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ABSTRACT

Neural Network based Decentralized

Control of an MZSH System

Hossein S. Saboksayr

Efficient operation of space heating systems is a practical control problem of
considerable economic significance. In this thesis, a multizone space heating (MZSH)
system is considered. The MZSH system cousists of a boiler. two environmental
zones and two heat pumps (one for each zone) and the associated distribution net-
work. The control problem is to operate the boiler and the heat pumps such that
good zone temperature control can be achieved and energy savings can be realized
by impiementing occupied and unoccupied setpoint changes. This task of combining
the setpoint changes initiated by the occupants and those initiated by the supervi-
sory controller such as night setback into one control strategy is investigated.

To this end a multivariable decentralized neural network controller is proposed.
The proposed controller is time-varying and its design is based on the minimization
of a decentralized cost function. The performance of the designed controller is com-
pared with published results. It is shown that the neural networks are trainable for
MZSH systems and the control system performs well over a wide range of operation

and gives better disturbance rejection compared to the existing controllers.
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Chapter 1

Introduction

1.1 Introduction

Because of the importance of heating systems in northern climaies, there have been
several control strategies devised for the Heating Ventilating and Air Conditioning
(HVAC) systems. A very successful control strategy which is still in use is PII)
control. The design of such controllers has roots in linear control system design for
single-input single-output systems. The simplicity of the concept and the controller
structure has allowed such a design method to survive for a long time. However,
it 1s well known that control based on linear models often sacrifices the system
performance when applied to nonlinear systems.

In this thesis we consider a particular class of HVAC systems known as Mul-
tizone Space Heating (MZSH) systems. The MZSH system consists of a hoiler, a
heat pump for each zone, and a building with two environmental zones. The MZSH

system is a nonlinear system. Furthermore, it undergoes large changes in operating




puint during its day-to-day operation such as occupied and unoccupied period op-
eration. For these reasons, the control design based on linear models is not likely to
be satisfactory.

In recent years, there has been a move towards multivariable controller design.
Such controllers are capable of providing significant improvement in performance.
Some attempts have been made in order to simplify multivariable controller struc-
tures. A good example of a multivariable controller is that which results from the
linear quadratic optimal control approach which tries to minimize a quadratic mea-
sure of the system performance (or cost function). However, defining how fast a
response should be or how much overshoot or undershoot is tolerable in optimai
control problem is difficult. But, the cost function can include a measure of the
speed of the response as well as a measure of energy which is spent for the control
action. Thus, an energy saving strategy can be appropriately posed in this form of

design.

1.1.1 Description of the Problem

In desiguing controllers for MZSH systems in buildings, two issues are important:
good setpoint control and speed of the response. Both of these requirements are
necessary to achieve thermal comfort and energy efficiency in buildings [1].
Thermal comfort is affected by outdoor disturbances and zone setpoint changes
applied by occupants. The temperature of each room in a building is affected by
the outdoor air temperature changes and changes in the solar radiation into each
room. So, keeping room temperatures as close to their setpoints as possible in the
presence of such disturbances, i.e. disturbance rejection, is essential to achieve ther-
mal comfort. Also, when an occupant changes his/her room temperature setpoint,
he/she expects the room temperature to change as fast as possible to its new set-
point. So, fast response of a control system to setpoint (or reference input) changes

(regulation) is a measure of comfort as well.
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Figure 1.1: Typical setpoint changes applied by occupants.

The goal is to design controllers by incorporating the above features. However,
the complexity and nonlinearity of the heating systems have made the problem of
finding a general solution difficult. Thus there is significant on-going rescarch in this

area.

1.1.2 Comfort and Energy Efficiency

Energy efficiency of controllers for MZSH systems is determined by the energy-saving,
strategy of the control operation and is taken care of by supervisory controller. The
energy saving strategy herc generally consists of decreasing the temperature of the
boiler and zones (rooms) by few degrees when the building is not occupied.
Although, change of setpoints by a supervisory controller in an energy-saving
strategy appears similar to setpoint changes applied by occupants but they represent,
two different viewpoints. Setpoint changes applied by occupants are usnally small
changes which are taken care of by regulators (Figure 1.1). Temperature changes
applied by supervisory controller are usually large resulting in saturations in control

system and causing regulators to not perform optimally (Figure 1.2).
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Figure 1.2: Typical setpoint changes applied by a supervisory controller as an energy
saving strategy.

The desired response of the control system to occupied/unoccupied setpoint
switch should be fast and without causing overshoot or undershoot which means
letting the zone temperature remain at its lower level for as long as possible and
giving the control system maximum control flexibility (considering limits caused by

saturations) to reach the new setpoint.



1.1.3 The Goal

The problem of controlling the multi-zone space heating (MZSH) systems is a non-
linear control problem. Dealing with small as well as large changes in zone setpoints
(reference signcls) makes the MZSH system hard to control by using lincar design
methods. In this study the goal is to design a nonlincar time-varying controller
which lets us deal with different aspects of the problem together not as several
control problems for a set of linear (lincarized) models.

For accomplishing this goal neural networks which have shown promising, per-
formance in nonlinear problems are employed. The structure of the controller and
all design parameters are chosen conservatively in order to be able to deal with the

inherent uncertainties involved with neural network training.




1.2 Current Control Strategies for Heating Sys-
tems

As was said earlier, PID controllers are widely used for controlling the HVAC sys-
tems. These controllers were originally designed for single-input, single-output lin-
car systems. The multivariable nature of heating systems requires a multivariable
structure for the controller. Some researchers have attempted to design multivariab}-
controllers which are appropriate for heating systems applications. The nonlinearity
of such systems is an issue which makes the known linear design methods inefficient
for heating systems. Thus, attempts have been made to improve the performance of
existing controllers or to design new multivariable, adaptive or nonlinear controllers.

In the following a brief literature review of some controller design attempts is
presented.

Nesler [2] addresses the need for controller parameter changes because of chang-
ing condition of HVAC systems is addressed. The evolution of a controller parameter
adjustment method is explained. The HVAC( system, in this method. are modeled by
a first order linear system with a time delay and controller parameters are calculated
for the desired characteristic of the control system. The controller parameter design
or adjustment used to be accomplished entirely by engineers. This design, or pa-
rameter adjustment, procedure was later done by using the assistance of computers.
In computer assisted controller tuning the open loop step response data is collected
by the operator and a computer program fits a model to the data and the controller
parameters are computed. Then, the operator adjusts the controller parametars.
The adaptive control scheme was also used in this method in order to remove the
need to the data collection by the operator. In automatic controller tuning the
adaptive control scheme identifies the parameters of the heating system and finds
the controller parameters continuously or periodically. In this scheme a first order

model with a delay is assigned to the process and its parameters are calculated by




using the RLS. Recursive Least Square algorithin. Then the controller parameters
are computed by using the model. This approach is a single-input single-output
approach and required open-loop test data. The tests have to be repeated if the
setpoint changes.

Wallenborg [3] introduces a self tuning controller which is based on a discrete
design approach. When the controller tuning is required, a pulse train is applied to
the input of the heating system. The response of the system is measured at a fow
discrete instants. A first order discrete time model of the system is found by using
the measured data. The controller parameters are computed for the lincar model
and by using the (frequency domain) RST controller design method. The samphng
interval is found by using the continuous equivalent of the discrete model (details
are claimed proprietary). In an experiment the controller successfully controlled the
temperature of the supply air after a heating coil by controlling the valve of the
heating coil. In another experiment the controller successfully controlled the supply
air duct pressure on a variable-air-volume (VAV) system. This design method is
also a single-input single-output method.

In [4] (Zaheeruddin et al.) a single zone space heating system is represented
by a seventh-order linear model. The heat is generated in a hot water tank (boiler)
and is transferred to the zone. The temperature of the zone was controlled by
controlling the fuel injection into the boiler or by controlling the hot water valve
associated with the heating coil. An optimal proportional controller and an optimal
Pl (proportional-integral) controller were designed for a reduced order model of
the heating system. Then, the PI controller was used to control the output of
the full order model (sub-optimal control) and it was shown that the response was
admissible. The sub-optimal controller was also implemented along with a state
estimator to control the full-order model. Also, a multi-input controller (applying
control on both the boiler fuel valve aud the heating coil valve) was designed. All

the controllers were designed by using a lincarized model of the heating system. The




optimal controller design was based on minimizing a quadratic cost function. All
the controllers were successful in regulating the temperature of the zone. It was
shown that the response of the heating system is improved by using the multi-input
controller.

In {5] (He et al.) a multivariable controller was designed for regulating a vapor
compression cycle used in heating systems. An eleventh order and a reduced-order
(fourth order) model described the system. The simulations results showed that the
newly designed multivariable controller gave faster response to setpoint changes than
the existing set of single-input single-output (PID) controllers. The multivariable
controller design was based on optimizing a cost function. The purpose of the design
was 10 get a good controlled system dynamic behavior around a certain steady state
value of the variables. The authors predicted that the multivariable control would
have wide applications in HVAC systems.

In {6] (Zaheeruddin et al.) partially decentralized controllers (which are multi-
variable controllers) are designed for a two-zone variable air volume heating system.
Three controllers were designed for the three station (two zones and the air distri-
bution system) for a VAV system. The controllers parameters were found by mini-
mizing the cost function by using an optimization technique. The first controller, a
two station decentralized controller, is designed to regulate the temperature of each
zone by controlling the damper position of the zone. The third station output (the
air flow rate in the distribution system) is not reguiated. The second controller is
a partially decentralized controller which regulates the two zones temperature and
uses the output feedback signals of these stations to control the output of the third
station. the air flow rate (by controlling the fan speed). The third controller is a
fully decentralized controller which uses each station output to apply the control ac-
tion on the corresponding input and regulating the output. All three controllers are
shown to regulate the required outputs successfully. The cost function is computed

from the signals of the nonlinear model and the parameter optimization directly



minimizes the cost function. Therefore, the linearized model of the VAV system is
not required. The coutrollers are of constant gain type.

In [7] and [8], Curtis et al. have used neural network based control strategies
in order to control (nonlinear) heating coils and the zones temperature of a two zone
building heated by a heating ventilating and air conditioning (HVAC) system. The
neural network based controller of the heating coil which is a predictive controller,
controls the load of the coil. The controller of the overall system uses an energy
saving strategy in order to minimize the energy (electrical energy) required for the
control action. Experiments with a full scale real system proved the ability of the
controllers in achieving the goals.

For controlling the load of a heating coil-valve combination a neural network
was trained in order to learn the dynamic of this system. A number of such neural
networks were used in a cascade form to predict the coil response at a sufliciently
far future time to apply the control action. Another neural network, the controller,
generated the control inputs. This neural network was trained, by using the back-
propagation technique, such that the generated control inputs minimized the future
error, The comparison of the neural network based controlled system response with
a PID controlled system response showed that the neural network based controller
responded faster and without any ripple.

The controller of the overall HVAC system also used a neural network for
minimizing the energy consumed by the entire system due to the control action.
The states of the HVAC system were measured over a range of operation. In cach
case the energy consumption of the HVAC system was calculated. Then, the nearal
network was trained to give the energy consumption as a function of the condition
of the HVAC system.

The energy consumption minimization was carried out by a minimization tech-
nique which used the trained neural network for the required function evaluation.

This minimization technique found a set of control variable values whichi controlled



the system with as little required energy as possible.

The performance of the system depends on the accuracy of prediction which
becomes crucial when the system is first started, especially with unknown initial
condition. Besides, if the predictor can not predict the process output accurately
there is no guarantee that the control system will result in a stable closed-loop
system. The neural networks in this system are trained ofi-line.

From the literature review we note that most HVAC controllers are designed
for local loops by treating it as a single-input single-output system. Very few studies
exist which use the multivariable design methods for HVAC systems. Some of these
multivariable design methods use linear models. On the other hand the application
of multivariable decentralized neural network controllers for HVAC applications have
not heen studied. The objective of this thesis is to explore the application of decen-
tralized neural network controllers for HVAC systems. In particular the specified
objectives of this thesis are:

1) To design a decentralized neural network controller for an MZSH system
which requires regulation of three outputs using five inputs.

2) To compare the performance in terms of speed of response. disturbance
rejection and cost minimization of the designed controller published [9].

3) To investigate different recall modes for practical implementation of the

designed controller.
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1.3 The Outline of this Thesis

This thesis consists of five chapters. Chapter one gives a general background about
the subject and the goal of this thesis. In chapter two a background on multi-zone
space heating systems is given. An analvtical model of the multi-zone space heating,
system is described and open-loop characteristics of this heating system arve studied.
Some existing controllers which lead to the structure of the neural network based
decentralized controller are explained next. Finally, the motivation for using the
time-varying controller is described.

Chapter three gives the background on neural networks which is required for
understanding the neural networks function in the neural network based decen
tralized controller. This chapter illustrates the nature and the operation of neural
networks as well as a simple categorization of these networks. Also, the training of
neural networks, the way it is used in this thesis, is presented.

Chapter four gives a detailed study of the neural network based decentralized
controller. The structure of the controller and the neural network function as well
as the training these networks in this controller are explained in detail. Numerical
simulation results are given to prove the capability of the neural network hased
decentralized controller. Chapter five summarizes the conclusions of the thesis and

gives some suggestions for future work.
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Chapter 2

Background on Multizone Space

Heating Systems

2.1 Introduction

The control of heating. ventilating and air conditioning (HVAC) systems associated
with multizone buildings is of considerable interest because of the large amounts of
energy used. In this type of problems. it is desired to obtain a controller in order
to be able to control the temperature of a given zone of a building, independent of
the temperature of the other zones. and independent of the outdoor climate of the
building.

The usual practice of controller design for HVAC systems is based on feedback
control using classical single-input /single-output control analysis, which means that
the multivariable interaction of the control problem is generally ignored, therefore,

severe problems of controller interaction may result {10]. The neural network based

12




decentralized controller design descussed in this thesis is based on modern control
concepts and a parameter optimization method for finding an optimal controller
[1]. Such a controller is designed for the whole system as an entity, thus different
controller interactions are considered, and advantage is taken of decentralized control
which simplifies the controller structure and its implementation.

This chapter is concerned with providing an understanding of the space heating,
system and some controller design methods so as to provide the framework for
the neural network based decentralized control scheme. The available parameter
optimization techniques as well as the one which is employed in this study along,
with required neural network concepts are presented in the next chapter.

The multizone space heating system is defined in the following section and the
physical plant with its analytical model which are used in this study are presented.
Then. robust controller design and decentralized control concepts are introduced.
Three available regulator design methods are then presented. These design methods
are

1) Linear robust servomechanism design,

2) Decentralized controller design.

3) Nonlinear decentralized servomechanism design.

The first design method uses the linearized model of the heating system in
order to obtain a robust controller. The second method is essentially the same as the
first one but in decentralized form. This method takes advantage of the structural
properties of the plant (the heating system) in order to simplify the structure of
the controller. The third design method looks into the problem from a nonlinear
perspective, but the controller is still of the constant gain type. All these designs
yield controllers which provide similar performance. They are included because
the idea used in these design methods form the basis of the neural network based
decentralized controller. At the end, the motivation for using a time varying gain

controller is presented.
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2.1.1 The Multizone Space Heating System

The heating systems that provide conditioned air to indoor spaces of buildings are
called heating, ventilating and air conditioning (HVAC) systems. An example of
such systems is shown in Figure 2.1. The system shown in Figure 2.1 consists of
a boiler plus the corresponding heat conducting network and two rooms to which
the heat energy is delivered. Because of modular structures of most buildings, like
the one considered here, the corresponding heating system is called multizone space
heating (MZSH) system. The system shown in Figure 2.1 is divided into three
stations. Station 1 is the boiler and the heat conducting network and station 2 is
zone 1 (or room 1) including heat delivering equipment and station 3 is zone 2 (or
room 2) including its heat delivering equipment. The control action will be applied
to the boiler and the heat delivering equipment of each zone. Although, only two
zones are considered in this system the control problem to be solved can easily be
extended to systems with more number of zones.

The boiler of the MZSH system (Figure 2.1) supplies warm water (SW) to the
evaporative exchangers (E) of the heat pumps. Each zone has its own heat pump
which works on the compression refrigeration cycle. It receives heat energy from
the source water and increases its temperature to a higher level and then delivers
the water to the condenser coil (C) of the heat pump. A circulating fan (F) and
ductwork arrangement delivers the energy from condenser coil to the zone through
the corresponding diffuser (D). The delivered energy compensates the heat loss due
to cold ambient temperature such as that of a cold winter day.

The control problem of the MZSH system can be stated as follows. The output
of each station must track some desired setpoint (reference input). In order to control
the outputs of the control system, all inputs, i.e. vy, ---, vs, can be used to control
each output, i.e. centralized control, or each station’s input(s) can be used to control
its output, decentralized control, i.e.,

1) Ti e station 1 input u(¢) = v3(t) is used to control its output y;(t). The
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control is applied through C; in Figure 2.1. .
2) The station 2 input ua(t) = [th(t) va(t)] is used to control the station’s
output yo(). The control is applied through Cy and Cy in Figure 2.1.
3) The station 3 input us(t) = [ra(t) us(t)] is used to control the station's
output y3(t). The control is applied through C; and Cs in Figure 2.1

Thus, the decentralized control of this heating system requires three indepen-

dent controllers.




B T

Flue loss

:l:l Ty 2

Figure 2.1: The diagram of Multizone Space Heating (MZSH) System.

CMP : Compressor
EV : Expansion valve

1

: Evaporator

L4

(' : Condenser

D : Ditfuser

F: Fan

C';: Controllers (1 =1, ---, 5)

v, : Control inputs (1 =1, +--, )
y;: outputs (j =1, 2, 3)

SW : Supply water

RW : Return water
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The following seventh order bilinear model described in [9] is used to simulate

the MZSH system. Alth ugh, the differential equations which fully represent the

behavior of this system are more complicated than what is considered here, this set

of equations gives a good representation of the system.

Ch Tb = V3Vayar (1 - OTb/Tbnmx) — My CPy (Tb - Tll)

~my cpy (Tp = Ti2) — an (T - T.)

Ciy T'l] = —Valgynazr (Pl - l) +my cp, ('I‘b - ']‘ll) — iy (7'11 - ’l'r)

Chi Thl = Vilsnar P| - Vl”lnuuc (Thl - 7:]) — (Thl - ’Ill)

e Ty = V1V1marCi (Thl - T:l) = Q= (T:: - Tp) — Az (7':1 - '1':2)

Ci2 Tl'). = —VsVsmar (P2 - 1) +my epy (Tb - 7‘12) — a2 (7'1'}. i'«)

y - 1 A mn g
Ch2 Th? = Vslsmar P2 — Valmar( (’]h‘l - 1:2) — Qpy (IILZ - Ir)

2 T = Va2 (Tha — Tzz) — az7 (7':2 = 7}») — a2 (T — Tz'l)

P] = ] + (leur - 1) (1 - (TI,] - Tll)/(ATlma:r))
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1)2 = ] + (szar - 1) (1 - (Th‘z - Tl2) / (AT2mar)) (29)

All the variables and parameters which are used in the above equalions are

defined in Table 2.1,




Table 2.1: Design parameters and the variables of the MZSH system [9]

Variable

Boiler temperature

Evaporatore temperature
Comperassor temperatuare

Zone temperature

Out-door temperature

Zone 1 Heat Loss Coefficient

Zone 2 Heat Loss Coeflicient
Evaporator Heat Loss Coeflicient
Condenser Heat Loss Coefficient
Boiler Heat Loss Coefficient
Interzone Heat Loss Coefficient
Thermal Capacity of the Zones
Thermal Capacity of the Evaporators
Thermal Capacity of the Condensers
Thermal Capacity of the Boiler
Maximum Air Flow Rate
Normalized Air Flow Rate

Burner Capacity

Normalized Burner Input

Heat Pump Capacity

Normalized Heat Pump Input

Mass Flow Rate of Water

Specific Heat of Water

Heat Exchanger Coefficient
Maximum Coeflicient of Performance
Maximum Temperature Differential
Maximum Temperature of the Boiler
Boiler Flue Loss Coefficient

Symbol
T;

T, Ti
Thyy Tha
Ta. T
T,

ay

[(FD]

an = ap
dpy = ap
ay

Iz,

€1 =2
=0
Ch1 = Ch2
Ch

Vyimar = V2maa
Vi 17y

Vimar

Vs

Vanar = Vsmar

vy, Vs

my

CPu
(=0=0
lenr = P’.!mnr

AT‘I mar — A T21nar

r]
T bmaxr
«
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Magnitude, Unit
I)("

U('

(l(‘

ll('

l'( v

122,935 W/ °C
138.32 W/ e
12.29 W/ ¢
12,20 W/ °C
12.20 W/ ¢
1229 W/ ¢
37448 k] ¢
167.44 kJ] °C
167.44 &J/] o
0455 kJ/ ("
1.H70 kg/s
(dimensionless)
586 kJ/s
(dimensionless)
38 kJ/s
(dimeunsionless)
03151 kg/s
4.186 kJ/kg ('
0.6 kJ/kg ('
3.5(donensionle ss)
ah (!

60 (!

0.1 (dimensionle ss)




2.2 Open Loop Response of the Heating System

When a controller is designed for a specific purpose it is usually checked whether
the controller is satisfying the associated requirements. But, in a general design,
where no specific requirement can be stated, the controller performance is ususally
compared with the performance of other controllers acting on the same system or it
is compared with the open loop response of the system.

In this section two tests are presented which would let us have a perspective
of the operation of the heating system. These tests are the drift of the initial state
from the steady state response to a set of typical constant inputs and the open
loop response of the heating system to a disturbance, which will be applied to the
controlled system in Chapter 4, while the inputs are kept constant.

The response of the heating system to a constant input is a constant temper-
ature if no disturbance is present. This constant input is called the nominal value
of the input, which are usually used when dealing with the linearized model of a
system. The steady state response of the heating system to this nominal input is
the nominal state of the system. If the initial state of the heating system is drifted
form its nominal value the response of the open loop heating system would reveal
how fast or slow the system is. This response when compared with the response of
the closed loop system is a good basis for understanding how fast the control system
is responding to its test inputs.

Supposing that the inputs of the heating system is as follows,
[ vy vy v3 vy v5] = (0.4 0.45 0.5 0.5 0.5] (2.10)
the state values associated with this set of inputs are

[1‘1 Ia Iy T4 1'5] = (211)

[Ty T Ty Tey Tia Thy Tep] = [27.26 25.58 29.84 21.96 25.51 27.94 20.66).
In order to check the open loop response of the heating system a two degree

20



increase in every state of the heating system is applied. Figures 2.2, 2.3, and 2.4 de-
pict the outputs of the system starting from the initial states and generally reaching
the nominal state values. These figures show that the system requires about two

hours to have all station temperatures close to the nominal values.

21



2w

2
>
2

»
>

Sk | weparRse

270

3
t thoun

Figure 2.2: The temperature of the boiler (station 1) to a two degree increase of
initial state in an open loop heating system.
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Figure 2.3: The temperature of zone 1 (station 2) to a two degree increase of initial
state in an open loop heating system.
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Figure 2.4: The temperature of zone 2 (station 3) to a two degree increase of initial
state in an open loop heating system.
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The open loop response of the heating system to a typical disturbance applied
to such a system would be a basis for seeing how much the disturbance rejection
characteristic of the heating system is improved when a controller is acting on it.
The disturbance acting on the open loop system is shown in Figure 1,14 and the

response of the heating system are depicted in Figures 2.5, 2.6, and 2.7.
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Figure 2.5: The temperature of the boiler (station 1) when the disturbance of Figure
4.14 is applied to the heating system.
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Figure 2.6: The temperature of zone 1 (station 2) when the disturbance of Figure
4.14 is applied to the heating system.
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Figure 2.7: The temperature of zone 2 (station 3) when the disturbance of Figure
4.1 is applied to the heating system.
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2.3 Constant Gain Controllers for the MZSH Sys-
tem

Constant gain controllers are of special interest in industry because of their simplicity
of structure and compatibility with traditional control strategies which, despite the
inefficiency in many cases, are still commonly used. Hence, much attention has heen
paid to design such controllers. This section gives some background of the strue
ture and design of such controllers. Since the neural network based decentralized
controller is a time-varying gain controller with the same structure as the constant
gain controllers to be presented. such background is helpful in understanding the
problem.

The robust servomechanism problem which yiclds the basic structure of the
controller is briefly discussed first. Then the decentralized control problem which
yields the complete structure of the controller is introduced. Next the linearized
model of the MZSH system is obtained. This model is used for linear design pur
poses. Centralized and decentralized versions of the controtler resulting from solving
constrained linear servomechanism problems are also presented. The nonlinear de
centralized servomechanism problem which has similarities to the neural network
based controller design is discussed next. Finally, the motivation for using time

varying controllers is given.

2.3.1 Robust Servomechanism Problem

The neural network controller is supposed to perform time varying control which is in
essence a generalization of a gain scheduling type approach using piccewise constiant

gain controllers designed by linear approaches. The structire of the controlier should




S -

be the same as that of a linear controller. So it is desirable to study the linear
controller structure here. A robust controller which can tolerate some gain margin,
phase margin, and some nonlinearities of the plant is desirable in linear design
methods. At the beginning of its training, a neural network output is not necessarily
close to its optimal value, thus, the robustness of the controller structure assures the
stability of the control system when this uncertainty in the behavior of the neural
network may cause instability in the control system.

Any linear controller design should take into account the effect of perturbations

in the model. This is because the linear equations

r(t) = Ar(t)+ Bu(t) (2.12)

y(1) = Cx(1) + Du(t) (2.13)

which define the system model are usually obtained by linearization of a set of
nonlinear equations about some operating point (. 2p. ug). Suppose the following

nonlinear equations describe the system behavior more precisely:

r(t) = f(x(t).2(1). u(t)) (2.14)
(1) = gla(t), 2(t), u(?)) (2.15)
y(t) = h(x(t), z(t). u(t)) . (2.16)

In equations 2.14-2.16, z(t) corresponds to the high frequency modes of the system
which are usually omitted in deriving the linear model. After linearization we have

the following equations:

§7(t) = Abz(t) + Bdu(t) (2.

Q]
Pl
~J
~—
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§y(t) = CSx(1) + Ddu(t) (2.18)

with some condition on g [11].

In the above equations the exact values of 4, B,C, or [} may not be known
or the operating point (xg, 20, o) may change. Thus. it is conceivable that the lin-
ear model in 2.17 and in 2.18 does not represent the exact behavior of the system
about the chosen operating point. It is therefore important to take into account
the effect of perturbations in the linear model when designing controllers based on
such a model. The servomechanism problem which is presented in the following
enables us to do this [10]-[13]. The resulting controller is robust in that it achiceves
the specifications for the servomechanism problem even in the presence of certain
perturbations (non-destabilizing) in the linear model. A characteristic of the design
is that the resulting controller contains a certain duplicated model of its environ-
ment. i.e. of the disturbances and the reference inputs acting on the system. This
characteristic of the design is known as the Internal Model Principle [14].

Consider a linear time-invariant system described by

r(t) = Ax(t)+ Bu(t)+ Ed(t) (2.19)
y(t) = Cz(t)+ Du(t) + Fd(1) (2.20)
e(t) = y(t)—y-(1) (2.21)

where z(¢) € R" is the state vector, u(f) € R™ is the input vector, y(1) &« I is
the output vector, d(t) € R'is the disturbance vector which may or may not he
measurable, y.(t) € RP is the reference signal vector and ¢(t) € R” is the output.

error vector. The disturbance vector d(1) is assumed to be generated by a system
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represented by the following equations:

d(t) = Cqz4(t) (2.22)

24(t) = Agz4(t) (2.23)
which is observable. Likewise, the reference signal vector y,(t) is of the form

be(t) = Crzlt) (2.24)

H(1) = Az(t) (2.25)

which is observable. A controller for the system of equations 2.19, 2.20 is said to be
robust if the given system can be controlled by it in the desired manner, in spite of
the allowable disturbances and changes in the system parameters. Thus, the control
problem can be stated as follows. The initial condition of z4 in 2.23 may be unknown
while those of z, in 2.25 are assumed to be known.

It is required to construct a controller for the system 2.19 - 2.21, using the
available measurements y(¢) so that the resulting controlled system is stable and
the steady state error is zero (i.e. asymptotic regulation takes place) for all distur-
bances d(t) and reference signals y,.(¢) satisfying equations 2.21-2.23 and 2.24- 2.25
respectively, independent of any allowable perturbations in the system parameters.

The only restriction on the perturbations in the system parameters is that
they should not make the overall closed-loop system unstable.

If (i) (A,B) is a stabilizable pair and (ii) (C,A) is a detectable pair and (jii)
the number of inputs is greater than or equal to the number of outputs, i.e. m > p
and (iv) and

A- X\l B

rank =n+p, 1=1,2,---,q (2.26)
C D
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Figure 2.8: A servo compensator.

(where A, is an eigenvalue of A, or A,) a robust controller can be designed by using,
y(1), such that the closed-loop system is stable and asymptotic regulation takes place
for all d(t) and y,(t) defined above regardless of any (allowable) perturbations in
the system parameters. Such a controller consists of two distinct parts a servocom-
pensator. which is completely determined by the disturbances and reference signals,
and a stabilizing controller which can be implemented via an observer providing,
an estimate of plant states. The structure of the robust control system is given in
Figure 2.8, [14].

For the HVAC system at hand it was shown ([9]) that the plant is stabilizable
using output feedback, thus, output feedback can be used instead of state feedback.

The structure of the servocompensator for the system is as follows [10].

ft(t) = Q:f,(t)-{-('):c,(t), 1= 17"'al) (227)
The structure of this servocompensator is the same as that of the disturbance and
the reference input related to it. For constant reference inputs and disturbances
which have no dynamics the € would be zero and O] would be equal to an identity
matrix. Thus, equation 2.27 defines an integrator and the controller would be a P.1.

controller [9].




Figure 2.9: A simple representation of a multizone system. The temperature of zone
6 or zone n is not likely to affect the temperature of zone 1.

2.3.2 Decentralized Control

Because of the modular structure of most buildings the HVAC system which delivers
energy from a hot water source to building rooms is called a multi-zone space heating
(MZSH) system. Having isolated zones, such systems are usually controlled by using
totally independent control loops each acting on one zone.

In practice different zones of a building are not completely isolated. Because
of heat transfer taking place due to conduction of walls, roofs, and ceilings, and the
convection hetween surfaces and air and by radiation between surfaces, the general
problem of multi-zone temperature control leads to a multivariable control problem.
But, if the heat transferred from one room to another is negligible, compared with the
heat delivered by the heating ventilating and air conditioning system, the interaction
of the zones is negligible and a set of single-input single-output controllers can
provide the satisfactory temperature control,

Also, because of several temperature control zones in a building, which may
not be adjacent to each other, it makes sense to restrict the structure of the control
system so that local feedback loops are used as much as possible (Figure 2.9). This
simplifies the structure of the controller and results in what is called a decentralized

controller [15].
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In a real system the heat exchange of some zones may be considered while the
heat exchange of others may be neglected [15]. The controller of a zone would use
the signals available in zones which are expected to considerably alfect this zone.
Therefore, the decentralized structure of the controller may vary depending on the
requirements of the building. However, the interaction between zones is considered in
the design of such controllers by treating the system as a multivariable system. The
controller gains obtained from a decentralized controller design are not necessarily
the same as those obtained from a centralized controller design.

A decentralized controller can not perform better than a centralized controller.
This is because the class of decentralized controllers is a subset of that of decentral-
ized controllers.

Referring to the linear model 2.19 - 2.21, the decentralized system is given by

N

F(1) = Ar()+ Y Bou (1) + Ed(1) 0.08)
=1

y.(t)y = Cu(t) 1=1,--- N (2.29)

() = w)=y- (1) =1, N (2.30)

where the system is assumed to have N stations and w,(¢) € ™, y(1) € K", and

yr(t) € R ("m, =m and £1, = 1).

2.3.3 Linearized Model of the Heating System

Linear design methods require a linearized model of the plant. The setpoint which
is considered here is about the midrange of inputs, allowing the regulator to operate
over small changes in setpoints without losing the validity of the linearization. The

input values are
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[1(2) 1a(t) va(t) va(t) vs(t)) = [0.4 0.45 0.5 0.5 0.5]' (2.31)
and the constant disturbance which is needed for finding the linearized model is
dit) = [20 =2). (°C) (2.32)

The above conditions yield the following state of the heating system at which

the model is linearized.

[.I‘l(t) .’l‘z(l) .Ig(t) .1‘4(” .’1‘5(t) .’l'e(t) .7‘7(t)]’ = (233)
(75(8) Tin(t) Tra(t) Ter() Tia(2) Tiz(t) Te2(2)]) =
[27.2661 25.5844 29.8430 21.9668 25.5120 27.9441 20.66]7]' (°C)

For the following linear model of the plant. we can find the matrices A, B. and

' and E by using MATLAB.

Ai(t) = A DNz(t)+BAu(t)+E Ad(t) (2.34)

Ly(t) = CAx() (2.35)
The matrices are given in Appendix A. This model is valid for
Linom — 1.5 _<.. ‘Tl(t) S L1 mom + 1.5. (236)

Where &y ,0m denotes the nominal state of the system. The decentralized linearized

model of the plant is given by
3
Ar(ty=A Axz(t)+D_B. Au(t)+ E Ad(t) (2.37)
1=1
Ay (t) = C, A x(t) (2.38)
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where the matrices are given in Appendix A and A represents the current value of
a variable minus its nominal value.
The inputs and outputs of the decentralized system are defined as follows and

remains the same in different approaches to the solution of the problem.

w(t) = m(t), wlt) = ["‘“) Cwny =] O (2.19)
|_V4(t) vs(t)
and
yi(t) = x1(f). ya(t) = xa(t). ysl(t) = r2(t) (2.1

2.3.4 Linear Robust Servomechanism Problem

In order to find a robust controller for the heating system, without. considering, its

decentralized structure. the following centralized control problem is solved

M J(K) = traa{/l [e(2)' Qclt) + u(t) Ru(1))dl'} (2.41)

Jo

= tracc{P}

subject to
Az(t)=A At)+ BAu(t) + E ANdt)+ F Ay,(t) (2.42)
) A
Agt)=C i) = | S¥Y (2.43)
Ag(1)

0<w(t) <1, k=1,---,5 (2.44)




Re(AS) <0 (2.45)

where IV is the controller gain matrix. @ and R are positive definite matrices.

A€ € R s the output of the servocompensator, i.e.,

AE(t) =N E(R)+O Ac(t) . (2.46)

A clt) = Ay(t) - Dyl (2.47)
The matrices A, B, ', E, and F are given by

A o) _ |B]. E| . 0| . |CoO
A= B = E= F= C = (2.48)
o 0 0 0 -0 0 I,

and € and © are 03,3 and I35 In the above equations ¢ is the order of the
least common multiple of the minimal polynomials of the disturbances and the
reference inputs defined by equations 2.22-2.25 [16). It is simply equal to one for all
disturbances and reference inputs assumed to be constant. p is the total number of
the outputs of the MZSH system which is three here. Condition 2.44 ensures that
the solution of the problem is feasible (does not violate the limits of the control
inputs) and 2.45 ensures that the control system remains stable while the controller

gains are being adjusted. The matrix A is defined by:

(A+ BNCY + P(A+ BKC)=(Q+ C'R'RKC) (2.49)
_ | De(t)

Au(t)y= A . (2.50)
Ag(t)

where K = [R“) R('z)]. This constraint optimal control problem was solved in [9]
using a parameter optimization program. The method of solution requires starting
from some stabilizing controller gain and obtaining P by solving 2.49 and applying a
sequential search type parameter optimization technique to find A" which minimizes

the value of £ while satisfying the constraint in 2.41-2.45
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The controller obtained in 2.49 by this design method was

0.26821 —0.00796 0.02346 0.66410 0.08757 0.06621
0.04060 0.31637  0.02575 0.05495 0.78372 0.0-1820

KN =1 0.03671 0.31706 0.02381 0.01882 0.80676 0.06689 | . (2.51)
0.05082  0.03793  0.18882 0.04647 0.05178 1.08092
0.01113  0.03099 0.25037

0.03194 0.05277 0.77144

2.3.5 Decentralized Controller Problem

It was shown in [15] that the temperature of a zone in a linear system can he
controlled by using output feedback and using signals available from the immediate
neighboring zones (but not other zones). Anoutput feedback decentralized controller
using only each zone output can be designed which gives performance close to the
performance of a centralized controller for a plant the same as the one in this study
[9].

The augmented decentralized control system using the linearized model of the

plant is represented by the following equations.

. -~ ~ '3 a a »
Az(t)=AALz(t)+ Y B A wt)+ EAdY+F Ay (1) (2.52)
1=1
. Dy.(t) N . g o Fe
A g(t) = =C Akt), 1=12,3 {2.53)
DE(L)
AL = A& +OTAG(t)  i=1,23 (2.54)
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and

A e (t) = Ay, (1) — Dyl(t) (2.55)
where
sy = | SO aj) = By (2.56)
AE(t) A&(t)

In equation 2.54, Q7 and O are zero and one respectively which are defined
by the constant reference signal and the constant disturbance acting on the system.

This leads to the following servocompensator
AE(l)= " AE(t) + O  Ae(t) (2.57)

with ° = 04,3 and ©O* = [,

A A 0| . B, | . El . 0 ) C 0
A= B, = E= = Cyo= (2.58)
O O 0 0 —e" 0 I,

A before a variable represents the current value of the variable minus the nominal
value of the variable. The appropriate matrices are given in Appendix A. Note that
all the matrices can he obtained from the centralized linear model of the heating
system.

Since in decentralized control problem there is no control action between sta-

tions the controller gain matrix A" is block-diagonal, i.e.,

K = block diag(k, Ka, I3) Ky € R™2, K, and K3 € R¥*? (2.59)

The measure of a decentralized control structure gives rise to what is called the
problem of decentralized fixed modes (DFMs). Decentralized fixed modes concept
is a generalization of the concept of uncontrollable and/or unobservable modes of

centralized linear systems. A DFM is that mode of a system which is not affected by
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all possible controller gains of the chosen decentralized controller structure. 1t only
makes sense to use a particular decentralized structure if all the corresponding DIFMs
are asymptotically stable. For the MZSH system, there are no unstable DFMs, and
the number of inputs (N,) for each station is greater than or equal to the number
of outputs (I,). Then for this system the robust decentralized control system is
stable if the triple (4, B, C') has no transmission zeros at the origin s = 0 (constant
references and disturbances). Using MATLAB it was found that the system has
no finite transmision zeros and the poles arc at -1.2183, -45.1572, -1.7729,-1.2410,
-28.6250. -0.2642, -0.2642. The latter implies that there are no unstable DIPMs,
Therefore, this decentralized servomechanism problem has a solution. The
problem was again formulated as a constrained optimal control problem in [9] with

a decentralized control gain defined by

~, Acel(t) . ,
Awu,(t)= K, o1 =1,2,3 (2.60)
A&i(t)
K, = [k ;P (2.61)

To have a gain matrix with the same form as the one found by the centralized
approach, we may rearange the above matrix as:
N = [l\'“) I\'("’)] , (2.62)

KO = block diag{ki" K" K"}, K® = block diag{ K K K )

and
aet Au(t) Aer(t) | a6 ]
Ault) =K AE( sAu(t) = | Auy(t) |, e(t) = Deyft) | E(t) = | A&y(1) {2.63)
Auy(t) Dey(l) DEy(t)

A similar cost function as that of the centralized case was used. Thus, the mini-

mization problem is as follows.

Min J(K) = | DetYQ Aelt) + Dulty RO u(t)dr . (264)
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By using the approach given in the previous section, the following decentralized

feedback gain matrix was obtained in [9].

[ 03230 0 0 07759 0 0
0 03420 0 0 07205 0
K=| o 03477 0 0 07568 0
0 0 01865 0 0 1.0752
B 0 02697 0 0 0.7588 |

(2.65)

The comparison of this set of feedback gains and the one shown in 2.51 reveals the

difference between the control action for the centralized and decentralized cases.

2.3.6 Nonlinear Decentralized Servomechanism Problem

Here a similar approach was used as in the preceding section except that the lin-

earized model was replaced by the actual bilinear model of plant:

6‘,(t)=y,(t)—y,.|(f.) 1= 172’3
where

x(t) = [To(t) Tua(t) Tualt) Tua(t) Tr2(2) Tha(2) Taa(2)],

dit) = [T.(MT)] .
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(2.67)

(2.68)

(2.69)

(2.70)



The servocompensator can be defined as belore, i.c.,
E(1) = &) + O (), =123 (2.71)
with fl. =0 and (:), =1.

- | (i) :
w, () = I, .oi= 1,23 (2.
&(1)

[
-1
[

~—

where K, = [];'1(1) 1;',(2)]. The structure of the controller in this design is the same
as what introduced in the previous section.

Supposing that a 24 hour outdoor temperature forecast, 1), is available the
following optimization problem can be solved which results in the controller gain

matrices of the decentralized structure.

. e e . 24
Min J(Ny, Ky K3) = / [e(8)Qe (1) + ' (#)Ru(t)] i (2.73)
0
subject to
0<u(t) <1  1=1,-+.5 (2.74)

Q@ and R are the same as those of previous designs.
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2.4 Motivation for Time Varying Controller

Caonsidering the entire control operation required in an MZSH control problem, we
need a regulator which can perform over a larger range than what was assumed for
the controllers in the previous section. We may be able to use one controller, over
a wide tange of operation, provided it is robust over the range. However, there will
still be significant degradation for larger ranges especially at their limits. So using
a robust constant controller is not a good solution to the problem. Also, since the
regulator is not optimal for other operating points, we may get a response which
converges to the desired setpoint values, (assuming that the system is stable). but
the transient response of the system may not be fast. This fact is of particular
relevance for controllers designed using linearized models.

Since the plant is nonlinear. a better controller from a linear design point of
view is a time varying controller. Suppose for designing a controller for the whole
operating range we divide the range into several small sub-ranges and design a
controller for cach sub-range. We would then have several controllers, each designed
for a particular point in a sub-range. and optimal at the operating point of the

sub-range. The controller’s gain matrix is given by

K = Ky (X€Rangei) i=1.--- M (2.

o
!
Y
~—

where X denotes the state vector of the ~ontrol system. As the operation switches
from one sub-range to another. the controller switches from one value to the next.
This i~ essentially the principle of gain scheduling that is frequently used for control-
ling nonlinear systems. If we increase M we get more controllers each optimal over a
more restricted sub-range (and presumably performing better over that sub-range).
[n the limit when Af approaches infinity we would have a function, say K'(X'), which
sives us an optimal controller gain depending the state of the plant. The controller
which is the goal of this study provides a gain matrix which is a function of the

states of the system.
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Since output feedback and Pl control have heen shown to be able to control
the MZSH system, it is reasonable to suppose that outputs of the plant and the

variables in the PI controller can represent the system condition adequately.
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Chapter 3

Background on Neural Networks

3.1 Introduction

Neural networks are parallel distributed computing networks which consist of nodes
(or neurons) and their interconnections (or weights). Neural networks. unlike usual
man made machines are not designed specifically for what they are employed for.
They are designed heuristically i.e. a designer defines neural network inputs, its
architecture, proper neurons, initial weights, and training mode and then lets the
network learn its task. Training a neural network means changing its internal pa-
rameters according o some training algorithm.

Neural networks can have a variety of different architectures. Among them
multi-layer neural networks are widely used for control purposes because of the use
of the backpropagation training scheme ([17], [18]) and relatively little computation

required when neural nctworks are employed in recall mode.



Three important characteristics of neural networks will potentially help to un-
derstand their function iu this project. These characteristics ares (i) learning a
function of some variables, (ii) minimizing some energy function, and (iit) gener-
alizing the already learned data. These characteristics are specially desirable for
finding optimal controllers for nonlinear systems. Since controller parameters are
most likely functions of some of the control system states the first characteristic
attracts attention. Optimality of the controller requires minimization of some cost
function which can be done by using a neural network. Training a neural network
for all possible conditions of a system is impossible. So generalization of the learned
data is a necessity.

This chapter introduces the architecture and the ole of the neural networks
employed in a neural network based decentralized controller. In order to give some
background about neural networks, the main characteristics of the networks are
presented. Training a single neuron and using backpropagation training, a widely
used training algorithm, will be explained next. Learning a function and doing
optimization are given in subsequent sections. Then, function learning capability
of neural networks is discussed. Finally, performing optimization by using neural

networks is considered.
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3.2 Neural Networks

Neural networks are parallel distributed computing networks which accomplish their
tasks with parallel and redundant computations rather than doing them sequentially
and in order. They are represented by nodes (neurons) and their connections which
are represented by arrows going out from one node to another node. The direction
of these arrows represent the direction of information flow i.e. showing that the
output of one node is affecting the input of another. Figure 3.1 depicts a simple

neural network.

input
X

Figure 3.1: A node arrow representation of a neural network.

Node 1 is the input terminal which is usually considered as a buffer to the
neural network. Nodes 2 to 9 are neurons of the network. As one can see the
information passes from node 1 to nodes 2-4 and from there to nodes 5-9 and so on.
Node 10 is the output node which is also a neuron.

The characteristic of neurons and the way the neurons are connected, which
is called the topology of the network, constitute the neural network input/output
mapping. In Figure 3.1 suppose that all the nodes are of symmetric type then it is

possible for the network to be symmetric i.e.

r—y (3.1)
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AND

Figure 3.2: A neural network model of logic AND.
—r =~y

which in not the case when the neurons are not symmetric.

In transferring the output of one neuron to the iuput of another, the connee
tion also multiplies the output by some scalar which is called the weight of this
connection. These weights in a neural network which are usually put in groups
and represented by some matrices can also modify, or sometimes totally change, the
characteristics of the neural network. For example Figure 3.2 shows an AND logic
operator. But, by changing only wy from -1.5 to zero the operator heeomes an OR
[19]. In more complex networks the circles which represent the scaling are omitted
and each weight (w,) is placed over the proper arrow.

When a particular neural network is chosen by the designer the weights, which
are usually considered as internal parameters of the network are found, adjusted,
and fine tuned in order to let the neural network perform its function. Since the
parameter, or weight adjustment allows the neural network to perform better it s
said that the network is learning.

The weight adjustment is accomplished either by the interaction of nodes due
to the circulation of information in the neural network or by a training algorithm
which finds weight changes from some rule. These two forms of weight adjustments

are called unsupervised and supervised learning respectively. If supervised learning
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is what is employed in a system, the training algorithm can be represented by a

supervisory block which adjusts the neural network, Figure 3.3.  This supervisory

N?Al — Supervisory
Ngtwork block
g

‘The rest of the
system

Figure 3.3: Supervised learning.

block may be removed from the block diagram for the sake of simplicity. Because
of the flexiLility of their structure, neural networks are difficult to classify. Some
attempts have been done in the past in order to compare different neural networks
[20]. The following presents a simple classification [17].

1. Topology

2. Architecture

3. Neuron model

4. Training algorithm

5. Operation schedule

The topology of a neural network refers to how the neurons are connected
in the network. For instance the network shown in Figure 3.1 is a feedforward
network where neurons closer to the output cannot affect the neurons which are
farther from the output. There are networks which employ such connections. The
internal parameters, or weights, of a neural network can be considered as a part
of the topology of the network because a disconnection can be represented by a

connection with a weight of zero.
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The architecture of a neural network denotes how the inputs of the network are
defined and whether the network has any feedback from its output(s) to its input(s).

Neurons which are depicted as nodes in Figure 3.1 are the most important parts
of the structure. They, in essence. create the flexibility which a neural network is
known for.

An operation schedule determines the order in which ditferent parts of a neural
network should be activated. This schedule is important for stability of some neural

networks.

3.2.1 Topology

The topology of a neural network is the pattern of connections between inputs,
neurons, and outputs. It specifies the neural network and the information stored in
it. i.e.. it includes what the system knows and determines how it responds to any
arbitrary input.

A topology which covers all other topologics is the fully connected topology,
e.g., bidirectional associative memory. This topology requires that every node’s out-
put be connected to an input of all the neurons inside the neural network ineluding,
an input of its own [21]. Thus other topologies can he considered as fully connected
topologies with some connections equal to zero. Some of the commonly used topolo-
gies are multilayer neural networks, bidirectional associative memories, and AR'Ts
[22].

A very common topology is the multilayer feedforward, or hierarchical topology
neural network (Figure 3.1). This topology orders neurouns into layers with neurons
whose outputs are connected to the next layer neurons inputs and their inputs

connected to the previous layer neurons outputs. So, the information flows in one
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direction.

Because of the importance of multilayer networks in applications there is an
interest in finding the number of layers and neurons required for a specific job.
Although a clear set of rules for them has not yet been obtained some general char-
acteristics can be stated. If all the neurons of a network have nonlinear activation
functions, increasing the number of layers generally enables the network to learn
more complex patterns [24]. Two layer networks, i.e. one hidden layer network, was
shown to be able to approximate a wide range of nonlinear functions [24]. But it is
suggested that a three layer network, i.e. with two hidden layers, may have some
advantages [23).

The number of neurons required for a task is also unknown. Increasing the
network layers may help reducing the total number of neurons required for the same
task. It should be noted that increasing the number of layers and neurons imposes
heavier computation requirements for practical problems, and may not even improve
performance.

All neurons in a layer are usually chosen to be of the same type but different

layers may have different types of neurons.

3.2.2 Architecture

A simple categorization of neural network architectures consists of feedforward, ex-
ternal feedback, internal feedback, and unsupervised.

A Feedforward network responds to its input at every instant. An internal
feedback neural network performs like a feedforward network but its output affects
the input. Thus, the response to the stimulus, which is a combination of the ex-

ternal stimulus and the feedback, is defined no matter what the previous external
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O= f(net)
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Figure 3.4: The model of a neuron

stimuli have been. An external feedback network sees both the external stimulus
and its own response to the previous stimulus. Thus, its response depends on the
current stimulus, the previous stimuli, and the order in which they were presented
to the network. The unsupervised network, for example, the winner-take-all ar-
chitecture can-not be assigned a desired output and the network responds to some
characteristic of the stimulus which it can learn. Feedforward, external feedback,
and internal feedback architectures can undergo training schemes hut unsupervised

neiworks cannot.

3.2.3 Neuron Model

A neuron is the basic building block of a neural network. Regardless of differemt
architectures which can be employed for a purpose a neuron is the essential block
which remains unchanged. An artificial neuron is a model of a biological neuron and
can be represented as shown in Figure 3.4.

where z;,--+,z, are the inputs to the neuron. Each input is scaled by a

weight w, and the scaled inputs are added and shifted (by the biasw, 41) to provide
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the input to the activation function. i.e.

net = W'z 4 w,ybias (3.2)
y = [(net)
where
3 w1
Ir= , W= (3.3)
xﬂ. w'"

A variety of activation functions are conceivable. Some of them are

1) Hard-limiting (or binary perceptron)

1 net >0
f(net) = (3.4)
0 net <0

2) Soft-limiting (or continuous perceptron or tan-sigmoid)

2

f(TlCt) = m —_ (35)
3) Log-sigmoid
1
f(net) = 1 + e—Anet (36)
4) Linear
f(net) = net (3.7)

For simplicity of notation the following substitution may be used
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So, the input-output relation of a neuron can be written as

y= f(net) = f(W'r) (3.9)

where the prime (') represents the transpose of a matrix.

3.2.4 Learning Algorithms

A learning algorithm (or training algorithm) is an algorithm by which the neural
network stores new information. It may be applied by the neural network itself (un-
supervised learning) or by a supervisory system (supervised learning). The learning
may take place by (i) developing new connections, (ii) losing some existing connec-
tions inside the network, and/or (iii) modifying the internal parameters, especially
internal weights. The last modification (iii) has been paid the most attention.
Training a neural network in this study involves only the modification of the
connection weights within the network. In other words the training algorithm per-
forms a search through the space of neural network parameters (here only connee-
tions of neurons not the parameters of activation functions) in order to find a set
of parameters with which the neural network satisfies the condition or performs
the required function. The most frequently used algorithm is Rumelhart’s error

backpropagation [19).
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3.2.5 Operation Schedule

The operation schedule is a list of times and the neurons which become active at
those instants of time. A categorization of the operation schedule is top-down,
bottom-up, and interactive [20]. For the first two categories, top-down and bottom-
up, the neurons are grouped into layers, and higher layers (farther from the input)
do not affect the lower layers (nearer to the neural network inputs). Neurons in
every layer are numbered and they are activated sequentially. After all the neurons
of a layer are activated the next layer of neurons is activated in the same manner.
In a bottom-up schedule layers which are closer to the input are activated first.

In interactive models neurons of different layers (higher or lower) affect one
another, so the information flows in both directions. A more restricted model of this
type is when information flows only between adjacent levels. One of the schemes of
activating neurons in such networks is activation in a random manner.

In a feedforward multilayer network the neurons are activated in a bottom-up
schiedule i.e. those which are closer to the input respond first. Their outputs feed
into the neurons of the next layer, which then respond. In networks with feedback,
the set of neurons responding at a given time may be chosen randomly, i.e. the

interactive operation schedule can be used.
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3.3 Training a Neuron

Training a neuron means adjusting w, and bias so that f(net) is closer to some
desired value than it was before training.

There are several learning rules which define how w, should be changed to
result in the desired change at the output of the network. Among them is delta
learning rule which in error backpropagation training scheme for multi-layer neural
networks. Since error backpropagation is used for the training of the neural networks
in the neural network based decentralized controller, delta learning rule will be
explained in the following.

Suppose that the desired output of the neuron is d and its actual output is
y. The adjustment of w,, w; € W, can be expressed as the following optimization

problem.

M E = ;l)-((l —y)? (3.10)
4%
y = [f(Wax)=f(net). (3.11)

Hence, the minimization problem can be rephrased as follows.
) 1 .
Min E= Q(d_ f(W'r))? (3.12)
W

The delta rule is actually the steepest descent solution of the optimization
problem. In this method the scaled negative gradient of the function to he mini-

mized, here E, is added to W. The gradient of E with respect to W is

VE=-d-y)f" (W) (3.13)
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where f7is the derivative of f with respect to its argument and W is the transpose

of W. So.
LW ==y GFE (3.14)
where 7 is called the learning rate. Hence. after training. the new weight is given by
Wiew =W —n7 E. (3.15)

|

\ The gradient of I requires the computation of f*(17.r) which is the slope of the
[ activation function. The following presents f*(W'r) for those activation functions
| which will be used in our control problem.

1) linear activation function
[(nct) =1 (3.16)

2) tau-sigmoid activation function

) —Aret
[lnet) = 22 (3.17)

] — (—,\u(t

—Aflnct)[1 = f(net)]
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3.4 Error Backpropagation

In a multilaver neural network when an input is preseuted to the network the cor-
responding output will be generated by the network operation in a feedforward
maaner. using the bottom-up operation schedule. But, when in learning mode, the
neural network weight adjustment propagates from the output layer to the inpuat
layer through hidden layers. This sequential backpropagating weight adjustiment
has inspired the name of this training algorithm. This method of training neural
networks was initially introduced by Werbos [25] and later developed by Rumelhart
and McClelland {20]. Backpropagation is the steepest decent algorithm of minumiza
tion and is a generalized form of the delta learning rule.

In order to study the backpropagation alg-rithm. let as consider the following

two layver network:

r= Ol -y - ) = - (3,18}

1 I,

where r is the input of the network and y and z represent the output of the first
and the second layers of the neural network: I'y[.] and I',[.] stand for the activation
functions of the corresponding laver neurons: W and W, are scaling matrices of
appropriate d' mensions.

The other notations are defined as follows.

I N =1
I = y= . = (3.19)
T myx} Y nrsl 3'; qs)
and
g=T[WhL), z=T,[Wy. (3.20)




Let
Wy Wiy
W, = : (3.21)
Wyt Wen o
and
nety
net = Woy = : . (3.22)
net, ox1
Then
Sa(nety)
FQ[” '2!_}] = 1‘2[71_(1] = E . (323)
Sfo(nety) )

Updating an element of W', based on the steepest descent algorithm is equiv-

alent to computing

oF
A wyg, = —nawkj. (3.24)
Applying the derivative chain rule, we get
d(nety) OF
JAY Wiy, = —1). (ne k) (325)

dwy, Onety

where nety, is an element of net. We may define the delta (8) for the kth element of

T as
E 0z, OF
(5:=—“9 __Ou OF (3.26)
onety Onety Oz )
From the topology of the network we get
O0(nety)
—_ =y, . 327
au)kj yJ ( )
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Thus,
A wyy = by, (3.28)

The generalized form of the above equations which is valid for a layer, can be

written completely as
:T,.{%f;(”(“)
§. = 22 — . (3.29
%.f{(n('f,,)
From
nel = W,y (:3.30)

we can conclude that

gE E

- 3.3
o, " aned? (3:31)
aE ok .,

— = REoS 3.2
dy  dnct W (3:32)

Thus,

AW, =1d.4 (3.33)
())—E =4, W, (:3.34)
Ay

By repeating the above procedure "7%‘— can be found for the first layer of the neural
network and the weight adjustment for the whole network can take place.

As mentioned earlier, the optimization technique which is used in the stan-
dard backpropagation technique is the steepest decent algorithm ([19]. [26]). Some
methods have been developed to improve the convergence property of this training
scheme, ([27]-[31]). Also other optimization techniques such as quasi Newton ( [32],

[33]), and conjugate gradient ([34]) methods may also he used to provide better

convergence properties ([35]).
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3.5 Learning a Function using Neural Networks

Neural networks can learn a wide range of variable dependencies from deterministic
relationships to stochastic relationships. What we are looking for in this study is
a multivariable static mapping of control system variables. In order to train the
neural network for a function of some variable(s), usually a set of desired output
samples and the corresponding input variables are stored as training patterns. Then
cach input is presented to the neural network and its actual output is found. The
difference between the actual output and the desired output. enables the training
scheme to adjust the iuternal parameters of the neural network in such a way that
the actual output after training is closer to the desired value than it was before
training,.

For example. suppose that a system is required to learn a nonlinear function.

sy
f(r) = sin(r). (3.35)

By giving some samples of the independent variable .r,. 7 indicates the sample, and
the corresponding function values f(x,), for example, a hundred equally spaced
samples of a period and the corresponding function values, a neural network with
symmetric sigmoid neurons. as shown below, can learn their relationship, within the
periad, [18].

Learning the relationship for Figure 3.5 means that some w,, v/, and bias, can
be found such that the out(.r) is as close to f(.r) as is required. When the training
is complete the output of the neural network can be as close to f(r) as required at
those values of r that (r, f(.r)) were presented to the network [36], assuming that
there is a suflicient number of neurons in the network.

As can be seen from the above example training a neural network for a con-
tinuous function has been performed as training the network for a set of discrete

variables. This is valid only because a neural network interpolates the data that it
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Figure 3.5: A multilayver neural network to learn a symmetric function. All newrons
are of symmetric sigmoid type.

has learned. So, for those values of r in the example for which there has not heen
any training, the neural network gives an output which is a result of an interpolation
of the known data: so we may expect that out(r) = f(r).

Presenting samples of inputs and outputs is not the only way of making a
neural network learn a function. For example when using the backpropagation
technique, only the direction of change for the actnal output towards the desired
value is sufficient. So. in some applications of ncural networks an estimate of this
direction can be used for training purposes.

A method of learning a function which is usually used when dealing with
dynamical systems involves a function of neural network independent inputs and

their delays ( MA model of dynamical systems). i.c.,

out(z(t)) = f(x(t),z(l-AOL),&(t—2401t), -, x(l —n At)) (3.36)

We can also use a function of delayed inputs and outputs (ARMA model of dynam-

ical systems) [37].

out(z(t)) = f(ylt —A).y(t=241),---+y(t—mAt) (3.37)
+Z(t). r(t = ADt).z(t = 241t),--- 1t — n Lot)).

59




Here fis a. nonlinear, function which is to be learned by the neural network.
The above models are standard ways of representing dynamical systems. The

following figure depicts this form of modeling a system. In Figure 3.6, A is a

Neural
Network
y
wpat f(R.y.W) -
R

B B

Figure 3.6: A neural network model of some nonlinear systems.

constant delay, for continuous systems, which can be replaced by z=! for discrete

systems,
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3.6 Neural Networks and Optimization in Con-

trol Systems

In this section, we look at the problem of neural network training as an optimization
problem. For this purpose it may be supposed that a set of independent variables
x, and the corresponding dependent variables f(r,) are given. A neural network N

is supposed to learn f such that

N(e) = f(r). (3.38)

The internal parameters of the neural network would be represented by W so N s

a function of xr and W, 1e.,
N(e) = N(ou V). (3.39)

The optimization problem is defined for minimizing some error or cost function. The

most commonly used function is the quadratic error function

E =) (J(x) = N(r,W))* (3.40)
So the problem of training the neural network is actually the following minimization
problem
Min E =Y "(f(z,) ~ N(x,,W))%. (3.41)
4%

In the following the backpropagation algorithm is considered as the training scheme,

We have seen that for finding gf:, w, € W, in the backpropagation technique
we would need to have -g—f, z, an output of the neural network, and the status of the
neural network. We may suppose that the supervisory system for this supervised

learning problem takes in the derivative, or an estimate of the derivative, of £ with

respect to the output of the neural network, and it produces the derivative, or an
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estimate of the derivative, of E with respect to the internal parameters of the neural
network.

A generalization of this problem is that we consider the neural network in a
system, say a control system, and try to minimize an energy or cost function, say
J.If ‘-,'—E, or an estimate of it, is given to the supervisory system it would produce
the derivative, or an estimate of the derivative, of J with respect to the internal
parameters of the network. Once the derivative of the energy, or cost, function
with respect to some parameters (here network’s internal parameters) is found, this
optimization problem, which is now an optimal control problem. can be solved, e.g.
see [38].

An important issue in incorporating neural networks in control systems is how
to train them for the system. The minimization problem of equation 3.41 can be
approached as follows. For every 7. f(r, — N(x,,1¥")) is backpropagated through the
neural network yielding N(r,, W) closer to f(z,). When all the samples have been
used for training. one epoch is computed and the training can be started again from
i = 1. This form of training, can be carried out until the value of E is less than
some desired value.

In a control system, if the neural network is included in it, the required data for
neural network training can be collected. the network trained and then incorporated
in the system. This form of training a neural network is called off-line training. Not
all control problems can be dealt with by using off-line training, especially when the
network is supposed to be an active part of the control system. In this case, the
neural network is incorporated in the system and it will be operational while being
trained. This form of training is on-line training. A variety of different schemes
are conceivable for the on-line training of a neural network. The following is one
of them. Suppose that the neural network can be operated in discrete instants of
time. Thus, there is an interval wherein the neural network can be trained, i.e.,

training and control can be applied one after the other. This scheme is particularly
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suitable for slow systems like the MZSH system under consideration in this thesis.
Epochwise training is also possible in on-line training. A set of picces of data can be
collected and assorted for training the network, assuming that the time interval for
training allows the neural network training for more than one set of training data,

and the set can be updated as the system evolves in time.
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Chapter 4

The Neural Network

Decentralized Controller

4.1 Introduction

In this chapter, neural network based decentralized control is introduced. This
controller which is an output feedback decentralized controller has similar structure
to that of controllers introduced in Chapter 2. While keeping the decentralized
structure for the controller, we add neural networks to the control system. The
neural network part adjusts the controller gains so that they are optimal for each
setpoint and that the overall system has optimal gains over a wide range of operation,
such as the typical daily range of operation of the heating system [1].

The purpose of this study is to investigate the possibility of using neural net-

works in an MZSH system, and the trainability of the networks in that system.
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Hence, every aspect of the control system is intentionally kept as simple as pos-
sible. For instance, one neural network is assigned to each controller gain. The
neural networks used are feedforward networks which perform a static mapping,
and the optimization technique including neural network training is the steepest
decent method. Although, this simplicity helps in understanding the problem, it
gives rise to stability and global minimization issues.

The results presented at the end of this chapter show the capability of neural
network based control for performing control action for multizone space heating
systems.

This chapter is organized as follows: the time varyving formulation of the con-
trol problem is presented in section 2. The neural network decentralized controller
structure is presented in section 3. Section 4 formulates an approximation to the pra-
dient of the cost function and shows how the steepest decent optimization techunique
is employed. Section 5 presents the simulation results which show the trainability of
the neural networks, improvement of performance with iespect to an optimal robust
controller, performance of the controller in applications requiring a wide range of
operation, disturbance rejection, and the use of different types of neural networks

for the control action.

4.2 Time Varying Controller

As explained in Chapter 2 a decentralized output feedback controller can control the
MZHS system almost as well as a centralized controller [9]. The design was based

on a linear model of the plant, i.e.,
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3
Ai(t) = AAz(t)+ > BAu(l)+ EAd(t) (4.1)
=1
Ay(t) = C.Az(t), 1<i<3 (4.2)
where A stands for the change of variable from its setpoint value. A constant gain

controller was used, i.e.,

u(t) = KWe(t)+ AE) (4.3)
where,
Ks 0 0 hs 0 0
0 Ky 0 0 K, 0
KW=| 0 K o |.K®=| 0 Khs 0 (4.4)
0 0 A, 0 0 iy
0 0 Ao | | 0 0 Ay

This constant gain controller is optimal a‘ one constant setpoint. By rearranging

the model of the HVAC system in Chapter 2 the following model is obtained.

Ft) = fi.r(t)+i3,(t)u,(t)+Ed(t) (4.5)
1=1

-~

w(t) = Cal), 1<i< 3 (4.6)

where B,(1) is actually B;(x(t)). An optimal controller which can best minimize the

cost function
t
JIKD, KOy = /0 (e'(t)Qe(t) + w'(t) Ru(t))dt (4.7)

when e and u are related to a time-varying system should be time-varying (e.g. see
Chapter 2). The time-varying controller which is proposed in this study consists of

gains with two terms; a constant gain and a time-varying gain. The constant term
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provides a stable controller if the time-varying termis set equal to zero. The time
varying term will be found such that it improves the performance of the control

system. Consider the following controller
KM@= NO@)+ KO KO =N () 4 K (1.8)

Where A and K® are the same as those defined in cquations 4.3 and 1.1, Inorder
to keep the decentralized structure of the controller, the zero elements of A and
K™ have zero valued counterparts in N)(tyand NB(t), and the nonzero clement s
of KM and K have counterparts in NO() and N®(¢) which are the outpits of
the neural networks. Therefore, ten neural networks are incorporated in the control

system, i.e.,, (1) and A3 are defined as follows.

Ns(t)+ K5 0 0
0 N+ K, 0
R = 0 N:()+ Ky 0 , (1.9)
0 0 No(t) + Iy
_ 0 0 W(t) + Ky ]
and
[ No(t) + s O 0 ]
0 Nyft) + 1, 0
R® = 0 Ny(l)+ Ky 0 : (4.10)
0 0 N4(t)+l;’4
0o Nio(t) + Ko |

Each neural network is a static mapping of the signals available in the control
system. Thus, the time dependency of NV, (1) is initiated by the time variation of its
inputs. The sufficient neural network input variables were found to be the ourput

(4(t)), the output error (&(t)), and the integral error (£(t)). Therefore, the neural

network functions were defined as

Nl(t) = N,(g(i),fl(t),é(t)). (411)
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The decentralized structure of the controller restricts the above inputs to the signals
availuble at the station corresponding to the ne! vork. The following equations

present the complete definition of the controller gain matrices:

[ No(er (1), 60(8), 11 (2), va(0)) + s
0
KN =

0
0
0

G
Ni(ea(t), (1), ya(1) (1), va(t)) + K
Na(ea(t), E2(1). y2(t). 11 (1), va(t)) + K
0
0

0
0
0 . (4.12)
Na{ea(t). £3(1), ya(t), va(t), vs(t)) + K3
No(es(t).Ea(t), ya(t). va(t), (1)) + Ko |

and



[ Na(er (). &0(8).yn (1) (1)) + R

K® =

0
0
0
0

0
Na(ea(0). &), ya(t)an(t). va(1)) +
Ne(Ca(1). &), ya(t)on (1), (1)) + R

0

0

0

0

0
Naleal). &0 ()t (1)) + Ry
Nioles(t). &) ys(t), o) vs(1)) + Ko

(4.13)

The neural networks are set such that their outputs are zero at the beginning of

training, i.e., NV,(0) is equal to zero for 1 < 1 < 10. I;'(I) and f\'u) are assumed

to be able to provide stability for the control system, so that the control system

is stable when the training starts. The controller starts from I\'“’(I) = KM and

K@ (1) = K, and over time the neural network training provides NU(t) and

N@)(1) such that the control system’s operation with K()(t) = NU(1) + KO and

K®(t) = N@(t) + K@ generates a lower value of the cost (J) than its operation

with I((”(t) = [;'“) and ]\'(2)(1) = ];’(2)‘
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4.3 Neural Network Controller

Neural networks as the time-varying terms of controller gains start their operation
with the output values equal to zero. The training of the neural networks uses the
steepest descent approach. The gradient minimization is as follows.

Suppose [ is a function of some variables, say 0;,- -,0,. We define the (Ja-

cobian) gradient, 2L, of f with respect to the vector § € R" as follows [39)

Y a9
af _ ,9f Of af ,,
o0 [aa, 80, a0, (4.14)

where

0 = [0,,00,--,0,) (4.15)

and the prime (') represents the transpose of a vector. If the operating point, in the

parameter space, is changed from 8,,,, to 0,., + Af. where

A = — % (4.16)
0<n<] (4.17)

il 77 is sufficiently small then it follows that
T(Oram + A0) < f(Brom). (4.18)

The value of 9 may also be found by a one-dimensional search. Normally in the

backpropagation technique, the function to be minimized is
1
E = 3 Z(d, — out,)? (4.19)
1

where out, is the actual output of the network for an input and d, is the corresponding
desired output. In order to minimize E, each term of it i.e. (d, — out,) will be
minimized sequemially. In order to minimize one term of E, say the jth element

_oE
dout,

= (d, - out,) (4.20)
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.J is a specific value of 1, is backpropagated through the network. Thus, the output

of the neural network (out) to that input, after training, is closer to the desired value

d, than the output before training. In other words, backpropagating — £ adjusts

dout

the internal parameters of the neural network such that

Eajter traming S Eb(‘/orl’ tramang (12‘)

The same concept is used in minimization of an arbitrary cost function, say .J
in the case of a dynamical system. The value of —%‘{7 is found and is backpropagated
through the neural network. Finding the gradient of the cost function is discussed
in the next section.

Suppose that the controller gain at an instant can be represented by a function
of some of the signals in the control system. Applying the gradient method, which is
introduced above, makes the controller gain closer to its optimal value anytime the
optirnization is performed. Thus, if the control system reaches the same condition
next time its performarce is improved.

For the control system in this study, it is assumed that the three signals v, ¢,
and € are sufficient inputs for the controller. The mapping of these signals to the
gain is taken care of by using a three-layer neural network. Figure 4.1 depicts the

network.

Figure 4.1: The neural network used in the control system.
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The neural network has twenty neurons in the first layer, fifty neurons in the
second layer and one neuron in the third layer. Since N,(t) may take positive or
negative values, all the neurons are chosen to have symmetric activation functions.
The output neuron of each network cannot be of saturation type because the proper
gain range is not known a priori. The neurons are chosen to be tan-sigmoid for the
first and the second layers and linear for the output layer. Weights are initialized to
<mall numbers using MATLAB’s random number generator with a scale of 0.1. The
bias of the output neuron is calculated such that the network’s output is zero for
the initial condition of the control system. The scaled negative gradient of the cost
function is backpropagated through the neural network. A scale of about 0.01 on
the gradient and a learning rate of 0.01 were found to provide stability and training.

In order to prevent possible violation of the bounds af heating system control
inputs, the controller output is limited by a hard limiter whose threshold levels
are set at about the heating system input limits. Anytime each limiter is active
it switches on a condition in the appropriate neural network in order to train the
network to prevent saturation.

Figure 4.2 illustrates the control system structure.

|
G

Noursl Nowrark

output

- A

Figure 4.2: Neural network control system.
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4.3.1 The Derivative of Vectors

. 5 . . .
In order for finding %, the derivative of a scalar and a vector with respect to a

vector and the chain rule for differentiation are needed. The notation that is used
here is compatible with [39].
If all vectors are ~olumn vectors.

1) For J = R and @ = R™*! the derivative of J with respect to w is
I

dun

. o

o _ | . (1.22

0w

aJ

L l"Wm

“mxl

aJ
i@

is the Jacobian gradient of J with respect to the m parameters of w. The Jacobian
gradient is the transpose of VJ, which is normally used in optimization [10].

2) If r € R and y € R™*" are two vectors, then the derivative of & with
respect to y is given by

b P v

dry Jry ary
a - H“I ihfz . «'h!,,,
v dry rg {14 (4.23)
Jir -

L Jrp 1y Ary

nxm

where y1. vy, -+, ym and ry, ry, --- , 1, are the elements of y and r respectively.

3) The chain rule for the differentiation of vectors is
Jz Ay 0=
dr 0z 0y

)z 0 0:
2, - 2. [
dl‘ nxr d.!‘ nxm ()y mxr

(4.24)

which for z € R™! gives
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4.3.2 Gradient of the Cost Function

The general form of the cost function to be minimized is
t
J = / [€(1) Q &(t) + @'(t) R a(t))dt (4.26)
0

where

with the feedback relation

(1)
a(t) = K | _ (4.28)
o
where
w (1)
w(t) = up (1) (4.29)
uz(t)
and
w(t) = wm(t). ua(t) = nit) , ug(t) = ) ; (4.30)
va(t) vs(t)

1,(t) are the normalized inputs to the plant whose maximum values are given in

Table 2.1. We may also write

a(l) = KWe(t) + KPE(t) (4.31)
or
nw) |1 T 0 0 [ ks 0 0 |
V4(i)_ 0 k] 0 61(t) 0 }Cg 0 E](t)
() | | =0 kr O || eft) [+] 0 ks O Ea(1) (4.32)
l/_r,(t)d 0 0 k3 6’3(t) 0 0 1\4 E3(t)
113(1) ] I 0 0 A I 0 0 klO_




KM presents the proportional gains, K'® presents the integral gains, and kN =

[KM|KP)]; Q and R are defined as follows
Q@=qIixs R = 1l (-1.33)

In order to find the Jacobian gradient of J in the parameter space of &', we

put all nonzero elements of A" in a vector, say @. Thus,
@ = [ky ky e Ry (1.3.1)

Then, the Jacobian gradient of J in feedback gain parameter space is shown

by

dJ t [ gé(t dit(t
P A {[ £ )] (@ )+ Q' e(t)] + [%é)—)] (R w(t)+ R u(t)]}dt
(')fig)] R u(t)}di (1.35)

I

| g%]
f-'*ﬂ-‘
r——
Q&
Qo |
| N fewy
e’
e

QO

o

-

e

i
r—

\"

and

o) dalt) vt

= —— 1.36
PR do dull) (1:46)
In the above equations we have
ol oJ
w=[k , — = [+ 4.37
[ 1]10)(1 PR [()k.]mxl (4.37)
de(t dey(t) .
gl 2lt)y (4.3%)
du(t) dv,(t)
dult o, (1
gult) _ |9ull) (4.39)
Ow My ) ioxs
The complete matrices are as follow.
[ fe,(t) Bea(t) Dea(t) ]
duy(t)  auy(t) fuy (1)
(’Je,!l! dey(t) ﬁc_,(_l)_
a__ dug(t)  Bug(t)  dugl(t)
€t) _ | sen) tea) seaty (4.40)
aﬂ(t) Aa(t)  dua(t)  due(t)
ey (1) (lfzu) e ,(l)
Aug(t)  Ous(t)  Dun(t)
dei(t)  Bex{l)  Or(t)
L dus(t)  Dua(t)  Auy(t)
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[ Aty  Owglt At die(t)  Ovalt i
Gk (1) Bk (1) Bk (1) Bki(1) Bki(t)
o dui(t) dwal) | duslt
du(t) _ Dka(t)  Bka(l) uka (t) (4.41)
Ow :
Su(t)  dva(t) |, Buwsl(l)
I Akyo(t) Bkio(t) Bkyo(t) .

To find the effect of any variation in an clement of K() or K?), we will consider

the equation of an input to the plant.

a(t) = 1\’(‘)E(t)+1\'(2)/é(t)dt (4.42)

nit) = ke, (1) + ka&(1) (4.43)

where k,, and k,, are the elements of K1) and A'(?) respectively, and

) = /e(t) dt (4.44)
and
1<:i<5, 1<5<3. (4.45)
Thus,
an(t) a(t)
o () and FT (1) (4.46)

The complete equations are given in Appendix A.

For finding the elements of g—;%% it can be considered that

dalt) _ _Auwlt) o4

<9 .
v, (1) A, () s1s3, 15555 (4.47)

i.c.. instead of finding the acrivative of an output with respect to a plant input,
the steady state response changes with respect to the plant’s input changes can be
employed. This is a multivariable form of what is suggested in [41]. Since heating

systems usually work close to their steady state conditions such an approximation is
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realistic. As it is shown in the Figures 4.3-4.5 it can be assumed that the derivatives
are constant about the setpoint.

This substitution is particularly suitable for small changes at reference inputs
(temperature adjustments by occupants). For large reference input changes (occu-
pied/unoccupied cycle switch), which forces the plant’s inputs to change a preat
deal - usually their entire range - the input range was divided into five parts, and for
each part, the corresponding steady-state response changes with respect to inpat
changes were measured. Figures 4.3-4.5 depict the change of output steady-state

values with respect to input changes for the setpoint of
=04, =045, 13 =050, =050, 1s=0.0 (1.-18)

i.e. the inputs are kept constant but the one which is shown in the fingures. There
fore, the derivative of the outputs of the plant with respect to its inputs would be

replaced by the slope of the graphs shown in Figures 4.3-4.5.
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Figure 4.3: Steady state response of the plant when », and v, change.
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Figure 4.4: Steady state response of the plant when vy and vy change.
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Figure 4.5: steady state response of the plant when v changes.
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4.3.3 Decentralized Cost Minimization

The decentralized structure of the controller also raises the motivation of dividing

the cost function into station costs. In our case, this is

J = J] '} J2 + J;;. (11”)
where
J = /[q ('f(f)-i—r u'l(l).u,(l)] dt, (-1.51)
J, = /[q e3(t) +r u.'z(t).u-z(t)] dt, (1.51)
o= [ ot +r ado]a (4.52)

with ¢ = 1 and » = 107%. In each station the gradients of the appropriate cost
function with respect to the station’s controller gains are found, and the corre
sponding neural networks are trained. This simplification, significantly reduees the

computation effort.
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4.4 Simulation Results

This section presents the result of the simulations carried out to investigate the per-
formance of the neural network based controller under different operating conditions,
and to compare its performance with that of the decentralized robust controller re-
sulting from the linear design presented earlier. The lincar decentralized robust
controller gives performance comparable to that of the centralized robust controller
also resulting from a linear design [9]. So. the decentralized controller is used as a
measure of performance for the neural network based decentralized controller.

The simulations are categorized into variations about a constant setpoint, oc
cupied/unoccupied operation, disturbance rejection, and different ways of recall.

1) Variation about a constant setpoint.

This simulation tests the performance of the neural network based controller
when all its setpoints (or reference inputs) change in the form of pulse trains about
some fixed main setpoint. From a practical perspective this statns of operation
simulates setpoint changes which could potentially be created by occupants when a
building is occupied. So, better performance ¢f one controller over another shows
up as faster response to the imposed setpoint changes, and generally implies that
the controller provides greater comfort for the occupants. This form of operation
has other advantages which wili be explained in detail later.

2) Occupied/unoccupied operation.

Saving energy in buildings is an improtant consideration hecause the inside
temperature of a building does not need to be as high at night as it has to be during
the day. The temperature can be switched from day-time value ( occupied building,
temperature) to its night-time value (unoccupied building temperature) and vice
versa. This type of saving raises three issues from the control point of view.

The first point is that for the designs which are based on linearized model,
the model used would most likely not be valid over the whole range of operation.

Therefore, a supervisory controller is needed in order to adjust the controller gains.
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The second point is that this type of temperature setback requires large changes
in setpoint values, or large changes of reference inputs, which may cause satura-
tion at the inputs to the plant, and which show up the nonlinearities in the plant.
Avoiding saturation in linear model based controllers potentially takes away some
of performance ability of the heating system. The third point is that if the control
system can cover the whole temperature range rapidly enough, the temperature of
the building can be kept at unoccupied temperature for larger periods, therefore
saving more cnergy.

3) Disturbance rejection.

Disturbance rejection in this heating system is the response of the control
system to outdoor temperature changes which can affect the zone temperatures the
most. For this test a profile of a normal winter’s day in Montreal is applied to
the control system while the setpoints are kept constant. In [9] it was shown that
even a constant feedback gain controller provides good disturbance rejection. Here
the response of the neural network controller is compared with the response of the
robust controller to the same out-door temperature changes.

4) Different ways of recall.

The time variation of the controller parameters are tested in this part. Since
on-line control requires a neural network’s internal parameters to be continuously
changing, the effect of slowing down the changes on the response of the control
system is tested.

In another test the effect of slowing down the rate of change of the controller
gains is studied. Both show a degradation of response, but the responses are still of

acceptable quality.

4.4.1 Computer Facility Used in This Study

The environment of the required simulations in this study was accomplished using

SIMULINK pakage of MATLAB. The Computation was carried out by SUN SPARC
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Setpoint
reference 1 degree

value

1 hour

time

Figure 4.6: Reference input for neural network training

work stations (usually SPARK 10). The error tolerance of computations were he-
tween 10 and 10~!! depending on the simulations and time step for simulating the
continuous systems. The time steps were mostly chosen to be between 0.001 hour
and 0.0001 hour. The numerical computation method was Gear method. The time
base of the discrete systems were chosen to be 0.01 hour which is in a matter of 100

times better than the time constant of the heating system.

4.4.2 Variation About a Constant Setpoint

The training was done for periodic reference inputs which were in the form of pulse
variations about a set point. This reference variation has the following advantages:
1. It is similar to the change of setpoint by occupants
2. It gives the chance to train the neural networks about the setpoint and
compare the response with that of the robust controller. Small variation of ref-

erence inputs about some nominal values keeps the states of the control system,
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inchiding the plant itself, in the neighborhood of their nominal values. Since the
robust decentralized controller design, hbecause of using the linearized model of the
plant, is valid only if the states of the control system are in the neighborhood of
their nominal values (see Chapter 2), this simulation provides a valid condition for
a robust decentralized controlier to operate thus to be compared with the neural
network controller.

3. Since the reference inputs are periodic (with a period of 1 hour), after t=1

hr.. a plot of the following cost function
4
J = /( [0 QE0 + () R aw)] d (4.53)
t—-1

reveals whether or not the optimization is taking place. This part of the actual cost
function shows the cost of one operation hour. So, at the end of each cycle this
function shows the cost corresponding to that cvcle. The comparison starts when

the transient response is over, i.e. after t=2 hours.

Comparison of Costs

This simulation is done to see whether the minimization of cost by using the proposed
controller is taking place. The result depicted in Figure 4.7 shows that as the neural
network training continues the cost is reduced. Having a lower cost means better
reference input tracking, in general.

The robust controller which is employed in this simulation is designed for this
particular setpoint and is valid for the range of operation [9]). Since the design of
this controller was based on the minimization of the same cost function as that of
the neural network controller, the costs of operation for both neural netwerk based
and robust controller can be presented in the same figure.

The neural network based controller starts with some random weight matrices.

Its output is used to adjust the gains of an already stable, but not optimal, controller.
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Consecutive simulations. each presenting a lower cost uses the final neural network
weight matrices of the preceding simulation. The learning rate of the neural network
is kept constant in all simulations, which is of course, not the best way of doing, the
optimization.

The operation cost of the consecutive neural network based controller shows
continuation of the cost minimization in general. Therefore, it can be concluded

that the proposed controller is satisfying its goal.

one hour operation cost
01 T 1 T 1 Ly
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Figure 4.7: Comparison of costs for the robust controller and the neural network
based controller. From top to bottom: robust controller, NN controller with 2 hours,
7 hours, and 15 hours of on-line training.
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Responses to the Reference Inputs (with Variation about a Setpoint)

The response of the neural network control system to setpoint changes improves as
training progresses. This improvement in the overall responses of the three stations
to command signals is gradual. The comparison of the cost for the third simulation
of the neural network based controller with the cost for the robust controller presents
the outcome of the entire training. Although, the response of the neural network
based controller (Figure 4.8-4.10) seems slow when the output is close to the setpoint

value, it improves with further training.

station s temperature
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Figure 4.8: Station 1, comparison of the time-domain response of the NN based
controller (solid line) and of the robust controller (dashed line). The dashdot line is

the setpoint (almost matching the solid line).
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Figure 4.9: Station 2, comparison of the time-domain response of the NN bhased
controller (solid line) and of the robust controller (dashed line). The dashdot hne is
the setpoint (almost matching the solid line).
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Figure 4.10: Station 1, comparison of the time-domain response of the NN based
controller (solid line) and of the robust controller (dashed line). The dashdot line is

the setpoint.

88



4.4.3 Occupied/Unoccupied Setpoint Control

In order to save energy in buildings, especially commercial ones, ihe temperature
of zones and the boiler should be set back several degrees when the building is
considered unoccupied. Such a change in the setpoint of control system usually
requires design of more than one robust controller. Some approaches for designing
such controllers exist such as preview control [42]. In such control schemes, there
is a supervisory controller which adjust the gains of the main controller in order
to avoid the violation of control system constraints and/or to keep the regulator
gain values as close to optimal value as possible. Such adjustment is done based on
predicting future conditions or measuring the present condition.

In the control problem at hand the neural network based controller performs
both regulator and supervisory controller tasks. So, the gain values satisfy the sys-
tem constraints for the conditions for which the neural networks are trained. It is
likely that having real condition at neural networks training. which can be inter-
preted as regulator design, including constraint satisfaction and probable closeness
of regulator gain values to their optimal values arises the hope that the performance
of neural network based controller could be superior to that of other approaches.
Figures 4.11-4.13 show the response of neural network based controller to occu-
pied/unoccupied reference input changes. Note that zone 1 and zone 2 temperatures

are set forward by 7 °C' in about half-hour.
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Figure 4.11: Station 1. Occupied/unoccupied temperature control.
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Figure 4.12: Station 2. Occupied/unoccupied temperature control. The solid line
is the response of the neural network based controller and the dash-dot line is the

reference input.
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Figure 4.13: Station 3. Occupied/unoccupied temperature control. The solid line
is the response of the neural network based controller and the dash-dot line is the
reference input.
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4.4.4 Disturbance Rejection

Disturbance rejection in a building is as important as occupant setpoint changes of
the point of view of comfort. Since the disturbances acting on the control system
are not strictly included in the training scheme for neural networks, there is no
knowledge of how well the disturbance rejection of neural network based controller
is. In order to study the effect of realistic disturbances on the neural network based
controller, we consider a normal outdoor temperature of a winter's day in Montreal
(Fig. 4.14).

Figures 4.16, 4.18, and 4.20 depict the response of the neural network hased
controller while having the setpoiuts at some fixed values, but with disturbances
acting on the system. The responses show that the neural network based controller
provides good disturbance rejection. Figures 4.15, 4.17, and 4.19 show the response
of the robust controller under the same condition as the neural network based con-

troller is.

Out-door temperature

IS

1

1

i

" "
10 16 20 26 30
t (hour)

Figure 4.14: A normal winter day temperature in Montreal.
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Figure 4.15: Station 1. The response of a robust controller (the solid line) to the
disturbance applied to the system. The dashed line is the reference input value.
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Figure 4.16: . Station 1. The response of the neural network based controller

(the solid line) to the disturbance applied to the system. The dash-dot line is the
reference imput value.
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Figure 4.17: Station 2. The response of a robust controller (the solid line) to the
disturbance applied to the system. The dashed line is the reference input value.
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Figure 4.18: Station 2. The response of the neural network based controlier (the solid
line) to the disturbance applied to the system. The dash-dot line is the reference
input value.
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Figure 4.19: Station 3. The response of a robust controller (the solid line) to the
disturbance applied to the system. The dashed line is the reference input value.
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Figure 4.20: Station 3. The response of the neural network based controller {the solid
line) to the disturbance applied to the system. The dash-dot line is the reference

input value.
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4.4.5 Neural Network Recall

This part of the study covers two alternatives to on-line neural network based con-
trol; (i) Neural network recall with weight update and (ii) Feedback gain update.

(1) In the normal recall mode of operation of neural networks, it is assumed that
the weight matrices within the neural network carry complete information required
for controlling the system. This also means that a static mapping from the neural
network inputs to the feedback gains can be found such that the performance of
the controlled system is close to that of the on-line neural network based controlled
system. Attempts for finding this static mapping failed.

The recall mode which successfully controlled the heating system was recalled
with weight updating. For this kind of recall the changes in the weight matrices of
the neural network, when under training, are saved. The weight matrices and their
changes, i.e. time varying internal parameters for the neural network, are employed
during the recall operation. In this scheme the time variation of the neural network
internal parameters are not as fast as the variation of the internal parameters for
the online controller.

(ii) In feedback gain updating the controller gains are updated based on neural
network outputs while the network is under training. This est requires a lower gain
update rate than that used in the neural network based control.

Although, the following figures show that the system is performing well the
cost of operation is greater than that of the controller with neural networks while

under training.

Control with NNs in Recall Mode

Figures 4.21-4.23 show the response of the system when the neural networks are in

recall mede. The weight matrices of the neural networks are updated from a lookup

96



table every half an hour. The look-up table is made by saving neural network
internal weight matrices obtained during neural network training. The conditions
of this control system are the same as those of the on-line trained controller, but

the neural networks internal parameters are changed more slowly.
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T
b2 [ i~
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S30r lempaatre
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t {(hour)

Figure 4.21: Station 1. Neural network based control with weight updating. The
solid line is the response of the neural network based controller to the reference
input variations (dash-dot line)
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Figure 4.22: Station 2. Neural network based control with weight updating. The
solid line is the response of the neural network based controller to the reference

input variations (dash-dot line)
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Figure 4.23: Station 3. Neural network based control with weight updating. The
solid line is the response of the neural network based controller to the reference

input variations (dash-dot line)
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Gain Updating Control

Gain update performed by a lookup table. The look-up table is created by mea-
suring the neural network responses when under training on-line. In the following
simulations, the controller gains are updated every 0.1 hour, as if a trained neural
network was in controlled system. This simulation actually presents the performance
of the controlled system when the gain update rate is reduced. Although the cost
of operation is not as low as other applications its implementation is easier than
that of neural network based controller. Obviously any unpredicted condition in
control system or any fast change of variables in the system would have to be taken
care of by robustness of the controller. Figures 4.24-4.26 depict the response of the

controlled system with gain update.
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Figure 4.24: Station 1. Feedback gain updating.

99



z20na 1 siatton

Figure 4.25: Station 2.

15 ' 2% ]
t (howur)

Feedback gain updating.

zone 2 siation

215

-

21 H .
M L}
LR ] LI
208 N
@D
5
E 20
&
p3
Bios E
&
19 4
185
18 A N N N "
o X3 1 16 2 P
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Appendix A

Matrices of the Linearized

Models of the MZSH System

A.l1 Linearized Model of the MZSH System

The linearized model matrices of the plant which is defined in Chapter 2 are as

follows.
[ ~19.525 7.988 0 0 7.988 0 0
28.361 —29.759 1.134 0 0 0 0
0 1.134 —9.529 —8.130 0 0 0
A = (A1)

0 0 3.635 —5.054 0 0 0.2364
98.361 0 0 0 —29759 1134 0

0 0 0  0.2659 0 4.00 —5.685
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0 0 80.698 0 0 137.428 0
0 0 0  —92.442 0 0.2642 0O
—160.130 0 0 133.284 0 0.2642 0
71.586 0 0 0 0 0 1.1818 | (A.2)
0 0 0 0 —~96.586 0.2642 0
0 —148.033 0 0 137.428 02642 0
0 66.189 0 0 0 0 1.3296 |
1 000000
C =10001000 (A.3)
0 000O0CO0 1
g _ | 1774 02642 02642 0 02642 0.2642 (Ad)

0 0 0 1.1818 0 0 1.3296
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A.2 Decentralized Linear Model of the MZSH

System

The decentralized model matrices which can be obtained from the cent ralized model

are:
[ ~19.525  7.988 0 0 T8 0 0
28.361 —29.759 1.14 0 0 0 0
i\ 0 1134 —9.52 —8.130 0 0 U
0 0 3.6 —5051 0 0 0.2361
28.361 0 0 0 —2075% LIM 0
|0 0 0 0.2659 0 4090 —5G8h
[ 80.608 | [ o | 0 0]
0 ~92.442 0 0
0 ~160.103  133.284 0 0
B, = 0 , By=1| 71586 0 By = 0 0 A.6)
0 0 0 —9Y6.586
0 0 ~148.033 137428
0 i 0 [ 66. 1890 _
Ch .1 00 000 0', (A7)

C.

Cs

0001000
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A.3 Linear Model of the Augmented System

The matrices determining the augmented system for the robust servomechanism

problem, centralized case, are as follows:

[ —19.525
28,361
0
0
28.361
(

l
0
0

0
0
—-160.130

71.586

< o O o o <
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Ao
| ec Q}
798 0 7988 0
—=29.759  1.I:34 0 0
134 —9.52 -8.130 0 0
0 3635 -50%4 0 0
0 0 —29.759 1.134
0 0 026% 0 4.090
0 0 0 0
0 0 0 0
0 0 0 0
[f
0
0 80698 0 0
0 0 —92442 0
0 0 133284 0
0 0 0 0
0 0 0 —96.58
—148.038 0 0 137.428
6018 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0

0

0
0.2364

0
—5.685

0

0

1

137.428

0.2642

0.2642
0

0.2642

0.2642
0

0
0
0

S O O O O O o o o
O O O O o o o o o

0

0

0
1.1818

0

0
1.3296

0

0

0

o o O o O o O o o
L




o O & o o
o O O O o o
o o O o ©
o © C© o <o <
o o o [

1.774  0.2642 0.2642

(ey]]

0

0
0
0
0

0
0

0
0

0.2642

0




A.4 Decentralized Linear Model of the Augmented

System

The matrices required for the decentralized form of linear robust servomechanism

problem are as follows:

>
fl

[}1 =

[ _19.525
28.361
0
0
28.361

80.698
0

o © O © o o o <

7.988

—29.759

1.134

0 0 7.988
1.134 0 0
-9.529 -8.130 0
3.635 —5.054 0
0 0 —29.759
0 0.2659 0
0 0 0
0 1 0
0 0 0
0 0
0 —92.442
—160.103 133.284
71.586 0
0 0 B, =
0 0
0 0
0 0
0 0
0 0

1000000000
00000001 00O/
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0 0 000
0 0 000
0 0 000
0 02364 0 00
1134 0 0 0 0| (AI3)
4.000 —5.685 0 0 0
0 0 000
0 0 000
0 1 000
- ;o
0 0
0 0
0 "
0 —96.586 A14)
~148.033 137.428
66.1890
0 0
0 0
B 0 0 o
(A.15)



_ 0

CQ =
0
) [ 0

C3 =
I 0
1.774 0.2642 0.2642

E =
0 0 0

601000000
0000000O0TGO]|
000001000
00000D0D0 D I
0 02642 02642 0 0 0 0
{A16)
11818 0 0 13206 0 0 0
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Appendix B

The Equations of the Gradient
for the Cost Function

This appendix presents the gradient equations which were used in the negative
gradient optimization problem in this thesis. For minimizing the cost function dy-
namically, a window in the time-domain can be considered in which the variation
of the cost function with respect to each feedback gain can be found. For example,

for the interval between ¢; and ¢, we would get,

(B.1)
gé = /{:’{Z‘Z e\(t) g;;((tt)) e2t) + 7 uy(t) ea(t)
() & GOelt) o Belt)
+ v Jua(t) ks + us(t) Ay D (1) + 1 ug(t) ks B (1) e2(t)}dt ey(t)}dt
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oJ
Ok,

aJ
Ok

aJ
Ok4

aJ
Oks

(B.2)

= /t {22 €, ——((f)) Eg(t) + r 'Ll](f) E)(f)
b=l
b fualt) ks + uslt) k) "“‘(( Leat) + v ult) s "“‘(' &)}
(B.3)
_ dc,(t) . Lo _ Ly Oa(t)
=, {'2;26 f) a(0) 3(t) + v [y (t) by 4+ wg(l) b7 ——~—-(,)“2(') ea(l)
. , g_f—l_(_il . ()(';;(t)
+ 7 Ug(t) €3(t) + 7 U3( )Ixr, (,)112(i) + ll:,( )k; (.)”2(’) ('}(f)}(“
(13.4)
t, 3
= [Uzat 2 ) 4w k4w k] S )
o () 2“)
+ roug(t) &(t) + rus(l) ks 3;;(( )) + 1 us(l) ko f)%—:%l) Ex(t)}dt
(B.h)
_ 2 3. 36,() dey(t
= [l {Z‘IQ e;(t) 6113( ) ( ) + 2r [u, k|+ U4 7] )u’ ) /)

863( )
dus(t)

+ r [‘U5(t) kg + U4 k7] C](t) + r U3(l) (3|(l)}dl
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(B.6)
8eo(t)

ts 3 Oeq(t) y ﬂ
= /. (2 6lt) gy fit) + 2 (0 b+ w® k] gy 6

+ T {U5 kg + ’U4(t) Im'] —g—%i—((% E](t) 4 r u;;(t) fl(t)}dt

(B.7)
). s ' P
O[5 2y oy el ¢ 2 B
' e =t L
+ 27 [ualt) k3 ws(t) kel g:((t)) €2(t)
+ r ug(t) Iis -g;f}(% C-)(t) -+ 27 U4 t) 62(t)}dt
(B.8)
[y Bl ) 4 2r )b Gl 60
8 b=
+ 20 (wat) kst us(t) kol gt‘s( )) &a(t)
+ r Ug(t) ks g%‘.,_((t—l) 2(t) + 27r U4 t) C)(i)}dt
(B.9)
{Z 2 e.(t) () e:,(t ) 4+ 27 [m) kst uat) kq —2—2—((% es(?)
=)
+ 27 up(t) k -—-3—(—16(t + 2rusk dal) es(t) + 27 us(t) ea(t)}dt
() Fa 5o 38 Buat) 3 5(t) €3



(B.10)

aJ _ ty 3 86.(0 o . i ' dea(!) .
Ok /n {,2;: 2et) Aus(t) 6(1) + 27 [w(t) b+ wall) k] Freell) &aft)
+ 2wt ke T (D) + 27wk GRS 60 + 21 wl) G

For minimizing the decentralized costs, Jy, J; and J3 defined in Chapter 4,
similar equations can be found which neglect the relationship between the ontput
errors and the control inputs which do not belong to the same station of the mul-
tizone space heating system. Another way of finding the cost function variation is

suggested in Appencix C.
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Appendix C

Another Method of Computing
the Cost Function Gradient

In order to find the variation of the cost function with respect to the variation of
every controller gain, we consider Figure C.1 as the model of the control system.
C'onsider the governing equations of the controller, 4.3 and 4.4. Any variation in an

-1

p LY
u

K - A

Figure C'.1: The model for finding the gradient of the cost function



element of A" will cause some change in the corresponding v/(t), i.c.

Ak o An(t) = Ak eat) (.1
Aky = An(t) = Ak &(t) (C2)
Aky = Avy(t) = Aky es(t) (C.3)
Aky = Ava(t) = Oky &(1) (1)
Aks = Avs(t) = Aks (1) (C.5)
Aks = Aus(t) = Ak &(1) (€'.6)
Akr = Auy(t) = Dkg ea(t) (C.7)
Aks = Aug(t) = Aky E(1) (C'8)
Aky = Avs(t) = Dky s(t) (C".9)
Akio = Dug(t) = Ak (1) (C.10)

So, any variation in K, i.e. AN, can be presented in terms of an appropriate Awv
at the input of the plant. For example the effect of Ak, can be found by using the
model of Figure C.2. By assuming a known small value of Ak, we would get all
f—;—; for 1 <1< 3 and ali 2—;’; from the model, i.e., at a specific instant of time we

would get the following:

e2(th)
]

AU(tl) _ , ~1 '
! = U+KP) 0 (C.11)
0
0
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dk ez(l)
+}L dv

\J/
dV:
Ay
de(t) p-=3_
K *1 " au - dy(t)
dv
dv

Figure C.2: Dtails of the model for finding the gradient of the cost function.

Cg(tl)
0
Af‘(tl) * py—1
= — 12
AL, P(I + KP) 0 (C.12)
0
0
and
£a(th)
0
Au(ty) . A1
— 13
Ak (I + K P) ()‘ (C.13)
0
I 0
€a(t1)
0
Ae(tl) -1
Vo _ 14
Ak, P(I + KP) 0 (C.14)
0
0 -

Similarly, such expressions can be found for other controller gains. If the gradient,

and consiquently the neural network training, take place in discrete time, as is
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done in this study. all the above equations can be found at the proper instants
of time, and assumed to be constant during the interval. Thus, the variation of
the cost function with respect to each controller gain variation can be found for
the considered interval and the dynamic cost minimization can take place. If the
period of gradient evaluation is short, the above equations can introduce a significant

computational burden.
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