of instances at which the local predicate holds.
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6.

Each time P1 receives a message that has an instance record appended to it, P1
checks its own records against those received to discover if there is any
simultaneity between instances.

If an interval on P1’s record is not simultaneous with any intervai in the
received record, and PA does not hold in the interval, then the interval is
obsolete and can be discarded.

. If aninterval in P1’s list is concurrent with some interval in the received record,

or PA holds in the interval, then elemerts have tentatively been found for A,
and Ay for thatinstance of PA. The timestamps of the simultaneous intervals are
recorded in Ay and Ay and are sent with the record of instances. P1 forwards
this record with all messages.

. If P1 is not a predicate process then P1 simply appends received records to

outgoing messages without inspecting or modifying such records.

When P1 receives a list of m-1 simultaneous intervals, and has some item on its
record of local instances that is also simultaneous, then an instance of PA has
been detected.

Some comments:

I.

Marker messages are redundant. Since causality can only be established by
application messages, marker messages can only increase the ‘speed’ of
detection; if the usc of marker messages results in a measurable improvement
in real-time detection, then their use is justified.

. All occurrences of a predicate are detected, because each occurrence of a local

predicate propagates among processes until it is determined that it is not
concurrent with some other element of PA and PA does not hold.

. PA may be detected at any predicate process. This highly increases the fault-

tolerance of the detection strategy; if processes are still communicating then
any instance of the predicate will still be detected.

8.6 Conclusion

Two approaches to detection were considered. Detecting satisfaction of a

predicate ensures that the property that the predicate expresses has been salisfied

non-trivially. This approach requires detecting all possible instances of the
distributed predicate. The complexity of this detection techniqueis (k) k,
Detecting violation or the first state satisfying the predicate guarantees only that
the predicate was not violated. However, the complexity of this detection
technique is only linear in the numnber of instances of local predicate m and the

number of variables, k.
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To decide if a safety predicate holds it is necessary to decide if reachability
between predicates holds; to decide reachability between predicates, it is
necessary to decide reachability between global states; to decide reachability
between global states, there must be some means of deciding if two events are
concurrent or have a causai relationship. Hence the root of detection is a model
that will permit the determination of the relationship between any two arbitrary
events. The vector-clock mechanism provides a model ot virtual time that is
appropriate to distributed systems and within which the specitic relationship
between two events is discernible. Definitions of consistent global state and
minimal and maximal prefix are also defined within the vector-clock model.
Properties of vector-clock can be exploited in reducing the complexity ot
deterniining if sets of instances are all simultaneous. Once instances of a predicate
are labelled with vector-clock timestamps, this information can be evaluated
either nr-line, using a distributed control algorithm, or olf-line, using a
centralized control algorithm.
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Chapter 9: Concluding Remarks

9.0 Conclusions

In debugging distributed programs a distinction is made between an observed
error and the program fault, or bug, that caused the error. Testing reveals an error;
debugging is the process of tracing the error through time and space to the bug

that caused it.

A program is considered to be in error when some state of computation violates a
safety requirement of the program. Expressing safety requirements in such a way
that a computation can be monitored for safe behavior is thus a basic preliminary
step in the testing-debugging cycle. Safety requirements are usually expressed as
predicates; these predicates define safe states and safe state transitions of
programs. When a state of the computation violates such a safety predicate, that

state can be said to be in error.

The capability to express safety primitives such as P unless Q using distributed
predicates developed in this work represents an increment in the tools and
methodology available for testing and debugging distributed programs.

In the process of debugging, the user should have the facilities to define and
detect predicates expressing safety, and also to define and specify situation-
specific program conditions. The capability to specify the relationships between
distributed predicates represents an increment in the scope and precision of
conditions that can be specified and detected.

A breakpoint is meaningful if the prefix found includes or excludes events in such
a way that the causal relationship between the events and the value of the
breakpoint predicate are unambiguous. Part of the increment in precision is the
capability to specify meaningful breakpoints: the minimal and maximal prefixs at

which a breakpoint predicate holds.

The utility of extending a predicate logic to specify safety, to specify more
complex user-defined predicates, and to specify meaningful breakpoint states is
demonstrated by example.
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The lack of global clock and global state in asynchronous distributed systems
means that obtaining an instantanecus global state ot the svstemis not possible
Implementing a virtual time mechanism with vector clock permuts intormation to
be gathered for the extraction of global state. It also pernuts a relatively ethaent
implementation of predicate-detection strategics. Compleaity ot detection was
determined tobe (k) X for a worst-case scenario using the approach ot detecting,
all instances of a predicate. Complexity of detection in a best-case scenario s
linear in the number of variables on which the predicate is detined, using, the
approach of searching for the first instance only of the predicate.

However, it should be noted that while detection can in the worst case bea
relatively complex task, this task is less complex than searching the whole event
space; its complexity is a function of the number of instances ot a focal predicate,
rather than of the number of events at a local process. Thus the larger the
difference between (k) k'and the size of [, the greater the reduction in
complexity.

9.1 Suggested further work

1. Exploration of efficient detection strategies for specific constructs. For fault-
tolerant applications, detection of violations of P unless Q constructs at minimal
cost and maximal real-time speed is a particular concern. Speed of detection is
an issue that can be expanded on, over and above the worl in {1.i92]

2. Implementation of the model and detection strategies presented in this work in
the context of deterministic re-execution (replay) for incorporation in a
distributed debugging system.

3. Further examination of the implications of approaches to complexity, as
suggested in Chapter 8. A study of the trade-offs between strength of results
and cost of obtaining those results is indicated prefixs.

4. An exploration of the utility of the model presented here in the specification ol
non-atomic algorithms, i.e., algorithms that do not assume that primitives
provide atomicity.

98



[Bats3]

[Batgs)

JChan&8)

[Chan85]

[Coop9l]

[Fow90]

[ Tab88]

[T Tela90)

References

Bates, P, and Wileden, J.C., High-Level Debugging of Distributed
Systems: The Behavioral Abstraction Approach, Journal of Systems and
Sortware, 3(4), (1983), pp. 255-264.

Bates, I, Debugging Heterogenous Distributed Systems Using Event-
Based Models of Behavior, Proceedings of the ACM Workshop on Parallel
and Distributed Debugging, ACM, (1988), pp.11-12.

Chandy, M.K., and Misra, J., Parallel Program Desi¢ a: A Foundation,
Addison Wesley, (1988).

Chandy, M. and Lamport, L., Distributed Snapshot: Determining
Global States of Distributed Systems, ACM Transactions on Computing
Systems, 3(1), (Feb. 1985), pp.63-75.

Cooper, R., ar? Marzullo, K., Consistent Detection of Global
Predicates, Proceedings of the ACMJ/ONR Workshop on Distributed
Debugging, (May, 1991), pp. 163-173.

(414

Fowler, J., and Zwaenepoel, W., Causal Distributed Breakpoints,
Proceedings of the 10th International IEEE Conference on Distributed
Computing Systems, (May-June 1990), p.134-141.

Haban,D., and Weigel, W., Global Events and Global Breakpoints in
Distributed Systems, Proceedings of the 21st Hawaii International
Conference of System Sciences, IEEE, (1988), pp.166-175.

Helary, J.M,, Plouzeau, N, and Raynal, M., Computing Particular
Snapshots in Distributed Systems, Proceedings of the 9th International
Phoeniv Conference on Computers and Communications, (March, 1990), pp.
116-123.

99



[Kraw92}

[Lam78]

[Lam80]

[Lam86a]

Krawczuk, V, Distributed Debugging Based on Deterministic Re-
execution Methodology and Design of a Working Prototype, Master’s
Thesis, Concordia University, (1992).

Lamport, L., Time, Clocks, and the ordering of events in Distributed
Systems, Communications of the ACN, 21(7), (1978), pp.538-505

Lamport, L., ‘Sometimes” is sometimes 'not never’, Proceadings of the
ACM Symposium on Principles of Programming, ACM, (1988), pp 171-
184.

Lamport, L., On interprocess communication Part I: Basic Formalism,
Distributed Computing, (1986), pp.77-85.

[Lam86b] Lamport, L., On interprocess communication Part I1: Algorithms,

[LeB187]

[Li92]

[Mat89]

[McD88]

[Mil88]

[Mis83]

[Mor85]

Distributed Computing, (1986), pp.86-101.

LeBlanc, T.J., and Mellor-Crummey, J.1 1., Debugging Parallel Programs
with Instant Replay, IEEE Transactions on Computers, C-36(4), (April
1987), pp-471-482.

Li, H.E, Dash, B., Segel, H., Detection of Safety Violations in
Distributed Systems, Proceedings of GRIAO, (Oct. 1992), pp. 2.37-2.42.

Mattern, F,, Virtual Time and Global States of Distributed Systems,
Parallel and Distributed Algorithms, Elsevier Science Pubhishers B.V.
(North-Holland), (1989), pp. 215-226.

McDowell, C.E., and Helmbold, D.P., Debugging Concurrent
Programs, ACM Computing Surveys, 21(4), (Dec. 1988), pp.594-621.

Miller, B. and Choj, J,, Breakpoints and halting in Distiibuted Systeras,
Proceedings of the 8th International IEEE Conference on Distributed
Computing Systems, (June, 1988), pp. 141-150.

Misra, J., Chandy, K.M., Termination detection of Diffusing
Computations in Communicating Sequential Processes, ACM
Transactions on Programming Languages and Systems, 4(1), (1982), pp. 37-
43.

Morgan, C., Global and Logical Time in Distributed Algorithms,
Information Processing Letters, 20 (1985), pp.189-194.

100

———



Raynal, M., Distributed Algorithms and Protocols, John Wiley and

[Ray88]
Sons, (1988).

[Spez89]  Spezialletti, M., A Generalized Approach to Monitoring Distributed
Computations for Event Occurrences, University of Pittsburgh
Doctoral Dissertation, (1989).

[Wal91]  Waldecker, B., Detection of Unstable Predicates in Debugging

Distributed Programs, University of Texas at Austin Doctoral
Dissertation, (1991).

101





