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The main purpose of this thesis is to provide a comprehensive exam-
. 2

small sample properties of econometric estimators in simultaneous‘equa-

g

tion'modél.

F . Chapter I describes the simultaneous equition model and‘gome weli

3

. known methods of estimation.

Chapter II reviews the empirical works on small-sample properiiea

- of estimators which hhve been published in the last ten eyars.
Finally, Chapter I1I déscribes thé Monte Carlo experiments performed
in this‘study for the daﬁn‘frqm the Greek economy and presents the re-

-

sults and the conclusions.

ination of the study of Monte Carlo exﬁeriments'utilised in the study of
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CHAPTER 1
“ SYSTEM OF SIMULTANEOUS EQUATIONS.’
1. INTRODUCTION

[ ]
Economists have continually searched for appropriate statistical

tools to provide meaningful inferences about the structure of the econ-

~omic system. In many cases, this could not be achieved by routine appli-

cation of statistical techniques.develoﬁéd in other disciplines such as
astronomy and bidlogy. Ronald A. Fisher's development of statistical
techniques in the‘1920‘s, which allowed inferences to be made from small a
samples, greatly enhanced capabilities in the field. Howevér, the non-
feproducible nature of economic observations, the simultaneity of the ‘
structural relations making up the economic system, and the dynamic
characteristics of the economic process required a new approach,

lThe breakthrough in the investigation of simultaneous equations was
made by Haavelmo (1943, 1944, 1947). He postulated that the economic
activity could be analyzed as a simultaneous system of stochastic equa-~
tipna. Instead of determining a single dependent variable in an equation
(as in éLS), Haavelmo obtained a joinq distribution of dependent vari-
ables flom the simultaneous structure. It is to be noted that if more’
than one dependent variable appeared in a particular equation, least
square estimation yielded biased and inconsistent estimators of the pop-
ulation parameter.

In order to obtain better estiiates, several alternatives to ordin-

ary least squares have been developed in ;heﬁeconometricé literature.

For example, .
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a) Full information maximum likelihood - (PIML)

b) Limited information maximun 1ikelthood % ‘ (L)
v, . ,.

c)\ ‘Iwo stage least squares (28LS)

d) Three stage least sq&& (3sLS)

e) K-clams double K-class and h-class eutﬁator. Y

'_In thi‘ chapter, we introduce the simultaneous equation model an;!

to ,” show the inability of ordinary least squares method in estimating the ,

| paraseters of simultaneous equation model. Further, we derive a few
well-known methods of estimation of the parsmeters of simultaneous e;lua-. ;
tion model for the further readability of this the;is. ‘

.
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2. SIMULTANESUS EQUATION MODEL

“Let us assume a linear model containing T structural relationms. -
The ith equation at time t can be written as B
»
n m
IB,,¥,s v L v, ,2.,=u (L. /
1 117t3 =1 ki "tk ti
t=1,2,...,T i=1,2,...,n

where ytj denote the endogenous variables at time t to be explained

tk

in the system, =z is either an exogenous variable or a lagged value
of an endogenous variable. The exogenous and lagged variables are cal- ,

—

. .
led predetermined variables. The model may then be regarded as a theory

explaining the determination of the jointly dependent variables -

ytj(j =1,2,...,n, t=1,2,...,T) 1in terms of the predetermined varip

ablés zti(k =1,2,...,m,t=1,2,,..,T) and the disturbances .

uti(t =1,2,...,T,1=1,2,...,n). B and vy are known as structural .

coefficients and some of them né& be equal to zero.

L]

For T observations (1.1) can be written as:

I Y12 1o fn fi Bin

Y21 Y22 Y20 821 B2 Bt
y'1‘1 yT2 yTn Bnl Bn2 Bnn

1 %12 *1n Y11 Y12 "In

21 Iz 290 Y21 Y22 Yon

Zrp I 2 Yml Ym2 Yan
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i Yz Ym * 1.2)
YB+ 2T = U . f (1.3)
Assuming that B is a non;singular matrii:, we mulitply (1.3) by B_l
to obtain
P _ .o ‘
Y=-z0B Y +uBt, or : -
Y=20+V ' ‘ (1.4)
vhere - n=-18) and v=wl,
TN

The equation (1.4) is called the reduced form. We can get to (1.4) °
if t'he system is such that the predetermined varisbles together with the
errors uniquely determine the current endogedeous variables.

Let us’ consider (1.1) from the point of view of est;lmating its para-
meter from a sample of size T . For the moment we focus our attention
on only one equatl)on in (1.1), say the first. The equation will contain
as explanatory variables, some current endogeneous variables say4 s
and some predeterﬁiued ones, say mi where nl <n and ln1 <m, We

consider the current endogeneous variables appearing as explanatory

variables YysYqere Y, 41 3 the dependent variable is, of course, num-
A 1
bered ¥y - .The explanatory varialbes appearing in the first equation

are numbered as Zyw 2y 2y . Now we can write the T observations
1

in the first equation as

= + ’
4 Ylsl Zlyl+U1, (1.5)

where Y, is a Tx1l vector, Yl' and Z1 are 'I'an and 'l'><1n1 s

L
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‘Yl is a,subvector.of‘

matrices reépectively. Bli’is a subyector of:‘-(Bl1 8

of disturbences.
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4. METHODS OF ESTIMATION

. Without any loss of generality we may consider equation (1.5)

y‘l = ¥181+ Zlyl+ Ul' which can be writ‘tven as:
- . ‘. Bl ' . ‘
SR R B! | o .7 -
or . .
| AR 1 X o (1.8)
where '
. Bl v
x1= [Ylszl] and 6; (Yl) . o (1.9)

The simplest method for estimating (1.8) is to employ least squares.

So the least square estimator’ § can be written as follows:

1
~ _ ] _1 1] . ' “ )
61 = (}(1 xl) X9 (provided Xl Xl ig a non-singular matrix), which
is the same as:
-~ t —l 1
: 1 hWy N4, 1% / . ’
v = ; (1.10)
~ ) 1 'y I
Yl zlYl 2121 Z1°1

In the following we will show that the ordinary least squares esti-

mates do not posséss the desired properties, since the regressors Yl

are not, in general, independent of the disturbances U1 . Also the

ordinary least squate estimates of this model areé bigsed and inconsis~

o ‘

tant.

Let us consider a simple macroeconomic Keynesian model whiél'g is

&

"given as follows:

s
= + +
Cb cht B_Y.t U(

=C +4A .- , 4 L .
_ Y, = c, }/ Co (1.12)
" where S . ST

LI . .
> Ny ! . . . N
\ . Y A
L AN .
i .

_(‘1.11)"
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= consumption at time t

oA
i

income at time t

AR

-

N
"

1 for every t

|
n

investment at time t

(=
]

disturbancé‘
" and t =1,2,...,T. '

In this model Qt and 'Yt~, congumption and income réspéctively,
represent endogenous variables and At’ the investment, is an exogen-
eous variable. It is easily seen that the Keynesian model can also be

written as follows:

. @.13)

N ) YB+2zT=U,
whe;é '
. 1 1
Y, = (Cc _yt») , B= 6 1
) -« 0
zt = (1 At) , Y o -1 .

The disturbance or the error term Ut"has the same standard‘specifica—

' tion "

oy

1
E(U) = 0 and EQU_U)= ¢ o2 for all t,t'.

tt

Now as it appears that (1.12) does not have any parameter and

therefore one would like to estimate the parameters of (1.11) by using
ordinary least squares method.®

' Suppose we have a sample of size T , then the LS estimators of o
. ;

and 8 in (1.11) are given by

~ e, - D, - D A Al n
j B = _— and a=C ~ BY -(1.14)
' (¥, -9 :

}

i

e m-‘-'“ v
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where C , ¥ are respectively the sample means of comsumption and income.

Also C

can be written as follows:

'

C=a+8Y+0U.

Now replacing the value of Ct and C we have: -

~

-

PlimB

Y -Y)@w -0
B= B+ £ t

Z(Yt -

=B+

#)?

P lin[I(Y_ - ?)(ut - U)/1)

‘P limIE(Yt - ‘7)2/’1']

(1.15)

One notices— th:lt the probability limit of the numerator is the sample

covariance between Yt and Ut and the denominator probability limit

is the same variance of Yt . It is well known that the sample moments

converge in probability to the population moments, we need to know the

variance of Yt and the covariance between Yt and Ut .

In order to determine the required quantity, we solve (1.11) and

(1.12) to obtain

therefore

Now 1if we denote V(At) = 02

t

Y

a

t- 1

V(Yt) =

V(Yt) =

1

a- e)?

A

2
+
UA ]

a - )2

2

V(A) +

t

and

1
(1 - 8B)

Cov(Yt U)s=

2

¢

-8 l-eAc+1-8Ut'

V(Ut

) .

and V(Ut) = ot then

2
g

a - g2
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Therefore it is easily seen that the prodability limit of £ exceeds 8

which implies the inconsistency of the ordinary least square estimator

L

-

. when applied to such models..
\ . -~ ! .
Actually one can directly shov( that &1 as given 'in-(1.10) is
inconsistant and the proof of this statement can be found in any text-’

4
o

book on econometrie estimation. There are _several'nl:ethods of estimation

described in literature of such a model, wvhich produce a consistant

estimator of the parameters. In the following, we are going to describe

a few of them. ° . o
° I
.
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5. TWO STAGE LEAST SQUARES N

! \ By ‘ -
The two-stage least squares (ZS\bé) estimation technique was devel-
. .

"oped by Theil (1953, 1961) and independently by Basmann (1957), The’

method 'of estimation clarifies its name. Without any loss of generality

let us consider the model given in (1.8):° 2 s
NNEXKL T
. . B ‘
where xl = [Y1 : Zl] and | 61 = - .
Yl :

| : 81 :
Theref?re = [YIZ le » ; + Y (1.16)

: 1

In.ghis' notation' the jointly dependent and predetermined variable are

distinguished on the right hand side. This is important because the

former va.riablea are the cause. of all the complication, as they are

random, and corelated with the disturbance vector ' Ul . To solve this’

' i:roblem. we go back to the reduced form which shows that

E(Y) = - XB I‘_l , since _E(U) = 0 and X 1is non-random where the:

reduced form is written as,

Y=XI +V .,

Thus the matrix E(Yl) is a submatrix of this E(Y) which corresponds

to those which occur on the right hand side of our model. Next we write .

B A

{1.15) in the following. equivalent form,

B
: _ 1 \ oo
N i = lE(Yl)i z,) tu o+ 0y - E(Y) )8, . ' (1.17)

"1

LI

Now the first stage of 2SLS is to estimate E(Yl) uaing’ie;st squares.
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Thus we estinmate Ill in Yl - xnl + Vl to obtain,

w

~ vl
111 (XX) "X Yl
"~. ] -1 t

anq Y1 X(XX) X Yl .
Now in the second stage of 25LS A regressed on Yl

This yields the estimating equation as follows:

2, =12;.2

2 e T X

b4

~y ~ ay -~ ~y
nYy, Y13 & hn
1~ 7 ~ B 1
v 4t oM RSB
Now using (1.19) we have
o3 K. [] 1 —l ' M Kl
YIYl = YIX(X X) XI‘Y1 »
and
e ' LIS G '
zlYl ZIX(X X) X Yl zlYl b \ \
‘because 1

'qnd 4

|
|
(1.18)

1

(1.19)

]/.

T (1.20)

where X = {Zl : zz] .and partitions are of the right order.’

Therefore, we can express the 2SLS estimator as
] " .
1

- 1 LIS B ] - ' LIS |
8, YLXX X XY, Y2, Y, X(XX) " Xy,
~ [ ] L

! 1 5N ‘ 424

28LS

£

©

(1.21)

7/

(1.22)

(1.23)

(1.24)

S
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= + ‘ '
Now the OLS entiéktfr of vV, in Y, xnl v, is
%Q “ ; _1 ]
~ V=Y, - =Y - x(; 0 UXY, ] |
. N o o .
and therefore, .
’ ] LIS ] ' .
/ YIX(X X) °X Y1 : YlYl - VlV:l - -
Hence we may express SLS estimator as ’. '
. i - . S B
\ ~ (] -1 ' ' ﬁ\
) By - o h%4 WY .
b = ¥, . (1.25)
: 1 ‘
- ] 1] U
' 4 2,2 2

If we want to solve for 8, and v, let us write (1.24) as

I3
k}

1 LIS t - ' LIS
| le(x X) °X Y, Y2, 31\ le(x X) "Xy, )
= / ' (1-26)
4 , ! ~ .t
3y, 2z, v 47
28LS ‘ . -

1Y

' LI L + v - ' LI (S
LRI R I I A AR RANER 5 (e 3 0s SN (1.27) ‘
- + v - ' . .
zlYl 81 2121 Y, = Zlyl . (1.28) <
. p .
Multiplying (1.28) by (Z.Z,) we get s
X M 1 1 é L
- ' -1 ! -~y -1 ' ~ ‘
T G2 T4y - @2 T LY By
[N _1 y -
(2,2)) 21[ y,-Y,8,} o (29

and subatituting this in (1.27) we get

' S —~+ n R B ‘ - ' S
LX(XX) "X Y8+ V,2,(202)) T2y, -Y,8)) = Y,2(X %) "Xy,

i

» ~
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1 1

' ' . L ]
jrlx(x X) X YlBl-f Y zl(z ) 1

T S I y 1 a1
¥, X(X X)X y;- Y% (z\lzl) 3,5,
or’ ) '

' LIPS B 1 . -1 'R
(Y,llx(x X) X -2,(2,2) “Z,1Y,)8

' L S T -1
71( X(XX) "X -~ zl(zizl) zllyl .

., Therefore we have

A’ ' _1 1 ’
B, = lvlml‘] ?1“{1,) . (1.30)

S B ' -1 .. . y
wvhere N= X(X X) ~ X -zl(zlzl) 21; . » ;1,.31)
: Thg'2SLS estimator can be derived more elegantly in the following

way.
Let us pre-multiply the structural equation

- [ B
V" Nby F oy By by X

" We hnvé
T ' ' ' ”
= + . N .
Xuyl X Ylel X zlYl + X Ul ( ,‘ (1.32)
or - : ! , .
N .Y' ' 81 N T o . ’
X yl - X 1 X 21) - §;U1 ‘ ., ) . (1.33)
o

o

It is to be noted that the transformed disturbances have zero mean.

v

n(xul)-=xn(u)-=o . . ‘ - (1.34)

Furtber-ore E(U ) - u , vher \kz s the residual v;riance.u There-

.’

-+

fore, the covntiance matrix of traus d disturbances is given by
EQXW D) = o’x X . ' - o @.as)
Lo “
& k
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~

Now. using (1.35), if ve app'ly generalized léast squares to (1.33)

"

" we pbtain S
- ' - '
B,  Yx -1 yx
' 1 2 ' -1t ' g v 21
= .' (o XX)((XYI_XZI) . (0" % X) Xy,
oo HY ‘ L%

1

v LOS, ' S '
YIX(X X) XYI YIX(X X) "X 2z

" l' -l. l‘
1 Ylggx X) Xy

' S ' LI I T S
ZIX(XX) X Yl ZIX(X X) X Zl ZlX(X:X) X Y

(1.36)

[

because the unknown scalar parameter 02 Lancels out in‘ the straight
forvard manner. Pu;rther utilizing (1.,23) the estimator in (1.36) can be.

3

written as

P t U | " lz |J ror -1 ’|y . .
By LXX DT XY Yz Y X(x'0)x71 \
= . ' L, (1.3
-~ ' ' ] \ oo .
" 4N 4% %1y, -

which is identical with 25LS estimator obtained above. -

4
8 E
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6. FPAMILIES OF GENERAL k-CLASS , h-CLASS AND DOUBLE k—CLASé ESTIMATOR

The OLS (ordinary least squares) of ( ‘3 ) 1in the structural

equation (1.7) may be expressed as ' ’

-~ 1] -1
8 Y « Yy
el
. . 04y , N
Y1 zl z1
-] -
]
vy, vz Y
= ’ y . (1.38)
1 t [} 1 ‘
Y %2y Z)

Comparing this wi‘k:h 25LS estimator in (1,25) we find that the two
~ estimators differ only{ in the leading matrices. In the latter case we

' \ A ]
_have subtracted V,V, from Y, Y, and V, from Yl . It can be proved

that this correction of OLS estimator enables the two stage least squares
estimator to be "consistant".

' 1]
Alternatively, ye could subtract only a part of vlvl and a part
A ]

| - 1
of V1 from YlYl and Yl respectively. Thus for an arbitrary scalar

k (stochastic or non-stochastic) we have

-1
~ ] ] L
Bl YlYl - le Vl | lel Yl -k Vl ]

= y  (1.39)
-~ [ oy [} Cl
Y ) 2Y, zlzl z, ,

'Yl )., Note that by specifying different values
to k we arrive at difPerent estimators. For example, for k= 0

st!lnator defined in (1.38), and for k =1 .
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we have the 2SLS estimator defimed in (1.25). 1In general (1.39) pro- o

vides the family of general k-class estimators of parameters. This
method was originally proposed by Theil.
We observe that the 2SLS estimator was obtained by applying OLS to
the structural equation (1.7) after replaging Yl by
-~ |} -1 '
Y,=Y -V =XXX) XY

1Y (1.40)

1°

Now instead of replacing Yl b Yl--V1 let us replace it by Yf-hvl,

where h 18 an arbitrary scalan which may be stochasitc or mon-stoch- ,

astic. Then

Yy = (Yl - th)B1 + zlYl + Ul ‘ (1.41)

is the new form of the structural eqﬁation. Applying OLS to (1.41) we

get
- [ LI RN -1
By Y, - by, ¥, - b
s 1 §
., (¥ -hv, :2) vy
" Z, Y
h 14
_1 ‘
] 2 'v Y'z ‘ YI hvl
nY, '(211 h)vy Y2, . Y - hY
- Y. .(1.42)°
1\ . 1 : [] 1] 1
. z.Y 7.2 z

11 1“1 1

»

This is known as the fanily,gf h-class estimators and was also proposed

by Theil. We note that-for h = 0 we have the OLS and for h =1,

the 2SLS estimator as a member of h-class family.
We can it seews comwbine the two families of general k~class and
h-class into one family by defining’the Double k~class estimator” as

follows:

~
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K vhere k

vides the 2SLS e
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estimators. If k,'= k

estimators and k
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1 and k2

1 2 ]
JYy -k
\\ [

Z

non-stochastic). This was originally proposed by Nagar.

} S ’ )
‘are arbitrary scalers (vhich may be stochastic or

We note that k1'= kz = 0 provides the OLS and kl = k2 =1 pro-

e !

1

1

!

estimators. . . i

® 2h - h® and k

ati{ators as members of the family of Double k-class
2= k we have the general family of k-class

= h provides the family of f:-class
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7. AN INDENTITY CONNECTING THE DOUBLE k-CLASS AND TWO-STACE LEAST
SQUARE ESIMATORS :

If we write (1.5) ¥y = Yl‘B1 + ZlYl + U1 in the following form
. y, = 26 + U : o C(L.44)
| - - - 8 N
here Z (Y1 Zl) and § (Y) (1.45)

'the double k-class estimator can be expressed compactly in the following

form

R i ‘ D | ‘ .
aklkz— [z'(I-kln)z] Z[I-kzM]yl ) (1.46)

| R ’ ’ .
where M=T1- XX X) lX’ . ) X (1.47)
The’ 2SLS estimator

m* _ U % _1.1* b
GZSLS [zMz] "z2My. . . . (1.48)

. I'4
is obtained by writing kl '—41(2 = 1" in (1.46)

* L
where M = XXX "X'.

i

(1.49)

Since the following identity is true for any two matrices Q1 and Q2
{ @ + o7 = 11-(,+0) 7 g, 107 T (.50
1 2 1 2 2°71 s :

&

provided Q1 and Q1 + Q2 are nonsingular.
' - R
Now in (1.46) consider the matrix [Z (I—k’lM)Z] 1, which can be

* written as follows:

' -1_ 1
[z (I-klu)z] =[z Z-k;

)

z'Mz ]'1 = [ z'vz - klz' (1 -M*)} z]"l

! LI e |
+
122 kIZMZ]

'
\ [2Zz-k

/
|

' % \ -
=[kzMz+ (1-klvfz It e

.

Now applying the identity (1.49) to the above matrix we obtain

.
.
) -
. Y
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v

(z'(1- kln)zrl - L- (k) z' (1 -k, M2 iz z18 w22

.Y

¥ . kl
' ' 1-k
LA 1 - ' ' ok .
=L (Z M2 L —2z (I-k.MZ] 1'%z 2)1
k k )
1 1 -
. o (1.51)
. #
Thergfore w~e‘have
o - =1 ' * _
[z (1-kM2] "z My
. 1-k '
.17 1., 2 AR
k; Sasus T E (2 (a2 Eopgg
Now if we express , '
. . ' 'k ‘ 'k + T .
N 02 (T-kMy, = kjZ My, - (1-k;)Z l:!yl (1-k,)Z My,

. )
+ (1—k2)Z My .

A

fl

'k : LT
kyZ M yf (1-k,)Z M z8

Thus we arrive at the result

28LS

I

~ ~

8 =48
klk2 25L

+[2 (L~ k,M)z] '1[(1-k2")z'ny1\- (1—kl)z'MzE ).

2SL

'i?his identity is due to Srivastava and Tiwari (1977). Dhyremes
(1969) 'derived a similar relationship between the Double k-class and
25LS estimator. However, what Dhrymes calls the Double k-class is only

N 3

a subset of the entire famil); of Double k-class. Therefore his result

’
N

18 not comparable v;ith the more general result of Srivastava and

v

° Tiwari. I
-+ .. Furthermore (i.46) ca‘n“ be ﬁ}itten as
|

~- ' N ' _ - ’
Gk_ [z (?-km)Z] Z (I-km)yl foxt kl = &2 k .

.
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Notice that it is a k-class estimator. It is easily seen -i:ha{:

©
~

; ~ ] -1 v
by, G+ Gkl 2 (T-kmzl™ 2y,

Also note that

[ z' (1- klm)z ]_1 z'my1 = [ z' (1 -,kIM)Z]Tl z' (1 ;M*) Yy

.Now substituting from (1.51) to the second term on the RHS of the above

we obtain:

+ c o ]
’ i -1 ! LIS ’ ~1 !‘ 1

(2 (I—klm)Z] y my, = [z (X -kim)Z] z yl-—I[I— (1-k1)

/o C oz aapmzitzaiz w2y,

k

- 1z @zl 2y - 1 )

.

[[z'(l-klm)z]-l'z'z]EZSLS .

A

(1.53)

°

-Again using the same identity we can write the above equation in the

. following form:

-2 1oz aeaewzi e 2 v'2)5 1 '
g [1- kg 1 oLs ” (1- Q-k;)

t - ’

] -] ! ~
[z (I-kln)z] zz]esZSLS .

" Now using (1.52) and (1.54) we obtain

[y

-

(1.54)

= [z(I- klm)Z]-l Zy, - [z (I:-'klm)zl"l’l “_‘Ey'l'

——a
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1 4|7 . ) 3 '\/
¥ P
o . 1 k2
' ) - *

I- [Z (l—k m)Zl

{(- (l-k )[Z (I-k m)Z }

kZMZ

) -

O
!
2

OLS

ISLS ° (1.55) | ‘

' -
1, 2} 6

The double kvclasa, k-class, two staga least squares n.nd ordinary least

“

squares estimator of the pnrameter denoted--as . §.

v -~ 2

. due to Dwivedd (1981).

e

4 <

-

kyk, *

, GOL; respectively are conﬁectdd by the above relatiom
> 4 .

i

5k1’ $os1s and ‘

This result is

Now other estimators are also of the same tom as discussed

§
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sent. them here. - :
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® CHAPTER 11

SMALL SAMPLE PROPERTIES

0 \
\

1. INTRODUCTION - -
The asymptotic properties of econometric estimators are well known

and are coptained in almost every modern textbook. However, it is not

e

always .possible to have large number of data points in the present

' .

changing economic systems. Therefore it is important that we know the
behaviour of the estimators when they are obtained with moderate sample

1

size,

It is well known that the estimators obtained by using 2-stage
least squares method and limited Information Maximum 1ikelihood method,
are a;ymptofically equivalent, also the same is true for 3-stage least
squares and Full Information Maximum likelihood estomators. However,
no Ceftain conclusions have been drawn yet about the properties of the
estimators when they are obtained with moderate sample size irrespective

-of‘the wethods employed to obtain them. For this the Monte Carlo
methodology has yeen aﬁplied to get some feeling of thehbehaviour of
the estimators for moderate sample size.

In the following we will summarize the conclusions that have beén

S

réached using the Monte Carlo techniques.

é

- —p
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2. A SURVEY OF THE MONTE CARLO METHODS

Wagoer (1958) examined certain small samplé. properties of "limited-
information single equation”" maximum likelihood estimates for two models

by a Monte Carlo approach. That.is, 100 sets of observations over 20.

1

time periods are generated from the models &nd then with these obser-

| vautions using vario;xs statistical techniques, estimates of the parameters °
of an\ t;ver identifiet‘i equation a:e‘ ohtaine:i and compared.
The models,tdihf'fering only in the variance-—c.ovariance matrix of
’tl‘ug disturbances, consists of three ;quations, one of which is an
identity. The two wodels investigated differ only in the variance-co-

variance matrix. The structural equations are:

t

ViRt L oty SR 3

'D_ ) + - - = ! . '
; B¥a ¥ Y3 Yl m 3= 0, L . (2.2
YI - YZ + ?’3 + 220 ] =0 ) ' .o (2.3)

The y's are endogenous variables and the Z's are predetermined

©

_and exogenous variables. The U(t)'s are independently and identically °

nomlli‘bdiatributen with mean zero and finite covariance matrix.. The .

9

model has the additional restriction
Z(t) = yp(t=1)

Thus the first predetermined variable is a one period fagged endoéénous

variable, and 22 is "trend variable".

v
Q B

From 2.3 4 ' ' L, '

. Deomen

- g ¥

o b e - =
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L2 2R S T T Tl P L Tl LR

ox (1-8B))yy = ¥) = 25 =Ygy = V3 °F

U

¥ 2
f . - + - - - -— \ =
or Y, 1 62)}'2 z, 1221 )73 U,
and equation (2.1)
V1= B¥am Mt Y
we can write the two equations as follows:
1 -81 A . 0 ¢ - Y 'Zl
° v N 22
-1 A-8) v =Y "l oty oy
let
. 1 - B 0. 0 -y
i = 1 . 1
-1 (1'82) ) -Yz -1 °Y3
Vot U y
U = 1 y = 1 .
U Y2

So the model can be written in the following way:

-By+TZ=1U,

Now the reduced form of this model is as follows;

“y=-glrz+ gl .

t

As it can be seen that [B8] #0 ,

" letting - NI = -8ty r= g1y

we have -

y=1zZ +r .

(2.4)
v
1 2.5)
U,
(2.6)
(2.7)
. (2.8)

A ]

The two models that Wagner considered had the following values for

-~
~
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:x the,ptructur:al parameters: -

Bl= .50 . B, = .10 -

Y, - .25. Yy < .30 and Yy = A5 .

Thus one can easily see that the matrix I of the reduced form is as

follows: N
<375 1.25 A5
ne= , '
. +750 2.50 1
.9U1 + .SU2
A
and - r = _ L. .
+ :
ULt h
4

Let the variance-covariance of U be

1 -

S 1

Then the: variance-covariance matrix of r can be found as follows:

2 2 2 2
+, +
.81(71 .’25024'.90012 .90l 1,.40124'.502
R .16 .16 ,
E(rxr) = .
2 2 2 2
.901+1.4021+.502 ’ ol+2012+02
.16 .16

t‘ow substituting the. values of oi . og and 019 Ve obtain -the

v’;rimce-covariance matrix of r as given below:

9.4375 13.1250
r = . (2.9)
13.1250 19. 750 . ‘




o

Here we would like to report a mistake in Wagner®s equation (21)

where he reports his r to be

9.4375 13,1250
1 Q = -
13.1250 19.750
*Tpe correlation between the random variables Ul and 'Uz is
g.-
12
corr(U, ,U,) = = .5
1’727, ¢0102

For the same model Wagner specifies another variance-covariance matrix

for the disturbance vector U as follows:

o

8.40254 - 8.05232 o o
L = . : (2.10)
‘ - 8.05232 7.80599

He specifies this as Model II.

This variance-covariance yields the variance-covariance of the

reduced form disturbance vector r as follows:

9.44041 1,20018 T
Q= . i (2.11)
1.20018 .64927 ’
In this case the correlation bé;ueen v, and ‘U, 1s
cori‘(U1 ’UZ) =-,9943.

The vector Z 1is ‘specified as zl(l) =1 (d.e, y;(O) = 1) and

22 = ,25, .50, .75 «v... 5. The values of yll and y, are obtained

using the reduced from (2.8). The disturbance vector r ié generated

u as follows.

Y
To manufacture r having the variance-covariance matrices for

‘model I and II we first consider a vector r of random normal distur-

Cf//—\ ; s

o

o
A —tae .~ e -
. .
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p = ' = I (2.12)

A set of such normal random Yariﬁbles was supplied by the RAND corpor-

~

ation and wae used to obtain the components of s . Having secured a
particular s we make a transformation T
G ow G . . v

Ts =r

where

@

and such that - T s;tiafies

R
I3
~

TeT = Q. (2.13)

;:;\h33$93 generated the vector r, and given the reduced form

coeffi;ient of 2z, y can be generated. Wagner considered
t=1,2,...,20 i.e.°in other words, each set consists of 20 obser-
vakibns for the vector y .

He tﬁéﬁ éstimates the parameters by the methods of limited infor-
mation sing}e equation maximum likelihood, leastfs§uares and instrumen-
tal variables, for each 100 sets of observations on each model.

The conclusion of this study shows that estimates obtained by
Limited information method differ greatly fro&ythe true value. Since
Model II has lagre variances it turns~out as expected; the variances of
the estimates in Modei II is greater than the variances of the estimates

in Model I. Also the bias of LS estimates shows up not only on the

average but also in nearly every individual estimate. 1In Model I the

o - " ¥' - " 3
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instrumental variable estimates encompass LISE estiﬁates and are better

than LISE estimateg (using Z

>

o as instrumental variable). The same
sort of gemeralization does not hold for Model II.

In this study ﬁagner-has constructed the distribution of estimates
by three different methods to examine the effect of small samples on
the distribution of the estimates. However it has not been possible to
come up with any definite conclusions.

Neiswanger and Yancey (1959) Qtilized Monte Ca?lo techniques to
study the properties of estimates under some conditions wh;ch violate
specifications of the estimation method employed. These experimental
estimates are made under controls which tevealtxﬂg influence of such
specificétion errors. Two Qethods ;f estim;tion namely least squa
and.limited information simple equation methods are testéd on tiple series
data of small model. )

\

Based on the results of this study, the trial inclusion of time as

.an additional term in the equations of a model seems justified when time

sérigs data are used. If autonomqus ;rowth, or similar variations exist
in the endogenous variables the estimates will be improved and if auto-
nomous growth is not present the estimates are not made worse on'the
average and the coefficient for time will be very small relative to its
standard error.

Nagar (1960) used the Monte Carlo experiment to investigate small

sample properties of the estimator obtained by four methods namely,

-least squares, two stage least squares, unbiased, and minimum second

moment. He used WAgner's model for the experiment with the same specific

values of the parameters and same variance-covariance structures,

’
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Certain nethods of estimation have been disregarded as tbey have already

4

been considered by Wagner. WAgner considered only one equation in each

nodel and one which is over identified, whereas Nagar also considered

<

. the second equation which is just identified Just identification im-

plies that the’ two—stage least squares estimator is idenficel with the

'limited information maximum likelihood estimator.

As one can see that the two models considered by Wagner differ

t

only in the variance-covariance matrix of the random disturbances.
Nagar has omited the tonstant. terms in both equations for simplicity in

the analysis.’ ) ‘ , ®

B

One hundred samples, each being of aize twenty, were generated for

u

Model I and II. Thus he obtains 100 estimates of the parameter for

each of the alternative methods of estimation. The following sgtatistics

are calculated for the parameter estimates of the first equatign of the

model:
‘ 1) Arithmetic meanfof estimetes = i%ﬁ E;l tion is
ataken.OGer all 100 estimates for each of the egti . 3 =
2) Estimated bias = 100 Eyl - .5; O.Siégdng the true value of

Yy 8 .
1,72 1 "2
10021 oot M)

4) Estimated second moment about the true value = estimated

3) Estimated second moment about the mean =

second moment about the mean + (estimated(\Bias)2 .
Finally for each of the 100 samples the alternative estimation _
methods have been ranked according to increasing distance from the true

parameter value and the sum of the ranks is given. Hence, a low total

of the ranks is an indicator of reldtive success in estimation. The
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P ‘n“ results are reported in the various é;bles;
The parameter estimates 6% the second équation were oﬂtained in
* the same way and similar statistics were calculated and reported in the
tabular form.
The miin results are summarized as follows:
i) iThe'small sample bias of least squares exceeds the bias of the
consistent estimation methods. There are sixteen comparisons regarding
this and the bias reductiyn ranges from about 25 to almost 100 per cent,

o the median reduction being of the order of 60 per cent.

i1) Least squares has smaller sampling variance around its (biaéed)

-

expectation than the consistent methods. The relative excess of the
_variance of the latter methods over that of least squares varies [from
a négligible to a tenfold difference, the median excess being of the

3
o crderq%f‘SO per cent of the least squares variance.

. ifi) Therlarge bias of least squares implies that itsysecoﬁd'
moment about the true parameter value exceeds that of the consistent
. methdds in twelve cases out of sixteen. If we express the second-order
saqpling moments about the true value for the consistent methods as a
percentage of the cortespénding mement for least squares, we oBtain
'” figures ranging from abqut ép‘to 110, the median being ;f thé order of

90. ‘ : - ' .

Kl

iv) The simplest of the consistent methods .considered here is the

two-stage least squares method, which shows the smallest bias in\gli

N\
cages, Theoretically, this method is only asymptotically unbiased.\\We

A\
also consider a method which is unbiased to the order 1/T (T being N

the number’ of observations), Yut strangely enough, this method shows a \\\\
o

@
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o $‘ P
consistently larger bilas than two-stage least squares. This Momaly
can possibly be explained by the_fact that the unbiased estimator is
only unbiased to order 1/T when there are no lagged endogenous vari-
ables, while in Wagner's models there is one variable ¢f this kind,

v) The third consistent method is the so—cal}ed minimum-second-

moment method, which minimizes the determinant value of the moment mat-

rix of the sampling errors. This method has the smallest second-order

'sampling moment. about the true value in four cases out of six (two models

containing three parameters each); in the two othér cases the unbiased ‘

method - to roder 1/T - ranks first in this respect.
vi) The|minimum-second-moment method belongs, just as the o}her

three methods, to the k-class; but it differs from these in that its - ’

k véries from samplé to sample. The distribution of this k over the

sets of samples analyzed shows a large range; in a rather substantial

minority of cases k is negative, whichfappears rather extreme when

it is realized that ¢he inconsistent least squares method corresponds

with k= 0 and Ehat conéistency rgquires that k approaches 1 for

large samples. A modified minimum—secons-moment apﬁroach is considered,

which implies that the original minimum-second-moment estimates are

rejected in favour of two-stage least squares as soon aé its k 1is .

below a preassigned critical level. This does not lead to substantial

improvements. y ’ t
. a ‘ ¥
vii) The asymptotic standard errors of two-stage least squares

give a rather éatisfactory picture of the variability of the estimateQ

about the true value. This is mot true'for least squares in all cases

considered. Instead, it seems that the classical least squares stahdard ' .

R

ca e b Sl Ay vt OO
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errors measure the variability of the estimates ‘about the biased éxpec-

;ation,'hot about the true value. In some cases this makes a very

S

large difference.

v
®

)Qpandt (1965) reports the results of a set of sampling experiments .

on a four equat{on model. These experiments involve the computation of

k-class estimates for alternative values of k, with special emphasis

o

being given to direct least squares k=20 and two stage least squares
for kg; 1., | | ‘

The main objective of this Monte Carlo study was to gather evidence
concerning the relative performance of direct least squares and two
stagelléast squares. The second objective w;s to test the hypothesis
that the bias, for both methode ofvéstﬁéation, diminishes as the sparse-
nes; (the prevalence of a prior zeros in the coefficient matrix of Y
in the struc;ural equation) increases, assuming that the number of zeros
are such that the reduced form is assured. And the final objective was
&o test the hypothesis that the biasjfor both the methods of estimation
decreases as the sparseness of the cov;riance matrix I of error terms

increases.

Two models were used for the experiments. Model I is

’

- + + -z, - - =
¥y 0.2y2 3.0y3 Y, Zl .522 + 23 Ul

- + + + ] - : - =
v, y, t WSygt .y, 2.0z, Zg =,

& - . + +. ' . - =
1 Syl Sy2 3 2y4 + 523 + zZ, 225 U3
.4yl + yz‘j .§y3 + Y, ] - 23 - .225 - 326 = Uﬁ

' .. ’ .?:
, ", » (2.14)
< |
i e ) T T i e m-v'w *—J - ot
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.an additional variable - 2

K

Model II is the same as above with the exception that it includes

2 with the coefficient 0, .5,0,0 reépec—

M . b
91ve1y .

The first equation which is just identified in Model I, is over-
- P

identified in Model IT. /

Predetermined variables Zl y o+« 5 Z, are truly exogenous and do

7

not include lagged va%ues of endogenous variables. Values'of the ex-

ogenous variables were: fixed for repeated samples, although two differ~
i .

LN

ent Bets of data were used for the exogenous variables in order to

1

examine the effect of multicollinearity. These tyo data sets have the

4

fc?llowﬂiﬁg ‘correlation matrices: .o c{;} ~
For data set 1: ) ¢ {
. : ’
1.000 0.872 §y 0.325 0.707 -0.726 0 0.152
A 1.000 ~ 0.440  0.847. =0:879 0 0.420
? 1.000  0.429 -0.469 | 0 -0.049
1.000 ~0.865 0 0.464
1.000 0 -0.274
i 1.000 0
1.000
‘ ¥4 .
and' for data set 2: ( .
. 1.000 - -0.423 0,335  0.589  0.068 ' 0 “0.193
1.000 *0.165 -0.539 0.439 0 0.065
1.000  0.132  -0.291 0 0.556
- ‘K, . 1.000 -0.095 ° 0 -0.030
. 1.000 0 0.217
‘ : 1.000 o'
' 1.000 .
‘ )
e 7

where the sixth variable is a constant for both data sets. The experf-

“

m-.‘."—w?_r
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ments are performed as follows: - -
1) Twenty vectors (U1 . U2 ’ U3 , Ua)" are éenerated, where the
glements of the vector are jointly 'nomally distributed with zero mean

and covariance matrix I . The latter was either ‘

1.0 0.6 0.8 -1.00°

0.6 1.0 0 - -0.2
LT 0.8 0 2.0 -0.6
-1.0  -0.2 0.6 2.5
) AY
) 1.0 0
1.0 '
B T 2.0

‘0 0 0 2.5

2) Given the values of 20 z-vectors, the values of the endogenbus

L]

.variables are calculatéd from

- -1 .
y=-B“1FZ+BIU,

]

where the B - matrix was altqréd from run to‘run. Five' B - matrices

were used, o

-

1:0  -0.2 2.0 - -1.0
-1.0 1.0 0.5 . 0.1

B, = ,
' 1.5 -0.5 1.0 0.2 .
X 0.4 1.0. -0.5 1.0
1.0 -0.2 2.0 -1.0
g = "L.0 1.0 0 0.1
2 .
‘0 -0.5 1.0 0.2 _
oy 0.4 - 0 0.5 1.0 .
o ¢ ’ }
/
L} ’ _
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1.0 -0.2 2,0 -1.0

Y D N 0.1
3 -0.5 1.0 0

0.4 0 0 1.0

1.0 -0.2 2.0 -1.0
5, - Lo .0 .0
-0 1.0 0

0 0 1.0

1.0 -0.2 2.0 -1.0

R _ 0 1.0 0.5 ~0.1

B5 =
‘ 0 0 1.0 0.2

0 0 0 1.0

3) A run consisted of 100 samples of 20 observations each. Co-

efficients for the first equation were estimatéd'frém each of the

hundred samples in each run. Each sample utilizes a new set of normal

deviates.

4) One run was obtained for each model-data set’ B-matrix com-

bination in conjunction with I giving a total of twenty runs., In

1°
addition, four more runs were obtained by using_?ach of the four possible
model-data set combinations in conjunction with Bl and _22 . The four
runs which are obtained for each (B, %) combination are designated as
logical sets. Thus the four runs from (B1 ,ZZ) are Logical Set 0,

the runs from (B, ,I,) Lpgical Set 1, up to the runs from (Bé, Il)

171
designated Logical Set 5. The set of normal deviates is re-used in
each run,

5) k-class estimates were obtained in the usual manner. Writing

the first equation as i

[ —— - ; PO

— e
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- + +y.. z. + +
Y% BraYat Bya¥ayt By, T oY% Y%t YiaZy U

or more briefly,

v, = BY + vz + u (2.15)
ve obtain the estimates for (612, 813 ,814, Y110 Y12 ,713) , denoted
briefly as (B,v) , \

¥

-~ ] ' 1 -1 1] ’

B ) YY-kVvV Y Z, Y ~-kV y1

~ [] ] 1

Y z.Y Z*Z* Z, (2.16)

where V iepresenis the matrix of residuals from the regt;ssions of
Yy ;y3 and Y, » om all the exogenous variables.

The results of this study can be summarized briefly as follows:

a) Two-stage least squares estimates are not u?ambiguouslf better
than direct least squares estimates in small sample situations.

i) Estimates are relatively poor when there is high multicollin-
earity among exogenous variables, with two-stage least squares‘being
relatively more affected.

c) The distribution of two-stage least squares has higher density
than direct least squares in some neighborhood of the true value, but
it also has thicker tails,

d) Estimates generally improve as the sparseness of the B~ matrix
increases.

e) Triangularity of the B-matrix i;proves estimates, and ¥ecur-

siveness is thus more favorable to good estimation than an equivalent
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amount.of sparseness; estimates generallf improve as the spa;seﬁess of
the covariance matrix ; increases, the improvement being somewhat
ambiguous for k=1 .

f) Estimates are on the wholé better in the éveridentified model
than in the just identified one.

g) k*-eatimates may be considered rational alternatives to both
two-stage least squares and direct least squares. '

The question of what estimator to use in-.a concrete sm;11 sample
situation is far from settled. ‘Although ultimately the user.will aiways
have to st;te the kinds of risk he wishes;to avoid, a great deal more
needs -to be known about the properiies of various estimators. It
appears likely on the basis of this and other investigatioﬁs that a
coasiderable ambiguity and unce;tainty will continue te adhere to rank-
ings of estimating techniques.

Craig (1966) describes the‘result; of a series of sampling expéf;-
ments designed to investigate gow sensitive the’pgyforéances of varioug
estimators are to violations of the assumptions of the usual model.

The estimators investigated are direct (or "classical"™) least squares
(DLS), two-stage least squares (2SLS), Nagar's unbiased k—cl;as esti-
mator (UBK), limited-information maximum likelihood.(LIHL),,thtee—stage
least squares (3SLS), and full-information maximum likelihood (FIML).
The first four methods are all members of the k-clsss'of estimators

and estimate the coefficients simuitaneously. Standdrd errors of the
estimates of the last five techniques are available, based on the

asymptotic distributions of the estimates in the usual model; standard

errors can be computed for DLS by the usual formulae.

~
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\

The usual simultaneous equation mo

j | \
ei can be summarized as follows,

o

Let z, be the Kx1 vector of predetermined variables at observation

"

t(t=1,...,T) . z, is assumed to be nonstochastic (and measured
without error). let B and T be GxG and GxK matrices of (non-

stochastic) stfructural coefficients, some of whose elements are specified

3

a priori to be zero. Let ut be a Gx-1 vector of stochastic, struc-

’

tural disturbances of observation t . The Gx1 vector of endogenous

-

variables, ‘&t , 1s assumed t6 be generated:

By, = z_+ ut'. (2.17)

The stochastic assumptions usually employed are:

E(ut) ='0 all t ;

E(ut um) =1 t=m (t,m = ;f ees s T)
©o= 0 t¥ o' _
lz] # 0 . u (2.18)

Four types of violation of the assumptions of the usual model were
investigated. These were (1) errors of measurement in the exogenous
variables, (2) stochastic coefficients, (3) heteroskedastic disturbances
and (4) autocorrelated distrubanceé. A sampling experiment by Ladd
(1956) investigated the effecgs of errors of Qeasurement on DLS and
LIML. GQtherwise these subjects have not been investigated before by
sampling expe*iments. ‘

Egch sampling experiment involved the following steps. A set of
twenty observations of the exogenous and endogenous variables were
generated. From these observations the esEimates of the structural co~
efficien;s were computed and the standard errors of these estimates

calculated. This process was replicated fifty times. The fifty estimates
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of each coefficient by each estimator were then used to draw inferences
about the small-sample distributions of the estimators in that experi-
ment and were compared v;ith the estimates of other experiments to in- -
vlestigate the effects of ;iifferent Gays of genérating the data.

The structure employed in most experiments, structure 1, was:

1 -.B9 -.16
B = -.54 1 0 - ’ .
0 -.29 o (2.19)
4 .74 0 o 4 .13 o Q
T= 62 0 0 0, 9% 0 .06
4 0 .53 .11 0 .56 0

35.24 34.48 31.12
= 34.48 36.68 29.84 (2.20)
' 31.12 29.84 40,65

Coefficients whose values were zero or unity were not estimated,

these values were assigned to them a priori in estimating the structure.

Each equation has two more a priori restrictions than are needed to
identify it. The first column of T 1is the constants of the equations

and the first element of each z, vector was always unity. Another

t

aitucture. structure 2, used in two experiments investigating violations

of the assumptions had the same values for B and T ., Its I. matrix

was: ' ’
29.24 3.32 - 1.24
3.32 36.20 4.96
g - 1.24 4.96 46.60. - (2.21)
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The exogenous variableg, in the absence of special features, were
independently and rectangularly distributed pseudo-random numbers lying

between zero and one hundred. The same values for the exogenous vari-
<

ables were used in each replication of an experiment. The “actual

.

1

simple correlations between these variables were:

23 Zl‘ ZS 26 27
z, -.15 -.11 -.18 -.37 -.18
z, -18  -.01 27 -.03
z, -.15 -.37 .02
-~ ¥
z5 -.09 .05
z, . .56 (2.22)

(z1 was a dummy variable taking on the value unity at all observations).
The structural disturbances in the absc;nce of special features,
were normally and independently distributed random deviates of means
zero and variance-covariance matrix I , as specified by the structure
investigated. The disturbances were formed by taking linear combinations ‘
of independent normal deviates of unit varianc.:e. Different disturbances
were used in differgnt replications of the experiments, but the same
basic variates were used in all the different experiments. HRaving formed
the exogenous data and the disturbanges, the endogenous variables were
then generated. The reduced-form disturbances (B-l ut) accounted for
from eight to twelve per cent of the varlances of the endogenous vari-
ables in 'structure 1 and from five to six per cent in structure .2 when

¥

there were no special features. The ways in which these basic data
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were altered to introduce the violations of the ou‘sual assumptions are
described in the upaper. ’

Gregg summarised his findings as follows. Only one of the viola-
tions of the assumptions of the usual model which were studied produced
any pronounced changes in the performan&as of the estimators. Making
the coefficients stochastic led to finding several median deviations
which were significant, In addition to greatly increasing the disper-
sions, it changed the ranking of the estimators. The surprising thing
about the other experiments was not the changes that occurred but the
failure of the violations of the assumptions to alter the performances
of the estimators greatly. Errors in the exogex‘mu{g variables had little
effect on the central tendencies of the estimates; heterskedastic and'l

autocorrelated disturbances did not destroy the usefulness of the

standard errors. In all the experiments the differences between the

I
'

estimators were not very great. No method performed either a great
deal better or worse than anothet,

The data and structures used in the experiments can at best be
regarded only as very over-simplified representations of economic pro-
cesgses. They did not deal at all with the type of dynamic structure
found in most economic models. In consequence, it would be dangerous
to try to generalize the findings - of the experiments to the performances

of the estimators in econometric models. However, despite this short-

" coming, the fact that the performances of the estimators were not

greatly sensitive to the violations of the assymptions of the usual
model is encouraging for the feasibility of using these estimators in

empirical investigations.

C
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Cragg (1966) describes the results of a series of sampling experi-
ments designed to investigate how sensitive the performances of various

estimators are to violations of the assumpsions of the usual model. The

* estimators investigated are direct (or "classical') least squares (DLS),

two-stage least squares (2SLS), Nagar's unbiased k-class estimator (UBK),
limited-information maximum likelihood (LIML), three-stage least squares
(35LS), and full-information maximum likelihood (FIML). The first four
methods are all members of the k-class of estimators and estimate the
coefficients simultaneously. Standard errors of the estimates of the
last five techniques are available, based on the asymptotic distributions
of the estimates in the usual model; standard errors can be computed
for DL8 by the usual formulae.

Th; usual simultaneous-equation model can })e summarized as follows.
Let zt be the K X 1 vector of predetermined variables at observation
t(t=1,...,T). 2z 1is aspumed to be nonstochastic (and measured with~

t
out error). Let B and T be G X G and G x K matrices of (non-

stochastic) structural coefficients some of whose elementsuare specified
a priori to be zero. Let u, be a G x 1 vector of stochastic, struc-
t‘ural disturbances of observation t. The G x 1 vector of endogenous
variables, Ve » is assumed to be generated.

Byt = I‘zt + u, - -(2.23)
The stochastic assumptions usually employed are:

$o

Ea) = 0 Cafl t; ' :
E(utul;)=2 t=m(t,m= 1,...,7T);
=0 t+no C(2.24)
[E[*0 ,
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o

Four types of violation of the assumptions of the usual model were

investigated. These were: 6“
‘ 1) errors of measurement in the exogenous vat¥sbles,

2) stochastic coefficients,
3) heteroskedastic disturbances and ‘ | , ' S~
4) autocorrelated disturbances.

™ A sampling experiment by Ladd (1956) investigated the effelcts of errors

[

of measurement on DLS and LIML. Otherwise these subjects héve not been
investigated befoxie by sampling experiments. X

Each sampling experiment involved the following steps. A set of
twenty observations of the exogenous and endogenous variables were gen-
erated. Form these observations the estimates of the structural coef- |

)

fiecients were computed and the standard errors of these estimates cal-

culated. This'ptocess was replicated fifty times. The fifty estimates
V%\:of each coefficient by each estimator were then used to draw inferences
about the small-sample distributions of the estimators in that experi-
ment and were compared with the estimates of other experiments to inves-
tigate the effects of different ways of generating the data. p

The structure employed in most experiments, structure 1, was:

1 - .89 - .16
( B= - .5 1 0 )
- 0 a2 1 (2.
:
44 7% 0 0 13 -0 0
r= 62 0 .70 0 . .9% 0 .06

40 0 .53 .11 0 ' .56 0




- 45 -

35.24 - 34.48 31.12.

&

L= 34.48 3.68 29.84 - S
31.12 — 29.84 40064 26)

—

Coefficients whose values were zero or unity were not estimated,

[

—~

th;ase values being assigned to t\'}lun\g priori in estlmating the structure.
Eac;h equ’ation haé two more a priori restrictions than are needed to |
identify it. The first colum; of T 1s the constants of the equations
and the first element of each z, vecto_i' w;s always unity. Another
structure, structure 2, used in two experiments investigatiné violatior;s

" of the assumptions had the same values for B and I'. Its I matrix

>

was: | .
. 29.24 - 3.32 - 1.2
3.32 36.20 4.96

-1.24 4.96 © 46.60 . A{2.27)

The exogenous vériables, in th‘e absence of speéial features, were
independently and tect.angularly distributed pseudo-random numbers lying
between ze_n;> and one hundred. The game values for the exogenous vari-
ables were used in each replication of an experiment. The acltual simple

correlations between these variables were:




‘\\;/
~ zq Z, zg ' Zg z,
z, =15 -1 -18 =37 -.18°
P72y -.18 -.01 27  -.03
A » - -.15  -.37 .02
zg - ,\ -.0? - 05 ‘ .
z ¢ 56 (2.28)

i (z1 was a dummy variable tgginé on Fhe value unity at all
| - observations). o o,

The structural disturbances, in the absence of speciaI’feétures,
ware normally and independently distributed random deviates of means
zero and variance-covariance matrix I, specified by the structure in-
vestigated. The distrubances were formed by taking linear combinations
o indgpendent normal deviates of unit variance. Different 8isturbances
were used in different replications of the experimenfs, but ‘the same
basic variates were uséq in all the different experiments. Haviﬁg form-
ed the exogenous data and the disturbances, the endogenous variables
were then generated. ihe reduced-form disturbances (le'ut) accounted
for from eight to tewlve per cent ofvthe variances of thqupdogenous
variables in structure 1 and from five to sixu.per cent in stiucture.Z
Qhen there were no special features. The ways in which these basic data A
werebaltered to in%roduce the violations of the usual aésumptions are
described in thé’ paper.

,- . Gragg summerized histfindings as follows. Only one of the violations
of the agsumptions of the usual model which were'studied produced any

4
pronounced changes in the performances of the estimators. Making the

[ ' » c

PR QP gt et ooy,
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%oeff;cients stochastic led to finaing several median deviations which )
were significant. In addition to greatly lncreasing the dispersions, it
changed the ranking of the estimators. The surprising thing about the
other experiments was not the changes that oécurred but the failure of ’
the violations of the assumptions to alter the performances of the esti-
mators greatly. Errors in the exogenous variables had little effect on
the central tegdencies of thé estimates; heteroskedastic and autocor-
relased disturbances did not destroy the usefulness of the standard
errors. In allyth; experiments the .differences between the estimators

o

were not very great. No method performed either a great deal better or
< . ;;
worse than another. ’

The data and structures used in the experiments can at best be

regafded only as very over-simplified representations of economic pro-

&

cesses. They did not deal at all with the type of dynémic structure

found in most economic models. . In consequence, it would be dangefous to

try to generalize the findings of the experiments to the performances

of the estimators in econometric models. However,‘despite this short- )

coming, the fact that the,performance; of the estimators were not great-

ly sensitive to the vio}ations of the assymptions of the usual model

is encouranging for the feasibility of using these estimators in empiri~

cal investigations. .
Cragg (1967) reported the results of another Monte Carlo sfudy. He

used the same model‘of structural equations for this study as is des- |

cribed above. . ‘
He also employed‘the same methods of esfimation as is re;ofted in

earlie; pégszs. However, his concern in this study is concentrated to

N

1 4

AC;
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obseyve the effect of multicollinearity on the estimates obtained from

1 ;
L . ‘

various methods.

“Most of the experiments used structures from a three-equation- model

‘ .

o‘f the form: ’ / - .
i o

5
1 By Bys - m W 00 % 0 0
By ¥ O Y5 M 0 My O Ys O Yy ztu
By 1 3iu 0 N3 oy, O Y O
\ ; ' \
‘ : N (2.29
. B

where the fB's and the <Y's represent coefficiknts to be estimated.

The first column of the T matrix contains the constants of the equa-

. 'Y - A
tions, and the firstfelement of the z vector at every obgervation was

unity. .Each e\quatio‘n has two more a priori restricéionS'impo;;ed on it
than are necessary to identify it. The coeffit;ients“ of the struqtl;res
of the model w;\ich were used in the experiments are shown in Table I.
Structures 1 through 5 had différent values for the structural coef-
f;cignts 'g%ven in ‘the paper (page 92, Table I) but the same values for
I . Structures 6, 7, and 8 used the structiral coefficients of structure
1 énd d)fferent values for Zn.‘ |
, '

'i'he experil;xents ‘gave a number of interesting fi,rtx'ﬁings:

a) The differences in the performances of the methodslare not at
all pro}m;nced. ’ -

e‘b)' The frequency with which one estimator came closer to the true

. , .

values of the structural coefficients than anotl;et varied significantly
. .

over the different coefficients of an experiment.’ The variation\ was

sufficient to make the rankings of the estimators for the different

. *




coefficfents different. A

c) The frequencies with which one method came closer to the true
£ !
wvalues of the structural coefficierts, than another depended on the

exact set of exogenous data used, the true values of the structural
coefficients, the correlations between the structural disturbances and
the sizes of the structural disturbances. This variability could

change the rankings of the estimators for some coefficients.

d) Given the small differences among the estimators and the

[

variability in their relative performances, DL§, was usually t?g/poorest '
method and 3SLS and FIML were better than 2SLS, UBK and LIML.

e) In most cases differences in the central tendencies of the
4 . -
distributions of the consistent estimators from the true values of the

coefficients were not very serious, but large disturbances and multi-

‘ .
collinearity could change this conclusion. On this criterion, FIML and.

LIML seemed slightly superior to othér methods. The differences of its
., medians from the true values was a serious problem for DLS. This
feature, rather than wide dispersions, was the rea;;n for the pdor
rankings of DLS. It welghed mo;e heavily against DLS when larger

»

samples were used. .

f) Usually use of the standard errors of the consistent methods
would lead to reliable inferences, but this was'not always\the case.
The standard errors of DLS were not useful for making.inferences ;bout
the true valuea(of the coefficients.

The experiments conducted give no clear guide lines for the choice

of an estimator for econometric models. They indicate that the ambi-

. V] o
guities to be found in ehrlier sampling experiments genginely reflect
\ - ‘ .




properties of the simultaneous-equation estimators.

that, because the consistent estimators do not differ greatly
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relative performances are sensitive to the data and structure studied,

and easiest method to compute. The choice of DLS also may be

"2SLS may well be the best estimator to choose since it is the cheapest

even for very simple models conforming to the assumptions under which

the simultaneous-equation estimators were derived and the experiments °

conducted.

Gragg (1968) provides some sampling experiment results exploring

the effects,of certain misspecifications on several simultaneous equa-

tion estimators. Again he has used the same model with the same

Epecification coefficients,and/varihnce—covariance matrix and has

employed the same methods of estimation.

He has specified the following types of misspecification of the

model:
1.
2.

3.

5.

Specification that important coefficients be zero.
An unidentifiable structure.
Omission of an exogenous variable.

Omission of an equation.

Failure to specify all zero coefficients.

He has reported the results of the experiment investigating mis-

specification by comparing with the results of the experiments in which

the structure was.correctly specified. He summarizes the results of

" this finding as follows.

As one might expect, the effects of misspecification very much

depended on the seriousness of the mistake made, in the context of the

The results suggest

and their

sensible,

EE R Sttt
L3
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structure studied. The specification that coefficients whose true
values were almost zero be zero had little effect on the performances .
of the estimators.. Ignoring an unimportant exogenous variable and
omitting a ;tructural equation affected the estimators only slightly.
These results suggest that basing the specification of models on only
approximate or partial knowledge may not seriously compromise th; ﬁﬁé—
fulness of the models.

On the other hand, serious failures in specification had pro-
nounced effects on the estimators. The specification that important
non-zero coefficients be zero altered the central tehdencies of the
estimates of the misspecified equations drastically and markedly in-
creasé& the dispersions of the estimators. For most purpsoes,- the
effect of the misspecification was probably enough to render the esti-
mates of the structural coefficients useless. In the face of this mis-~
specification, the consistent k-class estimators seemed to bé better
than FIML and 35LS in estimating correctly specified equations within
the system. Failing to specify as zero all coefficients for which this
. was correct had serious ;ffects on the.central tendencies and dispersions
of the estimators when knowledge of these coefficients was important for
the identification of an equation. FIML seemed the estimator most sen-
sitive to this danger. These findings suggest that, in the absence of
fairly complete and confidently held knowledge about which coefficients
in a structure are very small or zero, successful econometric model-
building faces a very difficult task in steering between the Sylla of
misspecification and the Charybdis of under-specification.

"

Summers (1965) has carried out extensive investigations in study-
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ing small sample properties of econometric estimators. He emplpyed the

following hypothetical economic model: g

+ + + + =
Ve B Yoe P M 2o P M2 %2 T M0 T Ve (a)

u (b)

, (2.30)
+ + + + '
Ve B Yor P M3 Zae T Mu Zae T Y20 T Yot

)

The y's are jointly determined variables while the z's are pre-

. A .
determined; u's are bivariate normal variabples with zero mean and a

variance covariance matrix denoted by L. The reduced form of the

model is given as follows: g

= + + + + :
Yie T "1 %2e " M2 %2¢T M13%3e T "4 %t M0 V1 (O 2.30)

+ 2+ + +
Yor = a1 21et T22 %2et T2 Zaet T24 Zae T Moo Vor (D
.The m7's are functiéns of the B's and 7Y's and the v's are

linear combinations of the u's. The absence of z3 and z4 from

equation (a) and the absenée of nzl and z2 from (b) imply certain

interdependencies among the 7's in {c) and (d).

The equations (a) and (b) were used as the basic model of a hypo-
A

thetical model. In any particular experiment the values of all of the
parameters of the model, both the structural coefficients and the

variance—-covariance matrix of structural disturbances, were specified.

oo

The values taken by all of the predetermined variables were specified

of each of the T observations periods considered. /

(b) Using the random sampling method*, T observations were ° /

‘

(Y
generated on both Yy and Yoo conditioned by the set of values of the

s

* A random normal deviate generator was used to produce structural distur-

bances which were then transformed into reduced form disturbances. Ip ,

actual computing these two processes were combined into one step. /
/
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predetermined variables. The T sets of observations on Yy Ygo

z z and z, constitute a sample.

1, 2! 3,

(c) Llimited information, single equation (LISE), Two stage least

M

squares (2SLS), ordinary least squares $OLS) and full information maxi-
mum likelihood (FIML) were each applied\to the sample to estimate the
parameters. ’

(d) Lleast squares no restriction (LSNR) was applied to the sample
to obtain: 1) estimates of the reduced -form ;oefficients m's

ii1) conditional predictions of ¥y and Yoo for the
: same prescribed set of z's as in (c)
iii) these predictions are based'bn the estimates of the T's.

(e) Steps (b), (c) and (d) were then repeated N times to\get N
different estimates of each of thF parameters by each estimating method.

(f) The N different estimates of each parameter obtained %or
each estimating method were organised into a relative frequency distri-
bution and summary measures were computed for each Eistribution. ,

(g) Then a new specification of the values of the parameters was
made and steps (b), (c), (d), (e) and (f) were repeated. A variety of
gpecifications was made in order to observe the sensitivity of the re-
lative frequency distributions to the specification of the characteris-
tics of the model.

Five different sets of parameters were used; four were used with a
single sample size, T = 20 but the fifth was used with two sample
sizes T=20 and T = 40. }f T 1is thought of as a parameter there
were six distinct parameter conste%lations. Each was used twice, once

{
in an A experiment and once in a B experiment. The A experiments differ

\
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from the'B ones in the extent to which the predetermined variables were
specified to be intercorrelated.

For each set of pseudo-economic data the structural coefficients,
the B's and 7Y's, were eatiﬂated’by each of the estimaFing methods.
The estimates of the 7's were computed as funftions of \B's and ¥'s.
The conditional predictions of Y, and y, were made on the basié of
reduced form coefficient for each of the methods. These were then com-
pared with’the population values o¥ Yy and y, as dete;mined by the
structural parameters specified in the expefiment. A comparison of the
absolute difference was then made for each of the different estimating
methods. Within each sampling experiment this.was repeated fifty times,
the number of sets of pseudo-economic data generated per experiment.

lSuppose the parameter being estimated is o and an estimate of «
produced by the kth estimating method is ak . Associated with each
method is a frequency function fk(uk |a) . Some measure of disbersion
of fk around o 1is called for; clearly the estimating method with the
frequency function with the smallest dispersion is best.. The measure
most commonly used for this purpose is the root mean square (RMSE). s
Alternatives are the mean absolute error (MAE) and P=Prob{|;-ai$}~. )

In this case the bias., standard deviation and RMSE are calculated
for fk of the twelve sampling experiments. The bias and variance
measures are not very interesting in themselves but they give an idea of
the relative sizes of the two components of the RMSE.

Finally a test of hypothesis is designed to test that there is.no

difference between the methods. The test HO: MAE . = MAE is

k L
a o

equivalent to the null hypothesis H; =P =4 where.

k
\ ‘ .

<

LR~ eyry

f ol
.
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P,, = P{ lak-aI > Ial-ul} . Since o and o were highly cor”rglated". ‘
in virtually every case and therefore were nearly always on the same
Py

the proportion of cases in which ]uk-ul exceeded
|az-a| was extremely easy“to obtain by visual inspection. The power

5

efficiency of this test is about 2/3. The use sz as a test statistic

circumvents the difficulty of measuring the dispersion of fk with
moments which may not be well behaved.

"The following conclusions were drawn.

1. The minimum variance property of large sample OL; structural
coefficient estimates certainly is preserved for small samples.

2.' The structural coefficient bias of OLS was by far éhe greatest
of the four methods examined.

- 3. For large sﬂmples the standard errors of estimates proéuced by

each method are inversely proportional to the square root of the sample
size. |

~
4. The difference between the best estimating method and the worst

'wah substantial in virtually eveiy exper#menf. . -~

5. In A experiments FIML was pleafly best with 2SLS (TSLS) second

and LISE and OLS
1

passed up LISE.i

as:. In B experiments 2SLS passed up FIML and OLS
N\ )
[TME performed badly ép the four misspecification 1

Mikhail,(l972)&points out that over the last few years Monte Carlo
% L v

A
studies conducted q&\simulate the small sample properties of simultan-
’ !

experiments.

v

1
eous equation estiﬁ%&ors have used straight forward simulation and pro-

N
a

duced results whichgwere often indeterminate and sometimes contradictory.

4

This is to a great ¥xtent, due to sampling error which can be quite

‘ 1

s it b Y
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high dependiné,on the number of replications and the way the simulation
process is carried out. In his study he has used "AntiLhetic variates”
in si@ylatiné the finite sample properties of econometric estimators.™

In previous studies, the probabilistic Monte-Carlo method used was
a straight forward simulation of the problem which he calls "Direct
Simiilation" meaning that no refinement is exercised in the choice and
use of the random numbers. Suppose now &' 1is a Hontz;?arlo estimator

of an unknown parameter 8 .' The basic idea of the two anti-thetic

a

\
method is to seek another statistic 6" which is negatively correlated

with §' and whose expectation is the same as the expectation of §'.

If in direct simulation we use a set of random numbers ey uniformly

i i
get an antithetic estimalbr 6" which is likely to be negatively cor-

*
distributed between zero and one, we can now use the set e, = l-e to

related with §'.

The information obtained i;om the two mutually antifhetic estimate
is then combined to give a better knowledge of the parameters of the
digtributions, e.g.; 1f the correlation coefficients between the biases
of the two estiamtes is less than zero the average of the two biases
gives a better estimate of the blas than does either of them.

The following model is used in this study.

YA=XB+ U l
where Y 1is the TXx2 matrix of endogenous variable, X 1is a Tx7
matrix of exogenous variable x7 being identically equal to unity in
all observations. A and B are 2xX2 and 7x2 matrices of coef-
fecients and U 1is the TXx2 matrix of’disturbances.

The comparisons are based on estimates of the bias, variance mean

R
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L

- square error and mean absolute error obtained by the method of 2SLS.

B e————

From his Table I it can be easily seen that the two antithetic method
doeé much better than direct simulation in estimatingibias. The
standard error of the biases are reduced by a factor ;hich varies
between 4 and 8. 1In estimating the variance and the mean aﬁsolute error
the two anthetic method does not show much superiority over the direct
met?od of simulation. . : -
B. Raj (1980) ;onsidered four altermative f;rms of two parameter
étror distributions:
(a) normal,
(b) uniform,
‘(c) lognormal,
(d) Laplage or double exponential
and reported on a Monte-Carlo study of the small sample properties of
least squares, two stage least squares, three stage least squares, full
Informa;(bh\yaximum Likelihood estimators. The hypothetical Model used

for the Monte Carlo simulations has two behavioral equations and an

identity as given below.

-y, + + - ,
I TR TR R TR R T ()
-y + + + + -
B2 Y1~ Yy t By ¥, 723 Xt Yy X3ty X, Yy, = 0 (b) (2.32)
Yy =¥y ~¥ b xo b xo tx =0 (c) .
1 72 3 3 5 6
G

where ‘y's‘ are endogenous variaﬁles, x's are exogenous variables and
u's are random disturbances. . The model is obtained by adding an iden-
tity an endogenous variable and two exogenous'variables to the ove;
identified model considered by Summers (1965). It is clear tha£~the

presence of identity means that the covariance matrix of model distur-

‘e
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bances is singular. Now if we substitute the identiyt in (b), we obtain

+ + '
Bra Bzzy Ly 22, 2 Paa o, Y2
+
1+8,71 27 T+6, ™ 1+ 68, "3 1+ 8, M
B By
32 32 1
+ x + x, + u, =0 .(d)  (2.33)
¥ ¥ ¥
T+6, "5 T+8, 6 1+B8,"2

Nd& the mgdel composed of (a) + (d) have positive definite co-
variance matrices of structural and reduced form disturbances so the
analytical results hold in the context of (a).

The Monte-Carlo éxperiments employed two sets of generated samples
of 20 observations each. The observations on six exogenous variables

" used in the simulations were independent random drawings from the uni-
form distribution in the range -17.321 to.17.321. The set of 20
observations on the six exogenous variables was kept fixed in repeatéA
samples. The reduced form disturbances were generated in the following
way;

(a) A set of 1000 samples of size 20 of independently distributeq
uniform random numbers between O and 1 was generated.

(b) The set of independently distributed uniform ranaom‘numbers
was transformed into a set of independently distributed normal or non-
normal variates with zero mean and unit variance by the following trans-
formations.

1. Normal variate: The set of uniform random numbers between zero

and one was transformed into the set of standard normal variate by

l

-t

- SR
(-21log wl) cos 2T v,

[¥)

€1

e, = (-2 long)i cos 21 w

1

-
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where w's aré uniform random drawings between zero and one and e's

A}

are independentA%Féndard normal variates.

2. Uniform variates:

Q

i

where w's uniform random numbers between zero and one and -e's are

e

A\
independent standard uniform variates.

3. Lognormal variates:

T m

, 12 ’ A
= + - s
e, = exp futo( % vy 6)} (2.35)
o §=1 . .
. o

where w's are uniform random numbers between zero and one and e's
; 2

are lqoghormal variates with mean exp(u + j%—)= 1 and variance

(exp 02 -1)=1.

' 4, Laplace or double exponential variates: ‘ v

e, = - lnwy for all i (2.36)

where w's are uniform random numbers and e's after a random sign
has been attached are standard double exponential variates.

- {c) The set of independently and identically distributed variates
b ' )
with zero mean and unit variance was transformed into a set of reduced

form disturbances, V1 with zero mean.and moment matrix Ql or 92

via Vi = EPi where Pi is a G X G lower triangular matrix such

that 'PiPi = Qi and E is a T X G matrix containing independently
distributed normal or non-normal varia;gs.

Theuoutput of 1000 replications of size 20 consisSts of two sets of
sampling dis€ributions:
(a) The estimates of- eight structural parameters Co.
(b) The predications’of ‘the mean "future' value of each endogenous

¢ 7 © .
U I3
¢ at, a

e, = a+t (b - a)wi for all i ST e
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variable.

The median was computed for Qampling distributions of each struc-*

tural coefficient and of the predicted value of the mean of each endo-
]

y

genqus variable. This measuré of location was used for claéulating the
percen%age median bias, the difference between the calculated median ’
and the true value of structural coefficient forecast expressed as a
percentage ‘of the true absolute value of structural coefficient/fore-
cast. The dispersion of each sampling dist;ibution aro;nd its median
was calculated and expressed as a percentage of the true'value of the
structural coe%ficient/forecast. Tkis measure was termeq Fhe percen—'
tage quartile deviation (PQD). Finally, an adhoc measure&yhiéh is the
sum of PQD and the absolute value of PMBIAS was calculated{ This
meashre was termed the percentage quartile deviation ;edian bias PQDME.
Similarl\the mean of the sampling distribution of each structural
coefficient and of the forecast value of each endogenous variable.
This measure of location was used to obtain the perceﬁtage mean bigs
(PBIAS). The dispersion of each sampling distribution around the mean
was also obtained ana was expressed as a percent;ge of the square of
the true value of the structural coefficient/foreeast. This measure was
termed as the percentage variance (PVAR). Fina{g:athe dispersion of
each sampiing.distrﬂ‘rtion around the trbe value of the parameter/fore-
cast was qbtained and ekpressea as a percentage of the square of the
true value of the structural coefficient/forecast. This was termed as
the percentage mean squared errorl(PMSE). Q\\& ;

Conclusions:

Estimators of structural coefficient:

-\

— v
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", (1) The LS estimator is more biased than the 2SLS.
. " (2) The LS and 2SLS estimators of all positive structural co-

éfficients are negatively biaed for all four error distributions.

\

(3) The FIML estimator is the ledst biased while LS is the most
biased of the four error distribgtions, etc.

Predictors of the means of endogenous variables:
N o
(1) FIML is the least biased while LS is the most biasedrbre-

3

dictor of E(yl) with respect to the criteria used for a}i four

“error distributions.
o :

* (2) The choice of alternative predictors of E(yz) for alter-

’
)

native measures of bias and efficiency is nqt clear in the first
d
experiment. The FIML predictor of E(yz) is least biased and most k
y efficient for all four error distributionms.'

(3) The ﬁoor performance'qf 3SLS/iB surprising.
° ’ *
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, CHAPTER III
THE EXPERIMENT  “
7 L4 '
L Y .
, .
. MODEL 'AND DATA o ° ‘ .

[

The economic model used for the Monte Carlo simulations has three
bghavioral equatic;nsn and three identities known as thé Klei¥ model.
0 ' !

For the descript‘ion of this model; we shall follow Theil '(197’1) text:
v ’ ‘ .
“ The first equation of the model is the consumption funct:ior{,
. ‘ - »”
\ -~

which-is writt'}n as: -

= + + + +W') + .
. Ca BO Blpa BZPa-l 83(wa wcx) Ea , (3.1)

- 2 . -
- where Ca is the aggregate .consumption in year (a) , Pa the total
v A

profit's of that year, Wu+W& the total wage bill. So, this equatiog/ﬁ
. .

_d‘es.cri'bes the aggregate consumption linearly in terms of the total wage

bill (wage bill paid by private ;m’iustry plus’ government wage bill), of

= »

.the same year (wufwo'l) , of the current profits Pa and qf profits
lagged one year Pa—l , apart from a rdndom disturbance €a * All
»

N variables of the model are measured in million dollars of 1970.

. .
The second equation of the model is: .
\ 5

' = R'4+ R'P +R! + ) + v,' — . ‘ ‘
Ioc B0 Blpa BZPOt-I BBKa—l a BRCR

where I;x ‘is the net investmen K& is the stock of

capital goods at the end of the is the stock of capital
. -] '

-

"

a-—
A : , o (3
at the beginning of the:year. '
(S .
%  Finally, the third equation exp es the demand for labor:
t R - - i 'y Q1 Vil 1 . +e' . -
. Mo T Bl B X TBy Xy KE (@ -1970) ey 63
where’ Xa is the total produetior; of private industry' in year® (o), .
. v ‘ '
N 9 <! )

atre e mpra

N
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xdil with one-year Iag'and (a) should be regarded as the time
Y
measured in the calendar years.

There are also three definitional equations which are not subjected

'

-.to the random error and have no unknown parameters:
* @

X =¢c +1 +G6 +R . . (3.4)
a a o a a
/Pa - xa - wa - Ta . *(3.5)
= + : .
K, = K, ¥I . (3.6).

where Ga s the government non—;age‘expenditure and Ta the business
taxes in year (a) . We modified tge (3.4) identity of Klein's Model I,
adding the va;iable& Ra' which is caused to somé statistical differences
apd to the chahge of reserves.' This modification was consfaered ab-
solutely necessary because the left and the r%ght sides of (3.4) must
balénce. In order to succeed it, according toithe.Greek Tables which
_concern "the gross national éxpenditure and the gross product' we had

to add the variable %u' ) 4

. r
There are now six-equations systems in tg: six endogenous vari-

.ables: €C , P , W, I, K, X and the eight predetermined vari-
a a a a a

. e '
gbles (lagged: xa-l , Pa—l . Ka—l and exogenous: Q, Wa , Ga , TOL ,

o

Ra ).

The exogenous variables are by assumption independent of the oper-

.

ation of the system; also the lagged endogenous variables are at least
independent of the current operation of the system if* the vectors

e , e', e&', are stochastically independent.

Aiming to ex%mine the small sample properties of the i—class esti-

’ P

mators we shall use the consumption function of Kléin'ﬁ Model I and data

' . ’ [
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4

from the Greek economy.

-,

[ 1 ? .

[

» The consumpfiop function can thys be written as:

= + N ’ (3.
N EIT“ L (BT
where: Ty )
; ! ”
€ - Py WV 1 p
+w! :
€2 ‘ P Wptw, 1oy
“ e : ‘
& , + N
, ‘21 Po1 Yar¥a1 ! Py
'Bl €1 ‘
o . . j
By €2 . _
T o : - : »
5, E : L
qn n‘l‘ V‘
Bo €1 .

and the subscript . 21 refers to the last of the

'

vatiloﬁs of the period 1959 to 1979.

LN
|

The generation of the disturbances

v

\las accomplished as follows:
4

21 annual 6Yer—

‘

A set of 100 samples of size 21 of independently disti’ibu%ed '

random numbers between zerp and one was generated. This set of -inde-
P 8 .

n

- - , v
pendently distributed uu{‘fé,rm random numbers was transformed into 3 set

of indepepdently distributed nogﬁl or non-normal variates (see Raj,

\
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(19@0)): "Specifically, the set of the uniform random numbers between <,
4 .
. »
zero and one was transformed into:

(a) the met of standard normal variates,
(b) the set of uniform variates,
(c) the set of lognormal variates with mean unit and

variance unit.,

In the following we present the conclusions of this study.

St




CONCLUSIONS /‘
The experiment was conducted by the use of IBM 43 - 41 DOS~VSE and

/

IBM 3031 VM/SP computer. Various aspects of‘the FROTRAN §V and experi-
mental programs (IMSL, TSP ve;sion 71, TROLL version lO)/&ere used,
which are relevant to this study and they a?e presented fn the Appendix
B. While the IBM 43 - 41 DOS-VSE and IBM 6031 VM/SP aré computers of
large capacity and high speed, Poth the size of the éo7$uter and timg
consideration restricted the experiments which were copdgcted. These

i
!

restrictions limited the study to the performances Qf the estimators
with a small number of observations. Both time and séabe considératighs
limitted the number of replications in each experimenz to a hundred. The
summary routines were written and tested in fORTRAN IV. Also, the
necessary modifications were made in the form of thé data and the re-~
sults in order to be applicable for the TSP and TROLL packages or com-
puter programs. Further OLS and 2SLS structural estimates were computed

by TSP and TROLL, while UBK only by TROLL.

The acc cy e data translation into the tape was tested many

times. But put-output operations are more subject to mechanical

failure than the computations.

In the generation\of the disturbances we used 0 = 1500 instéad

of 0 = 2520.35, which|\ we ﬁake from the considered formula. We have

Lo

0 = 2520.35, upper limit is lower than

]
k=" and so the ZSLS angd UBK estimators give negative estimates for

.

done it because, if we us
S

the structural coefficients. Moreover, for 0.= 1500 the UBK is the
estimator which corresponds to the upper limit (k = 1.047).

Investigation of the estimates 6f the experiment led to. a number

[onasipppuping i
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of findings. /

1. Given the Tables C.1, C.2, C.3, the results are suﬁmarized as
follows: |

{(a) The biases of each of the methodé, for theldifferent distur-~
bance/distributions, behave quite similarly. So, the choice of the
least or the most biased gstimator is not clear. The OLS estimator is
the better in the sense that its bias is smaller than the bias which
corresponds to the others, when the disturbances follow a particular
form of the three distributions, while UBK estimator is the worst. The
poor performance of UBK on the criterion of bias is surprising.

(bs The differences of the RMSE of SD's of each of the methods,
for the alternative forms of disturbance distribution, are not great.
The estimators have the lower RMSE or SD when the disturbances follow
the lognormal diétribution and generally, they have ghe highest RMSE or
SD, when the disturbances follow the normal distribution. Also, the
dispersions of the OLS estimator about the "means'" are fespectively,
similar to their dispersions about the "true value", as might havé been
expected from the small baises that were found. The OLS estimator is ‘
more efficient in the sense that their RMSE's and SD's are lower than »
those corresponding‘to 2SLS and UBK estimators, when the disturbances
follow a particular form of the three distributions, while‘UBK is the
worst.

2. The values of ‘Cov321| and IEE;SZII are given in the
Table C.22 (Appendix C). Using the Table C.22 we may rank‘the three ¢

estimators with respect to chﬁmeasure in (IT. 19). The results are

summarized in the Tables C.23 to C.30. In the Tables C.29 and C.30
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i

are including the ratios "e" of the ''generalized variances'", respec-

tively, about the mean and "true" parameter vector. Also, these results

. agree with the other results, which we have obtained for the dispersions,

in Section 1 of the conclusions. We note that in Tables C.29 and C.30 <iﬂ~‘
a (+) or (1) means that the denominator estimator is "efficient"
relative to the nominator estimator.

3. 1In the Tables C.4 to C.21 we ha;e tabulated some summary
statistics for the endogenous variable, using the three estimapors and
the three forms of the disturbance distributions. Several points stand
out in the Tables{

(a) The biases of the predictions of the endogenous variable are
generally large. The OLS has the smallest biés, from the other esti-
mato;s and the UBK is the most biased, for all the three disturbance £
distributions. The estimators are least biased, wheq the disturbances
follow the uniform distribution and are most biased for the normal i
disturbances, except the OLS which is most biased for lognormal
disturbances. The biased differences of each of the relative methods,
for the different disturbance distributions, are not very great. )

(b) The dispersions of the predicted "values" about the '"true one"
are large. Also, the diffe;ences in the relative performance of each
estimator, when the disturbances follow the corresponding forms of the
distributiohs are rather small. The OLS estimator has the smallest
RMSE and UBK has the highest RMSE from the other éstimators, for all the
three disturbance distributions. On the other hand, the OLS estimator

has the smallest RMSE, from the other estimators, using the uniform

disturbance distribution and the highest RMSE using the lognormal

s
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disturbance distribution. Moreover the 2SLS estimator has the smallest

RMSE, from the otheQr estimators, when the disturbances follow the uni~
form distribution and the highest RMSE when the disturbances ‘fo‘;.lov;v the
normal distribution|, 'Also, the UBK estimator has the smallest RMSE.D
from the other estin;ators, for lognormal disturbances and the highest

RMSE for normal diatlprbancea.
(c) " The disperéions of the predicted "values" about their means,
. ¢ . .
generally, are not so\l great as the dispersions about the "true value".
Especially, the OLS ee\i'timtor has the lowest SD and UBK estimator ahas
the higheat’ SD, for all the three disturbance distributions. Finally,

the three estimators have the lowest SD using the lognormal disturbance

distribution and the highest SD, when the disturbances follow the normal

distribution.
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TABLE

.éhaJL DATA FROM 1959 TQ {979

BEEREGN lﬂ:‘.--.-.---‘ﬁ“-ﬂ

A1

]:-u-:-:::u--nsi-|n:=x-qq=--31

) )
1 1959 | 354%60. 1 373151, 1 394745, A 418274,
I 1963 | 443889. ! 470700. | 5041341, | Sa2194a. | - *
1 1967 | 9580836, | 417706. | 464105. I 720329. | .
I 1971 | 774132, | ©36250. | 909027. | 986742, |
] 1975 1  1.037353E+06 | 1.086BIBE+046 |  1.13986BE+06 1197448,
I 1979 | 1.258768E+06 | | " J
'..S:t‘_‘ﬂ ' ENREEROUEEREDMEIIS X ‘ n-:g-un-a:-:c:u: ‘ 22732 21 + 3 7 1 7 ¥ 7} l ‘.-I.B..-.‘d
I TABLE A.2 ’
«a -
ANNUAL DATA FROM 1959 TO 1979
' BENRERI ' 8"8!-8':!:::8:‘-“ ' ---::z-nl‘::n:-z:r ' (- 3§ 8223 3 3-F 3 3-F 4 34 ' RMERNREWRE® S
1 1959 [ 18194, I 21594, | 23529. .. 2%613. .
| 1963 | 26814, t 33a34. | 38063. |  38662. ! :
I 1967 |  348%0. 1 48344, | 56224, { 53803. |
. 191 | &2118, 1 T2777. I 77715.. i 50614, |
I 1975 | 49465 | 53050.- | -.S7600. I 61300..
1 1979 | 68070. ] l ' |
.----:xn|i=u=-=-=-:=z==--| zm -|ﬁu--==-=--=i==:n|:u--=-zn8=ug.
f .
, TABLE A.}
c %
a
ANNUAL DATA FROM 1959 TO 1979
e '---asnu|--==-------n-n--|g--=uuzun=-.--n-|-::-n.n--n:nn--n|¢u------x-n-|
{ 4959 | 104452, { 107808. 1 115147, ‘I 120050. \
| 1963 | 126115, ) 137192, I {47707, o | 157607, i -
| 1967 | 167528. I 179025, | 190089. | 2058884
I 1971 | 217242, 1 232324. 1 250057, | 251450. -
I W15 1 245242. | 279343. | 292%00. | -310250. (
1 1979 | 319700. | 1 | '
1

|-==-=-u|==:-a=:=-===-u-=|u==-ur=:n:n-nnn=|n:.:annnuzaszz:n'nnn-u:nu-:a:.

-:n:ua:]gzcs-u--n-n=z===‘z-s:-n:::n:a::z:|==g£-=dh=n======|::n:::.:-:a-J

»

(}Q

TABLE A, 2

ANNUAL DATA FROM 1959.T0 197?
;

1959 |
1963 |

spware | nans

7984.
8808.

10291,

9830.
20000.
17422

8357.
9420.
e875.
10834.
20122,

::Eunrs-::' EERCEArESTRRET S ' BHTERWMEKCIIIS

N

'

.| Bas2, {

10293.
10013.
13754,
19636,

n'.

o~

°

'“ﬁzv““j;‘

9147.
10444,
10085.
19334.
t17i07.

====l--s=:==a::st
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_ TABLE A ,5 ‘
We o = :
ANNUAL DATA FROM 1959 TO 1979

o
mEEmge l REEFCIEEREERES SR ' MEENIACIEEREEE X "...l?.eﬂﬂ‘.lﬂﬂ.ﬁ ' -ﬂ‘.-‘--‘-ﬂq b

!

I 1959 | 41335, - | {2145, 1. 12952, . _ -

| 1963 {  14977. | 16585, | 18043, 7 | \eses: ;
| 1967 | 22370. | 24224, | 25424 | 27457,

I 1974 § 29757, I 30997, | 30947.° | 30732, !
| 1975 | 36075. | 39831 | - 43144, | - a?893. |
1 1979 1 5138, P ‘ ! ¢ T

TABLE A.6

! 'ﬁa » .
ANNUAL 'DATA FROM 1959 TO 1979 ~. ' t
I SERR=RG l ======uu====§=== ' -2 F R 1 214 o i ' B==ﬂ$===’=='“'== ' BE!’BH’S"“W
. I 1959 1 ~5%02. i -5811. I 429. i -3473. |
- I 1963 | 3075. | _2970. ~ 1 7478. ] 1115, |
| 1967 | 3372. A 990. LU As24l |, 9632.
I 1971 | 84453, | 8582, 1 16817, ! 10507. o
{ 1975-1 11978, I 19577, 1 7si0. { " 7123, !
. L-ter9 1 6020, ] | 1 !
~ |essasss] { ===‘=:-:=§a=‘=====|-;—.:-:n-e::-nnsu- ] suc=snsnsensd
- S TABLE A.7
: ‘ K, \
' ANNUAL DATA FROM 1939 TO, 1979 ot =L s !
o < .
| muEsucc | zesssEIsEsETEREE [ memnzsimdceEERET I nf::n::::nu.s-:-l-lzsun:-f--1
I 1959 { 313151, | 394745, . . 1o 418274, 1 443087,
| 19643 | 470700. { 504131. I 542194, | 5808%6.
I 1967 | 613706, 8 664017, 1 7720329 | 74132, !
IteT | 834250. | 909027, | 9846742, i 1037353.!
| 1975 | 1.0B6848E+06 | 1.139868E+06 | 1.19744BE+06 |. 1238748 )
| 1979 | 1.326838Et06 | - I . 1
|knn==== . tz:::nzn:s::::':::: |======u===gn==== | BEEENEOErEEEL SR ( ===-====-s-J
. “u . ’ ]
. TABLE A .8 . - .
Wa :
ANNUAL DATA FIEOH 195¢ 10 {979 )
] hnuzt:=*‘n====n=n==bnxn=u | SZVRSEITRLIDSERS ' AEIcsascRcEasE=E | HERSCESRERED
I 1939 | 30684. | 32485. |  35651. (', 36954, |
<1 1943 |  37909. I A3448. ) 48445. | 52942, !
1 1967 56784 . I 61984, I 67723, ! 712610. !
f 197 794845, | 67400, | eté70. | 69858. |
S B B | 94330 J  104460. | 116322. { 127869. 1
| 19719 {1 {31287. L A ™ { i
. |g=..:=u:-.-= ‘1.- rusgsnensroragerc | ceasEsernzIRITRE l =n===‘=====-====i [} =8B3-1=:=.B=d.

- . -




) \ » L b/ . . , . \ .
— x T 4 ‘
. b 4 . o Py ” . ) s . ,
- ) . i..’ { . .
' / \M‘ AN
* : / v . ' . : {
4 / ¢ ,' 4 : ""'. - A . e . .
S : ~ . Y- <
\ . R ) . \\ _:g - ‘ . + ’
N : ’
L Y & ' \ ) ‘ e
A M s . : ‘ -
« . . .ot .
, e - \ ) s vy ,
. i s - :° TABLE A.% . N L
1 . : N - 4
\‘ f\ . Pa / ’ v , ! v lh)v ’ \ . ,( / v
1 \ - . N
. ANNUAL DATA FRDM 1959 TOG 1979 ’ f . :
: y v °
. ' K] N . . M . .
] ln-unnn=1n=======,n=u====ul:-:nnu:::gz:::::|=====-=zn==n=-:=|-.s-:sx:tw' :
: I 1939 | 80595. i 8257S5. | 93350, . y 93848.
. I 1943 | 104073. Io111322, f 129941, i 12¢275.1
] 967 | 131102, | 136299, - ') 149642, l 163236,
-~ I 197% | 177302. | 192845, | 218129, 206 67‘ ;
4 (- 1975 | 206684. I 2 7309 - : | 215978. \J\I 2229?\
| 1979 | 230763. [ K. ’ !
L =x=|=q..|=un:neu====--n.=|--=-=lnu========|==:g---:==:-n--=l-iz-n-xunﬂ
' ", - ' s v . i
Ty . TABLE_A,10 S
2 © Ty ‘ / > . , ’ ¢
. . ANNUAL DATA FROM 1959 TO 1’61‘7 et :
, PR s
| mmmucan | BuESSREgIIRCAREE | ==n=u‘=—r=======| EEEnRRecsERReTEN |[cxTREEI R
. 1 1959 |- 138868V | 16888, | .18%56. . | 1883e. .
A 1963 | . 22827. ° i 223. | "3ai1s. { 28692. |
. 1 1967 | 30138, | mo6. | 43585, | 43562.
| 1974 {  40908. . 1 42292. L 50544, | S§5277.
p . | 1975 |- 45648.% ., % |  a1123 [© 44946, i 45079. ! s
- {1 1979 | a9t82. | | | I
V::::::l'n:u:uz:::-z::n.—.: |‘=======—========|F::-:::u::::n-s:]-::z:-:::d -
' + . TABEE A.11 :
P ! " ” ‘
b a-1 ‘ ‘ K ) L ] ‘ . h
' FER ANNUAL DATA FROM.1959 TO 1979 - .
* |u-- == : i F:é ---‘y---umu--:n:,ua:a]-u-cgunzul -
‘1 4959 | £ 78041. | 805%5. - I 82375. 4 . ¥3350. .
i 1963 | 93848, | 104073. " 111322, . { ‘120961, )
' A 1967 | 126275, { 131102, p- | 136299, 1 149642,
1 1971 163236, 1177302, Tl 192845, 1 =21@129. '
I 1975 | 206967. ) 206684 S 217309, s | 215973;
] 1979 | 222832; I/ S { ]
A |=====:=‘===:=:=u====§&==l ========r.=====|_===a===r;======|=z=z===—= \‘"
3 ' : 4 .
L ‘ < . \ o - ’ ’ ) :
&:" " S ' " TABLE A"12 h “ ‘ ' ‘
¥
’ . o ! , R v e ’ N o
v . - > X > .
. ANNUAL DATA FROM 1959 TO 4979 , . ' .
” - [ 2 B |===é==—l_u=========a==q;=|======’===== ====|=n====u=¢=su§:a=f===z==g=e .
, I 198971 1959. 4 1960. Yoo a9, I 962, .
N s 1 1963 | 1963. | 1564 14 ,1965. | 1966.
v '. 1967 | | 1947. { 1948, 1 1969. | Joro. i .
. L S RS X SR R X e t 1973. (! 1974, '
. . . 11975 4 1975. 1 1976. 1 1971, { t978. !
‘. L8 | 1979 | ©  1979. 4 A | r . |
i jre=pnsa|crascrasnzadsans | X SETES ":':-Hf:l::‘==':::::=u==::g=sua po=cxusded
: ' * . - [ ] ’ : ' 3
- . . - - .
' ' . ‘ . ° ‘{ R ( . .
. NN ( (ol Y., . ‘
Ty 3 .o ' ’
,‘ - N ’JV . . f,,:‘ . W »— .
- - 1 . . \
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TABLE A.13 ‘ .
~Xq - ‘
'  ANNUAL wm\ FROH 1959 T0 1979 ‘ -
et T K
{amaceas [ ‘L:---s:z-«:z-:tn | mEnirdescssusERS | sntnununnu:xn:.u ] -:.-:z:.ﬁ-l
9637.
1959 | 125425. | ,431946. . 1 147557, 1 14
: 1963 | 168809. 1 183p13. | 203341, I 207909. )
1 1967 | 218041. 1 2 01. | 260950. I 279408.
LA 297455, 1» *B24537. | 360340. | 332102. |
101975 1 344482. | ’;‘aﬂvz. ' | 377246, | 395780,
L1979 1 A11242. : . : ) : "
' ' . . S!’I.ﬂn!:l*.':"! emxxxsd
‘nu::nx:':aT-sn:u-:-:zn-:l:-nnn:: ; =nae| )
v ’ r . *
. ) — .
PR ) ’ , .

TABLE A,1i .

hNNUAL DATA FROM 1959 TO, 1979,

{

ln:nu:::l=:u==..======-_=x:==|====:====={=====B':n:::s:a“:s::r:]‘:B:sb:tiz::,
| 1959 1. 123230. |« 125125. I 131948, 1 147557, |
1 1963 | ~149627. | 166809, I 1830034 | 203544, | .
I 1967 | 207%0%. ] 218044, } 233289, } .260950. 1
1 (971§ 279408, | 297655.° d/ | 324337. { 360340, !
1 1975 | 332102 | 346682, I*"i$63092. | 327246..1
1 1979 | 395780. | ' A1, |- I
N |- | !-=E=:==u==|=¢= uc:u| -:::-n:s:::nt:nz:-ﬂni’-

v

. . \ q ’ )
i ) , ~ \

|
£
- . . TABLE A.15 v .
Y ot - |
r Qa: w(! ' Y . } ‘ ,
AKNUAL DATA FROM 1959 To 1979 ¢ : SN
~ . - )
. ' n!‘:l:ﬂ== ..s‘:ﬂ::l sonenrpns nERs - 3-%-$-3 -3 : ‘1
T T T
) . | 40053, | 66508, 72609 .
i EE g am R L E
. . 1 122617, :
1 1975 | 130425, 1 143494, | 159486, : }33?52
T 1979 | 182645, ( | ( !
:' ::u:n:n::.-' ===:=z====:{§=r=== | EazaES =====s===¢| EEGXREEIRSS l ::xu:'éx::::r.—.‘.
] ) A
" . ‘ “ "
P . , ’ - '
o - c ¥ .
. N .
- ? * ’ "
- - “ ‘ ‘ :
. - - -
? ’ r‘\‘ ) ~
' ] * ‘ s'
R g -
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o o R : TABLE A.16 - -
s / ~ '
&
oo - " 7 . )
. ' ANNUAL DATA FROM 1959 TO 1979 4’
T, g I . ‘; ‘ _
. ) : B = A-1970 ‘ ,
. q R} .
g f |ornnrnnjme wunyg {wn --x:.:s\czs‘-.-.h------nu---,-----nn---.
4 1199l -4, 1 -to. 1 -9. | -8. ,
Ve ‘ 1 1963 | -7, 1 -6. I i Ao .
1 1967 4 -3, t -2. ', -1. I 0.,y
* 1 1974\ ‘. ] 2. | 3. < 4.
X ., | 19151 s. | 6. i 7. i e.
. | 1979 ) ?. i | |
] 3 |mem =--‘:=n| sy |'ws EEEESEE 'r.:--:-.u&
. ' ) . . )
. 4 \ : . TABLE - A.17
L e : RN .
ANNUAL DATA FROM 1959 TO 4979 -
S T C = 20120.240.226%PA40.3275PA1 +0.962KWA | ;
N " : . Y ‘ . v
o R © ) j=ezozncE |ocassagex (LT EEEEEER | ERESERERERARESCER janszncann
\ S - .1 1939 1 404276, I© 108071. | 114975, I 120567. , .
oL oo I 1963 | (27129, I 137082, | 147040, | is8062. | )
! ° " @ 1 1987 | 1467184, ) 176726. | 188314, 7 I 20240%. }
NN ) | 1971 1 218621, | 237503. i 2s043s. ./ | 2%4259. ! . ]
S | 51973 1 _. 2599748, | 274856. | 293447. | 310488, ) !
o7 - | 1979 1 320843, | ! - 1 ‘ .
- . 1 =====nn|-=“n---n5n--==- [ELLL LI LRI DR LD DL T DL T Dl | axzennesenl
\ \“J . X ' . A .
.‘d - ~ ~
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' L)
This 'Appendix contains the programs and subrouttne.s utilized 'in
.

il

X the Monte Catlo experiment and in the comparisons of the specific

\

estimates.
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/ . /’ \
In the followiné programs and subroutines ‘we Lo o
have put: ' -
' . ‘ D
© KAL for K, _, ¢ IA  for. I : ' |
'911 or Cl " ch GA " 'Gu ‘
WAl " Na RA Ru ~
KA " KQ HAZ " un . /
P‘ ;l P i TA " T
a a ‘ “
PAl " ‘Rea A " a ,
- N 1
XA _ "X, XAl » X
. \d . * a"l . - -
WA "W N B " a-1970 | |
€ orcc- v ¢ pL A (
[1] n " . ' [ ’ .
th Cop - B b(bT) ‘
cov. Cov(b,) ~ cavo Cov(6,) . -?
VAR . " var (&) csnm Cu SD(6) \ )
‘ MSEL " MSE_(6,) RMSEL » RMSE (6)
covl " Cov(&j) ocovor 'Cov(éj)
" VARC y\ Var(Cj) spc2 sn(cj)’
MSE2 " MSE (é .) RMSEZ2 " RMSE é
N j 2 ( 1)
o BY | b(C,) ’ -
' ‘Where: T=21...,~ ‘
0‘ * " h ) "
L - - - A‘ .
L] .’
¢ . . Y
" /.r\ ) ' ‘ oo ‘ : .
o i s s g ‘
\ -~ MW""—""“. T et e i
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;"' \ s R
IMSL. : THE Gén%'rmn OF THE DISTURBANCES
PROGRAM GEN 74835 OPT =1 .

PROGRAM GEN (INPUT, OUTPUT, TAPE 6 = OUTPUT)

REAL RNML (21), UNIF (21)) GLOG (21)
DOUBLE PRECISION DSEED & -

NR = 21 ’ >

DSEED = 123457.D0

XM = -0.3475

) o
o

'S = 0.693

DO 10 I = 1,100 ‘ :
CALL GGNML (DSEED, NR, RNML)
CALL, GGUBS (DSEED, NR, UNIF)

CALL GGNLG (DSEED, NR, XM, S, GLOG)
WRITE (6,50)

DO 15 K = 1,21. ., e -
WRITE (6,100) RNML (K), UNIF (K), GLOG (K)
CONTINUE

DSEED = DSEED + 555.DO
CONTINUE :
'FORMAT ("1", 9X, "NORMAL (0,1)", 33X,

"UNIFORM (0,1)", 33X, "LOGNOW
*<0,3475,0.693).", / / 1X)

L

v

. FORMAT (/ 4X,F16. 12,33X,F16. 12,33X,F16.12) T

STOP 4 A . .
END '

.

N

h

/

-~
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TROLL: TRANSFORMATION OF THE DISTURBANCES

.. MACEDIT TRANSFY; : - :
: ' (EDIT: - i
T
I TOF:
. &SET AIFARG({5)=1 &END
&START: ’
o : &SETC &9=&IFARG(1S) &EN
7 ’ ~ " DO F149=1500.00 * E149;
' QUIT ‘ A :
¢ &IF AIFARG(15) LT 100 !
&SET &IFARG(15)=8IFARG(15)+1 &END
&GOTO- START N
SIFEND
AEXIT;
|EOF:

] L N MACEDIT TRANSF2;
’ L o JEDIT: °

P T - ' \

/l ! |TOF: \ . ’, r » ' »

S _ > . &SET AIFARG(15)=1 &KEND - _ :

I PR .\ &START: ot '

' ASETC &9-&IFARG(15)[&END ¢

| . DO F249=CE249-ONEHALF) % 1500.004SQRT(12) ; & §
QUIT

| , &IF &IFARG(15) LT-100 _

: | &SET &IFARG(15)=8IFARG(i5)+1 -&END

A © AGOTD START
’ ‘ * &IFEND .
AEXIT; , ,
'lEDF: ' ‘ ~ s
. o
¥ ¥
- A
w, !
Ca '
] '\
’ ) '3
L : ’
. ,
o . ) R
- . 5 * ‘.
"“ - *
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. v

MACEDIT TRANSF3;

|EDIT- -

Tx

{TOF ;

__ASET AIFARG(15)=1 &END

ASTART: -

ASETC &9=&IFARG(§5) &END

QUIT

DO F3A9=(E3A9- oue»«lsoo 00,

&IF &IFARG(15) AT 100
&SET SQIFARG(I5)=8IFARG(§5)+§ &END i
&GOTO START '

&IFEND

+

/- SEXIT;

IEOF : ¢

-

-H

i st O
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TSP : GENERATION OF C

~ 85 ~ ' s .
T

I-Emmhmormsmm

COEFFICIENTS WITH OLS AND 2SLS ESTIMATORS

s

29 PRINT ID PA PA1 WA C16

1 LOAD®
2 SMPL 1 210
3 - GENR [C=20120.266+0.227°PA¢0.327°PAI+0.963*WAW ,
b GENR LM =CCeEm W , ~,
5 GEMR [12  =CCef12 .
6 GENR €13 =CCoE13 ™ ¢ .
7 JGENR O =CCoEth ™ .
8 GENR C15  =CCot15  ® L
9 * gt =cCorth . @
10 GENR C17  =CCof1] @
1 GENR C18  =CCof8 .7
120 GIM 1Y =Cp19 _ ‘ ,
13 GENR C110 =CCoE110 .
W PLOTPASPAMIQWASC11 (11 =*
15 PLOTPASPATQWASCIZ +(12 =° ,,
16 PLOT-PAS PATQWASCI3 +E13 =n
17 PLOTPA* PAT QWA S CTh (1 ="
18 pLorehe Ph1 Q¥R S €15 o E15 =
19 PLOTPA* PAT QWA S CI6 +E16 ="
20 PLOTPASPMQWASCI? +E17 ="
21 _PLOTPA*PATQWASCIE +E18 =7
227 . PLOTPA*PM QWA S C9 + 19 =0
23 PLOTPA * PAT QWA S C110 + E110 =" S
24 CPRINT IO PA PAT WA C1  E1 ™
25 PRINT ID PA PAY WA C12  ER2 M ..
26 PRINT ID PA PATWA C13  E13  ®
27 PRINT 10 PA PAT-WA C14. - Eth. .~
£  PRNIDPAPMIWACIS 5
£6 v




30
3
32
33
34
35
36
37
38
39

A

L}

A2 -

3
-4

45

6
W7
48
L1}
50
5
52
53
54

55

56

57

M

PRINT 1D PA PAT WA (17

JRINT 1D PA PAT WA (18

PRINT 1D PA PA1 WA (19
PRINT 1D PA PA1 WA (110

CORREL PA
CORREL PA
CORREL PA
CORREL PA
CORREL PA
CORREL PA
CORREL PA
RREL PA
CORREL PA
CORREL PA
0LsQ €11
0Lsq €12
0LsQ €13
0LSO C1h
0Ls0 €15
aLse €16
0Ls0 €17
0LS0 €18
0150 €19
oLSQ €110
INST €11
INVR C PA1
INST C12
INVR G PA1
INST C13
INVR C PA1
INST C14

INVR C PAT WAY KA1 XAT AGARATAM

PA
PA1
PA1
PA1
PA1
PA1
PA1
PA1
PA1
P

[ T o B e BN« I s D o )

¢
¢
C
c
c

WAL KA1 XA1T A GARATA ™ J

L1
WA
WA
WA
WA
WA
WA
L}
WA
WA
PA
PA
PA
PA
PA
PA
PA
PA
PA
PA
PA

(1.
ti2 "

£17

118

£19
£110

¢t -",

iy =
¢, "
cie
7 "
c18 "
€19 "
¢t "
PAT WA "
PAt VK'"
PAT WA Y
PAl He "
PA1T WA M
PAT WA T

PAT WA 1
PAT WA
PAT WA "
PAT WA "

C PA PA1 WA

WAT KA1 XAT AGARATA®

C PA PAY WA

WAT KAT XAT AGARATA™

PAT1 WA




58
59
60

61

62

63

64

. 65

{
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INST €15 C PA PA1 WA
INVR € PAT WAT KA XAT

- INST €16 C PA PA1 WA

INVR C PAT WAY KAT XA1
INST C17  C PA PA1 WA

s JNVR C PAT WAT KA1 XM

INST €18 € PA PA1 WA
INVR C PAT VAT KA1 XAT
INST €19 C PA PAT WA
INVR € PAT VAT KAT XAT
INST €110 € PA PAY WA

stop »
ENp »

AGARATA™

AGARATAM

AGARATAM '
U

AGRRATA®

A GA RA TA" A

<& TNVR C.PAT WAT KAT XAT A GA RA TA®

¢

r~
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TROLL : GENERATION OF Cl - ESTIMATION OF THE . . :
m .
STRUCTURAL COEPF ICIENTS WITH k- CLASS ESTIMATORS

(k=0, k=1, UBK) | -

}
S
\

v

h - MACEDIT GDOLSEi,- ' , ‘ ' s
IEDIT: |, - | ) ' . : ’
T o v k.' R 4
B . ITOF: e
B ’ T &SET &IFARG(15)=1 &END . ¥
¢ . &START: ' -,
ASETC &9=AIFARG(15). &END : - .
DO C1 =C+E1&9; CoL o
&KCLASS DON; : : :
-USERQ ALL; ‘ . " .
KTYFE OLS; B .
' PERIOD f; NS : )
RO DOEQ &1, .
; ‘ TROLL DELETE DATA Cj, C ‘ . '
QUITJ : ‘ . )
QUIT g s e
&IF &IFARGC(15) LT 100 L e
C o &SET &IFARG(15)=&KIFARG(15)+1 &END
' . - &GOTO START i :
' : &IFEND ‘ g
° &EXIT; _ \
|EOF | . .

MACEDIT GDOLSE2; - - \
|EDIT: o e
Lo ¢ : \ o~
_ | TOF :
o &SET AIFARG(1S)y={ -NEND
KR ASTART: - %
< 4 ASETC 49= &IFARG(iS) AEND T
: , DO C1 =C+E249; ‘ S &
8KCLASS DON; % oL ‘ .
USEQ .ALL; " X " '
KTYFE OLS,;
« ' PERIOD ¢§; -
b :  DOEQ Af%; ‘ §
. . _TROLL DELETE DATA Ci;"
. QUIT; . ’ :
QUIT .
' _— &IF AIFARG(Y5) LT 100
) ASET AIFARG(15)=8IFARG({5)+1 &END
. - ) A&GOTO START
. ; ' LIFEND ’
. &EXIT; ' ‘ ‘
|EOF : ,
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MACEDIT GDOLSE3; S SR
|EDLT: : L : y
T A - o

(\ITOF y - B
ASET &IFARG(15)=1 AEND ‘ ' v N
- &START: :
ASETC &9= ATFARG(15) &END - -
DO Ci. =C+E349; o .
&KCLASS DON; ' ‘ ,
USEQ aLL; ; - Ta0,
KTYFE OLS; g N ,
PERIOD 1§, ‘, ) ot
- DOEQ &1 L.
TROLU DELETE DATA Ci; ’
QUIT; . .
QUIT . ) . ¢ . '
AIF &IFARG(1S) LT 100 : : o
ASET &IFARG(15)=8IFARG(15)+{ AEND .. . ‘
AGOTO START ' . Co ..
A&IFENDT \ ' | C o ’
QEXIT; - ot S
- |EOF ¢ s : .

MACEDIT GDTWOES; =~~~ .
|EDIT: . _ )

* ,

‘{TDF LU e e, .
&SET &IFARG(15)=4 &END o
ASTART: . .
ASETC &9=&IFARG(15) &END -

DO Cf. =C+ET&9;
AKCLASS DON; . ) : g
USEQ ALL; - . -
KTYFE 25LS; -
PERIOD ¢; : , : D
DOEQ &1, - N - ..
TROLL DELETE DATA Ci; ) :
QUIT; : , . v !
QUIT : ‘ o

LIF AIFARG(1S) LT 100 : . .

&SET &IFARG(15)=8IFARG(15)+f &END S T
©. &GOTO START . ’ -
&IFEND . e Y N - : ‘
AEXIT; ;

. B v, ) -
r 1 ’ .
|EOF : ; : S ‘ .
. , i \ - . N
; . .
I
. . . . .
* [ ] . ,
’
.

- N




(1

(

aacenxr ¢DTWOE2; -~ .\

JEDIT: » T
|TOF
ASET "&IFARG(15)=1 &END

&START :

ASET 9=AIFARG(15) &END
DO C1 =C+E249; ‘
SKCLASS DON;
USEQ-ALL;

KTYRE 25LS;

PERIOD 1, ‘

DODEQ &f%; ’

TROLL DELETE DATA C1.
QUIT;

QuUIT

&IF &JFARG(15) LT 100

ASEY AIFARG(IS)=8IFARG(15)+4 &END

&GOTO STARY
SIFEND
SEXIT; :
|EOF : - ¢

MACEDIT GDTWOE3;

IEDIT: .
Tw ' ,

ITOF: .

SSET &IFARG(15)=1 S&END
&START:

" &SETC &9=4IFARG(15) &END

DO Ct1 =C+E3A9; -
AKCLASS DON;

USEQ ALL;

KTYPE 2SLS; .

PERIOD f1;

DOERQ A%,

JROLL DELETE ‘DATA Ci;
QUIT;

QuUIT

&IF &IFARGC1S) LT 100

'S

“w

ASET LIFARG(15)=8IFARG(15)+1 AEND
_ &GOTO START ‘ “
SIFEND ' X o

&EXIT;

. |EQF:

A
N .
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‘ I
L ‘
HACEDIT cocENEfs -
IEDIT:
T £y

) TOF : )
ASET. AIFARGT15)=1 SEND

ASETC &9=&IFARG(€5Y &END .

DD Ci =C+E1a9;
AKCLASS - DON;
USEQ ALL;

" KTYPE GENERAL 1

PERIOD 1;

DOEQ &15 K x4
TROLL DECETE .DATA Ci;
QUIT;

QUIT

&IF AIFARG({5) LT 100

ASET &IFARG(15)=6IFARG(15)*I &END

AGOTO START
&IFEND
&EXIT,;
|EOF :

. MACEDIT GDGENE2;

IEDIT:

Tw

ITOF:

&SET LIFARG(15)=1 &END

- &START:

&SETC &9=&IFARG(15) AEND
DO CY =C+E2A9;

&KCLASS DON;

USEQ ALL;

KTYPE GENERAL {1 ;

,PERIOD {;

DOEQ &1,

TROLL DELETE DATA Ci;
QUIT;

QUIT

&1IF &AIFARG(15) LT 100

&SET &IFARG(15)=&IFARG(15)+f &END

4GOTO START
&IFEND -
&EXIT,;

'iIEOF:

—— e
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. [
. =92 -
1 ' ¢ o '
8
’V
. MACEDIT GDGENE3;
) {EDIT:
A~ Ta )
1TOF : '4
ASET AIFARG(15)={ &END
’ ASTART:

& &SETC &9=&IFARG(15) &END.
DO.CY =C+E34&9;
AKCLASS DON;
. USEQ ALL;
. KTYPE GENERAL {
PERIOD 4,
. DOEQR &12
- TROLL DELEYE DATA C¢;
QUIT;
- QUIT
~ &IF AIFARG(YS) LY 100

&G0OTO START
. &IFEND
&EXIT;
JEOF:

MACEDIT 'GDNALGEY;
IEDIT:
™
ITOF:
ASET &IFARG(is)-t &END -
_ 4START:
! '&SETC &9=&IFARG(15) &END
DO Ci =C+E1A9;
&KCLASS DON; ¢
USEQ ALL; '
KTYPE NAGARUB; °
PERIOD §;
DOEQ &1; ‘
TROLL DELETE DATA L{f;
. QUIT;
QuUIT
&IF AIFARG(1S) LY 100

&SET AIFARG(15)=8IFARG(

4GOTO0 START
&IFEND
S&EXIT;
JEOF:

&SET &IFARG(15)=&IFARG§1S)#1 &END

ts3+1_sénn

~f

T i R

oy
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- .

nacenxr GDNAGE2; .
JEDIT: ‘ “ - )
Te « . L
1TOF : . :
&SET sxrn§c<15)-1 SEND
ASTART:
ASETC 49=AIFARG(15) AEND - o
 DOCY =C+E2409; »
&KCLASS DON; - : -
USEQ ALL;- -
KTYPE NAGARUE;
PERIOD 1;
DOEQ Aty )
TROLL DELETE DATA @4, :
QUIT;
QuIT
&IF AIFARG(15) LT 100
ASET AIFARG(15)=8IFARG(15)+1 SEND
4GOTO START
&IFEND
&E*IT; y .
|EOF : .,

MACEDIT GDNAGE3; . ) Y
‘)EDIT.:
Ta
ITOF:
ASET &IFARG(1S)=1 &END
&START:
ASETC 49=AIFARG(15) &END
DO ,Ci =C+E3A9; ' L
LKELASS DON; | .
USEQ ALL;
KTYPE NAGARUE;
PERIOD 1;
- DDEQ &% ‘
-TROLL DELETE DATA Ci; -
QUIT;
QUIT
- &IF &IFARGC{S) LT 100
ASEY &1FARG<15)=&1FARG(15>»1 &END
AGOTO. START. LT
AIFEND ' :
AEXIT; ~ e ' .
IEOF : - - oy .

e e g e e gy A v o mnae oy -
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. ' APPENDIX C . ’
o . ' . . . )
\ : This- Appendix contains the tables with the summary statistics, .
. which have been found in the'Monte Carlo experiment. S .
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TABLE C.4

' OLS: NORMAL DISTRIBUTION

0.1041388D
0.1079344D
0.1148645D
0.1204346D
0.1519686D

0.1566312D.
0.1654398D

0.1732825D
0.1848693D

© 0.1972207D

0.2106355D
0.2223010D
0.2460415D
0.2614747D
0.2772186D
0.2967910D
0.3123041D
0.3330894D
0.3561582D

'0.3651026D

0.3841245D

06

06
06
06

06 °

06
06

06

06
06
06

‘06

06
06

06"

06
06
06
06
06
o6

-0.3132181D
0.1264187D
-0.2825063D
0.3846306D
0.2585361D

0.1943919D

0.1773277D
0.1559548D
0.1734131D
0.1819567D
0.2054653D
0.1641298D
0.2879950D
0.2915070D
'0.2716155D
10.4514097D

0.4706209D .

0.5374645D

' 0.6365820D

0.5485261D

. 0.6442454D
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TABLE C.5

OLS: NORMAL DISTRIBUTION

0.6089328D
0.6108330D
0.6257450D
0.6446160D
0.2377671D
0.2399216D

-0.2461119D

0.2621267D

0.2914979D

0.3062550D
0..3230950D
0.3407059D
0.2419419D
0.2619319D

. 0.2744128D

0.3011965D

0.3168997D

0.3309636D
0.3514520D
0.3440520D
0.3578414D

03
03
04
04
04

04

04

04

04
04

04
04

04
04
04
04
04
04
04

0.6847662D
0.6237777D
0.6865614D
0.7506467D
0.2596271D
0.1958669D
0.1790274D
0.1581424D
0.1758460D
0.1845160D
0.2079901D

+0.1676288D"

0.2890095D
0.2926814D

. 0.2729982D

0.4524135D
0.4716867D
0.5384825D
0.6375514D
0.5496040D
0.6452385D
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TABLE C.6

OLS: UNIFORM.-DISTRIBUTION
L~

0.1042320D
0.1080236D
0.1149310D
0.1205443D
0.1515097D
0.1561637D
0.1649477D
0.1727625D
0.1846369D
0.1969479p
0.2103251D
0.2219552D
0.2456274D
0.2610410D
0.2767674D

1 0.2962938D

0.3117854D
0.3325313D
0.3555433D

0.3645510D.

0.3835427D

*®,

L

06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06

~0.2200438D
0.2156150D
-0.2160444D

0.4943012D

0.2539467D
0.1897169D
0.1724073D
0.1507549D
0.1710888D
0.1791291D
'0.2023611D
0.1606722D
0.2837936D
0.2871697D
0.2671036D
0.4464377D
0.4654336D
0.5318830D
0.6304325D
0.5430103D
0.6384270D
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. OLS: UNIFORM DISTRIBUTION
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TABLE C.7

0.5156112D
0.5158807D
0.4496423D
0.4873244D
0.2052202D
0.2074085D
0.2144306D
0.2251216D

991508D
0.3335006D
0.3294289D
0.3464224D
0.2393656D
0.2599281D
0.2715990D
0.2975519D
0.3124458D
0.3246804D
0.3432454D
0.3349830D

'0.3471580D

03
04
04
04
04
04
04
04
04
04
04
04

04
04

04
04
04
04

' Rmsn(éj)

0.5606016D
0.5591267D
0.4988521D
0.6941317D
0.2547746D
+0.1908473D
0.1737357D
0.1524265D
0.1736845D
0.1818517D
0.2050250D
0.1643643D
0.2848013D
0.2883436D
0.2684809D
0.4474282D

-~ 0.4664811D
0.5328731D
0.6313663D

0.5440426D

- 0.6393702D

03
03
03
03
05
05
05
05
05
05
05

05 -

05
b5
05
05
05

05

05

‘05

05
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TABLE C.8

OLS: LOGNORMAL DISTRIBUTION

€21

0.1042351D
0.1080353D
0.1148720D
0.1205341D
0.1518574D
0.1565198D
0.1653516D
0.1731026D
0.1857227D

06

0.1980899D 06

0.2115402D
0.2232399D
0.2464674D
0.2619768D
0.2777485D
0.2973765D
0.3129257D
0.3337125D
0.3567885D
0.3657664D
0.3848000D

06
06
06
06
06
06
06
06
06
06
06

i g

-0.2168763D
0.2272994p
-0.2749963D
0.4841156D
0.2574242D
0.1932785D
0.1764461D
0.1541564D
" 0.1819468D
0.1906490D
0.2145122D
0.1735191D
0.2922541D
0.2965283D
0.2769154D
0.4572653D
0.4768367D
0.5436954D
0.6428849D
0.5551642D
0.6509995D
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OLS: LOGNORMAL DISTRIBUTION

TABLE C.9

0.53162526D

0.3139145D -

0.3242647D
0.2898643D
0.1384956D

0.1396467D

0.1429269D
0.1523879D

© 0.2004144D
0.2095304D
0.2205472D

0.2319993D
0.1525502D

+ 0.1670325D

0.1751066D
0.1926018D
0.2029184D
0.2106827D

© 0.2223900D"
0.2191335D

0.2271870D

0.3834723D
0.3875659D
0.4251712D
0.5642599D
0.2577965D
0.1937823D
0.1779Z4OD
0.1549077D
0.1830473D
0.1917969D
0.2156429D

0.1750632D

0.2926519D
0.2969984D
0.2774685D
0.4576707D
0.4772683D
0.5441034D
0.6432695D
0.5555965D
0.6513958D




TABLE C.10 -

2SLS: NORMAL DISTRIBUTION

21 b{Cy,)
1. 0.1046461D 06 , 0.1940656D 03
"2 0.1084844D 06 0.6764137D 03
3 0.1149773D 06 ~0.1697444D 03
" a 0.1210493D 06  0.9993087D 03
. 5 0.1515836D 06 0.2546856D 05
6 0.1562690D 06 0.1907698D 05
‘ 7 0.1652374D 06 0.1753043D 05
T . 8 0.1726553D 06 0.1496833D 05
* " ° 9  '0.1B95660D 0§ 0.2203801D 05
. 10 0.2020546D 06 0.2302956D 05
1 0.2157155D 06, 0.2562652D 05
8 h 12 0.2276099D -06 1 0.2172193D 05
. 13 0.2488801D 06  0.3163813D 05 :
14 0.2647785D 06 1 0.3245448D 05
, o 15  0.2807447D 06 '0.3068773D 05
RS 16 0.3006944D 06 0.4904438D" 05
g 17 0.3164690D 06 0.5122701D 05
: // . <18 0.3373671D 06 0.5802411D 05
I 19 0.3605864D 06 0.6808638D 05
. v 20 0.3697603D 06 °  0.5951030D 05
2 0.6923806D 05

[ N]
.

.0.3889381D

06
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"19
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TABLE C.11

NORMAL DISTRIBUTION

0.1730047D
0.1788444D
0.1712226D
0.1982857D
0.2946404D
0.2991699D
0.3086242D
0.3311944D
0.6324362D
‘0.6554121D
0.6903259D
0.7228475D
0.4947977D
0.5485476D
0.5818559D
0.6345727D
0.6718898D
0.7008078D
0.7364947D
0.7601420D
0.7912994D

‘

04
04
04
04

0.1740898D
0.1912085D
0.1720620D
0.2220437D

0.2563843D

0.1931014D
0.1780002D

~0.1533035D

0.2292753D
0.2394404D
0.2654003D
0.2289308D
0.3202270D"
0.3291480D
0.3123448D

0,4945321D

N

ol51665750
04p844579D
0.6848356D
0.5999381D

0.6968877D |

w e syer e




" : TABLE c 12 ¢ . ' ’ ) - J
» e 2SLS: UNIFORM DISTRIBUTION ‘ :
‘ . ’ , ..
\ C,1 | b(EZI) |
1 0.1045132p 06 - 0.6122312p 02 . ° O
2 0.1083312§i5% 0.5332050D 02 :
3 0.1147944D 06 ={3525800D 03 -~ Toe t
4. 0.1208978D 06 0.8477562D 03 . R
5-  0.1508932D 06 0.2477818D 05 o _ |
_ 6 -0.1555624D 06 0.1837042D 05 w .
7 0.1644955D 06 0:1678845D 05 | -
: 8. 0.1718678D 06 0.7418083p 05 R
9 0.1890711D 06 0.2154314D 05 |
10 0.2014958D 06 0.2247082D 05  °
11", 0.2151107D 06  0.2502172D 05 ,
12 0.2269562D 06 0.2106821D 05 : :
/ 13 0.2480780D 06,  0.3083596D 05 ’
14 0.2639409D 06 0.3161688D 05 ’ '
15 0.2798641D 06 0.2980708D 05.
. 16 0.2997423D 06 0.4809236p 05
17 7 0.3154716D 06 0.5022964D 05 | ]
18 <0.3362969D 06 0.5695386D 05 ' i 1
i 19 0.3594251D 06 0.6692512D 05, .
20 0.3685352D 06 0.5838520D 05 ] .
» 21 0.3877518D 06 0.6805176D 05 . '
. <
: ‘ \.
e \ §
o /
! | ‘ ) n.m eyt s o A

U S O . .

. FE
> " . N )’
.

3 . - . . -
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TABLE C.13
2SLS: UNIFORM DISTRIBUTION
sn(éj) R%SE(& )
s
0.5696397D 03 0.5729203D 03
. 0.5858485D 03 0.7921654D 03
0.5075883D 03 0.6180280D 03
0.5933602D 03 0~1034779D 04
0.2397194D 04 0.2489387D 05
0.2411690D 04 0.1852805D 05
0.2421780D 04 0.1696223D 05
0.2728985D 04 0.1444103D 05
© 0°.5481737D 04 A 0.2222963D 05
"0.5661086D 04 0.2317295D 05
0.5952359D 04 0.2571997D 05
0.6234214D 04 0.2197123D 05
0.3441353D .04 0.3102739D 05
0.3930239D 04 0.3186023D 05
0.4170283D 04 0.3009740D 05
0.4623891D 04 0.4831403D 05
0.4918141D 04 0.5046984D 05
0.5065809D 04  0.5717871D 05
0.5282159D 04 0.6713325D 05
0.5418625D 04 * 0.5863611D 05
0.5604012D 04 0.6828211D-05

N
pry

2
\J

B e T

4



TABLE -C.14 ., .

‘ | 2SLS: LOGNORMAL DISTRIBUTION X
S, b(Cy,)
1 0.1044495D 06 ~0.2501250D 01
2 0.1082788D 06 0.4708250D 03
3 0.1147459D 06 -0.4010650D 03
4 0.1208021D 06 0.7521169D 03
: 5 0.1513825D 06 0:2526752D 05
. 6  0.1560572D 06 0.1886515D 05
7 0.1650108D 06 0.1730380D 05 |
8 0.1724021D 06 0.1471511D 05 -
9 0.1893364D 06 0.2180842D 05 - -
10 0.2018066D 06 0.2278156D 05 ]
11 0.2154422D 06 0.2535319D 05 |
12 0.2273183D 06 0.2143030D 05
13 0.2484732D 06 0.3123125D 05
14 0.2643420D 06 0.3201799D 05
15 0.2802723D 06 0.3021533D 05
16 0.3001872D 06 0.4853717D 05
: 17 0.3759288D 06 0.5068682D 05
‘ 18 '0.3367795D 06 0.5743647D 05
~ 19 0.3599505D 06 0.6745059D 05
s 20 0.3690853D 06* 0.5883533D 05
21 0.3882194D 06 0.6851937D 05
i T s gy

T bass o e e

v

o umymn om0 o T st F Rt et v
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g a § . \
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+ TABLE C.15 ¢

 2SLS: LOGNORMAL DISTRIBUTION

'

3w

¥

e sD(C) L RMSE(C) : |
1 - 0.3750589D 03  +0.3750672D 03 @
2. 10.3834020D 03 0.6071847D 03

3. .. 0.3232044D 03.  0.5150866D 03,

-4 | 0.3713465D 03 0.8387956D 03
"5 ' . 0.1479492D 04 0.2531080D 05 *
6 _~0-1489618D 04 . 0.1892387b 05
"7 0.1510452D 04 o.f§369£oo 05

.~ 8°  0.1657486D 04  0.1480816D 05

9 . 0.3301301D 04 0.2205688D 05
10 . 0.3416347D 04 0.2303629D 05

.M 0.3588175D 04 0.2560585D 05
12 7" 0.3758345D 04 0.2175737D 05
13 © 0.2140713D 04 . 0.3130453D 05
14 0,2421030D 04 0.3210939D 05
15 0.2557654D 04 0.3032339D 05
16 . 0.2827157D 04 0.4861944D 05
17 0,.2997306D, 04 0.5077537D 05"
18,  0.3085377D 04 0.5751928D 05

19 0.3218535D 04 0.6752734D 5.
20 0.3270387D ‘04 0.5892615D 05
21 0.3378574D 04 0.6860261D 05

e s s g o
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TABLE C.16

UBK: NORMAL DISTRIBUTION

0.1053009D
0.1091605D
0.1156475D
0.1218156D
0.1520347D
0.1567415D
0.1657514D
0.1731655D
0.1906977D
0.2032268D
0.2169584D
0.2289066D
0.2500977D
0.2661026D
0.2821588D
0.3022084D
0.3180711D
0.3390641D
0.3623805D
0.3716675D
0.3909399D

06
06
06
06
06
06
,06
06
06
06

0.8489269D
0.1352457D
0.5004775D
0.1765631D
0.2591974D
0.1954949D
0.1804438D
0.1547845D
0.2316974D
0.2420181D
0.2686938D
0.2301860D

+0.3285568D

0.3377862D
0.3210185D
0.5055839D
0.5282910D
0.5972113D
0.6988049D

© 0.6141748D

0.7123985D
=

4



TABLE C.17

@ e

s UBK: NORMAL DISTRIBUTION

0.5046822D 04

.
2 . 0.5189847D 04
"3, 0.5553418D 04
‘4 - .0.58739420 044
-5 . -0.5214511D 04
6 0.5366251D ' 04
7' 0.5567169D 04
.8 0.6057942D 04
9.  0.8223085D 04
10 0.8542655D 04
11 0:9040673D 04
12 0.9455109D 04
13 0.8846421D 04
14 0.9517345D 04
15 0.1013773D 05
16 0.1083893D 05
17 0.1144551D 05
18 0.1215545D 05
19 0.1290143D 05
20 0.1357880D 05
21 0.1427080D 05

<

o Ao = e et e e e . [ ORU

-,nnsz(éj)

0.5117723D 04

"0.5363176D 04

0.5575924D° 04
0.6133567D 04
0.2643906D 05
0.2027262D 05 °
0.1888367D 05

" 0.1662171D 05
' 0,2458569D 05
0.2566524D 05
0.2834956D 05
0.2488483D 05
0.3402580D 05
0.3509380D 05
0.3366455D 05

0.5170718D 05 -

0.5405472D 05
.0.6094561D 05
0.7106145D 05
0.6290064D 05
0.7265516D 05
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TABLE C.18

0

UBK: UNIFORM DISTRIBUTION.

21

0.1046872D
0.1085259D

.0.1149043D

0.1211089D

. 0.1508760D

0.1555526D
0.1645192D
0.1718192D

© 0.1900263D

0.2024803D
0.2161482D
0.2280409D

10.2487331D

0.2646921D
0.2806677D
0.3006257D

© 0.3164137D

0.3372735D
0.3604429D
0.3697115D
0..3888699D

06
06
06

L-OG ’

06
06
06
06
06

06"

06
06
06
06
06
06
06
06

06

06

06

0.2351850D
0.7178875D
~0.2426550D
0.1058873D
0.2476097D
0.1836056D
0.1681221D

0.1413220D°

0.2249826D
0.2345528D
0.2605919D
0.2215286D
0.3149107D
0.3236810D
0.3061073D
0.4897571D
0.5117173D
0.5793052D
0.6794288D
0.5946147D

©0.6916992D

WU e e e
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03

|

03

03°

04
05

05
05

05
05
05
05
05
05
05
05

05

05
05
05
05
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TABLE C.19

UBK: UNIFORM DISTRIBUTION

0.1095591D
0.9214751D
0.1234774D
0.2278085D
0.2290030D
0.23013%8D
0.2594263D
0.6319509D
0.6521961D
0.6863312D
0.7184421D
0.4103004D
0.4693498D
0.4998612D
0.5523443D
0.5882448D
0.6078144D
0.6338805D
0.6592344D
0.6834524D

0.1081232D
0.1309843D
0.9528892D
0.1626616D
0.2486554D
0.1850283D
0.1696899D
0.1436834D
0.2336896D
0.2434515D
0.2694784D
0.2328873D
0.3175724D
0.3270662D
0.3101617D
0.4928B619D
0.5150873D
0.5824851D
0.6823793D
0.5982579D
0.6950675D
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TABLE C.20

UBK: LOGNORMAL DISTRIBUTION :

{

€24
0.1044847D
0.1083188D
0.1147252D
0.1208461D
0.1513041D
0.1559807D
0.1649543D
0.1722865D
0.1899292D
0.2024162D
0.2160822D
0.2279873D
0.2488019D
0.2647296D
0.2806859D
0.3006478D
0.3164210D

0.3372821D.
0.3604688D

0.3696293p
0.3887798D

°

|

|

0.3268187D
0.5107887D
-0.4217975D
0.7961012D
0.2518908D
0.1878870D
0.1724732D

0.1459954D.

0.2240123D
0.2339121D

0.2599322D

"0.2209925D
.0.3155991D
0.3240560D
0.3062894D

0.4899782D

0.5117902D
0.5793909D
0.6796876D

0.5937927D .
0.6907977D .

Q
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" '_  TABLE C.21

©

) UBK: LOGNORMAL DISTRIBUTION

. splcy e ¢ RMSE (C, )

......... e —————— e

1 0.3943855D 03 0.3957373D 03

2 0.4058945D 03  0.6524228D 03

3 0.3282625D 03  0.5344805D 03

4 0.3971216D 03 0.8896532D 03

5 0.15665§ZD 04 0.2523409D 05

6 0.1516102D 04 0.1884977D 05

7 0.1531692D 04 0.1731520D 05

8 0.1698578D 04 0.1469802D 05

9 0.3669271D 04 '0.2269976D 05 -
10 0.3792383D 04 0.2369664D D5

11 0.3982158D 04  0.2629648D 05

12 0.4168869D 04 0.2248903D 05

13 0.2322854D 04 0.3164528D 05

14 0.2641471D 04 0.3251308D 05

15 0.2794013D 04 0.3075612D 05

16. 0.3090982D 04 0.4909522D 05

17 0.3280297D 04 0.5128404D 05 ‘
18 0.3372056D 04 0.5803713D 05 \
19 0.3510864D 04 0.6805937D '05
20 0.3584634D 04 0.5948737D 05

21 0.3701154D 04 0.6917885D 05
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