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ABSTRACT

Neural Network Based Modeling and Control
of a Flexible-Link Manipulator

Aloke Chaudhuri

Controlling the motion of a flexible-link manipulator has been an ongoing con-
cern in recent years. This research work is aimed at developing a neural network
based strategy to solve the problem of tip-position control for a single flexible-link
manipulator. The proposed controller uses a partitioned strategy, wherein the inner
loop stabilizes the plant, and the outer loop (servo portion) provides set-point track-
ing. A backpropagation network has been trained off-line to accurately identify the
unmodeled and/or inaccurately modeled dynamics present in an actual manipulator,
and then applied in the inner loop of the closed-loop system to compensate for these
dynamics. A feed-through compensator has been designed following the method
of transmission zero assignment, and used in the inner loop to ensure closed-loop
stability of this nonminimum phase system. The servo loop employs a proportional
plus integral control strategy to track a desired trajectory in two-dimensional space.
In addition, a robust servo controller has been designed using the internal model
principle, and its performance has been compared with that of the PI type controller

mentioned above.
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Chapter 1

INTRODUCTION

1.1 Preamble

Most of the industrial robots built to date are made of substantially stiff materials
to minimize vibration, and need relatively simple control strategies for trajectory
tracking. However, every real manipulator has some degree of both joint and link
flexibilities which are neglected in most of these rigid-link robots. In certain cases,
this assumpton of rigidity leads to inaccurate control and may even cause system
instability.

In recent years, improvements in electric motor technology coupled with new de-
signs, such as direct drive arms, have led to a rapid increase in the speed and

load carrying capabilities of manipulators. Consequently, this has heightened the



importance of considering the effects of flexibility of the nominally rigid links.
Present generation manipulators are limited to a load carrying capability of typi-
cally 5-10% of their own weight by the requirement of rigidity. For example, the
Cincinatti-Milicron T3R3 robot weighs more than 1800 kg., but has a maximum
payload capacity of 23 kg. [12]. This level of performance, as indicated by the
ratio of payload to arm weight, is completely unacceptable in many applications,
such as space where economy and energy considerations strongly encourage light
weight designs. In order to respond to this special demand, most of the robotic
manipulators and tele-robotic motion systems in space are constructed of light-
weight materials with inherent link-flexibility.

As indicated in [12], there are a number of potential advantages arising from the

use of flexible links.

e Faster Operation: For a given load, a large increase in speed would be

possible.

e Lower Energy Consumption: Lighter links require less power to produce
the same accleration as compared to rigid links with the same payload lifting
capacity. This reduced power requirement makes it possible to use smaller

and cheaper actuators.

e Safer Operation: Should it collide with an obstacle, less damage would



be caused due to reduced inertia.

e Compliant Structure: By introducing mechanical compliance into the
manipulator structure, flexible links come in handy for delicate assembly

operations where the links themselves can be used for force/torque sensing.

e Possible Elimination of Gearing: This is becoming increasingly relevant
with the development of motors with high power/weight ratio, and indicates
the possibility of reduced cost, reduced backlash and improved actuator

linearity.

¢ Less Bulky Design

o Lowered Mounting Strength and Rigidity Requirements: This is

relevant particularly to gantry and wall-mounted robots.

However, looking through the kaleidoscope of future directions in the realm of
light-weight, state-of-the-art flexible-link manipulators, one also notices the inher-
ent complexity involved. The problem of controlling the end-point of a flexible-
link manipulator is considerably difficult for a number of reasons. The problem
of model truncation, which arises due to a finite-dimensional representation of
a distributed parameter system, causes some unmodeled dynamics to be present

in the mathematical model of the manipulator. Using a reduced-order model for



the controller design may also lead to the phenomena of control and observa-
tion spillover.[ Control spillover is an excitation of the residual modes ! by the
control action, and observation spillover is contamination of sensor readings by
the residual modes|. When both control and observation spillover are present, the
closed-loop system may become unstable. Further complications arise because of
the highly nonlinear nature of the system and the difficulty involved in accurate
modeling of various friction and backlash terms. In addition, the system is non-
minimum phase, and application of constant cutput feedback leads to closed-loop
instability for a moderate gain. Further, the interaction between the gross dynam-
ics and the deformational dynamics of the links may cause problems: The change
of an arm configuration leads to a change in the spatial boundary conditions of
the links, which, in effect, modifies their characteristic frequencies and modes.
Picking up a load similarly leads to a change in the natural modes. This change
has a serious degrading effect on the performance of controllers.

In face of all the difficulties outlined above, one has to determine a control ob-
jective prior to proceeding further to find any specific strategy. It is generally
accepted in the literature that the control scheme of a flexible-link manipulator

should satisfy all of the following criteria:

e It should enable the manipulator to track a reference trajectory with rea-

'Modes which are not present in the reduced order model



sonable accuracy.

¢ It should ensure closed-loop stability and reduce the elastic arm deflections

as much as possible.

e It should be robust to changes in the manipulator behavior due to changing

configuration or loading,.

e The algorithm should be computationally efficient so that real-time imple-
mentation becomes feasible, and it should run fast enough to control rapid

motions of the arm.

o It should be capable of rejecting disturbances.

Many researchers have tried to explore different control strategies to satisfy all
or some of the above mentioned criteria. Before getting into those schemes, we
will have a brief review of current strategies for modeling the dynamic behavior

of flexible-link manipulators.

1.2 Dynamics of Flexible Manipulators

The investigation of methodologies to model the dynamics of flexible-link manip-
ulators ranges from single-link arms rotating about a fixed axis [7, 15] to three-

dimensional multi-link arms [3, 29]. But we will primarily focus on single-link



arms, because with the increase of the number of links, the mathematics gets

considerably involved.

The various methods of modeling can be broadly categorized as follows [12].

1.2.1 Lagrange’s Equation and Modal Expansion

This is one of the most frequently used methods found in literature [2,4, 15, 19, 44].
In this approach the deflection of the arm is represented as a sum of the product
of two terms, one a function of the distance along the beam, and the other a

function of time.

w(z,t) = 3" g(t) i)

1=1

As indicated in [26], various mode shapes ¢;(z) can be chosen to represent the
dynamic behavior of the manipulator, provided they all satisfy certain boundary
and orthogonality conditions. Hastings [15] used this method to derive a state-
space model of a single flexible link, and observed the relative merits of two sets
of assumed modes— pinned-mass and clamped-mass. Comparing the frequency
response of an experimental set-up with his theoretical model, he noticed good
agreement for the zeros but less accuracy for the poles. This was attributed to
unmodeled frictional effects.

In general, it has been noticed that this method is computationally less efficient

compared to Newton-Euler approaches. Another major drawback of this scheme is



the inaccuracy of simple modal modeling at high frequency. When the wavelengths
of vibration are comparable to the cross-sectional dimensions of the beam, Euler-
Bernoulli beam theory fails to represent the arm dynamics appropriately and
results in error. However, the advantage of this method lies in the ease with
which one can reformulate the dynamic model to a state-space form, which is

used almost universally as the starting point for control system design.

1.2.2 Lagrange’s Equation and Finite Elements

The Lagrangian finite element method is similar to the assumed modes approach.
The elastic deflection of any point along the arm is expressed as a set of gencralized
coordinates which are subsequently used to derive the expression of total kinetic
and potential energy of the beam. These are then substituted in Lagrange’s
equation and solved to find the time dependency of the generalized coordinates and
hence the link. Usoro et. al. [46] have used this method to model a single flexible
link. By formulating a Generalized Inertia Matrix (G.1.M.), they have been able to
express concisely both the rigid and elastic inertial effects. Sunada and Dubowsky
(43] have used the same method to model a Cincinatti T3R3 industrial robot.
They used the finite element approach for individual links and later combined the
results with transformation matrices to form an overall dynamic model. Cyril et.

al. [11] have used a similar approach for dynamic modeling.



1.2.3 Newton-Euler Equation and Modal Expansion

In this method, Newton’s second law is applied to balance the rate of change of
angular momenta with the applied forces. Rakhsha and Goldenberg {36] adapted
this method for modeling a single-link arm with tip mass. The obvious demerits of
this method are the algebraical complexity of the Newton-Euler formulation and
the approximate nature of the constrained modes. The latter becomes significant
when truncated models are used with a smaller number of modes, because the
actual modes are assumed to be summations of an infinite number of constrained
modes. This problem is commmon to both Newton-Euler and Lagrangian methods

because they do not use the natural modes of the system directly.

1.2.4 Newton-Euler Equation and Finite Elements

The essence of this method is to divide the arm into a number of small segments
and solve the Newton-Euler equations for each one of them. Nagathan and Soni
[29] have recently used this method for dynamic modeling. The apparent short-
coming of this method is the algebraic complexity which increases with the number

of elements.



1.2.5 Singular Perturbation Analysis

Lately, this method has been examined by a number of researchers [10, 39, 44] as
a suitable tool to reformulate an existing dynamic model for facilitating controller
design. The underlying assumption in this theory is that the modes of the flexible
manipulator can be divided into low frequency rigid-body modes or slow modes
and high frequency flexible modes or fast modes. After this partitioniug is done
and the resulting subsystems are expressed in state-space form, the control input
is assumed to be a summation of two terms— the slow control signal responsible
for the gross motion of the arm, and the fast control signal to stabilize the vibra-
tions. This makes the design considerably simplified. However, the assumption of
partitioning is believed to be unjustified in many cases, specially for high speed

motions of flexible-link manipulators.

1.2.6 Frequency Domain Methods

Instead of modeling the link behavior in time domain, some researchers have tried
to develop a model in frequency domain [1, 5]. A model worth mentioning in this
context is due to Book [5], where starting from the Euler-Bernoulli beam equation,
a transformation has been made to express the resulting equations in an elegant,
form in frequency domain. This model, however, does not take into account the

effect of interaction between the gross motion of the arm and the flexible dynamics,



Further, an inverse Laplace or Fourier transform is needed every time one wishes
to observe time domain behavior, and this is computationally expensive for real-

time applications.

1.3 Control of Flexible-link Manipulators

The various coutrol strategies for flexible-link manipulators can be broadly clas-

sified into a number of categories in the following manner.

1.3.1 Non-adaptive Control

There are two broad areas of control that fall in this category.

Classical Methods

Book et. al. [4] compared the control schemes for a two-link arm in three dif-
ferent ways, viz. Independent Joint Control (assuming rigid links), General
Rigid Control (assuming rigid links with dynamic interaction between them),
and Flexible Feedback Control (employing a feedback scheme for flexible states
and joint variables). Essentially, they all used PD feedback to achieve desired
closed-loop pole locations based on a state-space model. However, these type
of controllers were not able to produce satisfactory results when sufficient link

flexibility was present.

10




Schmitz [38] used optical sensing of the end-point to achieve increased bandwidth
for the closed-loop system and greater end-point disturbance rejection. However,
since the system was nonminimum phase, gain margin was very low for the con-

troller and a 60% increase in gain led to instability.

Optimal Control

In optimal control schemes, desired pole placement is achieved through a suit-
ably designed state feedback regulator whose gains are selected by optimizing a
chosen cost function. Karkkainen [20] used a combined inverse dynamics/optimal
regulator control scheme to control a forestry manipulator. Nominal control was
provided by inverse dynamics based on an assumed rigid link, and flexure compen-
sation was provided by an optimal control scheme. In [45], a prescribed degree of
stability was introduced in the closed-loop system by modifying the cost funetion.
Schir tz [38] used a low-order compensator to avoid the complexity involved in full
state feedback, and was able to achieve good control in the absence of modeling
errors. However, the performance deteriorated with the change of tip mass and
called for a more robust controller.

In conclusion, fixed parameter controllers, based on a linear, time-invariant model
of a flexible manipulator, are unable to perform satisfactorily in the presence

of modeling errors which arise from configuration and load changes of the arm.

11



Adaptive controllers can solve these problems to some extent and are discussed

in the next subsection.

1.3.2 Adaptive Control

The adaptive control methods can be classified into the following groups.

Model Reference Adaptive Control (MRAC)

In MRAC, a control input is generated to force the system to behave in a pre-
scribed manner specified by a reference model (usually, a stable, linear, time-
invariant system). Siciliano et. al. [40] used this method with two control inputs
— one for the nominal control, and the other for the adaptive control which is
devoted to ensure the stability of the whole system. This method is, however, not
so promising for multi-link arms where the coupling terms in the joint variables

are quite significant.

Self-tuning Adaptive Control (STAC)

In STAC, a constant order model with unknown parameters is assumed a priort,
and the control scheme forces the parameters and the outputs to converge to
their true values. However, this scheme needs the parameter estimator to operate

faster than the rate of change of system dynamics and this poses a severe problem

12




in certain cases. Nemir et. al. [31] used this method with a pole placement
approach and assumed a second-order model (with a specified natural frequency
and damping ratio) for the single flexible link. Lambert [25] has also used a similar

approach with a Generalized Predictive Control (GPC) scheme.

Linear Perturbation Control

Nelson and Mitra [30] used this method to achieve load-adaptive optimal control
for a single-link flexible arm. The ari was accurately modeled as a complex time-
varying system and instead of re-calculating the parameters in real-time (nominal
values of the parameters were assumed to be known e priori), they have designed a
number of controllers off-line for various configurations. A supervisory controller
was used to switch between these controllers or schedule the gain as the arm

configuration is changec.

1.4 Conclusions

In all the modeling and control strategies discussed so far, the performance of the
controller is largely dependent on the model accuracy of the manipulator. In other
words, discrepancies between the model and actual system plays a very significant
role in the deterioration of the performance of the controler. Such discrepancies

include the effects of truncated higher order elastic modes, unmodeled friction and

13




backlash effects, and, for linearized models, system nonlinearities. As a matter
of fact, control design for flexible-link manipulators is not so well advanced as
their dynamic modeling. Most of the control strategies developed so far, have not
made use of the special features of flexible manipulators and ignored the practical
limitations of maunipulator actuation. For example Meirovitch [27] assumed a
large number of distributed actuators and Singh [41] assummed the availability of
tip actuators to demonstrate good control.

Another problem in controlling a flexible-link manipulator is due to its nonmin-
imum phase behavior which makes it difficult to ensure closed-loop stability. In
some recent works [33, 13], this problem has been solved by a “transmission zero
assignment” technique. This method is based on designing a feed-through com-
pensator T'(s) for a plant G(s), such that the augmented plant G’(s) = G(s)+T(s)
is minimum phase and has transmission zeros at desired locations in the left half
of the complex plane. As pointed out in [13], the design scheme using transmis-
sion zero assignment fails when substantial amount of Coulomb friction is present
in the manipulator’s hub. This is due to the approximation made in designing
T'(s) using a linearized model based on an approximate model, which does not
incorporate the friction terms. To overcome this difficulty, we have adopted an
Artificial Neural Network (ANN) based learning strategy in this thesis to

control the end-point of a flexible-link manipulator. This approach is motivated

14



by the fact that the inherent learning ability of neural nets can be utilized to ap-
proximate highly nonlinear functions, while their massively parallel architectures
assure fault tolerant operation.

Research efforts to date have produced various neural network based control ap-
proaches for rigid link manipulators [21, 28], flexible-joint manipulators [49, 50,
flexible-link manipulators [9], and vibration suppression in flexible space structures
(6, 18]). Majority of the neural network based control concepts developed are based
on state feedback, an approach limited by the availability of the system states.
In a flexible-link manipulator, the system states (modal coordinates) are difficult
to measure without employing elaborate, model dependent state estimators and
sensing devices. This makes the implementation of the control algorithms based
on state feedback significantly difficult. These drawbacks have motivated the
present research towards development of a neural network based control scheme
that makes use of only output measurement as it becomes available from sensor
readings. This scheme also surpasses the control strategy of [13] in its ability to
compensate for the unmodeled and/or inaccurately modeled dynamics present in
a flexible-link manipulator. This is done by training a neural network off-line us-
ing data from both the Approzimatc Mathematical Model and an Accurate Model
which is the simulated representation of an experimental set up in our laboratory.

The resulting system performs set-point tracking with reasonable accuracy.

15



Chapter 2

DYNAMIC MODEL AND THE

CLOSED-LOOP SYSTEM

2.1 Introduction

In this chapter, we will use the assumed modes approach and Euler-Bernoulli beam
theory to derive the dynamic equations of a single flexible-link manipulator. The
nonlinear state-space model will then be linearized and transformed to a transfer
function form to facilitate the control design in subsequent sections. Then we will
develop a neural network based modeling and control strategy to meet our major
design objectives, i.e. to perform reasonably accurate set-point tracking of the

end point of the manipulator while ensuring closed-loop stability. The proposed

16



Figure 2.1: Flexible Link

controller uses a partitioned strategy, wherein the inner loop stabilizes the plant,
and the outer loop (servo portion) provides set-point tracking. A detail discussion
will be provided on the design strategy for the different compensators present in
these two loops. The basic structure of the controller is similar to that in [14] with
slight modifications. In order to overcome the deficiency in the controller, e.g. in
handling the effects due to friction, we have used a neural network based approach

to effectively identify the unmodeled and/or inaccurately modeled dynamics.

2.2 Analytical Model of a Single Link Arm

As shown in Figure 2.1, the flexible link is connected to a motor at one end (hub)
and is driven by a torque 7. The other end is free to move, and has a small

mass Mp as a payload. It is assumed that the length of the beam, h, is much

17



greater than the width, w, thus restricting the beam to oscillate in the horizontal
direction. All deflections of the beam are assumed to be small, and the effect of
shear deformation and rotary inertia are neglected for simplicity. The beam has
a moment of inertia /;, and a linear mass density 7.

Using the assumed modes approach and Euler-Bernoulli beam theory, and neglect-
ing the effects of shear deformation and rotary inertia, the dynamic behavior of a

single flexible-link manipulator can be expressed by the following set of equations

n

. h3 LI . .
Bl + L 4y 20 aF + Mp(R® + 3" di(h)gi)?] +

3 i=1 =]

027 qigi + Mp Y. Y it (digi + aidy)] +
=1

i=1 =1
. 2
bo Ccou s 1
+ l(l + c-xo ) +
n h
Yl [ dwde + Mpho(h)] = () (2.1)

i=1

. h "
)y /0 ¢;zdz + Mphe,(h)] + 1d; + Mpe;i(h) Y ¢i(h)i; +

1=1

.. h . . n
s — 01 — 1 [ (ELpdey; - MplPgm) St = 0 (22)

i=1

These equations may be expressed in state-space form as

; 0 |6 F, 7(t)
M(q) +Clq, 9) + K(6) + = (2.3)

q q q o o

18



with the net tip position output

0
y= [ h ®(h) ] (2.4)
q

where, 8 € R, g € R, n is the number of elastic modes, M(q) represents the
inertia matrix, C'(q, q) represents the Coriolis and viscous damping matrix, I\'(())
is the matrix of centrifugal forces, and ®(h) is the vector representing various

mode shapes, i.e.
B(h) = [b1(k) dalh) .. du(h))

The various terms contained in the matrices can be found in [14], where the
model] is identical to that in (2.3) and (2.4), except for the Coulomb friction term
F. which has been modeled here as a sigmoid function (instead of a pure signum

function, which has a discontinuity at the origin). The term F, is given by

2
Fe=Cep = =1 2.5
1(1 e ) (2.5)
Ccl, forf<0
where Coou = represents the Coulomb friction coefficient.

c:, foré>0

The model of the flexible-link manipulator, as represented in equations (2.3) and
(2.4) is highly nonlinear. In addition to the Coulomb friction term F,, we note

the following nonlinearities.
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o Inertia Matriz M(q): m; comprises of the products ¢? and g;q;, which are

the terms indicating the change in the rigid body inertia of the manipulator

as a result of deflection of the arm.

e Coriolis and Viscous Damping Matriz C(q, tq): Post-multiplying this ma-
trix by ] gives rise to some terms in '} which are of the type ¢i¢; and ¢;q;.

These represent Coriolis forces.

o Centrifugal Force Matriz K'(8): Forming the product §2/,q yields the vector

of centrifugal forces.

All these nonlinearities play a very significant role in influencing the behavior of
the manipulator, specially when the neighboring linear terms are relatively small
in magnitude. We will consider these issues in the forthcoming sections.

It is worth noting in this context that accurate modeling of various nonlinear
friction terms is an extremely difficult task. Moreover, a model such as (2.3),
(2.4) may also have some uumodeled dynamics since it is a finite dimensional
representation of a distributed parameter system. However, henceforth we will
assume that the nonlinear model described by (2.3) and (2.4) accurately represents
the behavior of the real flexible link manipulator, and we will call it the Actual
System. A less accurate version of the model, which does not take into account

the effect of friction will be called the Approrimate Model.
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These two nonlinear models can be represented by the following set of equations.
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Actual System

\ ~-M-'K -M-1C,, ) \ o /
and

Yac(t) = [h dh) : oT]V(t) (2.7)

Approrimate Model

( o I \ [ o \
v va 28
RED
\ MK ~M-1C,, } \ o }
and
|
Yap(t) = [h &(h) i o | V(t) (2.9)

where, V = [0 q : é q]7 represents the states of the system. The Coriolis and

viscous damping matrices, C,c and C,p, are almost identical, except for the viscous
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damping coeflicient b, which is present in the first partitioning matrix 'y of (7,

but absent in Cy,.

2.3 Parameter Estimation

The parameters used in this thesis for computer simulations are all based on an
actual experimental set-up in our laborarory. These parameter values have been
determined in an earlier work [14]. They are listed below in a tabular format. We

have used 4 elastic modes for simulation, which means n = 4.
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ﬁl/. 0.3 Kg.m?
b 1059 N -m/rad.s™!
1477 N-m
21474 N-m
h 1.2 m
v [1.208 Kg.m™!
EI |1.94 N - m?
Mp 10.03 Kg
w; |13 rad — ™1
wy |19 rad — s™?
wy |52 rad — s~}
wy 1102 rad — s~}
ky |1.5387
k, |3.8734
ks |6.4062
ky {8.9721
c; 104
c; 14.0
c3 |2.0
cq 5.0

Table 2.1: Flexible-link Parameters
24



2.4 Linearization of the Dynamic Model

Having developed the nonlinear dynamic model of the flexible-link manipulator, we now
focus our attention on linearizing this model around a chosen equilibrium point. This
will serve as a starting point for designing various controlers in subsequent chapters.
This linear model is however an approximation of the original nonlinear system and re-
mains valid only in the vicinity of the equilibrium point. The approximation deterios ates
with the increase of the range of operation.

This local linearization is performed by using a Taylor series expansion of each term
of (2.1) and (2.2), and neglecting second and higher order terms in the expansion. We
choose an equilibrium point at 6y = 6y = fp = 0 and 4y = 4y = Gg = o. Physically, this
implies a rigid manipulator whose hub velocity and hub acceleration are zero.

Let us denote the small variations of 7, # and ¢ as &7, 60 and &g respectively. Parti-

tioning M(q), C'(g, q) and K (6) as

mi(q) I mT ¢y ool 0 : o

Mgy=|.. ... |,C@d=|..: . . [|adK(@) =

L - L o L
and linearizing about the specified operating point yields the perturbed state-space

model
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( o I \ / 0 \
Vo . v 2.10)
I.Xa
Mmp!
| -M['K. -M;'Cy \ 0 )
oy = [ h &) | o ] Vv (2.11)
Vi 46 .
where, V = yVi= yVa=V,,
1A éq
my(qy) mT b+ ECsout  oT 0 of
My = ’ o= 2 ,and K = . This per-
m, M, o ¢, o K;

turbed state-space model will be used in the subsequent sections for designing a feed-

through compensator in the closed-loop control system.

2.5 DBottlenecks of Controller Design

As discussed in the previous chapter, the control design of flexible-link manipulators is
significantly difficult for a number of reasons : nonminimum phase behavior, unmodeled
and/or inaccurately modeled dynamics, model truncation, and control and observation
spillover. Considering all these problems, the first task of the designer is to choose
between two broad areas of control, viz. linear and nonlinear control, to proceed further
with the development of the compensators. Working with the nonlinear model has the

immediate advantage of obviating the need for linearization. This is significant because
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a controller based on a locally linearized model does not usually perform well when the
region of operation is far from the operating point. However, nonlinear systems are
difficult to handle mathematically, and a wealth of techniques exist in the literature for
the design and analysis of linear systems. For these reasons, controllers are designed
using the linearized model of the flexible-link manipulator. To this end, we aise. “ave
to decide the nature of linearization to be performed. A globally linearized system,
i.e. one which is designed to transform the nonlinear system into one that hehaves in a
linear fashion over the entire range of operation, outperforms a locally lincarized system,
But for a flexible-link manipulator, global linearization is not so casy to perform. [t
requires either output feedback or state feedback to accomplish the task. Flexible-link
manipulators have unstable zero dynamics which cause the closed-loop system to become
internally unstable, thereby eliminating the possibility of output feedback. Further, the
states are difficult to measure, which in effect makes it difficult to implement a state
feedback strategy. Considering these problems, we will design the controllers based on

. locally linearized model of the flexible-link manipulator.

2.6 System Structure

The control strategy has been described earlier in [8). The proposed controller consists
of three major parts. The trained network and the plant together form what we call the
Compensated Model, so named because it compensates for the presence of unmodeled

and/or inaccurately modeled dynamics to give a representation that is close to a given
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Figure 2.2: Proposed Control Scheme

mathematical model (approximate) of the flexible-link manipulator. The second portion
of the controller is the inner loop whose sole responsibility is to stabilize the plant using
a transmission zero assignment technique similar to that in [13]. The third portion is
the outer loop, commonly referred to as the servo compensator, whose task is to achieve
set-point tracking. Figure 2.2 illustrates the structure of the controller.

This partitioned control strategy satisfies both of our major design objectives. By
employing a neural network previously trained off-line by the procedure to be described
in Chapter 4, the Compensated Model closely matches its output ,,(t) to the output
Yap(t) of the Approzimate Model of the flexible-link manipulator (which does not take
into account the effect of friction). The Compensated Model is used in the design of the
stabilizing compensator via a transmission zero assignment technique. As pointed out
in [13], this technique fails when substantial amount of Coulomb friction is present in
the manipulator’s hub. This is due to the approximation made in designing the feed-

through compensator in the stabilization loop (explained in section 2.6.2) using the
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Figure 2.3: The Compensated Model

linearized model based on the Approzimate Model, which does not incorporate friction
terms. But the Compensated Model, when treated as a black box in terms of inputs
and outputs, behaves in much the same way as the Approzimate Model. Therefore, the
corrections via the neural network which resulted in the Compensated Model, makes the
the application of the feed-through compensator and various servo gains more accurate,

The development of the different compensators is achieved as described helow.

2.6.1 The Compensated Model

The structure of the Compensated Model is shown in Figure 2.3. It essentially consists
of the plant in parallel with the neural network to cancel out the effect of the frictional
terms. The net is trained using the delayed values of the torque 7(t) and the tip

deflection y,c(t). The detail procedure for off-line training is described in Chapter
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3. The same set of inputs are generated on-line when the network is used in the recall
phase for closed-loop control. Several tapped-delay lines can be used to get these delayed

signals.

2.6.2 The Stabilizing Compensator

As discussed previously, the flexible-link manipulator is a nonminimum phase system
with one or more zeros in the right-half of the s-plane. ! This type of system cannot be
controlled just by applying constant gain output feedback because the system becomes
unstable with even a moderate gain. One way to design the compensator is based on
assigning the transmission zeros of the system to desired locations in the complex plane
using a feed-through compensator. When output feedback is applied in the inner loop,
the inner loop poles approach these transmission zeros. Thus the inner loop poles can
be placed further within the left-half plane than the poles of the plant. When the outer
loop is also closed and the poles of the complete closed-loop system begin to migrate
toward the right-half plane zeros of the plant, the added margin of stability generated
by the inner loop guarantees the stability of the closed-loop system for a large range of
feedback gains. This approach is taken from [13] where the authors have successfully
applied this method to control a flexible-link manipulator without considering frictional

effects. The design is carried out in the following way.

'The reason for this nonminimum phase behavior is that the system is non-collocated, which

means the actuator (at the hub) is not located at the same place as the sensor (at the tip).
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Figure 2.4: Stabilizing Compensator

Consider the structure of the inner stabilizing loop illustrated in Figure 2.4. Taking the
Laplace transform of the linearized state-space model of (2.10) and (2.11), and setting
b and Coy to zero, we get the open-loop transfer function of the Approximate Model of

the flexible-link manipulator as follows.

v oy D¥ap(s) _ pls) Y 1
Gap(s) = AT?S) = (2.12)

where, Ay,y(s) and A7(s) represent the Laplace transform of of éy(t) and é7(t) re-
spectively. They are written as two polynomial functions p(s) and ¢(s). Our objective
is to design a feed-through compensator T'(s) = % such that the augmented plant

G(s) = Gap(s) +T(s) is minimum phase and has transmission zeros at desired locations

in the left-half plane. Now,

oy 2ds)ae) + 9, (s)p(e) -
Gl = o9 (2.13)
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ZEROS u POLES
Gap(s)]-1.9 -1.1 -20.1]14.3 -7.9 0 -144.3 |-2.8 -0.8 |[-1.8 }-0.2
+76.97 |+47.9¢ +3.91 +£102.4i[£52¢ |+18.97{+2.9¢
G(s) ||-3.4 -10.1 {-46.4}-12.2 ]-19.9]-10.5 HO -144.3 |-2.8 -08 |-1.8 |-0.2
+102.4:| £54.4: +21.2¢ +3.2¢ +102.41|£52¢ |+18.9¢7|42.9{
(ro(s) |-1.9 -1l -20.1{14.3 -7.9 -144.9:-9.9 -9.9 -10 -18.7 1-10.2
+76.97 | +47.9i +3.9i +102.17| £52.1¢ |419.14 +2.9i

Table 2.2: Pole-Zero Locations

The inner loop transfer function is given by

') = Aynp(s) - ("ap(s) = qt(s)p(s) .
Gol8) = =i T ToKGE - 2@ = K@@ Fa@e@] o

This expression is simplified further by choosing ¢:(s) = ¢{s), which reduces (2.14) to

Cr) = p(s)
o) = S =R + 7] (2.18)

Table 2.2 shows the pole-zero locations of Gap(s), G(s) and Go(s). These values are
based on the values of p(s) and g(s) (which are known a priori) and for K = ~100.
The polynomial p,(s) is selected such that roots of p,(s) + p(s) (zeros of G(s))
are at the locations shown in Table 2.2. This ensures adequate damping for the
poles of Go(s), which is needed for closed-loop stability. The pole-zero locations

are plotted in Figures 2.5 through 2.7.

32



Imaginary Axis

Imaginary Axis

150 Y T T T B Y T

1008+ derier saadeeiens

B XX

.100...........;:..........:..............-......_.................‘... rperesteseriminiciaimenis cess of

13 60 -140 -120 -100 -80 60  -40 -20 0 20
Real Axis

Figure 2.5: Pole-Zero locations of G'yp(s)

150 T 4 T T T T T

100k de e g * O Y

g0k S R O S - SR

BCT1T;) SRR S S ... ........... ......... o

) -‘?60 -140 -120 -100 -B0O -60 -40 -20 o]
Real Axis

Figure 2.6: Pole-Zero locations of G’(s)
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2.6.3 Servo Compensator

The servo compensator comprises of a proportional and integral controller, as

shown in Figure 2.8. This compensator takes the error e(t) as its input and

I KP

2 (t)

e(t)

I<I
S

Figure 2.8: Servo Compensator

generates the output @(t) which drives e(t) asymptotically to zero. The integral
term helps to reduce the steady-state error while the proportional term attempts
to reduce the oscillations . The values of these coefficients were chosen as A'p =
8.5 x 10° and K = 2 x 108,

Finally, we combine all these three blocks and illustrate the detailed structure of
the closed-loop system in Figure 2.9,

Simulation results are provided in Chapter 4 to demonstrate the performance of

the controller.
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Chapter 3

NEURAL NETWORK

TRAINING

3.1 Introduction

Inn this chapter, we will discuss the off-line training procedure for the artificial
neural network to learn some of the unmodeled and/or inaccurately modeled dy-
namics present in the flexible-link manipulator. This network is embedded in the
Compensated Model that was described in Chapter 2. We will choose a suitable
network to meet our design objectives and discuss various aspects of its training,
such as the learning rule, the network topology, choice of training signals, and

techniques that ensure rapid convergence of the training,.
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3.2 Goal of Training

There is a wide variance in the approaches used in designing a neural network
based robot controller. Several researchers have successfully trained neural nets
to model the inverse dynamics of rigid-link/joint manipulators [21, 22], as well
as flexible-joint manipulators [49, 50], and used the network for closed-loop con-
trol. This approach, however, fails for flexible-link manipulators because of its
nonminimum phase characteristics, which render the inverse dynamics unstable.
This, in effect, means that even if the overall closed-loop system is stable, the
neural network itself could saturate, causing severe clipping errors. As pointed
out in [48], one way of dealing with this problem is to introduce a sufficiently large
delay in the system which stabilizes the delayed inverse model while preserving
its amplitnde response. Unfortunately, this method generally causes significant
changes in the phase response and transient response, and is not an acceptable
solution in real-time robot control.

Faced with the problem outlined above, we initially thought of devising a control
scheme where a neural network will be trained to identify the entire forward
dynamics of the flexible-link manipulator. However, a closer observation revealed
that it was unsuitable for flexible-link manipulators because of their tendency to
be only marginally stable. Their linearized models have complex conjugate pairs

of poles close to the imaginary axis of the s-plane. This means that during the
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Figure 3.1: Off-line Training of the Neural Network

early stages of learning, the weight changes taking place within the neural network
will tend to reinforce the oscillatory tendency of the plant. We then investigated
a method of teaching the input-output mapping to the network which involves
only a partof the forward dynamics. Our objective was to use the neural network
as a learning controller which would add a compensating term to an Approrimale
Model so as to make it behave as close as possible to the Actual System.

The training scheme is shown in Figure 3.1. The goal of the training is to identify
the input-output mapping between the applied torque 7(¢) and the tip deflection
error Ay(t), which is the difference between the deflections of the Actual System
and the Approrimate Model. The output of the network, i.e. Ay(t}, can then be
subsequently added to the output of the Actual System in the closed-loop system

to compensate for the unmodeled and/or inaccurately modeled dynamics.
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3.3 Selecting a Network Paradigm

It is widely accepted that presently there is no such thing as a “generic neural
network”. The designer usually chooses a specific network only for a »articular
application, and is even free to create hybrid paradigms by combining character-
istics from various standard paradigms. One can also introduce an entirely new
learning algorithm if there is a need for that.

Although the network design process is very heuristic, and involves some degree of

trial and error, there are some criteria which must be considered when designing

a net [51]
1. Associativity (hetero- or auto-)
2. Resolution (continuous, bi-state, tri-state, or discrete multiple states)
3. Learning rule
4. Number of layers
5. Number of nodes per layer

6. Direction of flow (feedforward or feedback)

71

Node input function

>

Node output function
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9. Simulation control scheme

10. Amount of theoretical knowledge available on the paradigm selected (such

as proof of stability or proof of convergence)

Referring to the criteria listed above, we now proceed to select our specific network.
Noting that the network maps input torque 7(t) into tip deflection error Ay(t),
which is clearly a mapping from one space into another entirely different space,
we conclude that the net has to be hetero-associative. We also would like to use
a supervised learning strategy because the target vector, Ay(t), can be known a
priori. Further, the net should have a continuous input-output mapping. The
latter implies that we need a continuous neural network, as opposed to a discrete
net such as Counterpropagation.

After narrowing down our choice to a smaller group of networks, we focus our
attention on a specific net that has gathered much importance in the recent years
thanks to its ability to accomplish the task of system identification with a greater
efficiency and ease. This is the backpropagation network which has associated
with it some proofs of convergence and applicability to boost the confidence of

the designer. Hecht-Nielsen [16] has shown that:
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Theorem 3.1 Given anye > 0 and any L, function f : [0,1]" € R" — R™, there
exisls a three-layer backpropagation network that can approzimate f to within €

mran-squarcd error accuracy.

This result has been corroborated by several others, such as Stinchombe and White
[42]. We now select this network and proceed further to examine and resolve any

problems that might be associated with it.

3.4 Neural Net Inputs and Outputs

Though a three-layer backpropagation network has been proven capable of ap-
proxi nating any arbitrary function, provided it has a sufficient number of nodes
in the hidden layers, the only problem in using this network is the lack of “mem-
ory” which hinders the learning of temporal patterns in a dynamic system. The
backpropagation network performs a strictly static mapping. Though the learning
process is dynamical because of the ability of the net to self-adapt, the dynamics
of learning is not directly related to the dynamics of system. The dynamics of
learning are governed by network parameters and the learning algorithm, which
are all selected by the designer. The net’s dynamics are therefore used only to
learn some unknown static mapping. This raises the fundamental question of

finding a feasible way to use this network for learning the unmodeled dynamics of
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the flexible-link manipulator.

Currently, there are two approaches for addressing this problem. The first one is
to use the states of the system as input to the network to encode the dynamics.
This is done as follows. Consider equations (2.6) and (2.7) again. They can he

written as

V= Jae(V, 1) (3.1)

Yac(t) = g(V) (3.2)

From (3.1) and (3.2), we can write

Yac(t) = g(hae(V, 7)) = Foe(V, 7) (3.3)

Again, from equation (2.6) through (2.9), we can conclude that y,,(t) is a function

of ya.(t). Hence

AY(t) = Yac(t) ~ Yap(t) = D(yac(t)) (3.4)

This means,

Ay(t) = O(Foe(V,7) = H(V,7) (3.5)
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We can train a neural network to identify this static function H(e) whose argu-
ments may be given to the network as its inputs. The proposed scheme is shown
in Figure 3.2,

This technique, however, has serious implementational problems. It requires all
the states to be measurable which is possible only if they are real quantities and
sensors can be designed to monitor them. For a flexible-link manipulator, the
states (modal coordinates) are considerably difficult to measure. Further, there is
a significant noise problem associated with measuring the time-derivative of the
signals because there is currently no sensor available to measure 6 and g directly.
To circumvent this problem, we select the second method. This is essentially to

use a time delay network, i.e. one whose inputs consist of delayed values of 7(t)
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and yo.(t). These values are all computed off-line. This approach is motivated by
considering the ARMA (Autoregressive Moving Average) difference equation that
represents the dynamics of the manipulator.

Consider equations (2.6) through (2.9) again. Following the same argument that

Yap(t) is a function of y,.(t), we can write Ay(t) as

Ay(t) = y(lt‘(t) - yap(t) = q)(ym‘(t)) (3'6)

Keeping in mind that V = [6 ¢ /] 4]" € R" represents the states of the system

with n = 10 (corresponding to 4 elastic modes), we can get the ARMA model as

Ay(t) = F(r(t), T(t—=A), ...7(t = 9A), Yac(t = A), Yac(t —24A), ... yaclt — IA))
(3.7)

where F(e) is some nonlinear function.

We attemnpt to train the neural network to identify this function F'(e), whose

arguments are given to the network as inputs. The scheme is shown in Figure

3.3. The strength of this approach stems from the fact that we no longer need

to measure all the states of the system, instead we require only the tip deflection

which can be measured relatively easily and accurately.
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3.5 Network Topology

In this research, we have experimented with many different network configura-
tions. Some of the attempts were aborted because the network failed to converge
to a minimum even after a sufficiently large number of epochs. But this gave us
good insight into the dynamics of learning which helped in the choice of a better
configuration in subsequent attempts.

In order to enhance the speed and accuracy of training, we decided to use a fully
connected network. The initial guess for the size of the network was made using

a result based on Kolmogorov’s theorem [24)], which states that:

46



Theorem 3.2 Given any continuous function f : [0,1]" € R* —» R™, there
exists a three-layer feedforward network having n fan-out neurons in the first layer,
(2n + 1) neurons in the hidden layer, and m neurons in the output layer which

can approzimate f to any desired degree of accuracy.

This was only a first step . In our system, n and m were eq al to 19 and 1
respectively, which indicated the presence of at least 39 neurons in the hidden
layer. Once we started with this configuration, we noticed the failure of the
network to converge to a minimum. A closer observation revealed that almost 1
of the neurons did not change their weights very much from their initial values.
These strongly suggested the need to prune those neurons and create a second
hidden layer because those nodes were obviously not participating in the learning
process. After this change was made, and we applied some advanced methods
of learning convergence (mentioned in section 3.7), we got an acceptable solution
with a network of size 19-25-20-1.

The structure of the network is shown in Figure 3.4. We have added an input
buffer layer between the input and the first hidden layer. This layer does not

perform any learning. It is used only to scale the net input signals so that the
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Figure 3.4: Topology of the Neural Network

nodes in the first hidden layer are not initially driven to saturation '. In our
network, we have used the hyperbolic tangent function in the hidden layers to get
a bipolar output in the range [-1,1]. So, in the buffer layer, we have scaled the
inputs between -0.9 and +0.9 to allow some safety margin at both ends. This
attenuation is done by passing the input signals through some fixed gains which
are selected based on the observed operating range of the net inputs.

The output layer consists of a single neuron which generates the tip deflection error
Ay(t) as its output. We used a linear activation function in this layer instead of
a sigmoid or hyperbolic tangent function. This was done to avoid further scaling
of the output which would have been needed otherwise.

We have added a bias signal to all the neurons in the input and hidden layers

to provide a fixed offset. During the training, if all the net inputs become zero

1Gince the weight change is proportional to the derivative of the activation function, maximum
changes occur for those neurons which are operating near the midrange of their activation

function.
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at some instant, but the desired net output is nonzero, then the presence of this
bias signal becomes absolutely necessary for successful training. This offsets the
origin of the logistic function, producing an effect that is similar to adjusting the
threshold of the perceptron neuron, thereby permitting a more rapid convergence
of the training process. This is incorporated by adding a weight to each neuron
such that the source of the weight is always +1, instead of the output of a neuron

in the previous layer.

3.6 Learning Rule

The backpropagation neural network has been trained using the generalized delta
rule, which essentiaily implements gradient descent in sum-squared erro for semi-
linear activation functions [37). We will use the following notation to describe this
rule by considering the effect of a single learning iteration on the weights of the

Jth node in a given layer.

D; is the desired value of the node’s output;
Wik is the current weight on the kth input line;
Awji is the change in wj, as a result of

the current learning iteration;

n, is the number of inputs to node j, where
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1 <k <ny;
L is the value of the kth input to node j;
A, is the activation function of node j;
0, is the output of node j.

Considering the input function for any node j as the weighted summation

A= wpndy + wik B (3.8)
keX
where,
Y is the set of all nodes in the layer below node j;
B is the output of the bias node (B = 1);
b is the index of the bias node.

The weight change is formulated as
Aw,-k =7n=* (5_,' * ]jk (3.9)

Here 4, is the error signal, and » is a parameter, called the learning rate, which is
set by the designer. For each node j in the output layer, the error signal is given
by

§ = (D, — O;) * fi(A;) (3.10)
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where fj(Aj) is the derivative of the jth node’s output function

0, = f,(A,) (3.11)

For each node j not in the output layer, the error signal is given by

8, = f1(Ay) * Y (8, % wy,) (3.12)
9€Q

where the summation is taken over all nodes in the layer directly above node j,
and w,, is the weigh* on the connection from node j to node g.
The backpropagation algorithm applies the generalized delta rule to perform the
learning. Figure 3.5 illustrates the flowchart of the error backpropagation train-
ing algorithm for a three-layer network such as that in Figure 3.4. The procedure
shown in the flowchart is self-explanatory. After the inputs are applied and fed
forward through the network, the error signals are computed for cach node start-
ing with the output layer, and the learning rate is re-adjusted (according to an
algorithm explained in section 3.7.2). Then the weights of all nodes in that layer
are updated, followed by updating of all the preceeding layer weights in a back-
ward direction until the first hidden layer is reached. The cumulative cycle error
is computed in step 3 as a sum-squared error over all outputs in the entire train-
ing set. The final error value for the entire training cycle is calculated after each
completed pass through the training set. The learning procedure stops when the

final error falls below the upper bound, E,,.., set by the designer.
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Figure 3.5: Flowchart of the Error Backpropagation Training Algorithm
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3.7 Problems Encountered using the Backprop-

agation Network

Despite the many successful applications of the backpropagation network, it is not
a panacea. The greatest difficulty lies in the uncertain training process which may
take a very long time, and at the end of it, the network may not he trained at all.
As pointed out in [47], there are two major factors responsible for unsuccessful

training.

Network Paralysis

As the network trains, the weights can become very large. This forces the neurons
to operate in a region where the derivative of the activation function is very small.
Since the error sent back for training is proportional to this derivative, the training
process may virtually come to a standstill. Some researchers have tried to avoid
this problem by using a small learning rate ), but that extends the training time

considerably. Presently, there is no acceptable solution to this problem.

Local Minima

The backpropagation learning algorithm is essentially a multidimension:l opti-

mization problem employing a gradicnt descent method, i.e. it follows the <lope
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of the error surface downward, constantly adjusting the weights in the process.
The error surface of a complex network is highly convoluted, full of hills, val-
leys, folds and gullies in high-dimensional space. The network may grt trapped
in one of these local minima (a shallow valley) before reaching a much deeper
global minimum, and may produce an erronious result. If the minimization pro-
cess starts from an inappropriate initial condition, then it might not be possible
for the network to reach a global minimum at any time.

As indicated in Figure 3.6 (a graph showing a cross-section of a hypothetical error

surface in weight space), if the minimization starts from an initial point 2 or 3, then
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it will stop prematurely at the local minima wj, or wj,, located on both sides of
the stationary point w,. Butif it is started from 1, then the global minimum, 1w,
may be reached. Quite often, an appropriate choice of some learning parameters
helps the network to get out of a plateau (local minimum) even if it gets trapped
in one. But the optimum choice of network parameters is usually a very complex

problem, and presently it is done by trial and error in most cases.

3.8 Measures taken for rapid convergence

In this thesis, we have taken a number of measures to ensure rapid convergence of

the network to a minimum in a reasonable amount of time. They are as follows.

3.8.1 The Momentum Method

This method involves adding a term to the current weight adjustment that is
proportional to the amount of the previous weight change. This additional term
tends to keep the weight changes going in the same direction — hence the name
momentum. This term typically helps to speed up convergence, and to achieve an
efficient and more reliable learning profile. The weight adjustment equation (3.9)

is then modified to the followinag;:
Awjr(t)=n* 85 * i + a*x Aw,(t —1) (3.13)
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Here o is the momentum coefficient which is usually set to a positive value less

than 1. In our simulations, we have used a value of a = 0.8.

3.8.2 Adaptive learning rate

Selection of a value for the L arning rate parameter 15, has a significant effect on
the network performance. Usually, 7 is chosen to be a small number, of the order
of 1072 to 10, but the choice of a suitable value depends strongly on the nature
of the learning problem and on the network architecture.

A large value of 1 generally speeds up convergence at the initial stage of learning.
But as the error gets closer to a minimum, there is usually no further reductior.
Further, the weights tend to fluctuate a great deal with a high learning rate, and
the resulting oscillatory behavior can lead to system instability. There is also a
danger of jumping from the global minimum’s region of convergence to a local
minimum’s region of convergence. On the other hand, a small value of 5 yields a
smooth trajectory of descent along the error surface, but the total training time
(and hence the number of epochs) to settle down to a solution is considerably
longer.

Many researchers have tried to exploit the benefits ol both low and high 5 by
the process of simulated anncaling [23, 17). In this method, the learning rate is

initially set to a high value so as to progress quickly to the neighbourhood of
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a global minimum, while escaping any local minimum or flat region that might
come along the way. Thereafter, the learning rate is set to a small value to
facilitate smooth descent towards the global minimum and to reduce the amount
of overshoot. The learning rate is, therefore, changed as a function of the number
of epochs according to some “annealing schedule”. This method is, however, quite
heuristic in nature. There is no specific rule to guide the designer to choose varions
1) values at different stages of training. Moreover, the same set of 1) values, chosen
after a different number of epochs, may lead to entirely different results.

In this research, we have used the concept of an adaptive learning rate, which is
essentially to make a trade-off between a high learning rate and a small learning
rate in a continuous fashion. In this method of training, the ratio of the current
output error to the previous one is checked at every step to determine whether
the training shows a convergent or divergent trend. Based on this, the current
learning rate is increased or decreased by specified factors. (Typically, we have
chosen the values of decision ratio, incrementing factor and decrementing factor
as 1.04, 1.05 and 0.7 respectively).

This method may provide a near optimal learning rate throughout the training
process. It increases the learning rate at timesto speed up the training, but does so
only to the extent that the network can learn without large error increases. When

the learning rate gets too high to ensure a further decrease in error, it gets reduced
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automatically until stable learning resumes. This method surpasses simulated
annealing in its ability to change the learning rate dynamically throughout the
training, without having to go through the heuristic “annealing schedule” which

updates the learning rate only at some pre-supposed discrete stages.

3.8.3 Better initial conditions

The choice of initial weights and biases plays a significant role in the training of
the network towards an acceptable error minimum. Typically, they are initialized
to small random values (to prevent an early saturation of neurons) without taking
into consideration the dynamics of learning. Quite often, this leads to a very long
training time, and in some cases the network may not converge at all.

In this thesis, we have used an improved method of picking up initial weights an¢!
biases that are better than pure random values. This scheme was proposed by
Nguyen and Widrow [32}, and it formulates a method for initialization based on
the range of inputs and outputs.

It is well known that during training the network learns to implement a desired
function by building piecewise linear approximations (of individual neuron out-
puts) to the function. The pieces are then summed to form the complete approx-
imation. This indicates that the weights need to move in such a manner that the

region of interest is divided into small intervals. It is then reasonable to consider
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speeding up the training process by setting the initial weights of the hidden layer
so that each hidden node is assigned its own interval at the start of the train-
ing. The network is trained in the usual way, each hidden node still having the
freedom to adjust its interval size and location during training. However, most
of these adjustments are small since the majority of the weight movements have
been eliminated by the method of setting their initial values.

Consider a network with H nodes in the first hidden layer. The network has
X € [-1, 1]" as the input vector, W; € R as the weight vector of the ¢ th node
of the hidden layer, and W, as the bias weight of the 7 th hidden node. Following
Ngunyen and Widrow’s method, the elements of W; are assigned values from a
uniform random distribution between -1 and +1 so that its direction is random.

Next, the magnitude of the weight vectors are adjusted as
IWill = H¥ (3.14)

In our simulations, we set the magnitude of W; to 0.7TH¥ to allow some overlap
between the intervals. Then we locate the center of the interval of each node’s
activation function in a random manner by setting the value of W, as a random
number between —||W;|| and ||W;].

With the weights initialized as above, the network, in zeneral, achieves a lower

mean squared error in a much shorter time.
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3.9 Training Signal

As explained in section 3.3, the backpropagation network has a total of 19 inputs
comprising of torque 7(t) along with its past 9 values, and the past 9 values of tip
deflection y,.(). Our goal is to train the network with a fairly rich set of inputs so
that it performs well for any arbitrary input that we may later present to it. The
most general type of training signal would have been white noise. But, keeping
in mind that our experimental set-up is bandlimited to approximately 1 kHz., we
used a pseudo-random sequence of low-pass white noise as the training inpat set
for the network.

The motivation behind the choice of this type of training signal is that it generates
a uniformly populated input space during training. As a result, during the recall
phase, any unknown input presented to the network stays relatively close to some
of the inputs used during training, resulting in a smaller distance of interpolation
for the net [35). This type of signal also alows for an unordered presentation
of inputs during training, a condition highly desirable for converging to a global

minimum using the generalized delta rule.
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Chapter 4

SIMULATION RESULTS

4.1 Introduction

This chapter presents the simulation results to corroborate the theoretical con-
cepts developed in Chapters 2 and 3. The organization of this chapter is as follows.
Section 4.2 illustrates the behavior of the network during training. Section 4.3
demonstrates the performance of the trained network in the recall phase. Section
4.4 presents the closed-loop system behavior when the trained network is used to
control the manipulator, as well as the response in the absence of the network.
Different reference trajectories are used to compare the tracking performance of
the controller. Finally, iu section 4.5, we have developed a robust controller for

improved disturbance rejection, and provided the results for its tracking perfor-

62




mance in section 4.6. The simulations were conducted on a SUN SPAR(' 2 com-
puter using MATLAB and SIMULINK. Four elastic modes and one rigid body
mode were used to model the manipulator. For this simulation study, the flexible-
link manipulator, i.e. the Actual System, was represented by an Accurate Model
incorporating a friction model. This is the model represented by equations (2.6)
and (2.7). The Approzimate Model did not include any friction effects. The pa-
rameters used in the Accurate Model were taken from [14], and are based on an

actual experimental set-up in our laboratory.

4.2 Network Training

The network was trained in three stages. The first stage was from epoch 1 to
1000, the second stage was from epoch 1001 to 6000, and the third stage was from
epoch 6001 to 9000. As shown in Figure 4.1, at the end of each stage, we set the
learning rate to its initial value of 4 and started the training afresh. This was
done to reduce the training time. Since an “adaptive learning rate” scheme was
employed in the training, we could afford to increase the learning rate at times to
speed up the training without running the risk of subsequent oscillatory behavior
which could be caused if the learning rate was held at that high value for long.

The learning curve is demonstrated in Figure 4.2. It shows that the network
settled down to a minimum after 9000 epochs. An interesting observation can be
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Figure 4.3: Network Error for First 1000 Epochs

made in this context. Instead of following a monotonically decreasing pattern,
the error often increases sharply as training proceeds, and then decreases again
gradually at a similar rate. A part of the learning curve is magnified in Figure
4.3 to reveal this behavior more clearly. Such fluctuations are due primarily to
the pseudo-random nature of the training signal. If the training signal were not

random in nature, we could expect the error to follow a more regular pattern.

4.3 Network Recall

Having trained the network off-line, we were interested in testing its performance.

This was to ensure overall closed-loop stability when the neural network would
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be used as a controller in the system. For this purpose, we used a set of pulses

for the torque input, as shown in Figure 4.4, to both the network and the set-up
shown in Figure 3.1.

This input was unknown to the network, but was within its training input space.
We also used past values of the torque, 7(t—1A), and obtained the tip deflections,
Yac(t —1A), i =1, 2, ...9 off-line. They were applied as inputs to the network.
We then compared the two responses as shown in Figure 4.5. The proximity of

the two responses demonstrates conformity to the expected performance.

4.4 Closed-Loop Response

The closed-loop with the Compensated Model is shown in Figure 4.6, where y,.r

is shown by the dashed line and y,. is shown by the solid line.
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Figure 4.6: Closed Loop Response of y(h,t) with the Network
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A closer examination reveals that the tip deflection initially exhibits a negative
going excursion before attempting to follow the reference trajectory. This is due
to the phase delay characteristic of nonminimum phase systems which increases
with frequency. That is why the effect is more pronounced in the transient portion
(which contains the lugh frequency components) of the trajectory.

The steady state part of the trajectory shows a 3% oscillation about the nominal
value. To explain this oscillatory behavior, we have to look at the hub angle and
hub velocity profile in Figure 4.7.

The hub velocity 6(2) shows a change from 0 to 0.33 radians/sec. during the first
1.7 second of simulation. This large variation causes the tip deflection, and hence

the vector g(t), to increase in magnitude. As a result, the centrifugal force vector
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62K ,q becomes significantly large, and the controller, whose design is based on the
linearized plant model for which 6p(t) = 0, fails to perform satisfactorily. Further,
the variation of éo(t) exerts a time-varying influence upon the damping of the plant
model, and this causes a disturbance effect upon the controller which has been
designed for a linear time invariant system. This perturbation is manifested as an
oscillation of the tip deflection that also appears in the net tip position. Another
reason for the oscillation is ascribed to the numerical integration performed during,
simulation. Such discrete integration necessarily introduces small discontinuities
for the hub position values. As a result, when the hub velocity is calculated
by numerically differentiating the hub position. *! ~se discontinuities inject some
amount of noise in the system. This noise becomes dominant towards the end of
simulation (when nominal value of hub velocity approaches zero, and the noise
is large compared to that value), and causes a variation in the sign of the hub
velocity. Since, computation of control torque involves the term o sigmoi¢l(0),
this positive and negative going excursions results in large swings of control torque,
which manifests itself as an oscillation at the tip. Last but not the lcast, though
there is a finite amount of tracking error, the observed difference in performance
is actually within the same order of magnitude as the fluctuations caused by

pseudo-random training, and the slizht error in function approximation by the

neural network should be accepted because the Compensated Model can never he
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Figure 4.8: Closed-Loop Response of y{(h,t) without the Network

an ezact replica of the Approzimate Model of the manipulator.

The response of the system when the neural network is omitted is shown in Figure
4.8.

The controller parameters T, K, K'p and K, were the same as those used for
the Compensated Model. 1t is clear that the neural network provides significant
improvement in the closed-loop performance by compensating for friction and
other unmodeled dynamics.

Next, we would like to observe the tracking performancsz of the controller with
respect to similar reference trajectories but with higher steady state values. Figure

4.9 and 4.10 show the closed-loop behavior for two such trajectories.
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Figure 4.9: (a) Closed-Loop Response with the Network (for ¥y, = 0.2 m) and

(b) Closed-Loop Response without the Network (for yuma> = 0.2 m)

Figure 4.10: (a) Closed-Loop Response with the Network (for ¥4 = 0.3 m) and

(b) Closed-Loop Response without the Network (for ymer = 0.3 m)
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We note an increase in the amplitude of oscillation as the reference input goes
higher. This is expected since the increased values of q(t), §(t), 8(t) and 6(t)
play a more significant role in causing the system to deviate from the nominal
operating point and thereby deteriorating its performance.

A further increase in the value of the reference input makes the system unstable.
This is due primarily to the combined effect of decreased damping of flexible
dynamics caused by higher hub velocity, larger drift away from the operating
point, and gross violation of the Euler-Bernoulli requirement for small deflection.
Figure 4.11 through 4.13 illustrate the performance of the controller with respect
to a different kind of reference trajectory. This smooth trajectory is constructed
in a way that it has a continuous position and velocity everywhere on it. This is

generated as folllows.

Yres(t) =
vr it> 2

For our simulations, we have used three similar set of trajectories with a rise time
t, = -2/-;1 = 2 sec., total duration t, = 10 sec., and initial value yp = 0 meter. The
only difference between them was the steady state value, y;, which was chosen

as 0.1, 0.2, and 0.3 meters respectively. This was done to compare it with the

corresponding linear segment trajectories.
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Figure 4.11: (a) Closed-Loop Response with the Network (for yuar = 0.1 m) and

(b) Closed-Loop Response without the Network (for g0 = 0.1 m)
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Figure 4.12: (a) Closed-Loop Response with the Network (for yimaz = 0.2 m) and

(b) Closed-Loop Response without the Network (for ymaz = 0.2 m)
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Figure 4.13: (a) Closed-Loop Response with the Network (for yme, = 0.3 m) and

(b) Closed-Loop Response without the Network (for y,,,- = 0.3 m)

In all the above simulations, we observe a reduced amplitude of oscillation com-
pared to their linear segment counterparts. This is not unexpected since, by
avoiding the discontinuity of y,.s(?) at 2 second, we have been able to eliminate
the discontinuity of the hub velocity and acceleration. This results in less pertur-

bation for the control torque, and hence ~ improved tracking performance.
Further, we are interested to see the effect of an input that excites the higher order
modes of the manipulator. Recalling that the network was trained with a low-pass
noise signal, our objective is to test the robustness of the controller in presence of
high frequency components. Figures 4.14 and 4.15 illustrate the performance of

the controler for the reference trajectories 0.2sint and 0.2sin 5t respectively.
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Figure 4.15: Closed-Loop Response y,.z(t) = 0.2sin 5¢

We observe a larger error in the first case, and with further increase in frequency
the system becomes unstable. These signals essentially excite the higher order
modes of the system which were neglected in the derivation of the linearized
model. This, in effect, makes the feed-through compensator less effective. In
addition, the performance of the neural controller degrades considerably as it was
not trained with these high frequency input signals. Consequently, we see poor

tracking performance.
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4.5 Designing a Robust Servo Controller

The motivation for designing a robust servo controller arises from the fact that
any controller design for a multivariable system, based on a linearized model,
usually neglects the effect of perturbations in the model, which, in effect, leads to
a degradation in the closed-loop performance. We indeed observe this effect in the
simulation results based on the scheme described in section 2.6. The steady-state
response is significantly oscillatory, and calls for designing a robust servo controller
which can reject these disturbances in a more efficient way while ensuring closed-
loop stability.

If we review the linearization procedure for the dynamic model presented in section
2.4, it becomes apparent that the high frequency modes (represented by second
and higher order derivatives) are omitted in the derivation. Further, the operat-
ing point may drift about its nominal value due to perturbations in the system.
All these makes it necessary to solve the robust servo-mechanism problem in an
efficient way. Our method is adapted from [34] where the Internal Model Princi-
ple has been applied to design the robust con.roller so that it contains a certain
duplicated model of its “environment”, i.e. of the disturbances and the reference
inputs acting on the system.

Upon examining the closed-loop response of Figure 4.10(a), we can see that the

steady state oscillation of the tip position is almost sinusoidal in nature of mag-
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Figure 4.16: Fourier Transform of y(k,t)

nitude 0.01 m. In order to observe it more closely, we take the fast Fourier
transform of this signal and for a magnitude of 0.01 m, we get the frequency of
oscillation around w, = 5.65 radians/sec (0.9 Hz.). This is illustrated in Figure
4.16. Although the Fourier transform shows the presence of other harmonics, we
would be interested to suppress the most dominant frequency component, i.e. the
one at w, = 5.65 radians/sec.

Recalling that the Laplace transform of a sinusoidal signal sinwt is 7=z, we
design our robust servo controller as G(s) = ?'Tiﬁ" which is essentially a model of

the disturbance signal. We will further use a proportional block in parallel with
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Figure 4.17: Robust Servo Controller

G(s) to reduce the oscillations caused by other harmonics which are not considered
in the design of the robust controller. The structure of the controller is illustrated
in Figure 4.17. This time we tune the gains Kp and K, to the values 7.9 x 10°
and 4.2 x 10® respectively. Simulation results show a considerable reduction in

oscillation.

4.6 Robust Controller Response

As discussed in the previous section, the robust servo controller has been designed
to minimize the effect of disturbances present in the earlier simulations. This
has been done using internal model principle where a model of the disturbance
signal has been incorporated in the servo compensator. Figure 4.18(a) and 4.18(b)

illustrate the performance of the controller.
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Figure 4.18: (a) Closed-Loop Response of y(h,t) with the Network and (b) Closed-

Loop Response of y(h,t) without the Network
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When this response is compared with the response in Figures 4.6 and 4.8, we

clearly see a reduction in the amplitude and frequency of oscillation.
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Chapter 5

CONCLUSIONS AND

FUTURE RESEARCH

5.1 Conclusions

In this thesis, we have explored a neural network based controller design that
was motivated by difficulties in controlling a flexible-link manipulator subject to
unmodeled and/or inaccurately modeled dynamics using only end-point (output)
measurements. The closed-loop response of the proposed control strategy has
demonstrated conformity to the performance specification, i.e. to track a reference
trajectory with reasonable accuracy while ensuring closed-loop stability.

In recent years, several researchers have focused their attention on the develop-
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ment of neural network based modeling and control strategies for a variety of
systems which are difficult to control by conventional methods. These difficulties
arise from a number of factors such as unmodeled and/or inaccurately modeled
dynamics, parametric fluctuations, changes of configuration (due to loading or
disturbances) etc. By virtue of their unparalleled ability to learn the dynamics
of an arbitrarily complex system with considerable uncertainty, neural networks
have proved to be indispensable for controlling these types of systems. In our
application, the backpropagation neural network has demonstrated good perfor-
mance by effectively modeling friction and other unmodeled dynamics present in
an actual manipulator. Further, our system is nonminimum phase, and calls for
specific measures to ensure closed-loop stability. We have successfully employed
a transmission zero assignment technique to achieve this goal.

However, the proposed neural network based control strategy has two fundamental
limitations. The first is that it cannot reject disturbances very efficiently. By using
a robust servo controller, the problem was solved partially, but it needs further
investigation. The second shortcoming is that the controller has a very limited
range of operation. Attempting to increase the range often results in a significant
change in the linearized model which renders the feed-through compensator less
effective. In addition, it may cause a viclation of the Euler-Bernoulli constraint

for smalli tip deflections which was assumed in deriving the dynamic model.
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Despite the limitations outlined above, the neural network based controller has
done a commendable job in controlling the motion of the flexible arm. Consid-
ering the inherent complexity involved with this system, and the difliculties that
standard techniques have in meeting all the design objectives outlined in section
1.1, we believe that neural networks provide a valid approach to the control of

flexible-link manipulators.

5.2 Future Research

A particular aspect of the present scheme that deserves further investigation is
robust performance. The servo compensator should be efficient enough to reject
various disturbances that might be present in the system. The present method can
be extended to incorporate a neural network based adaptation scheme comprising
of two components: a feed-through neural network controller which is trained off-
line so as to ensure that the resulting system (consisting of the enhanced model
and the feed-through controller) exhibits minimum-phase behavior, and a PID-
type neural network based servo-controller whose gains are adjusted on-line. The
latter may be constructed with a Competitive Learning Network using Kohonen
layer neurons which are capable of performing unsupervised learning in a winner-
take-all mode. This scheme is likely to exhibit more robust performance.

Another aspect that could be probed further is to observe the effect of a payload at
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the tip. The present modeling scheme is incapable of handling a varying payload,
but this is an issue of significant practical interest.
Last but not the least, the neural network based control scheme need to be im-

plemented on an actual test-bed to corroborate the theoretical results, and to see

if any additional problem crops up or not.
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