National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Direction des acquusitions et
Bibliographic Ser-ices Branch des services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa, Ontanio Ottawa (Ontano)
K1A ON4 K1A ON4 .
! Aot »
NOTICE AVIS

The quality of this microform is
heavily dependent upon the
quality of the origina! thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec I'université
qui a confére le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Multidimensional Linear Congruential Graphs:

A New Model for Large-Scale Interconnection Networks

Ching-Chun Koung

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

June 1993

© Ching-Chun Koung, 1993

L1 I

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibhographic Services Branch des services bibliographiques

395 Wellington Street
QOttawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
QOttawa (Ontario)

Your e Volle i e

Our e Nolre refdrenc e

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d'auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-87270-5

Canada

Abstract

Multidimensional Linear Congruential Graphs:
A New Model for Large-Scale Interconnection Networks

Ching-Chun Koung

A multicomputer offers high degrees of concurrency in computation and therefore
provides an effective solution to many applications that demand complex and fast
computing power. The interconnection network in a fine-grain multicomputer con-
nects thousands small computers and its design is an important part of such a mul-
ticomputer system.

In the design of an interconnection network, graphs are usually used to model the
network, and the question whether a graph satisfies the requirements of an intercon-
nection network can be decided by examining the graph’s topology.

A Lincar Congruential Graph of degree 2d is a graph on the vertex set {0,1,...,
n — 1} whose edge set is generated by a set of generators {f1, f2,..., fa} where each
generator is a linear function.

We generalize the lincar congruential graph into the multidimensional case in
which the vertex set consists of vectors of integers and generators are linear functions

on the vectors. We show that

1. there are 2-dimensional linear congruential graphs of degree A and diameter D

which contain more vertices than linear congruential graphs for many values of
A and D.

2. the properties of two-dimensional linear congruential graphs meet the require-

ments of a large-scale network.

3. there are sufficient conditions on the two-dimensional generators to generate

Hamiltonian cycles and edge-disjoint cycles.

Comparisons are given between these graphs and some well known families of graphs

for their network properties.

i

Acknowiedgement

First and foremost, 1 would like to express the deepest gratitude to my thesis
supervisor, Dr. J. Opatrny, for the support and guidance he has given me during the
course of this thesis. I am very grateful for the consideration and encouragement he

has offered during my studies. 1 also appreciate his patience and understanding when

things were frustrating.

I would further like to thank Mr. Raymond Lin, who is working on the routing
algorithm of this network model, for his help and friendship. I am impressed by his

intelligence and discussions which are always fruitful.

Finally, thanks to my parents for their confidence and support from the beginning.

iv

Dedicated to my parents

Contents

List of Figures
List of Tables
List of Lemmas

1 Introduction
1.1 Problem Domain
1.2 Motivation e e e e e e
1.3 Thesis Qutline

.............................

...............................

2 Computer Networks

2.1 System Evolution

2.2 Parallel Computers

............................

2.3 Issues of Network Design
2.4 Issues of Network Performance
2.5 Basic Notions of Graph Theory

2.6 Design of Interconnection Networks

3 Review of Current Network Models
3.1 OVeIVIEW . & v o e i e e e e e e e e e e e e e e e e e e

3.2 The Hypercube Graph
3.2.1 Definition

3.2.2 Properties of Hypercubes

.....................

vi

vi

viti

20

323 Summary e 26

3.3 ThedeBruijn Graph o oo 28
3.3.1 Definition e 28
3.3.2 Properties of de Bruijn Graphs 29
3.33 Summary e e e e e e e 31
34 The Cayley Graph 32
341 Definition e 32
3.4.2 Properties of Permutation Cayley Graphs 33
343 Summary e e e e e 35
3.5 The DCC Linear Congruential Graph 37
3.5.1 Definition e e 37
3.5.2 Properties of DCC Linear Congruential Graphs 39
3.5.3 Summary e e 40
4 Multidimensional Linear Congruential Graphs 43
4.1 Overview. e e e e e e e e e e 43
4.2 Definition e e 47
4.3 The Cycle Structure of G(F,(2',82)) v v v v v i i it .. 50
4.4 Properties of Two-dimensional Linear Congruential Graphs 62
4.5 Issues on Construction 71
4.6 Summary e e e e e e e e e e e 79

5 Comparisons between Multidimensional Linear Congruential Graphs
and Other Networks 82
5.1 Construction Methods 82
52 GraphSizes e 83
53 Network Properties 84
6 Conclusion 87
6.1 ResearchResults 87
6.2 Future Considerations 88

vii

Biobliography

viii

91

List of Figures

2.1 Structure of a multicomputero 000 9
2.2 Structure of a multiprocessoro oo oL 10
2.3 Model of computation in a MIMD machine 11
2.4 The structureofanode 16
2.5 Exampleofapacket0, 16
2.6 Exampleofagraph 0 oo 18
3.1 2cubeand3-cube. e 25
3.2 Two 3-cubes are linked to form a 4-cube by adding dashed edges . . . 27
3.3 Examples of binary de Bruijngraphs 29
3.4 3 copies of B(2,2) are linked to form a B(3,2) by dashed edges and
combining nodes in dashed rectangles 31
3.5 Examplesof Cayleygraphs 33
3.6 Ad-pancakegraph o oo 34
3.7 A3stargraph. e e e 35

3.8 Four 3-star graphs are linked to form a 4-star graph by dashed edges 36
3.9 Examples of linear congruential graphs 39

3.10 Two copies of G({5x+3},8) are linked to form a G({5x+3},16) 41

4.1 Example of a two-dimensional graph 45
4.2 The 8-node 3-cube of diameter 3 and a 8-node graph of diameter2. . 46
4.3 Connectivity of degree 4, 7} and 73 on thesame cycle 67
4.4 Connectivity of degree 4, £ and 77 on different cycles. 68

ix

4.5
4.6
4.7
4.8

Connectivity of degree 6. 77 and 7, on the same cycle of f;

......

......

Connectivity of degree 6, 77 and 73 on different cycles of f;

A two-dimensional graph of simple matrix form

............

A two-dimensional graph of complex matrix form

...........

List of Tables

4.1
4.2
4.3
4.4

3.1
5.2
5.3
5.4

Graphs of §=1(2",9) e 64
Graphs of §=(2',9) (continued) 65
Graphs of §=(2,5) o i i 66
Graphs of §=(24,81)and (2,7) . « - - . o o i i 78
A comparison of construction00 83
A comparison of graph sizeo o oo 84
A comparison of graph size (continued) 85
A comparison of topology oo oo 86

X1

List of Lemmas

4.2.1
4.2.2
4.3.1
4.3.2
4.3.3
4.34
4.3.5
4.3.6

Linear Congruential Sequences with Maximum Period 48
Disjoint Cycles of Equal Lengthsooooiiiiiiint 49
Symmetry of Extensionc.coiiiiiiiiiiii i 51
Even Number of Cycles in G({f},2")ocovviiiiiiiiiin, 51
Number of Edge-Changes in G({f},2') -cevveiiiiiiiiiiiiiiin. .. 55
Regular Cycle Structures in G({f},(2,2k+1))ocovvieen. 57
Hamiltonian Cycles in a Two-dimensional Graph 57
Edge-Disjoint Cycles in Graphs of Degree 4 61

x1i

Chapter 1

Introduction

1.1 Problem Domain

Communication networks have been used in many applications of our everyday life.
In the area of computer science, networks have been used to connect a number of
computers (processors) to fulfill tasks. A variety of popular and promising systems
have been built: LAN, MAN, WAN, internet, distributed systems, and multicomputer
systems. Each of the above systems contains more than one computer (processor), and
a network is used to connect these computers (processors). Moreover, the networks
impose many performance restrictions in these systems.

In the design of a computer network, graphs are usually used to model the com-
puter network in which computers (processors) are represented by vertices and com-
munication links are the edges of a graph. The necessary requirements of a good
network are therefore corresponding to the desirable properties of a graph. Whether
a graph satisfies the requirements of a good computer network can also be decided by
considering the topology of the graph. We will use network models to address those
graphs that are used to model computer networks.

In this thesis, we review the issues of network design and performance. Since a
multicomputer, which is designed for parallel processing, takes more strict require-

ments on the topology of its interconnection network, we will give a review of the

techniques and systems that are used for parallel processing, in particular, multicom-
puter systems. The desirable graph-theoretic properties of a multicomputer network
model are then derived. Four important network models are also reviewed and their
graph-theoretic properties are given. We then propose a new network model, multi-
dimensional linear congruential graphs.

We will show that our multidimensional linear congruential graphs have many
good properties to be an alternative to large-scale interconnection networks. Proper-
ties which are specific to this model are discussed. The four network models reviewed
before are compared with our model. It is shown that the network properties of our

model are better than those of other models in many cases.

1.2 Motivation

A multicomputer offers high degrees of concurrency and fault-tolerance in computa-
tion, and has open-ended extensibility. A fine-grain multicomputer contains thou-
sands to hundreds of thousands of small computers (nodes) and provides an efficient
and cost-effective solution to many applications that demand complex and fast com-
puting power. A task is completed in a multicomputer by partitioning the task into
a number of subtasks, which are executed concurrently in distinct nodes. Interaction
and cooperation among subtasks is done by sending messages to other nodes through
an interconnection network, which connects all the nodes. As the number of nodes
in a multicomputer increases, a larger latency of message traversal time in the net-
work will be exhibited and it will degrade the system performance. The latency is
proportional to the number of nodes traversed between a sender and a receiver. Fur-
thermore, the number of communication links used in a node to communicate with
other nodes is bounded.

Using the graph representation of a network that we mentioned earlier, it is neces-
sary to construct graphs that have a very large number of vertices in order to model
the network of a fine-grain multicomputer. Since the latency is proportional to a

graph’s diameter, which is the maximum distance among all pairs of vertices, the

diameter of the graphs should be as small as possible. The number of communication
links corresponds to a vertex' degree, which is the number of edges incident with the
vertex. A graph’s degree is the largest degree among its vertices and its size is the
number of vertices in the graph. Thus it is important to construct graphs of large
size, small diameter, and of bounded degree.

The tables in [30, 17, 8] show the progress on constructing large graphs of small
degree and diameter made in the last ten years. The most recent results are in [15].
As can be seen in these tables, the construction methods used for these graphs are not
uniform. A specific construction method is required for a given degree and diameter.

Investigation of random graphs showed that random graphs have low diameters
in almost all cases and the diameters are very close to the optimum [10]. However,
a random graph has the disadvantage that it is difficult to construct low-diameter
r- -dom graphs by any explicit method [12]. It is also difficult to verify their properties
because their structure is highly irregular. Therefore, to use a random graph with n
vertices, it would take n? entries of memory to store it and the same size of memory
would be required for routing in the graph [27]. On the other hand, the graphs
generated by an explicit method can be analyzed systematically and use less memory,
which is especially important when designing large-scale networks.

The best general constructions of large graphs of a given degree and diameter
are de Bruijn graphs and their variations, such as Kautz graphs [9], and Imase-Itoh
graphs [26]. The DCC linear congruential graphs in [31] generalize the construction
of de Bruijn graphs, and contain more vertices than the de Bruijn graphs for the
same degree and diameter. Inspired by the idea of DCC linear congruential graphs,
we propose a new construction method. It generalizes the construction of DCC linear
congruential graphs and hence, the de Bruijn graphs.

The aim of this thesis is therefore to provide a uniform method for .onstructing
large-scale graphs of any degree and size, the diameters of these graphs are made as
small as possible for a chosen range of degrees and sizes, and their graph-theoretic

properties are suitable for computer networks.

1.3 Thesis Outline

In Chapter 2, we give a short review of the evolution of computer systems and the
techniques for parallel processing. In particular, we review multicomputer systems,
discuss the desirable properties of their interconnection networks, and relate these
properties to graph theory. Network performance and its design issues are also dis-
cussed. Since our discussion will be based on graph theory, one section is devoted
to the graph-theoretic terminology and properties that will be used for all network
models in the thesis.

In Chapter 3, four important network models are reviewed and are given in
separate sections. They are Hypercubes, de Bruijn graphs, Cayley graphs, and DCC
linear congruential graphs. We give the definitions of these models, cxamine their
sizes and diameters, and analyze their graph-theoretic properties. A summary is
given in each section.

In Chapter 4, we introduce our multidimensional linear congruential graphs,
which are the main subject of this thesis. An overview explains the reason why we
expect this model to produce good results and then we give a formal definition of
these graphs.

We will look in detail at the construction of two-dimensional linear congruential
graphs and the cycle structures created in these graphs. We then examine their sizes
and diameters, and analyze their graph-theoretic properties, and finally discuss those
construction issues that are specific to this network model. All results in this chapter
are original.

In Chapter 5, we compare our multidimensional linear congruential graphs with
other networks based on the results from Chapter 3 and Chapter 4. It includes the
issues of their construction methods, sizes, diameters, and network properties.

In Chapter 6, we conclude by summarizing the important results of this thesis

and proposing some open problems in this research area.

Chapter 2

Computer Networks

2.1 System Evolution

Computer systems have greatly evolved over the past 50 years. From the invention
of the first computer to the current experimental systems, system performance has
increased 10 times every five years [23]. New hardware technology, of course, has
contributed to this rapid improvement but it is not the only factor. Both architecture
and system software design play very important roles in this evolution. Efforts are still
being made to improve system performance in two directions. The first direction is to
produce faster and more powerful hardware devices in engineering fields. The second
one is to increase the degrees of parallel processing in an execution environment by
proper architecture and system software design.

A formal definition of parallel processing can be found in [25]. Parallel processing
provides an efficient and cost-effective means to improve system performance under
the same hardware capability by exploiting events that can be executed concurrently.

These events can be found at 4 different levels in an execution environment,
1. Among different programs
2. Within a program

3. Among different instructions

4. Within an instruction

After recognizing the possible concurrency that exists at these levels, different
architecture and software techniques were developed to achieve paraliel processing.
From the system software point of view, techniques were applied to the following

operating system concepts to improve perforinance:

e Batch processing: Avoid CPU idle time by preloading programs into disks.

e Multiprogramming: Avoid CPU idle time by mixing the execution of C'PU-
bound and I/O-bound programs.

o Time-sharing: Avoid the monopolization of CPU by assigning a fixed portion

of CPU time to each user.

o Multitasking: Allow a user to run more than one program at a time by back-
ground processing. A user can continue to enter commands while some programs

are being executed in the background.

e Multithreading: Allow a process to have more than one thread of control.
Threads in a process share the same process space and are executed concur-

rently.

Many operating systems. e.g., VMS, Unix, Mach [34], support more than one of
the ideas described above.
From the architectural point of view, the techniques that were used to achieve

parallel processing are the following:

e Pipeline processing: Instructions or arithmetic operations are executed in par-

allel by overlapping their execution in a processor.

o Array processing: The data of a vector operation are executed in parallel by
the existence of an array of arithmetic logic units that perform the operation

under the control of a central processor.

e Multiprocessing: A system that contains multiple processors. Processors can
execute instructions independently and in parallel. Communication among pro-
cessors can be message-passing or memory-sharing. This system includes mul-

tiprocessors and multicomputers, which will both be described later.

e Distributed processing: A system that contains multiple computers. Each com
puter is an autonomous unit. It is similar to multiprocessing in that each pro-
cessor executes instructions independently and in parallel. However, computers
are physically distributed, communication is done only by message-passing. It is
different from computer networks in that software hides the details of underlying

machines from users.

Computers that can exploit parallelism in execution by their architectural designs
are classified as parallel computers. Pipeline processing was developed on a unipro-
cessor system and used to improve the utilization of a single processor. The degrees
of parallelism are low since jobs are still processed sequentially by the sole processor.
Another class of architecture designs that use multiple arithmetic logic units or mul-
tiple processors can exploit high degrees of parallelism. It is this class of systems that
we will discuss in the next section and the need of such efficient parallel computers

is important because:

o They have better performance than a traditional sequential uniprocessor system

in general applications.

e Data structures of certain kinds of applications, for example, image processing,
simulation of VLSI, and semantic networks, fit into the structures of parallel
computers much better than those of sequential systems and thus can be solved

efficiently only by parallel computers.

2.2 Parallel Computers

According to Flynn's classification [25], computer systems can be classified to 4 ar-
chitectural designs based on the multiplicity of instructions and data that a svstem
can process. We give a list below and indicate the parallel processing techniques that

they can use.
¢ Single-instruction, single-data machine (SISD): pipeline
¢ Single-instruction, multiple-data machine (SIMD): pipeline, array
e Multiple-instruction, single-data machine (MISD): no real application

e Multiple-instruction, multiple-data machine (MIMD): pipeline, multiprocessor,

distributed processing

Based on the above categories, parallel computers consist of pipeline SISD), array
SIMD, and MIMD machines.

A pipeline SISD machine can overlap the execution time among different instruc-
tions or arithmetic operations. For example, the execution of an instruction can be
divided into 4 stages, instruction fetch, instruction decoding, operand fetch, and ex-
ecution. Therefore, four instructions can be executed at different stages in a pipeline
fashion.

An array SIMD machine contains an array of processing elements (PE) and a
central control unit (CU). For vector processing, the CU distributes all data to PEs.
All the PEs can execute the operation on different data in parallel under CU’s control.
For scalar processing, the CU can execute it directly in a pipeline fashion.

A MIMD machine contains multiple processors. It can process different instruc-
tions on different sets of data in parallel. It can also have the same functions as SISI)
and SIMD machines because the processors in a MIMD machine can be pipelined
and an array of processors is equivalent to an array of PEs in computation. MIMI)
machines thus can exploit high degrees of parallelism and are expected to have bet-

ter performance. Moreover, MIMD machines not only can provide high throughput

8

but also can provide more reliable and more extensible environments than any other
computer systems.

MIMD machines can be classified as loosely coupled multicomputers and tightly
coupled multiprocessors. A multicomputer system is composed of a set of nodes
where each one is a small computer with its local memory. There is an interconnection
network that connects all nodes, as shown in Figure 2.1. Communication among these
nodes is via message-passing over the network. A multiprocessor system is composed
of a set of processors and a global memory module. Communication among the
processors is done by memory-sharing. There is an interrupt signal interconnection
network connecting all processors and a switch network connecting all processors to

all memory modules, as shown in Figure 2.2.

Node 1 Node 2 Node 3 Noden

OO, ()
0]o}o ,,

Interconnection Network

P: processor
M: memory module

Figure 2.1: Structure of a multicomputer

When jobs are running on a MIMD machine, distinct jobs can be executed on
different processors concurrently. A singie job can be divided into a set of interactive
processes, which also can be executed concurrently. The running time of this system of

computations is thus improved. The abstraction of its computation model is depicted

Interconnection Network

©OO -

Pi : The ith processor
Mi: The ith memory module

Figure 2.2: Structure of a multiprocessor

in Figure 2.3.

Uniprocessor systems have no fault tolerance because if the processor fails, the
whole system fails. On the contrary, MIMD machines can have better fault tolerance.
The processors in 2 MIMD machine are connected by the underlying network. If the
network is properly designed, the machine can continue its execution, when a fault
occurs, by either reconfiguring the network to a smaller size of the same network or
to another class of network.

An interconnection network can be extended to accommodate more processors and
memory modules. Therefore, the performance of a MIMD machine can be upgraded
by adding in more hardware resources with minimum changes in software.

Since MIMD machines have many advantages over other systems, lots of efforts
have been made to construct MIMD systems and to improve their performance. Many
MIMD machines are now commercially available or being experimented with. For
example, N-cube/10, Intel iPSC, Ametek S/14 [20], Cray-2 (25}, Cosmic Cube [39],
Mosaic [7], Connection Machine [22], Mark 111 [33], and J-machiue {14]. The number

10

T
User's
Program
Process creation
Interprocess
C_omm_ugication %

Process assignment
Physical
Link

Interconnection Netwrok

Figure 2.3: Model of computation in a MIMD machine

of processors ranges from 2 to 65536.

As described in the previous section, certain applications fit into the structures
of MIMD machines. For example, to process an image, processors can be arranged
in a manner such that each processor is dedicated to process a fixed pixel. Similarly,
one processor is dedicated to process a concept in a semantic network, and one pro-
cessor is used to represent a transistor in the simulation of VLSI. Many applications
of these kinds demand the use of large-scale MIMD machines. However, an efficient
large-scale MIMD machine needs a good coordination of operating system, architec-
ture, and parallel algorithms. In particular, the architecture design is still a challenge
in searching for efficient MIMD machines. For example, memory latency is the bot-
tleneck of system performance in the conventional Von Neumann computation model.

The speedup that can be made by adding more processors to a memory-sharing mul-

11

tiprocessor is not proportional to the number of processors and it tends to reach an
upper bound [25]. This is because memory conflicts increase with the number of
processors. By this argument, it is impractical to construct a large-scale multiproces-
sor or to scale its size. On the contrary, a multicomputer system has the advantage
that it minimizes memory latency because each processor is tightly coupled to its
memory. Every technique that was developed for minimizing memory latency, e.g.,
instruction-prefet ching, is ready to be used on multicomputers.

Multicomputer systems can be further characterized as fine-grain and coarse-grain
multicomputers according to the number of nodes or the size of each individual node.
We refer the systems which contain tens or hundreds of nodes or each node has
megabytes of memory as coarse-grain multicomputers. Those systems that contain
thousands of nodes or each node has kilobytes of memory are classified as fine-grain
multicomputers. A fine-grain multicomputer is expected to have better performance
than a coarse-grain multicomputer because a fine-grain multicomputer allows even
higher degrees of parallelism. With the rapid progress of VLSI technology, the power
of a single chip is expected tc outperform today’s computers [25]. A multicomputer
that contains thousands of single-chip nodes is both feasible and an attractive option
for parallel processing [39]. However, it requires a better and more complex design
of its interconnection network. The choice of interconnection network in a very large
system is crucial as most of computations are done in the network. The design of a
good interconnection network is very difficult because it involves lots of processors, it
must accommodate some contradictory requirements, and people do not have much

experience in designing large-scale networks [22].

2.3 Issues of Network Design

Computer networks are generally used to exchange data and to transfer files. Appli-
cation programs are developed and built on top of a network to fulfill these tasks, as
for example, electronic mail, file transfer protocol. Many networks have been devel

oped for different environments. For example, the networks in a multicomputer and a

12

multiprocessor are different. The Ethernet and pr "T for local area networks, the
ARPANET for a wide area network [13], are all different. No matter what purpose
the network is for, the design decisions of a computer network is made up of a 4-tuple,
(topology, switching methodology, control strategy, operation mode) [18]. To have
a complete view of computer networks, we briefly review these design issues in this

section.

e Topology: Two classes of topologies can be identified, dynamic and static. In
the dynamic topology, cominuuication links can be reconfigured by switching
elements to connect different processors. It is often used to connect processors
and memory modules in multiprocessors. Examples of this topology are single-
stage, multistage, and crossbar. In the static topology, each communication
link is dedicated for two processors and provides end-to-end connection between
them. There are no switching elements and links can not be reconfigured. It
is often used to connect the processors in multicomputers, processing elements
in array SIMD machines, and computers in a local area network. Examples of

this topology are bus, ring, mesh.

e Switching methodology: Two major switching methodologies are used, circuit-
switching and packet-switching. In circuit-switching, a dedicated physical path
is allocated before transferring data. The dedicated path cannot be reused
until the transmission is finished. It is efficient for transmission of bulk data.
In packet-switching, there is no preallocated path for data transmission. Data
are sent in packet-form and packets are routed separately in each individual
node. A communication protocol is used to ensure that the correct sequence
of packets will be received in the destination. It is efficient for transmission of
short data. It is often used in computer networks. For example, the Ethernet
and ARPANET, the popular local area and wide area networks, are packet-

switching. An integrated-switchingis a hybrid form of the above two switchings.

e Control strategy: There are centralized and distributed control. In central-

ized control, a central controller is used to regulate the network. The central

13

controller can broadcast data or set the status of each switching element to
alter connections. The networks in SIMD machines and multiprocessors are of
this kind. In distributed control, there is no central controller. Each proces-
sor requests or stops communications based on its own decision. The networks
in multicomputers, distributed systems, and computer networks belong to this

category.

e Operation mode: Communication can be synchronous or asynchronous. In syn-
chronous communication, the communication path is established synchronously.
Both sender and receiver are ready for transmission. It is often used with cen-
tralized control in SIMD machines to broadcast data to processing elements
from the control unit. In asynchronous mode, the communication path is es-
{ablished asynchronously. The sender requests communication dynamically and
dose not wait for the receiver. The receiver may or may not wait if the data are
not available. It is often used with the distributed control in multicomputers.

The Ethernet is also asynchronous.

Since we only concentrate on the topology of a network, we will not explain the
other issues in detail. We point out them for a complete view of computer networks.

The topology of a network can be static or dynamic. Qur concern is large-scale
computer networks, ranging in size from several hundreds to hundreds of thousands
of nodes. Dynamic topology is not well adapted to large-scale networks because the
number of switching elements is too large [22]. We therefore restrict our attention
to static topology. In the next section, we will examine the performance issues of
a computer network by using a multicomputer as a basis, since it takes more strict

requirements on its network than any other systems.

2.4 Issues of Network Performance

An interconnection network provides end-to-end connections among all nodes in a

multicomputer system. Each node runs a multiprogramming operating system kernel

14

and exccutes its own processes with local data. Cooperation and interaction among
the nodes is via message-send and message-receive instructions. These instructions
cause messages to travel through the network from a source node to a destination
node. For most cases, the communication channels are bidirectional, asynchronous,
and full-duplex. A simple communication protocol is used to regulate messages. Each
node can be divided into two sections: one section is for normal computation, the
other section is for routing messages through the network, see Figure 2.4. The routing
model is often based on the packet-switching model [29]. A message is broken into
packets, which at least contain receiver's and sender’s IDs, message type, message
length, and message contents, see Figure 2.5. Only one packet can be sent along
a channel at a time. A queue is thus generally used to temporarily store messages
at each node. These messages include a node’s own pending messages and the ones
passing by from other nodes. A node picks up a message from the queue and sends
to the next node in a pipeline fashion. The choice of next node is made by the
routing algorithm, which can be stored at each node. Network latency thus arises
and becomes an important issue in fine-grain multicomputers. The network latency
is the sum of message delay time and the time to emit a message. It can be expressed

as
Latency=T,«Dy+ L/B (2.1)

T,: the delay at each node

D,: the number of nodes traversed

L : message length

B : channel bandwidth

However, the network latency is not the only factor that influences system perfor-

mance. In fact, an interconnection network has crucial impact on the performance of
a multicomputer. It is not only because there is a tradeoff among different intercon-
nection strategies, but also because an ineflicient network can cause protocol overrun
or a corruption of the message-passing mechanism [42], which can make the whole

system useless.

15

Figure 2.4: The structure of a node

l?ender | Receiver IType]Len gth I Contents_

Figure 2.5: Example of a packet

The important issues on network performance are message delay, traffic conges-
tion, ease of routing, fault tolerance, and extensibility (22, 8]. We discuss these issucs

below:

e message delay: It is the latency between the issuing of a message at the source
and the receiving of the message at the destination and it corresponds the

number of nodes traversed between the source and destination nodes.

e traffic congestion: Communication channels are limited to that only one packet
can be sent at a time. Overloading any particular channel, the result is that
messages have to wait in a queue. To avoid long waiting, the channels should

be uniformly distributed. Traffic bottlenecks are then eliminated.

e ease of routing: If each node in a network has the same pattern of linkages, the
same routing algorithm can be applied to each node in the network. The task

of routing is thus simplified.

16

e fault tolerance: A good network should not crash when certain number of nodes
or channels fail. Between any two nodes, there should be more than one path

connecting them in order to survive failure of one >r more nodes or channels.

e extensibility: A network should not have only one fixed size. It should be
possible to extend it easily by allocating more nodes and thus to enhance its

performance.

With these issue in mind, we must realize that these requirements contain con-
tradictions. For example, communication wires cost money and a single chip has a
limited number of connection pins. We cannot expect to lower latency by adding too
many channels to a node. Similarly, we cannot expect to have many disjoint paths
between two nodes when the number of channels per node is not high. Hence, com-
promises must be made among efficiency, reliability, and availability, based on the
goal of an interconnection network.

In addition, many parallel algorithms have been developed and applied on different
networks for fast mathematical computations. We also should consider the possibility
for a network to embed other networks, so the existing fast algorithms are ready to

be applied on the network.

2.5 Basic Notions of Graph Theory

Before we relate the issues of network performance to graph-theoretic properties, we
first give a review of some basic notions of graph theory that will be used in this
thesis. Our introduction to graph theory is based on [19, 35].

A simple graph G(V, E) is defined by a finite nonempty vertez set V and a finite
edge set E of unordered pairs of distinct vertices from V. Each element in the set
V is a vertex and each element in the set E is an edge of the graph G. There is a
function v from E to V x V and we write y(e) = (u, v) for an edge e and two vertices

u and v if u and v are connected by the edge e. We say that vertices u and v are

17

adjacent and that u (or v) is incident with the edge €. If two edges are incident with
a common vertex, then they are adjacent edges.

From the definition, we know that a simple graph has the following properties: 1)
no loops, any edge begins and ends at different vertices, 2) no multiple edges between
any pair of vertices, 3) edges are undirected: edges can be traversed along either

direction. In this thesis, we only consider simple graphs. An example of a graph is

given in Figure 2.6.

U o el oV G(V,E)
r V={u,v,w,x}
E={(u,v),(u,x),(w,v),(w,x)}
e2 e3 fel)=(u,v), f(e2)=(u,x), f(e3)=(w,v), f(c4)=(W.x)

u and v are adjacent
el and e2 are adjacent
’\k w e3 and e4 are incident with w

ed

Figure 2.6: Example of a graph

A graph H(V4, Ey) is a subgraph of G(V, E) if and only if V} is a subset of V and
E, is a subset of E and the function v for G defined on E agrees with the function ¥
for H on E,.

The size of a graph G(V, E) is the number of vertices that the graph contains and
is equal to |V|.

A pathin a graph G(V, E) is a sequence of edges such that the terminal vertex of an
edge is the initial vertex of the next. Thus if e;,€,...,€n are in E, then ¢;,€2,...,€,
is a path provided there are vertices z),Z2,...,Zn41 in V so0 that 7(e,) = (2., z,41) for
i=1,...,n. The length of a path is the number of edges in the path.

The distance of two given vertices in a graph is the shortest path that connects
them in the graph. The diameter of a graph is the largest distance among all pairs

of vertices in the graph and is denoted by D.

A path with vertex sequence 1,22,...,Zn,Tn41 is closed if 7, = Tnys. A cycle is

18

a closed path in which z,,z,,...,z, are all distinct.

A path with vertex sequence z;,z;,3,...,2, is called a Hamiltonian path for
a graph G(V,E) if z;,z,...,z, are distinct and {z),2,,...,2,} = |V|. A cycle
Z1,T2,...,Tn, Ty is a Hamiltonian cycle if z,,2z3,...,2, 1s a Hamiltonian path. A
graph that has a Hamiltonian cycle is called a Hamiltonian graph.

The degree of a vertex is the number of edges that are incident with the vertex.
The degree of a graph is the largest degree among all vertices in the graph and is
denoted by A.

A graph is regular if every vertex in the graph has the same degree.

Two graphs GG and H are isomorphic if there exists a one-to-one correspondence
7 on their vertex sets such that (u,v) is an edge of G if and only if (7(u), 7(v)) is an
edge of /. Such an 7 is called an 1somorphism of G onto H. We call an isomorphism
of a graph onto itself an automorphism of the graph.

A graph is vertex-symmetric if and only if for every pair of vertices, v; and v,,
there exists an automorphism of the graph that maps v; into v;. Similarly, a graph
is edge-symmetric if and only if for every pair of edges, e; and e, there exists an
automorphism of the graph that maps e; into e;.

The removal of a vertex u from a graph G results in the subgraph that contains
all vertices except u and all edges not incident with u.

A graph is connected if given any two vertices in the graph there is a path con-
necting them.

The connectivity of a graph is the minimum number of vertices that need to be
removed in order to disconnect the graph.

A family of graphs {Gy,Ga,...,G,,...} will be said to be recursive if G; can be
obtained fron. a number of copies of G,-; by some simple operations and G;_, is a
subgraph of G.. Adding a number of edges according to an algorithm is an example

of the above simple operation and should be sufficient in general.

19

2.6 Design of Interconnection Networks

In designing an interconnection network, graphs are usually used to model the com-
puter network in which the processors are represented by vertices and the communica-
tion links are represented by edges of a graph. The performance of an interconnection
network modeled by such a graphical setting depends on the topology of the graph
and can be analyzed by graph theory. Recall that the performance issues of a network
are message delay, traffic congestion, ease of routing, fault-tolerance, and extensibil-
ity. We now address these issues in graph-theoretic terms and list their requirements

below:

e message delay: The maximum message delay is proportional to the diameter
of a graph. If the diameter is small, message traversal path is short. Dy is

decreased in Formula 2.1 on page 15.

e traffic congestion: A regular graph has its edges uniformly distributed. Traflic
bottleneck is eliminated. Queuing time at each node is short. 7} is decreased
in Formula 2.1 on page 15. Furthermore, the task of node design is simplificd

because the same node structure can be used throughout the network.

e case of routing: A vertex-symmetric graph has the properties that the graph
looks the same at each vertex. The same routing algorithm can be applied at

each vertex. Symmetry also implies regularity.

e fault tolerance: If a graph is highly connected, there are many disjoint paths
between any two vertices in the graph. The ability of the network to survive

from node or edge failure is enhanced.

o extensibility: If a graph has a recursive structure, it can be modified to varying
sizes and retain the properties of the graph. This reconfiguration takes minimum
changes in software because only tables and constants in resource managers need

to be modified and application programs and compilers are preserved.

20

e links per node: It is equal to the degree of a vertex. It is constrained by the

number of connection pins of a chip.

In summary, graphs that are used to model interconnection networks should have
the following properties: low diameter, regular, symmetric, highly connected, recur-
sive, and of low degree. We know that these properties can be contradictory from the
previous section. So for past several years, researchers have been working on problems
of constructing graphs based on different goals [12]. In particular, we point out two
questions that are related to our work.

Problem 1. Given a D and a A, construct a graph of diameter D and degree A
whose size is as large as possible.

Problem 2. Given a A and a S, construct a graph of degree A and size S whose
diameter is as small as possible.

Problem 1 is the well-known (A,D) graph problem. Given a degree A and a
diameter D, the size of a graph is bounded by the so-called Moore bound, which can
be derived from the following argument.:

The first node can link to at most A different nodes with diameter 1. Each A
node at diameter 1 can link to A-1 different nodes with diameter 2. Each A(A-1)
node can link to at most A-1 different nodes with diameter 3. By continuing this
process, we reach vertices with diameter D and the graph is constructed in a tree
shape. So an upper bound on the size of a graph with given (A,D) is a function of A

and D. The function can be expressed as,
S(A,D)=14+A+AA-1)+AA -1 +..+AA-1)P" (2.2)
From Formula 2.2, a lower bound on the diameter of a graph can be derived
D(S,A)=logs_, S —2/A (2.3)

A graph of degree A and diameter D is called a Moore graph if its size is equal to
S(A,D). The known Moore graphs are the following:

1. Complete graphs: D =1, any A, S = 1+A

21

2. Rings: any D, A =2,S=2D +1
3. Petersen graph: D =2, A =3,S =10
4. Hoffman-Singleton graph: D =2, A=7,S = 50

For D = 2 and A = 57, the problem of its existence remains open. For the rest of
the combinations, it is impossible to construct the corresponding Moore graphs [24]
and it is not known how close we can get to the Moore bound. So far the random
graphs are the best as far as the diameter is concerned. It is proved in [10] that

almost all random regular graphs with degree A and size S have a diameter
D = loga-1S + loga-1logS + ¢ (2.4)

where c is a constant not greater than 10. This formula has the same order as Formula
2.3 and is very close the optimum. However, it is difficult to construct low-diameter
random graphs by any explicit method [12] and it is also difficult to use random
graphs to model interconnection networks because of the disadvantages of random
graphs as stated in Section 1.2. Many strategies different from random graphs were
developed to construct graphs of large sizes and low diameters.

As mentioned before, some properties of graphs are contradictory. It is impossible
to construct graphs that include all good network properties. In this thesis, we pro-
pose a new construction method for large-scale interconnection networks. A larger
latency will be exhibited when the network size increases. Methods have to be devel-
oped to lower the latency in large-scale networks. Therefore, our construction is based
on this goal and is the type that is presented in Problem 2. This method provides a
uniform construction for families of large graphs, which are called multidimensional
linear congruential graphs. In Chapter 4, we will prove that our graphs are suitable for
interconnection networks by those graph-theoretic properties discussed above. Since
we derived those graph-theoretic properties from the interconnection network of a
multicomputer, and any general-purpose computer network possesses many similar-

ities to multicomputer systems, our model is suitable for multicomputers, computer

22

networks, and distributed systems. We will also compare the size, diameter, and con-
struction method of our graphs with some famous graphs in Chapter 5. The routing

algorithm for this model is currently under investigation.

23

Chapter 3

Review of Current Network

Models

3.1 Overview

In past years, many simple topologies were used to connect computers (processors),
for example, array, ring, tree, mesh, and complete graph. These topologies have fow
cost and simple routing algorithms, however, none of them can be used for large-
scale networks because their diameters are too large (except for complete graphs)
and the degree of a large complete graph is too high. Many methods were developed
to create new topologies or to modify existing ones, for example, the hypercube and
its derivatives, cube-connected cycles, butterfly, shuffle-exchange, de Bruijn, Banyan,
and Delta networks [29]. We summarize some important families of graphs that have

good network properties as below.
1. Generalized chordal ring: chordal ring [4] and generalized chordal ring [17]
2. Graphs on symbols: de Bruijn, Kautz (9]
3. Product of graphs: optimal (3,3), (4,2) and (5,2) graphs (8]

4. Compound graphs: multitree (MTS) (5]

24

5. Graphs based on group theory: star, pancake [3]

In particular, we point out four topologies and examine their structures in the fol-

lowing sections.

3.2 The Hypercube Graph

3.2.1 Definition

The hypercube graph is also known as hypercube, boolean r-cube, binary r-cube,

r-cube, cosmic cube. Its definition is given below.

DEFINITION 3.2.1 The r-dimensional Hypercube
In a r-dimensional hypercube graph, each vertez is represented by a r-bit binary
string. Two vertices are connected by an edge if and only if their binary strings differ

in exactly one bit.

An edge is called dimension k edge if it connects two vertices whose binary strings

differ in the kth bit. Some examples of hypercubes are given in Figure 3.1.

101 O '0) 111
10 11 / /
O Q) 100 O~ ') 110
001 O ®) 011
(g O 000 O '®) 010
00 01
2-Cube 3-Cube

Figure 3.1: 2-cube and 3-cube

25

3.2.2 Properties of Hypercubes

The hypercube has many good network properties. Its structure, properties, and
generalizations have been investigated by many researchers [29, 36, 38, 40]. Many
algorithms were also developed to put it into real applications. It is one of the best

understood nietworks. We review those properties that we pointed out in Chapter 2.

e Size: A r-dimensional hypercube has 2" nodes since the number of combinations

on a r-bit binary string is 2.

e Diameter: The diameter of this graph is ». The maximum distance to travel is
between two vertices whose binary strings are complements of each other. This
travel can be done by traversing r edges in which none of them lies in the same

dimension.

o Regularity: It is regular. Each vertex has a degree r and therefore is connected

to r vertices.
e Symmetry: It is both edge and vertex symmetric [29).

e Connectivity: It has the maximum connectivity. There are r vertex-disjoint

paths between any pairs of vertices [36)].

¢ Extensibility: Hypercubes have a recursive decomposition structure. A r-
dimensional hypercube can be constructed from two copies of -1 hypercubes

by connecting their dimension r edges. An example is given in Figure 3.2.

3.2.3 Summary

The hypercube possesses many good network properties as seen in the previous sub-
section. Hypercubes can embed many well-known and popular networks efficiently, for
example, a n-node hypercube contains one dimensional n-node and two dimensional
/1 X /1 node arrays as subgraphs. It has been shown in [29] that the hypercube con-

tains or nearly contains arbitrary arrays as subgraphs. It is also true for ring, binary

26

1000 2
0 . 1111,-°2-"]1100
v | 1011
\\\ ,”
1001
o011_[1101] 0111
0010} <0101
/" 0001 S ~Jo110
0000 0100

Figure 3.2: Two 3-cubes are linked to form a 4-cube by adding dashed edges

tree, mesh, and mesh of trees. Thus, the algorithms developed for these networks can
be simulated by hypercubes with only a small factor slowdown. In addition, many
parallel algorithms have been developed for the hypercube. For example, a 2™ x 2™
matrix multiplication can be done by a 2m-cube in O(nlog, n) steps where n = 2™
[25]. Its nice . ructure and well-understood properties make it powerful and popu-
lar in the market. Many MIMD and SIMD array machines use hypercubes as their
interconnection networks.

Examples of available multicomputers that employ hypercubes as their intercon-
nection networks are Cosmic Cube [39], Intel iPSC/1, iPSC/2, Ametek S/14, N-
Cube/10 [20], and Connection machine [22]. The dimensions of the cubes used in
these systems range from 2 to 12.

However, the hypercube has three drawbacks:
1. Its size is restricted to powers of two. Variants can be found in [38, 40].

2. Its degree grows logarithmically with the network size because degree = log,

27

size. It is impossible to increase il.e size without increasing its degree.

3. Its diameter equals its degree, so the diameter grows logarithmically with the
network size. In fact, its diameter is the biggest one among the networks we

discuss in this chapter.

Communication wires cost money and a single chip has a limited number of con-
nection pins. When constructing a large-scale interconnection network, the cost of
this many communication wires and the undesirability of a large lutency make the hy-
percube a less favorable choice. Several bounded-degree networks have been designed
to overcome the drawbacks of the hypercube, for example, the butterfly graph, shuffle-
exchange graph, cube-connected cycle, and the de Bruijn graph. The de Bruijn graph
is considered one of the best constructions for large-scale interconnection networks.

We discuss it in the next section.

3.3 The de Bruijn Graph

3.3.1 Definition

The de Bruijn graphs were originally constructed as directed graphs and there are
different versions of the definitions [9]. Here, we give a definition for the undirected

case, which is similar to the definition of a hypercube.

DEFINITION 3.3.1 The de Bruijn Graph

Each vertez in a de Brutjn graph, B(d,D), is represented by a string of length D.
Each symbol of the string is in {0,1,..,d-1}. The edges of a vertez can be classified as
two sets, left-shift edges and right-shift edges. A vertex, pppp-1---p2p1, 18 connected
to vertices with the form, zpp .- p2 by right-shift, and the form pp_y---p1z by left-
shift, z € {0,...,d-1}.

From the above definition, the de Bruijn graph B(d, D) is of degree 2d. In fact, the
left-shift edges correspond to out-degree edges and the right-shift edges are in-degree

28

edges of a vertex in a directed graph. We only consider undirected graphs, so we view
them as the same.

A r-dimensional binary de Bruijn graph is a special case of the above with D = r,
and d = 2 and it is similar to the hypercube. A vertex is represented by a string
PrPr-1°--P2P1, Where p, €{0,1}, and is connected to 4 neighbors with coordinates,
Pr-1Pr—2 210, Pro1Pr—2-++p11, Op,—y -+ - p2, and 1p,_; - - - p. Some examples of bi-

nary de Bruijn graphs are shown in Figure 3.3.

000
100 001
0 00 010
10 0
101
1
1
110 on
B(2.1) B2.2)
11
B(23)

Figure 3.3: Examples of binary de Bruijn graphs

3.3.2 Properties of de Bruijn Graphs

The de Bruijn graph possesses good network properties in that it can solve wide
classes of problems, e.g., pipeline class, multiplex class, etc, and it admits different
sorting methods, e.g., sequential(parallel) input /sequential (parallel) output [37]. We

first review the same basic properties as in the previous section.

29

o Size: The size of a de Bruijn graph, B(d, D) is d® becausc the combination of
d symbols on length D is d° , and is equal to 2° for the binary graph.

o Diameter: The diameter is D. The maximum distance to travel is between two
vertices whose strings contain no identical symbols. This travel can be done

either by right-shift or left-shift D times from a source node.

o Regularity: The degree of a de Bruijn graph is 2d by its definition. The degree
of a binary graph is therefore 4. However, the de Bruijn graph is not regular as

for example the vertex 00--- 0 is only of degree 2d — 2.

e Symmetry: It is not fully symmetric. However, routing is very simple as implied
by the definition of the graph. If a node, x; - - 2p, sends a message to another
node, y1y2 -+ yp, it can be done either by right- or left-shift D) times. The
route is thus a sequence, 2,22+ Tp,T2T3" - Y1, T3+ Y12y -+ - Y1¥2- - - Yp. Kven
though it is not the shortest path, one simple algorithm exists and is good for

all nodes.

o Connectivity: Its connectivity is 2d — 2. It has the best possible connectivity in
two senses. First, because the connectivity equals the minimum of the degrees
of the graph, second, because it is possible to modify the graph slightly to obtain

graphs which are regular and connectivity is 2d {40].

e Extensibility: A B(d, D) graph can be constructed from either a B(d -1, D)
or a B(d, D — 1) graph. The difference of these two algorithms [29, 37] is that
B(d,D — 1) is not a subgraph of B(d, D), but B(d — 1, D) is a subgraph of
B(d, D). The algorithm to construct a B(d, D) graph from a B(d - 1, D) takes
d copies of B(d — 1,D) and is more complex than that of a hypercube. An

example is given in Figure 3.4.

30

Figure 3.4: 3 copies of B(2,2) are linked to form a B(3,2) by dashed edges and

combining nodes in dashed rectangles

3.3.3 Summary

The de Bruijn graphs are rich in structure and have most of the good network prop-
erties of hypercubes. They are easy for routing, optimally connected, extensible, and
contain many more vertices than the hypercube for degrees greater than 4. Even
though the binary de Bruijn graph and the hypercube have the same size and diam-
eter, the binary de Bruijn graph still has the advantage that its degree remains at
4 as its size grows, and therefore the number of edges is much less than that of a
hypercube for dimension greater than 4. Furthermore, the degree and diameter are
not related for de Bruijn graphs. The advantage is that, given a size, there are many
combinations of degrees and diameters for it, while it is unique for the hypercube. For
example, given a size 1024, the only configuration of hypercube is degree 10 and diam-
eter 10. The configurations of de Bruijn graphs can be B(2,10), which is degree 4 and
diameter 10, or B(4,5), which is degree 8 and diameter 5. Similar to the hypercube,
the de Bruijn graph can embed ring, linear array, and tree nicely. It also can embed

those networks that are impossible or difficult for the hypercube, for example, tree

31

machine, butterfly, shuffle-exchange graph. The binary de Bruijn graph can simulate
those algorithms developed for the hypercube efficiently. An n-node de Bruijn graph
can simulate an n-node hypercube algorithm without loss of efficiency [29]. Its ability
for sorting and optimal VLSI layout had been justified in [37]. One limitation of this
graph is that it is defined only for even degree. Although there is no commercially
available multicomputer that uses the de Bruijn graph as its interconnection network,
a special-purpose machine, which is used for a decoding of satellite communication
in NASA’s Galileo mission, employed the de Bruijn graph to connect its 8192 nodes
[16]. From the point of view of large-scale interconnection networks, the de Bruijn
graph is clearly much superior to the hypercube and can be a candidate for fine-grain
multicomputers of the next generation.

The hypercube and de Bruijn graph could be considered to be in the same class:
they are graphs that are generated on alphabets, and their diameters grow logarithmi-
cally with graph sizes. Given a diameter D and a size S, D = logy S is the formula for
the diameter of a de Bruijn graph B(d, D). A new class of construction is introduced

in the next section.

3.4 The Cayley Graph

3.4.1 Definition

The Cayley graph is based on group theory. Given a finite group G and a sct of
generators F, the vertices of a Cayley graph are the elements of the group G. There
is an edge between vertices z and y if and only if there is a generator g in F such that
zg = y. Following Akers and Krishnamurthy (3, 1], we give the definition of Cayley

graphs that are constructed by permutation groups.

DEFINITION 3.4.1 Cayley Graphs on Permutations
Given a set of n symbols and a set of generators F = {g1,92,-..,9,} wherc n and i
are some integers, and each generator in F is a permutation, the vertices of the graph

are all permutations on the n symbols. There is an edgc between vertices z and y if

32

and only if for some g,,1 < 7 <1, 19, = .

The set of generators is required to satisfy the following: 1) it does not contain the
identity permutation, 2) all generators are different, and 3) it is closed under inverse.
With these requirements, the resulting graph has the properties: 1) there is no loops,
2) there is no no multiple edges between any pair of vertices, and 3) it can be viewed
as undirected. The reason of the third propertiy is because for any two vertices z
and y, if there is a generator g such that zg = y, then there must be a generator h
in I such that yh = z. A Cayley graph is completely specified by its permutations
and we will use n to denote the length of a permutation. We give some examples of

Cayley graphs in Figure 3.5 and Figure 3.6.

generators:
23451 acdb bacdef
51234 badc abdcef
dcba abcdfe
12345 abcd abdcfe badcfe
badc acbd
23451 51234 abdcef badcef
bdac cadb
abedfe bacdfe
34512 45123 dbca cdab
N
dcba abcdef bacdef

Figure 3.5: Examples of Cayley graphs

3.4.2 Properties of Permutation Cayley Graphs

As can be seen from Figure 3.5 and Figure 3.6, the Cayley graph can be used to
create 1 variety of graphs based on the chosen permutations. For example, star
graph, pancake graph, bubble sort graph have been considered [1]. In particular, we
will use the star graph as an example to check its diameter and those graph-theoretic

properties mentioned before.

33

Generators:

2134
214
4321
1234 4321
A—W 214 2134 3421 2341 y— B
2314 3124 2431 3241
1324 31
3142 2413
4132 1342 217 1423
B 1432 4312 1243 4123 }— A
3412 2143

Figure 3.6: A 4-pancake graph

A n-star graph is a Cayley graph on n symbols and edges are constructed by 7 — 1
generators in which each generator g,, 2 < 2 < n transposes the first symbol with the
ith symbol at each vertex. For example, a 3-star graph is given in Figure 3.7.

Now, let us look at the properties of permutation Cayley graphs.

o Size: The size of a graph is n! since the number of permutations on n symbols
is n!. Depending on the choice of generators, the n! vertices may not all be

connected.

e Diameter: Diameters of some graphs are still open. For those graphs with
known diameters, the results can be found in [1, 2]. The diameter of a n-star

graph is [3/2(n —1)].

34

generators:
213
321

Figure 3.7: A 3-star graph

e Regularity: Since each generator is applied to a vertex once and the set of
generators is closed under inverse, the Cayley graphs are regular and the number

of generators is equal to its degree.

e Symmetry: It has been proved that every Cayley graph is vertex symmetric. It
is also possible to be edge symmetric if the generators satisfy a specific rule [3].
A star graph is both vertex and edge symmetric. Routing is simple in the sense
that finding a path between two vertices = and y is reduced to the sorting y~'z

to I, the identity permutation.
o Connectivity: A n-star graph has the maximum connectivity n — 1 [2].

o Extensibility: A n-star graph can be constructed by n copies of n-1 star graphs.

This is shown in Figure 3.8.

3.4.3 Summary

The Cayley graph is a very general construction. Many symmetric networks can

be represented by these graphs. Examples are the cube-connected cycle, hypercube,

35

generators*
2134
3214
4231

2134 3214

3124 2314

1243 4123

4312 1432

1342 4132

4213 1423

3421 2341

2431 3241

Figure 3.8: Four 3-star graphs are linked to form a 4-star graph by dashed edges

36

ring. Every symmetric network can also be constructed by this graph with a sim-
ple extension. Examples are the n-dimensional cube-connected cycle, and the burnt
pancake graph. Moreover, it can be used to create new graphs by starting with an
arbitrary finite group. The properties of a permutation Cayley graph are completely
specified by n and the set of permutations. The star graph in the previous section, for
example, has many properties to be a good interconnection network. It is symmetric,
maximally connected, recursive, and its diameter and degree grows slower than the
hypercube.

Other advantages of Cayley graph can be realized from the following:

e It provides algebraic tools for design and analysis.

e The properties of Cayley graphs can be proved as a whole class, instead of

proving a property for each individual graph.

o All new created graphs inherit the known properties of Cayley graphs. For

example, the property of vertex symmetry.

Thus, the Cayley graph provides an efficient way to design and analyze intercon-
nection networks. However, like the hypercube, its drawback is that its degree grows

with the graph size.

3.5 The DCC Linear Congruential Graph

3.5.1 Definition

The Disjoint Consecutive Cycles (DCC for short) linear congruential graph was pro-
posed by Opatrny and Sotteau in 1992 [31]. Its construction shares the same idea as
the Cayley graph since they both use tie concept of generators. Its structure is as
flexible as the de Bruijn graph since the degree is not predetermined by the chosen

graph size. We first introduce the definition of a linear congruential graph.

37

DEFINITION 3.5.1 The Linear Congruential Graph

In a linear congruential graph of size n, each verter is represented by an integer
r, 0 <z <n-—1. There is a set of generators F = {go,g1,--.,g:-1} in which each
one is a linear function. Two vertices r and y in a linear congruential graph G(F,n)
are connected by an edge if and only if there is a generator g,, 0 < j < 1 —1 such

that y = g,(z) mod n.

The generator set in a Cayley graph is closed under inverse but it is not required to
be so in a linear congruential graph. Hence, each generator adds an in-degree edge
and an out-degree edge for each vertex. Since we only consider undirected graphs, it
is assumed that all edges are bidirectional.

The disjoint consecutive cycles created by a generator set F = {go,g1,...,81-1}

on a graph are defined as follow.

DEFINITION 3.5.2 Disjoint Consecutive Cycles

Given a set of generators F = {go,g1,-.-,9:-1} for a linear congruential graph
of size n = k'm for some integers k > 1, | > 2, and m. The cycles created by
the generator set F in the graph are called disjoint consecutive cycles if each g,,
0 < j < i-1, creates k? vertez-disjoint cycles of length n/k? on the verler sel
{0,1,...,n -1}

DEFINITION 3.5.3 The DCC Linear Congruential Graph
A DCC linear congruential graph is a hinear congruential graph whose generators

generate disjoint consecutive cycles (DCC) on the verlex set.

Because each generator adds 2 more degrees to a vertex, d/2 generators are used for a
graph of even degree d. For a graph of odd-degree d+1, d/2 generators are used in the
same way as the graph of degree d and an extra linear function g is used to generate
an edge for every two vertices. An odd-degree graph is represented by G(F,n,g, V1)
where Vi, which is a subset of the set {0,1,...,n—1}, is the domain for g. Examples

of linear congruential graphs are given in Figure 3.9

38

~J

(V]
<

~3

G({5x+1,9x+2),8) G({5x+1).8,{17x+2},{04,1,5})

Figure 3.9: Examples of linear congruential graphs

3.5.2 Properties of DCC Linear Congruential Graphs

Similar to the Cayley graph, the linear congruential graph can be used to construct
a variety of graphs and the linkages are completely specified by the set of generators.
However, the most distinguishing property of the linear congruential graph is its size.
Its graph size is one of the input parameters for construction, while all previous
models have other input parameters and their sizes are implied by these parameters.
This gives lincar congruential graphs a more flexible structure than the de Bruijn
graph and lower diameters may be achieved by varying generators and graph sizes.
Following the known results in [31] , we review the DCC linear congruential graphs

with size formed by powers of 2.

e Size. The graph size is one of input parameters for construction. It is thus
possible to construct variable-size graphs with any degree. The results showed
that DCC linear congruential graphs are much larger than all the previous
graphs of the same degree and diameter. We will have a detailed comparison in

Chapter 5.

e Diameter: The problem of obtaining a formula for the diameters of these graphs

is still open. There is an upper bound for the graphs of degree 4 but it is not

39

very precise. Therefore, the diameters of thesc graphs must be calculated by
computers. These calculated diameters show that the diameters of DCC linear
congruential graphs are much smaller than the diameters of other families of
graphs. For example, the Mosaic C, a multicomputer with 16384 nodes, used
a 3-dimensional mesh as its interconnection network. Its diameter is thus 78.
The diameter of the DCC linear congruential graph of the same size and degree

is only 17.

Regularity: It is regular since the generators partition the vertex set into dif-

ferent subsets and each generator is used to generate an edge for a vertex.
Symmetry: It is not symmetric in most cases.

Connectivity: Given a set F of DCC linear functions of size t, the graph gen-
erated by F is 2t-connected. That is, an even-degree graph has the maximum
connectivity. However, it is not necessarily 2{+1-connected for an odd-degree

graph, but it is at least 2¢-connected.

Extensibility: DCC linear congruential graphs of size 2' have a recursive struc-
ture. A graph of size 2' can be constructed by two copies of graphs of size 2=t

An example is given in Figure 3.10.

3.5.3 Summary

Like de Bruijn graphs, the linear congruential graphs provide a uniform method to

construct large-scale interconnection networks. Following the same thrust as Cayley

graphs, linear congruential graphs use the idea of generators, and thus many known

graphs can be represented by this graph with a proper generator set. Properties of

these graphs can be proved as a whole class by algebraic tools. The superiority of

linear congruential graphs over the other two graphs can be seen from the following:

1. It constructs graphs with larger sizes (relatively, lower diameter)

40

Dashed edges are in the original graph and deleted when it is extended.

Figure 3.10: Two copies of G({5x+3},8) are linked to form a G({5x+3},16)

2. lts degree is independent of its size.

3. Its diameter grows at a lower rate as a function of graph size than the other

families of graphs.

4. It provides more varieties of choices to network designers because given a graph
size, the linear congruential graph can construct graphs of any degree with that
size. But it is not possible for the de Bruijn graph, for example, given a graph
of size 512, the possible configurations are B(2,9), which is degree 4, and B(8,3),
which is degree 16. The Cayley graph is more restricted because a n-Cayley

grapli has a size n! and degree n-1.

5. It generalizes the constructivn of de Bruijn graphs.

Therefore, the DCC linear congruential graphs have many advantages and can be
considered as an alternative for the design of large-scale interconnection networks.
However, it is still open to obtain a better bound on the diameter of a DCC linear
congruential graph, and the precise relation among diameter, generators, and graph

size has not not been found yet. In the next chapter, a new construction method

41

is proposed. It generalizes the construction of linear congruential graphs. Our goal
is thus to improve the diameters of DCC linear congruential graphs by constructing
graphs with this new method, and to retain in these new graphs those good network

properties found in the DCC linear congruential graphs.

42

Chapter 4

Multidimensional Linear

Congruential Graphs

4.1 Overview

To have a better understanding of our multidimensional linear congruential graphs,
we describe their structure informally before we come to a formal definition.

Let n be an integer, the number of dimensions of the graph. The size of an n-
dimensional space used by our construction is bounded by a given vector of integers
(S1,82,...,8n) in which each component s;, 1 < i < n, is the length of the ith
dimension. The vertices of this graph are points in the n-dimensional space. Thus
each vertex is assigned a vector of integers (p1,pz,...,Pn) in Which each component
p, 1 <i<n,isin{0,1,...,s —1}. Therefore, the size of the graph is sy * Sz %+ - - *sy.
A vertex (or a vector) (p1,Pz,- - -,Pa) Will be represented by vector § in some cases.
The former is used when the coordinates (components) of a vertex (a vector) are to
be differentiated; the latter is used when the coordinates (components) can be viewed
as a single unit. We choose vector representation to illustrate that the vertex of this
graph is different from the vertex of a linear congruential graph, which is a single
integer. The edges of this graph are defined by a set of n-dimensional linear functions

{fi,fas-.., fx} for some integer k. An n-dimensional linear function TA + b consists

43

of a n by n matrix A and a 1 by n vector b. Given a vertex (p1,pa, . .., Pu). it is linked

to the vertex (g1, 92,...,¢s) by the generator f,(¥) = £A, + b, if the following formula
holds,

(Qla---’Qn)=(Ph---,Pn) : ' E +(b1,--o,bn)m0d(S],...,S")

any Qnyn
an ayp ... 4n
where A, = : : : : and b, = (b, b2 ..., by).

any Qn2 ... Qpn
As we can see, a linear congruential graph is a special case of this model when

n = 1. The formula is simplied to q; = (p1 * ai1 + b)) mod s, and each vertex
is an integer. The idea of such edge-generation is illustrated in Figure 4.1 for the
two-dimensional case.

To construct an odd-degree graph, we use an additional linear function to define
a perfect matching on the vertex set. That is, an edge will be generated for every two
vertices by this linear function.

We now give some informal reasons, which made us believe that this model can
give good results as far as the diameter is concerned. First, let us look at an extreme
example, the hypercube. The hypercube is good because of its simple and regular
structure, as was shown in the figures of 3- and 4-cubes in Chapter 3. If we put
the hypercube in the Cartesian coordinate axes, a vertex can be connected to other
vertices only by edges that are parallel to the axes. By this constraint, the diameter
of a 3-dimensional cube, for example, is 3. If we are allowed to construct those edges
that are not parallel to the axes, we can easily get a graph of the same size and its
diameter is 2. This is illustrated in Figure 4.2.

This example reminds us of the idea that a regular graph with a simple con-
struction rule can be more easily understood but the diameter of the graph is not
necessarily good. Among the graphs we mentioned before, the hypercube has the

simplest structure, and is the easiest one to understand, but is the worst one when

44

$1-10

(x,y}=fk (1,1) mod (S1.52)

%

] (x.y) = f1 (1,0) mod (S1 ,S2)

(1.0) = fx (0.0) mod (S1 ,52)

(1.1) =£2 (0,0) mod (S1 ,52)

(x,y)=f2(0,1) mod (S1,52)

M o
0.1)=f1 (0,0) mod (S1,52)

0 1 S2-1

Figure 4.1: Example of a two-dimensional graph

considering its large diameter.

Second, given a linear function f(x) = ar+c, a,c € N, and an integer 7o, 0 < o <
n -1 for some integer n, a linear congruential sequence [28] g, z1, Z3, -+, z; is defined
by r, = f(z,~1) mod n. It is a periodic sequence of period equal to or less than n. This
property was used in the linear congruential graph described in Section 3.5. Each z,
in the above sequence is a vertex of a linear congruential graph and = is the graph size.
Since a linear congruential sequence is a periodic sequence, the linear congruential
sequences created by f(z) will define a number of cycles in a linear congruential graph
G({f}.n). The linear congruential sequence of length n is thus a Hamiltonian cyclein
the graph. The use of linear functions means that a de Bruijn graph is a special case of

a linear congruential graph. The de Bruijn graph B(d, D) is isomorphic to the linear

45

Figure 4.2: The 8-node 3-cube of diameter 3 and a 8-node graph of diameter 2

congruential graph G(F,d”) where F = {dr 4|0 < i < d - 1}. Observing the linear
functions in the set F', the same multiplicative constant is used for all linear functions.
It seems natural to consider linear functions in which all multiplicative and additive
constants are different. Inspired by the first reasoning, these linear functions should
define edge sets that give more possibilities of linkages, and graphs constructed by
these functions are expected to have smaller diameters. Since random graphs almost
always have low diameters and linear congruential sequences with maximum length
n are used to generate pseudo-random numbers [28], a linear congruential graph that
contains one Hamiltonian and several shorter cycles is expected to have a low diameter
[31]. Indeed, the diameter of a DCC linear congruential graph is smaller than the
diameter of a de Bruijn graph.

Third, although it is impossible to describe the structure of a random graph by
small number of functions, the reason we expect this model to produce better results
is that we are establishing an even more complex construction rule than the one used
in a linear congruential graph. Inspired by the second reasoning, we expect that this
complex rule will provide more possibilities of linkages and therefore lower diameters
could be obtained. In a linear congruential graph, a linear function contains exactly
one variable. As a result, the linear function is fixed for all vertices and is used to
generate edges throughout the vertex set. However, as edges are created by a linear

function in a multidimensional graph, the linear function can vary along its vertex

46

set if it contains more than one variable. Edges are therefore actually created by two
or more of those linear functions used in a one-dimensional linear congruential graph.
In general, the advantages of graphs in a multidimensional space over graphs on

a linear axis are:

1. Vertices are divided into classes according to the dimensions and each class has
its own linear function. As edges are generated along the vertices, a function
varies in a way such that different functions are used for source vertices that

have different classes.

2. The average distance of jumps can be expected to be farther because as an edge
travels from one dimension to another, vertices between the two dimensions are
all skipped. Such jumps can be made by switching dimensions and this can be

done easier than the linear case because of the existence of extra variables.

Therefore, with more linear functions among vertices and a proper mixture of
long and short jumps, we expect better diameters to be found. Indeed, it will be
shown later that the size of a two-dimensional graph is larger than the DCC linear
congruential graph of the same degree and diameter. Comparisons will be given in

Chapter 5.

4.2 Definition

We will use N to denote the set of nonnegative integers and Z, to denote the integer

set {0,1,...,p— 1}. All elements of any vector or matrix are in V.

DEFINITION 4.2.1 Linear Functions of Dimension d
Let d € N. We say the function f is a linear funciion of dimension d if f(Z) =
FA+b where Aisad by d constant matriz, b is a constant vector of length d, and ¥

is a variable vector of length d.

A d-dimensional linear function in the above definition has d variables by its

definition and can be rewritten to d linear functions based on matrix operations, one

47

linear function for each dimension. Each of these rewritten functions, however, has

at least one and at most d variables.

DEFINITION 4.2.2 Multidimensional Linear Congruential Graphs

Let § be a constant vector of length d, 3= (s1,52,...,54),8, € N—{0} for1 < i <
d, and F be the set of linear functions of dimension d, F = { f,(F)|f.(F) = FA, + b,
where 1 <1 < k, for some k }. We define a graph G(F,S) of dimension d as a graph
on the vertex set V = Z, x Z,, X +-+ x Z,,, tn which any ¥ € V is adjacent to the
vertices fi(T¥) mod §,1 <1 < k. For a subset V| of V and a lincar function g, we
define a graph G(F,5,9.1}) of dimension d as a graph on the verter set V, in which
any T € V is adjacent to the vertices f,(f) mod §,1 <7 <k and any & € V| is also

adjacent to the verter g(') mod §.

We use G(F, §) to generate large regular graphs of even degree, while G(F, 8, ¢, V})
will be used to generate large regular graphs of odd degree. The size of the above
graph is given by § and is equal to sy * 83 % - -+ * s4.

We will call the linear functions in F' and F U g, the generators of G(F,38) and
G(F,3,g,V1), respectively. For any generator f we will call the graph G({f}, &) the
graph generated by f on . Furthermore, a generator can be rewritten into d lincar
functions based on matrix operations, one for each component of a vector.

It is natural to consider that direct edges are from any & € V to the vertices
f(Z) mod §,1 < ¢ < k. We restrict this thesis to the undirected case.

Linear congruential graphs used two important properties of linear functions, we

restate them below since they will be needed in some of our results. Proofs can be

found in [28] and [31).

LEMMA 4.2.1 Linear Congruential Sequences with Maximum Period
Let f(z) = az+c be a linear function, n be a positive integer and z € {0,1,...,n~
1}. The linear congruential sequence zq,xy,...,z,, defined by z, = (az,-; +¢) mod n

for j > 1 has a period of length n if and only if
1. ged(e,n) =1

48

2. a-11s a multiple of p for cvery prime p that divides n; a-1 is also a multiple of

e

4 f nis a mulltiple of 4.

LEMMA 4.2.2 Disjoint Cycles of Equal Lengths

Let n be a positive integer such that 1 = k'm for some integers k > 1 and i > 2,
and m. Let ¢ be an integer such that ged(c,n) = 1, and b be the product of all
prime factors of n; b also has 4 as a factor if n is divisible by 4. Let f,(r) =
(Kb + 1)r + ke, For every j, 1 < j < i, the function f, generates k? vertez-
disjornt cycles of length nfk? on the set {0.1,...,n — 1}. The verter sets of these
cycles are Ay, = {00, ... on =k} Ay, = {1, +]1,...n=k 4+ 1}, Apy, =
{k = 1,2k =1,..,n=1}. Furthermore, there is an edge between r and y in the graph

generated by f, only if |y — x| i divisible by k7 but not by k71,

These lemimas were used in selecting the gencrators that create disjoint consecutive
cycles in DCC linear congruential graphs. We refer the cycle structure of a generator
(a graph) as the number of cycles and their relative lengths created by the generator
(in the graph). By <hoosing generators according to these lemmas, the cycle structure
of a DCC linear congruential graph G({fo. fir. ..y fr-1}, k'm) has KO+ k' 4. 4 k271
cycles as cach fi. 0 < 1 < j — 1 creates k! cycles in which each cycle is of the same
length. and the relative length of cycles among these generators is 1:k71:- - -:k'=2. Fur-
thermore, cycles among these generators are edge-disjoint. The best results for linear
congruential graphs were obtained by this arrangement. However, the above lemmas
cannot be used for multidimensional graphs because the generators in a multidimen-
sional graph may contain more than one variable. When we started this research, we
did not have any similar lemma that would help us in obtaining generators having
the same properties as the generators used in DCC linear congruential graphs. We
therefore started initially te derive some generators that create edge-disjoint cycles
by computers. The numbers of cycles may not be consecutive among generators and
the cycles of a generator may not have the same length. Our efforts are therefore to
study the properties of multidimensional generators and to search for the rules that

can create disjoint consecutive cycles.

We first investigated the graphs in the two-dimensional space to see how different
it is from the one-dimensional case. Qur subsequent results are then all based on
two-dimensional graphs which have & = (2,s,) [32]. Any vertex will be represented
by either the vector form & or the (z,y) form where 0 <2 <2' - 1,0 <y < s — 1.
We believe that all results for the two-dimensional case could be generalized to more

dimensions.

4.3 The Cycle Structure of G(F, (2, 52))

After constructing two-dimensional graphs for some time and observing those gen-
erators that were giving good results as far as the diameter is concerned, we could
see that in many cases these good results were obtained by generators that generate
disjoint consecutive cycles. Since the best results of one-dimensional linear congru-
ential graphs were obtained by choosing generators that create disjoint consecutive
cycles in the graphs, our interest is therefore to search for the rules that can ensure
the same cycle structure in a two-dimensional graph. Eventually, we started to see
some patterns in the constants of generators that can create 2’ cycles, j > 0 and
edge-disjoint cycles. At the late stage of this research, we were able to prove some
of the patterns we observed and they are given in this section. By following these
properties and sonie empirical results, we provide a solution of constructing disjoint
consecutive cycles in the two-dimensional graphs of § = (2',82). We will first give

four definitions that are necessary for our discussion.

DEFINITION 4.3.1 Extension of a Graph
We define the extension of a two-dimensional graph G(F,(2',2)) (we will say the
graph G is extended) to be the graph G(F,(2'*!,s3)).

DEFINITION 4.3.2 Regular Generators
Let G, be the extension of Gy = G(F,(2',8,)). We say that a generator 1s regular

with respect to s, if it creates the same cycle structure in G, and Gy. Similarly, a

50

cyele structure is regular if the generator that creates it is reqular. That is, the cycle

structure of G, is preserved in G, when G, is extended.

We are not interested in any generator that is not regular because its cycle struc-

ture lacks extensibility.

DEFINITION 4.3.3 Edge-Change of a Graph
Let G({f},(2",53)) be a two-dimensional graph. We say that a verter T = (x1,%)
of G has an edge-change when G is ezxtended if f(Z) mod (2, s7) # f(Z) mod (217, s2).

The reason why we use the term edge-change is because for all edges ((z1,¥1), (T2, ¥2))
in G, if (z1,y;) is the vertex having an edge-change when G is extended, then the
edge ((z1,1), (z2,y2)) in G is to be removed; a new edge ((z1,41), (z2 + 2',72)) will
be added at (z,31). Therefore, from (z,31) point of view, its edge is changed. The

proof for this will follow.

DEFINITION 4.3.4 Half-Symmetry of a Graph

Let G({f},(2",s,)) be a two-dimensional graph. We say that the graph G is half-
symmetric in terms of its two verter subsets Vi and V; where Vi ={(z,y)|0 <z <
2-1 _10<y<sp—1}and Vo = {(z,9)|27' S22 -1,0Sy S s2— 1}, i
the following condition is satisfied: For (z1,y1) € V1 there is an edge from (z1,y1) to
(z2,y2) if and only if for (x1 4+ 271, 41) € V2 there is an edge from (1 + 27, 41) to
(T2 + 271, 92).

The above four definitions can also be applied to the one-dimensional linear con-
gruential graphs. The following lemma proves that when a two-dimensional (or
one-dimensional) graph G;({f},(2', s2)) is extended, the resulting graph G- is half-

symmetric in terms of G;.

LEMMA 4.3.1 Symmetry of Extension
Let G1({f},(2',82)) be a two-dimensional linear congruential graph and G be the

an

- 0 -
ertension of Gy where f(T¥) =ZA+b A= (), and b= (b1, b;). Ifay is

azy a2

odd, then for all edges ((z1,%), (22, ¥2)) in G

91

1. if (z1,31) is a vertex not having an edge-change then ((ry+2', 1), (2 +2',y2))

is an edge in G,.

2. if (z1,51) is a verter having an edge-change then ((zy + 2',1),(72,¥2)) is an
edge in G,.

Proof:

Edges are constructed by applying the generator f(f) successively to vertices. In

G}, an edge from (z,,y1) to (z2,¥2) is calculated by the formula,

an

az; Qaz;

(z2,92) = (21, 31) + (’) + (b1,52) mod (2, 52)

and it can be expressed as
Iy = (anil'l -+ a1y + b]) mod 2 (])
y2 = (azy +b2) mod s,. (2)
When G, is extended, i.e., in G2,
), = (anz;+aeny: + &) mod 2'*! (3)
Yo = (a2t + b2) mod s;. (4)

From (2) and (4),
Y2 = 2. ' (5)

1. if z} = 7, then there is an edge from (z;,71) to (T2,¥2) as it is in G,. That is,
there is no edge-change for the vertex (z;,y1) in Gj. We now show that there

is a corresponding edge from (z; + 2',1) to (22 +2',32) in G,. Let

0 = (an(z1+2') + any; + b)) mod 2 (6)
y2 = (azny + b)) mod s, (7)

From (2) and (7),

Yz = Y2 (8)

52

Since o4 = x4, a1 71 + anys + b = C2'+ D where Cis evenand 0 <= D < 2,
ay; is odd by definition. Therefore, (6) — (3) are reduced as follow.
-z = (C2+ D+ a,2') mod 2! — (C2' + D) mod 2!
= ((C/2)2*! + D + ((an — 1)/2)2* + 2') mod 2
— ((C/2)2'*! + D) mod 2!

= D+2-D

= 2
Sory=ah+2 =1, +2.
Thus there is an edge from (z;, + 2',3) to {(z2 + 2%, 32).

. if o4 # 7, then 2}, = 29 + 2'. The original edge ((z1,¥1), (72,¥2)) is modified to
a new one, ((z1,1), (z2 + 2',y2)). By definition, an edge-change is at (z;,y1).

We now show that there must be an edge from (z; + 2%,3) to (z2,¥2) in Us.

Let
.'1'12’ = (an(.'l'l + 2') + anih + bl) mod 2‘.+l (9)
y;’ = (022y1 + bz) mod S2. (10)

From (10) and (2),

y2 = Y2 (11)
Since 7 # x3, anz) + anyy + by = C2 + D where C is odd and 0 <= D < 2'.
-1, = (C2+ D+ an2') mod 2+! — (C2 + D) mod 2'+!
= (((C=1)/2)2* +2' + D + ((a — 1)/2)2"*! + 2') mod 2*!
~(((C = 1)/2)2"*! 4 2' 4+ D) mod 2+
= D-2-D
= -2\
Sorli=xy -2 =142 -2 =1,
Thus there is an edge from (x; + 2*, 1) to (z2,y2).

53

0

We have shown that for every edge in G, there is a corresponding edge in G2 and
its source vertex is located between 2' and 2'*! — 1. There are two formulas for this
correspondence. Therefore, G is half-symmetric. As shown in this proof, the value
of ¥ is not relevant to this half-symmetric property since a;; = 0. This property is
thus also true for a one-dimensional linear congruential graph. An example of this
half-symmetric property is therefore given for a one-dimensional graph in Figure 3.10
on page 41. In the figure, vertices having edge-changes are those vertices incident
with dashed edges. Furthermore, if), = z, for all xy, that is, there is no edge-change
for all vertices in G, then there are two identical and unconnected copies of (7, and
one of them is shifted by 2' at the z coordinates of all its vertices.

The following two lemmas further explain the properties of the generators used in
DCC linear congruential graphs. They will be used in the proof of the cycle structure

in the two-dimensional case.

LEMMA 4.3.2 Even Number of Cycles in G({f},2)
Let f(z) = az + ¢,c # 0 be a generator of a one-dimensional graph G(F,2') and
the leading constant a is as in Lemma 4.2.1 or Lemma 4.2.2. f(z) will create an even

number of cycles in G if ¢ is even.

Proof:
Since a is as in Lemma 4.2.1 or Lemma 4.2.2, a = 27b+ 1. Assume c is even, let

c=2'd, where j >1and d € N — {0}. So az + ¢ = (2°b+ 1)z + 2°d.

1. if d is odd, then gcd(2',d) = 1. Thus az + ¢ mod 2' creates 2’ cycles by Lemma
4.2.2.

2. if d is even, let d = 2e where e € N — {0}

¢ For all even vertices z = 2y,y € N,

(2b+1)(2y) + 22emod 2' = 2*'by + 2y + 2" e mod 2'

2((2? + 1)y + 2’e) mod 2 (1)

54

e lor all odd verticesz =2y + 1,y € N,

(a)

(<)
(d)

(2264 1)(2y +1) + 2’2e mod 2
= 2% by + b+ 2y + 2*'e + 1 mod 2
=2((2 + 1)y + 2°(b/2 + €)) + 1 mod 2' (2)

if € is odd and b/2 is even then both expressions (1) and (2) create even
numbers of cycles by Lemma 4.2.2. Furthermore, expression (1) creates
an even number of cycles on 2 subgraph of G and its vertex set is formed
by all even vertices and has a size 2'~!. Expression (2) creates an even
number of cycles on a subgraph of G and its vertex set is formed by all

odd vertices of the same size.

if ¢ is odd and b/2 is odd then expression (1) creates an even number of
cycles by Lemma 4.2.2. Expression (2) is a linear function that is not in
Lemma 4.2.2. We can further divide those odd vertices into two sets and
apply this technique recursively. In the worst case, we may reach a graph
of a single vertex, i.e., a self-loop cycle. Since we have a graph of size 2" and
we divide the vertex set into two subsets, the r imber of cycles therefore

is even.
if € is even and b/2 is odd, the same reasoning as above can be used.

if € is even and b/2 is even, both expressions (1) and (2) are not in Lemma
4.2.2, we have to apply both of them by this technique recursively. In the

worst case, we will have 2' self-loop cycles, which is still an even number.

0O

LEMMA 4.3.3 Number of Edge-Changes in G({f},2')
Let G({f},2") be a one-dimensional graph and G, be the extension of G where

f(x) = ar + ¢,c # 0 and the leading constant a is as in Lemma 4.2.1 or Lemma

1s even if ¢ is even.

55

Proof:

This is proved by contradiction. Let G, be the extension of G.

1. cis odd: az + c is as in Lemma 4.2.1 and the cycle it generates must be
Hamiltonian in G;. Ry Lemma 4.3.1, we know when the graph G is extended
and there is no edge-change, there are two unconnected copics of G. This is a
contradiction to Lemma 4.2.1. If the number of edge-changes in G is other even
numbers, edges will travel between these two copies of G. Let (z1,y1) be a vertex
having an edge-change. There must be an edge ((x1+2', 1), (22,32)). We count
them as a pair and there are an even number of them. Starting from a vertex
and traveling between these two copies of G will use only one edge in the above
pair and will be back to the same cycle as we started with, since there are even
number of pairs. Furthermore, ve cannot go to the other cycle by the unused
edge in any of the pairs above since they are all skipped. Therefore, there is
no Hamiltonian cycle and this contradicts to Lemma 4.2.1. So the number of

edge-changes must be odd.

2. ¢ is even: Clearly, two cycles can be connected to be a new one by one edge-
change. Two cycles remain disconnected when the edge-change is even as shown
above. By Lemma 4.3.2, ar + ¢ creates an even number of cycles in (4y. If the
number of edge-changes is odd, it has different parity to the number of cycles.
There must be one cycle left in G with only one edge-change. Therefore, it will
be connected to the corresponding cycle to form a new one. The total number
of cycles therefore is reduced by 1 and become an odd number of cycles. This is

a contradiction to Lemma 4.3.2. So the n mber of edge-changes must be even.
a

We are now stating three lemmas and some empirical results for the cycle structure
of G(F,(2',s;)). They are the lemmas for constructing a regular cycle structure,
Hamiltonian cycles, edge-disjoint cycles, and an algorithm for identifying the cycle

structu’ : of a generator.

56

LEMMA 4.3.4 Regular Cycle Structures in G({f}, (2',2k + 1))
Let Gy({f},(2",2k + 1)) be a two-dimensional linear congruential graph and G
be the erxtension of Gy where k is an even integer and f(Z) = TA + b. Let A =

a

, b= (b),by), and ay,, by satisfy Lemma 4.2.1. If ged(by, 2k +1) =1 then

a 1
f(7) will generate the same cycle structure in both Gz and G).

Actually, the regular cycle structure created by f in Lemma 4.3.4 is a Hamiltonian
cycle. That is, when G is extended, it is a Hamiltonian cycle being preserved in G,.
To be more specific, we give the following lemma, which proves that a Hamiltonian

cycle is generated by f in a graph G(F,(2',2k+ 1)) forz > 0.

LEMMA 4.3.5 Hamiltonian Cycles in a Two-dimensional Graph
Let f(T) = TA+ b be a generator of a two-dimensional linear congruential graph

an

0 -
G(F,(2',2k + 1)) where k is even, A = (), and b = (by,b). If anz + b

ai 1
generates a Hamiltonian cycle in {0,1,...,2' — 1} and gcd(bz,2k + 1) =1 then f(T)

also generates a Hamiltonian cycle in G.

Proof:

This proof is done by induction on the variable i. Let ¥ = (z,y).

1. i = 0: Since r has only one value, zero, the z coordinate of any destination
vertex is the same as that of the source for all vertices. This is illustrated

below.

y=0: = (au(0) +an(0) + b;) mod 2° =0
y=1: = (an(0) +axn(l)+b) mod2° =0
y=2 a = (an(0)+an(2)+b) mod 2° =10

= 2k: 7 = (a1;(0) + a2 (2k) + b;) mod 2° = 0

From z’s point of view, they are all self-loop vertices. Since a;; = 1 and

ged(by, 2k + 1) = 1, the y sequence is a Hamiltonian cycle in {0,1,...,2k}. No

57

matter how the y sequence varies, it will connect all these self-loop vertices.

Therefore, G({f},(0,2k + 1)) is a Hamiltonian cycle.

. i = n: Assume G({f},(2",2k + 1)) is a Hamiltonian cycle. We group vertices
into 2k + 1 sets in which each set has the same y value:

seto = {(z,¥)|0 <z < 2" -1 and y = 0}

sety = {(z,y)[0 <z <2" -1l and y =1}

sety = {(z,y)J0 <z <2" ~1land y = 2}

setyr = {(z,¥)[0 < 2 <27 -1 and y = 2k}

Since G({f},(2",2k +1)) is a Hamiltonian cycle by assumption, each above set
not only has 2" vertices but also they are all connected in the same cycle. We are
therefore able to prove that two copies of G({f},(2",2k +1)) (two Hamiltonian

cycles) are connected into one cycle by using the total number of edge-changes

in G.

.i=n+1: When the graph G({f},(2",2k + 1)) is extended, we know that
the cycle structure can be preserved if the number of edge-changes is odd by

Lemma 4.3.3.

(a) az is even: since (anz + b;) mod 2 is a Hamiltonian cycle, b, is odd.
y=0:(anz + 0+ b) mod 2" = (ayz + oddo) mod 2"+ which implies
an odd number of edge-changes in selp

y = 1: (anz + even(l) + b)) mod 2"+ = (anz + odd) mod 27+ which

implies an odd number of edge-changes in set,

y = 2k : (annz +even(2k)+by) mod 27+1 = (ay,z + oddy;) mod 2**!, which

implies an odd number of edge-changes in sels

By Lemma 4.3.3, each of the above functions has odd number of edge-

changes when G is extended. No matter how the y sequence varies, there

58

are a total of (2k + 1) * odd number of edge-changes, which is an odd
number. Therefore, two Hamiltonian cycles will be connected to form a

new Hamiltonian cycle when G is extended.

ag; is odd:

y=0:(anz+ 0+ b)mod 2" = (anz + oddp) mod ont1 which implies
an odd number of edge-changes in seto

y = 1: (apz + odd(1) + b;) mod 2"+! = (anz + even;) mod 2nt+1 . which

implies an even number of edge-changes in set;

y = 2k : (a7 + odd(2k) + b)) mod 2'*! = (@112 + oddy,) mod 2™t1. which
implies an odd number of edge-changes in sety

There are k even-numbers of cycles by Lemma 4.3.2 and k+1 Hamiltonian

cycles by Lemma 4.2.1. By Lemma 4.3.3, for those even-numbers of cycles,

there are even-numbers of edge-changes and odd-numbers of edge-changes

for Hamiltonian cycles. There are therefore odd-number of edge-changes

in G. So two Hamiltonian cycles are connected to form a new Hamiltonian

cycle when G is extended.

Observation: Regular Cycle Structures of G(F,(2',s,))

The above lemma gives only sufficient conditions on preserving the cycle structure

and these conditions are not necessary. There are more cases that preserve the cycle

structure of a graph. We have the following observations:

1. f(Z) satisfies the condition in Lemma 4.3.4, but k is odd. In this case, the cycle

structure (a Hamiltonian cycle) is preserved when ay, is even.

2. by is even and the rest of the conditions of Lemma 4.3.4 are retained. In this

case, let b, = 21 where I € N — {0}. Cycle structures are preserved when

(a)

If | is odd then az, # 2/ — (k mod 2’) + 2'¢c

59

(b) If l is even then as # (k mod 27) 4+ ¢

where 2’ is derived from a,;, which has the form (2 %2’ 4+ 1) in Lemma 4.2.2

and c € N.

3. ged(aqs, s2) = 1, ged(bg,s2) # 1, and the rest of the conditions of Lemma 4.3.4

are retained. In this case, cycle structures are preserved in many cases.

We have the following algorithm that can be used to identify the cycle structure of
two-dimensional generators. It therefore serves the same purpose as Lemma 4.2.1 and
Lemma 4.2.2 in the one-dimensional case. The restrictions for using this algorithm

are the same as for Lemma 4.3.4 but b, can be any number and s; can be any odd

number.

Algorithm 4.3.1 Identifying the Cycle Structure in G({f}, (2',s2))

1. list the s, linear functions in the generator f by replacing variable y wnth its

actual value:

(a) y =0: anx + an(0) + b
() y=1: anz + an(l) + b

(c) y=2:anz +an(2) +b

(d) y=8,—1:anz+an(s2—1)+b

2. Sum up the terms any + &, to get s, linear functions in which each one is in

the one-dimensional form:

(a) y=0:anz +(0)+ by = anz + sump
(b) y=1: anz + an(l) + by = anz + sum,

(c) y=2:anz +an(2) + b = anz + sum,

(d) y=32—1: anz+ axls2 — 1) + b = anz + sum,,-,

60

9. Bascd on Lemma 4.2.1 and Lemma 4.2.2, classify the above linear functions

into pairs according to the following rules:

(a) lincar functions which have the same cycle structure are grouped into a

pair first. For ezample,

i. 51+1 and 52+3: both generate Hamiltonian cycles in {0,... ,20 -1},
ii. 92+2 and 9x+6: both generate 2 cycles in {0,...,2" = 1}.
iti. 170+4 and 17z+12: both generale 4 cycies in {0,...,20=1}.

iv. 5r+4 and 57+8: both generate irregular cycles in {0,...,2' —1}.

(b) two linear functions with even by are grouped into a pair if the above rule

has not finished this pairing. For example, 51+2 and 5z+4 are in a pair.

4. Since sy is odd, there is a hinear function that s not in any pair. The cycle
structure(regular or irregular) generated by f in G is ezactly the same as the

cycle structure generated by this unpaired linear function in {0,1,...,2" = 1}.

Since we use 2' in the first dimension of our graphs, a;; in f should be chosen to
satisfy Lemma 4.2.1 or Lemma 4.2.2. Therefore this unpaired linear function and
hence the two-dimensional generator f will create either 2 cycles, 0 < j < 1, or
an irregular cycle structure in its corresponding graphs. Thus, each cycle created
by this two-dimensional generator f is s; times longer than the corresponding cycle
created by the unpaired linear function in {0,1,...,2" —1}. This algorithm gives
us a convenient way to identify the cycle structure of a two-dimensional generator.
Therefore, we can use it to derive generators that generate desirable cycle structures.
Using this algorithm to identify cycle structures should be faster than using computers

if s, is small.

LEMMA 4.3.6 Edge-Disjoint Cycles in Graphs of Degree 4
Let G({f1, f2},(2', 52)) be a two-dimensional linear congruential graph and f1(%) =

- 11 0
,b=(b1,b2).C= ,and

az Qa2 €1 C22

- - a
FA+D fo(F) = FC+d vhere A=|

61

d= (d1,d3). Generators fi(Z) and f2(Z) will create edge-disjoint cycles in G if aqn.
¢y are as in Lemma 4.2.1 or Lemma 4.2.2, by, dy arc of different parities, and ayy,

¢y are of the same parity.

Proof:

Consider any vertex (z,y) in G, edges are constructed by f; and f,.
e in f1, 2’ = (anz + any + b)) mod 2'
e in fo, ' = (enz + ¢y + dy) mod 2!

Since b;, d; have different parities and az1,c21 have the same parity, ayy + b and
¢21y+d; have different parities when y is the same and this is true for all y. Therefore,

if one of them is odd, the other is even for all y.

1. for the odd one, since aq; and ¢;; are as in Lemma 4.2.1 or Lemma 4.2.2, the
z sequence, ' = f(z) mod 2, is a sequence such that 1’ and z have different

parities by Lemma 4.2.1.

9. for the even one, since a;; and ¢ are as in Lemma 4.2.] or Lemma 4.2.2, the
r sequence, ' = f(z) mod 2, is a sequence such that «' and z have the same

parity by Lemma 4.3.2.

Therefore, from any (z,y), fi and f will lead the vertex to vertices whose z compo-
nents have different parities. The destination vertices generated by f; and f; cannot

be the same for all y. They are therefore edge-disjoint.

4.4 Properties of Two-dimensional Linear Con-
gruential Graphs

We will study some graph-theoretic properties of two-dimensional linear congruential

graphs in this section.

62

Size: The sizes of a hypercube and a de Bruijn graph can be calculated from their
input parameters. An upper bound exists for the size of a Cayley graph and
this bound is decided by the number of symbols used in the permutations.
Unlike these graphs, the size of a two-dimensional linear congruential graph is
determined by the vector 5. We are aute to construct graphs of any given size
without any upper bound. An odd-size graph can also be constructed for any
even degree. However, if we want to obtain graphs of low diameter we should

use the size equal to (e * b) where a, b are relative primes.

Diameter: Searching for generators that can produce graphs of small diameters was
one of the primary goals of this thesis. We have experimentally searched for
large regular graphs of small diameters. The degrees of these graphs range
from 3 to 10 and their sizes range from 576 to 147456. The results of this
experiment are summarized in Tables 4.1, 4.2, and 4.3. The upper right corner
of a table entry shows the diameter of the corresponding degree and size, the
lower part of the entry cotains the generators that achieve this diameter. In
Table 4.1 and Table 4.2, all graphs are 12.5% larger in size than the DCC linear
congruential graphs of the same degree and diameter. In Table 4.3, graphs are
25.5% larger. A detailed comparison on the sizes of graphs is given in Chapter
5. For graphs with up to 20480 vertices, we have calculated by computer the
distances between all pairs of vertices to obtain the diameters of these graphs.
It is a very time-consuming process. For graphs with more than 20480 vertices,
we therefore only check segments of vertices. We believe it is sufficient to do
so because a two-dimnensional linear congruential graph of order (2'+? c) is half-
svmmetric from the view of the (2',c) graph since it can be decomposed into
two copies of (2',c) graphs by Lemma 4.3.1. If the two-dimensional graph of
order (2*,c) is symmetric and we choose vertices correctly, then the number of

vertices that must be checked in the graph of order (2',c) is 2'~*.

It is possible to construct a graph having different diameters for the same degree

and size. That is, a graph’s diameter varies with its chosen generators. The

63

Size 9216 18432 36864 73728 147456
Deg 1024 *9 2048 * 9 4096 * 9 8192 * 9 16384 * 9
50 50
3 0 1 19011420
9 0 9 0
0 2 02 21
5 0) 50 S 0
4 01310013511012112 013413
9 0 9 0 9 0 9 0
0 4 2 2 04 2 2 05 11 02 21
s 0 50 50 50
0161801719 01 100171"
9 0 9 0 9 0 9 ¢
5 01 52 o1 7 2 01 01 172
17 0 17 0 17 0 17 0
01 6 4 01 43 01 01 43
5 0 50 5 0
01717 01918 01719
6 9 0 9 0 9 0
01 72 01 82 01 72
17 0 17 0 17 0
01 43 01 93 01 43

Table 4.1: Graphs of §= (2',9)

problem of determining the diameter of a two-dimensional linear congruential

graph is open. Actually, even in the one-dimensional case, the diameter of

a DCC linear congruential graph is not known exactly. This should not be

surprising as the diameters of chordal rings are not exactly known [4, 17] and

chordal rings constitute the simplest case of linear congruential graphs. For this

reason, diameters of all graphs had to be calculated by computer.

Regularity: We have chosen the generators such that each generator constructs

edge-disjoint cycles in our graphs. That is, vertices are partitioned into disjoint

sets by the cycles. By definition, each generator adds two edges to a vertex, so it

is regular for even-degree graphs. We have also chosen the matching generator

to generate an edge for every two vertices, so it is regular for odd-degree graphs

of even graph size.

64

1152 2304 4608 R16 18432 36864 73728 147456
1289 256 °9 5129 1024 ¢9 2048¢ 9 4096 * 9 8192+9 16384 * 9
$ 0 $ 0 s 0
onsnlil o:s:li o:snll
9 0 90 90
01 62 01 62 0t 6 2
17 0 170 17 0
01 2 01 23 0t 23
33 0 B0 » 0
01 28 o1 28 012 8
50 s ¢ s 0 50
oxsnL‘- 0151’_5_ onst‘s__ onulLs_
90 [90 90
01 62 01 6 2 016 2 01 142
8 1o 1”0 1o 170
0L 13 01 2 3 0122 01 163
330 30 no »o
0! 28 01 3 7 0137 01 47
50)
onzn[i onzlll
9 0 90
01 5 2 01 52
170 170
9 01 1 3 o1 13
no 0
011 7 01 17
63 0 60
01 3 4 01 3 4
s 0 [50 50
onzlli~ 0|zlli. 012116_ 0121|l
9 0 9 0 90 90
01 82 01 52 01 52 01 5 2
10 17 0 17 0 7o 170
0113 0y 33 01 33 01 33
30 »o neo 30
0117 01 177 o117 0117
65 0 65 0 65 0 60
04 3 4 01 41 01 11 01 11

Table 4.2: Graphs of 5= (2',9) (continued)

Connectivity: The connectivity of a two-dimensional linear congruential graph is
determined by its cycle structure, which is constructed by the chosen set of
generators. To generalize the idea of connectivity in a DCC linear congruential
graph, an even-degree graph G(F,3) where F = {fi(Z)|1 < ¢ < k for some k}
and § = (2, ¢), has the maximum connectivity 2k if the set of generators has

the following properties:

Property 4.4.1 Connectivity of a Two-dimensional Linear Congruen-
tial Graph

1. f(&) mod § <> f7!(Z) mod § for all i

2, The function can be arranged in a way that f.41(&) partitions every cycle

generated by f,(T) into two disjoint sets, any two conseculive vertices T and

65

12¢ 640 1280 2560 5120 10240 20480 40960
Deg 128+ 5 256 *5 512+ 5 1024*5 20485 4006 * § 8192¢5
so s [so [1so [14 so [so {18
5 [61 13101 68l0168J1015 1 a1 1 1lor 71
90 90 9 0 90 90 90
61 141/01 3 4|01 3 4{1016 1 01 4 1/01 121
so L7450 [8j50 [9] so [uso [12
R L0 S ST T W T 0 O O 111 1|1ty
90 90 90 9 0 90
51 8 1|51 4 1/01 41 31 4 131 41
50 6 50 |7
41 5 1 01 3 1
s (90 90
41 2 1 01 42
17 0 17 0
01 41 01 1 1
50 |s5(50 [6]
41 5 1101 3 1
6 |90 9 0
41 2 1101 21
17 0 17 0
01 4 1{01 1 1

Table 4.3: Graphs of §'= (2,5)

fi(£) mod § on the original cycle are not in the same sel, and f,4,(7) mod

§= f.(f:(¥) mod &) mod 5.

We give a proof for graphs of degree 4 and 6. The same reasoning can be used

to prove graphs of higher degrees.
Proof:

1. degree 4: f, partitions f; into two disjoint cycles C, C2, and Z and
f:(Z) mod § are not on the same cycle, and f;(Z) mod 5 <> 7U(E) mod 3,
We can therefore depict f; and f, as follows and demonstrate 4 vertex-
disjoint paths among any pair of vertices 7 and #3. Edges of f, that are

not adjacent to £ or 23 are not drawn.

66

(a) Case 1. If both £; and #, are on the same cycle as shown in Figure

4.3, the paths are:
i. path 1: 23, fi(£1), part of C; not containing f;(£1) to f;(s3),
T
ii. path 2: 73, fi''(21), part of C; not containing f,(#}) to fi(a3), 22
iil. path 3: Z3, one part of C, to 23

iv. path 4: £, the other part of C; to 23

> =
x1 fixD
=
x2
a1 >
f1 (x2)
C1 C2

Figure 4.3: Connectivity of degree 4, #) and z; on the same cycle

(b) Case 2. If £1 and #3 are on different cycles as sl.own in Figure 4.4, the

paths are:
i. path 1: #3, f1(£1), one part of C; to 73
ii. path 2: 3, fi"}(#1), the other part of C; to £
iii. path 3: 73, part of C; not containing f{}(%3) to fi(232), T2

iv. path 4: 73, part of C} not containing fi(%2) to fi)(3), £2

2. degree 6: Similar to 1, f; partitions f; into C; and C;. Cj is further
refined into Cy; and Cy3, C; into Cy; and Cy; by fs. Each vertex has two
edges in its own cycle, two edges to the other cycle nnder fs, and two

edges to the other cycle under f; and furthermore each one is connected to

67

x1 fl(X])
g >
f1 (x1)
> >
fl(x2) x2
.l >
f1 (x2)
C1 C2

Figure 4.4: Connectivity of degree 4, 71 and 3 on different cycles

different cycles under f3. We therefore can draw fi, f,, and [y as follows

and demonstrate 6 vertex-disjoint paths.

(a) Case 1. If] and 27 are on the same cycle under f; as shown in Figure

4.5, the paths are:

i.
il.
ii.
.
V.

vi.

path 1:
path 2:
path 3:
path 4:
path 5:
path 6:

7y, f2(21), part of Cy; to 73

I, f{'(:f}), part of Cj; to 23

1, part of Cy; to fo(53),77

Ty, part of Cyy to f7'(23),22

1, fi(£1), part of Cy to fi(a2), 72

&1, fi 1(£1), part of C to fi'(72), %2

(b) Case 2. If 2} and z; are on different cycles under f; as shown in Figure

4.6, the paths are:

i.
il.
iii.
iv.

V.

path 1:
path 2:
path 3:
path 4:
path 5:

71, f1(21), part of Cy to I3
2y, f2 (%), fi(f7(£1)), part of Ca to 7

7, part of Cyy to f1(22), 22

z3, part of Cny to fi(fa(22)), fa(22), 22

21, fr1(£1), part of Co, to f71(27), T2

68

C11 \ C21

A

Figure 4.5: Connectivity of degree 6, £ and 77 on the same cycle of f,

vi. path 6: 71, f2(21), part of Cyz to fi1(a2), 22

The similar idea can be followed to prove other cases that cycles are under f3's

partition.

]

One example of a generator set that satisfies the above property is a set in which
the following are true:

1. For all generators a2 = a1 =0, az; = 1, and ged(bz, 82) = 1.

2. There is exactly one generator whose a3, b; are as in Lemma 4.2.1.

3. All other generators are of different numbers of cycles and their ay;, b, are

as in Lemma 4.2.2.

Any generator set that satisfies the above requirements has the properties: thc
z and y components are independent and the y sequence is a Hamiltonian cycle

itself for all the generators in the set, the cycle structure created by such a

69

>
f1(f2(x2))

. >
fi(f2 (x1))

C11 C21
L
fi1(x1)
q >
f2 (x2)
C12 C22

Figure 4.6: Connectivity of degree 6, 1 and z; on different cycles of f,

generator is thus determined by its = sequence, ¢ = (a7 + b;) mod s;. A two-
dimensional graph with these generators therefore has exactly the same cycle
structure as a one-dimensional DCC linear congruential graph because a;, b
determine the z sequence and they are selected by Lemma 4.2.1 or 4.2.2, which

are used in the DCC linecar congruential graphs.

For “ose odd-degree graphs that their generator sets have the above: property,
they may not be 2k+41-connerted. Liowever they are at least 2k-connected since

it contains the 2k-degree graph as a subgraph.

Extensibility: Two copies of graphs G1(F,(2',c)) can be combined into one graph
G.(F,(2'*1,¢)) with only a few edges being changed, and its cycle structure is
preserved. The algorithm for the extension follows the idea of Lemma 4.3.1
and all generators of G; must be regular. The total number of edges remains
the same after extension and only those edges that cross the 2' boundary are

modified. We give the algorithm for the extension below.

Algorithm 4.4.1 Extension of a Two-dimensional Graph

70

1. Denote the two copies of graph Gy(F,(2',¢)) by Hy, Ha.
2. For all vertices (z,y) in H,
(z,y) = (z,y) +(2',0)
3. For all vertices (z,y) in H,
For all generators f in F
(z1,31) = f(z,y) mod (2'*},¢)
if 1 >=2' then
delete the edges ((z,y), (z1,31)) and ((z +2',y), (21 + 2',9))
add the edges ((z,y),(z1+ 2", 1)) and ((z + 2',y), (x1,41))

4.5 Issues on Construction

In this section, we discuss several issues that can influence the construction of two-
dimensional graphs. From our computer investigations of two-dimensional linear con-
gruential graphs we observed that generators, the length of each dimension, and the
matching generator used in odd-degree graphs are important parameters in searching
for graphs of low diameters. We describe them in the following. In addition, we also

discuss the problem of constructing graphs in a three-dimensional space.

Generator: It is now clear that the generators in both Cayley graphs and two-
dimensional graphs can affect diameters. By changing a generator, we can
substantially change the graph generated. Good graphs are constructed by
properly choosing the parameters in generators, but it is difficult to tell the role
of each constant of a generator. However, based on the matrices we used, we
can classify all generators as being one of two forms (simple and complex) and

explain their general effects for the two-dimensiona' case as follows.

e Simple:

1. Matrix elements m,, # 0 for all i, and m,, = 0,7 # j for all i,j.

2. The generator can be rewritten to two linear functions in which each
one contains exactly one variable. For example,
ai 0
(1,y)=(.'l‘,y) +(bhb2)
0 a2
can be expressed as = a;;7 + by and y = any + by

3. Asshown in the example above, the z, y components of any destination

vertex are calculated independently by the function that contains the

corresponding variable. z and y are therefore independent.

4. Row-switchi..g is only dependent on the current row on which a ver-
tex is located. Therefore, all vertices on one row are adjacent to the

vertices in the same row.

5. The graph G(F, (s;, $2)) can be obtained by the product of the graphs,
G1(F).s;) and G(F3, s2), which are two one-dimensional graphs and
F, = {ayur + b, | 1 <t <k, k is the number of generators in I'}.
The product of G} o G is defined as follows:
Property 4.5.1 The Product of Two One-dimensional Graphs
G 0 G, is a graph with vertez set V = V(G)) x V((2) and the edge
set E = {((u1,uz), (v1,v2)) | (ur,v1) € G, (uz,v2) € G2}
The number of cycles in G is also the product of the number of cycles
in G; and Gs.

6. Property 4.5;2 Inheritance of the Cycle Structure of a One-
dimensional Graph
The graph G(F,(s1,52)), where |F| = k and ged(sy,s2) = 1, inherils
the cycle structure of the DCC linear congruential graph, Gi(F, 1)
where Fy = {cz+d, |1 <i<k} ifan=c, by=d, an=1, and

gcd(by2,52) = 1 for all generators in F.

Figure 4.7 is an example of a two-dimensional graph constructed by using
generators in this form. Its diameter is 6. The Hamiltonian cycle (outer

circle) is created by f, and the other two cycles (solid and dashed) are

12

created by f,.

o Complex:

1.

Matrix elements m,, # 0 for all i, and m,, # 0,¢ # j for some i,j.

2. The generator can be rewritten to two linear functions in which each

one contains at least one variable. For example,

ay; a2

(x,y)=(:z:,y) +(blab2)

azn a2
can be expressed as T = a;;7+any+b and y = a12z+azy+b,. Inour

empirical studies, we observed that if both a;; and a3, are non-zero
and are not congruent to the size of the dimension then the generators
of this type do not give regular cycle structures. We are not interested
in any generator that creates an irregular cycle structure because it

lacks extensibility.

As shown in the above example, the z, y components of any destina-
tion vertex are calculated by a function that may contain the other

component. Therefore, z and y are related.

Row-switching may depend on both z’s and y’s values. Therefore,

vertices on one row can be linked to different rows.

As an edge travels across a column, a different linear function will
be applied at the Adestination vertex. So graphs constructed by this
matrix form cannot be obtained by the product of two one-dimensional
graphs.

The generation is more complex because vertices on different columns

use different linear functions.

Figure 4.8 is an example of a two-dimensional graph constructed by using

generators in this form. Its diameter is 5. The Hamiltonian cycle (outer

circle) is created by f, and the other two cycles (solid and dashed) are

created by f,.

73

Figure 4.7: A two-dimensional graph of simple matrix form

74

=3,1

1= (8,5‘L

fl:A=50 b

-

2,3

=90 b=
1

f2:A

Figure 4.8: A two-dimensional graph of complex matrix form

15

The Chordal ring [4] has been considered as a candidate for computer networks
because it has both simple structure and simple routing algorithm. Chordal
rings can be constructed by the above mechanism, however, the diameters of
these graphs are large. This is because their cycles are commutative, every
chordal shares the same and fixed length. There is no way to reach a farther
vertex by some “shortcuts”. Better diameters were found by those generators
that can create different cycle structures. For example, a better generator should
create two cycles in which one has three-vertex jumps and the other one has
thirty-vertex jumps instead of two cycles resembling cach other. This can be
realized by comparing the cycle structures and diameters of the graphs in Figure

4.7 and Figure 4.8.

Length of each dimension: Generators determine the edges of a two-dimensional
graph. The length of each dimension compose the graph size. The best re
sults for DCC linear congruential graphs were obtained when the size of one
dimension of a graph is a large power of a prime number. We thus started our
investigation by using a similar case, namely, s, is of the form p* x b for a prime
number p. The reason why we choose 2 as p is because the function of power
of 2 grows slower than powers of other prime numbers and therefore produces
many more possible values that can meet the memory requirement in comput
ers as a reasonable graph size. We can use (2% 4+ 1) in the matrix element ay,
odd number in b, to generate a Hamiltonian cycle and (254 1) in ajy, 2tcin b
to generate 2* cycles in the first dimension by Lemma 4.2.1 and Lemma 4.2.2.
Furthermore, by restricting az; = 1,a12 = a3 = 0, and ged(by, s2) = 1, we can
construct exactly the same cycle structure in a two-dimensional graph as in a

one-dimensional DCC linear congruential graph.

The question left is how to choose the length of the other dimension. To speed
up the propagation of messages, any node in a computer network of degree
2k should be able to send and receive k messages in parallel. Many parallel

algorithms are developed basing on this assumption. A graph which can be

76

decomposed into k sets of edge-disjoint cycles can admit this parallelism. Ex-
amine the creation of cycles in a DCC linear congruential graph, it fits into this
structure naturally because each generator creates a number of vertex-disjoint
cycles and generators can be chosen to create edge-disjoint cycles. The graph
can thus be easily decomposed according to its generators. However, 1) to en-
sure that these cycles are connected and 2) to guarantee a perfect matching on
a vertex set, we need a Hamiltonian cycle in our graph to ease the construc-
tion. Therefore, ged(s;, s2) = 1. Furthermore, to preserve the cycle structure
of a graph G(F.(2',s;)) when G is extended, s, must follow the form of 2k + 1
where k is even. The following table contains graphs that have different lengths.
They are 26.6% and 75% larger in size than the DCC linear congruential graphs

of the same degree and diameter. A comparison will be given in Chapter 5.

Matching: A matching generator influences a two-dimensional graph in the following

ways:
1. Like the norinal generators, different matching generators can possibly
create different graphs.

2. If g(%) creates a perfect matching on a vertex set V when it is applied on
the subset Vj, then clearly, it is also a perfect matching when applied on

the subset V — V;, which may also give a different result.

The following theorem enables us to simplify the task of searching for low-
diameter graphs by focusing on matchiné generators instead of on the vertex

set.

Theorem 4.5.1 G(F,5,9,V1) = G(F,8,97',V2)

Let g be a matching generator of a two-dimensional linear congruential graph
G(F,(2",c),gV1) and Vo = V — V. If g is of a simple matriz form then there
exists a generator h such that G(F,(2',c),9,V2) = G(F,(2',¢c),h,W1).

Proof:

77

Degree | Diameter Size Linear Functions
50 -
16* 81 A= b= 12
4 8 02
129 9 0
0 4 101 |
. 50
4 o 32+ 8] 02 12
2592 9 0
0 4 41
50
8 * 81 01 23
90
6 5 48 0 4 32
170
0 10 13
50
16 * 81 01 2 3
6 6 20
1296 04 32
17 0
0 10 13
50
256 % 7 11 41
9 0
6 6 1792 11 11
379 42

Table 4.4: Graphs of § = (2',81) and (2',7)

Since g is a matching generator in the graph G(F,3,g,V,), g is also a onec-to-one
mapping from ¥, to V; and g(Z) mod (2',c) € V; for any ¥ € V,. Let ¢(£) =

a 0
(z,9) H +(b1,b2), 50 z = a7 + by and y = ayy + b;. By a theorem
0 apx

in (28], there exists constants ¢;1,d; and ¢g2, d; such that ¢z 4 d, is an inverse

function of ay;z + b, and cy2y + ds is an inverse function of ag,y + d;. Since the
-) - cnp 0

z,y values of g() are independent, clearly, h(Z) = (z,y) + (dy,d,)
0 €22

is an inverse function of g(Z) and the matching defined by £ on V; is identical

78

to the matching defined by gon Va.

O

The above theorem concludes that we can always find a function k(Z) = g~ (T)

on V, such that G(F,&,¢,V) = G(£.5,¢97}, V1).

Three dimensions: The problems of constructing three-dimensional (or more) gra-
phs would involve the similar issues as we did in this thesis. Namely, searching
for gencrators that produce low-diameter graphs, investigating the cycle struc-
tures and properties of these generators, etc. We did a very detailed search for
low-diameter two-dimensional graphs. The average load on a Sun workstation
is approximately 60 hours/week and the estimated CPU time spent to calculate
diameters of these graphs is 30000 hours. Thus we did not have enough time to
scarch for low-diameter graphs in a three-dimensional space and this problem
is still open. However, we have to point out that the difficulty of the problem
increases a lot when switching from one dimension to two dimensions because
we did pot have knowledge of the cycle structure initially, and we feel that the
problem of generating graphs in three or more dimensions will be simpler be-
cause many properties that we discovered in the two-dimensional case can be
generalized without much difficulty. In particular, one can start immediately to
construct edge-disjoint consecutive cycles in three-dimensional graphs by using

simple matrix forms and extending the idea in Property 4.5.2.

4.6 Summary

The cycle structure of a two-dimensional generator is a new topic, which has not
been investigated by anvone before our studies. Our investigation of two-dimensional
linear congruential graphs indicate that a two-dimensional linear congruential graph
should have a cycle structure similar to that of a DCC linear congruential graph.
Namely, the cvcle structure created by a set of generators should have the following

properties:

1. All generators create edge-disjoint cycles.

2. All generators are regular.

3. All generators satisfy the property of consecutive cycles.

The cycle structure of a d-dimensional graph is determined by its gencrator set. If
the generator set is of size k, the question is how to choose the k(d* + d) constants

in matrices and vectors to include the above requirements. We had found a solution

for the two-dimensional case:

1. Simple matrix: In the simplest case, by restricting a2 = 1 and ged(sy, b,) =1
in a generator, the cycle structure is then determined by aj, and ;. If we
choose a;; and b; by following Lemma 4.2.1 or Lemma 4.2.2, the resulting cycle

structure of the generator is given by these lemmas.

2. Complex matrix: We have a lemma and some empirical results to create regular
cycles, an algorithm to identify cycle structures based on the results in the one-
dimensional case, and a sufficient condition for constructing edge-disjoint cycles.
We are therefore able to use the same approach as DCC linear congruential
graphs to construct disjoint consecutive cycles in two-dimensional graphs by

using the complex matrix form.

This solution can be thought as a breakthrough into the multidimensional space.
A good example is that operations on integers and matrices are different, however,
once people established the rules of two-dimensional matrix operations, it was easy
to extend them into any number of dimensions.

Multidimensional linear congruential graphs are a generalization of lincar congru-
ential graphs. Properly said, it is a very general concept for constructing graphs
rather than just a single class of graphs. It provides a way to construct a variety of
classes of graphs according to the choice of a generator set and a graph size. These
graphs include some known families of graphs such as Chordal rings, de Bruijn graphs,

etc, and include some new families. Since the properties of a mul:idimensional linear

80

congruential graph are completely specified by its generator set, properties of these
graphs can be analyzed by algebraic tools and proved as a whole class. A new graph
therefore can inherit the known properties such as being edge-disjoint, half-symmetric,
Hamiltonian, if the cycle structure of its generators is known.

We have constructed a list of graphs which have 12.5% to 75% improvement of
the graph size in comparison to other constructions. If a two-dimensional linear
congruential graph is Hamiltonian and its cycle structure is regular, the graph has
most of the good properties in terms of network design as we have proven. In general,
the advantages of two-dimensional linear congruential graphs in terms of network
design can be realized by listing the disadvantages of those families of graphs discussed
in Chapter 3 as below and these disadvantages are not found in two-dimensional linear

congruential graphs.
e Hypercube: Its degree grows with graph size and its diameter is too large.

e Cayley graph: lts degree grows with graph size and its size is much smaller
than that of a two-dimensional linear congruential graph of the same degree

and diameter.

e De Bruijn graph: It is not regular in terms of the definition of an undirected
simple graph. Furthermore, only even-degree graphs can be constructed and,

given a graph size, only some degrees are possible.

e DCC linear graph: It is smaller in size and it is less flexible in that it isa special

case of multidimensional linear congruential graphs.

In the next chapter, we will give detailed comparisons among all these graphs.
These comparisons will be based on their construction methods, the size and diameter

they achieve, and other graph-theoretic properties.

81

Chapter 5

Comparisons between
Multidimensional Linear
Congruential Graphs and Other
Networks

5.1 Construction Methods

Table 5.1 gives a comparison of the construction methods of hypercube graphs, de
Bruijn graphs, Cayley graphs,‘linear congruential graphs, and multidimensional linear
congruential graphs. Basically, it explains how these graphs are constructed and how
their graph-theoretic parameters are derived. We explain the meaning of each row in

the table below,

e row 1: necessary parameters to construct the graph listed in the correspond.ng

column
e row 2: how the graph’s size is derived

e row 3: how the vertices are specified

82

e row 4: how the edges are derived

e row 5: how the graph’s diameter is derived

e row 6: how the graph’s degree is derived

e row 7: Is it a single class of graphs

Graph
Essence Hypercube De Bruijn Cayley One-dimensional | K-dimensional
Input n and a setof a set of lincar a sct of hnear
Parameters n dand D generators functions and n functions and
. n D n! i
Size 2 d n lengthof a gen. n S1e82% *5k
. n-bit D-bat . ak-tuple
Vertices binary string d-ary strng group elements integer of integers
Edges x and y differ | nght-or left- y={(x) mod
x.y) in one bit shift of x y=f(x) y=f(x) mod n (51,52, sk)
Diameters n D vartes with graphs varies with graphs | varies with graphs
2(size of set) or 2(s1ize of art) or
Degree n 2 (size of set) 2(s1ze of set)+1 2(s1ze of set)+
Classes Y Y N N N

Table 5.1: A comparison of construction

5.2 Graph Sizes

Table 5.2 and Table 5.3 give comparisons of the sizes of these graphs based on the

same degree A and diameter D. Each entry of a given (A,D) is divided into five ficlds:

From the top to the bottom, they are used to indicate the sizes of hypercube, Cayley,

de Bruijn, DCC, and two-dimensional linear congruential graphs respectively. An

empty field indicates that a graph of the corresponding (A,D) cannot be constructed.

Therefore, we also show the sizes of some graphs having comparable (48,D).

83

Dham
Dep_ Gra 10 12 13 14 15 17 18 19 20
Hypercube
de Bruijn
3 [Cayley
nce 512 1024 2048 4096 8192 16384 32768 65536 131072
Two-diam 640 1280 2560 5120 20480 40960 73728 147456
Dam | 6 | 7 8 9 10 11 12 13
Deg_ Gra
Hypercube
de Bruyn 120
4 Cayley 128 256 512 1024 2048 4096 8192
DCC 512 1024 2048 8192 16384 32768 131072
Two-diam 160 640 1296 2592 9216 20480 40960 147456
Hypercube 32
de Bruyn 720
5 Cayley
DCC 128 512 2048 8192 16384 65536 131072
Two-diam 160 640 2560 9216 18432 73728 147456

Table 5.2: A comparison of graph size

5.3 Network Properties

Table 5.4 summaries these graphs by comparing their network properties.

84

Diam
4 5 6 7 8 10
Deg\ Gra
Hypercube 64
de Bruijn 5040
Cayley 243 729 2187 6561 19683
DCC 512 1024 8192 32768 131072
1wo-diam 648 1792 9216 36864 147456
Hypercube 128
de Bruijn 40320
Cayley
DCC 1024 4096 16384 131072
Two-diam 1152 4708 18432
Hypercube 256
de Bruijn
Cayley 256 1024 4096 16384 65536
13144 512 2048 8192 65536 131072
Two-diam 576 2304 9216 147456
Hypercube 512
de Bruyn
Cayley
DCC 2048 16384 131072
Two-diam 2304 18432
Hypercube 1024
de Bruijn _
Cayley 625 3125 15625 78125
DCC 1024 4096 32768 131072
Two-diam 1152 4608 36864 147456

Table 5.3: A comparison of graph size (continued)

Qo
[

Gra.

Pro Hypercube | De Bruijn Cayley |DCC Linear | 2-dimensional

Regulanty Y N Y Y Y

Symmetry Y N Y N N
Connectivity Max Max Max e\?:r?’c(l:g;ec evga)c;ef;rree
Extensimlity Y Y Y Y Y

Table 5.4: A comparison of topology

86

Chapter 6

Conclusion

6.1 Research Results

The design of networks is a very important topic. Networks are used in the Internet,
distributed systems, and multicomputers to improve performance, resource utiliza-
tion, and to provide users with a more convenient and reliable environment. The
underlying network is one of the key factors in designing these systems. Choosing a
proper topology is a crucial decision with respect to the design of a network.

The multidimensional linear congruential network model provides a fertile source
to build a variety of topologies. The construction is started by choosing a set of
generators and a graph size. The graph constructed varies with different generator
sets and the properties of the graph are completely specified by its generator set.
Properties of these graphs can be analyzed by algebraic tools, proved as a whole class,
and inherited by new graphs. The idea of generalizing a linear congruential graph into
a multidimensional linear congruential graph has been shown to be successful. DCC
linear congruential graphs are much larger in size than de Bruijn graphs of the same
degree and diameter. We have shown that with a proper choice of two-dimensional
generators, they generate graphs that are even larger than DCC linear congruential
graphs and therefore are larger than any other families of graphs.

In addition, we have proved that two-dimensional linear congruential graphs can

87

retain those good network properties found in the DCC linear congruential graphs.

We summarize these properties as below.

1. They are regular and are defined for both even and odd degree.

N

. They are defined for many different graph sizes.

3. They allow increasing the number of vertices without increasing the degree.

4. A graph of higher degree contains a graph of lower degree as a proper subgraph.
5. A graph of degree 2k is 2k-connected; a graph of 2k+1 is at least 2k-connected.
6. Their structures are extensible.

7. They are constructed by a uniform method and most of the graphs of degree A

and diameter D in the previous tables are larger 1n size than the largest known
graphs of (A, D - 1).

8. They can be decomposed into a number of edge-disjoint cycles.

Also, we have obtained some empirical results on the generators to generate 2
cycles for i > 0, and sufficient conditions to generate edge-disjoint cycles in graphs
of degrec 4. In particular, the lemma to construct a Hamiltonian cycle in a two-
dimensional graph generalizes the theorem of Knuth on the linear function having
maximum cycle length [28]. Since linear functions having maximum cycle length
are used in random number generation and random numbers have many important
applications 28], these two-dimensional generators chosen by our lemma and having

maximum cycle length could be used in the applications of random numbers.

6.2 Future Considerations

Three directions can be pointed out for future research work.

1. Looking for the complete understanding of the cycle structures of generators in

the two-dimensional space.

88

2. Constructing a table of graphs in a d-dimensional space for d > 3 to further

improve the diameters.

3. Looking for the complete understanding of the cycle structures of generators in

the d-dimensional space for d > 3.

In the first direction, we have found a lemma to create a Hamiltonian cycle and a
lemma to create edge-disjoint cycles in graphs of degree 4. Two topics for future

research in the two-dimensional case are:

e Looking for a lemma to create 2’ cycles, j > 1 for generators of complex matrix

form.

e Looking for a lemma to create edge-disjoint cycles of higher degrees.

If these lemmas are available in the future, it will be possible to create disjoint con-
secutive cycles in graphs of any degree in the two-dimensional space.

All graphs of our results use 2' as the length of one dimension; we did not try
other numbers as the base of the power function. Furthermore, given a DCC lincar
congruential graph of order p', where p is a number other than 2, the same Lemma
4.2.1 and Lemma 4.2.2 can tell us how to choose the constants of a generator Lo create
disjoint consecutive cycles. We also do not have such a similar conclusion for those
generators of complex matrix form.

In the second and third directions, it will be the same task as we did for the two-
dimensional case. However, we believe that our methods of reasoning can be extended
into the multidimensional case, so that some of the properties we discovered in the
two-dimensional space can therefore be extended without much difficulty. Instead of

using exhaustive search, it will be time-saving if the steps are made as below.

1. Establishing d-dimensional generators that create disjoint consecutive cycles by

using simple matrix form.

2. Looking for lemmas that create disjoint consecutive cycles for generators of

complex matrix form.

89

3. Secarching for low-diameter graphs of given degree and size by constructing

disjoint consecutive cycles.

90

Bibliography

[1] S.B. Akers, B. Krishnamurthy: Group Graphs as Interconnection Networks, the
14th International Conference on Fault Tolerant Computing, 1984, pp.422-427.

[2] S.B. Akers, B. Krishnamurthy: On Group Graphs and Their Faull Tolerance.
IEEE Trans. on Computers, vol. ¢-36, July, 1987, pp.885-888.

[3] S.B. Akers, B. Krishnamurthy: A Group-Theoretic Model for Symmelric Inter-
connection Networks. IEEE Trans. on Computers, vol. c-38, April, 1989, pp.H55-
565.

[4] B. Arden, H. Lee: Analysis of Chordal Ring Network. IEEE Trans. on Computers,

vol. c-30, April, 1981, pp.25-29.

[5] B. Arden, H. Lee: A Regular Network for Multicomputer Systems. 1EEE "Trans.
on Computers. vol. ¢-31, Jan., 1982, pp.57-66.

[6] B.W. Arden, K.W. Tang: Representations and Routing for Cayley Graphs. IEEE
Trans. on Communications, vol. 39, Nov., 1991, pp.1533-1537.

[7] W.C. Athas, C.L. Seitz: Multicomputers: Message-Passing Concurrent Compul-
ers. Computer, Aug., 1989, pp.9-24.

[8] J.C. Bermond, C. Delorme, J.J. Quisquater: Strategies for Interconnection Nel-
work: some methods for graph theory. Journal of Parallel and Distributed Com-

puting, vol. 3, 1986, pp.443-449.

91

[9] J.C. Bermond, C. Peyrat: de Bruijn and Kautz networks: a competitor for the
hypercubc. Hypercube and Distributed Computers, 1989, North Holland, pp.279-
294.

[10] B. Bollobas, W.F. de la Vega: The Dwameters of Random Graphs. Combinatorica
2, 1982, pp.125-134.

[11] D.V. Chudnovsky, G.V. Chudnovsky, M.M. Denneau: Regular Graphs with Small
Diameter as Models for Interconnection Networks. Proceedings of the Third In-

ternational Conference on Supercomputing, 1988, pp.232-239.

(12] F.R.K. Chung: Diameters of Graphs: Old Problems and New Results. Congressus
Numerantium 60, 1987, pp.295-317.

[13] D.E. Comer: Internetworking With TCP/IP. Prentice Hall, 1991.

(14) W.J. Dally: A Fine-Grain, Message-Passing Processing Node. Concurrent Com-
putation, Plenum Press, 1988, pp.375-387.

(15] C. Delorme: A Table of Large Graphs of Small Degrees and Diameters. private

communication, 1992,

[16] S. Dolinar, T.M. Ko, R. McEliece: Some VILSI Decompositions of the de Bruijn
Gruaph. Discrete Mathematics, 106/107, 1992, North-Holland, pp.189-198.

[17] K. Doty: New Design for Dense Processor Interconnection Networks. IEEE
Trans. on Computers, vol. ¢-33, May, 1984, pp.67-70.

(18] T.Y. Feng: A Survey of Interconnection Networks. Computer, Dec., 1981, pp.12-
27.

(19] F. Harary: Graph Theory. Addison-Wesley, 1969.

[20] J.P. Hayes: Architecture of a Hypercube Supercomputer. Proceedings of 1986
International Conference on Parallel Processing, 1986, pp.653-660.

92

[21] L.S. Haynes, R.L. Lau, D.P. Siewiorek, D.W. Mizell: A Survey of Highly Parallel
Computing. Computer, Jan., 1982, pp.9-24.

[22] W.D. Hillis: The Connection Machine. ACM distinguished dissertation, the MI'T
press, Cambridge, MA, 1989.

[23] R.W. Hockney. C.R. Jesshope: Parallel Computer. Adam Hilger, 1981.

[24] A. Hoffman, R. Singleton: On Moore Graphs with diameters 2 and 3. 1BM Jour-
nal, Nov., 1960. pp.497-504.

[25] K. Hwang, F.A. Briggs: Computer Architecture and Parallel Processing.
McGraw-Hill.

[26] M. Imase, M. Itoh: Design to Minimize Diameter on building-Block Network.
IEEE Trans. on Computers, vol. ¢-30, June, 1981, pp.439-442.

[27] M.R. Jerrum, S. Skyum: Families of Fized Degree Graphs for Processor Inter-
connection. IEEE Trans. on Computers, vol. ¢c-33, Feb., 1984, pp.190-194.

[28] D.E. Knuth: The Art of Computer Programming. Seminumerical Algorithms,
Addison-Wesley, vol. 11, 1972.

[29] F.T. Leighton: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, 1992.

[30] G. Memmi, Y. Raillard: Some New Results About the (d,k) Graph Problem. IKEE
Trans. on Computers, vol. ¢-31, Aug., 1982, pp.71-78.

[31] J. Opatrny, D. Sotteau, N. Srinivasan, K. Thulasiraman: DCC Linear Congru-
ential Graphs: A New Class of Interconnection Network. submitted io IEEE

International Symposium on Circuits and Systems.

[32] J. Opatrny, C.C. Koung: Two-dimensional Linear Congruential Graphs. submit-
ted to the 24th Southeastern International Conference on Combinatorics, Graph

Theory, and Computing.

93

[33] J.C. Peterson et al.: The Mark Il Hypercube-Ensemble Concurrent Processor,
Prceedings of 1985 International Conference on Parallel Processing, pp.71-73,
Aug. 1985.

[34] R.F. Rashid: Threads of a New System. Unix Review, Aug., 1986, pp.37-49.

[35] K.H. Rosen: Discrete Mathematics and Its Applications. The Random House,
1988.

[36] Y. Saad. M.H. Schultz: Topological Propcrties of Hypercubes. IEEE Trans. on
Computers, vol. ¢-37, July, 1988, pp.867-872.

[37) M.R. Samantham, D.K. Pradhan: The De Bruijn Multiprocess or Network: A
Versatile Parallel Processing and Sorting Network for VLSI. IEEE Trans. on
Computers, vol. ¢-38, April, 1989, pp.567-581.

[38] R.R. Scban: FTN Topology and Protocols. Journal of Parallel and Distributed
Computing, 1991, pp.51-62.

[39] C.L. Seitz: The Cosmic Cube. Communication of the ACM, vol. 28, Jan., 1985,
pp.22-33.

[40]) T. Soncoka, H. Nakada, M. Imase: Design of a D-connected Digraph with a Min-
imum Number of Edges and Quasiminimal Diameter. Networks, vol. 14, 1984,

pp.63-74.

[41] R.M. Storwick: Improved Construction Techniques for (d,k) Grapks. IEEE Trans.
on Computers, vol. c-19, Dec., 1970, pp.1214-1216.

[42] A.S. Tanenbaum, R.V. Renesse: Distributed Operating System. Computing Sur-
veys, vol. 17, no.4, 1985, pp.419-467.

94

